Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	States or implies the formula for differentiation from first principles. $f(x) = 5x^{3}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	B1	2.1	5th Complete a proof of a derivative function from first principles.
	Correctly applies the formula to the specific formula and expands and simplifies the formula. $f'(x) = \lim_{h \to 0} \frac{5(x+h)^3 - 5x^3}{h}$ $f'(x) = \lim_{h \to 0} \frac{5(x^3 + 3x^2h + 3xh^2 + h^3) - 5x^3}{h}$ $f'(x) = \lim_{h \to 0} \frac{15x^2h + 15xh^2 + 5h^3}{h}$	M1	1.1b	
	Factorises the 'h' out of the numerator and then divides by h to simplify. $f'(x) = \lim_{h \to 0} \frac{h(15x^2 + 15xh + 5h^2)}{h}$ $f'(x) = \lim_{h \to 0} (15x^2 + 15xh + 5h^2)$	A1	1.1b	-
	States that as $h \rightarrow 0$, $15x^2 + 15xh + 5h^2 \rightarrow 15x^2$ o.e. so derivative = $15x^2 *$	A1*	2.2a	(4 marks)
	Notes			(4 mai K5)
Use o	of δx also acceptable.			

Student must show a complete proof (without wrong working) to achieve all 4 marks.

Not all steps need to be present, and additional steps are also acceptable.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Attempts to differentiate.	M1	1.1a	5th
	$f'(x) = 3x^2 - 8x - 35$	A1	1.1b	Use derivatives to determine
	States or implies that $f(x)$ is increasing when $f'(x) > 0$	M1	1.2	whether a function is
	Attempts to find the points where the gradient is zero. (3x + 7)(x - 5) = 0 (or attempts to solve quadratic inequality)	M1	1.1b	increasing or decreasing in a given interval.
	$x = -\frac{7}{3}$ and $x = 5$, so f(x) is increasing when $\{x: x < -\frac{7}{3}\} \cup \{x: x > 5\}$ (or $x < -\frac{7}{3}$ or $x > 5$)	A1	2.2a	
			1	(5 marks)
	Notes			
Allo answ	w other method to find critical value (e.g. formula or calculator). The vers.	his may be	e implied	d by correct
Corr	ect notation ("or" or " \cup ") must be seen for final A mark.			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	Attempts to differentiate.	M1	1.1a	4th
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 1$	A1	1.1b	Carry out differentiation of simple functions.
		(2)		
3b	Substitutes into equation for <i>C</i> to find <i>y</i> -coordinate. $x = 2, y = 2^{3} - 2^{2} - 2 + 2 = 4$	M1	1.1b	5th Solve coordinate geometry problems involving tangents and normals using first order
	Substitutes $x = 2$ into f'(x) to find gradient of tangent. $\frac{dy}{dx} = 3(4) - 2(2) - 1 = 7$	M1	1.1b	
	Finds equation of tangent using $y - y_1 = m(x - x_1)$ with (2, 4) y - 4 = 7(x - 2)	M1	1.1b	derivatives.
	y = 7x - 10 o.e.	A1	1.1b	
		(4)		

3c	States or implies gradient of tangent is 7, so gradient of	M1	1.2	5th
	normal is $-\frac{1}{7}$			Solve coordinate geometry
	Finds equation of normal using $y - y_1 = m(x - x_1)$ with (2, 4) $y - 4 = -\frac{1}{7}(x - 2)$	M1	1.1a	problems involving tangents and normals using first order derivatives.
	Substitutes $y = 0$ and attempts to solve for <i>x</i> .	M1	1.1b	
	x = 30, A(30,0)	A1	1.1b	
		(4)		
				(10 marks)

Notes

3b

Using y = mx + c is acceptable. For example $4 = 7 \times 2 + c$, so c = -10

3c

Using $y = mx + c$ is acceptable. For example 4 =	$\left(-\frac{1}{7}\right)(2) + c, \text{ so } c = \frac{30}{7}$
---	--

Image: 1Image: 1 $f'(x) = 3x^2 - 14x - 24$ AStates or implies that the graph of the gradient function will cut the x-axis when $f'(x) = 0$ M $f'(x) = 0 \Rightarrow 3x^2 - 14x - 24 = 0$ Factorises $f'(x)$ to obtain $(3x + 4)(x - 6) = 0$ A $x = -\frac{4}{3}, x = 6$ States or implies that the graph of the gradient function will cut the y-axis at $f'(0)$. Substitutes $x = 0$ into $f'(x)$ Gradient function will cut the y-axis at $(0, -24)$.MAttempts to find the turning point of $f'(x)$ by differentiating (i.e. finding $f''(x)$)M $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ A1	Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
The 24States or implies that the graph of the gradient function will cut the x-axis when $f'(x) = 0$ M $f'(x) = 0 \Rightarrow 3x^2 - 14x - 24 = 0$ Factorises $f'(x)$ to obtain $(3x + 4)(x - 6) = 0$ A $x = -\frac{4}{3}, x = 6$ States or implies that the graph of the gradient function will cut the y-axis at $f'(0)$. Substitutes $x = 0$ into $f'(x)$ Gradient function will cut the y-axis at $(0, -24)$.MAttempts to find the turning point of $f'(x)$ by differentiating (i.e. finding $f''(x)$)M $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ A1 $(0, -24)$ $(0, -24)$ A parabola with correct orientation with required points correctly labelled.	4	Attempts to differentiate.		M1	1.1a	5th
cut the x-axis when $f'(x) = 0$ $f'(x) = 0 \Rightarrow 3x^2 - 14x - 24 = 0$ Factorises $f'(x)$ to obtain $(3x + 4)(x - 6) = 0$ $x = -\frac{4}{3}, x = 6$ States or implies that the graph of the gradient function will cut the y-axis at $f'(0)$. Substitutes $x = 0$ into $f'(x)$ Gradient function will cut the y-axis at $(0, -24)$.Attempts to find the turning point of $f'(x)$ by differentiating (i.e. finding $f''(x)$) $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ Substitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ y $(-\frac{4}{3}, 0)$ $(0, -24)$ Attempts to find the turning point of $y = -\frac{121}{3}$ Attempts to find the turning point of $y = -\frac{121}{3}$ Attempts to find the turning point of $y = -\frac{121}{3}$ Attempts to $(0, -24)$ $(0, -24)$ $(0, -24)$		$f'(x) = 3x^2 - 14x - 24$		A1	1.1b	Sketch graphs of the gradient
Factorises f'(x) to obtain $(3x+4)(x-6) = 0$ A $x = -\frac{4}{3}, x = 6$ States or implies that the graph of the gradient function will cut the y-axis at f'(0). Substitutes $x = 0$ into f'(x) Gradient function will cut the y-axis at $(0, -24)$.MAttempts to find the turning point of f'(x) by differentiating (i.e. finding f''(x))Mf''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = $\frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into f'(x) to obtain $y = -\frac{121}{3}$ AI $(0, -24)$ $(6, 0)$ $(0, -24)$ A parabola with correct orientation with required points correctly labelled.				M1	2.2a	function of curves.
$x = -\frac{4}{3}, x = 6$ States or implies that the graph of the gradient function will cut the y-axis at f'(0). Substitutes $x = 0$ into f'(x) Gradient function will cut the y-axis at $(0, -24)$. Attempts to find the turning point of f'(x) by differentiating (i.e. finding f''(x)) $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ Substitutes $x = \frac{7}{3}$ into f'(x) to obtain $y = -\frac{121}{3}$ All $(-\frac{4}{3}, 0)$ (6, 0) (0, -24) (6, 0) (0, -24) (6, 0) (0, -24)		$f'(x) = 0 \Longrightarrow 3x^2 - 14x - 24 = 0$				
JStates or implies that the graph of the gradient function will cut the y-axis at f'(0). Substitutes $x = 0$ into f'(x) Gradient function will cut the y-axis at $(0, -24)$.MAttempts to find the turning point of f'(x) by differentiating (i.e. finding f''(x))Mf''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = $\frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into f'(x) to obtain $y = -\frac{121}{3}$ AIOriginal optimization of f'(x) to obtain $y = -\frac{121}{3}$ AIOriginal optimization of f'(x) to obtain $y = -\frac{121}{3}$ AIOriginal optimization optimization with correct orientation with required points correctly labelled.Original optimization optimization with required points correctly labelled.		Factorises $f'(x)$ to obtain $(3x+4)(x-$	(-6) = 0	A1	1.1b	
cut the y-axis at f'(0). Substitutes $x = 0$ into f'(x) Gradient function will cut the y-axis at $(0, -24)$. Attempts to find the turning point of f'(x) by differentiating (i.e. finding f''(x)) f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = $\frac{7}{3}$ Substitutes $x = \frac{7}{3}$ into f'(x) to obtain $y = -\frac{121}{3}$ All $(-\frac{4}{3}, 0)$ (0, -24) (0, -24) Attempts to find the turning point of f'(x) Attempts to find the turning point of f'(x) Attempt to f'(x) Attempts to find the turning point of f'(x) Attemp		$x = -\frac{4}{3}, x = 6$				
Gradient function will cut the y-axis at $(0, -24)$.Attempts to find the turning point of $f'(x)$ by differentiating (i.e. finding $f''(x)$) $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ A parabola with correct orientation with required points correctly labelled.A parabola with correct orientation with required points correctly labelled.			e gradient function will	M1	2.2a	
Attempts to find the turning point of $f'(x)$ by differentiating (i.e. finding $f''(x)$)M $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ ASubstitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ A1 $(-\frac{4}{3}, 0)$ $(6, 0)$ $(0, -24)$ A parabola with correct orientation with required points correctly labelled.						
by differentiating (i.e. finding f''(x)) $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{7}{3}$ Substitutes $x = \frac{7}{3}$ into f'(x) to obtain $y = -\frac{121}{3}$ A1 $(-\frac{4}{3}, 0)$ $(0, -24)$ $(0, -24)$ A2 $(0, -24)$ $(-\frac{4}{3}, 0)$		Gradient function will cut the y-axis a	at (0, -24).			
$f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{1}{3}$ Substitutes $x = \frac{7}{3}$ into $f'(x)$ to obtain $y = -\frac{121}{3}$ A1 A1 (0, -24) $f''(x) = 0 \Rightarrow 6x - 14 = 0 \Rightarrow x = \frac{1}{3}$ A1 A1 A1 A1 A1 A1 A1 A			f'(x)	M1	2.2a	
Substitutes $x = \frac{1}{3}$ into f'(x) to obtain $y = -\frac{1}{3}$ A parabola with correct orientation with required points correctly labelled. (0, -24)		$f''(x) = 0 \Longrightarrow 6x - 14 = 0 \Longrightarrow x = \frac{7}{3}$		A1	1.1b	
$(-\frac{4}{3}, 0)$ $(6, 0)$ $(0, -24)$ $(0, -24)$		Substitutes $x = \frac{7}{3}$ into f'(x) to obtain	$y = -\frac{121}{3}$	A1ft	1.1b	
		$(-\frac{4}{3}, 0) = (6, 0)$ $(0, -24) = (6, 0)$	orientation with required points	A1ft	2.2a	
						(9 marks)

Notes

A mistake in the earlier part of the question should not count against the students for the last part. If a student sketches a parabola with the correct orientation correctly labelled for their values, award the final mark.

Note that a fully correct sketch without all the working but with all points clearly labelled implies 8 marks in this question.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	States or implies that area of base is x^2 .	M1	3.3	6th
	States or implies that total surface area of the fish tank is $x^2 + 4xh = 1600$ Use of a letter other than <i>h</i> is acceptable.	M1	3.3	Apply derivatives and the principle of rate of change to real-life
	$h = \frac{400}{x} - \frac{x}{4}$	M1	1.1b	contexts.
	Substitutes for <i>h</i> in $V = x^2 h = x^2 \left(\frac{400}{x} - \frac{x}{4}\right)$	M1	1.1b	
	Simplifies to obtain $V = 400x - \frac{x^3}{4} *$	A1*	1.1b	
		(5)		
5b	Differentiates $f(x)$	B1	3.4	6th
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 400 - \frac{3x^2}{4}$			Apply derivatives and the principle of rate of change
	Attempts to solve $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$	M1	1.1b	to real-life contexts.
	$400 - \frac{3x^2}{4} = 0 \text{ or } 400 = \frac{3x^2}{4}$			
	$x = \frac{40\sqrt{3}}{3}$ o.e. (NB must be positive)	A1	1.1b	
	Substitutes for x in $V = 400x - \frac{x^3}{4}$	A1	1.1b	
	$V_{\text{max/min}} = \frac{32000\sqrt{3}}{9}$ o.e. or awrt 6160			
		(4)		

5c	Differentiates $f'(x)$	M1	1.1b	6th		
	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{3x}{2} \text{ o.e.}$			Apply derivatives and the principle of rate of change		
	Substitutes $x = \frac{40\sqrt{3}}{3}$ into f''(x)	A1	2.4	to real-life contexts.		
	States $\frac{d^2V}{dx^2} < 0$, so V in part b is a maximum value.					
		(2)				
				(11 marks)		
	Notes					
5a						
A ske	etch of a rectangular prism with a base of x by x and a height of h	is acceptab	le for the	e first method mark.		
5c						
	r complete methods for demonstrating that V is a maximum are a	-	or examp	ple a sketch		
of the	of the graph of V against x or calculation of values of V or $\frac{dV}{dx}$ on either side.					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
ба	States that the perimeter of the track is $2\pi r + 2x = 300$ The choice of the variable <i>x</i> is not important, but there should be a variable other than <i>r</i> .	M1	3.3	6th Apply derivatives and the principle of rate of change to real-life contexts.
	Correctly solves for x. Award method mark if this is seen in a subsequent step. $x = \frac{300 - 2\pi r}{2} = 150 - \pi r$	A1	1.1b	
	States that the area of the shape is $A = \pi r^2 + 2rx$	B1	3.3	
	Attempts to simplify this by substituting their expression for x .	M1	1.1b	
	$A = \pi r^2 + 2r \left(150 - \pi r\right)$			
	$A=\pi r^2+300r-2\pi r^2$			
	States that the area is $A = 300r - \pi r^2 *$	A1*	1.1b	
		(5)		
6b	Attempts to differentiate A with respect to r	M1	1.1a	6th
	Finds $\frac{\mathrm{d}A}{\mathrm{d}r} = 300 - 2\pi r$	A1	3.4	Apply derivatives and the principle of rate of change to real-life contexts.
	Shows or implies that a maximum value will occur when $300 - 2\pi r = 0$	M1	1.1a	
	Solves the equation for r, stating $r = \frac{150}{\pi}$	A1	1.1b	
	Attempts to substitute for r in $A = 300r - \pi r^2$, for example writing $A = 300 \left(\frac{150}{\pi}\right) - \pi \left(\frac{150}{\pi}\right)^2$	M1	1.1b	
	Solves for A, stating $A = \frac{22500}{\pi}$	A1	1.1b	
		(6)		

(11 marks)

Notes

6b

Ignore any attempts at deriving second derivative and related calculations.