
  

  

Abstract— Dynamic production processes in mineral 

beneficiation have complex flowsheets and non-linear, time-

varying behavior. They have also limited measurement 

capabilities. Hence, virtual models are seen as important tools 

for assisting in design, planning and operation. The development 

of operational dimension requires not only a suitable software 

architecture and virtual model, but also continuous validation or 

adaptation of the virtual model. In this paper, a framework 

establishing a digital twin for a flotation process is presented. 

The model adaptation is treated as a trajectory matching 

problem and realized with a Differential Evolution algorithm. 

The results are demonstrating the applicability of the presented 

approach in simulation environment together with a discussion 

on additional challenges foreseen in implementations to the real 

processes. 

I. INTRODUCTION 

The fourth industrial revolution, driven by the rapid 
development of information and communication technology, 
involves the utilization of big data, machine learning and 
cyber-physical systems [1]. Currently, simulation tools can 
efficiently be applied in various engineering problems such as 
in process design and production planning. The next wave in 
simulation, bringing the tools to real-time utilization, is a 
digital twin [2]–[4]. Hence, the digital twin is a key enabling 
technology for the realization of cyber-physical systems and 
Industry 4.0, seen for example as centralized analysis and 
control of the manufacturing processes [5]. Moreover, digital 
twins are expected to provide more integrated data analysis, 
prediction abilities and data visualization [6]. In process 
industries, such as mineral beneficiation, it is expected that the 
virtual models will be beneficiating the operational 
dimensions such as advanced process control, fault diagnosis, 
self-recovery, intelligent soft sensing, decision making and 
value-chain optimization [1]. 

In order to facilitate the real-time decision making via the 
digital counterpart, the process model representing the 
physical system (digital model) must be dynamically updated. 
Based on the classification in terms of level of integration [7], 
with the up-to-date model, a digital shadow is established, 
whereas a digital twin requires automatic feedback to the 
process as well. The model’s prediction ability can be 
compromised due to changes in the modelled process, such as 
sensor or equipment fouling, changing process conditions and 
inherent time variant and non-linear behavior of the process. 
Model adaptation is understood as automatically maintaining 
the model performance over time. 

The adaptation strategies may range from simple off-line 
identification methods to machine learning approaches [8]. In 
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froth flotation applications, the attempts for the adaptive 
virtual models include e.g. PI controller-based adaptation [9] 
and recursive estimation techniques [10]. However, these 
cases assume direct pairing of process measurements and 
corresponding model parameters. Another approach based on 
trajectory matching is taken in [8], where the froth flotation 
adaptation is treated as a multivariable identification problem 
and the initial results were presented. In this paper, the 
framework of the real-time adaptation mechanism for non-
linear process models presented in [8] is taken forward and the 
simulation results in sliding time windows are presented 
together with discussion on implementation to the real process. 

II. ADAPTATION FRAMEWORK 

Simulation of detailed physical process models has 
sufficiently high calculation costs. However, parallel 
computing and cloud-based systems can nowadays facilitate 
the utilization of such models in a trajectory matching method, 
as the simulation trials can be divided into multiple process 
models with reasonable effort. In addition, the length of the 
required simulation period to adapt the model has a significant 
effect on the calculation cost. 

The adaptation framework taken in this study is illustrated 
in Fig. 1. The adaptation is performed in sliding windows to 
track the model parameters continuously using parallel process 
models. The adaptation algorithm aims to minimize the error 
between the estimated variables of the physical process model 
and the measured process variables. These adapted model 
parameters are then distributed also to the physical process 
model acting as a digital shadow. Finally, the adapted process 
model could then be utilized in decision support system (DSS), 
process optimization or process control fulfilling the 
requirement on automatic feedback and therefore realizing the 
digital twin.  

A. Adaptation strategy 

A high number of stochastic search methods, especially 
evolutionary optimization algorithms have been developed to 
solve the engineering optimization problems with high number 
of variables and/or non-linear functions, where the traditional 
gradient-based (derivative) methods often fail [11]. These 
methods aim to map the whole search space to reach a global 
optimum. It is also important to notice, that the global solution 
in practical problems is unknown [12]. In addition, the 
algorithms need to stop after a fixed number of function 
evaluations. Thus, the ‘global optimum’ usually refers to a 
solution outperforming its alternatives when the maximum 
number of function evaluation is reached. The evolutionary 
algorithms share the idea of mimicking the behavior of natural 
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biological evolution and/or the social behavior of species [11].  
They are popular especially among practitioners due to 
relatively easy implementation, available codes and less high-
level mathematical preparation in comparison to deterministic 
optimization methods [12]. 

The applied optimization method for the adaptation 
algorithm is a Differential Evolution (DE) [13], [14]. DE is a 
global, stochastic search method suitable for mathematically 
difficult or real-valued functions. The main principle of this 
method is to utilize parameter differences in vector form for 
evolving candidate populations. These groups of candidates 
are then refined further using mutation and combination 
operations with some probability as with evolutionary 
algorithm in general. If newly formed vector of real valued 
parameters improves the existing solution, it is accepted into 
population. Optimal solution is typically expected after several 
generations. 

The DE algorithm has only several hyperparameters; NP 
describes the size of population, G is for number of repetitions, 
F determines how the parameter vectors are mutated or 
changed, and CR how probably those are combined. The 
convergence properties can be controlled also with value to 
reach (VTR), which basically determines the ending point for 
the optimization. 

The cost (objective) function (CF) applied in this case is 
the cumulative sum of the error between the simulated outputs 
𝑦̂(𝑘) and the measured process outputs 𝑦(𝑘) in a sliding 
window: 

 𝐶𝐹 = 105 ∙∑∑|𝑦̂𝑖(𝑘) − 𝑦𝑖(𝑘)|

𝑚

𝑘=1

𝑛

𝑖=1

 (1) 

where n and m represents the number of outputs and length 
of the sliding window, respectively. The purpose of the 

multiplier in front of the cost function is to help with the 
visualization of the results. 

B. Software architecture 

The digital twin adaptation was implemented according to Fig. 
2. The application consists of process simulation engines, a 
model parameter optimization module, a reference data 
depository and a centralized framework for coordinating the 
application components. The central framework was 
implemented using the Outotec® ACT platform [15]. The 
target process is simulated with the HSC Chemistry® software 
[16], and parallel simulation engines were used in order to 
increase computational performance. The parameter 
optimization with the DE algorithm is performed in Matlab. 

The validation of the digital twin adaptation was carried 
out with simulated reference data in this paper. However, the 
software architecture allows a direct implementation of the 
application to the real process environment. In the present 
approach, design parameters of interest were varied with time, 
and the process was simulated with a dedicated HSC engine to 
generate the reference data. The adaptation then tries to 
replicate these parameter changes. 

 

Figure 2.  Conceptual figure for the data communication between the 

parameter optimization module, the process simulation engines (HSC) and 

the central coordinating framework (ACT). 

 

Figure 1.  Real-time digital twin adaptation framework consisting the process, the adapted physical process model and its utilization in process via 

decision support system (DSS). 



  

C. Simulated process 

The target process is an open-loop rougher flotation circuit for 
copper, depicted in Fig. 3. The circuit consists of four flotation 
cells, a conditioner tank, a pump sump and associated unit 
operations. The flotation feed was a bulk mixture of 
chalcopyrite (CuFeS2), pyrite (FeS2) and quartz (SiO2). In the 
process, the flotation feed first enters the conditioner tank, and 
then goes through the stage-wise flotation process, where 
material is distributed between concentrate froth and tailings 
in each stage. The dynamic model for the adaptation was 
constructed with the HSC Sim flowsheet module of HSC, 
where the flotation bank units were described using the 
corresponding unit operation models. A detailed description of 
flotation bank modeling principles and the flotation unit 
operation models in HSC Sim is provided in [17]. Flotation 
cell and pump sump levels were regulated by adequately tuned 
PI controllers, with the outflow valve as manipulated variable 
for the flotation cells, and the pump frequency setpoint for the 
pump sump. 

Four (bounded) design parameters were selected from the 
flotation bank model to be adapted based on output data: kCcp, 
kPy, kQtz and WaterRec. These parameters were deemed to be 
the most likely to drift during the process operation, as they 
are typically fit based on experimental data. kCcp, kPy and kQtz 
are rate constants (1/min) in the fast flotation kinetic equations 
of the chalcopyrite, pyrite and quartz minerals. These 
equations determine the mineral recovery as a function of the 
kinetic rate constant and the mass fraction of floatability 
component (see Equation (3) in [17]). WaterRec is a tuning 
parameter in the water recovery equation of the flotation bank 
(see Equation (10) in [17]), where a linear dependency 
between the water recovery and the solids flowrate was 
assumed (parameter b=1). Six (measured) output variables 
were assumed to be available from the HSC Sim model outputs 

for the parameter adaptation:  the overall copper, iron and 
sulfur contents (wt-%) in the concentrate stream, the overall 
copper and iron contents (wt-%) in the tailings stream, and the 
overall copper recovery (%) in the concentrate. When 
validating the adaptation results, the solid material flowrates 
and stream compositions of the concentrate and the tailings 
were monitored more extensively to determine the impact of 
the chosen outputs. 

D. Performance evaluation 

The performance of the presented model adaptation strategy is 
primarily based on comparison of estimated and real output 
values. Especially in practical problems, this is the most 
important criterion as the real parameter values are not known. 
Hence, the tracking performance/modelling error is the most 
important evaluation criteria. This is also captured in the cost 
function (see (1)). Additionally, the comparison between the 
adapted model parameters and the real model parameters is 
made, as the results in this paper are from simulations. 

III. RESULTS AND DISCUSSION 

A. Functional testing 

The functional testing was conducted in order to demonstrate 
the convergence abilities of the selected adaptation approach. 
The simulation scenario involved the simulation model 
described in Section 2, and constant parameters. The 
adaptation was triggered from the beginning of simulation and 
a window length of 10 seconds was used. The DE algorithm 
parameters applied to this test are depicted in Table I. The 
model parameter search space is presented in Table II. The 
selected algorithm parameters should allow the adaptation to 
proceed to (unnecessarily) low cost function values during 
functional testing.   

 

Figure 3.  Simulated flotation process.



  

TABLE I.  ALGORITHM PARAMETERS. NP – NUMBER OF MEMBERS IN 

POPULATION, G – MAXIMUM NUMBER OF GENERATIONS, F – STEPSIZE, CR – 

CROSSOVER PROBABILITY, VTR – COST FUNCTION VALUE TO REACH 

(STOPPING CRITERION) 

Case NP G F CR VTR 

A 

40 
100 

0.8 0.8 
1e-4 

B 60 7500 

 

Fig. 4 shows the cost function value as a function of 
optimization generations. The algorithm shows a good 
convergence performance when no measurement noise is 
assumed (solid line). In the second case, the measurement is 
corrupted with SNR 30 dB (dashed line). Also, in this case the 
solution is converged after 50 generations, but with higher cost 
function values due to the measurement noise. The estimated 
parameter values for the cases without and with measurement 
noise are presented in Table II. Only the parameter kQtz shows 
a high relative error whilst the other parameters have relative 
error smaller than 5% in the second case. In the noise free 
scenario, the parameter values have negligible relative errors. 

 

Figure 4.  Convergence abilities of the adaptation. The solid line and 

dashed line represent the cases without and with the measurement noise, 

respectively. 

TABLE II.  THE SEARCH RANGE AND ADAPTATION PERFORMANCE 

WITH AND WITHOUT THE MEASUREMENT NOISE. 

Parameters WaterRec kCcp kPy kQtz*103 

Real value 2.0 0.3 0.02 1.0000 

W/O noise 2.0000 0.3000 0.0199 0.9999 

W noise 1.9994 0.2998 0.0191 1.2777 

Lower bound 1.4 0.1 0.005 0.1 

Upper bound 3.4 0.5 0.45 10.0 

 

B. Adaptation in sliding window 

Next the adaptation was performed continuously in sliding 
windows. This time the simulation scenario involved changing 
parameter values; A 5% reduction in the parameters kCcp and 
kPy take place at simulation time t=36 s. The adaptation is 
performed with a window length of 10 seconds. The 
simulation period was 70 seconds, therefore having seven 
adaptations performed during the simulation. The DE 

parameters used are presented in Table I. The maximum 
number of iterations (generations) was decreased based on the 
results in functional testing. The stopping criterion was 
similarly altered in order to avoid excessive number of 
generations. No measurement noise was assumed. The 
sampling rate for the outputs was one second. 

The behavior of estimated parameter values as a function 
of simulation time are presented in Fig. 5. It can be seen that 
the parameter values (crosses) are distributed along the real 
values (dashed line), and that the selected adaptation approach 
can follow the changes in the two parameters taking place 
during the simulation. The relative errors of parameter values 
are depicted in Fig. 6.  It can be observed that the errors are 
negligible for two first parameters. The third and fourth 
parameters (kQtz) have larger relative errors, which are still less 
than 5%. 

 

Figure 5.  Parameter values in sliding time windows. 

 

Figure 6.  Relative error of parameter values in sliding time windows. 



  

Finally, the comparison between the estimated data with 
adapted parameters and the real data is presented in Fig. 7. The 
figure represents the dynamic behavior of one process output, 
namely solids percentage in concentrate stream 
(Solids%Conc) with and without the adaptation together with 
the real values. Hence, deviations are expected once the 
parameters change at t=36 s. The simulation was continued for 
a period of 140 s, but the adaptation takes place only between 
t=1…70 as indicated in Fig. 5 and 6. 

The results in Fig. 7 show that the adapted simulation 
model is able to follow the real simulation with a small error. 
Without adaptation, the error increases rapidly. In general, the 
relative errors were very small (less than 0.3%) for all outputs 
in this short simulation period used. 

 

Figure 7.  Dynamic behaviour of process output. 

C. Considerations to real process and future work 

The presented results demonstrate the applicability of the 
proposed framework for the adaptation of a dynamic, 
nonlinear flotation simulation model. Both the algorithm and 
software architecture are stressed, being able to turn the digital 
model into digital shadow. However, the framework requires 
additional insight before being implementable to the real 
process as a digital twin. 

In order to realize the automated feedback between the 
model and the process, the communication architecture needs 
also to include prognosis capabilities. This requires additional 
data communication tools as discussed already in [10]. With 
regard to the model adaptation, it was here assumed that all six 
measured variables have equal sampling rates with high 
sampling frequency in comparison to the real process. Such a 
situation cannot currently be realized in a mineral 
beneficiation plant, where the elemental grades (mineral 
concentration measurements) typically involve on-line XRF-
analyzers with a sampling interval of 10-30 minutes [18]. In 
fact, the analyzers are typically scheduled to sample multiple 
streams, therefore having different sampling rates for different 
streams and irregular sampling times. The longer sampling 
time in the real process means that the adaptation cannot 
capture changes with as fast dynamics as presented in 

simulations above, although, the development efforts in rapid 
elemental analyzers [18] may facilitate the use of shorter 
adaptation windows in the future.  

The second limitation to consider in the present work is the 
simulated reference data. As the flotation circuit model does 
not contain significant elements of pure delay like pipe 
transfer, bank parameter changes have immediate, albeit 
minor, effects on the simulated outputs (e.g. 1st order dynamics 
without delay). The results readily illustrated how even these 
small changes could be captured with the DE adaptation, 
which validated the suitability of the algorithm for detecting 
even the fastest changes in the flotation dynamics. However, 
this aspect should be considered when selecting the adaptation 
time window in future industrial applications, as the window 
should exceed the estimated minimum delay of the process, 
and also ensure a sufficient length of the adaptation timeseries 
to prevent adapting process parameters to measurement noise. 
The main contribution of the present results is thus to serve as 
a proof-of-concept for implementing the DE adaptation for 
industrial minerals processing plants: the adaptation was able 
to detect the changes in the process dynamics and correctly 
modify the model parameters based on a sufficiently small 
amount of output data. These outcomes are promising for 
creating effective industrial applications. 

Another interesting aspect is the selection of process 
outputs and adapted model parameters in a large-scale system. 
In this case, expert knowledge was used to determine four 
adjustable parameters. However, with large-scale models the 
selection may not be straightforward. One option would be to 
screen the parameters and the measured variables using, for 
example, Monte Carlo simulations and statistical sensitivity 
analysis [19]. Also, the SNR of the different measurements 
need to be accounted in optimization. These aspects will be 
considered in more detail in an ongoing project with different 
types of process models and long-term simulations. 

IV. CONCLUSION 

The presented study demonstrated the applicability of the 
selected software architecture and the model adaptation 
approach enabling a digital twin for a simulated flotation 
process. The results were gained in simulation environment 
and some of the foreseen challenges in actual implementations 
were discussed. The development will continue in an ongoing 
project and be stressed with different types of models. 
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