Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	States or implies the formula for differentiation from first principles. $\begin{aligned} & \mathrm{f}(x)=5 x^{3} \\ & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h} \end{aligned}$	B1	2.1	5th Complete a proof of a derivative function from first principles.
	Correctly applies the formula to the specific formula and expands and simplifies the formula. $\begin{aligned} & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{5(x+h)^{3}-5 x^{3}}{h} \\ & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{5\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-5 x^{3}}{h} \\ & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{15 x^{2} h+15 x h^{2}+5 h^{3}}{h} \end{aligned}$	M1	1.1b	
	Factorises the ' h ' out of the numerator and then divides by h to simplify. $\begin{aligned} & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h\left(15 x^{2}+15 x h+5 h^{2}\right)}{h} \\ & \mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0}\left(15 x^{2}+15 x h+5 h^{2}\right) \end{aligned}$	A1	1.1b	
	States that as $h \rightarrow 0,15 x^{2}+15 x h+5 h^{2} \rightarrow 15 x^{2}$ o.e. so derivative $=15 x^{2} *$	A1*	2.2a	
(4 marks)				
Notes				
Use of δx also acceptable. Student must show a complete proof (without wrong working) to achieve all 4 marks. Not all steps need to be present, and additional steps are also acceptable.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Attempts to differentiate.	M1	1.1a	5th Use derivatives to determine whether a function is increasing or decreasing in a given interval.
	$\mathrm{f}^{\prime}(x)=3 x^{2}-8 x-35$	A1	1.1b	
	States or implies that $\mathrm{f}(x)$ is increasing when $\mathrm{f}^{\prime}(x)>0$	M1	1.2	
	Attempts to find the points where the gradient is zero. $(3 x+7)(x-5)=0($ or attempts to solve quadratic inequality $)$	M1	1.1b	
	$\begin{aligned} & x=-\frac{7}{3} \text { and } x=5, \text { so } \mathrm{f}(x) \text { is increasing when } \\ & \left\{x: x<-\frac{7}{3}\right\} \cup\{x: x>5\} \quad\left(\text { or } x<-\frac{7}{3} \text { or } x>5\right. \text {) } \end{aligned}$	A1	2.2a	

(5 marks)

Notes

Allow other method to find critical value (e.g. formula or calculator). This may be implied by correct answers.

Correct notation ("or" or " \cup ") must be seen for final A mark.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Attempts to differentiate.	M1	1.1a	4th Carry out differentiation of simple functions.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x-1$	A1	1.1b	
		(2)		
3b	Substitutes into equation for C to find y-coordinate. $x=2, y=2^{3}-2^{2}-2+2=4$	M1	1.1b	5th Solve coordinate geometry problems involving tangents and normals using first order derivatives.
	Substitutes $x=2$ into $\mathrm{f}^{\prime}(x)$ to find gradient of tangent. $\frac{\mathrm{d} y}{\mathrm{~d} x}=3(4)-2(2)-1=7$	M1	1.1b	
	Finds equation of tangent using $y-y_{1}=m\left(x-x_{1}\right)$ with $(2,4)$ $y-4=7(x-2)$	M1	1.1b	
	$y=7 x-10$ o.e.	A1	1.1b	
		(4)		

3 c	States or implies gradient of tangent is 7 , so gradient of normal is $-\frac{1}{7}$	M1	1.2	5th Solve coordinate geometry problems involving tangents and normals using first order derivatives.
	Finds equation of normal using $y-y_{1}=m\left(x-x_{1}\right)$ with $(2,4)$ $y-4=-\frac{1}{7}(x-2)$	M1	1.1a	
	Substitutes $y=0$ and attempts to solve for x.	M1	1.1b	
	$x=30, A(30,0)$	A1	1.1b	
		(4)		
(10 marks)				
Notes				
3b				
Using $y=m x+c$ is acceptable. For example $4=7 \times 2+c$, so $c=-10$ 3c				
Using $y=m x+c$ is acceptable. For example $4=\left(-\frac{1}{7}\right)(2)+c$, so $c=\frac{30}{7}$				

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
4	Attempts to differentiate.		M1	1.1a	5th
	$\mathrm{f}^{\prime}(x)=3 x^{2}-14 x-24$		A1	1.1b	Sketch graphs of the gradient
	States or implies that the graph of the gradient function will cut the x-axis when $\mathrm{f}^{\prime}(x)=0$$\mathrm{f}^{\prime}(x)=0 \Rightarrow 3 x^{2}-14 x-24=0$		M1	2.2a	curves.
	Factorises $\mathrm{f}^{\prime}(x)$ to obtain $(3 x+4)(x-6)=0$$x=-\frac{4}{3}, x=6$		A1	1.1b	
	States or implies that the graph of the gradient function will cut the y-axis at $\mathrm{f}^{\prime}(0)$. Substitutes $x=0$ into $\mathrm{f}^{\prime}(x)$ Gradient function will cut the y-axis at $(0,-24)$.		M1	2.2a	
	Attempts to find the turning point of $\mathrm{f}^{\prime}(x)$ by differentiating (i.e. finding $\mathrm{f}^{\prime \prime}(x)$)		M1	2.2a	
	$\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow 6 x-14=0 \Rightarrow x=\frac{7}{3}$		A1	1.1b	
	Substitutes $x=\frac{7}{3}$ into $\mathrm{f}^{\prime}(x)$ to obtain $y=-\frac{121}{3}$		A1ft	1.1b	
		A parabola with correct orientation with required points correctly labelled.	A1ft	2.2a	
(9 marks)					

Notes

A mistake in the earlier part of the question should not count against the students for the last part. If a student sketches a parabola with the correct orientation correctly labelled for their values, award the final mark.

Note that a fully correct sketch without all the working but with all points clearly labelled implies 8 marks in this question.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	States or implies that area of base is x^{2}.	M1	3.3	6th Apply derivatives and the principle of rate of change to real-life contexts.
	States or implies that total surface area of the fish tank is $x^{2}+4 x h=1600$ Use of a letter other than h is acceptable.	M1	3.3	
	$h=\frac{400}{x}-\frac{x}{4}$	M1	1.1b	
	Substitutes for h in $V=x^{2} h=x^{2}\left(\frac{400}{x}-\frac{x}{4}\right)$	M1	1.1b	
	Simplifies to obtain $V=400 x-\frac{x^{3}}{4} *$	A1*	1.1b	
		(5)		
5b	Differentiates $\mathrm{f}(x)$ $\frac{\mathrm{d} V}{\mathrm{~d} x}=400-\frac{3 x^{2}}{4}$	B1	3.4	6th Apply derivatives and the principle of rate of change to real-life contexts.
	Attempts to solve $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$ $400-\frac{3 x^{2}}{4}=0 \text { or } 400=\frac{3 x^{2}}{4}$	M1	1.1b	
	$x=\frac{40 \sqrt{3}}{3}$ o.e. (NB must be positive)	A1	1.1b	
	Substitutes for x in $V=400 x-\frac{x^{3}}{4}$ $V_{\max / \min }=\frac{32000 \sqrt{3}}{9}$ o.e. or awrt 6160	A1	1.1b	
		(4)		

5c	Differentiates $\mathrm{f}^{\prime}(x)$ $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-\frac{3 x}{2} \text { o.e. }$ Substitutes $x=\frac{40 \sqrt{3}}{3}$ into $\mathrm{f}^{\prime \prime}(x)$ States $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}<0$, so V in part \mathbf{b} is a maximum value.	M1 A1	1.1b	Apply derivatives and the principle of rate of change to real-life contexts.
		(2)		
(11 marks)				
Notes				
A sketch of a rectangular prism with a base of x by x and a height of h is acceptable for the first method mark. 5 c Other complete methods for demonstrating that V is a maximum are acceptable. For example a sketch of the graph of V against x or calculation of values of V or $\frac{\mathrm{d} V}{\mathrm{~d} x}$ on either side.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	States that the perimeter of the track is $2 \pi r+2 x=300$ The choice of the variable x is not important, but there should be a variable other than r.	M1	3.3	6th Apply derivatives and the principle of rate of change to real-life contexts.
	Correctly solves for x. Award method mark if this is seen in a subsequent step. $x=\frac{300-2 \pi r}{2}=150-\pi r$	A1	1.1b	
	States that the area of the shape is $A=\pi r^{2}+2 r x$	B1	3.3	
	Attempts to simplify this by substituting their expression for x. $\begin{aligned} & A=\pi r^{2}+2 r(150-\pi r) \\ & A=\pi r^{2}+300 r-2 \pi r^{2} \end{aligned}$	M1	1.1b	
	States that the area is $A=300 r-\pi r^{2} *$	A1*	1.1b	
		(5)		
6b	Attempts to differentiate A with respect to r	M1	1.1a	6th Apply derivatives and the principle of rate of change to real-life contexts.
	Finds $\frac{\mathrm{d} A}{\mathrm{~d} r}=300-2 \pi r$	A1	3.4	
	Shows or implies that a maximum value will occur when $300-2 \pi r=0$	M1	1.1a	
	Solves the equation for r, stating $r=\frac{150}{\pi}$	A1	1.1b	
	Attempts to substitute for r in $A=300 r-\pi r^{2}$, for example writing $A=300\left(\frac{150}{\pi}\right)-\pi\left(\frac{150}{\pi}\right)^{2}$	M1	1.1b	
	Solves for A, stating $A=\frac{22500}{\pi}$	A1	1.1b	
		(6)		

Notes

6b

Ignore any attempts at deriving second derivative and related calculations.

