Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	Makes an attempt to use Pythagoras' theorem to find $ \mathbf{a} $.	M1	1.1b	4th
	For example, $\sqrt{(4)^2 + (-7)^2}$ seen.			Find the unit vector in the direction of a
	$\sqrt{65}$	A1	1.1b	given vector
	Displays the correct final answer.	A1	1.1b	
	$\frac{1}{\sqrt{65}} \left(4\mathbf{i} - 7\mathbf{j} \right)$			
		(3)		
				(3 marks)
	Notes			

Mark scheme

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	States that $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$	M1	2.2a	3rd
	States $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$ or $\overrightarrow{PQ} = -\frac{3}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$	M1	3.1a	Understand the condition for two vectors to be parallel
	States $\overrightarrow{PQ} = \frac{3}{5} (-\mathbf{a} + \mathbf{b})$ or $\overrightarrow{PQ} = \frac{3}{5} \overrightarrow{AB}$	A1	2.2a	paraner
	Draws the conclusion that as \overrightarrow{PQ} is a multiple of \overrightarrow{AB} the two lines PQ and AB must be parallel.	A1	2.1	
		(4)		
2b	$PQ = \frac{3}{5} \times 10 \text{ cm} = 6 \text{ cm cao}$	B1	3.1a	3rd Understand and use position vectors
		(1)		
				(5 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	Equates the i components for the equation $\mathbf{a} + \mathbf{b} = m\mathbf{c}$ o.e. 2p + 6 = 4m	B1	2.2a	3rd Understand the
	Equates the j components for the their equation $\mathbf{a} + \mathbf{b} = m\mathbf{c}$ -5 - 3p = -5m	B1	2.2a	condition for two vectors to be parallel
	Makes an attempt to find p by eliminating m in some way. For example, $\frac{10p+30=20m}{20+12p=20m}$ o.e. or $\frac{2p+6}{-5-3p} = -\frac{4}{5}$ o.e.	M1	1.1b	
-	<i>p</i> = 5	A1	1.1b	-
-		(4)		
3b	Using their value for p from above, makes a substitution into the vectors to form $\mathbf{a} + \mathbf{b}$ $10\mathbf{i} - 5\mathbf{j} + 6\mathbf{i} - 15\mathbf{j}$	M1ft	1.1b	2nd Add, subtract and find scalar
	Correctly simplifies. 16 i – 20 j	A1ft	1.1b	multiples of vectors by calculation
		(2)		
1				(6 marks)
	Notes			
3a Alternat 3b	ively, M1: attempt to eliminate p first. A1: $m = 4$ and $p = 5$			

Alternatively, M1ft: substitute their m = 4 into their $\mathbf{a} + \mathbf{b} = m\mathbf{c}$. A1ft correct simplification.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4 a	Makes an attempt to find the vector \overrightarrow{AB} . For example, writing $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{AB} = 10\mathbf{i} + q\mathbf{j} - (4\mathbf{i} + 7\mathbf{j})$	M1	2.2a	3rd Understand and
	Shows a fully simplified answer: $\overrightarrow{AB} = 6\mathbf{i} + (q-7)\mathbf{j}$	A1	1.1b	use position vectors
		(2)		
4b	Correctly interprets the meaning of $ \overline{AB} = 2\sqrt{13}$, by writing $(6)^2 + (q-7)^2 = (2\sqrt{13})^2$ o.e.	M1	2.2a	4th Use vectors to solve simple geometric
	Correct method to solve quadratic equation in q (full working must be shown). For example, $(q-7)^2 = 16$ or $q^2 - 14q + 33 = 0$	M1	1.1b	problems
	$q-7 = \pm 4$ or $(q-11)(q-3) = 0$ or $q = \frac{14 \pm \sqrt{14^2 - 4 \times 1 \times 33}}{2 \times 1}$	M1	1.1b	
	<i>q</i> = 11	A1	1.1b	
	<i>q</i> = 3	A1	1.1b	-
		(5)		
		·		(7 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	States or implies that $\overrightarrow{BC} = 13\mathbf{i} - 8\mathbf{j}$ o.e.	M1	2.2a	4th
	Recognises that the cosine rule is needed to solve for $\angle BAC$ by stating $a^2 = b^2 + c^2 - 2bc \times \cos A$	M1	3.1a	Use vectors to solve simple geometric problems
	Makes correct substitutions into the cosine rule. $\left(\sqrt{233}\right)^2 = \left(\sqrt{45}\right)^2 + \left(\sqrt{104}\right)^2 - 2\left(\sqrt{45}\right)\left(\sqrt{104}\right) \times \cos A \text{ o.e.}$	M1	1.1b	proteins
	$\cos A = -\frac{7}{\sqrt{130}}$ or awrt -0.614 (seen or implied by correct answer).	M1	1.1b	
	$A = 127.9^{\circ} \operatorname{cao}$	A1	1.1b	-
		(5)		
5b	States formula for the area of a triangle.	M1	3.1a	4th
	Area $=\frac{1}{2}ab\sin C$			Use vectors to solve simple geometric
	Makes correct substitutions using their values from above.	M1ft	1.1b	problems
	Area $=\frac{1}{2}(\sqrt{45})(\sqrt{104})\sin 127.9^{\circ}$			
	Area = $27 \text{ (units}^2)$	A1ft	1.1b	
		(3)		
				(8 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	States that $\tan \theta = \pm \frac{2}{3}$ or $\theta = \tan^{-1} \pm \frac{2}{3}$ (if θ shown on diagram sign must be consistent with this).	M1	1.1b	2nd Find the direction of a vector using
	Finds –33.7° (must be negative).	A1	1.1b	tan
		(2)		
6b	Makes an attempt to use the formula $\mathbf{F} = \mathbf{m}\mathbf{a}$	M1	3.1a	4th
	Finds $p = 10$ Note: $8 + p = 6 \times 3 \Longrightarrow p = 10$	A1	2.2a	Understand the link that vectors
	Finds $q = -2$ Note: $-10 + q = 6 \times -2 \Longrightarrow q = -2$	A1	2.2a	have with mechanics
		(3)		
6с	Attempt to find R (either $6(3i - 2j)$ or 8i - 10j + '10'i + '-2'j).	M1	3.1a	2nd Use the
	Makes an attempt to find the magnitude of their resultant force. For example, $ R = \sqrt{18'^2 + 12'^2} \left(=\sqrt{468}\right)$	M1	1.1b	magnitude and direction of a vector to find its components
	Presents a fully simplified exact final answer. $ R = 6\sqrt{13}$	A1	1.1b	-
		(3)		
				(8 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Shows how to move from M to N using vectors.	M1	1.1b	3rd
	$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN} = \frac{4}{5}\mathbf{b} + \mathbf{a} - \frac{1}{5}\mathbf{b}$ or			Understand and use position vectors
	$\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{AN} = -\frac{1}{5}\mathbf{b} + \mathbf{a} + \frac{4}{5}\mathbf{b}$			
	$\overrightarrow{MN} = \mathbf{a} + \frac{3}{5}\mathbf{b}$	A1	1.1b	
		(2)		
7b	Shows how to move from <i>S</i> to <i>T</i> using vectors.	M1	1.1b	3rd
	$\overrightarrow{ST} = \overrightarrow{SB} + \overrightarrow{BO} + \overrightarrow{OT} = -\frac{1}{5}\mathbf{a} - \mathbf{b} + \frac{4}{5}\mathbf{a}$ or			Understand and use position vectors
	$\overrightarrow{ST} = \overrightarrow{SC} + \overrightarrow{CA} + \overrightarrow{AT} = \frac{4}{5}\mathbf{a} - \mathbf{b} - \frac{1}{5}\mathbf{a}$			
	$\overrightarrow{ST} = \frac{3}{5}\mathbf{a} - \mathbf{b}$	A1	1.1b	
		(2)		

Mark scheme

7c		M1*	3.1a	4th
	Finds OD travelling via M .	TATT.	J.1a	Use vectors to
	$\overrightarrow{OD} = \overrightarrow{OM} + \overrightarrow{MD} = \frac{1}{5}\mathbf{b} + \lambda \left(\mathbf{a} + \frac{3}{5}\mathbf{b}\right)$			solve simple geometric
	Finds \overrightarrow{OD} travelling via T.	M1*	3.1a	problems
	$\overrightarrow{OD} = \overrightarrow{OT} + \overrightarrow{TD} = \frac{4}{5}\mathbf{a} + \mu \left(-\frac{3}{5}\mathbf{a} + \mathbf{b}\right)$			
	Recognises that any two ways of travelling from O to D must be equal and equates \overrightarrow{OD} via M with \overrightarrow{OD} via T .	M1*	2.2a	
	$\frac{1}{5}\mathbf{b} + \lambda \left(\mathbf{a} + \frac{3}{5}\mathbf{b}\right) = \frac{4}{5}\mathbf{a} + \mu \left(-\frac{3}{5}\mathbf{a} + \mathbf{b}\right)$			
	Or $\lambda \mathbf{a} + \left(\frac{1}{5} + \frac{3}{5}\lambda\right)\mathbf{b} = \left(\frac{4}{5} - \frac{3}{5}\mu\right)\mathbf{a} + \mu\mathbf{b}$			
	Equates the a parts:	M1*	2.2a	
	$\lambda = \frac{4}{5} - \frac{3}{5}\mu$ or $5\lambda = 4 - 3\mu$ or $3\mu + 5\lambda = 4$			
	Equates the b parts:	M1*	2.2a	
	$\frac{1}{5} + \frac{3}{5}\lambda = \mu \text{ or } 1 + 3\lambda = 5\mu \text{ or } 5\mu - 3\lambda = 1$			
	Makes an attempt to solve the pair of simultaneous equations by multiplying.	M1	1.1b	
	For example, $15\mu + 25\lambda = 20$ and $15\mu - 9\lambda = 3$			
	or $9\mu + 15\lambda = 12$ and $25\mu - 15\lambda = 5$			
	Solves to find $\lambda = \frac{1}{2}$ and $\mu = \frac{1}{2}$	A1	1.1b	
	Either: explains, making reference to an expression for \overrightarrow{OD} or,	B1	3.2	
	for example, \overrightarrow{MD} that $\lambda = \frac{1}{2}$ implies that D is the midpoint of			
	2 MN			
	or finds $\overrightarrow{MD} = \overrightarrow{DN}$ or $\overrightarrow{MD} = \frac{1}{2}\overrightarrow{MN}$ o.e.			
	and therefore MN is bisected by ST.			
	Uses argument (as above) for bisection of ST using $\mu = \frac{1}{2}$	B1	3.2	
		1	1	I]

	(9)		
			(13 marks)
Notes			
7c Equating, for example, \overrightarrow{OD} via <i>M</i> with \overrightarrow{OD} via <i>N</i> , will lead to a pair of simularly solutions. In this case, providing all work is correct, award one of the with the 3rd, 4th, 5th and 6th method marks, for a maximum of 5 out of 9.		-	
Alternative Method			
(M1) Finds \overrightarrow{OD} travelling via N.			
$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AN} + \overrightarrow{ND} = \mathbf{a} + \frac{4}{5}\mathbf{b} + \lambda \left(-\mathbf{a} - \frac{3}{5}\mathbf{b}\right)$			
(M1) Finds \overrightarrow{OD} travelling via S.			
$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BS} + \overrightarrow{SD} = \mathbf{b} + \frac{1}{5}\mathbf{a} + \mu\left(\frac{3}{5}\mathbf{a} - \mathbf{b}\right)$			
(M1) Equates \overrightarrow{OD} via N with \overrightarrow{OD} via S.			
$\mathbf{a} + \frac{4}{5}\mathbf{b} + \lambda \left(-\mathbf{a} - \frac{3}{5}\mathbf{b} \right) = \mathbf{b} + \frac{1}{5}\mathbf{a} + \mu \left(\frac{3}{5}\mathbf{a} - \mathbf{b} \right)$			
(M1) Equates the a parts:			
$1 - \lambda = \frac{1}{5} + \frac{3}{5}\mu$ or $5 - 5\lambda = 1 + 3\mu$ or $3\mu + 5\lambda = 4$			
(M1) Equates the b parts:			
$\frac{4}{5} - \frac{3}{5}\lambda = 1 - \mu$ or $4 - 3\lambda = 5 - 5\mu$ or $5\mu - 3\lambda = 1$			
Proceeds as above.			