MATSEC
Examinations Board

Marking Scheme AM Chemistry

Main Session 2019

Marking schemes published by the MATSEC Examination Board are not intended to be standalone documents. They are an essential resource for markers who are subsequently monitored through a verification process to ensure consistent and accurate application of the marking scheme.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with the MATSEC Examinations Board when in doubt.

Paper I

Question			Suggested Answer	Mark	Comments
1	a		Isotopes are variants of a particular chemical element which have the same atomic number but a different atomic mass	$1 / 2$ $1 / 2$	Also accept: Isotopes are variants of a particular chemical element which have the same number of protons but a different number of neutrons
	b		$\begin{aligned} & \left(\frac{0.337}{100} \times 36\right)+\left(\frac{0.0630}{100} \times 38\right) \\ & +\left(\frac{99.600}{100} \times 40\right)=39.985 \end{aligned}$	2	Deduct $1 / 2$ mark if answer is not given to 3 decimal places Award 1 mark if method of calculation is correct but final answer is wrong
	c	i	${ }_{18}^{39} \mathrm{Ar} \rightarrow{ }_{19}^{39} \mathrm{~K}+{ }_{-1}^{0} \beta$	1	
		ii	Half-life is the time taken for the activity of a radioactive substance to decrease by half	$1 / 2$ $1 / 2$	
		iii	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	1	Also accept: [Ar]4s ${ }^{1}$ [Ne] $3 s^{2} 3 p^{6} 4 s^{1}$ [He] $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ Also award full marks if the candidate uses the 'electron-in-box' method.
Total:				6	
2	a	i	An increase in pressure at constant temperature results in a shift of the equilibrium to the right as on the right hand side there are fewer molecules of gas	1	
		ii	an increase in temperature at constant pressure results in a shift of the equilibrium to the left in order to favour the endothermic reaction.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	b		In order obtain a high yield of ammonia, the temperature should be low However, the lower the temperature the lower rate of reaction. Thus a compromise must be found to have a temperature which is low enough to have an acceptable yield, and high enough for the reaction to take an acceptable time.	$1 / 2$ $1 / 2$ 1	
	c		$K_{p}=\frac{p\left(N H_{3}\right)^{2}}{p\left(N_{2}\right) \times p\left(H_{2}\right)^{3}}$	1	
	d		$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	1	

			Finding the concentration of ammonia RMM of $\mathrm{NH}_{3}: 14.0+(1.0 \times 3)=17.0$ $17.0 \mathrm{~g}=1 \mathrm{~mol}$ $0.59 \mathrm{~g}=$? mol $\frac{0.59 \mathrm{~g}}{17.0 \mathrm{~g}} \times 1 \mathrm{~mol}=0.035 \mathrm{~mol}$ In $100 \mathrm{~cm}^{3}$ there are 0.035 mol In $1000 \mathrm{~cm}^{3}$ there are ? mol $\begin{aligned} & \frac{1000 \mathrm{~cm}^{3}}{100 \mathrm{~cm}^{3}} \times 0.035 \mathrm{~mol}=0.35 \mathrm{M} \\ & k_{b}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.35-\mathrm{x}]} \end{aligned}$ Assuming x is very small compared to 0.35 . $\begin{aligned} & 0.35-x \approx 0.35 \\ & k_{b} \times 0.35=x^{2}=1.8 \times 10^{-5} \times 0.35 \\ & x=\sqrt{6.30 \times 10^{-6}}=7.94 \times 10^{-3} \\ & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\ & \mathrm{pOH}=-\log \left(7.94 \times 10^{-3}\right)=2.10 \\ & \mathrm{pH}=14-\mathrm{pOH} \\ & \mathrm{pH}=14-2.10=11.90 \end{aligned}$		Accept also: $k_{b}=\frac{\left.\left[\mathrm{NH}_{4}^{+}\right] \mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$ but, deduct 1 mark if assumption that x is small is not written specifically.
			Total:	13	
3	a	i	An ideal solution is a solution whose enthalpy of mixing is zero	1	
		ii	Raoult's law states that the saturated vapour pressure of a volatile component of a solution will be equal to its mole fraction multiplied by the vapour pressure of the pure solvent at the same temperature	$1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& b \& \& \begin{tabular}{l}
 \\
Mole fraction of methylbenzene \\
Boiling a liquid mixture having a composition A1, results in a vapour with composition A2. \\
Cooling of the vapour results in a liquid with composition A2. \\
Boiling of the liquid A2 results in a vapour with composition A3, on cooling, the vapour condenses back to a liquid with composition A3. \\
As these boiling-condensation steps continue, one would end with pure benzene vapour.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$ \& | Deduct $1 / 2$ mark (each) if the vapour or liquid curves are not labelled |
| :--- |
| Deduct $1 / 2$ mark for each axis which is not labelled Deduct 1 mark if the general shape of the graph is incorrect |

\hline \& C \& \& | An zaeotropic mixture is formed because ethanol and water show a large positive deviation from Raoult's law. |
| :--- |
| It cannot be fully separated as the liquid and vapour of an azeotropic mixture has the same composition. | \& 1

1 \&

\hline \& d \& \& | For two non-missible liquids, the total vapour pressure is equal to the sum of the individual saturated vapour pressure of the pure liquids in the mixture |
| :--- |
| Boiling occurs when the total vapour pressure is equal to the atmospheric pressure (normally 1 atmosphere). |
| Thus, when the total vapour pressure of the mixture is equal to the atmospheric pressure, the mixture will boil. | \& 1

$1 / 2$

$1 / 2$ \&

\hline \& \& \& Total: \& 11 \&

\hline \multirow{4}{*}{4} \& \multirow{4}{*}{a} \& \multirow[b]{2}{*}{i} \& CCl_{4} \& 1/2 \&

\hline \& \& \& liquid \& 1/2 \&

\hline \& \& \multirow[b]{2}{*}{ii} \& SiCl_{4} \& 1/2 \&

\hline \& \& \& Liquid \& 1/2 \&

\hline
\end{tabular}

	iii		PCl_{3}	1/2	Also accept PCl5
			Liquid	1/2	Accept solid if the answer to the previous question is PCl_{5}
	b		Silicon (IV) chloride	1	Also accept: Silicon tetrachloride Award only $1 / 2$ mark for: Silicon chloride
	c		Silicon tetrachloride may be prepared by the chlorination of ferrosilicon.	2	Award full marks for any other correct answer.
	d		$\mathrm{SiCl}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq})$	2	Deduct $1 / 2$ mark if the equation is not balanced well. Deduct $1 / 2$ mark for each incorrect designation of physical state except for SiCla. Deduct 1 mark for each incorrect chemical.
	e		CCl_{4} does not have empty (low energy) d-orbitals so it cannot form complexes and react. SiCl_{4} does.	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	
	f			2	Deduct 1 mark for the absence of the wedge and dots. Deduct 1 mark for the incorrect organization of the bonds around the central atom. Do not deduct marks if Cl electrons are not shown.
	g		Even though the individual bonds are slightly polar, they are organized symmetrically around the central Carbon atom, resulting in a net dipole moment of zero (the dipoles cancel out).	1 1 1	
Total:				15	
5	a	i	Shows both typical acid and basic reactions.	1	Or equivalent wording.
		ii	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1	Or equivalent acid. Deduct $1 / 2$ mark if the equation is not balanced well. Deduct $1 / 2$ mark for each incorrect designation of physical state. Award no marks if there are mistakes in chemical formulae.
			$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})$	1	Or equivalent alkali. Deduct $1 / 2$ mark if the equation is not balanced well. Deduct $1 / 2$ mark for each incorrect designation of physical state. Award no marks if there are mistakes in chemical formulae.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& b \& \& \[
\begin{aligned}
\& {\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \text { forms. }} \\
\& {\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}(\mathrm{aq})+} \\
\& \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
\] \& 1
2 \& \\
\hline \& c \& \& Aluminium undergoes Passivation i.e. the formation of a hard oxide layer on Aluminium which prevents further corrosion. Iron does not form such a layer. \& 1
\(1 / 2\)
\(1 / 2\)
1 \& \\
\hline \& \multirow[t]{2}{*}{d} \& i \& \(2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}\) \& 1 \& \begin{tabular}{l}
Deduct \(1 / 2\) mark if the equation is not balanced well. \\
Deduct all marks if there is a mistake in the any chemical formula.
\end{tabular} \\
\hline \& \& ii \& \& 2 \& Accept also answers in which only the dative electrons are shown. \\
\hline \& \multirow[t]{2}{*}{e} \& i \& Alum is a double salt of aluminium Having the general formula \(\mathrm{MAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\) where M could be any monovalent cation. \& \& \\
\hline \& \& ii \& \[
\begin{aligned}
\& \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} \\
\& \mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\] \& \& Accept other correct alums examples \\
\hline \multicolumn{4}{|r|}{Total:} \& 15 \& \\
\hline \multirow{3}{*}{6} \& \multirow{3}{*}{a} \& \& \multirow[t]{3}{*}{\begin{tabular}{l}
X: ethanoic acid \\
Justification from IR: \\
C-O at about \(1300 \mathrm{~cm}^{-1}\) \\
\(\mathrm{C}=\mathrm{O}\) at about \(1720 \mathrm{~cm}^{-1}\) \\
OH at about \(3300-2700 \mathrm{~cm}^{-1}\) \\
\(Y\) : \\
ethanol \\
Justification from IR: \\
C-O at about \(950 \mathrm{~cm}^{-1}\) \\
OH at about \(3200-3500 \mathrm{~cm}^{-1}\) \\
ethyl ethanoate
\end{tabular}} \& 2 \& \multirow[t]{2}{*}{\begin{tabular}{l}
For X and Y : \\
Award \(1 \frac{1}{2}\) marks for the identification of the correct compound. \\
Award \(1 / 2\) a mark for: \\
giving the systematic name (if identification of the molecule is done by giving the structural formula) \\
OR \\
the structural formula (if identification of the molecule is done by giving the systematic name)
\end{tabular}} \\
\hline \& \& \& \& 2 \& \\
\hline \& \& \& \& 1

1 \& | For Z: |
| :--- |
| Award $1 / 2$ mark for the correct name |
| Award $1 / 2$ mark for the correct structural formula |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{b} \& \& \begin{tabular}{l}
X can be made by oxidation of ethanal using acidified \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) and refluxing. \\
Y can be made by the reduction of ethanal using aqueous \(\mathrm{NaBH}_{4}\).
\end{tabular} \& 1 \& \begin{tabular}{l}
Also accept other suitable oxidising agents. \\
Also accept other suitable reducing agents.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{c}} \& i \& \(2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\) \& 1 \& Reduce \(1 / 2\) mark if equation is not balanced \\
\hline \& \& ii \& effervescence a colourless gas is evolved The gas can be identified as \(\mathrm{CO}_{2}\) since it turns lime water milky \& \(1 / 2\)
\(1 / 2\) \& Accept also bubbling \\
\hline \& d \& \& \begin{tabular}{l}
Ethanol is first oxidised to ethanal \\
Which in turn undergoes the iodoform reaction
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
1
\end{tabular} \& Award 2 marks if candidates go directly from the alcohol to the correct products \\
\hline \multicolumn{4}{|r|}{Total:} \& 14 \& \\
\hline 7 \& a \& \& \begin{tabular}{l}
A: \\
B: \\
C: \\
D:
\end{tabular} \& 1

1
1
1
1
1 \& Award $1 / 2$ mark instead of 1 if the systematic name is given and not the structural formula as requested.

\hline
\end{tabular}

Paper II

			$\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{3}$	$1 / 2$	Deduct $1 / 2$ mark if the units are not given or incorrectly given	
			$\Delta \mathrm{H}_{2}=\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{1}$			
			$\Delta H_{2}=-424+(-364)-(+3.87)$	1/2		
			$\Delta \mathrm{H}_{2}=-791.87 \mathrm{KJ} \mathrm{mol}^{-1}$	1		
	d		For a process to be spontaneous $\Delta \mathrm{G}$ must be negative	1		
			Where, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$	1		
			Since $\Delta \mathrm{H}$ is positive, $\Delta \mathrm{S}$ for the dissolution of NaCl must be positive at room temperature since the process is spontaneous.	1		
Total:				20		
a		i	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$	1		
		ii	$\sqrt{1.8 \times 10-10}=1.3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$	2	Deduct 1 mark for missing working. Deduct $1 / 2$ mark for missing units in final answer.	
		iii	The solubility will increase.	1	Or equivalent. Also accept chemical equations	
		Ammonia forms a soluble complex with Ag^{+},	$1 / 2$			
		keeping it from precipitating.	1/2			
2	b		Acid strength increases down group 7. HF has a short, strong covalent bond (and high hydrogen bonding) due to the smaller size of the Fluorine atom.		$1 / 2$	
					1	
			HI has the longest, weakest bond.	1		
			This makes it easier for HI to dissociate to give H^{+} than HF.	1/2		
	c		HCl does not react with sulfuric acid.	1/2		
			HBr reacts, forming sulfur dioxide and Br_{2}.	$1 / 2$		
			HI reacts, forming Hydrogen sulfide and I_{2}.	$1 / 2$		
			$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{HBr}_{(\mathrm{aq})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Br}_{2 \text { (aq) }}$	$11 / 2$	Award full marks for ionic equation. Reduce $1 / 2$ mark if half equations are given instead of full equation	
			$\mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq) }}+8 \mathrm{HI}_{\text {(aq) }} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+4 \mathrm{I}_{\text {(} \text { (aq) }}$	11/2		
			HI is a much strong oxidising agent than HBr .	1/2		
			HCl is a very weak oxidising agent, and so it does not react.	1		
	d	The oxidising agent (potassium dichromate) is reacted with excess (acidified) KI. This releases I_{2}, which is then titrated against a standard solution of sodium thiosulfate.		1/2		
				$1 / 2$		
				1/2		

					1		
Total:					20		
				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$	1		
			xidation states: (VII), (VI), (IV), (II)	2	(III) also acceptable. $1 / 2$ mark each.		
			Since they can easily change oxidation states, they can oxidise/reduce one of the reactants to provide an additional mechanism for the reaction to occur.	2	Also acceptable: Transition metals have 3d electrons which can be used to adsorb a reactant to a surface. This increases the concentration of the reactants at the surface while decreasing the energy in their bonds. Both help the reaction to occur.		
	b			A complex ion is made of a central atom (transition metal atom for example)		1/2	
				rrounded by a number of ligands.	1/2		
				e ligands have at least one lone pair of electrons	1/2		
				th which they form a dative bond with the central om.	1/2		
				hen a transition metal element is ligated in a mplex ion, the energy levels of its sub-orbitals do nt remain the same (degenerate).	1/2		
				They split into sub-shells of different energy.	1/2		
				hen light shines on the ligand it can excite an ectron to a sub-shell of higher energy.	1/2		
				is absorbs part of the light, reflecting light of a fferent colour back.	1/2		
		c			ny correct example and drawing that makes sense g. $\left[\mathrm{CuCl}_{4}\right]^{2-}$	4	Deduct 1 mark if the tetrahedral geometry is not drawn correctly.
	d			dentate ligands are ligands which donate two airs of electrons to the same central atom.	1		
				ny correct named example (ex: oxalate).	1		

			For the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half-cell and $\mathrm{Zn}^{2+} / \mathrm{Zn}$ half cell When these two half cells are connected together, the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half-cell acts as the cathode,	1/2	
			meaning that Fe^{2+} will be reduced to Fe .	$1 / 2$	
			While the $\mathrm{Zn}^{2+} / \mathrm{Zn}$ half-cell will act as the anode	$1 / 2$	
			meaning that Zn will be oxidised to Zn^{2+}.	$1 / 2$	
			Therefore, the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half-cell must have a more positive standard electrode potential when compared to the $\mathrm{Zn}^{2+} / \mathrm{Zn}$ half-cell.	1/2	
			For the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half-cell and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half cell When these two half cells are connected together, the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half-cell will act as the anode,	1/2	
	b		meaning that Fe will be oxidised to Fe^{2+}.	$1 / 2$	
			While the $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell will act as the cathode	$1 / 2$	
			meaning that Cu^{2+} will be reduced to Cu .	1/2	
			Therefore, the $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell must have a more positive standard electrode potential than the $\mathrm{Fe}^{2+} /$ Fe half-cell.	1/2	
			Thus in this case, $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cell must have the most positive electrode potential,	1/2	
			followed by the $\mathrm{Fe}^{2+} /$ Fe half-cell,	$1 / 2$	
			whilst the $\mathrm{Zn}^{2+} / \mathrm{Zn}$ half-cell must have the least positive standard electrode potential.	1/2	
			Thus the strongest reducing agent (i.e. the one which is oxidised most easily) is Zinc.	1/2	
	c		Magnesium oxidises more readily than iron.	1/2	
			Thus, when magnesium is attached to an iron structures underwater a galvanic cell forms whereby iron becomes the cathode	1/2	
			and therefore does not corrode.	1/2	
			On the other hand, magnesium becomes the anode,	$1 / 2$	
			which corrodes.	1/2	
			This is called sacrificial protection	1/2	
Total:				20	
6	a	i	Barium peroxide (excess) is reacted with sulfuric acid at $0^{\circ} \mathrm{C}$.	1	
			Since Barium peroxide and barium sulfate are solids, the excess reactant and the unwanted product can be filtered off.	1	
			$\mathrm{BaO}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq) }} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}$	2	Deduct $1 / 2$ mark for each incorrect physical state. Deduct 1 mark for each incorrect chemical. Deduct 1 mark for a reaction which is not balanced.

		Sodium sulfide is reacted with any dilute acid.	1	
		$\mathrm{H}_{2} \mathrm{~S}$ can be collected in a gas syringe (or by downward delivery).	1	
	ii	$\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq)}} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+2 \mathrm{NaCl}_{(\text {(aq) }}$	2	Deduct $1 / 2$ mark for each incorrect physical state. Deduct 1 mark for each incorrect chemical. Deduct 1 mark for a reaction which is not balanced.
		$\mathrm{D}_{2} \mathrm{O}$ is added to CaC_{2} in a controlled fashion	1	
		$\mathrm{C}_{2} \mathrm{D}_{2}$ is collected over water	1	
	iii	$\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{D}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OD})_{2(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{D}_{2(\mathrm{~g})}$	2	Deduct $1 / 2$ mark for each incorrect physical state. Deduct 1 mark for each incorrect chemical. Deduct 1 mark for a reaction which is not balanced.
	i	$\begin{aligned} & 2 \mathrm{Cr}_{(\mathrm{s})}+6 \mathrm{NaOH}_{(\mathrm{aq})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll})} \rightarrow 2 \mathrm{Na}_{3}\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]_{\text {(aq) }} \\ & +3 \mathrm{H}_{2(\mathrm{~g})} \end{aligned}$	2	Award full marks if ionic equation is given. Award full marks if the reaction is split into steps. Deduct $1 / 2$ mark for each incorrect physical state. Deduct 1 mark for each incorrect chemical. Deduct 1 mark for a reaction which is not balanced.
	ii		2	
	iii		2	Accept any other correct reducing agent.
	iv		2	Award 1 mark if only the ortho (or para) substituent is given. Do not award any marks if the meta substituent is given.
		Total:	20	

$\left.\begin{array}{|l|l|c|c|}\hline & \begin{array}{l}\text { A reflux condenser is attached to the round bottom } \\ \text { flask containing the reaction mixture, and the } \\ \text { reaction is allowed to continue for 30 minutes at a } \\ \text { temperature of } 60^{\circ} \mathrm{C} \text {. }\end{array} & 1 / 2 & \\ \hline \begin{array}{l}\text { Nitrobenzene is then purified as follows: } \\ \text { The reaction mixture is poured into a large volume } \\ \text { of cold water and mixed. }\end{array} & 1 / 2\end{array}\right]$

Paper III

Que	estion	Suggested Answer	Mark	Comments
\%	b	ODD titre value: $19.50 \mathrm{~cm}^{3}$ EVEN titre value: $22.07 \mathrm{~cm}^{3}$	20	Award 20 marks if mean titre value is within $0.12 \mathrm{~cm}^{3}$ of the actual value Award 15 marks if mean titre value is within $0.17 \mathrm{~cm}^{3}$ of the actual value Award 10 marks if mean titre value is within $0.22 \mathrm{~cm}^{3}$ of the actual value Deduct 5 marks if the readings that were used to work out the average are not within $0.1 \mathrm{~cm}^{3}$ of each other.
	c	ODD: Moles of hydrochloric acid $=(0.10 \times 25) / 1000=2.50$ $\times 10^{-3}$ Moles of sodium hydroxide -> 2.50×10^{-3} in 19.50 mL Hence, concentration of NaOH is ($1000 \times 2.50 \times 10^{-}$ ${ }^{3}$) $/ 19.50=0.128 \mathrm{M}$ EVEN: Moles of hydrochloric acid $=(0.10 \times 25) / 1000=$ 2.50×10^{-3} Moles of sodium hydroxide -> 2.50×10^{-3} in 22.07 mL Hence, concentration of NaOH is ($1000 \times 2.5 \times 10^{-}$ ${ }^{3}$) $/ 22.07=0.113 \mathrm{M}$	4	
	d	ODD titre value: $22.51 \mathrm{~cm}^{3}$ EVEN titre value: $25.47 \mathrm{~cm}^{3}$	20	Award 20 marks if mean titre value is within $0.1 \mathrm{~cm}^{3}$ of the actual value. Award 15 marks if mean titre value is within $0.15 \mathrm{~cm}^{3}$ of the actual value. Award 10 marks if mean titre value is within $0.2 \mathrm{~cm}^{3}$ of the actual value. Deduct 5 marks if the readings that were used to work out the average are not within $0.1 \mathrm{~cm}^{3}$ of each other.
	e	ODD: Moles of sodium hydroxide $=(0.128 \times 22.51) / 1000$ $=0.00289$ moles Hence moles of $\mathrm{H}=0.00289$ moles in 25 mL	6	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
Hence there are \((0.00289 \times 1000) / 25\) moles in \(1 \mathrm{~L}=\) 0.115 moles \\
Hence 23.52 g are equivalent to 0.115 moles \\
molar mass \(=23.50 / 0.115=204 \mathrm{~g} / \mathrm{mol}\) \\
Mass of \(\mathrm{H}=165+\mathrm{X}=204\)
\[
X=204-165=39 \mathrm{~g} / \mathrm{mol}
\] \\
EVEN: \\
Moles of sodium hydroxide \(=(0.113 \times 25.47) / 1000\) \(=0.00289\) moles \\
Hence moles of \(\mathrm{H}=0.00289\) moles in 25 mL Hence there are (\(0.00289 \times 1000\))/25 moles in \(1 \mathrm{~L}=\) 0.115 moles \\
Hence 23.52 g are equivalent to 0.115 moles \\
molar mass \(=23.50 / 0.115=204 \mathrm{~g} / \mathrm{mol}\) \\
Mass of \(\mathrm{H}=165+\mathrm{X}=204\)
\[
X=204-165=39 \mathrm{~g} / \mathrm{mol}
\]
\end{tabular} \& \& \\
\hline \& \& \& Total: \& 50 \& \\
\hline \multirow{4}{*}{2} \& a \& \& Observation: White residue and colourless filtrate Inference: Mixture contains at least one component that is insoluble in water \& 1
2 \& Do not award marks if candidate states that a component is soluble in water. \\
\hline \& \multirow{3}{*}{b} \& i \& \begin{tabular}{l}
Observation: \\
Effervescence \\
Lime water turns milky \\
Solid dissolves to give clear solution \\
Inference: \\
\(\mathrm{CO}_{2}\) evolved \\
Carbonate present. \\
Solid cannot be hydrogen carbonate as the solid is soluble in water
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
1
1
1 \&

\hline \& \& ii \& | Observation: |
| :--- |
| White precipitate |
| Soluble in excess |
| Inference: |
| Amphoteric metal ion present $\mathrm{Al}^{3+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}$ |
| Metal hydroxide forms forming a soluble complex in excess NaOH | \& $1 / 2$

$1 / 2$

1
$1 / 2$

$1 / 2$ \&

\hline \& \& iii \& | Observation: |
| :--- |
| White precipitate insoluble in excess | \& 1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \& \[
\begin{aligned}
\& \text { Inference: } \\
\& \mathrm{Pb}(\mathrm{OH})_{2} \text { or } \mathrm{Al}(\mathrm{OH})_{3} \text { formed } \\
\& \mathrm{Pb}^{2+} \text { or } \mathrm{Al}^{3+} \text { present } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \\
\hline \& \& iv \& \begin{tabular}{l}
Observation: \\
White precipitate \\
Which dissolves on heating \\
But reappears on cooling \\
Inference: \\
Precipitate is probably lead(II) chloride \\
Which is soluble in water at elevated temperature \\
But insoluble at room temperature
\end{tabular} \& \[
\begin{gathered}
1 \\
1 / 2 \\
1 / 2 \\
\\
1 \\
1 \\
1 \\
\hline
\end{gathered}
\] \& \\
\hline \& \& i \& \begin{tabular}{l}
Observation: \\
Brown ring at base of tube \\
Inference: \\
Formation of \(\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}\) \\
Nitrate(V) present
\end{tabular} \& 1

1
1 \& Also accept brown coloration noted

\hline \& c \& ii \& | Observation: |
| :--- |
| Transient streaks of lilac |
| Inference: |
| Potassium ion present |
| Ions present: |
| Cations: |
| Pb^{2+} |
| K^{+} |
| Anions: |
| $\mathrm{CO}_{3}{ }^{2-}$ |
| $\mathrm{NO}_{3}{ }^{-}$ | \& | 1 |
| :--- |
| 1 |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ |
| $1 / 2$ | \&

\hline \multicolumn{4}{|r|}{Total:} \& 25 \&

\hline \multirow{3}{*}{3} \& a \& \& | Observation: |
| :--- |
| Non-sooty, pale blue flame |
| Inference: |
| Indicates saturation |
| Absence of Aromatic groups | \& 1

1
1 \&

\hline \& b \& \& | Observation: |
| :--- |
| No reaction |
| Inference: |
| Not an aldehyde |
| Or ketone | \& 1

$11 / 2$
$11 / 2$ \&

\hline \& c \& \& | Observation: |
| :--- |
| Pale yellow precipitate | \& 1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Inference: \\
OH group \\
Adjacent to a methyl group Ethanol or \\
A 2-ol present
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& \\
\hline d \& d \& \begin{tabular}{l}
Observation: \\
Orange solution to green solution. Orange precipitate with 2,4-DNPH \\
Inference: \\
OH group oxidised to carbonyl \\
Which reacts with 2,4-DNPH \\
To form the orange precipitate
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\]
\[
1
\]
\[
1
\]
\[
1
\] \& \\
\hline \& \& \begin{tabular}{l}
Observation: \\
Fruity smell \\
Inference: Indicative of ester formation Therefore alcohol present
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& \\
\& 2 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \\
\hline e \& e \& \begin{tabular}{l}
Possible structure of \(P\) \\
Systematic name of \(p\) \\
ethanol
\end{tabular} \& 2

1 \& If proposed structure has more than 6 carbon, award 1 mark.

\hline \& \& \& 25 \&

\hline
\end{tabular}

