Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	Makes an attempt to expand $(5-3 \sqrt{x})(5-3 \sqrt{x})$. Must be 4 terms (or 3 if \sqrt{x} terms collected).	M1	3.1	5th Integrate more complicated functions such as those requiring simplification or rearrangement.
	Fully correct expansion $25-30 \sqrt{x}+9 x$ or $25-30 x^{\frac{1}{2}}+9 x$	A1	1.1b	
	Writes \sqrt{x} as $x^{\frac{1}{2}}$ (or subsequently correctly integrates this term)	B1	1.1b	
	Makes an attempt to find $\int\left(25-30 x^{\frac{1}{2}}+9 x\right) \mathrm{d} x$. Raising x power by 1 at least once would constitute an attempt.	M1	1.1b	
	Fully correct integration. $25 x-20 x^{\frac{3}{2}}+\frac{9}{2} x^{2}+C$ o.e.	A1	1.1b	
(5 marks)				
Notes				
Award all 5 marks for a fully correct final answer, even if some working is missing.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Uses laws of indices correcty at least once anywhere in solution (e.g. $\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}$ or $\sqrt{x}=x^{\frac{1}{2}}$ or $x \sqrt{x}=x^{\frac{3}{2}}$ seen or implied).	B1	2.2a	Find the equation of a curve given the gradient function and a point on the curve.
	Makes an attempt at integrating $\mathrm{h}^{\prime}(x)=15 x^{\frac{3}{2}}-40 x^{-\frac{1}{2}}$ Raising at least one x power by 1 would constitute an attempt.	M1	1.1b	
	Fully correct integration. $6 x^{\frac{5}{2}}-80 x^{\frac{1}{2}}$ (no need for $+C$ here).	A1	1.1b	
	Makes an attenpt to substitute $(4,19)$ into the integrated expression. For example, $19=6 \times 4^{\frac{5}{2}}-80 \times 4^{\frac{1}{2}}+C$ is seen.	M1	1.1b	
	Finds the correct value of C. $C=-13$	A1	1.1b	
	States fully correct final answer $\mathrm{h}(x)=6 x^{\frac{5}{2}}-80 \sqrt{x}-13$ or any equivalent form.	A1	2.2a	
(6 marks)				
Notes				
Award all 6 marks for a fully correct final answer, even if some working is missing.				

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Makes an attempt to find $\int(10-6 x) \mathrm{d} x$ Raising x powers by 1 would constitute an attempt.		M1	1.1b	5th Find definite integrals
	Shows a fully correct integral with limits. $\left[10 x-3 x^{2}\right]_{a}^{2 a}=1$		A1	2.2a	
	Makes an attempt to substitute the limits into their expression. For example, $\left(10(2 a)-3(2 a)^{2}\right)-\left(10(a)-3(a)^{2}\right)$ or $\left(20 a-12 a^{2}\right)-\left(10 a-3 a^{2}\right)$ is seen.		M1ft	1.1b	
	Rearranges to a 3-term quadratic equation (with $=0$).$9 a^{2}-10 a+1=0$		M1ft	1.1b	
	Correctly factorises the LHS: $(9 a-1)(a-1)=0$ or uses a valid method for solving a quadratic equation (can be implied by correct answers).		M1ft	1.1b	
	States the two fully correct answers $a=\frac{1}{9}$ or $a=1$ For the first solution accept awrt 0.111		A1	1.1b	
			(6)		
3b	Figure 1	Straight line sloping downwards with positive x and y intercepts. Ignore portions of graph outside $0 \leqslant x \leqslant 2$	M1	3.1	1st Assumed Knowledge
		Fully correct sketch with points $(0,10)$, and $\left(\frac{5}{3}, 0\right)$ labelled. Ignore portions of graph outside $0 \leqslant x \leqslant 2$	A1	2.2a	
			(2)		

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	Writes \sqrt{t} as $t^{\frac{1}{2}}$ or $50 \sqrt{t}$ as $50 t^{\frac{1}{2}}$ (can be implied by correct integral).	B1	2.2a	Integrate more complicated functions such as those requiring simplification or rearrangement.
	Makes an attempt to find $\frac{1}{20} \int\left(50 t^{\frac{1}{2}}+20 t^{2}-t^{3}\right) \mathrm{d} t$. Raising at least one t power by 1 would constitute an attempt.	M1	1.1b	
	Makes a fully correct integration (ignore limits at this stage). $s=\frac{1}{20}\left[\frac{100}{3} t^{\frac{3}{2}}+\frac{20}{3} t^{3}-\frac{t^{4}}{4}\right]_{0}^{20}$	M1	1.1b	
	Makes an attempt to substitute the limits into their integrated function. For example, $\frac{1}{20}\left[\left(\frac{100}{3} \times 20^{\frac{3}{2}}+\frac{20 \times 20^{3}}{3}-\frac{20^{4}}{4}\right)-\left(\frac{100}{3} \times 0^{\frac{3}{2}}+\frac{20 \times 0^{3}}{3}-\frac{0^{4}}{4}\right)\right]$ is seen. Award mark even if the 0 limit is not shown.	M1ft	1.1b	
	States fully correct answer. $s=816$ cao.	A1	1.1b	
				(5 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Attempts to take out x or $-x$. $y=x\left(-x^{2}+2 x+8\right) \text { or } y=-x\left(x^{2}-2 x-8\right)$	M1	3.1	4th Factorise cubic expressions with monomial factors.
	Fully and correctly factorised cubic. $y=x(4-x)(2+x) \text { or } y=-x(x-4)(x+2)$	M1	1.1b	
	Correct coordinates written. $A(-2,0)$ and $B(4,0)$.	A1	1.1b	
		(3)		
5b	Makes an attempt to find $\int\left(-x^{3}+2 x^{2}+8 x\right) \mathrm{d} x$ Raising at least one x power by 1 would constitute an attempt.	M1	3.1a	5th Find an area below the x-axis using integration (including an appreciation of the meaning of a negative definite integral).
	Fully correct integration seen. $\left[-\frac{x^{4}}{4}+\frac{2}{3} x^{3}+4 x^{2}\right]_{-2}^{0}$ (ignore limits at this stage)	A1	1.1b	
	Makes an attempt to substitute limits into integrated function to find the area between $x=-2$ and $x=0$ $(0)-\left(-4-\frac{16}{3}+16\right)$	M1	1.1 b	
	Finds the correct answer. $-\frac{20}{3}$	A1	1.1b	
	$+\frac{20}{3}$ stated or used as area here or later in solution (could be implied by correct final answer).	B1	3.2	
	Makes an attempt to substitute limits into integrated function to find the area between $x=0$ and $x=4$ $\left(-64+\frac{128}{3}+64\right)-(0)$	M1	1.1b	
	Finds the correct answer. $\frac{128}{3}$	A1	1.1b	

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Equates the curve and the line. $x^{2}-8 x+20=x+6$	M1	3.1	4th Interpret solutions to simultaneous equations graphically.
	Simplifies and factorises. $(x-7)(x-2)=0$ (or uses other valid method for solving a quadratic equation).	M1	1.1b	
	Finds the correct coordinates of A. $A(2,8)$.	A1	1.1b	
	Finds the correct coordinates of $B . B(7,13)$.	A1	1.1b	
		(4)		
6b	Makes an attempt to find the area of the trapezium bounded by $x=2, x=7$, the x-axis and the line. For example, $\frac{5}{2}(8+13)$ or $\int_{2}^{7}(x+6) \mathrm{d} x$ seen.	M1	3.1	1st Assumed Knowledge
	Correct answer. Area $=52.5$ o.e.	A1	1.1b	
		(2)		
6c	$\int_{2}^{7}\left(x^{2}-8 x+20\right) \mathrm{d} x$.	B1	3.1	5th Find the area under a curve using integration.
	Makes an attempt to find the integral. Raising at least one x power by 1 would constitute an attempt.	M1	1.1b	
	Correctly finds $\left[\frac{1}{3} x^{3}-4 x^{2}+20 x\right]_{2}^{7}$	A1	1.1b	
	Makes an attempt to substitute limits into the definite integral. $\left[\left(\frac{343}{3}-196+140\right)-\left(\frac{8}{3}-16+40\right)\right]$	M1	1.1b	
	Correct answer seen. $\frac{95}{3}$ or $31 . \dot{6}$ oe seen.	A1	1.1b	
		(5)		

6d	Understands the need to subtract the two areas. $\pm(52.5-31.6)$	M1	2.2a	5th Find the area under a curve using integration.
	20.8 units 2 seen (must be positive).	A1	2.2a	
		(2)		
(13 marks)				
Notes				
6a If A 0 A 0 , award A 1 for full solution of quadratic equation (i.e. $x=2, x=7$).				

