Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
1	Makes an attempt to expand $(5-3\sqrt{x})(5-3\sqrt{x})$. Must be 4	M1	3.1	5th	
	terms (or 3 if \sqrt{x} terms collected).			Integrate more complicated	
	Fully correct expansion $25 - 30\sqrt{x} + 9x$ or $25 - 30x^{\frac{1}{2}} + 9x$	A1	1.1b	functions such as those requiring simplification or rearrangement.	
	Writes \sqrt{x} as $x^{\frac{1}{2}}$ (or subsequently correctly integrates this term)	B1	1.1b		
	Makes an attempt to find $\int (25 - 30x^{\frac{1}{2}} + 9x) dx$. Raising x	M1	1.1b		
	power by 1 at least once would constitute an attempt.				
	Fully correct integration. $25x - 20x^{\frac{3}{2}} + \frac{9}{2}x^2 + C$ o.e.	A1	1.1b		
(5 marks)					
Notes					
Award all 5 marks for a fully correct final answer, even if some working is missing.					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
2	Uses laws of indices correctly at least once anywhere in solution (e.g. $\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$ or $\sqrt{x} = x^{\frac{1}{2}}$ or $x\sqrt{x} = x^{\frac{3}{2}}$ seen or implied).	B1	2.2a	5th Find the equation of a curve given the gradient function and a point on the curve.	
	Makes an attempt at integrating $h'(x) = 15x^{\frac{3}{2}} - 40x^{-\frac{1}{2}}$ Raising at least one <i>x</i> power by 1 would constitute an attempt.	M1	1.1b		
	Fully correct integration. $6x^{\frac{5}{2}} - 80x^{\frac{1}{2}}$ (no need for + <i>C</i> here).	A1	1.1b		
	Makes an attempt to substitute (4, 19) into the integrated expression. For example, $19 = 6 \times 4^{\frac{5}{2}} - 80 \times 4^{\frac{1}{2}} + C$ is seen.	M1	1.1b		
	Finds the correct value of C. $C = -13$	A1	1.1b		
	States fully correct final answer $h(x) = 6x^{\frac{5}{2}} - 80\sqrt{x} - 13$ or any equivalent form.	A1	2.2a		
	(6 marks)				

Notes

Award all 6 marks for a fully correct final answer, even if some working is missing.

Q	Sch	eme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3 a	Makes an attempt to find $\int (10-6x) dx$		M1	1.1b	5th Find definite	
	Raising <i>x</i> powers by 1 would c	constitute an attempt.			integrals	
	Shows a fully correct integral	with limits. $\left[10x - 3x^2\right]_a^{2a} = 1$	A1	2.2a	analytically.	
	Makes an attempt to substitute For example, $(10(2a) - 3(2a))$	the limits into their expression. $\binom{2}{-(10(a)-3(a)^2)}$ or	M1ft	1.1b	_	
	$(20a-12a^2)-(10a-3a^2)$ is	seen.				
	Rearranges to a 3-term quadrative $9a^2 - 10a + 1 = 0$	tic equation (with $= 0$).	M1ft	1.1b		
	Correctly factorises the LHS: (valid method for solving a qua by correct answers).	(9a-1)(a-1) = 0 or uses a dratic equation (can be implied	M1ft	1.1b		
	States the two fully correct ans	swers $a = \frac{1}{9}$ or $a = 1$	A1	1.1b		
	For the first solution accept aw	vrt 0.111				
			(6)			
3b	Figure 1	Straight line sloping downwards with positive x and y intercepts. Ignore portions of graph outside $0 \le x \le 2$	M1	3.1	1st Assumed Knowledge	
	8 7 6 5 4 3 2 1	Fully correct sketch with points (0, 10), and $(\frac{5}{3}, 0)$ labelled. Ignore portions of graph outside $0 \le x \le 2$	A1	2.2a		
	$0 \qquad 1 \qquad \frac{5}{3} \qquad \frac{2}{3} \qquad x$		(2)			

3c	Statements to the effect that the (definite) integral will only equal the area (1) if the function is above the <i>x</i> -axis (between the limits) AND when $a = 1$, $2a = 2$, so part of the area will be above the <i>x</i> - axis and part will be below the <i>x</i> -axis.	B1	2.1	5th Find an area below the <i>x</i> -axis using integration (including an appreciation of the meaning of a negative definite integral).
	Greater than 1.	B1	2.2a	
		(2)		
				(10 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4	Writes \sqrt{t} as $t^{\frac{1}{2}}$ or $50\sqrt{t}$ as $50t^{\frac{1}{2}}$ (can be implied by correct integral).	B1	2.2a	5th Integrate more complicated functions such as those requiring simplification or rearrangement.	5th Integrate more complicated
	Makes an attempt to find $\frac{1}{20}\int (50t^{\frac{1}{2}} + 20t^2 - t^3)dt$. Raising at least one <i>t</i> power by 1 would constitute an attempt.	M1	1.1b		
	Makes a fully correct integration (ignore limits at this stage). $s = \frac{1}{20} \left[\frac{100}{3} t^{\frac{3}{2}} + \frac{20}{3} t^{3} - \frac{t^{4}}{4} \right]_{0}^{20}$	M1	1.1b		
	Makes an attempt to substitute the limits into their integrated function. For example, $\frac{1}{20} \left[\left(\frac{100}{3} \times 20^{\frac{3}{2}} + \frac{20 \times 20^{3}}{3} - \frac{20^{4}}{4} \right) - \left(\frac{100}{3} \times 0^{\frac{3}{2}} + \frac{20 \times 0^{3}}{3} - \frac{0^{4}}{4} \right) \right]$ is seen. Award mark even if the 0 limit is not shown.	M1ft	1.1b		
	States fully correct answer. $s = 816$ cao.	A1	1.1b		
(5 marks					
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Attempts to take out x or $-x$.	M1	3.1	4th
	$y = x(-x^2 + 2x + 8)$ or $y = -x(x^2 - 2x - 8)$			Factorise cubic expressions with
	Fully and correctly factorised cubic.	M1	1.1b	monomial factors.
	y = x(4-x)(2+x) or $y = -x(x-4)(x+2)$			
	Correct coordinates written. $A(-2,0)$ and $B(4, 0)$.	A1	1.1b	
		(3)		
5b	Makes an attempt to find $\int (-x^3 + 2x^2 + 8x) dx$	M1	3.1a	5th
	Raising at least one <i>x</i> power by 1 would constitute an attempt.			Find an area below the <i>x</i> -axis
	Fully correct integration seen.	A1	1.1b	using integration (including an
	$\left[-\frac{x^4}{4} + \frac{2}{3}x^3 + 4x^2\right]_{-2}^0$ (ignore limits at this stage)			appreciation of the meaning of a negative definite integral).
	Makes an attempt to substitute limits into integrated function to find the area between $x = -2$ and $x = 0$	M1	1.1b	
	$(0) - \left(-4 - \frac{16}{3} + 16\right)$			
	Finds the correct answer. $-\frac{20}{3}$	A1	1.1b	
	$+\frac{20}{3}$ stated or used as area here or later in solution (could be implied by correct final answer).	B1	3.2	
	Makes an attempt to substitute limits into integrated function to find the area between $x = 0$ and $x = 4$	M1	1.1b	
	$\left(\frac{-04+\frac{1}{3}+04}{-0}\right)^{-(0)}$			
	Finds the correct answer. $\frac{128}{3}$	A1	1.1b	

	Correctly adds the two areas. $\frac{148}{3}$ o.e.	A1	2.2a			
		(8)				
	(11 marks)					
Notes						
5a Award method marks for substituting limits even if evaluation at $x = 0$ is not seen.						
5b For the first integral, candidates may integrate $-f(x)$ between -2 and 0 to obtain a positive answer directly.						

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Equates the curve and the line. $x^2 - 8x + 20 = x + 6$	M1	3.1	4th
	Simplifies and factorises. $(x - 7)(x - 2) = 0$ (or uses other valid method for solving a quadratic equation).	M1	1.1b	Interpret solutions to simultaneous equations graphically.
	Finds the correct coordinates of A. $A(2, 8)$.	A1	1.1b	
	Finds the correct coordinates of B . $B(7, 13)$.	A1	1.1b	
		(4)		
6b	Makes an attempt to find the area of the trapezium bounded by $x = 2, x = 7$, the <i>x</i> -axis and the line. For example, $\frac{5}{2}(8+13)$ or $\int_{2}^{7} (x+6)dx$ seen.	M1	3.1	1st Assumed Knowledge
	Correct answer. Area = 52.5 o.e.	A1	1.1b	
		(2)		
6с	$\int_{2}^{7} (x^2 - 8x + 20) \mathrm{d}x .$	B1	3.1	5th Find the area
	Makes an attempt to find the integral. Raising at least one x power by 1 would constitute an attempt.	M1	1.1b	under a curve using integration.
	Correctly finds $\left[\frac{1}{3}x^3 - 4x^2 + 20x\right]_2^7$	A1	1.1b	
	Makes an attempt to substitute limits into the definite integral. $\left[\left(\frac{343}{3} - 196 + 140 \right) - \left(\frac{8}{3} - 16 + 40 \right) \right]$	M1	1.1b	
	Correct answer seen. $\frac{95}{3}$ or 31.6 oe seen.	A1	1.1b	
		(5)		

Mark scheme

6d	Understands the need to subtract the two areas. $\pm(52.5 - 31.6)$	M1	2.2a	5th Find the eree		
	20.8 units ² seen (must be positive).	A1	2.2a	under a curve using integration.		
		(2)				
				(13 marks)		
Notes						
6a If A0A0, award A1 for full solution of quadratic equation (i.e. $x = 2, x = 7$).						

Pearson Edexcel AS and A level Mathematics

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.