Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Substitutes (2, 400) into the equation. $400 = ab^2$	M1	1.1b	6th
	Substitutes (5, 50) into the equation. $50 = ab^5$	M1	1.1b	Set up, use and critique
	Makes an attempt to solve the expressions by division. For example, $b^3 = \frac{1}{8}$ (or equivalent) seen.	M1	1.1b	exponential models of growth and decay.
	Solves for <i>b</i> . $b = 0.5$ or $b = \frac{1}{2}$	A1	1.1b	
	Solves for a . $a = 1600$	A1	1.1b	
		(5)		
1b	Divides by '1600' and takes logs of both sides. $\log\left(\frac{1}{2}\right)^{x} < \log\left(\frac{k}{1600}\right)$	M1ft	1.1b	5th Understand and use the three laws of logarithms.
	Uses the third law of logarithms to write $\log\left(\frac{1}{2}\right)^x = x \log\left(\frac{1}{2}\right)$ or $\log 2^x = x \log 2$ anywhere in solution.	B1	2.1	
	Uses the law(s) of logarithms to write $\log\left(\frac{1}{2}\right) = -\log 2$ anywhere in solution.	B1	2.1	
	Uses above to obtain $x > \frac{\log\left(\frac{1600}{k}\right)}{\log 2} *$	A1*	2.1	
		(4)		
				(9 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Uses appropriate law of logarithms to write $\log_{11}(2x-1)(x+4)=1$	M1	3.1a	5th Solve simple
	Inverse \log_{11} (or 11 to the) both sides. $(2x-1)(x+4)=11$	M1	1.1b	logarithmic equations using the laws of logs.
	Derives a 3 term quadratic equation. $2x^2 + 7x - 15 = 0$	M1	1.1b	
	Correctly factorises $(2x-3)(x+5)=0$ or uses appropriate technique to solve their quadratic.	M1	1.1b	
	Solves to find $x = \frac{3}{2}$	A1	1.1b	
	Understands that $x \neq -5$ stating that this solution would require taking the log of a negative number, which is not possible.	B1	3.2	
				(6 marks)
	Notes			

3a Figure 1 Graph has correct shape and does not touch x-axis. M1 3.1a 3rd 3a Image: Constraint of the point of the point (0, 1) is given or labelled. A1 3.1a Sketch the graph of $y = a^{*}$ (for $a > 1$) 3bi Translation 1 unit right (or positive x direction) or by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ B1 2.2a 5th ii Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ B1 2.2a exponential functions using translations and stretches. (2) (2) (2) (2) (4 marks)	Q	Sch	ieme	Marks	AOs	Pearson Progression Step and Progress descriptor
Image: constraint of the point (0, 1) is given or labelled.A13.1aof $y = a^x$ (for $a > 1$)Image: constraint of the point (0, 1) is given or labelled.A13.1aof $y = a^x$ (for $a > 1$)Image: constraint of the point (0, 1) is given or labelled.A13.1aof $y = a^x$ (for $a > 1$)Image: constraint of the point of t	3 a	Figure 1		M1	3.1a	
3bi Translation 1 unit right (or positive x direction) or by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ B1 2.2a5th Transform the graphs of exponential functions using translations and stretches. ii Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ B1 2.2a5th (2) (2)(4 marks)				A1	3.1a	of $y = a^x$ (for
Image: Translation 1 unit right (or positive x direction) or by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Transform the graphs of exponential functions using translations and stretches.Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ B12.2aTransform the graphs of exponential functions using translations and stretches.Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image: Translation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ Image				(2)		
iiTranslation 5 units up (or positive y direction) or by $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ B12.2aexponential functions using translations and stretches.(2)(2)(4 marks)	3bi	Translation 1 unit right (or po	sitive <i>x</i> direction) or by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	B1	2.2a	Transform the
(4 marks)	ii	Translation 5 units up (or posi	tive v direction) or by []	B1	2.2a	exponential functions using translations and
				(2)		
Notes		·				(4 marks)
			Notes			

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	Correctly factorises. $(8^{x-1}-2)(8^{x-1}-16)=0$	M1	1.1b	5th
	(or for example, $(y-2)(y-16)=0$)			Solve exponential equations using logarithms.
	States that $8^{x-1} = 2$, $8^{x-1} = 16$ (or $y = 2, y = 16$).	A1	1.1b	iogaritiniis.
	Makes an attempt to solve either equation (e.g. uses laws of	M1	2.2a	
	indices. For example, $\sqrt[3]{8} = 2$ or $8^{\frac{1}{3}} = 2$ or $(\sqrt[3]{8})^4 = 16$ or			
	$8^{\frac{4}{3}} = 16$ (or correctly takes logs of both sides).			
	Solves to find $x = \frac{4}{3}$ o.e. or awrt 1.33	A1	1.1b	
	Solves to find $x = \frac{7}{3}$ o.e. or awrt 2.33	A1	1.1b	
		(5)		
				(5 marks)
	Notes			
4				
2nd M r	nark can be implied by either $x-1=\frac{1}{3}$ or $x-1=\frac{4}{3}$			

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.

Q	Sch	eme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Figure 2	Attempt to find intersection with <i>x</i> -axis. For example, $\log_9(x+a)=0$	M1	1.1b	4th Sketch the graph $y = \log(x)$.
	(-a+1,0) O	Solving $\log_9(x+a) = 0$ to find $x = -a + 1$, so coordinates of <i>x</i> -intercept are $(-a + 1, 0)$ oe	A1	1.1b	
		Substituting $x = 0$ to derive $y = \log_9(x+a)$, so coordinates of y-intercept are $(0, \log_9(x+a))$	B1	3.1a	
		Asymptote shown at $x = -a$ stated or shown on graph.	B1	3.1a	-
		Increasing log graph shown with asymptotic behaviour and single <i>x</i> -intercept.	M1	3.1a	
		Fully correct graph with correct asymptote, all points labelled and correct shape.	A1	2.2a	
			(6)		
5b	$\log_9(x+a)^2 = 2\log_9(x+a) \sec^2 \left(\frac{1}{2}\log_9(x+a)\right) + \log_9(x+a) + \log_9($	$\log_9(x+a)^2 = 2\log_9(x+a)$ seen.		2.1	5th Understand and
	The graph of $y = \log_9 (x+a)^2$ is a stretch, parallel to the y- axis, scale factor 2, of the graph of $y = \log_9 (x+a)$.		A1	2.2a	use the three laws of logarithms.
			(2)		
					(8 marks)
		Notes			

Award all 5 points for a fully correct graph with asymptote and all points labelled, even if all working is not present

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Makes an attempt to subsitute 7 into the equation, for example,	M1	1.1b	4th
	$P = 100e^{0.4 \times 7} \text{ seen.}$			Understand the
	1644 or 1640 only (do not accept non-integeric final answer).	A1	3.4	properties of functions of the form a^x .
		(2)		
6b	It is the initial bacteria population.	B1	2.2a	4th
				Understand the properties of functions of the form a^x .
		(1)		
6c	States that $100e^{0.4t} > 1000000$ or that $e^{0.4t} > 10000$	M1	3.4	6th
	Solves to find $t > \frac{\ln(10000)}{0.4}$	M1	1.1b	Set up, use and critique exponential models of growth
	24 (hours) cao (do not accept e.g. 24.0).	A1	3.5	and decay.
		(3)		
		·		(6 marks)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Uses the equation of a straight line in the form	M1	1.1b	6th
	$\log_4 V = mt + c$ or $\log_4 V - k = m(t - t_0)$ o.e.			Set up, use and critique
	Makes correct substitution. $\log_4 V = -\frac{1}{10}t + \log_4 40000$ o.e.	A1	1.1b	exponential models of growth and decay.
		(2)		
7b	Either correctly rearranges their equation by exponentiation	M1	1.1b	6th
	For example, $V = 4^{-\frac{1}{10}t + \log_4 40000}$ or takes the log of both sides of the equation $V = ab^t$. For example, $\log_4 V = \log_4 (ab^t)$.			Set up, use and critique exponential models of growth
	Completes rearrangement so that both equations are in directly comparable form $V = 40000 \times \left(4^{-\frac{1}{10}}\right)^t$ and $V = ab^t$ or	M1	1.1b	and decay.
	$\log_4 V = -\frac{1}{10}t + \log_4 40000$ and $\log_4 V = \log_4 a + t \log_4 b$.			
	States that $a = 40\ 000$	A1	1.1b	
	States that $b = 4^{-\frac{1}{10}}$	A1	1.1b	
		(4)		
7c	<i>a</i> is the initial value of the car o.e.	B1	2.2a	6th
	<i>b</i> is the annual proportional decrease in the value of the car o.e. (allow if explained in figures using their <i>b</i> . For example, (since <i>b</i> is ≈ 0.87) the car loses 13% of its value each year.)	B1	2.2a	Set up, use and critique exponential models of growth and decay.
		(2)		

7d	Substitutes 7 into their formula from part b. Correct answer is	B1ft	3.4	4th
	£15 157, accept awrt £15 000			Understand the
				properties of functions of the
				form a^x .
		(1)		
7e	Uses $10000 = ab^t$ with their values of a and b or writes	M1	3.4	5th
	$\log_4 10000 = -\frac{1}{10}t + \log_4 40000$ (could be inequality).			Solve exponential equations using logarithms.
	Solves to find $t = 10$ years.	A1ft	1.1b	
		(2)		
7f	Acceptable answers include.	B1	3.5b	6th
	The model is not necessarily valid for larger values of <i>t</i> .			Set up, use and
	Value of the car is not necessarily just related to age.			critique exponential
	Mileage (or other factors) will affect the value of the car.			models of growth and decay.
		(1)		
				(12 marks)
	Notes			
7b				
2nd M 1	nark can be implied by correct values of <i>a</i> and <i>b</i> .			
7c				
Accept	answers that are the equivalent mathematically. For example, for b .	the value	of the car	in 87% of the value

Accept answers that are the equivalent mathematically. For example, for b. the value of the car in 87% of the value the previous year.