
The Ecology of Computation
B.A. Huberman (editor)
© Elsevier Science Publishers B. V. (North-Holland), 1988

Markets and Computation: Agoric Open Systems

Mark S. Miller
Xerox Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA 94304

K. Eric Drexler
MIT Artificial Intelligence Laboratory,
545 Technology Square, Cambridge, MA 02139 *

133

Like all systems involving goals, resources, and actions, computation can be
viewed in economic terms. Computer science has moved from centralized toward
increasingly decentralized models of control and action; use of market mechanisms
would be a natural extension of this development. The ability of trade and price
mechanisms to combine local decisions by diverse parties into globally effective
behavior suggests their value for organizing computation in large systems.

This paper examines markets as a model for computation and proposes a frame
work-agoric systems-for applying the power of market mechanisms to the soft
ware domain. It then explores the consequences of this model at a variety of levels.
Initial market strategies are outlined which, if used by objects locally, lead to distrib
uted resource allocation algorithms that encourage adaptive modification based on
local knowledge. If used as the basis for large, distributed systems, open to the

human market, agoric systems can serve as a software publishing and distribution
marketplace providing strong incentives for the development of reusable software
components. It is argued that such a system should give rise to increasingly intelli
gent behavior as an emergent property of interactions among software entities and
people.

• Visiting Scholar, Stanford University. Box 60775, Palo Alto, CA 94306

134 M.S . Miller and K.E. Drexler

1. Introduction

A central problem of computer science is the integration of knowledge and coordination of
action in complex systems. The same may be said of society. In society, however, this prob
lem has been faced for millennia rather than decades, and diverse solutions have been tested

for effectiveness through hundreds of generations of competition. Efforts to understand the
resulting institutions and to describe their principles of operation have spawned the science of
economics .

Contrary to common impressions (fostered by media coverage of politics and the stock
market), most economic inquiry has little to do with guessing economic trends. Economics
has many branches; the branch most relevant to this paper studies the consequences of pursu
ing goals within the constraints of limited knowledge and resources, and studies the institu
tions and patterns of behavior adapted to this pursuit. This branch of economics can without
embarrassment be termed a science, since it meets the criteria for a scientific discipline [1,2).

At the broadest level of abstraction, the problems of social and computational coordination
are fundamentally similar. Concrete parallels, however, are rough : memory space is a bit like
land, or perhaps a raw material ; processor time is somewhat like labor, or like fuel; software
objects are like workers, or perhaps like managers or firms. In [I] we list a number of funda
mental differences between computational and human markets . For example, within a compu
tational system, activities need produce neither pollution nor other effects on non-consenting
objects ; the most typical product, information, does not form a depletable physical inventory;
specialized labor forces (copies of specialized objects) can be expanded almost instantly and

can be cut back without human anguish.

Despite these deep differences, we argue that the fundamental parallels between the prob
lems of social and computational organi zation are strong enough to motivate the wholesale
importation of economic models and metaphors into the computational domain, at least on a
trial basis. These differences do, however, suggest that forms of organization that fail or are
rejected in one domain may prove workable and desirable in the other. For example, the
ability of computational systems to establish rules as genuine constraints where an analogous
human legal system can only penalize violations makes possible patterns of organization that
can only be approximated in society.

1.1. Why focus on markets?

For a variety of reasons, this work explores essentially pure markets as models of eco
nomic organization for computation, supported by a minimal "legal" framework of founda
tional constraints. A large body of economic theory and historical experience indicates that
markets are, on the whole, remarkably effective in promoting efficient, cooperative interac
tions among entities with diverse knowledge, skflls, and goals. Historically, those entities
have been human beings, but economic principles extend to decision-making agents in general
and hence to software objects as well . In [I], markets are considered as ecosystems and com
pared to others, such as biological ecosystems. This examination shows how the distinctive

Markets and Computation 135

rules of markets (such as the suppression of force and protection of trademark s) foster the

spread of cooperation (and encourage entities to compete to be effective cooperators) .

This paper argues that market ecosystems are particularly appropriate as foundations for

open systems [II], in which evolving software spread across a distributed computer system

serves different owners pursuing different goals. When also open to human society, computa

tional market ecosystems will enable diverse authors to create software entities and receive

royalties for the services they provide, and enable diverse users to mold the system to their

needs by exercising their market power as consumers. Computational markets can be made

continuous with the market ecosystem of human society.

1.2. Sketch of a computational market

This line of investigation leads us to propose what may be called the agoric approach to
software systems . Agoric (a·go·ric) stems from agora (ag·o·ra), the Greek term for a meeting

and market place. An agoric system is defined as a software system using market mecha

nisms, based on foundations that provide for the encapsulation and communication of inf or

mation, access, and resources among objects. Each of these notions plays a role in supporting

computational markets.

Here, the notion of "object" is independent of scale and language, and includes no notion

of inheritance. An object might be small and written in an object-oriented language; it might

equally well be a large, running process (such as an expert system or a database) coded inter
nally in any manner whatsoever. Objects are assumed to communicate through message pass

ing and to interact according to the rules of actor semantics [3,4], which can be enforced at

either the language or operating system level. These rules formalize the notion of distinct,
asynchronous, interacting entities, and hence are appropriate for describing participants in

computational markets.

Encapsulation of information ensures that one object cannot directly read or tamper with
the contents of another; communication enables objects to exchange information by mutual

consent. The encapsulation and communication of access ensures that communication rights

are similarly controlled and transferable only by mutual consent. These properties correspond

to elements of traditional object-oriented programming practice; in large systems, they facili

tate local reasoning about competence issues -about what computations the system can

perform.

Extending encapsulation to include computational resources means holding each object

accountable for the cost of its activity; providing for the communication of resources enables

objects to buy and sell them. In large systems, these extensions facilitate local reasoning about

performance issues-about the time and resources consumed in performing a given computa

tion. Computational foundations suitable for markets thus offer advantages in the performance

domain like those offered in the competence domain by object-oriented programming.

For concreteness, let us briefly consider one possible form of market-based system. In

this system, machine resources-storage space, processor time, and so forth-have owners,

and the owners charge other objects for use of these resources. Objects, in turn, pass these

136 M.S. Miller and K.E . Drexler

costs on to the objects they serve, or to an object representing the external user; they may add
royalty charges, and thus earn a profit. The ultimate user thus pays for all the costs directly or

indirectly incurred. If the ultimate user also owns the machine resources (and any objects
charging royalties), then currency simply circulates inside the system, incurring computational

overhead and (one hopes) providing information that helps coordinate computational
activities.

2. Overview of later sections

Section 3: Computation and economic order. Basic characteristics of human markets
illuminate the expected nature of computational markets. This section describes some of these
characteristics and sketches some of the special issues raised in the context of computation.

Section 4: Foundations. The foundations needed for agoric open systems may be sum
marized as support for the encapsulation and communication of information, access, and
resources. This section describes these foundations and their role in computational markets.

Section 5: Agents and strategies. The foundations of computational markets handle
neither resource management (such as processor scheduling and garbage collection) nor mar
ket transactions. This section describes the idea of business agents and their use both in
replacing centralized resource-allocation algorithms (discussed further by [III]) and in manag
ing complex market behavior.

Section 6: Agoric systems in the large. Large, evolved agoric systems are expected to
have valuable emergent properties. This section describes how they can provide a more pro
ductive software market in human society--opening major new business opportunities-and
how they can further the goal of artificial intelligence.

Section 7: The absence of agoric systems. If market-based computation is a good
idea, why has it not yet been developed? This section attempts to show why the current ab
sence of agoric systems is consistent with their being a good idea.

Appendix I: Issues, levels, and scale. Agoric open systems will be large and com
plex, spanning many levels of scale and complexity. This section surveys how issues such as
security, reasoning, and trust manifest themselves at different levels of agoric systems.

Appendix II: Comparison with other systems. Here are reviewed works ranging
from those that draw analogies between human society and computational systems to those
that explore adaptive computation from an economic point of view.

3. Computation and economic order

The basic features of computational markets are best understood by comparing them with
human markets. Many important tradeoffs, such as those between market mechanisms and
central planning, have already been examined in the context of human society.

Markets and Computation

3.1. Market organization

Consider the awesome dimensions of the American community . .. a labor
force of 80,000,000 ... 11,000,000 business units Who designed and
who now directs this vast production-and-distribution machine? Surely, to
solve the intricate problems of resource allocation in a vast economy, central
guidance is required But American economic activity is not directed,
planned, or controlled by any economic czar-governmental or private.

-A. A. Alchian and W. R. Allen, 1968 [5]

137

Two extreme forms of organization are the command economy and the market economy .
The former attempts to make economic tradeoffs in a rational, centrally-formulated plan, and
to implement that plan through detailed central direction of productive activity. The latter
allows economic tradeoffs to be made by local decisionmakers, guided by price signals and
constrained by general rules.

The command model has frequently been considered more "rational", since it involves the

visible application of reason to the economic problem as a whole. Alternatives have frequently
been considered irrational and an invitation to chaos. This viewpoint, however, smacks of the
creationist fallacy-it assumes that a coherent result requires a guiding plan. In actuality, de
centralized planning is potentially more rational, since it involves more minds taking into ac
count more total information. Further, economic theory shows how coherent, efficient, global
results routinely emerge from local market interactions. (The nature and function of prices and
of market mechanisms are a notorious source of lay confusion-just as Aristotle threw rocks
and yet misunderstood mechanics, so people trade and yet misunderstand markets. Alchian
and Allen [5] give a good grounding in the basic concepts and results of economic analysis.)

Should one expect markets to be applicable to processor time, memory space, and compu
tational services inside computers? Steel mills, farms, insurance companies, software firms
even vending machines-all provide their goods and services in a market context; a mecha
nism that spans so wide a range may well be stretched further.

As will be shown, however, a range of choices lies between pure central planning and the
universal fine-grained application of market mechanisms. Computational markets, like human
markets, will consist of islands of central direction in a sea of trade.

3.2. Encapsulation and property

The rationale of securing to each individual a known range within which he
can decide on his actions is to enable him to make the fullest use of his
knowledge The law tells him what facts he may count on and thereby ex
tends the range within which he can predict the consequences of his actions.

-F. A. Hayek, 1960 [6]

138 M.S. Miller and K.E. Drexler

. . . the law ought always to trust people with the care of their own interest, as

in their local situations they must generally be able to judge better of it than

the legislator can do.

-A. Smith, 1776 [7]

Computer science began, naturally enough, with central planning applied to small, man

ageable machines. The·first programs on the first computers were like Robinson Crusoe on an

empty island. They had few problems of coordination, and the complexity of their affairs

could (at first) be managed by a single mind.

As the complexity of software grew, programs with multiple subroutines became the equi

valent of autocratic households or bureaucracies with extensive division of labor. Increasing

ly, however, bugs would appear because the right hand would not know what the left hand

had planned, and so would modify shared data in unexpected ways.

To combat this problem, modem object-oriented programming (to paraphrase) "secures to

each object a known space within which it can decide on its actions, enabling the programmer

to make the fullest use of his knowledge. Encapsulation tells him what facts he may count on

and thereby extends the range within which he can predict the consequences of his actions " .

In short, motivated by the need for decentralized planning and division of labor, computer

science has reinvented the notion of property rights.

Central direction of data representation and processing has been replaced by decentralized

mechanisms, but central direction of resource allocation remains. Rather than "trusting objects

with the care of their own interest, in their local situations", the systems programmer attempts

to legislate a general solution. These general solutions, however, provide no way to make

tradeoff s that take account of the particular merits of particular activities at particular times.

3.3. Tradeoffs through trade

... a capacity to find out particular circumstances ... becomes effective only if

possessors of this knowledge are informed by the market which kinds of

things or services are wanted, and how urgently they are wanted.

-F. A. Hayek, 1978 [8]

. .. the spontaneous interaction of a number of people, each possessing only

bits of knowledge, brings about a state of affairs in which prices correspond

to costs, etc., and which could be brought about by deliberate direction only

by somebody who possessed the combined knowledge of all those individ

uals the empirical observation that prices do tend to correspond to costs

was the beginning of our science.
-F . A. Hayek, 1937 [9]

Trusting objects with decisions regarding resource tradeoffs will make sense only if they

are led toward decisions that serve the general interest-there is no moral argument for ensur

ing the freed .om, dignity, and autonomy of simple programs. Properly -functioning price

mechanism s can provide the needed incentives.

Markets and Computation 139

The cost of consuming a resource is an opportunity cost-the cost of giving up alternative

uses. In a market full of entities attempting to produce products that will sell for more than the
cost of the needed inputs, economic theory indicates that prices typically reflect these costs.

Consider a producer, such as an object that produces services. The price of an input
shows how greatly it is wanted by the rest of the system; high input prices (costs) will discou

rage low-value uses. The price of an output likewise shows how greatly it is wanted by the
rest of the system; high output prices will encourage production. To increase (rather than
destroy) value as 'judged' by the rest of the system as a whole, a producer need only ensure
that the price of its product exceeds the prices (costs) of the inputs consumed. This simple,
local decision rule gains its power from the ability of market prices to summarize global infor
mation about relative values.

As Nobel Laureate F. A. Hayek observes, " ... the whole reason for employing the price
mechanism is to tell individuals that what they are doing, or can do, has for some reason for
which they are not responsible become less or more demanded The term 'incentives' is
often used in this connection with somewhat misleading connotations, as if the main problem
were to induce people to exert themselves sufficiently. However, the chief guidance which
prices offer is not so much how to act, but what to do." [8] This observation clearly applies to
the idea of providing incentives for software; the goal is not to make software sweat, but to
guide it in making choices that serve the general interest.

These choices amount to tradeoffs. With finite processing and memory resources, taking
one action always precludes taking some other action. With prices and trade, objects will have
an incentive to relinquish resources when (and only when) doing so promises to increase their
net revenue. By trading to increase their revenue, they will make tradeoffs that allocate re
sources to higher-value uses.

3.4. Spontaneous order

Modern civilization has given man undreamt of powers largely because,

without understanding it, he has developed methods of utilizing more
knowledge and resources than any one mind is aware of.

-F. A. Hayek, 1978 [IO]

Will prices, trade, and decentralized tradeoffs be valuable in computation? This depends in
part on whether central planning mechanisms will be able to cope with tomorrow's computer

systems.

Systems are becoming available having performance tradeoffs that are nightmarishly com

plex compared to those of a von Neumann machine running a single program. The world is
becoming populated with hypercubes, Connection Machines, shared-memory multi-proces
sors, special-purpose systolic arrays, vectorizing super-computers, neural-net simulators, and

millions of personal computers. More and more, these are being linked by local area net
works, satellites, phones, packet radio, optical fiber, and people carrying floppy disks. Ma
chines in the personal-computer price range will become powerful multi-processor systems
with diverse hardware and software linked to a larger world of even greater diversity. Later,

140 M.S . Miller and K.E . Drexler

with the eventual development of molecular machines able to direct molecular assembly (the
basis of nanotechnology) [11], we can anticipate the development of desktop machines with a
computational power greater than that of a billion of today's mainframe computers [12,13].

One might try to assign machine resources to tasks through an operating system using
fixed, general rules, but in large systems with heterogeneous hardware and software, this

seems doomed to gross inefficiency. Knowledge of tradeoffs and priorities will be distributed
among thousands of programmers, and this knowledge will best be embodied in their pro
grams. Computers are becoming too complex for central planning, with its bottlenecks in
computation and knowledge acquisition. It seems that we need to apply "methods of utilizing
more knowledge and resources than any one mind is aware of." These methods can yield a
productive spontaneous order through decentraJized planning-through the application of
local knowledge and local computational resources to local decisions, guided by non-local
market prices. Instead of designing rules that embody fixed decisions, we need to design
rules that enable flexible decisionmaking.

Markets are a form of "evolutionary ecosystem" [I], and such systems can be powerful
generators of spontaneous order: consider the intricate, undesigned order of the rain forest or
the computer industry. The use of market mechanisms can yield orderly systems beyond the
ability of any individual to plan, implement, or understand. What is more, the shaping force
of consumer choice can make computational market ecosystems serve human purposes, po
tentially better than anything programmers could plan or understand. This increase in our
power to utilize knowledge and resources may prove essential, if we are to harness the power
of large computational systems.

3.5. Command and price mechanisms

An economist thinks of the economic system as being co-ordinated by the
price mechanism. ... Within a firm, the description does not fit at all. .. .It is
clear that these are alternative methods of co-ordinating productionif pro
duction is regulated by price movements ... why is there any organization?

-R.H. Coase, 1937 [14]

Coase asks, "Why are there finns?". Firms are economic organizations that typically make
little use of market mechanisms internally. If reliance on market forces always produced more
efficient use of resources, one would expect that systems of individuals interacting as free
lance traders would consistently out-compete firms, which therefore would not exist. In
reality, however, firms are viable; analogous results seem likely in computational markets.

Market transactions typically incur higher overhead costs than do transactions inside firms
[14,15]. These transaction costs (in both human and computational markets) are associated
with advertising, negotiation, accounting, and problems of establishing adequate trust
typically, inside a firm, matching consumers with producers does not require advertising,
instructions do not require negotiation, movement of goods does not require invoices and
funds transfer, and coworkers share an interest in their joint success. Firms lower the high
overhead cost of market transactions among numerous small entities by bundling them

Markets and Computation

Cost

Relative negotiation overhead

Scale

Figure 1: Scale and transaction costs. As entltles and transactions grow
larger, the cost of making a poor decision grows, while the relative cost of market
negotiation falls. If market decisions are better, but costlier, than central direction,
they will be preferred by larger entities.

14 1

together into fewer, larger entities. Not only does this save costs on what are now internal
transactions, but by creating larger entities, it raises the size of typical transactions, making
relatively fixed per-transaction overhead costs a proportionally smaller burden . (For small
enough transactions, even the simplest accounting would be too expensive.)

Similar considerations hold among computational objects. For small enough objects and
transactions, the cost of accounting and negotiations will overwhelm any advantages that may
result from making flexible, price-sensitive tradeoffs. For large enough objects and trans
actions, however, these overhead costs will be small in percentage terms; the benefits of
market mechanisms may then be worth the cost. At an intermediate scale, negotiation will be
too expensive, but accounting will help guide planning. These scale effects will encourage the
aggregation of small, simple objects into "firms" with low-overhead rules for division of
income among their participants.

Size thresholds for accounting and negotiations will vary with situations and implementa
tion techniques [16]. Market competition will tune these thresholds, providing incentives to
choose the most efficient scale on which to apply central-planning methods to computation.

3.6. Can market objects be programmed?

The objects participating in computational markets must initially be much simpler than the

human participants in human markets. Can they participate successfully? Human markets are
based on intelligent systems, but this does not show the impossibility of basing markets on
simple objects-it merely shows that the argument for agoric systems cannot rest on analogy
alone. Explicit attention must be paid to the question of the minimal competence and complex
ity necessary for an object to participate in a market system. (These issues provide another

142 M.S. Miller and K.E. Drexler

motivation to form computational "firms" and to open computational markets to human
participation.)

Experimental double-auction markets on a laboratory scale [17] give some indication of the
requirements for market participation. Though involving human beings, some of these experi

ments have excluded most of the range of human abilities: they have excluded use of natural
language (indeed, of any communications channel richer than simple bids and acceptances)
and they have replaced goods with abstract tokens, excluding any cultural or historic informa
tion about their value. The participants in these markets have performed no sophisticated cal
culations and have lacked any knowledge of economic theory or of other players' preferences.
Yet in this informationally-impoverished environment, these markets rapidly converge to the
prices considered optimal by economic theory. Spencer Star [18] has successfully run double
auction markets among software entities employing simple decision procedures, and has
achieved comparable efficiency.

Another reason for confidence in the applicability of market mechanisms to computation is
the existence of primitive market mechanisms (outlined in this paper and presented in [III]) able
to cope with such recognized software problems as garbage collection and processor sched
uling. With evidence for the workability of market mechanisms both at this low level and at
the sophisticated level of human society, there is reason to expect them to be workable at
intermediate levels of sophistication as well.

3.7. Complexity and levels

Large computational ecosystems linked to the human market will have many parts, many
aspects, many levels, and great complexity. Failure to recognize the differences among these
levels will open many pitfalls. The field of biology suggests how to approach thinking about
such systems.

Biological ecosystems obey physical law, but to understand them as ecosystems requires
abstractions different from those used in physics. The existence of physics, chemistry, cell
biology, physiology, and ecology as separate fields indicates that the concepts needed for
understanding biological systems are naturally grouped according to the scale and complexity
of phenomena to which they apply. Such a grouping may be called a level. Some issues arise
repeatedly at different levels. For example, cells, organs, organisms, and hives all expend
effort to maintain a boundary between their internal and external environments, and to bring
only selected things across that boundary.

The concepts needed for understanding agoric open systems may likewise be grouped
according to different levels, ranging from computational foundations through increasingly
complex objects to market systems as a whole. As in biology, there are issues which appear
in some form at all levels. Appendix I examines some of these issues, including security,
compatibility, degrees of trust, reasoning, and coordination. In considering these issues in
computational markets, it will be important to avoid misapplying concepts from one level to a
very different level-that is, to avoid the equivalent of trying to analyze biological ecodynam
ics in terms of conservation of momentum.

Mark ets and Computation 143

The next three sections of this paper examine computational markets at successively higher
levels, examining first foundations, then decision-making entiti es, and finally the emerge nt

properties of large systems.

4.Foundations
Computation takes place in a context that determines what sorts of events can and cannot

occur; this context can be viewed as the foundation of the rest of the system . Compu tational
markets will require foundations that permit and forbid the right sorts of events. To simplify
this discussion, the following explores foundations that provide for a basic uniformity in the
nature of objects and their interactions despite differences in complexity and scale. In real sys
tems, uniform foundations will ease the process of changing scale-dependent decisions and
will make possible a unified set of conceptual and software tools spanning different scales.

It should be emphasized, however, that implementation of an agoric system will not de
mand adoption of a standard programming language. So long as certain constraints are met at
the interfaces between objects coded by different parties, the language used inside an object
can be freely chosen. The necessary constraints can be imposed by either the language or the
operating system.

Computational foundations are frequently expressed in the form of programming language
or operating system designs. Programming languages have evolved chiefly to provide ab
stractions for organizing computation on a small scale-the computation occurring inside a
single machine and serving a single user. This has unfortunately led many programming lan
guage designers to make decisions (such as providing for global variables or access to arbi
trary memory addresses) that make these languages unsuitable for organizing computation on
a very large scale. The Actor languages, Argus, the concurrent logic programming languages
(such as FCP), and the Mach operating system are examples of systems which have been de
signed to be extensible to large, open systems. These are covered in this book respectively in
[IV], [V], [IV], and [VI]. All these projects have arrived at broadly similar models of computa
tion from different directions, suggesting that their common elements will be of general value.
This section briefly outlines some of the properties they share-properties which seem impor
tant for the implemention of computational markets.

4.1. Information and access

As indicated in Figure 2, the systerr. capable of supporting open computation all share
support for the encapsulation and communication of information and access. Communication
of information is fundamental to computation that involves more than a single object. Encap
sulation of information involves separating internal state and implementation from external
behavior, prevvnting one object from examining or tampering with the contents of another.

In conventional practice, encapsulation of information increases modularity and conceptual
clarity during design, a feature of considerable value. In agoric systems, though, secure en
capsulation will be essential during operation. Without security against examination, theft of
proprietary information would be rampant, and the rewards for the creation of valuable code

144 M.S. Miller and K.E. Drexler

Encapsulation of: Communication of:

lnfonnation Access Resources lnfonnation Access Resources

Dataflow,
CSP, Occam • • •

Oki
limesharing • • • •
Actors, FCP,
Argus, Mach • • • •

Xanadu • • • •
FOCS • • • • • •
Agoric • • • • • • Systems

Figure 2: Comparison of foundations. CSP is the "Communicating Se
quential Processes" language of C.A.R. Hoare [19]. Occam is a related language
for the Transputer [20]. PCP is Flat Concurrent Prolog, a concurrent logic pro
gramming language [!VJ, [21]. FOCS [22] is an operating system concept designed
for resource ownership and service provision. Xanadu [23] is a hypertext publish
ing system described briefly in Appendix II, "Comparison with other work".

and information would be reduced or destroyed. Without security against tampering, objects

could not trust each other's future behavior, or even their own. Encapsulation provides a

sphere within which an object may act with complete control and predictability.

Encapsulation and communication of access---capability security---ensures that the ability

to communicate with an object can only be obtained in certain ways, such as through deliber

ate communication. With capability security, object A can get access to object B only by:

(1) being born with it, when object A's creator already has that access;

(2) receiving it in a message (from an object that already has that access); or

(3) being the creator of object B.

Capability security is a common foundation for protection in operating systems. It appears

to be a flexible and general mechanism able to support a wide variety of policies for providing

access protection. In an open system without capability security, every object would have to

verify the nature and legitimacy of every message it received, imposing unacceptable overhead

on small, simple objects. With capability security, simple objects can "assume" that their mes

sages come from legitimate sources, because their creators can implement policies that limit

access to trusted parties.

Together, the above properties yield security while preserving flexibility. Despite the Tur

ing-equivalence of most programming languages, they can nevertheless differ formally and

absolutely in their ability to provide for security [25]. How can this be, if one can write an

interpreter for a secure language in an insecure one?

Markets and Computation

Figure 3: Communication of access. Foo sends a message to Bar contain
ing a copy of Foo' s access to Baz. Upon receiving the message, Bar has access to
Baz. (Adapted from [24].)

145

Turing-equivalence describes the abilities of a system, but security rests on inabilities--0n
the inability to violate certain rules. Adding an interpreter on top of a system cannot subtract
abilities from the system itself (even if the interpreted language consists of nothing but inabili
ties, as can easily be arranged). Thus, adding interpreters cannot establish the inabilities
needed for security.

The question is not "what functions can be computed?", but "given that I am a computa
tional object, what is my relationship to an already populated computational environment?".
Let us call a set of computational objects coded in an insecure programming language "refer
ence level objects", and those which exist on top of a reference-level interpreter "interpreted
objects". If the interpreter implements a secure language, then the interpreted objects are pro
tected from each other. Reference level objects, however, can simply ignore the interpreter
and wreak havoc on the interpreted objects.

4.2. Ownership and trade

As software systems have evolved toward greater modularity, encapsulation of infonna
tion and access have become more clean, uniform, and reliable. As has been discuss~d, en
capsulation in software serves the same crucial function as property rights in human affairs: it
establishes protected spheres in which entities can plan the use of their resources free of inter
ference from unpredictable external influences. This enables entities to plan and act despite the
limited, local nature of most knowledge; it thus pennits more effective use of divided know
ledge, aiding the division of labor. The value of protected spheres and local knowledge has
thus far been the sole motivation for giving software modules "property rights" through

encapsulation.

In economic systems, property rights also enable economic entities to accumulate and con
trol the results of their efforts, providing the basis for an incentive system having the desirable
evolutionary properties outlined in (I]. In agoric systems, encapsulation will begin to serve

this function as well.

146 M.S. Miller and K.E . Drexler

Agoric systems also require the encapsulation and communication of computational re
sources, such as a memory block or a processor time slice. This prevents the evolution of

parasitic objects [I], confines the costs of inefficiency to inefficient objects and their custom
ers, and (in suitable implementations) makes performance information available locally. En
capsulation and communication of resources correspond to ownership and voluntary transfer,
the basis of trade.

A familiar systems programming construct which violates encapsulation of resources is the
round-robin scheduler. In such a scheduler, the amount of processing power allocated to a
process depends simply on the number of other processes. The processing power allocated to
a given process will be reduced whenever some other process decides to spawn yet more
processes. Under a round-robin scheduler, the processor is treated as a commons; given a
diversity of interests, the usual tragedy is to be expected [26].

Artsy's paper on "The Design of Fully Open Computing Systems" (FOCS) [22] discusses
an approach for an operating system design having the desirable properties specified above.
Artsy's use of the term "fully open computing systems" corresponds to what would here be
termed "extreme separation of mechanism and policy", where the mechanism is the support of
protected transfer of ownership and the verification of ownership on access. All other re
source allocation is then provided as user-level policy. Thus, schedulers and memory alloca
tors are completely outside the secure operating system kernel and operate via an ownership
and-trade model. One can, for example, own and trade time-slices of a particular processor.
Scheduling is performed at the user level by exchanging such commodities.

Starting from direct ownership of physical computational resources, more abstract models
of ownership can be built. For example, a deadline scheduler can be viewed as follows: When
a task is to be scheduled in a hard real-time application (i.e., one that must meet real-time
deadlines), it should be known beforehand how long it will take and by what time it must be
done. When a process wishes to insure that it will be able to schedule a set of such tasks, it
can purchase "abstract future time slices"-not specific time slices, but rights to a time slice of
a certain duration within a certain period. Since this gives the seller of time slices greater flex
ibility with respect to other clients, such time slices should cost less than concrete ones. This
is like a futures market, but with guaranteed availability-an honest seller of time slices will
not obligate himself to sell time slices he may not be able to get. (See also [27].)

4.3. Resource ownership and performance modularity

The activity of a running program may be analyzed in terms of competence and peifor
mance. Competence refers to what a program can do given sufficient resources, but without

explicit consideration of these resources. Competence includes issues of safety-what the
program will not do, and liveness-whether the program will eventually do what it is sup
posed to, or will instead infinitely loop or deadlock. Performance refers to the resources the
program will use, the efficiency with which it will use them, and the time it will take to pro
duce results-precisely those issues ignored by competence. Both these issues have been the

subject of formal analysis: the competence aspects of a programming language may be formal-

Competence,
Safety and
Liveness

Performance,
Efficiency

Markets and Computation 14 7

Formal Analysis Modularity

Semantics,
Correctness proofs

Complexity theory,
Proofs of response

time

Object-oriented
programming,

Message passing

Computational
markets,
Prices

Figure 4: Markets and performance modularity. Issues of program com
petence and performance can be dealt with using the conceptual tools of formal
analysis and modularity. Computational markets provide leverage for modulariz
ing performance issues like that of object-oriented programming for competence
issues.

ized as a programming language semantics and used to analyze safety properties via proofs of
partial correctness and liveness properties via proofs of termination. The performance aspects
of a program may be formally analyzed via complexity theory and proofs of response time
(for real-time programming).

Formalization alone, however, is insufficient for dealing with these issues in large pro
grams-a complex non-modular program in a formalized language will often resist formal (or
informal) validation of many important properties; modularity is needed to make analysis
tractable. Modularization proceeds by separating interface from implementation, allowing
concern with what a module does to be somewhat decoupled from concern with how it does

it. Object-oriented programming and abstract data types aid modularization of competence
issues, with message protocols serving as an abstract interface for competence effects [28].

Similarly, computational markets will aid modularization of performance issues, with prices
serving as an abstract interface for resource costs.

4.4. Currency

For a broad market to emerge from these foundations, a system must provide for owner
ship and trade not only of basic computational resources, but also of virtual, user defined re
sources. Such resources can serve as tokens for establishing a system of currency. Public key

communications systems [29] enable implemention of a secure banking system; within a mutu
ally trusted hardware subsystem, capability-based security plus unforgeable unique identifiers
are sufficient for establishing a public key system without resorting to encryption [25].

Accounting mechanisms have been used in software to some extent. Old time-sharing sys
tems are one of the more familiar models-a fact which may raise grave concerns about the

148 M.S. Miller and K.E. Drexler

desirability of agoric systems. But using an agoric system would not mean a return to the bad
old days of begging for a grant of hundreds of dollars of computer time and storage to edit a
medium-sized document late at night, or to perform some now-inexpensive computation. The
cost of computers has fallen. It will continue to fall, and personal computers will continue to
spread. Aside from overhead (which can be made small), accounting for the costs of compu
tation will not make computation more expensive. Making human beings pay for computer
time is not the goal of computational markets.

In agoric systems, objects will charge each other and the machine will charge the objects.
Given low enough communications costs and the right sorts of demand, a personal computer
could earn money for its owner by serving others, instead of remaining idle. A machine's
owner need not pay to use it, since the internal charges and revenues all balance. In a stand

alone computer, currency will simply circulate, incurring a computational overhead but pro
viding internal accounting information which can guide internal decisions.

Inside one machine, one could have the foundations establish an official currency system.
No secure way has yet been found to do so between mutually distrustful machines on a net
work without relying on mutually-trusted, third-party machines serving as banks. In accord
with the goal of uniformity, such banks are here suggested as the general model for transfer
of currency [25,30). These banks can maintain accounts for two parties; when party A transfers
money to party B, the bank can verify for B that the money has been transferred. (The cost of
verification provides an incentive for A and B to establish enough trust to make frequent veri
fication unnecessary.) In this model, it is unnecessary and perhaps impossible to establish any
one currency as standard. There will instead be a variety of local currencies with exchange
rates among them; it has been argued that this will result in greater monetary stability, and
hence in a more efficient market, than one based on a single currency [31).

4.5. Open problems

At the foundational level, many open issues remain. Actors and FCP seem to be clean,
simple open-systems programming languages, but they have no evident mechanism for deal
ing with machine failure. Argus is an open-systems language able to deal with this problem,
but only by directly providing distributed abortable transactions as a basic mechanism. While
such transactions provide much leverage, they are quite complex. A promising line of investi
gation is the design of a language having the simplicity of Actors or FCP, but which provides
mechanisms for failure-handling that enable user-level policy to support Argus-style trans
actions. Even more satisfying than such a design would be a demonstration that Actors or
FCP already have sufficient mechanism.

More central to agoric systems is adequate resource accounting. There is as yet no open
systems language which provides for ownership and trade of basic computational resources
while preserving semantic uniformity and supporting the emergence of charging and prices. It
seems this has been accomplished in the realm of operating systems design [22), but unfortu
nately in a way which is not yet amenable to distributed systems. It would be exciting to apply
Artsy's work to open-systems oriented operating systems like Mach [IV].

Markets and Computation 149

5. Agents and strategies
When a problem needs to be solved frequently, but no single solution is right in all situa

tions, it is desirable to permit the testing and use of many solutions. To allow this freedom,
one seeks to separate mechanism and policy, designing foundations that support a wide range
of policies via general-purpose mechanisms.

Foundational mechanisms for ownership and trade of information and computational re
sources allow the choice of policy to be delegated to individual objects; these objects may in
turn delegate their choices to other objects, termed agents. Even policies for such fundamental
processes as processor scheduling and memory allocation can be so delegated. The following
argues that agents at a higher level can accomplish adaptive automatic data structure selection,
guide sophisticated code transformation techniques, provide for competition among business
agents, and maintain reputation information to guide competition.

5.1. Resource allocation and initial market strategies

Systems programming problems such as garbage collection and processor scheduling have
traditionally been addressed in the computational foundations, casting the architect in the role
of omniscient central planner. In this approach, the architect imposes a single, system-wide
solution based on global aggregate statistics, precluding local choice. In the market approach,
however, these problems can be recast in terms of local negotiation among objects. Solutions
in this framework also provide objects with price information, allowing them to make profit
able use of the resulting flexibility.

This enables programmers to provide objects with specialized resource allocation strate
gies, but it need not force programmers to attend to this. Objects can delegate these strategic
issues to business agents, and a programming environment can provide default agents when
the programmer does not specify otherwise.

The companion paper "Incentive Engineering for Computational Resource Management"
[III] describes and analyzes initial market strategies which, if followed by a set of business
agents, result in distributed algorithms for allocation of processor time, memory space, and
communication channels. Initial market strategies (whether these or others) will play a key
role in establishing agoric systems: from a traditional programming perspective, they will
provide initial policies for garbage collection and processor scheduling; from a market per
spective, they will help provide initial resource prices and thus an environment in which more
sophisticated entities can begin to operate. Thus, they will help bridge the gap between current
practice and computational markets. As markets evolve, the scaffolding provided by initial
market strategies may be largely or entirely replaced by other structures.

The initial strategies for processor scheduling are based on an auction in which bids can be
automatically escalated to ensure that they are eventually accepted. The initial strategies for
memory allocation and garbage collection are based on rent payment, with objects paying
retainer fees to objects they wish to retain in memory; objects that are unwanted and hence
unable to pay rent are eventually evicted, deallocating their memory space. These approaches

150 M.S . Miller and K.E. Drexler

raise a variety of issues (including the threat of strategic instabilities stemming from public
goods problems) that are addressed in our companion paper. Together, these strategies pro
vide a proof of concept (or at least strong evidence of concept) for the notion of decentralized
allocation of computational resources.

Initial market strategies will provide a programmable system that generates price informa
tion, enabling a wide range of choices to be made on economic grounds. For example, pro
cessor and memory prices can guide decisions regarding the use of memory to cache recom
putable results. Given a rule for estimating the future rate of requests for a result, one should

cache the result whenever the cost of storage for the result is less than the rate of requests
times the cost of recomputing the result (neglecting a correction for the overhead of caching
and caching-decisions). As demand for memory in a system rises, the memory price will rise,
and these rules should free the less valuable parts of caches. If the processing price rises,
caches should grow. Thus, prices favor tradeoffs through trade.

5.2. Business location decisions

Price information can guide a variety of other choices. Many of these resemble business
location decisions.

Main "core" memory is a high-performance resource in short supply. Disk is a lower per
formance resource in more plentiful supply. In an agoric system, core memory will typically
be a high-rent (business) district, while disk will typically be a low-rent (residential) district.
Commuting from one to the other will take time and cost money. An object that stays in core
will pay higher rent, but can provide faster service. To the degree that this is of value, the
object can charge more; if increased income more than off sets the higher rent, the object will
profit by staying in core. Treating choice of storage medium as a business location problem
takes account of considerations-such as the relative value of prompt service-that traditional
virtual memory algorithms do not express.

Small objects would have an incentive to "car-pool" in disk-page sized "vehicles". But
given the issues described in Section 3.5, a typical object buying resources on the market may
occupy many pages. Instead of deciding whether it should be completely in or out of core,
such an object might decide how many of its pages should be part of an in-core working set,
perhaps relying on a traditional algorithm [32] to dynamically select the in-core pages .

The variety of types of memory also suggests a need for more flexibility than the tradition
al two-level approach provides. The many kinds of memory differ in many ways: consider
fast RAM cache, write-once optical disk, and tape archived in multiple vaults. Memory sys

tems differ with respect to:

• Latency • Transfer rate

• Storage cost • Locality structure

• Access cost • Predictability of access time

• Reliability • Security

Tradeoffs will change as technology changes. To be portable and viable across these

changes, programs must be able to adapt.

Markets and Computation 151

Much has been written about the need to migrate objects in a distributed system in order to
improve locality of reference (30,33,34]. Again, this resembles the problem of choosing a busi
ness location. Machines linked by networks resemble cities linked by highways. Different
locations have different levels of demand, different business costs, and different travel and
communications costs. Various traditional approaches correspond to:

• staying put and using the phone (as in Mach [VI] and the V kernel (35]),

• commuting to wherever the momentary demand is (as in Apollo [36]),
• moving only when there are no local customers (as in the Bishop algorithm [37]),
• coordinating multiple offices (as in Grapevine [38] and in [39]),
• and moving where labor costs are lower (load balancing, as in [40]).

If limited to any one of these methods, human societies would suffer terrible inefficien
cies. One expects the same for large, diverse software systems. If a system's mechanisms
support a range of policies, different objects can select different approaches.

The notion of location in a space is still rare in object-oriented programming (for an excep
tion see [41]). All memory in an ideal von Neumann computer is effectively equidistant, and
many real computers approximate this ideal, but in a widely distributed system, differing
distances are of real importance. When objects are given an account of the costs of communi
cating and commuting, they gain a useful notion of distance for making economic decisions.

5.3. Business agents

In a market containing sophisticated, potentially malicious objects, how can simple objects
hope to negotiate, compete, and survive? One answer would be to shelter simple, mutually
trusting objects within large, sophisticated objects, building the latter out of the former. This
model, however, would preclude turning loose small objects as service-providers on the open
market. Other means are required for giving small objects the market sophistication they need.

Just as delegation of tasks to other objects can enable a small, simple object to offer so
phisticated services, so delegation can enable it to engage in sophisticated market behavior. In
this work's terminology, an object can delegate competence-domain actions to a subcontrac
tor; this corresponds to the normal practice of hierarchical decomposition, which originated
with the subroutine. An object can likewise delegate performance-domain actions to an agent;
this seems likely to be a normal practice in agoric systems. Simple objects then can make their
way in a complex world by being born with service relationships to sophisticated agents
(which themselves can be composed of simple objects, born with ...). Initially, human deci
sions will establish these relationships; later, specialized agent-providing agents can establish
them as part of the process of creating new economic objects. The initial market strategies

mentioned in Section 5.1 could be provided by simple agents.

One might object that a simple object and its collection of agents together constitute a com
plex object. But these objects, though complex in the performance domain, can remain ex
tremely simple in the competence domain. Further, large agents need not burden a simple
object with enormous costs; in general a large number of objects would share the agents and
their overhead. The object-and-agent approach thus can enable entities of simple competence

152

to compete in the open market.

5.3.1. Data-type agents

M.S. Miller and K.E. Drexler

In object-oriented program min g, one can supply multiple imp lementations of an abstract

data type, all providing the same seivice through the same protocol, but offering different per

formance tradeoffs [28]. An example is the lookup table, which may be implemented as an

array, linked list, hash table, B-tree, associative memory, or as any of several other devices or

data struc tures. In an object-oriented system, code which uses such an abstract data type is

itself generally abstract, being independent of how the data type is implemented; this provides

valua ble flexibility. In contrast, code which requests an instance of such an abstract data type

is usually less abstract, referring directly to a class which provides a particular implementation

of that type. The resulting code embodies decisions regarding implementation tradeoffs in a

relatively scattered, frozen form.

In a market, agents can unfreeze these decisions: instantiation requests can be sent to a

data-type agent, which then provides a suitable subcontractor. In human markets, someone

seeking a house can consult a real-estate agent. The real-estate agent specializes in knowing

what is available, what tradeoffs are important, and what to ask clients regarding those trade

offs. Similarly, a lookup table agent could know what lookup table implementations are avail

able, what tradeoffs they embody, and (implicitly, through its protocol) what to ask clients

regarding those tradeoffs (e.g., a request might indicate "I will often be randomly indexing

into the table"). The agent could also "ask questions" by providing a trial lookup table that

gathers usage statistics: once a pattern becomes clear, the agent can transparently switch to a

more appropriate implementation. Long term, sporadic sampling of usage patterns can pro

vide a low-overhead mechanism for alerting the agent to needed changes in implementation.

An agent can do more. For example, the relative price of memory and processor time may

vary with the time of day or with the state of technology; depending on the cost of different

implementations and the cost of switching among them, a change may be profitable. Like

wise, the table-user may desire faster responses; again, a change may be profitable.

If a newly-invented lookup table implementation is superior for some uses, it could be

advertised (by its advertising agent) to prominent lookup table agents. "Advertising" could

include paying these agents to test its performance under different patterns of use, enabling

them to determine which of their clients could benefit from switching to it. The new table

would soon be used by programs that were coded without knowledge of it, and which started

running prior to its creation.

Unrelated agents can interact synergistically. Consider the case of a lookup table with

distinct read and write ports and distributed users. As long as there are writers, this lookup

table chooses to exist on only one machine (in order to preseive serializable semantics without

the complexity of distributed updates). This implementation imposes substantial delays and

communication costs on the readers: if all objects dropped access to its write port, the lookup

table could transmit static copies of itself to all readers, lowering these costs. The table can

~epresent this cost by charging an artificially high retainer fee for the write port, giving users

Markets and Computation

(a) Linked List (b) Binary Tree (c) Distributed Table

Figure 5: Lookup table tradeoffs. Graphs (a), (b), and (c) show pro
cessing costs for hypothetical implementations of a lookup table serving multiple
sites (see 5(d) below for graph axes). Each J2JJ1S key-value associations, and gll_s
the value associated with a given key. The average processing cost of a request
depends on the mix of gn and J2lJ1 operations, and the number of associations
stored. Figure 5 (a) shows a linked-list implementation which J2l11.S in constant
time, but gns using a linear search. Figure 5(b) shows a balanced binary tree
whose costs scale as the log of the number of associations. Both 5 (a) and 5 (b)
are centralized data structures-a table exists at only one site and all requests must
travel there, adding constant overhead. Figure 5(c) shows a distributed table,
replicated at each client site: ws are inexpensive, requiring no external communi
cation, but J2JJ1S are costly, requiring locking, updating, and unlocking all copies
of the table.

Average
Cost

100% Puts 100% Gets

(d) Lookup table agent

Figure 5(d): Lookup table agent. Given the above choices, clients with
differing patterns of use should patronize different implementations. Figure 5(d)
shows costs given that a client always makes the minimum-cost choice. An ideal
lookup table agent can present this cost function (plus a small cost for expenses
and profit margin), relieving the client of the need make this choice.

153

154 M.S. Miller and K.E. Drexler

an incentive to drop this capability and permit a shift to the less expensive implementation.

This illustrates how local economic decisions can encourage appropriate performance tradeoffs

involving such distinct aspects of the system as garbage collection, network traffic, and

representation of data structures.

Given sufficiently powerful partial-evaluation agents [42), a data-type agent could offer to

extend an object with a new protocol. For example, the user of a lookup table might frequently

look up the values of the first N entries following a particular key. Rather than doing so by

running a procedure using the existing protocol, it could offer to pay for partially evaluating

the procedure with respect to the lookup table, and add a lookup-next-N request to the table's

protocol. This would typically make servicing such requests more efficient; a portion of the

resulting savings could paid as dividends to the object that invested in the partial evaluation.

5.3.2. Managers

Different agents of the same type will have different reputations and pricing structures, and

they will compete with each other. An object must select which of these agents to employ. Just

as an object may employ a lookup table agent to decide which lookup table to employ, so an

object may employ an agent-selection agent to decide which agent to employ. Agent-selection

agents are also in competition with each other, but this need not lead to an infinite regress: for

example, an object can be born with a fixed agent-selection agent. The system as a whole

remains flexible, since different objects (or versions of a single object) will use different

agent-selection agents. Those using poor ones will tend to be eliminated by competition.

A generalization of the notion of an agent-selection agent is that of a manager. In addition

to the functions already outlined, a manager can set prices, select subcontractors, and negotiate

contracts. To select good agents and subcontractors, manager-agents will need to judge

reputations.

5.3.3. Reputations

A reputation system may be termed positive if it is based on seeking objects expected to

provide good service, and negative if it is based on avoiding those expected to provide bad

service. Negative reputation systems fail if effective pseudonyms are cheaply available; posi

tive reputation systems, however, require only that one entity cannot claim the identity of

another, a condition met by the identity properties of actors [4,43) and public key systems [29).

Accordingly, computational markets are expected to rely on positive reputation systems.

It would seem that new objects could not acquire positive reputations ("Sorry, you can't

get the job unless you show you've done it before."), but they need not have given good

service to make one expect good service. For example, a new object can give reason to expect

good service-thereby establishing a positiv~ rep~tation-by posting a cash bond guarantee

ing good performance. (This requires, of course, that both parties to the contract trust some

third parties to hold the bond and to judge performance.) Despite the idea that software entities

cannot make commitments [44), contracts with enforceable penalty clauses provide a way for

them to do so.

Markets and Computation 155

The demand for reputation information will provide a market for reputation services, anal
ogous to credit rating agencies, investment newsletters, Underwriters Laboratories, the Better
Business Bureau, and Consumer Reports. When the correctness and quality of the service can
be judged, it seems that an effective reputation service could work as follows. A reputation
server approaches a service provider, offering money for service. (The server funds these
purchases by selling information about the results.) The reputation agent has an incentive to
appear to be a regular customer (to get an accurate sample), and regular customers have an
incentive to appear to be reputation agents (to get high quality service). A restaurant reviewer
has been quoted as saying "If someone claims to be me, he's not!" [45]. Given unforgeable
identities, the best either can do is maintain anonymity. Service providers then have an incen
tive to provide consistently good service, since their reputation might be at stake at any time.
This scenario generalizes to tests of reputation services themselves.

5.3.4. Compilation

Tradeoff s in compilation can often be cast in economic terms. For example, the best choice
in a time-space tradeoff will depend on processor and memory costs, and on the value of a
prompt result. Another tradeoff is between computation invested in transforming code versus

that spent in running the code; this is particularly important in guiding the often computation
intensive task of partial evaluation.

Investment in code transformation is much like other investments in an economy: it in
volves estimates of future demand, and hence cannot be made by a simple, general algorithm.
In a computational market, compilation speculators can estimate demand, invest in program
transformations, and share in the resulting savings. Some will overspend and lose investment
capital; others will spend in better-adapted ways. Overall, resources will flow toward inves
tors following rules that are well-adapted to usage patterns in the system, thereby allocating
resources more effectively. This is an example of the subtlety of evolutionary adaptation:
nowhere need these patterns be explicitly represented.

Current programming practice typically sacrifices a measure of structural simplicity and
modularity for the sake of efficiency. Some recent compilation technologies [42,46] can make
radical, non-local transformations that change not only performance, but complexity measure.
Use of such technology could free programmers to concentrate on abstraction and semantics,
allowing the structure of the code to more directly express the structure of the problem. This
can reduce the tension between modularity and efficiency.

As we later argue, computational markets will encourage the creation of reusable, high
quality modules adapted for composition into larger objects. The resulting composite objects
will typically have components paying dividends to different investors, however, imposing
internal accounting overhead. Again, there is a tension with efficiency, and again it can be
reduced by means of compilation technology. Much compilation involves (invisibly) "vio
lating" internal boundaries---compiling well-separated components into a complex, non
modular piece of code. In an agoric system, a compilation-agent can do the same, while also
analyzing and compiling out the overhead of run-time accounting.

156 M.S. Miller and K.E. Drexler

A Pareto-preferred compiler is one which performs this transformation so as to guarantee
that some component will be better off and none will be worse off. This can be achieved even
if the resulting division of income only approximates the original proportions, since the total
savings from compilation will result in a greater total income to divide. The expectation of
Pareto-preferred results is enough to induce objects to submit to compilation; since multiple
results can meet this condition, however, room will remain for negotiation.

5.4. The scandal of idle time

Current resource allocation policies leave much to be desired. One sign of this is that most
computing resources-including CPUs, disk heads, local area networks, and much more-sit
idle most of the time. But such resources have obvious uses, including improving their own
efficiency during later use. For example, heavily-used programs can be recompiled through
optimizing compilers or partial evaluators; pages on disk can be rearranged to keep files con
tiguous; objects can be rearranged according to referencing structure to minimize paging [47],

and so forth. In a computational market, a set of unused resources would typically have a zero
or near-zero price of use, reflecting only the cost of whatever power consumption or mainte
nance could be saved by genuine idleness or complete shutdown. Almost any use, however
trivial, would then be profitable. In practice, contention for use would bid up prices until they
reflected the marginal value of use [5]. Idle time is a blatant sign of wasteful resource alloca
tion policies; one suspects that it is just the tip of a very large iceberg.

Terry Stanley [48) has suggested a technique called "post-facto simulation" as a use of idle
(or inexpensive) time. It enables a set of objects to avoid the overhead of fine-grained ac
counting while gaining many of its advantages. While doing real work, they do no accounting
and make no attempt to adapt to internal price information; instead, they just gather statistics
(at low overhead) to characterize the computation . Later, when processing is cheap and re
sponse time demands are absent (i.e., at "night"), they simulate the computation (based on the
statistics), but with fine-grained accounting turned on. To simulate the day-time situation,
they do not charge for the overhead of this accounting, and proceed using simulated "day"
prices. The resulting decisions (regarding choice of data structures, use of partial evaluation,
etc.) should improve performance during future "days". This is analogous to giving your best
real-time response during a meeting, then reviewing it slowly afterward: by considering what
you should have done, you improve your future performance.

6. Agoric systems in the large
In describing the idea of market-based computation and some of its implications, this

paper has implicitly focused on relatively isolated systems of software performing relatively

conventional functions. The following examines two broader issues: how market-based com
putation could interact with existing markets for software, and how it could be relevant to the
goal of artificial intelligence.

Markets and Computation 157

6.1. Software distribution markets

An agoric open system would provide a computational world in which simple objects can
sell services and earn royalties for their creators. This will provide incentives that differ from
those of the present world, leading to qualitative differences in software markets.

6.1.1. Charge-per-use markets

Perhaps the central problem we face in all of computer science is how we are
to get to the situation where we build on top of the work of others rather
than redoing so much of it in a trivially different way.

-R. W. Hamming, 1968 [49]

Consider the current software distribution marketplace. Producers typically earn money by
charging for copies of their software (and put up with extensive illegal copying). Occasional
users must pay as much for software as intense users. Software priced for intense users is
expensive enough to discourage purchase by occasional users--even if their uses would be of
substantial value to them. Further, high purchase prices discourage many potentially frequent
users from trying the software in the first place. (Simply lowering prices would not be more
efficient if this lowers revenues for the sellers: with lower expected revenue, less software
would be written, including software for which there is a real demand.)

Now consider trying to build and sell a simple program which uses five sophisticated
programs as components. Someone might buy it just to gain access to one of its components.
How large a license fee, then, should the owners of those components be expected to charge
the builder of this simple program? Enough to make the new program cost at least the sum of
the costs of the five component programs. Special arrangements might be made in special
circumstances, but at the cost of having people judge and negotiate each case. When one con
siders the goal of building systems from reusable software components, with complex objects
making use of one another's services [50], this tendency to sum costs becomes pathological.
The peculiar incentive structure of a charge-per-copy market may have been a greater barrier
to achieving Hamming's dream than the more obvious technical hurdles.

In hardware markets, it can be better to charge for the use of a device than to sell a copy of
it to the user:

Why was [the first Xerox copier] so successful? Two thing contributed to
the breakthrough, McColough says ... technical superiority ... and equally
important, the marketing genius of the pricing concept of selling [the use of
the copier], not machines. 'One aspect without the other wouldn't have
worked,' he said. ' ... we couldn't sell the machines outright because they
would have been too expensive.'

-Jacobson and Hillkirk, 1986 [51]

Agoric systems will naturally support a charge-per-use market for software. In any mar
ket, software producers will attempt to extract substantial charges from high-volume users.
With charge per use, however, the charges to be paid by high-volume users will no longer

158 M.S. Miller and K.E. Drexler

stand in the way of low-volume users; as a result, they will use expensive software that they

could not afford today. At the same time, high-volume users will experience a finite marginal
price for using software, rather than buying it and paying a zero marginal price for using it;
they will cut back on some of their marginal, low-value uses. The overall benefit of numerous
low-volume users making high-value use of the software will likely outweigh the loss asso
ciated with a few high-volume users cutting back on their low-value uses, yielding a net social
benefit. It seems likely that some of this benefit will appear as increased revenues to software
producers, encouraging increased software production.

In a charge-per-copy market, users face an incentive structure in which they pay nothing to
keep using their present software, but must pay a large lump sum if they decide to switch to a
competitor. A charge-per-use market will eliminate this artificial barrier to change, encourag
ing more lively competition among software producers and better adaptation of software to
user needs.

By enabling small objects to earn royalties for their creators, charge-per-use markets will
encourage the writing, use, and reuse of software components-to do so will finally be pro
fitable. Substantial improvement in programming productivity should result; these improve
ments will multiply the advantages just described.

6.1.2. Hardware encapsulation

This charge-per-use scenario presents a major technical problem: it depends on the ability
to truly protect software from illicit copying. True encapsulation would ensure this, but true
encapsulation will require a hardware foundation that blocks physical attacks on security.
Two approaches seem feasible: either keeping copies in just a few secure sites and allowing
access to their services over a network, or developing a technology for providing users with
local secure sites to which software can migrate.

In the limit of zero communication costs (in terms of money, delay, and bandwidth limita
tions), the disincentive for remote computation would vanish. More generally, lower commu
nication costs will make it more practical for objects located on remote machines to offer ser
vices to objects on user machines. Remote machines can provide a hardware basis for secure
encapsulation and copy protection-they can be physically secured, in a vault if need be. This
approach to security becomes more attractive if software can be partitioned into public-domain
front-ends (which engage in high-bandwidth interaction with a user), and proprietary back
ends (which perform sophisticated computations), and if bandwidth requirements between

front- and back-ends can be minimized.

One system that might lend itself to this approach is an engineering service [13]. The user's
machine would hold software for the represen_tation, editing, and display of hardware

designs. The back-end system-perhaps an extensive market ecosystem containing objects of
diverse functionality and ownership--would provide computation-intensive numerical model

ing of designs, heuristics-applying objects (perhaps resembling expert systems) for suggest

ing and evaluating modifications, and so forth.

Markets and Computation 159

Two disadvantages of separating front- and back-ends in this way are communications

cost and response time. If hardware encapsulation can be provided on the local user's ma

chine, however, software can migrate there (in encrypted form) and provide services on-site.

Opaque boxes are a possible design for such secure hardware:

Imagine a box containing sensors and electronics able to recognize an attempt to violate the

box's integrity [52]. In addition, the box contains a processor, dynamic RAM, and a battery.

In this RAM is the private key of the manufacturer's public-key encryption key pair [29]; ob

jects encrypted with the public key can migrate to the box and be decrypted internally. If the

box detects an attempt to violate its physical integrity, it wipes the dynamic RAM (physically

destructive processes are acceptable), deleting the private key and all other sensitive data. All

disk storage is outside the box (fast-enough disk erasure would be too violent), so software
and other data must be encrypted when written and decrypted when read. The box is termed
opaque because no one can see its contents.

Internally, the opaque box would require encapsulation among software objects. This can

be done by using a secure operating system [VI], by using capability hardware [53,54,55], or by

demanding that objects be written in a secure programming language and either run under a

secure interpreter or compiled by a secure compiler [IV,56]. Among other objects, the box

would contain one or more branches of external banks, linked to them from time to time by

encrypted communications; these banks would handle royalty payments for use of software.

Will greater hardware cost make opaque boxes uncompetitive for personal computer sys

tems? If the added cost is not too many hundreds of dollars, the benefit-greater software

availability-will be far greater, for many users. Opaque boxes can support a charge-per-use

market in which copies of software are available for the cost of telecommunications. CD-ROMs

full of encrypted software might be sold at a token cost to encourage use.

An intermediate approach becomes attractive if opaque boxes are too expensive for use as

personal machines. Applications could be split into front and back-ends as above, but back

ends could run on any available opaque box. These boxes could be located wherever there is

sufficient demand, and linked to personal machines via high-bandwidth local networks.

People (or software) would find investment in opaque boxes profitable, since their processors

would earn revenue. With high enough box-manufacturing costs, this approach merges into

the remote-machine scenario; with low enough costs, it merges into the personal-machine

scenario.

6.1.3. Inhibiting theft

As society embodies more and more of its knowledge and capabilities in software, the

theft of this software becomes a growing danger. An environment that encourages the creation

of large, capable, stand-alone applications sold on a charge-per-copy basis magnifies this

problem, particularly when the stolen software will be used in places beyond the reach of

copyright law.

A charge-per-use environment will reduce this problem. It will encourage the development

of software systems that are composites of many proprietary packages, each having its securi-

160 M.S. Miller and K.E. Drexler

ty guarded by its creator. Further, it will encourage the creation of systems that are distributed

over many machines. The division and distribution of functions will make the problem faced

by a thief less like that of stealing a car and more like that of stealing a railroad. Traditional

methods of limiting theft (such as military classification) slow progress and inhibit use; com

putational markets promise to discourage theft while speeding progress and facilitating use.

6.1.4. Integration with the human market

It has been shown how an agoric system would use price mechanisms to allocate use of

hardware resources among objects. This price information will also support improved deci

sions regarding hardware purchase: if the market price of a resource inside the system is con

sistently above the price of purchasing more of the resource on the external market, then in

cremental expansion is advantageous. Indeed, one can envision scenarios in which software

objects recognize a need for new hardware, lease room for it, and buy it as an investment.

It has been shown how objects in an agoric system would serve human needs, with

human minds judging their success. Similarly, when objects are competent to judge success,

they can hire humans to serve their needs-for example, to solve a problem requiring human

knowledge or insight.

Conway's law states that "Organizations which design systems are constrained to produce

systems which are copies of the communications structures of these organizations" (from [57)

as quoted in [58)). If so, then software systems developed in a distributed fashion can be ex

pected to resemble the organization of society as a whole. In a decentralized society coordinat

ed by market mechanisms, agoric systems are a natural result.

6.2. The marketplace of mind

Artificial intelligence is unnecessary for building an agoric open system and achieving the

benefits described here. Building such a system may, however, speed progress in artificial

intelligence. Feigenbaum's statement, "In the knowledge lies the power", points out that intel

ligence is knowledge-intensive; the "knowledge acquisition bottleneck" is recognized as a

major hindrance to AI. Stefik has observed [VII] that this knowledge is distributed across

society; he calls for a "knowledge medium" in which knowledge contributed by many people

could be combined to achieve greater overall intelligence.

Agoric systems should form an attractive knowledge medium. In a large, evolving system,

where the participants have great but dispersed knowledge, an important principle is: "In the

incentive structure lies the power". In particular, the incentives of a distributed, charge-per

use market can widen the knowledge engineering bottleneck by encouraging people to create

chunks of knowledge and knowledge-based systems that work together.

Approaches based on directly buying and sellirig knowledge [VII,23] suffer from the pecu

liar incentives of a charge-per-copy market. This problem can be avoided by embodying

knowledge in objects which sell knowledge-based services, not knowledge itself. In this

way, a given piece of knowledge can be kept proprietary for a time, enabling producers to

charge users fees that approach the value the users place on it. This provides an incentive for

people to make the knowledge available. But in the long run, the knowledge will spread and

Markets and Computation 161

competition will drive down the price of the related knowledge-based services-approaching

the computational cost of providing them.

Agoric open systems can encourage the development of intelligent objects, but there is also

a sense in which the systems themselves will become intelligent. Seeing this entails distin

guishing between the idea of intelligence and the ideas of individuality, consciousness, and

will. Consider the analogous case of human society.

It can be argued that the most intelligent system now known is human society as a whole.

This assertion strikes some people as obvious, but others have a strong feeling that society

should be considered less intelligent than an individual person . What might be responsible for

these conflicting views?

The argument for the stupidity of society often focuses not on the achievements of society,

but on its suboptimal structure or its slow rate of structural change. This seems unfair.

Human brains are presumably suboptimal, and their basic structure has changed at a glacial

pace over the broad time spans of biological evolution, yet no one argues that society is

worse-structured than a brain (what would this mean?), or that its basic structure changes

more slowly than that of a brain. Great intelligence need not imply optimal structure, and sub

optimal structure does not imply stupidity.

Other arguments for the stupidity of society focus on the behavior of committees, or

crowds, or electorates. This also seems unfair. Human beings include not only brains but

intestines; our intelligence is not to be judged by the behavior of the latter. Not all parts need

be intelligent for a system to be so. Yet other arguments focus on things individuals can do

that groups cannot, but one might as well argue that Newton was stupid because he did not

speak Urdu. A final argument for the stupidity of society focuses on problems that result

when a few individuals who are thought to somehow represent society attempt to direct the

actions of the vast number of individuals who actually compose society - that is, the problems

of central planning, government, and bureaucracy. This statement of the argument seems an

adequate refutation of it.

The argument for society's intelligence is simple: people of diverse knowledge and skills,

given overall guidance by the incentives of a market system, can accomplish a range of goals

which, if accomplished by an individual, would make that individual a super-human super

genius. The computer industry is a small part of society, yet what individual could equal its

accomplishments, or the breadth and speed of its ongoing problem-solving ability?

Still, it is legitimate to ask what it means to speak of the "intelligence" of a diverse, distrib

uted system. In considering an individual, one commonly identifies intelligence with the abili

ty to achieve a wide range of goals through complex information processing. But in agoric

systems, as in human society, the component entities will in general have diverse goals, and

the system as a whole will typically have no goals [59). Nonetheless, a similar concept of in

telligence can be applied to individuals, societies, and computational markets.

Individuals taking intelligence tests are judged by their ability to achieve goals set by a test

giver using time provided for the purpose. Likewise, the intelligence of a society may be

162 M.S . Miller and K .E. Drexler

judged by its ability to achieve goals set by individuals, using resources provided for the pur
pose. In either case, the nature and degree of intelligence may be identified with a combination

of the range of goals that can be achieved, the speed with which they can be achieved, and the
efficiency of the means employed. By this measure, one may associate kinds and degrees of
intelligence not only with individuals, but with corporations, with ad-hoc collections of sup

pliers and subcontractors, and with the markets and institutions that bring such collections
together at need. The idea of intelligence may thus be separated from the ideas of individuali
ty, consciousness, and will.

The notion of intelligence emerging from social interactions is familiar in artificial intelli
gence : Minsky [60] uses the society metaphor in his recent work on thinking and the mind;
Kornfeld and Hewitt [61] use the scientific community as a model for programs incorporating
due process reasoning [II] . Human societies demonstrate how distributed pieces of knowledge
and competence can be integrated into larger, more comprehensive wholes; this process has
been a major study of economics [8] and sociology (63]. Because these social processes (un

like those in the brain) involve the sometimes-intelligible interaction of visible, macroscopic
entities, they lend themselves to study and imitation. This paper may thus be seen as propos
ing a form of multi-agent, societal approach to artificial intelligence.

7. The absence of agoric systems
Market-style software systems are a fairly obvious idea and have received some attention.

However, in considering any fairly-obvious idea with (allegedly) great but unrealized poten
tial, it is wise to ask why that potential has in fact not been realized. When an idea of this sort
neither lends itself to formal proof nor to small, convincing demonstrations, the difficulty of
making a case for it grows. Support from abstract arguments and analogies can be helpful, as
can an examination of the practical issues involved. But in addition, it helps to see whether the
idea has been tested and found wanting. Considering this major category of possible negative
evidence is an aspect of due-process reasoning.

Why have agoric open systems not been implemented already? In part, because the soft
ware community has lacked an immediate, compelling need. Advances have been made,
through better programming environments and methodologies (including the encapsulation
and communication of information and access), and through tools for making larger structures
visible to programmers (64]-all without building markets. These environments and method
ologies have extended the programmer's conceptual span of control, enabling one mind or a
few closely-coordinated, mutually-trusting minds to build ever larger and more complex pro
grams. These advances have decreased the urgency of enabling extensive cooperation without

mutual trust or extensive communications.

Another problem has been the scale-sensitivity of the market approach. In small systems,
the overhead of accounting and negotiations is unjustified; further, incremental increases in
scale have thus far been possible without markets. Robust service-trading objects must have a
certain minimum complexity, or have access to trusted business-agents of a certain minimum

Markets and Computation 163

complexity . The virtues of markets are greatest in large, diverse systems.

There has, perhaps, also been a cultural factor at work. Large, research-oriented computer
networks have focused on academic and government work-that is, toward non-profit use.
Further, the academic community already has an informal incentive structure that rewards the
creators of useful software in an incremental way, in rough proportion to its usefulness .
These reputation-based reward mechanisms facilitate the development of software systems
that build on others' work; the differing incentives in the commercial community may be
responsible for its greater tendency to build redundant systems from scratch.

These considerations seem sufficient to explain the lack of agoric systems today, while
giving reason to expect that they will become desirable as computer systems and networks
grow. In the large, open, evolving software systems of the future, the overhead of accounting
will be less important than robustness and flexibility. Further, the development of automated
programming systems will introduce "programmers" having (initially) a sharply limited ability
to plan and comprehend. This will re-emphasize the problem of the "programmer's" span of
conceptual control, and increase the need for mechanisms that strengthen localization and

system robustness.

8. Conclusions
A central challenge of computer science is the coordination of complex systems. In the

early days of computation, central planning-at first, by individual programmers-was inev
itable. As the field has developed, new techniques have supported greater decentralization and
better use of divided knowledge. Chief among these techniques has been object-oriented
programming, which in effect gives property rights in data to computational entities. Further
advance in this direction seems possible.

Experience in human society and abstract analysis in economics both indicate that market
mechanisms and price systems can be surprisingly effective in coordinating actions in com
plex systems. They integrate knowledge from diverse sources; they are robust in the face of
experimentation; they encourage cooperative relationships; and they are inherently parallel in
operation. All these properties are of value not just in society, but in computational systems:
markets are an abstraction that need not be limited to societies of talking primates.

This paper has examined many of the concrete issues involved in actually creating compu
tational markets, from hardware and software foundations, to initial market strategies for
resource management (chiefly in [III]), to the organization of systems of objects and agents
able to interact in a market context. As yet, no obstacle to their realization has been found.

Distributed systems based on the charge-per-use sale of software services and computa
tional resources promise a more flexible and effective software market, in which large sys
tems will more often be built from pre-existing parts. With many minds building knowledge
and competence into market objects, and with incentives favoring cooperation among these
objects, the overall problem-solving ability of the system can be expected to grow rapidly.

164 M.S. Miller and K.E. Drexler

On a small scale, central planning makes sense; on a larger scale, market mechanisms
make sense. Computer science began in a domain where central planning made sense, and
central planning has thus been traditional. It seems likely, however, that some modern com
puter systems are already large and diverse enough to benefit from decentralized market coor
dination. As systems grow in scale and complexity, so will the advantages of market-based
computational systems.

Appendix I. Issues, levels, and scale

This appendix explores how various computational issues change character from lower to
higher levels of a system (in the sense described in Section 3.7). Agoric open systems can
most easily be developed by building up from current systems-by finding ways to make a
smooth transition from current programming practice to the practices appropriate to market
ecosystems. (One aspect of this is dealt with in [III].) Understanding how issues will change
from level to level will aid this process and minimize the chance of misapplying concepts from
one level to problems on another level.

Higher levels of organization will raise issues not so much of system correctness as of
system coherence. For example, while a sorting algorithm may be correct or incorrect, a large
collection of software tools may be coherent or incoherent-its parts may work together well
or poorly, even if all are individually correct. The notion of coherence presumes a level of
complexity that makes it inapplicable to a sorting algorithm. Despite the differences between
correctness and coherence, they have much in common: correctness can be seen as a formal
version of coherence, one appropriate for small-scale objects. In this, as in many of the fol
lowing issues, hard-edged criteria at lower levels of organization have soft-edged counterparts
at higher levels.

Economics

Security

Compatibility

Degrees of trust

Reasoning

Coordination

low level ... high level

planning ... spontaneous order

encapsulation ... skepticism

message passing ... operability

trust ... reputations

logic ... due process

serialization ... negotiation

Figure 6: Changes in character of issues across levels.

Markets and Computation 165

1.1. Security

Alan Kay has characterized compatibility, security, and simplicity as essential properties
for building open systems. For mutually untrusting objects to interact willingly, they must be
secure. Encapsulation can provide security at a low level, as a formal property of computa
tion. With this property, one can code an object so that the integrity of an internal data struc
ture is guaranteed despite possible nonsense messages. Security at a high level involves skep
ticism and the establishment of effective reputation systems. Skepticism enables an object to
continue reasoning coherently despite being told occasional lies.

Encapsulation - in this case, protection against tampering-is necessary for skepticism to
work. Without encapsulation, a skeptical object's intellectual defenses could be overcome by
the equivalent of brain surgery.

1.2. Compatibility

Compatibility allows objects to be mutually intelligible, despite diverse origins. At a foun
dational level, it involves a shared message passing medium and mutual understanding of
some protocol. Inside a small program written by a single programmer, objects can be care
fully crafted so that any two that communicate will necessarily use the same protocol. Be
tween large objects written by different people, or the same person at different times, check
ing for protocol agreement can frequently prevent disaster. For example, if an object is passed
a reference to a lookup table when it is expecting a number, it may help to learn that "addition"
will not be understood by the table before actually attempting it. Note that this itself relies on
agreement on a basic protocol which provides a language for talking about other protocols.

In the Xerox Network System, clients and servers not only compare the type of protocol
that they can speak, but the range of protocol versions that they understand [65]. If their
ranges overlap , they then speak the latest mutually understood version . If their ranges do not
overlap, they then part and go their separate ways. This is an example of bootstrapping from a
mutually understood protocol to determine the intelligibility of other protocols. The develop
ing field of interoperability [66] should soon provide many more.

Sophisticated objects should eventually have still broader abilities. Human beings, when
faced with a novel piece of equipment , can often learn to make profitable use of unfamiliar
capabilities. Among the techniques they use are experimentation, reading documentation, and
asking a consultant. One may eventually expect computational analogues [67].

1.3. Degrees of trust

Security is needed where trust is lacking, but security involves overhead; this provides an

incentive for trust. At a low level, a single author can create a community of trusting objects.
At an intermediate level trust becomes more risky because error becomes more likely. This
encourages error-checking at internal interfaces, as is wise when a team of programmers (or
one forgetful programmer) must assemble separately developed modules.

At higher levels, strategic considerations can encourage partial trust. A set of objects may
make up a larger object, where the success of each depends on the success of all. Here, ob-

166 M.S. Miller and K.E. Drexler

jects may trust each other to further their joint effort [68]. Axelrod's iterated prisoner's dilem
ma tournament [69] (see also [ll) shows another way in which strategic considerations can give

rise to trust. One object can generally expect cooperative behavior from another if it can
arrange (or be sure of) appropriate incentives.

In a simple iterated prisoner's dilemma game, this requires both having a long-term rela
tionship and paying the overhead of noticing and reacting to non-cooperative behavior. Repu
tation systems within a community can extend this principle and lower the overhead of using
it. Some objects can gather and sell information on another object's past performance: this
both provides incentives for consistently good performance and reduces the cost of identify
ing and avoiding bad performers. In effect, reputation systems can place an object in an iterat
ed relationship with the community as a whole.

The idea that encapsulation is needed at low levels for security, where we also expect com
plete trust seems to entail a conflict. But the function of encapsulation is to protect simple ob
jects where trust is limited or absent (as it will be, between some pairs of objects). Complete
trust makes sense among simple objects that are in some sense playing on the same team.

I.4. Reasoning

Programming language research has benefited from the methodology of formalizing pro
gramming language semantics. A result is the ability to reason confidently (and mechanistic
ally) about the properties of programs expressed in such languages. This can establish confi
dence in the correctness of programs having simple specifications. The logic programming
community is exploring the methodology of transforming a formal specification into a logic
program with the same declarative reading. The resulting logic program is not generally guar
anteed to terminate, but if it does, it is guaranteed to yield a correct result, since the interpreter
is a sound (though incomplete) theorem prover and the program is a sound theorem.

Deductive logic seems inadequate as a high-level model of reasoning, though there is
much controversy about this. High level reasoning involves weighing pro and con plausibility
arguments (due-process reasoning [II]), changing one's mind (non-monotonicity), believing
contradictory statements without believing all statements, and so forth. There have been at
tempts to "fix" logic to be able to deal with these issues, but [70] argues that these will not suc
ceed. A more appropriate approach to high level reasoning emphasizes coherence, plaus
ibility, and pluralism instead of correctness, proof, and facts. (This does not constitute a criti
cism of logic programming: logic programming languages, like lambda-calculus languages,
can express arbitrary calculations, including those that embody non-logical modes of reason
ing.)

I.5. Coordination

In order to coordinate activity in a concurrent world, one needs a mechanism for serializa
tion. Semaphores [71] and serialized actors [IV,3,4] enable a choice between processes contend
ing for a shared resource; these primitives in turn make possible more complex concurrency
control schemes such as monitors [19] and receptionists [4], which allow the protected re
source to interact with more than one process at a time. Monitors in turn have been used to

Markets and Computation 167

build distributed abortable transactions (as in Argus, described elsewhere in this volume [VJ),

which support coherent computation in the face of failure by individual machines .

For very large distributed systems, transaction-based coordination requires too much con
sistency over too many participants. Dissemination models (38,39,72], and publication models
[23,73] provide mechanisms that apply to larger scales.

The Colab is another project which has extended notions of coordination control. Colab is
a project to build a collaborative laboratory-a multi-user interactive environment for support

ing collaborative work (74]. In the Colab, a group of people work together on a set of data and
sometimes contend for the right to modify the same piece of data. Initial attempts to deal with
this by simply scaling up transactions proved unsuitable. Instead, social-coordination mecha
nisms were found, such as signals to indicate someone's interest in changing a piece of data.
The applicability of these mechanisms is not human-specific, but should generalize to any sit
uation in which there is often a significant investment in computation which would be thrown
away by an aborted transaction.

An essential aspect of higher-level coordination mechanisms is negotiation. When allocat
ing exclusive access to a resource for a millisecond, it often makes sense to rely on simple
serialization. When allocating exclusive access for a year, it often makes sense to take greater
care. One simple form of negotiation is an auction-a procedure in which the resource is allo
cated to the highest bidder. Hewitt in (75] explores Robert's Rules of Order as the basis for
more sophisticated negotiation procedures.

Even sophisticated negotiation mechanisms will often rely on primitive serializers. In auc
tions, an auctioneer serializes bids; in Robert's Rules, the chair serializes access to the floor.

1.6. Summary

This section has examined how a range of issues-security, compatibility, trust, reason
ing, and coordination-may appear at different levels of market-based open systems. Certain
themes have appeared repeatedly. Mechanisms at low levels often support those at higher
levels, as (for example) high-level coordination mechanisms using simple serializers. Further,
higher levels can inherit characteristics of lower levels, such as encapsulation and conserva
tion laws.

Issues often blur at the higher levels-security and trust become intertwined, and may
both depend on due-process reasoning. The bulk of this paper concentrates on low- and mid
level concerns which must be addressed first, but high-level issues all present a wealth of
important research topics.

168 M.S. Miller and K.E . Drexler

Appendix II. Comparison with other systems
This section, and these papers, discuss and criticize many works . We wish to emphasize

that these works have been chosen, not for their flaws, but for their value.

Il.1. The Xanadu hypertext publishing system

This paper has compared agoric systems to other systems for computation. Our first expo
sure to many of the central ideas of markets and computation, however, stems from our work
with the Xanadu hypertext system [23]. Xanadu is a proposed on-line publishing medium for
hypertext documents . A hypertext document differs from the normal notion of a document in
that it contains links, connections between documents which readers can follow at the click of
a mouse . Published documents thus form not a set of disconnected islands, but a web con
nected by references, quotes, criticisms, comments, and rebuttals.

How can a reader find a path in such an interconnected web? Rather than proposing that
someone (somehow) create a single, official system index, the Xanadu project proposes sup
port for decentralized indexing, and hence for pluralism. Any reader can author and publish a

guide to any set of public documents. Other readers can then use this guide to sort material
and orient themselves . Anyone can, of course, publish guides to other guides . Xanadu relies
on the expectation that this activity will result in a spontaneous order-a richly-connected
world of documents in which readers can find their way.

Why will indexing be done where needed? In part because readers will do much of the
basic searching and sorting for themselves, and then publish the results (since publishing is
easy). In addition, however, Xanadu provides a charge-per-read royalty arrangement to en
courage publication of material for which there is a demand. Just as charge-per-use software
will make it economical to assemble software from diverse components, so Xanadu's royalty
arrangement is designed to encourage the assembly of documents from parts of other docu
ments: if one document quotes another, a reader's royalty payments are split between them.

In Xanadu, documents are passive data. One way of conceiving of agoric systems is as a
publishing medium for linked, active data.

II.2. Knowledge medium

Mark Stefik's "Knowledge Medium" paper [VII] paints a visionary future in which AI sys
tems, distributed across society, are able to communicate and share knowledge. In contrast,
current expert systems are seen as isolated systems rebuilt from scratch each time. A know
ledge medium would enable individual systems to specialize in encoding the knowledge most
relevant to them, and would provide a market for the purchase of knowledge represented

elsewhere. As a result, the process of encoding knowledge is expected to accelerate through
division of labor and economies of scale.

This proposal is compatible with the agoric systems vision, but has a somewhat different
emphasi s. Stefik's paper emphasizes representing knowledge, communicating representa
tions, and integrating representations together. While we certainly expect (and hope) that all

Markets and Computation 169

this would occur in an agoric system, this work emphasizes the sale of knowledge-based

services.

In Stefik's vision, a "knowledge provider" responds to a request by sending a representa

tion of the knowledge it specializes in. The consumer is then faced with the task of relating

this representation to its own. This problem would create a market for "knowledge integra

tors". In the model sketched in this paper, knowledge is "represented" by embodying it in

objects that apply their knowledge to provide services. Consumers would then be integrating

the results in order to provide further services.

Because of the copying problem, a market for services should be more effective than a

market for representations. Once knowledge is transmitted, it will often spread without further

rewarding its creators. This reduces the incentives for knowledge creation.

11.3. Enterprise Net

Enterprise [VIII], by Malone, provides decentralized scheduling of tasks in a network of

personal workstations by making use of market-like mechanisms. A client processor with a

task to be scheduled broadcasts a request for bids to contractor processors. Available contrac

tors respond with bids; these are evaluated by the client, which then sends the task to the best

bidder. The client's request includes characteristics of the task which are pertinent in estimat

ing its processing time. The best bidder is generally the contractor who responds with the

earliest estimated completion time. This bidding protocol provides for decentralized decision

making and enables clients to use their own criteria in evaluating candidate suppliers.

Compared to the agoric systems approach, Enterprise has several limitations. It assumes

full mutual trust between clients and contractors, all working toward a common objective. It is

also less flexible in the tradeoffs it can make-the system contains non-adaptable system par

ameters and uses no price mechanism. Lacking price signals, the system relies on prear

ranged, non-evolving rules to guide behavior. The inflexibility of such a system is illustrated

by the following example.

Imagine two client tasks: a high-priority theorem proving task and a lower-priority fluid

flow simulation task, and two server machines: a Vax 780 with an attached array processor

and a Vax 750 without one. Both tasks prefer the 780 because it is faster, but the simulation

task vastly prefers it because of the array processor; in comparison, the theorem prover is rel

atively indifferent. In Enterprise, both will try to get the 780, and the 780 will be allocated to

the higher priority theorem prover. In an agoric system, however, the simulation task might

offer only a trivial amount of money for the 750, resulting in a sufficiently lower market price
that the theorem prover finds the bargain worth taking. Alternatively, if the theorem prover is

already running on the 780, the simulation task could offer to pay it to migrate to the 750.

This is but one example of the flexibility that market prices can bring to a system. Malone

acknowledges that it may be useful to provide a price system within his framework.

11.4. Malone's comparison of organizational structure

Malone [76] has also compared various organizational structures for coordinating commu

nities of agents. A strong similarity between Malone's work and ours is the attempt to

170 M.S. Miller and K.E. Drexler

recognize parallel organizational forms in human societies and computer systems.

Malone sees markets as capable of providing efficient solutions to the problems of decen

tralized resource allocation in computer systems, as they have done in human organizations.

He also maintains that factors existing in human societies which limit the optimality of mar

kets can be excluded from software systems.

Transaction costs-such as expenses involved in trading on the market-limit the use of

markets and encourage the use of other forms of human organization, such as hierarchies.

These transaction costs increase in uncertain or complex markets. Traders must protect them

selves from other opportunistic traders, usually by establishing contracts; negotiating such

contracts (and living with their consequences) imposes important transaction costs.

Malone assumes that these costs will be absent from computer systems, arguing that

"While non-opportunistic traders may be rare in human markets, there is no reason at all why

computer programs cannot be constructed with [non-opportunistic] participants in a market

like organization." This may be so for non-evolving computational entities authored by an

individual or team. In an open distributed system, however, the programs will themselves be

authored by a diversity of people who will in fact have opportunistic motives with respect to

each other; further, EURISKO-like systems [IX,77] may evolve software subject only to the

constraint of market success. A system designed under the assumption of non-opportunistic

participants can be effectively used only within limited contexts-roughly speaking, within a

single firm.

IJLS. Harris, Yu, and Harris's market-based scheduling algorithm

Harris, Yu, and Harris have applied simulated markets to difficult factory scheduling

problems. Although total optimality can be defined in this case, finding it is known to be NP

hard [78], and their initial results indicate that Pareto optimal schedules are very good by most

conventional measures. In their approach, the requirements, constraints, and tradeoffs for

scheduling an individual order are represented by a utility function. These utility functions can

express many of the "arbitrary" constraints typical of a real factory, such as a requirement that

one step follow another within a given time limit. By having these utility functions interact to

set prices, a Pareto optimal solution is found relatively quickly by local hill climbing. "In less

than a minute [this algorithm] can schedule an order requiring 150 processing steps over 90

resources" [78]. This system, while not allowing for evolution of scheduling strategies, dem

onstrates the value of a market model for directing resource allocation by computational

means.

The representation language for expressing the preferences of an individual order are quite

flexible, but less flexible than a general purpose programming language. This loss does con

fer certain advantages: opportunistic behaviors are impossible, and the algorithm can compose

preferences via an efficient dynamic programming technique. Their algorithm thus creates a

computational market simulation, rather than a computational market; it might find a role

within a market by offering objects a low-overhead scheduling service, guided by external

market prices.

Markets and Computation 171

11.6. Sutherland's time sharing system

In "A Futures Market in Computer Time" [79), I.E. Sutherland describes a bidding mecha
nism (implemented in the medium of paper) that results in computer resources being allocated
according to the users' priorities. Users compete for computer time by making bids for speci
fic blocks of time, with the bidding currency being tokens which are assigned to users accord
ing to their relative priority. A bid can be pre-empted by a higher bid. Since higher priority
users have more tokens to bid with, they are able to outbid the lower priority users. Being
outbid, a user might then try for a "cheaper" block of time during a less desirable period of the
day.

By having the price of a time period vary with demand, more efficient resource allocation
is possible. There are, however, restrictions placed on the users-users cannot trade tokens
or lower a bid-that limit the flexibility of this system.

11.7. Connectionism and genetic algorithms

Two recent uses of spontaneous order principles in software are connectionism (also
known as artificial neural systems or parallel distributed processing models) [80) and genetic
algorithms [81). The first draws its inspiration from models of how neural networks may
operate, the second from genetically-based biological evolution. Both systems have shown
impressive abilities to learn to recognize patterns in noisy data. Knowledge of these patterns
does not have to be designed in a priori by some human designer. Rather, these systems are
able to sift patterns from the data itself. Though this results in these systems "knowing" the
pattern, it is nowhere explicitly represented-they do not know what patterns they know.

These systems and the agoric approach share certain similarities. All are spontaneous order
systems engaging in distributed representation and adapting to changing circumstances in part
by adjusting (and passing around) numeric weights. Some aspects of genetic algorithms are
explicitly based on a market metaphor [82), and Barto proposes connectionist models based on
networks of self-interested units [83).

All these systems learn (in part) by increasing numeric weights associated with compo
nents that have contributed to overall success. A problem that needs to be addressed by such a
learning algorithm is the division of rewards when several components have together contrib
uted to a joint success. Minsky writes:

It is my impression that many workers in the area of 'self-organizing' sys
tems and 'random neural nets' do not feel the urgency of this problem. Sup
pose that one million decisions are involved in a complex task (such as win
ning a chess game). Could we assign to each decision one-millionth of the
credit for the completed task? ... For more complex problems, with decisions
in hierarchies ... and with increments small enough to assure probable con
vergence, the running times would become fantastic.

Minsky wrote this in 1961 [84). Despite the current progress of connectionism and genetic
algorithms, he still considers this criticism essentially correct [85).

172 M.S. Miller and K.E. Drexler

A capable learning system should be able to learn better credit assignment mechanisms. In
an agoric system, when several objects are about to work together to produce some result,
they can negotiate the division of profits and risk. Among simple objects, and early in the ev
olution of an agoric system, this negotiation might generally be handled by simple initial strat
egies that may be no more flexible than the "back propagation" [80] and "bucket-brigade" [81]
algorithms employed by some connectionist and genetic-algorithm systems. As the system
develops, market competition will reward objects which employ more sophisticated negotiat
ing strategies that better reflect both the value derived from the various contributors, and what
their competitors are offering.

Both connectionism and genetic algorithms try to substitute spontaneous order principles
for design-individual, competing units within such systems are not large programs designed
by conventional means. There is much to be gained both from design and evolution; the
agoric systems approach has been designed to use the strengths of both.

II.8. Summary

In summary, though the marketplace has often been used as a metaphor, it has generally
not been used as a real model-these systems are not true computational markets. Attempts to
copy patterns which have emerged in markets entail a loss of flexibility compared with using
markets themselves. This criticism is analogous to the connectionist criticism of representa
tionalist cognitive models [80]-that by attempting to model emergent patterns while discard
ing the foundations which made them possible, representationalist models are overly "brittle",
sacrificing flexibility and learning ability.

Acknowledgments
Since 1983, when we started exploring computational markets, many people have contrib

uted their insights on these concepts. We thank the following for helpful suggestions on
agoric systems and these papers: Agustin Araya, Yeshayahu Artsy, Jim Bennett, Peter
Bishop, Daniel Bobrow, John Seely Brown, Andrew Cameron, Peter Deutsch, Mike Dixon,
Tom Finholt, Mike Fischer, Bob Flegal, Felix Frayman, David Friedman, Milton Friedman,
Stuart Greene, Roger Gregory, Robert Gruber, Eric Gullicson, Ken Haase, Robin Hanson,
Jed Harris, Rich Hasha, Keith Henson, Karl Hess, Carl Hewitt, Chris Hibbert, Tad Hogg,
Bernardo Huberman, Gene Hughes, Ted Kaehler, Ken Kahn, Kirk Kelley, Scott Kim, Bill
Kornfeld, David Lindbergh, Pattie Maes, Thomas Malone, John McCarthy, Diana Merry,
Marvin Minsky, Ted Nelson, Gayle Pergamit, Alan Perlis, Chris Peterson, Harry Pyle, Jim
Rauen, Jonathan Rees, Ramana Rao, Phil Salin, Allan Schiffman, Ehud Shapiro, Jeff

Shrager, Randy Smith, Terry Stanley, Mark Stefik, Richard Steiger, Debbie Tatar, Eric
Tribble, Dave Ungar, Steve Witham, Chee Yu, and Frank Zdybel.

Markets and Computation 173

For providing the ideas which inspired this work, we thank Carl Hewitt, Marvin Minsky,
Ted Nelson, Doug Lenat, Robert Axelrod, Richard Dawkins, and most especially Friedrich
Hayek.

For having arranged to make this research possible, we thank Jonathan Schmidt, Vic
Poor, Charlie Smith, Mark Stefik, the Datapoint Technology Center, the Foresight Institute,

the MIT Artificial Intelligence Laboratory, the Stanford Artificial Intelligence Laboratory, and
the Xerox Palo Alto Research Center.

Mark S. Miller dedicates his contributions to these papers to his uncle

Henry I. Boreen

who started him on the road to intelligence.

References

Papers referenced with roman numerals can be found in the present volume:

[I]

[Il]

[Ill]

[IV]

[V]

[VI]

[VII]

[VIII]

[IX]

Huberman, Bernardo (ed.), The Ecology of Computation
(Elsevier Science Publishers/North-Holland, 1988).

Miller, Mark S., and Drexler, K. Eric, [l] Popper, Karl R., Objective Knowledge: An
"Comparative Ecology: A Computational Evolutionary Approach (Oxford University
Perspective", this volume. Press, London, 1972).

Hewitt, Carl, "Offices are Open Systems", [2] Hayek, Friedrich A., The Counter-Revolution
this volume. of Science: Studies on the Abuse of Reason

Drexler, K. Eric, and Miller, Mark S., (Liberty Press, Indianapolis, 1979).

"Incentive Engineering for Computational [3] Cling~, Will, Foundations of Actor
Resource Management", this volume. Semantics (MIT, Cambridge, MA, May 1981)

Kahn, Kenneth, and Miller, Mark S., MIT AI-TR-633.

"Language Design and Open Systems", this [4] Agha, Gui, Actors: A Model of Concurrent
volume. Computation in Distributed Systems (MIT

Liskov, Barbara, "Guardians and Actions: Press, Cambridge, MA, 1986).

Linguistic Support for Robust, Distributed [5] Alchian, Armen A., and Allen, William R.,
Programs", this volume. University Economics (Wadsworth, Belmont,

Rashid, Richard, "From RIG to Accent to CA, 1968, Second Edition).

Mach: The Evolution of a Network Operating [6] Hayek, Friedrich A., The Constitution of
System", this volume. Liberty (University of Chicago Press,

Stefik, Marie, "The Next Knowledge Chicago, 1960) p.156.

Medium", this volume. [7] Smith, Adam, An Inquiry into the Nature and

Malone, Thomas W., Fikes, R. E., and Causes of The Wealth of Nations (University

Howard, M. T., "Enterprise: A Market-Like of Chicago Press, Chicago, 1976) p.531.

Task Scheduler for Distributed Computing [8] Hayek, Friedrich A., "Competition as a
Environments", this volume. Discovery Procedure", in: New Studies in

Lenat, Douglas B., and Brown, John Seely, Philosophy, Politics, Economics and the

"Why AM and EURISKO Appear to Work", History of Ideas (University of Chicago Press,

this volume. Chicago, 1978) p.179-190.

[9] Hayek, Friedrich A., "Economics and
Knowledge", from: Economica, New Series

174 M.S. Miller and K.E . Drexler

(1937), Vol. IV, pp.33-54; reprinted in: MA, 1987) in press.
Hayek, Friedrich A., (ed.), Individualism and [22] Artsy, Yeshayahu, and Livny, Miron, An
Economic Order (University of Chicago Press, Approach to the Design of Fully Open
Chicago, 1948). Computing Systems (University of Wisconsin

[10] Hayek, Friedrich A., New Studies in / Madison, March 1987) Computer Sciences
Philosophy, Politics, Economics and the Technical Report #689.
History of Ideas (University of Chicago Press, [23] Nelson, Theodor, Literary Machines
Chicago, 1978) p.71. (published by author, version 87 .1, 1987,

[11] Drexler, K. Eric, "Molecular Engineering: An available from Project Xanadu, 8480
Approach to the Development of General Fredricksburg #8, San Antonio, TX 78229.
Capabilities for Molecular Manipulation", in: Available as hypertext on disk from Owl
Proceedings of the National Academy of International, 14218 NE 21st St., Bellevue,
Science USA (Sept. 1981) Vol. 78, No.9, WA 98007. 1981).
pp.5275-5278. [24] Granovetter, Mark, "The Strength of Weak

[12] Drexler, K. Eric, "Rod Logic and Thermal Ties", in: American Journal of Sociology
Noise in the Molecular Nanocomputer", in: (1977) Vol. 78, pp.1360-1380.
Proceedings of the Third International [25] Miller, Mark S., Bobrow, Daniel G., Tribble,
Symposium on Molecular Electronic Devices Eric Dean, and Levy, Jacob, "Logical Secrets",
(Elsevier Science Publishers/ North Holland, in: Shapiro, Ehud, (ed.), Concurrent Prolog :
1987). Collected Papers (MIT Press, Cambridge,

[13] Drexler, K. Eric, Engines of Creation (Anchor MA, 1987) in press.
Press/ Doubleday, Garden City, New York, [26] Hardin, Garrett, 'The Tragedy of the
1986). Commons", in: Science (13 December 1968)

[14] Coase, R.H., "The Nature of the Firm", in: Vol. 162, pp.1243-1248.
Economica, New Series (1937), Vol. IV, [27] Kurose, James F., Schwartz, Mischa, and
pp.386---405; reprinted in: Stigler, G. J., and Yemini, Yechiam, "A Microeconomic
Boulding, K. E., (eds.), Readings in Price Approach to Decentralized Optimization of
Theory (Richard D. Irwin, Inc., Chicago, Channel Access Policies in Multiaccess
1952). Networks", in: Proceedings of the Fifth

[15] Williamson, Oliver, Markets and Hierarchies: International Conference on Distributed
Analysis and Anti-Trust Implications (Free Computing Systems (IEEE, Denver CO, May
Press, New York, 1975). 1985) pp.70--77 .

[16] Malone, Thomas W .; Yates, JoAnne; and [28] Goldberg, Adele, and Robson, Dave,
Benjamin, Robert I., "Electronic Markets and Smalltalk-80: The Language and its
Electronic Hierarchies", in: Communications Implementation (Addison-Wesley, Reading
of the ACM (June 1987) Vol.30, No. 6, MA, 1983).
pp.484-497. [29] Rivest, R., Shamir, A., and Adelman, L., "A

[17] Smith, Vernon L., "Experimental Methods in Method for Obtaining Digital Signatures and
the Political Economy of Exchange", in: Public-Key Cryptosystems", in:
Science (10 October 1986) Vol.234, pp.167- Communications of the ACM (Feb. 1978)
173. Vol. 21, No. 2, pp.120--126.

[18) Star, Spencer, "TRADER: A Knowledge- [30) Tanenbaum, Andrew S., and van Renesse,
Based System for Trading in Markets", in: Robbert, "Distributed Operating Systems", in:
Economics and Artificial Intelligence First ACM Computing Surveys (ACM, New York,
International Conference (Aix-En-Provence, December 1985) Vol. 17, No. 4, pp.419-470.
France, September 1986). [31] Hayek, Friedrich A., Denationalisation of

[19) Hoare, C.A.R., Communicating Sequential Money (The Institute of Economic Affairs,
Processes (Prentice-Hall, New York, 1985). Westminster, London, 1978, Second Edition).

[20] INMOS Limited, Occam Programming [32] Denning, Peter J., "The Working Set Model
Manual (Prentice-Hall International, London, for Program Behavior", in: Communications
1984). of the ACM (May 1968) Vol 2, No. 5,

[21) Shapiro, Ehud, (ed.), Concurrent Prolog: pp.323-333.

Collected Papers (MIT Press, Cambridge, [33] Artsy, Y., Chang, H-Y, and Finkel, R.,

Markets and Computation 175

Processes Migrate in Charlotte (University of
Wisconsin/ Madison, August 1986)
Computer Sciences Technical Report #655.

[34] Artsy, Y., and Finkel, R., "Simplicity,
Efficiency, and Functionality in Designing a
Process Migration Facility", in: Proceedings
of the Second Israel Conference on Computer
Systems and Software Engineering (IEEE,
Tel-Aviv, Israel, May 1987) 3.1.2, pp.1- 12.

[35] Cheriton, D.R., "The V Kernel: A Software
Base for Distributed Systems", in: IEEE
Software (April 1984) 1, 2, pp.19-42.

[36] Leach, P.J., Levine, P.H., Douros, B.P.,
Hamilton, J. A., Nelson, D.L., and Stumph,
B.L., "The Architecture of an Integrated Local
Network", in: IEEE Journal on Selected Areas
in Communication (IEEE, November 1983)
SAC-1, 5, 842-857.

[37] Bishop, Peter B., Computers with a large
Address Space and Garbage Collection (MIT,
Cambridge, MA, May 1977) MIT/LCS/TR-
178.

[38] Birrell, Andrew D.; Levin, Roy; Needham,
Roger M.; and Schroeder, Michael D.,
"Grapevine: an Exercise in Distributed
Computing", in: Communications of the
ACM (April 1982) Vol. 25, No. 4.

[39] Terry, Douglas Brian, Distributed Name
Servers: Naming and Caching in large
Distributed Environments (Xerox PARC,
February 1985) CSL-85-1.

[40] Barak, A., and Shiloh, A., "A Distributed
Load-Balancing Policy for a Multicomputer"
in: Software Practice and Experience
(September 1985) 15, pp.901-913.

[41] Shapiro, Ehud, "Systolic Programming: A
Paradigm for Parallel Processing", in:
Proceedings of the International Conference on
Fifth Generation Computer Systems (1984)
pp.458-471.

[42] Kahn, Kenneth, A Partial Evaluator of lisp
Written in a Pro log Written in lisp Intended
to be Applied to the Prolog and Itself which in
turn is Intended to be Given to Itself Together
with the Prolog to Produce a Prolog Compiler
(University ofUppsala, Sweden, 1983)
UPMAIL Tech. Report No. 17.

[43] Theriault, D., Issues in the Design and
Implementation of Act 2 (MIT AI Lab,
Cambridge, MA., 1983) AI-TR-728.

[44] Winograd, Terry, and Flores, Fernando,
Understanding Computers and Cognition
(Ablex, Norwood, NJ, 1986).

[45] Witham, Steve, personal communication
(1987).

[46] Safra, S., and Shapiro, Ehud, "Meta
lnterpreters For Real", in: Proceedings, IFIP -
86 (1986) pp.271-278.

[47] Stamos, James W., A large Object-Oriented
Virtual Memory: Grouping Strategies,
Measurements, and Performance (Xerox
PARC, Palo Alto, CA, May 1982) SCG-82-
2.

[48] Stanley, Terry,personal communication
(1987).

[49] Hamming, R. W., "One Man's View of
Computer Science", in: Ashenhurst, Robert
L., and Graham, Susan, (eds.), ACM Turing
Award lectures: The First Twenty Years
1966-1985 (Addison-Wesley, Reading, MA,
1987) pp.216.

[50] Cox, Brad J ., Object Oriented Programming :
An Evolutionary Approach (Addison-Wesley,
Reading, MA, 1986) pp.26-28.

[51] Jacobson, Gary, and Hillkirk, John, Xerox:
American Samurai (Macmillan, New York,
1986).

[52] Chaum, David, "Design Concepts for Tamper
Responding Systems", in: Advances in
Cryptology: Proceedings of Crypto '83
(Plenum Press, NY, 1984) pp.387-392.

[53] Levy, Henry M., Capability-Based Computer
Systems (Digital Press, Bedford, MA, 1984).

[54] Gehringer, Edward F., Capability
Architectures and Small Objects (UMI
Research Press, Ann Arbor, Ml, 1982).

[55] Organick, Elliott I., A Programmer's View of
the Intel 432 System (McGraw-Hill, New
York, 1983).

[56] Rees, Jonathan A., and Adams, Norman I.,
IV, ''T: a Dialect of Lisp or, Lambda: The
Ultimate Software Tool", in: Proceedings of
the 1982 ACM Symposium on lisp and
Functional Programming (August 1982).

[57] Conway, M.E., "How Do Committees
Invent?", in: Datamation (April 1968) 14, 4,
pp.28-31.

[58] Brooks, Frederick P., Jr., The Mythical Man
Month (Addison-Wesley Publishing
Company, Reading, MA, 1975) pp.111.

[59] Hayek, Friedrich A., "Cosmos and Taxis" in:
Law, legislation and liberty, Vol. 1: Rules
and Order, (University of Chicago Press,
Chicago, 1973) pp.35-54.

[60] Minsky, Marvin, The Society of Mind

176 M.S. Miller and K.E. Drexler

(Simon and Schuster, New York, 1986).

[61] Kornfeld, William A., and Hewitt, Carl, "The
Scientific Community Metaphor", in: IEEE
Transactions on Systems, Man, and
Cybernetics (IEEE, 1981) SMC-11, pp.24-
33.

[63] March, J. G ., "Footnotes to Organizational
Change", in: Administrative Science Quarterly
(1981) 26, pp.563-577.

[64] Barstow, David R., Shrobe, Howard E., and
Sandewall, Erik, (eds.), Interactive
Programming Environments (McGraw-Hill,
New York, 1984).

[65] Xerox, Courier: The Remote Procedure Call
Protocol (Xerox Corp, Stamford CT, 1982)
p.5.

[66] Rao, Ramana Balusu, Toward Interoperability
and Extensibility in Window Environments
via Object-Oriented Programming (MIT Press,
1987) submitted as Masters Thesis.

[67] Shrager, Jeff, and Klahr, David,
"Instructionless Leaming about a Complex
Device: The Paradigm and Observations", in:
Int. J. Man-Machine Studies (1986) 25,
pp.153-189.

[68] Dawkins, Richard, The Selfish Gene (Oxford
University Press, New York, 1976).

[69] Axelrod, Robert, The Evolution of
Cooperation (Basic Books, New York, 1984).

[70] McDermott, Drew, "A Critique of Pure
Reason", to appear in: Levesque, Hector, (ed.),
Computational Intelligence (National Research
Council of Canada, August or September,
1987).

[71] Dijkstra, E.W., "Co-operating Sequential
Processes", in: Genuys, F., (ed.),
Programming Languages (Academic Press,
New York, 1968) pp.43-112.

[72] Demers, Alan, Greene, Dan, Hauser, Carl,
Irish, Wes, Larson, John, Shenker, Scott,
Sturgis, Howard, Swinehart, Dan, and Terry,
Doug, "Epidemic Algorithms for Replicated
Database Maintenance", in: Proceedings of the
Sixth Annual ACM Symposium on
Principles of Distributed Computing (ACM,
Vancouver, British Columbia, Canada, August
10-12, 1987) pp.1-12.

[73] Hanson, Robin, Toward Hypertext
Publishing: Issues and Choices in Database
Design (draft available from Foresight
Institute, Palo Alto, CA, 1987).

[74] Stefik, Mark, Foster, Gregg, Bobrow, Daniel
G., Lahn, Kenneth, Lanning, Stan, and

Suchman, Lucy, "Beyond the Chalkboard:
Computer Support for Colaboration and
Problem Solving in Meetings", in:
Communications of the ACM (January 1987)
Vol. 30, No. 1, pp.32-47.

[75] Hewitt, Carl, "Robert's Rules of Order" (in
press).

[76] Malone, Thomas W., "Organizing Information
Processing Systems: Parallels Between
Human Organizations and Computer
Systems", in: Zacharay, W., Robertson, S.,
and Black, J., (eds.), Cognition, Computation,
and Cooperation (Ablex Publishing Corp.,
Norwood, NJ, 1986).

[77] Lenat, Douglas B., "The Role of Heuristics in
Learning by Discovery: Three Case Studies",
in: Michalski, Ryszard S., Carbonell, Jaime
G., and Mitchell, Tom M. (eds.), Machine
Learning: An Artificial Intelligence Approach
(Tioga Publishing Company, Palo Alto, CA,
1983) pp.243-306.

[78] Harris, Jed, Yu, Chee, Harris, Britton, Market
Based Scheduling (1987) in preparation.

[79] Sutherland, I.E., "A Futures Market in
Computer Time", in: Communications of the
ACM (June 1968) Volume 11, Number 6.

[80] McClelland, James L., Rumelhart, David E.,
and PDP Research Group, Parallel Distributed
Processing (MIT Press, Cambridge, MA,
1986) Volumes 1 and 2.

[81] Holland, John H., Holyoak, Keith J., Nisbett,
Richard E., and Thagard, Paul R., Induction:
Processes of Inference, Learning, and
Discovery (MIT Press, Cambridge, MA,
1986).

[82] Holland, John H., Holyoak, Keith J., Nisbett,
Richard E., and Thagard, Paul R., Induction:
Processes of Inference, Learning, and
Discovery (MIT Press, Cambridge, MA,
1986) pp.72-75, 79.

[83] Barto, Andrew G., "Game Theoretic
Cooperativity in Networks of Self-Interested
Units", in: Denker, John S. (ed.), Neural
Networks for Computing (American Institute
of Physics, New York, 1986) pp.41-46.

[84] Minsky, Marvin, "Steps Toward Artificial
Intelligence", in: Feigenbaum, Edward A., and
Feldman, Julian, (eds.), Computers and
Thought (Robert E. Krieger, Malabar, FL,
1981) pp.406-450.

[85] Minsky, Marvin, personal communication
(1987).

