Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1 a	Substitutes (2,400) into the equation. $400=a b^{2}$	M1	1.1 b	6th Set up, use and critique exponential models of growth and decay.
	Substitutes (5,50) into the equation. $50=a b^{5}$	M1	1.1b	
	Makes an attempt to solve the expressions by division. For example, $b^{3}=\frac{1}{8}$ (or equivalent) seen.	M1	1.1b	
	Solves for $b . \quad b=0.5$ or $b=\frac{1}{2}$	A1	1.1b	
	Solves for $a . a=1600$	A1	1.1b	
		(5)		
1b	Divides by ' 1600 ' and takes logs of both sides. $\log \left(\frac{1}{2}\right)^{x}<\log \left(\frac{k}{1600}\right)$	M1ft	1.1b	5th Understand and use the three laws of logarithms.
	Uses the third law of logarithms to write $\log \left(\frac{1}{2}\right)^{x}=x \log \left(\frac{1}{2}\right)$ or $\log 2^{x}=x \log 2$ anywhere in solution.	B1	2.1	
	Uses the law(s) of logarithms to write $\log \left(\frac{1}{2}\right)=-\log 2$ anywhere in solution.	B1	2.1	
	Uses above to obtain $x>\frac{\log \left(\frac{1600}{k}\right)}{\log 2} *$	A1*	2.1	
		(4)		
				(9 marks)
Notes				

Pearson Edexcel AS and A level Mathematics

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Uses appropriate law of logarithms to write $\log _{11}(2 x-1)(x+4)=1$	M1	3.1a	5th Solve simple logarithmic equations using the laws of logs.
	Inverse $\log _{11}$ (or 11 to the) both sides. $(2 x-1)(x+4)=11$	M1	1.1b	
	Derives a 3 term quadratic equation. $2 x^{2}+7 x-15=0$	M1	1.1b	
	Correctly factorises $(2 x-3)(x+5)=0$ or uses appropriate technique to solve their quadratic.	M1	1.1b	
	Solves to find $x=\frac{3}{2}$	A1	1.1b	
	Understands that $x \neq-5$ stating that this solution would require taking the \log of a negative number, which is not possible.	B1	3.2	
				(6 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	Correctly factorises. $\left(8^{x-1}-2\right)\left(8^{x-1}-16\right)=0$ (or for example, $(y-2)(y-16)=0)$	M1	1.1 b	5th Solve exponential equations using logarithms.
	States that $8^{x-1}=2,8^{x-1}=16($ or $y=2, y=16)$.	A1	1.1b	
	Makes an attempt to solve either equation (e.g. uses laws of indices. For example, $\sqrt[3]{8}=2$ or $8^{\frac{1}{3}}=2$ or $(\sqrt[3]{8})^{4}=16$ or $8^{\frac{4}{3}}=16$ (or correctly takes logs of both sides).	M1	2.2a	
	Solves to find $x=\frac{4}{3}$ o.e. or awrt 1.33	A1	1.1b	
	Solves to find $x=\frac{7}{3}$ o.e. or awrt 2.33	A1	1.1b	
		(5)		
(5 marks)				
Notes				
4				
2nd M mark can be implied by either $x-1=\frac{1}{3}$ or $x-1=\frac{4}{3}$				

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Figure 2	Attempt to find intersection with x-axis. For example, $\log _{9}(x+a)=0$	M1	1.1b	4th Sketch the graph $y=\log (x) .$
		Solving $\log _{9}(x+a)=0$ to find $x=-\mathrm{a}+1$, so coordinates of x-intercept are $(-\mathrm{a}+1,0)$ oe	A1	1.1b	
		Substituting $x=0$ to derive $y=\log _{9}(x+a) \text {, so }$ coordinates of y-intercept are $\left(0, \log _{9}(x+a)\right)$	B1	3.1a	
		Asymptote shown at $x=-\mathrm{a}$ stated or shown on graph.	B1	3.1a	
		Increasing log graph shown with asymptotic behaviour and single x-intercept.	M1	3.1a	
		Fully correct graph with correct asymptote, all points labelled and correct shape.	A1	2.2a	
			(6)		
5b	$\log _{9}(x+a)^{2}=2 \log _{9}(x+a)$ seen.		M1	2.1	5th Understand and use the three laws of logarithms.
	The graph of $y=\log _{9}(x+a)^{2}$ is a stretch, parallel to the y axis, scale factor 2 , of the graph of $y=\log _{9}(x+a)$.		A1	2.2a	
			(2)		
(8 marks)					
Notes					
Award all 5 points for a fully correct graph with asymptote and all points labelled, even if all working is not present					

Pearson Edexcel AS and A level Mathematics

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6 a	Makes an attempt to subsitute 7 into the equation, for example, $P=100 e^{0.4 \times 7}$ seen.	M1	1.1b	4th Understand the properties of functions of the form a^{x}.
	1644 or 1640 only (do not accept non-integeric final answer).	A1	3.4	
		(2)		
6b	It is the initial bacteria population.	B1	2.2a	4th Understand the properties of functions of the form a^{x}.
		(1)		
6 c	States that $100 e^{0.4 t}>1000000$ or that $e^{0.4 t}>10000$	M1	3.4	6th Set up, use and critique exponential models of growth and decay.
	Solves to find $t>\frac{\ln (10000)}{0.4}$	M1	1.1b	
	24 (hours) cao (do not accept e.g. 24.0).	A1	3.5	
		(3)		
				(6 marks)
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7 a	Uses the equation of a straight line in the form $\log _{4} V=m t+c$ or $\log _{4} V-k=m\left(t-t_{0}\right)$ o.e.	M1	1.1b	6th Set up, use and critique exponential models of growth and decay.
	Makes correct substitution. $\log _{4} V=-\frac{1}{10} t+\log _{4} 40000$ o.e.	A1	1.1b	
		(2)		
7b	Either correctly rearranges their equation by exponentiation For example, $V=4^{-\frac{1}{10} t+\log _{4} 40000}$ or takes the log of both sides of the equation $V=a b^{t}$. For example, $\log _{4} V=\log _{4}\left(a b^{t}\right)$.	M1	1.1b	6th Set up, use and critique exponential models of growth and decay.
	Completes rearrangement so that both equations are in directly comparable form $V=40000 \times\left(4^{-\frac{1}{10}}\right)^{t}$ and $V=a b^{t}$ or $\log _{4} V=-\frac{1}{10} t+\log _{4} 40000$ and $\log _{4} V=\log _{4} a+t \log _{4} b$.	M1	1.1b	
	States that $a=40000$	A1	1.1b	
	States that $b=4^{-\frac{1}{10}}$	A1	1.1b	
		(4)		
7c	a is the initial value of the car o.e.	B1	2.2a	6th Set up, use and critique exponential models of growth and decay.
	b is the annual proportional decrease in the value of the car o.e. (allow if explained in figures using their b. For example, (since b is ≈ 0.87) the car loses 13% of its value each year.)	B1	2.2a	
		(2)		

7d	Substitutes 7 into their formula from part b. Correct answer is £15 157, accept awrt £15000	B1ft	3.4	4th Understand the properties of functions of the form a^{x}.
		(1)		
7 e	Uses $10000=a b^{t}$ with their values of a and b or writes $\log _{4} 10000=-\frac{1}{10} t+\log _{4} 40000$ (could be inequality).	M1	3.4	5th Solve exponential equations using logarithms.
	Solves to find $t=10$ years.	A1ft	1.1b	
		(2)		
7 f	Acceptable answers include. The model is not necessarily valid for larger values of t. Value of the car is not necessarily just related to age. Mileage (or other factors) will affect the value of the car.	B1	3.5b	6th Set up, use and critique exponential models of growth and decay.
		(1)		
(12 marks)				
7b 2nd 7c Acc the	Notes rk can be implied by correct values of a and b. swers that are the equivalent mathematically. For example, for us year.	e valu	the c	87% of the value

