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Preface

The aim of this book is to outline the recent development of Markov chain
models for modeling queueing systems, Internet, re-manufacturing systems,
inventory systems, DNA sequences, genetic networks and many other practical
systems.

This book consists of eight chapters. In Chapter 1, we give a brief intro-
duction to the classical theory on both discrete and continuous time Markov
chains. The relationship between Markov chains of finite states and matrix
theory will also be discussed. Some classical iterative methods for solving
linear systems will also be introduced. We then give the basic theory and
algorithms for standard hidden Markov model (HMM) and Markov decision
process (MDP).

Chapter 2 discusses the applications of continuous time Markov chains
to model queueing systems and discrete time Markov chain for computing
the PageRank, the ranking of website in the Internet. Chapter 3 studies re-
manufacturing systems. We present Markovian models for re-manufacturing,
closed form solutions and fast numerical algorithms are presented for solving
the systems. In Chapter 4, Hidden Markov models are applied to classify
customers. We proposed a simple hidden Markov model with fast numerical
algorithms for solving the model parameters. An application of the model
to customer classification is discussed. Chapter 5 discusses Markov decision
process for customer lifetime values. Customer Lifetime Values (CLV) is an
important concept and quantity in marketing management. We present an
approach based on Markov decision process to the calculation of CLV with
practical data.

In Chapter 6, we discuss higher-order Markov chain models. We propose a
class of higher-order Markov chain models with lower order of model param-
eters. Efficient numerical methods based on linear programming for solving
the model parameters are presented. Applications to demand predictions, in-
ventory control, data mining and DNA sequence analysis are discussed. In
Chapter 7, multivariate Markov models are discussed. We present a class of
multivariate Markov chain model with lower order of model parameters. Effi-
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cient numerical methods based on linear programming for solving the model
parameters are presented. Applications to demand predictions and gene ex-
pression sequences are discussed. In Chapter 8, higher-order hidden Markov
models are studies. We proposed a class of higher-order hidden Markov models
with efficient algorithm for solving the model parameters.

This book is aimed at students, professionals, practitioners, and researchers
in applied mathematics, scientific computing, and operational research, who
are interested in the formulation and computation of queueing and manu-
facturing systems. Readers are expected to have some basic knowledge of
probability theory Markov processes and matrix theory.

It is our pleasure to thank the following people and organizations. The
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here. We would like to thank Eric S. Fung, Tuen-Wai Ng, Ka-Kuen Wong, Ken
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helpful encouragement and comments; without them this book would not have
been possible.
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missions of reproducing the materials in this book.
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1

Introduction

Markov chain is named after Prof. Andrei A. Markov (1856-1922) who first
published his result in 1906. He was born on 14 June 1856 in Ryazan, Russia
and died on 20 July 1922 in St. Petersburg, Russia. Markov enrolled at the
University of St. Petersburg, where he earned a master’s degree and a doc-
torate degree. He is a professor at St. Petersburg and also a member of the
Russian Academy of Sciences. He retired in 1905, but continued his teaching
at the university until his death. Markov is particularly remembered for his
study of Markov chains. His research works on Markov chains launched the
study of stochastic processes with a lot of applications. For more details about
Markov and his works, we refer our reader to the following interesting website
[220].

In this chapter, we first give a brief introduction to the classical theory
on both discrete and continuous time Markov chains. We then present some
relationships between Markov chains of finite states and matrix theory. Some
classical iterative methods for solving linear systems will also be introduced.
They are standard numerical methods for solving Markov chains. We will then
give the theory and algorithms for standard hidden Markov model (HMM)
and Markov decision process (MDP).

1.1 Markov Chains

This section gives a brief introduction to discrete time Markov chain. Inter-
ested readers can consult the books by Ross [180] and Häggström [103] for
more details.

Markov chain concerns about a sequence of random variables, which cor-
respond to the states of a certain system, in such a way that the state at
one time epoch depends only on the one in the previous time epoch. We will
discuss some basic properties of a Markov chain. Basic concepts and notations
are explained throughout this chapter. Some important theorems in this area
will also be presented.



2 1 Introduction

Let us begin with a practical problem as a motivation. In a town there are
two supermarkets only, namely Wellcome and Park’n. A marketing research
indicated that a consumer of Wellcome may switch to Park’n in his/her next
shopping with a probability of α(> 0), while a consumer of Park’n may switch
to Wellcome in his/her next shopping with a probability of β(> 0). The fol-
lowings are two important and interesting questions. The first question is that
what is the probability that a Wellcome’s consumer will still be a Wellcome’s
consumer in his/her nth shopping? The second question is what will be the
market share of the two supermarkets in the town in the long-run? An impoar-
tant feature of this problem is that the future behavior of a consumer depends
on his/her current situation. We will see later this marketing problem can be
formulated by using a Markov chain model.

1.1.1 Examples of Markov Chains

We consider a stochastic process

{X(n), n = 0, 1, 2, . . .}

that takes on a finite or countable set M .

Example 1.1. Let X(n) be the weather of the nth day which can be

M = {sunny, windy, rainy, cloudy}.

One may have the following realization:

X(0) =sunny, X(1) =windy, X(2) =rainy, X(3) =sunny, X(4) =cloudy, . . ..

Example 1.2. Let X(n) be the product sales on the nth day which can be

M = {0, 1, 2, . . . , }.

One may have the following realization:

X(0) = 4, X(1) = 5, X(2) = 2, X(3) = 0, X(4) = 5, . . . .

Remark 1.3. For simplicity of discussion we assume M , the state space to be
{0, 1, 2, . . .}. An element in M is called a state of the process.

Definition 1.4. Suppose there is a fixed probability Pij independent of time
such that

P (X(n+1) = i|X(n) = j,X(n−1) = in−1, . . . , X
(0) = i0) = Pij n ≥ 0

where i, j, i0, i1, . . . , in−1 ∈ M . Then this is called a Markov chain process.
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Remark 1.5. One can interpret the above probability as follows: the condi-
tional distribution of any future state X(n+1) given the past states

X(0), X(2), . . . , X(n−1)

and present state X(n), is independent of the past states and depends on the
present state only.

Remark 1.6. The probability Pij represents the probability that the process
will make a transition to state i given that currently the process is state j.
Clearly one has

Pij ≥ 0,

∞∑
i=0

Pij = 1, j = 0, 1, . . . .

For simplicity of discussion, in our context we adopt this convention which is
different from the traditional one.

Definition 1.7. The matrix containing Pij, the transition probabilities

P =

⎛
⎜⎝P00 P01 · · ·

P10 P11 · · ·
...

...
...

⎞
⎟⎠

is called the one-step transition probability matrix of the process.

Example 1.8. Consider the marketing problem again. Let X(n) be a 2-state
process (taking values of {0, 1}) describing the behavior of a consumer. We
have X(n) = 0 if the consumer shops with Wellcome on the nth day and
X(n) = 1 if the consumer shops with Park’n on the nth day. Since the future
state (which supermarket to shop in the next time) depends on the current
state only, it is a Markov chain process. It is easy to check that the transition
probabilities are

P00 = 1 − α, P10 = α, P11 = 1 − β and P01 = β.

Then the one-step transition matrix of this process is given by

P =
(

1 − α β
α 1 − β

)
.

Example 1.9. (Random Walk) Random walks have been studied by many
physicists and mathematicians for a number of years. Since then, there have
been a lot of extensions [180] and applications. Therefore it is obvious for
discussing the idea of random walks here. Consider a person who performs a
random walk on the real line with the counting numbers
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Fig. 1.1. The random walk.

{. . . ,−2,−1, 0, 1, 2, . . .}

being the state space, see Fig. 1.1. Each time the person at state i can move one
step forward (+1) or one step backward (-1) with probabilities p (0 < p < 1)
and (1 − p) respectively. Therefore we have the transition probabilities

Pji =

⎧⎨
⎩

p if j = i + 1
1 − p if j = i − 1
0 otherwise.

for i = 0,±1,±2, . . ..

�|

0

|

1

|

2

|

3 · · ·

|

N

• ��
p1 − p

Fig. 1.2. The gambler’s problem.

Example 1.10. (Gambler’s Ruin) Consider a gambler gambling in a series of
games, at each game, he either wins one dollar with probability p or loses one
dollar with probability (1− p). The game ends if either he loses all his money
or he attains a total amount of N dollars. Let the gambler’s fortune be the
state of the gambling process then the process is a Markov chain. Moreover,
we have the transition probabilities

Pji =

⎧⎨
⎩

p if j = i + 1
1 − p if j = i − 1
0 otherwise.
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for i = 1, 2, . . . , N − 1 and P00 = PNN = 1. Here state 0 and N are called the
absorbing states. The process will stay at 0 or N forever if one of the states is
reached.

1.1.2 The nth-Step Transition Matrix

In the previous section, we have defined the one-step transition probability
matrix P for a Markov chain process. In this section, we are going to investi-
gate the n-step transition probability P

(n)
ij of a Markov chain process.

Definition 1.11. Define P
(n)
ij to be the probability that a process in state j

will be in state i after n additional transitions. In particular P
(1)
ij = Pij.

Proposition 1.12. P (n) = Pn where P (n) is the n-step transition probability
matrix and P is the one-step transition matrix.

Proof. We will prove the proposition by using mathematical induction. Clearly
the proposition is true when n = 1. We then assume that the proposition is
true for n. We note that

Pn = P × P × . . . × P︸ ︷︷ ︸
n times

.

Then
P

(n+1)
ij =

∑
k∈M

P
(n)
ki P

(1)
jk =

∑
k∈M

Pn
kiPjk = [Pn+1]ij .

By the principle of mathematical induction the proposition is true for all
non-negative integer n.

Remark 1.13. It is easy to see that

P (m)P (n) = PmPn = Pm+n = P (m+n).

Example 1.14. We consider the marketing problem again. In the model we
have

P =
(

1 − α β
α 1 − β

)
.

If α = 0.3 and β = 0.4 then we have

P (4) = P 4 =
(

0.7 0.4
0.3 0.6

)4

=
(

0.5749 0.5668
0.4351 0.4332

)
.

Recall that a consumer is in state 0 (1) if he/she is a consumer of Wellcome
(Park’n). P

(4)
00 = 0.5749 is the probability that a Wellcome’s consumer will
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Fig. 1.3. The (n + 1)-step transition probability.

shop with Wellcome on his/her fourth shopping and P
(4)
10 = 0.4351 is the

probability that a Wellcome’s consumer will shop with Park’n on his/her
fourth shopping. P

(4)
01 = 0.5668 is the probability that a consumer of Park’n

will shop with Wellcome on his/her fourth shopping. P
(4)
11 = 0.4332 is the

probability that a consumer of Park’n will shop with Park’n on his/her fourth
shopping.

Remark 1.15. Consider a Markov chain process having states in {0, 1, 2, . . .}.
Suppose that we are given at time n = 0 the probability that the process is in
state i is ai, i = 0, 1, 2, . . . . One interesting question is the following. What is
the probability that the process will be in state j after n transitions? In fact,
the probability that given the process is in state i and it will be in state j after
n transitions is P

(n)
ji = [Pn]ji, where Pji is the one-step transition probability

from state i to state j of the process. Therefore the required probability is

∞∑
i=0

P (X(0) = i) × P
(n)
ji =

∞∑
i=0

ai × [Pn]ji.

Let
X(n) = (X̃(n)

0 , X̃
(n)
1 , . . . , )

be the probability distribution of the states in a Markov chain process at the
nth transition. Here X̃

(n)
i is the probability that the process is in state i after

n transitions and ∞∑
i=0

X̃
(n)
i = 1.

It is easy to check that
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X(n+1) = PX(n)

and
X(n+1) = P (n+1)X(0).

Example 1.16. Refer to the previous example. If at n = 0 a consumer belongs
to Park’n, we may represent this information as

X(0) = (X̃(0)
0 , X̃

(0)
1 )T = (0, 1)T .

What happen on his/her fourth shopping?

X(4) = P (4)X(0) =
(

0.7 0.4
0.3 0.6

)4

(0, 1)T = (0.5668, 0.4332)T .

This means that with a probability 0.4332 he/she is still a consumer of Park’n
and a probability 0.5668 he/she is a consumer of Wellcome on his/her fourth
shopping.

1.1.3 Irreducible Markov Chain and Classifications of States

In the following, we define two definitions for the states of a Markov chain.

Definition 1.17. In a Markov chain, state i is said to be reachable from state
j if P

(n)
ij > 0 for some n ≥ 0. This means that starting from state j, it is pos-

sible (with positive probability) to enter state i in finite number of transitions.

Definition 1.18. State i and state j are said to communicate if state i and
state j are reachable from each other.

Remark 1.19. The definition of communication defines an equivalent relation.
(i) state i communicates with state i in 0 step because

P
(0)
ii = P (X(0) = i|X(0) = i) = 1 > 0.

(ii)If state i communicates with state j, then state j communicates with state
i.
(iii)If state i communicates with state j and state j communicates with state
k then state i communicates with state k. Since P

(m)
ji , P

(n)
kj > 0 for some m

and n, we have

P
(m+n)
ki =

∑
h∈M

P
(m)
hi P

(n)
kh ≥ P

(m)
ji P

(n)
kj > 0.

Therefore state k is reachable from state i. By inter-changing the roles of i
and k, state i is reachable from state k. Hence i communicates with k. The
proof is then completed.
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Definition 1.20. Two states that communicates are said to be in the same
class. A Markov chain is said to be irreducible, if all states belong to the same
class, i.e. they communicate with each other.

Example 1.21. Consider the transition probability matrix

0
1
2

⎛
⎝ 0.0 0.5 0.5

0.5 0.0 0.5
0.5 0.5 0.0

⎞
⎠

Example 1.22. Consider another transition probability matrix

0
1
2
3

⎛
⎜⎜⎝

0.0 0.0 0.0 0.0
1.0 0.0 0.5 0.5
0.0 0.5 0.0 0.5
0.0 0.5 0.5 0.0

⎞
⎟⎟⎠ .

We note that from state 1, 2, 3, it is not possible to visit state 0, i.e

P
(n)
01 = P

(n)
02 = P

(n)
03 = 0.

Therefore the Markov chain is not irreducible (or it is reducible).

Definition 1.23. For any state i in a Markov chain, let fi be the probability
that starting in state i, the process will ever re-enter state i. State i is said to
be recurrent if fi = 1 and transient if fi < 1.

We have the following proposition for a recurrent state.

Proposition 1.24. In a finite Markov chain, a state i is recurrent if and only
if

∞∑
n=1

P
(n)
ii = ∞.

By using Proposition (1.24) one can prove the following proposition.

Proposition 1.25. In a finite Markov chain, if state i is recurrent (transient)
and state i communicates with state j then state j is also recurrent (transient).

1.1.4 An Analysis of the Random Walk

Recall the classical example of random walk, the analysis of the random walk
can also be found in Ross [180]. A person performs a random walk on the real
line of integers. Each time the person at state i can move one step forward
(+1) or one step backward (-1) with probabilities p (0 < p < 1) and (1 − p)
respectively. Since all the states are communicated, by Proposition 1.25, all
states are either recurrent or they are all transient.
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Let us consider state 0. To classify this state one can consider the following
sum: ∞∑

m=1

P
(m)
00 .

We note that
P

(2n+1)
00 = 0

because in order to return to state 0, the number of forward movements should
be equal to the number of backward movements and therefore the number of
movements should be even and

P
(2n)
00 =

(
2n
n

)
pn(1 − p)n.

Hence we have

I =
∞∑

m=1

P
(m)
00 =

∞∑
n=1

P
(2n)
00 =

∞∑
n=1

(
2n
n

)
pn(1 − p)n =

∞∑
n=1

(2n)!
n!n!

pn(1 − p)n.

Recall that if I is finite then state 0 is transient otherwise it is recurrent. Then
we can apply the Stirling’s formula to get a conclusive result. The Stirling’s
formula states that if n is large then

n! ≈ nn+ 1
2 e−n

√
2π.

Hence one can approximate

P
(2n)
00 ≈ (4p(1 − p))n

√
πn

.

There are two cases to consider. If p = 1
2 then we have

P
(2n)
00 ≈ 1√

πn
.

If p �= 1
2 then we have

P
(2n)
00 ≈ an

√
πn

where
0 < a = 4p(1 − p) < 1.

Therefore when p = 1
2 , state 0 is recurrent as the sum is infinite, and when

p �= 1
2 , state 0 is transient as the sum is finite.
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1.1.5 Simulation of Markov Chains with EXCEL

Consider a Markov chain process with three states {0, 1, 2} with the transition
probability matrix as follows:

P =
0
1
2

⎛
⎝0.2 0.5 0.3

0.3 0.1 0.3
0.5 0.4 0.4

⎞
⎠ .

Given that X0 = 0, our objective here is to generate a sequence

{X(n), n = 1, 2, . . .}

which follows a Markov chain process with the transition matrix P .

To generate {X(n)} there are three possible cases:

(i) Suppose X(n) = 0, then we have

P (X(n+1) = 0) = 0.2 P (X(n+1) = 1) = 0.3 P (X(n+1) = 2) = 0.5;

(ii) Suppose X(n) = 1, then we have

P (X(n+1) = 0) = 0.5 P (X(n+1) = 1) = 0.1 P (X(n+1) = 2) = 0.4;

(iii) Suppose X(n) = 2, then we have

P (X(n+1) = 0) = 0.3 P (X(n+1) = 1) = 0.3 P (X(n+1) = 2) = 0.4.

Suppose we can generate a random variable U which is uniformly distributed
over [0, 1]. Then one can generate the distribution in Case (i) when X(n) = 0
easily as follows:

X(n+1) =

⎧⎨
⎩

0 if U ∈ [0, 0.2),
1 if U ∈ [0.2, 0.5),
2 if U ∈ [0.5, 1].

The distribution in Case (ii) when X(n) = 1 can be generated as follows:

X(n+1) =

⎧⎨
⎩

0 if U ∈ [0, 0.5),
1 if U ∈ [0.5, 0.6),
2 if U ∈ [0.6, 1].

The distribution in Case (iii) when X(n) = 2 can be generated as follows:

X(n+1) =

⎧⎨
⎩

0 if U ∈ [0, 0.3),
1 if U ∈ [0.3, 0.6),
2 if U ∈ [0.6, 1].

In EXCEL one can generate U , a random variable uniformly distributed over
[0, 1] by using “=rand()”. By using simple logic statement in EXCEL, one can



1.1 Markov Chains 11

simulate a Markov chain easily. The followings are some useful logic statements
in EXCEL used in the demonstration file.

(i) “B1” means column B and Row 1.
(ii) “=IF(B1=0,1,-1)” gives 1 if B1=0 otherwise it gives -1.
(iii) “=IF(A1 > B2,0,1)” gives 0 if A1 > B2 otherwise it gives 1.
(iv) “=IF(AND(A1=1,B2>2),1,0)” gives 1 if A1=1 and B2>2 otherwise it
gives 0.
(v) “=max(1,2,-1) =2 ” gives the maximum of the numbers.

A demonstration EXCEL file is available at [221] for reference. The program
generates a Markov chain process

X(1), X(2), . . . , X(30)

whose transition probability is P and X(0) = 0.

1.1.6 Building a Markov Chain Model

Given an observed data sequence {X(n)}, one can find the transition frequency
Fjk in the sequence by counting the number of transitions from state j to state
k in one step. Then one can construct the one-step transition matrix for the
sequence {X(n)} as follows:

F =

⎛
⎜⎜⎜⎝

F11 · · · · · · F1m

F21 · · · · · · F2m

...
...

...
...

Fm1 · · · · · · Fmm

⎞
⎟⎟⎟⎠ . (1.1)

From F , one can get the estimates for Pjk as follows:

P =

⎛
⎜⎜⎜⎝

P11 · · · · · · P1m

P21 · · · · · · P2m

...
...

...
...

Pm1 · · · · · · Pmm

⎞
⎟⎟⎟⎠ (1.2)

where

Pjk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fjk
m∑

j=1

Fjk

if
m∑

j=1

Fjk > 0

0 if
m∑

j=1

Fjk = 0.

We consider a sequence {X(n)} of three states (m = 3) given by
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Fig. 1.4. Simulation of a Markov chain.

X(t)
U 0 1 2 X(t+1)|X(t)=0 U 0 1 2 X(t+1)|X(t)=1 U 0 1 2 X(t+1)|X(t)=2 0  

0.55 -1 -1 2 2 0.065 -1 1 -1 1 0.82 -1 1 -1 2 2  
0.74 -1 -1 2 2 0.523 -1 -1 2 2 0.96 -1 -1 2 1 1
0.72 -1 -1 2 2 0.55 -1 -1 2 2 0.18 -1 -1 2 2 2

1 -1 -1 2 2 0.34 -1 -1 2 2 0.42 -1 -1 2 2 2
0.96 -1 -1 2 2 0.92 -1 -1 2 2 0.91 -1 -1 2 2 2
0.25 -1 1 -1 1 0.593 0 -1 -1 0 0.05 0 -1 -1 2 2
0.83 -1 -1 2 2 0.377 -1 -1 2 2 0.74 -1 -1 2 0 0
0.97 -1 -1 2 2 0.09 -1 -1 2 2 0.41 -1 -1 2 2 2
0.91 -1 -1 2 2 0.682 -1 -1 2 2 0.38 -1 -1 2 2 2
0.5 -1 -1 2 2 0.198 -1 1 -1 1 0.68 -1 1 -1 2 2
0.26 -1 1 -1 1 0.52 0 -1 -1 0 0.61 0 -1 -1 1 1
0.76 -1 -1 2 2 0.884 -1 -1 2 2 0.13 -1 -1 2 0 2
0.35 -1 1 -1 1 0.769 0 -1 -1 0 0.55 -1 1 -1 2 2
0.92 -1 -1 2 2 0.286 -1 -1 2 2 0.98 -1 -1 2 1 1
0.57 -1 -1 2 2 0.436 -1 1 -1 1 0.27 -1 1 -1 2 1
0.11 0 -1 -1 0 0.421 0 -1 -1 0 0.45 0 -1 -1 1 0
0.85 -1 -1 2 2 0.938 -1 -1 2 2 0.07 -1 -1 2 0 2
0.11 0 -1 -1 0 0.695 0 -1 -1 0 0.08 0 -1 -1 2 2
0.06 0 -1 -1 0 0.622 0 -1 -1 0 0.18 0 -1 -1 0 0
0.21 -1 1 -1 1 0.44 0 -1 -1 0 0.87 0 -1 -1 0 1
0.58 -1 -1 2 2 0.081 -1 1 -1 1 0.52 -1 1 -1 0 1
0.82 -1 -1 2 2 0.358 -1 -1 2 2 0.49 -1 -1 2 1 2
0.98 -1 -1 2 2 0.685 -1 -1 2 2 0.24 -1 -1 2 2 2
0.8 -1 -1 2 2 0.691 -1 -1 2 2 0.11 -1 -1 2 2 2
0.81 -1 -1 2 2 0.138 -1 -1 2 2 0.99 -1 -1 2 2 2
0.52 -1 -1 2 2 0.1 -1 1 -1 1 0.61 -1 1 -1 2 2
0.16 0 -1 -1 0 0.713 0 -1 -1 0 0.97 0 -1 -1 1 1
0.22 -1 1 -1 1 0.54 0 -1 -1 0 0.48 0 -1 -1 0 0
0.19 0 -1 -1 0 0.397 0 -1 -1 0 0.18 0 -1 -1 0 0
0.64 -1 -1 2 2 0.673 -1 -1 2 2 0.09 -1 -1 2 0 2

``U'' is a column of random numbers in (0,1). Column E (J) [O] gives the the next state given that the current state is 0 (1) [2].
Column P gives the simulated sequence X(t) given that X(0)=0.
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{0, 0, 1, 1, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1}. (1.3)

We have the transition frequency matrix

F =

⎛
⎝ 1 3 3

6 1 1
1 3 0

⎞
⎠ . (1.4)

Therefore one-step transition matrices can be estimated as follows:

P =

⎛
⎝ 1/8 3/7 3/4

3/4 1/7 1/4
1/8 3/7 0

⎞
⎠ . (1.5)

A demonstration EXCEL file is available at [222] for reference.

X(t) P00 P01 P02 P10 P11 P12 P20 P21 P22

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

F(ij) 1 6 1 4 1 3 3 1 0

P(ij) 0.125 0.75 0.125 0.5 0.125 0.375 0.75 0.25 0

Fig. 1.5. Building a Markov chain.
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1.1.7 Stationary Distribution of a Finite Markov Chain

Definition 1.26. A state i is said to have period d if P
(n)
ii = 0 whenever n is

not divisible by d, and d is the largest integer with this property. A state with
period 1 is said to be aperiodic.

Example 1.27. Consider the transition probability matrix

P =
(

0 1
1 0

)
.

We note that

P (n) =
(

0 1
1 0

)n

=
1
2

(
1 + (−1)n 1 + (−1)n+1

1 + (−1)n+1 1 + (−1)n

)
.

We note that P
(2n+1)
00 = P

(2n+1)
11 = 0, so both States 0 and 1 have a period of

2.

Definition 1.28. State i is said to be positive recurrent if it is recurrent and
starting in state i the expected time until the process returns to state i is finite.

Definition 1.29. A state is said to be egordic if it is positive recurrent and
aperiodic.

We recall the example of the marketing problem with X(0) = (1, 0)t. We
observe that

X(1) = PX(0) =
(

0.7 0.4
0.3 0.6

)
(1, 0)T = (0.7, 0.3)T ,

X(2) = P 2X(0) =
(

0.61 0.52
0.39 0.48

)
(1, 0)T = (0.61, 0.39)T ,

X(4) = P 4X(0) =
(

0.5749 0.5668
0.4251 0.4332

)
(1, 0)T = (0.5749, 0.4251)T ,

X(8) = P 8X(0) =
(

0.5715 0.5714
0.4285 0.4286

)
(1, 0)T = (0.5715, 0.4285)T ,

X(16) = P 16X(0) =
(

0.5714 0.5174
0.4286 0.4286

)
(1, 0)T = (0.5714, 0.4286)T .

It seems that
lim

n→∞
X(n) = (0.57 . . . , 0.42 . . .)T .

In fact this limit exists and is independent of X(0)! It means that in the long
run, the probability that a consumer belongs to Wellcome (Park’n) is given
by 0.57 (0.42).
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We note that X(n) = PX(n−1) therefore if we let

lim
n→∞

X(n) = π

then
π = lim

n→∞
X(n) = lim

n→∞
PX(n−1) = Pπ.

We have the following definition

Definition 1.30. A vector

π = (π0, π1, . . . , πk−1)t

is said to be a stationary distribution of a finite Markov chain if it satisfies:

(i)

πi ≥ 0 and
k−1∑
i=0

πi = 1.

(ii)

Pπ = π, i.e.
k−1∑
j=0

Pijπj = πi.

Proposition 1.31. For any irreducible and aperiodic Markov chain having k
states, there exists at least one stationary distribution.

Proposition 1.32. For any irreducible and aperiodic Markov chain having k
states, for any initial distribution X(0)

lim
n→∞

||X(n) − π|| = lim
n→∞

||PnX(0) − π|| = 0.

where π is a stationary distribution for the transition matrix P .

Proposition 1.33. The stationary distribution π in Proposition 1.32 is unique.

There are a number of popular vector norms ||.||. In the following, we
introduce three of them.

Definition 1.34. The v be a vector in Rn, then we have L1-norm, L∞-norm
and 2-norm defined respectively by

||v||1 =
n∑

i=1

|vi|,

||v||∞ = max
i

{|vi|},

and

||v||2 =

√√√√ n∑
i=1

|vi|2.
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1.1.8 Applications of the Stationary Distribution

Recall the marketing problem again. The transition matrix is given by

P =
(

1 − α β
α 1 − β

)
.

To solve for the stationary distribution (π0, π1), we consider the following
linear system of equations⎧⎨

⎩
(1 − α)π0 + βπ1 = π0

απ0 + (1 − β)π1 = π1

π0 + π1 = 1.

Solving the linear system of equations we have{
π0 = β(α + β)−1

π1 = α(α + β)−1.

Therefore in the long run, the market shares of Wellcome and Park’n are
respectively

β

(α + β)
and

α

(α + β)
.

1.2 Continuous Time Markov Chain Process

In the previous section, we have discussed discrete time Markov chain pro-
cesses. In many situations, a change of state does not occur at a fixed discrete
time. In fact, the duration of a system state can be a continuous random
variable. In our context, we are going to model queueing systems and re-
manufacturing systems by continuous time Markov process. Here we first give
the definition for a Poisson process. We then give some important properties
of the Poisson process.

A process is called a Poisson process if

(A1) the probability of occurrence of one event in the time interval (t, t + δt)
is λδt + o(δt). Here λ is a positive constant and o(δt) is such that

lim
δt→0

o(δt)
δt

= 0.

(A2) the probability of occurrence of no event in the time interval (t, t + δt)
is 1 − λδt + o(δt).

(A3) the probability of occurrences of more than one event is o(δt).
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Here an “event” can be an arrival of a bus or a departure of customer. From
the above assumptions, one can derive the well-known Poisson distribution.

We define Pn(t) be the probability that n events occurred in the time
interval [0, t]. Assuming that that Pn(t) is differentiable, then we can get a
relationship between Pn(t) and Pn−1(t) as follows:

Pn(t + δt) = Pn(t) · (1 − λδt − o(δt)) + Pn−1(t) · (λδt + o(δt)) + o(δt).

Rearranging the terms we get

Pn(t + δt) − Pn(t)
δt

= −λPn(t) + λPn−1(t) + (Pn−1(t) + Pn(t))
o(δt)
δt

.

Let δt goes to zero, we have

lim
δt→0

Pn(t + δt) − Pn(t)
δt

= −λPn(t) + λPn−1(t) + lim
δt→0

(Pn−1(t) + Pn(t))
o(δt)
δt

.

Hence we have the differential-difference equation:

dPn(t)
dt

= −λPn(t) + λPn−1(t) + 0, n = 0, 1, 2, . . . .

Since P−1(t) = 0, we have the initial value problem for P0(t) as follows:

dP0(t)
dt

= −λP0(t) with P0(0) = 1.

The probability P0(0) is the probability that no event occurred in the time
interval [0, 0], so it must be one. Solving the separable ordinary differential
equation for P0(t) we get

P0(t) = e−λt

which is the probability that no event occurred in the time interval [0, t]. Thus

1 − P0(t) = 1 − e−λt

is the probability that at least one event occurred in the time interval [0, t].
Therefore the probability density function f(t) for the waiting time of the first
event to occur is given by the well-known exponential distribution

f(t) =
d(1 − e−λt)

dt
= λe−λt, t ≥ 0.

We note that⎧⎪⎨
⎪⎩

dPn(t)
dt

= −λPn(t) + λPn−1(t), n = 1, 2, . . .

P0(t) = e−λt,
Pn(0) = 0 n = 1, 2, . . . .
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Solving the above differential-difference equations, we get

Pn(t) =
(λt)n

n!
e−λt.

Finally, we present the important relationships among the Poisson process,
Poisson distribution and the exponential distribution [52].

Proposition 1.35. The following statements (B1),(B2), and (B3) are equiv-
alent.
(B1) The arrival process is a Poisson process with mean rate λ.
(B2) Let N(t) be the number of arrivals in the time interval [0, t] then

P (N(t) = n) =
(λt)ne−λt

n!
n = 0, 1, 2, . . . .

(B3) The inter-arrival time follows the exponential distribution with mean
λ−1.

1.2.1 A Continuous Two-state Markov Chain

Consider a one-server queueing system which has two possible states: 0 (idle)
and 1 (busy). Assuming that the arrival process of the customers is a Poisson
process with mean rate λ and the service time of the server follows the expo-
nential distribution with mean rate µ. Let P0(t) be the probability that the
server is idle at time t and P1(t) be the probability that the server is busy at
time t. Using a similar argument as in the derivation of a Poisson process, we
have {

P0(t + δt) = (1 − λδt − o(δt))P0(t) + (µδt + o(δt))P1(t) + o(δt)
P1(t + δt) = (1 − µδt − o(δt))P1(t) + (λδt + o(δt))P0(t) + o(δt).

Rearranging the terms, one gets⎧⎪⎨
⎪⎩

P0(t + δt) − P0(t)
δt

= −λP0(t) + µP1(t) + (P1(t) − P0(t))
o(δt)
δt

P1(t + δt) − P1(t)
δt

= λP0(t) − µP1(t) + (P0(t) − P1(t))
o(δt)
δt

.

Letting δt goes to zero, we get⎧⎪⎨
⎪⎩

dP0(t)
dt

= −λP0(t) + µP1(t)
dP1(t)

dt
= λP0(t) − µP1(t).

Solving the above differential equations, we have

P1(t) =
1

λ + µ
(µe−(λ+µ)t + λ)
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and
P0(t) =

1
λ + µ

(µ − µe−(λ+µ)t).

We note that the steady state probabilities are given by

lim
t→∞

P0(t) =
µ

λ + µ

and
lim

t→∞
P1(t) =

λ

λ + µ
.

In fact, the steady state probability distribution can be obtained without
solving the differential equations. We write the system of differential equations
in matrix form: (

dP0(t)
dt

dP1(t)
dt

)
=
(
−λ µ
λ −µ

)(
P0(t)
P1(t)

)
.

Since in steady state, P0(t) = p0 and P1(t) = p1 are constants and independent
of t, we have

dp0(t)
dt

=
dp1(t)

dt
= 0.

The steady state probabilities will be the solution of the following linear sys-
tem: (

−λ µ
λ −µ

)(
p0

p1

)
=
(

0
0

)

subject to p0 + p1 = 1.
In fact, very often we are interested in obtaining the steady state probabil-

ity distribution of the Markov chain. Because a lot of system performance such
as expected number of customers, average waiting time can be written in terms
of the steady state probability distribution, see for instance [48, 49, 50, 52].
We will also apply the concept of steady state probability distribution in the
upcoming chapters. When the number of states is large, solving the steady
state probability distribution will be time consuming. Iterative methods are
popular approaches for solving large scale Markov chain problem.

1.3 Iterative Methods for Solving Linear Systems

In this section, we introduce some classical iterative methods for solving large
linear systems. For more detail introduction to iterative methods, we refer
reader to books by Bini et al. [21], Kincaid and Cheney [130], Golub and van
Loan [101] and Saad [181].
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1.3.1 Some Results on Matrix Theory

We begin our discussion by some more useful results in matrix theory and their
proofs can be found in [112, 101, 130]. The first results is a useful formula for
solving linear systems.

Proposition 1.36. (Sherman-Morrison-Woodbury Formula) Let M be an
non-singular n × n matrix, u and v be two n × k (l ≤ n) matrices such
that the matrix (Il + vT Mu) is non-singular. Then we have(

M + uvT
)−1

= M−1 − M−1u
(
Il + vT M−1u

)−1
vT M−1.

The second result is on the eigenvalue of non-negative and irreducible
square matrix.

Proposition 1.37. (Perron-Frobenius Theorem) Let A be a non-negative and
irreducible square matrix of order m. Then we have
(i) A has a positive real eigenvalue λ which is equal to its spectral radius, i.e.,
λ = maxk |λk(A)| where λk(A) denotes the k-th eigenvalue of A.
(ii) There corresponds an eigenvector z with all its entries being real and
positive, such that Az = λz.
(iii) λ is a simple eigenvalue of A.

The last result is on matrix norms. There are many matrix norms ||.||M
one can use. In the following, we introduce the definition of a matrix norm
||.||MV

induced by a vector norm ||.||V .

Definition 1.38. Given a vector ||.||V in Rn, the matrix norm ||A||MV for
an n × n matrix A induced by the vector norm is defined as

||A||MV
= sup{||Ax||V : x ∈ Rn and ||x||V = 1}.

In the following proposition, we introduce three popular matrix norms.

Proposition 1.39. Let A be an n × n real matrix, then it can be shown that
the matrix 1-norm, matrix ∞-norm and matrix 2-norm induced by ||.||1, ||.||∞
and ||.||2 respectively by

||A||1 = max
j

{
n∑

i=1

|Aij |},

||A||∞ = max
i

{
n∑

j=1

|Aij |},

and
||A||2 =

√
λmax(AAT ).

Another other popular matrix norm is the Frobenius norm.
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Definition 1.40. The Frobenius norm of a square matrix A is defined as

||A||F =

√√√√ n∑
i=1

n∑
j=1

A2
ij .

1.3.2 Splitting of a Matrix

We begin with the concept of splitting a matrix. If we are to solve

Ax =

⎛
⎝ 1

2
1
3 0

1
3 1 1

3
0 1

3
1
2

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 5

10
5

⎞
⎠ = b.

There are many ways to split the matrix A into two parts and develop iterative
methods for solving the linear system.

There are at least three different ways of splitting the matrix A:

A =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+

⎛
⎝ −1

2
1
3 0

1
3 0 1

3
0 1

3 − 1
2

⎞
⎠ (case 1)

=

⎛
⎝ 1

2 0 0
0 1 0
0 0 1

2

⎞
⎠+

⎛
⎝ 0 1

3 0
1
3 0 1

3
0 1

3 0

⎞
⎠ (case 2)

=

⎛
⎝ 1

2 0 0
1
3 1 0
0 1

3
1
2

⎞
⎠+

⎛
⎝ 0 1

3 0
0 0 1

3
0 0 0

⎞
⎠ (case 3)

= S + (A − S)

Now
Ax = (S + (A − S))x = b

and therefore
Sx + (A − S)x = b

Hence we may write
x = S−1b − S−1(A − S)x

where we assume that S−1 exists. Then given an initial guess x(0) of the
solution of Ax = b, one may consider the following iterative scheme:

x(k+1) = S−1b − S−1(A − S)x(k). (1.6)

Clearly if x(k) → x as k → ∞ then we have x = A−1b. We note that (1.6)
converges if and only if there is a matrix norm ||.||M such that

||S−1(A − S)||M < 1.
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This is because for any square matrix B, we have

(I − B)(I + B + B2 + . . . + Bn) = I − Bn+1

and ∞∑
k=0

Bk = (I − B)−1 if lim
n→∞

Bn = 0.

If there exists a matrix norm ||.|M such that ||B||M < 1 then

lim
n→∞

||Bn||M ≤ lim
n→∞

||B||nM = 0

and we have
lim

n→∞
Bn = 0.

Therefore we have the following proposition.

Proposition 1.41. If
‖S−1(A − S)‖M < 1

then the iterative scheme converges to the solution of Ax = b.

1.3.3 Classical Iterative Methods

Throughout this section, we let A be the matrix to be split and b be the right
hand side vector. We use x(0) = (0, 0, 0)T as the initial guess.

Case 1: S =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

x(k+1) = b − (A − I)x(k)

=

⎛
⎝ 5

10
5

⎞
⎠−

⎛
⎝− 1

2
1
3 0

1
3 0 1

3
0 1

3 − 1
2

⎞
⎠x(k)

x(1) = (5 10 5)T

x(2) = (4.1667 6.6667 4.1667)T

x(3) = (4.8611 7.2222 4.8611)T

x(4) = (5.0231 6.7593 5.0231)T

...
x(30) = (5.9983 6.0014 5.9983)T .

When S = I, this is called the Richardson method.
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Case 2: S =

⎛
⎝ 1

2 0 0
0 1 0
0 0 1

2

⎞
⎠

Therefore

x(k+1) = S−1b − S−1(A − S)x(k)

=

⎛
⎝ 10

10
10

⎞
⎠−

⎛
⎝ 1

2 0 0
0 1 0
0 0 1

2

⎞
⎠−1⎛⎝ 0 1

3 0
1
3 0 1

3
0 1

3 0

⎞
⎠x(k)

= (10 10 10)T −

⎛
⎝ 0 2

3 0
1
3 0 1

3
0 2

3 0

⎞
⎠x(k)

x(1) = (10 10 10)T

x(2) = (3.3333 3.3333 3.3333)T

x(3) = (7.7778 7.7778 7.7778)T

...
x(30) = (6.0000 6.0000 6.0000)T .

When S = Diag(a11, · · · , ann). This is called the Jacobi method.

Case 3: S =

⎛
⎝ 1

2 0 0
1
3 1 0
0 1

3
1
2

⎞
⎠

x(k+1) = S−1b − S−1(A − S)x(k)

=

⎛
⎝ 10

20
3
50
9

⎞
⎠−

⎛
⎝ 1

2 0 0
1
3 1 0
0 1

3
1
2

⎞
⎠−1⎛⎝ 0 1

3 0
0 0 1

3
0 0 0

⎞
⎠x(k)

x(1) = (10
20
3

50
9

)T

x(2) = (5.5556 6.2963 5.8025)T

x(3) = (5.8025 6.1317 5.9122)T

x(4) = (5.9122 6.0585 5.9610)T

...
x(14) = (6.0000 6.0000 6.0000)T .

When S is the lower triangular part of the matrix A. This method is called
the Gauss-Seidel method.



24 1 Introduction

Proposition 1.42. If A is diagonally dominant then

||D−1(A − D)||∞ < 1

and the Jacobi method converges to the solution of Ax = b.

1.3.4 Spectral Radius

Definition 1.43. Given an n× n square matrix A the spectral radius of A is
defined as

ρ(A) = max{|λ| : det(A − λI) = 0}

or in other words if λ1, λ2, · · · , λn are the eigenvalues of A then

ρ(A) = max
i

{|λi|}.

Example 1.44.

A =
(

0 −1
1 0

)

then the eigenvalues of A are ±i and |i| = | − i| = 1. Therefore ρ(A) = 1 in
this case.

Proposition 1.45. For any square matrix A, ρ(A) = inf
‖·‖M

‖A‖M .

Remark 1.46. If ρ(A) < 1 then there exists a matrix norm ||.||M such that
||A||M < 1.

Using the remark, one can show the following proposition.

Proposition 1.47. The iterative scheme

x(k) = Gx(k−1) + c

converges to
(I − G)−1c

for any starting vectors x(0) and c if and only if ρ(G) < 1.

Proposition 1.48. The iterative scheme

x(k+1) = S−1b − S−1(A − S)x(k) = (I − S−1A)x(k) + S−1b

converges to A−1b if and only if ρ(I − S−1A) < 1.

Proof. Take G = I − S−1A and c = S−1b.
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Definition 1.49. An n×n matrix B is said to be strictly diagonal dominant
if

|Bii| >

n∑
j=1,j �=i

|Bij | for i = 1, 2, . . . , n

Proposition 1.50. If A is strictly diagonally dominant then the Gauss-Seidel
method converges for any starting x(0).

Proof. Let S be the lower triangular part of A. From Proposition 1.48 above,
we only need to show

ρ(I − S−1A) < 1.

Let λ be an eigenvalue of (I − S−1A) and x be its corresponding eigenvector
such that

‖x‖∞ = 1.

We want to show
|λ| < 1.

We note that
(I − S−1A)x = λx

and therefore⎛
⎜⎜⎜⎜⎝

0 −a12 · · · −a1n

... 0

...
. . . −an−1n

0 · · · 0

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a11 0 · · · 0

a21 a22
. . .

...
...

. . . 0
an1 · · · · · · ann

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

λx1

λx2

...
λxn

⎞
⎟⎟⎟⎠ .

Therefore we have

−
n∑

j=i+1

aijxj = λ

i∑
j=1

aijxj for i = 1, · · · , n − 1.

Since ‖x‖∞ = 1, there exists i such that

|xi| = 1 ≥ |xj |.

For this i we have

|λ||aii| = |λaiixi| ≤
n∑

j=i+1

|aij | + |λ|
i−1∑
j=1

|aij |

and therefore

|λ| ≤
n∑

j=i+1

|aij |
/⎛
⎝|aii| −

i−1∑
j=1

|aij |

⎞
⎠ < 1
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1.3.5 Successive Over-Relaxation (SOR) Method

In solving Ax = b, one may split A as follows:

A = L + wD︸ ︷︷ ︸+(1 − w)D + U

where L is the strictly lower triangular part; D is the diagonal part and U is
the strictly upper triangular part.

Example 1.51.⎛
⎝ 2 1 0

1 2 1
0 1 2

⎞
⎠ =

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠

︸ ︷︷ ︸
L

+w

⎛
⎝ 2 0 0

0 2 0
0 0 2

⎞
⎠

︸ ︷︷ ︸
D

+(1 − w)

⎛
⎝ 2 0 0

0 2 0
0 0 2

⎞
⎠

︸ ︷︷ ︸
D

+

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠

︸ ︷︷ ︸
U

One may consider the iterative scheme with S = L + wD as follows:

xn+1 = S−1b + S−1(S − A)xn = S−1b + (I − S−1A)xn.

We remark that
I − S−1A = I − (L + wD)−1A.

Moreover, when w = 1, it is just the Gauss-Seidel method. This method is
called the SOR method. It is clear that the method converges if and only if
the iteration matrix has a spectral radius less than one.

Proposition 1.52. The SOR method converges to the solution of Ax = b if
and only if ρ(I − (L + wD)−1A) < 1.

1.3.6 Conjugate Gradient Method

Conjugate gradient (CG) methods are iterative methods for solving linear
system of equations Ax = b where A is symmetric positive definite [11, 101].
This method was first discussed by Hestenes and Stiefel [109]. The motivation
of the method is that it involves the process of minimizing quadratic functions
such as

f(x) = (Ax − b)T (Ax − b).

Here A is symmetric positive definite and this minimization usually takes
place over a sequence of Krylov subspaces which is generated recursively by
adding a new basic vector Akr0 to those of the subspace Vk−1 generated where

r0 = Ax0 − b

is the residue of the initial vector x0.
Usually, a sequence of conjugate orthogonal vectors is constructed from

Vk so that CG methods would be more efficient. Computing these vectors can
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be done recursively which involves only a few vectors if A is self-adjoint with
respect to the inner product. The CG methods are attractive since they can
give the exact solution after in most n steps in exact arithmetic where n is
the size of the matrix A. Hence it can also be regarded as a direct method
in this sense. But in the presence of round off errors and finite precision, the
number of iterations may be greater than n. Thus, CG methods can be seen
as least square methods where the minimization takes place on a particular
vector subspace, the Krylov space. When estimating the error of the current
solution in each step, a matrix-vector multiplication is then needed. The CG
methods are popular and their convergence rates can be improved by using
suitable preconditioning techniques. Moreover, it is parameter free, the recur-
sion involved are usually short in each iteration and the memory requirements
and the execution time are acceptable for many practical problems.

The CG algorithm reads:

Given an initial guess x0, A, b, Max, tol:

r0 = b − Ax0;

v0 = r0;

For k = 0 to Max−1 do

If ||vk||2 = 0 then stop

tk =< rk, rk > / < vk, Avk >;

xk+1 = xk + tkvk;

rk+1 = rk − tkAvk;

If ||rk+1, rk+1||2 < tol then stop

vk+1 = rk+1+ < rk+1, rk+1 > / < rk, rk > vk;

end;

output xk+1, ||rk+1||2.

Given a Hermitian, positive definite n×n matrix Hn, when the conjugate
gradient method is applied to solving

Hnx = b
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the convergence rate of this method depends on the spectrum of the matrix
Hn, see also Golub and van Loan [101]. For example if the spectrum of Hn is
contained in an interval, i.e. σ(Hn) ⊆ [a, b], then the error in the i-th iteration
is given by

||ei||
||e0||

≤ 2(

√
b −

√
a√

b +
√

a
)i,

i.e. the convergence rate is linear. Hence the approximate upper bound for the
number of iterations required to make the relative error

||ei||
||e0||

≤ δ

is given by
1
2
(

√
b

a
− 1) log(

2
δ
) + 1.

Very often CG method is used with a matrix called preconditioner to
accelerate its convergence rate. A good preconditioner C should satisfy the
following conditions.

(i) The matrix C can be constructed easily;
(ii) Given right hand side vector r, the linear system Cy = r can be solved

efficiently; and
(iii) the spectrum (or singular values) of the preconditioned system C−1A

should be clustered around one.

In the Preconditioned Conjugate Gradient (PCG) method, we solve the
linear system

C−1Ax = C−1b

instead of the original linear system

Ax = b.

We expect the fast convergence rate of the PCG method can compensate
much more than the extra cost in solving the preconditioner system Cy = r
in each iteration step of the PCG method.

Apart from the approach of condition number, in fact, condition (iii) is
also very commonly used in proving convergence rate. In the following we give
the definition of clustering.

Definition 1.53. We say that a sequence of matrices Sn of size n has a clus-
tered spectrum around one if for all ε > 0, there exist non-negative integers
n0 and n1, such that for all n > n0, at most n1 eigenvalues of the matrix
S∗

nSn − In have absolute values larger than ε.

One sufficient condition for the matrix to have eigenvalues clustered around
one is that

Hn = In + Ln,

where In is the n × n identity matrix and Ln is a low rank matrix (rank(Ln)
is bounded above and independent of the matrix size n).
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Conjugate Gradient Squared Method

Given a real symmetric, positive definite matrix A of size n×n, the CG method
can be used to solve the linear system Ax = b. But in general a non-singular
matrix can be neither symmetric nor positive definite. In particular for the
applications in queueing systems and re-manufacturing systems in Chapters
2 and 3. In this case, one may consider the normal equation of the original
system. i.e.,

AT Ax = AT b.

Here AT A is real symmetric and positive definite so that CG method could
be applied, but the condition number would then be squared. Moreover, it
also involves the matrix-vector multiplication of the form AT r. These will
increase the computational cost. Thus in our context, we propose to employ
a generalized CG algorithm, namely the Conjugate Gradient Squared (CGS)
method, [193]. This method does not involve the matrix-vector multiplication
of the form AT r.

The CGS algorithm reads:

Given an initial guess x0, A, b, tol:

x = x0;

r = b − Ax;

r′ = s = p = r;

w = Ap;

µ = r′T r;

repeat until µ < tol;

γ = µ;

α = γ/r′tr;

q = s − αw;

d = s + q;

w = Ad;

x = x + αd;
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r = r − αw;

otherwise

µ = r′T r;

β = µ/γ;

s = r − βq;

p = s + β(q + βp);
end;

1.3.7 Toeplitz Matrices

We end this subsection by introducing a class of matrices, namely Toeplitz
matrices. A Toepltiz matrix T is a matrix having constant diagonals, i.e.

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0 t1 t2 · · · tn−1 tn
t−1 t0 t1 · · · · · · tn−1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

t−n+1 · · · · · · . . . . . . t1
t−n t−n+1 · · · · · · t−1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Toeplitz matrices and near-Toeplitz matrices have many applications in ap-
plied sciences and engineering such as the multi-channel least squares filtering
in time series [171], signal and image processing problems [145]. A survey on
the applications of Toeplitz systems can be found in Chan and Ng [46]. Ap-
plication in solving queueing systems and re-manufacturing systems will be
discussed in the Chapters 2 and 3.

In the above applications, solving a Toeplitz or near-Toeplitz system is
the focus. Direct methods for solving Toeplitz systems based on the recur-
sion formula are commonly used, see for instance, Trench [199]. For an n × n
Toeplitz matrix T , these direct methods require O(n2) operations. Faster al-
gorithms that require O(n log2 n) operations have also been developed when
the Toeplitz matrix is symmetric and positive definite.

An important subset of Toepltiz matrices is the class of circulant matrices.
A circulant n × n matrix C is a Toeplitz matrix such that each column is a
cyclic shift of the previous one, i.e.
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C =

⎛
⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cn−1 cn

cn c0 c1 · · · cn−1

...
. . . . . . . . .

...

c2

...
. . . . . . c1

c1 c2 · · · cn c0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (1.7)

Very often circulant matrices are used to approximate Toeplitiz matrices in
preconditioning or finding approximate solution. Because circulant matrices
have the following nice property. It is well-known that a circulant matrix can
be diagonalized by the discrete Fourier matrix F . More precisely,

FCF ∗ = D = Diag(d0, d1, . . . , dn)

where F is the discrete Fourier matrix with entries given by

Fj,k =
1√
n

e−
(2jkπ)i

n , j, k = 0, 1, · · · , n − 1,

and D is a diagonal matrix with elements being the eigenvalues of C, see
for instance [82]. Here F ∗ is the conjugate transpose of F . The matrix-vector
multiplication Fy is called the Fast Fourier Transformation (FFT) of the
column vector y and can be done in O(n log n) operations. Consider for a
unit vector

e1 = (1, 0, . . . , 0)T ,

we have
Ce1 = (c0, cn, . . . , c1)T

and
Fe1 =

1√
n

(1, 1, . . . , 1)T

because the first column of F is a column vector with all entries being equal.
Therefore

F (c0, cn, . . . , c1)T = FCe1 = DFe1 =
1√
n

(d0, d1, . . . , dn)T

and hence the eigenvectors of a circulant matrix C can be obtained by using
the FFT in O(n log n) operations. Moreover, the solution of a circulant linear
system can also be obtained in O(n log n) operations.

The FFT can be used in the Toeplitz matrix-vector multiplication. A
Toeplitz matrix can be embedded in a circulant matrix as follows:

C̃(y,0)T ≡
(

T S1

S2 T

)(
y
0

)
=
(

r
b

)
. (1.8)

Here matrices S1 and S2 are such that C̃ is a circulant matrix. Then FFT can
be applied to obtain r = Ty in O(n log n) operations.
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1.4 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in bioinformatics [135],
speech recognition [173] and many other areas [149]. In a HMM, there are
two types of states: the observable states and the hidden states. In a HMM,
there is no one-to-one correspondence between the hidden states and the ob-
served symbols. It is therefore no longer possible to tell what hidden state
the model is in which the observation symbol is generated just by looking
at the observation symbol. A HMM is usually characterized by the following
elements [173]:

• N , the number of hidden states in the model. Although the states are
hidden, for many practical applications there is often some physical sig-
nificance to the states. For instance, the hidden states represent the CpG
island and the non-CpG island in the DNA sequence. We denote the indi-
vidual states as

S = {s1, s2, · · · , sN},
and the state at the length t as Qt.

• M , the number of distinct observation symbols per hidden state. The ob-
servation symbols correspond to the physical output of the system being
modeled. For instance, A,C,G,T are the observation symbols in the DNA
sequence. We denote the individual symbols as

V = {v1, v2, · · · , vM}

and the symbol at the length t as Ot.
• The state transition probability distribution [A]ij = {aij} where

aij = P (Qt+1 = sj |Qt = si), 1 ≤ i, j ≤ N.

• The observation symbol probability distribution in hidden state j, [B]jk =
{bj(vk)}, where

bj(vk) = P (Ot = vk|Qt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

• The initial state distribution Π = {πi} where

πi = P (Q1 = si), 1 ≤ i ≤ N.

Given appropriate values of N , M , A, B and Π, the HMM can be used as a
generator to give an observation sequence

O = {O1O2O3 · · ·OT }

where T is the number of observations in the sequence. For simplicity, we use
the compact notation

Λ = (A,B, Π)

to indicate the complete parameter set of the HMM. According to the above
specification, the first order transition probability distribution among the hid-
den states is used. There are three key issues in HHMMs:
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• Problem 1:
Given the observation sequence O = {O1O2 · · ·OT } and a HMM, how to
efficiently compute the probability of the observation sequence ?

• Problem 2:
Given the observation sequence O = {O1O2 · · ·OT } and a HMM, how
to choose a corresponding state sequence Q = {Q1Q2 · · ·QT } which is
optimal in certain sense ?

• Problem 3: Given the observation sequence O = {O1O2 · · ·OT }, how to
choose the model parameters in a HMM?

For Problem 1, a forward-backward dynamic programming procedure [14] is
formulated to calculate the probability of the observation sequence efficiently.

For Problem 2, it is the one in which we attempt to uncover the hidden part
of the model, i.e., to find the “correct” state sequence. In many practical situ-
ations, we use an optimality criteria to solve the problem as good as possible.
The most widely used criterion is to find a single best state sequence, i.e., max-
imize the likelihood P (Q|Λ,O). This is equivalent to maximizing P (Q,O|Λ)
since

P (Q|Λ, O) =
P (Q,O|Λ)
P (O|Λ)

.

Viterbi algorithm [204] is a dynamic programming technique for finding this
single best state sequence

Q = {Q1, Q2, · · · , QT }

for the given observation sequence

O = {O1, O2, · · · , OT }.

For Problem 3, we attempt to adjust the model parameters Λ such that
P (O|Λ) is maximized by using Expectation-Maximization (EM) algorithm.
For a complete tutorial on hidden Markov model, we refer readers to the
paper by Rabiner [173] and the book by MacDonald and Zucchini [149].

1.5 Markov Decison Process

Markov Decision Process (MDP) has been successfully applied in equipment
maintenance, inventory control and many other areas in management science
[4, 209]. In this section, we will briefly introduce the MDP, interested readers
can also consult the books by Altman [4], Puterman [172] and White [208].

Similar to the case of Markov chain, MDP is a system that can move from
one distinguished state to any other possible states. In each step, the decision
maker has to take an action from a well-defined set of alternatives. This action
affects the transition probabilities of the next move and incurs an immediate
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gain (or loss) and subsequent gain (or loss). The obvious problem that the
decision maker facing is to determine a suitable plan of actions so that the
overall gain is optimized. The process of MDP is summarized as follows:

(i) At time t, a certain state i of the Markov chain is observed.
(ii) After the observation of the state, an action, let us say k is taken from a
set of possible decisions Ai. Different states may have different sets of deci-
sions.
(iii) An immediate gain (or loss) q

(k)
i is then incurred according to the current

state i and the action k taken.
(iv) The transition probabilities p

(k)
ji is then affected by the action k.

(v) When the time parameter t increases, transition occurs again and the
above steps (i)-(iv) repeat.

A policy D is a rule of taking actions. It prescribes all the decisions that
should be made throughout the process. Given the current state i, the value
of an optimal policy vi(t) is defined as the total expected gain obtained with
t decisions or transitions remained. For the case of one-period remaining, i.e.
t = 1, the value of an optimal policy is given by

vi(1) = max
k∈Ai

{q(k)
i }. (1.9)

Since there is only one-period remained, an action maximizing the immediate
gain will be taken. For the case of two-period remaining, we have

vi(2) = max
k∈Ai

{q(k)
i + α

∑
j

p
(k)
ji vj(1)

︸ ︷︷ ︸
subsequent gain

} (1.10)

where α is the discount factor. Since that the subsequent gain is associated
with the transition probabilities which are affected by the actions, an optimal
policy should consider both the immediate and subsequent gain. The model
can be easily extended to a more general situation, the process having n
transitions remained.

vi(n) = max
k∈Ai

{q(k)
i + α

∑
j

p
(k)
ji vj(n − 1)

︸ ︷︷ ︸
subsequent gain

}. (1.11)

From the above equation, the subsequent gain of vi(n) is defined as the ex-
pected value of vj(n − 1). Since the number of transitions remained is count-
able or finite, the process is called the discounted finite horizon MDP. For the
infinite horizon MDP, the value of an optimal policy can be expressed as

vi = max
k∈Ai

{q(k)
i + α

∑
j

p
(k)
ji vj}. (1.12)
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The finite horizon MDP is a dynamic programming problem and the infinite
horizon MDP can be transformed into a linear programming problem. Both
of them can be solved easily by using EXCEL spreadsheet.

1.5.1 Stationary Policy

A stationary policy is a policy that the choice of alternative depends only on
the state the system is in and is independent of n. For instance, a stationary
policy D prescribes the action D(i) when the current state is i. Define D̄
as the associated one-step-removed policy, then the value of policy wi(D) is
defined as

wi(D) = q
D(i)
i + α

∑
j

p
D(i)
ji wj(D̄). (1.13)

Given a Markov decision process with infinite horizon and discount factor α,
0 < α < 1, choose, for each i, an alternative ki such that

max
k∈Ai

{q(k)
i + α

∑
j

p
(k)
ji vj} = q

(ki)
i + α

∑
j

p
(ki)
ji vj .

Define the stationary policy D by D(i) = ki. Then for each i, wi(D) = vi, i.e.
the stationary policy is an optimal policy.
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Queueing Systems and the Web

In this chapter, we will first discuss some more Markovian queueing systems.
The queueing system is a classical application of continuous Markov chain.
We then present an important numerical algorithm based on computation
of Markov chain for ranking the webpages in the Web. This is a modern
applications of Markov though the numerical methods used are classical.

2.1 Markovian Queueing Systems

An important class of queueing networks is the Markovian queueing systems.
The main assumptions of a Markovian queueing system are the Poisson ar-
rival process and exponential service time. The one-server system discussed
in the previous section is a queueing system without waiting space. This
means when a customer arrives and finds the server is busy, the customer
has to leave the system. In the following sections, we will introduce some
more Markovian queueing systems. Queueing system is a classical application
of continuous time Markov chain. We will further discuss its applications in
re-manufacturing systems in Chapter 3. For more details about numerical so-
lutions for queueing system and Markov chain, we refer the read to the books
by Ching [52], Leonard [144], Neuts [159, 160] and Stewart [194].

2.1.1 An M/M/1/n − 2 Queueing System

Now let us consider a more general queueing system with customer arrival
rate being λ. Suppose the system has one exponential servers with service
rate being µ and there are n − 2 waiting spaces in the system. The queueing
discipline is First-come-first-served. When an arrived customer finds the server
is busy, then customer can still wait in the queue provided that there is a
waiting space available. Otherwise, the customer has to leave the queueing
system. To describe the queueing system, we use the number of customers in
the queue to represent the state of the system. There are n states, namely
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0, 1, . . . , n− 1. The Markov chain for the queueing system is given in Fig. 2.1.
The number of customers in the system is used to represent the states in the
Markov chain. Clearly it is an irreducible Markov chain.

�

�

µ

λ
��
��

0
�

�

µ

λ
��
��

1 · · ·
�
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µ

λ
��
��

s · · · ��
��
n − 1

�

�

µ

λ

Fig. 2.1. The Markov chain for the one-queue system.

If we order the states of the system in increasing number of customers, it
is not difficult to show that the generator matrix for this queueing system is
given by the following n × n tri-diagonal matrix A1 = A(n,1,λ,µ) where

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −µ 0
−λ λ + µ −µ

. . . . . . . . .
−λ λ + µ −µ

−λ λ + µ −µ
. . . . . . . . .

−λ λ + µ −µ
0 −λ sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

and the underlying Markov chain is irreducible. The solution for the steady-
state probability distribution can be shown to be

pT
(n,1,λ,µ) = (p0, p1, . . . , pn−1)T (2.2)

where

pi = α

i+1∏
k=1

λ

µ
and α−1 =

n∑
i=0

pi. (2.3)

Here pi is the probability that there are i customers in the queueing system
in the steady state and α is the normalization constant.

Example 2.1. Consider a one-server system; the steady-state probability dis-
tribution is given by

pi =
ρi(1 − ρ)
1 − ρn

where ρ =
λ

µ
.

When the system has no limit on waiting space and ρ < 1, the steady-state
probability becomes
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lim
n→∞

pi = ρi(1 − ρ).

The expected number of customers in the system is given by

Lc =
∞∑

i=0

ipi

=
∞∑

i=0

iρi(1 − ρ)

=
ρ(1 − ρ)
(1 − ρ)2

=
ρ

1 − ρ
.

The expected number of customers waiting in the queue is given by

Lq =
∞∑

i=1

(i − 1)pi

=
∞∑

i=1

(i − 1)ρi(1 − ρ)

=
ρ

1 − ρ
− ρ.

Moreover the expected number of customers in service is given by

Ls = 0 · p0 + 1 ·
∞∑

i=1

pi = 1 − (1 − ρ) = ρ.

2.1.2 An M/M/s/n − s − 1 Queueing System

Now let us consider a more general queueing system with customer arrival
rate being λ. Suppose the system has s parallel and identical exponential
servers with service rate being µ and there are n − s − 1 waiting spaces in
the system. The queueing discipline is First-come-first-served. Again when
a customer arrives and finds all the servers are busy, the customer can still
wait in the queue provided that there is a waiting space available. Otherwise,
the customer has to leave the system. To apply the continuous time Markov
chain for model this queueing system, one has to obtain the waiting for one
departure of customer when there are more than one customer (let us say k
customers) in the queueing system. We need the following lemma

Lemma 2.2. Suppose that X1, X2, . . . , Xk are independent, identical, expo-
nential random variables with mean µ−1, and consider the corresponding order
statistics

X(1) ≤ X(2) ≤ · · · ≤ X(k).

Then X(1) is again exponentially distributed with mean 1
k times the mean of

the original random variables.
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Proof. We observe that

X(1) = min(X1, X2, . . . , Xk).

X(1) > x if and only if all Xi > x (i = 1, 2, . . . , k). Hence

P{X(1) > x} = P{X1 > x}P{X2 > x} · · ·P{Xk > x}
= (e−µx)k

= e−kµx.

Again it is still exponentially distributed with mean 1/(kµ). If we use the
number of customers in the queue to represent the state of the system. There
are n states, namely 0, 1, . . . , n−1. The Markov chain for the queueing system
is given in Fig. 2.2. The number of customers in the system is used to represent
the states in the Markov chain. Clearly it is an irreducible Markov chain.
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Fig. 2.2. The Markov chain for the one-queue system.

If we order the states of the system in increasing number of customers, it
is not difficult to show that the generator matrix for this queueing system is
given by the following n × n tri-diagonal matrix A2 = A(n,s,λ,µ) where

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −µ 0
−λ λ + µ −2µ

. . . . . . . . .
−λ λ + (s − 1)µ −sµ

−λ λ + sµ −sµ
. . . . . . . . .

−λ λ + sµ −sµ
0 −λ sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

and the underlying Markov chain is irreducible. The solution for the steady-
state probability distribution can be shown to be

pT
(n,s,λ,µ) = (p0, p1, . . . , pn−1)T (2.5)

where

pi = α

i+1∏
k=1

λ

µmin{k, s}
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and

α−1 =
n∑

i=0

pi.

Here pi is the probability that there are i customers in the queueing system
in steady state and α is the normalization constant.

2.1.3 The Two-Queue Free System

In this subsection, we introduce a higher dimensional queueing system. Sup-
pose that there are two one-queue systems as discussed in Section 2.1.2. This
queueing system consists of two independent queues with the number of iden-
tical servers and waiting spaces being si and ni −si −1 (i = 1, 2) respectively.
It we let the arrival rate of customers in the queue i be λi and service rate
of the servers be µi (i = 1, 2) then the states of the queueing system can be
represented by the elements in the following set:

S = {(i, j)|0 ≤ i ≤ n1, 0 ≤ j ≤ n2}

where (i, j) represents the state that there are i customers in queue 1 and j
customers in queue 2. Thus this is a two-dimensional queueing model. If we
order the states lexicographically, then the generator matrix can be shown to
be the following n1n2 × n1n2 matrix in tensor product form [44, 52]:

A3 = In1 ⊗ A(n2,s2,λ2,µ2) + A(n1,s1,λ1,µ1) ⊗ In2 . (2.6)

Here ⊗ is the Kronecker tensor product [101, 112]. The Kronecker tensor
product of two matrices A and B of sizes p × q and m × n respectively is a
(pm) × (qn) matrix given as follows:

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B · · · · · · a1qB
a21B · · · · · · a2qB

...
...

...
...

ap1B · · · · · · apqB

⎞
⎟⎟⎟⎠ .

The Kronecker tensor product is a useful tool for representing generator ma-
trices in many queueing systems and stochastic automata networks [44, 52,
138, 194]. For this two-queue free queueing system, it is also not difficult to
show that the steady state probability distribution is given by the probability
distribution vector

p(n1,s1,λ1,µ1) ⊗ p(n2,s2,λ2,µ2). (2.7)
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Fig. 2.3. The two-queue overflow system.

2.1.4 The Two-Queue Overflow System

Now let us add the following system dynamics to the two-queue free system
discussed Section 2.1.3. In this queueing system, we allow overflow of cus-
tomers from queue 2 to queue 1 whenever queue 2 is full and there is still
waiting space in queue 1; see for instance Fig. 2.3 (Taken from [52]). This is
called the two-queue overflow system; see Kaufman [44, 52, 136].

In this case, the generator matrix is given by the following matrix:
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A4 = In1 ⊗ A(n2,s2,λ2,µ2) + A(n1,s1,λ1,µ1) ⊗ In2 + R ⊗ en2

ten2 . (2.8)

Here en2 is the unit vector (0, 0, . . . , 0, 1) and

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ2 0
−λ2 λ2

−λ2
. . .
. . . λ2

0 −λ2 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.9)

In fact
A4 = A3 + R ⊗ en2

T en2 ,

where R ⊗ en2
T en2 is the matrix describing the overflow of customers from

queue 2 to queue 1. Unfortunately, there is no analytical solution for the
generator matrix A4.

In view of the overflow queueing system, closed form solution of the steady
state probability distribution is not always available. In fact, there are a lot
applications related to queueing systems whose problem size are very large
[34, 35, 36, 43, 44, 52, 80]. Direct methods for solving the the probabil-
ity distribution such as the Gaussian elimination and LU factorization can
be found in [130, 194]. Another popular method is called the matrix ana-
lytic methods [138]. Apart from the direct methods, another class of pop-
ular numerical methods is called the iterative methods. They include those
classical iterations introduced in Chapter 1 such as Jacobi method, Gauss-
Seidel method and SOR method. Sometimes when the generator matrix has
block structure, block Jacobi method, block Gauss-Seidel method and block
SOR method are also popular methods [101]. A hybrid numerical algorithm
which combines both SOR and genetic algorithm has been also introduced by
Ching et al [215] for solving queueing systems. Conjugate gradient methods
with circulant-based preconditioners are efficient solvers for a class of Markov
chains having near-Toepltiz generator matrices. We will briefly discuss this in
the following subsection.

2.1.5 The Preconditioning of Complex Queueing Systems

In many complex queueing systems, one observe both block structure, near-
Toeplitz structure and sparsity in the generator matrices. Therefore iterative
method such as CG method can be a good solver with a suitable precondi-
tioner.

Circulant-based Preconditioners

In this subsection, we illustrate how to get a circulant preconditioner from a
generator matrix of a queueing system. The generator matrices of the queueing
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networks can be written in terms of the sum of tensor products of matrices.
Very often, a key block structure of a queueing system is the following: (n +
s + 1) × (n + s + 1) tridiagonal matrix:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −µ 0
−λ λ + µ −2µ

. . . . . . . . .
−λ λ + (s − 1)µ −sµ

−λ λ + sµ −sµ
. . . . . . . . .

−λ λ + sµ −sµ
0 −λ sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

This is the generator matrix of an M/M/s/n queue. In this queueing system,
there are s independent exponential servers, the customers arrive according
to a Poisson process of rate λ and each server has a service rate of µ.

One can observe that if s is fixed and n is large then Q is close to the fol-
lowing tridiagonal Toeplitz matrix Tri[λ,−λ−sµ, sµ]. In fact, if one considers
the following circulant matrix c(Q):

c(Q) =

⎛
⎜⎜⎜⎜⎜⎝

λ + sµ −sµ −λ
−λ λ + sµ −sµ

. . . . . . . . .
−λ λ + sµ −sµ

−sµ −λ λ + sµ

⎞
⎟⎟⎟⎟⎟⎠ . (2.11)

It is easy to see that
rank(c(Q) − Q) ≤ s + 1

independent of n for fixed s. Therefore for fixed s and large value of n, the
approximate is a good one. Moreover, c(Q) can be diagonalized by the dis-
crete Fourier Transformation and closed form solution of its eigenvalues can
be easily obtained. This is important in the convergence rate analysis of CG
method. By applying this circulant approximation to the blocks of the gen-
erator matrices, effective preconditioners were constructed and the precondi-
tioned systems were also proved to have singular values clustered around one,
see for instance Chan and Ching [44]. A number of related applications can
be found in [43, 44, 48, 50, 52, 55].

Toeplitz-Circulant-based Preconditioners

Another class of queueing systems with batch arrivals have been discussed by
Chan and Ching in [43]. The generator matrices of the queueing systems of s
identical exponential servers with service rate µ take the form
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An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −µ 0 0 0 . . . 0
−λ1 λ + µ −2µ 0 0 . . . 0

−λ2 −λ1 λ + 2µ
. . . . . .

...
... −λ2

. . . . . . −sµ
. . .

...
. . . . . . λ + sµ

. . . 0

−λn−2 −λn−3 · · · . . . . . . −sµ
−r1 −r2 −r3 · · · −rs+1 · · · sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.12)

where ri are such that each column sum of An is zero, i.e.

ri = λ −
∞∑

k=n−i

λk.

Here λ is the arrival rate and λi = λpi where pi is the probability that
an arrived batch is of size i. It is clear that the matrix is dense and the
method of circulant approximation does not work directly in this case. A
Toeplitz-circulant type of preconditioner was proposed to solve this queueing
system Chan and Ching [43]. The idea is that the generator matrix is close
to a Toeplitz matrix whose generating function has a zero on the unit circle
of order one. By factoring the zero, the quotient has no zero on the unit
circle. Using this fact, a Toeplitz-circulant preconditioner is then constructed
for the queueing system. Both the construction cost and the preconditioner
system can be solved in n log(n) operations. Moreover, the preconditioned
system was proved to have singular values clustered around one. Hence very
fast convergence rate is expected when CG method is applied to solving the
preconditioned system.

This idea was further applied to queueing systems with batch arrivals and
negative customers Ching [54]. The term “negative customer” was first intro-
duced by Gelenbe et al. [94, 95, 96] in the modelling of neural networks. Here
the role of a negative customer is to remove a number of customers waiting
in the queueing system. For example, one may consider a communication net-
work in which messages are transmitted in a packet-switching mode. When
a server fails (this corresponds to an arrival of a negative customer) during
a transmission, part of the messages will be lost. One may also consider a
manufacturing system where a negative customer represents a cancellation of
a job. These lead to many practical applications in the modelling of physical
systems.

In the queueing system, we assume that the arrival process of the batches
of customers follow a Poisson process of rate λ. The batch size again follows
a stationary distribution of

pi(i = 1, 2, . . . , ).

Here pi is the probability that an arrived batch is of size i. It is also assumed
that the arrival process of negative customers is a Poisson process with rate
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τ . The number of customers to be killed is assumed to follow a probability
distribution

bi(i = 1, 2, . . . , ).

Furthermore, if the arrived negative customer is supposed to kill i customers
in the system but the number of customers in the system is less than i, then
the queueing system will become empty. The killing strategy here is to remove
the customers in the front of the queue, i.e. “Remove the Customers at the
Head” (RCH). For i ≥ 1, we let

τi = biτ

where bi is the probability that the number of customers to be killed is i and
therefore we have

τ =
∞∑

k=1

τk.

The generator matrices of the queueing systems take the following form:

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ −u1 −u2 −u3 . . . . . . . . . −un−1

−λ1 λ + τ + µ −2µ − τ1 −τ2 −τ3 . . . . . . −τn−2

−λ2 −λ1 λ + τ + 2µ
. . .

. . .
. . .

...
... −λ2

. . .
. . . −sµ − τ1 −τ2

. . .
...

...
...

. . .
. . . λ + τ + sµ

. . .
. . . −τ3

...
...

. . .
. . .

. . .
. . .

. . . −τ2

−λn−2 −λn−3 −λn−4 · · · λ2 −λ1 λ + τ + sµ −sµ − τ1

−v1 −v2 −v3 · · · · · · −vn−2 −vn−1 τ + sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here

λ =
∞∑

i=1

λi and λi = λpi

and

u1 = τ and ui = τ −
i−1∑
k=1

τk for i = 2, 3, . . .

and vi is defined such that the ith column sum is zero. The generator matrices
enjoy the same near-Toeplitz structure. Toeplitz-circulant preconditioners can
be constructed similarly and the preconditioned systems are proved to have
singular values clustered around one, Ching [54].

Finally, we remark that there is another efficient iterative method for solv-
ing queueing systems which is not covered in the context, the multigrid meth-
ods. Interested readers may consult the following references Bramble [32],
Chan et al. [45], Chang et al [47] and McCormick [163].
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2.2 Search Engines

In this section, we introduce a very important algorithm used by Google in
ranking the webpages in the Internet. In surfing the Internet, surfers usually
use search engines to find the related webpages satisfying their queries. Unfor-
tunately, very often there can be thousands of webpages which are relevant to
the queries. Therefore a proper list of the webpages in certain order of impor-
tance is necessary. The list should also be updated regularly and frequently.
Thus it is important to seek for fast algorithm for the computing the PageR-
ank so as to reduce the time lag of updating. It turns out that this problem
is difficult. The reason is not just because of the huge size of the webpages in
the Internet but also the size keeps on growing rapidly.

PageRank has been proposed by Page et al. [166] to reflect the importance
of each webpage, see also [223]. Larry Page and Sergey Brin are the founder
of Google. In fact, one can find the following statement at Google’s website
[228]: “The heart of our software is PageRankTM, a system for ranking web
pages developed by our founders Larry Page and Sergey Brin at Stanford
University. And while we have dozens of engineers working to improve every
aspect of Google on a daily basis, PageRank continues to provide the basis
for all of our web search tools.”

A similar idea of ranking the Journals has been proposed by Garfield
[98, 99] as a measure of standing for journals, which is called the impact
factor. The impact factor of a journal is defined as the average number of
citations per recently published papers in that journal. By regarding each
webpage as a journal, this idea was then extended to measure the importance
of the webpage in the PageRank Algorithm.

The PageRank is defined as follows. Let N be the total number of webpages
in the web and we define a matrix Q called the hyperlink matrix. Here

Qij =
{

1/k if webpage i is an outgoing link of webpage j;
0 otherwise;

and k is the total number of outgoing links of webpage j. For simplicity of
discussion, here we assume that Qii > 0 for all i. This means for each webpage,
there is a link pointing to itself. Hence Q can be regarded as a transition
probability matrix of a Markov chain of a random walk. The analogy is that
one may regard a surfer as a random walker and the webpages as the states of
the Markov chain. Assuming that this underlying Markov chain is irreducible,
then the steady-state probability distribution

(p1, p2, . . . , pN )T

of the states (webpages) exists. Here pi is the proportion of time that the
random walker (surfer) visiting state (webpage) i. The higher the value of pi

is, the more important webpage i will be. Thus the PageRank of webpage i
is then defined as pi. If the Markov chain is not irreducible then one can still
follow the treatment in next subsection.
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An Example

We Consider a web of 3 webpages:1, 2, 3 such that
1 → 1, 1 → 2, 1 → 3
2 → 1, 2 → 2,
3 → 2, 3 → 3.

One can represent the relationship by the following Markov chain.

3

2

1
������������

��������������������������
�

Fig. 2.4. An example of three webpages.

The transition probability matrix of this Markov chain is then given by

Q =
1
2
3

⎛
⎝ 1/3 1/2 0

1/3 1/2 1/2
1/3 0 1/2

⎞
⎠ .

The steady state probability distribution of the Markov chain

p = (p1, p2, p3)

satisfies
p = Qp and p1 + p2 + p3 = 1.

Solving the above linear system, we get

(p1, p2, p3) = (
3
9
,
4
9
,
2
9
).

Therefore the ranking of the webpages is:

Webpage 2 > Wepbage 1 > Webpage 3.

One can also interpret the result as follows. Both 1 and 3 point to 2 and
therefore 2 is the most important. Since 2 points to 1 but not 3, 1 is more
important then 3.

Since the size of the Markov chain is huge and the time for computing the
PageRank required by Google is just a few days, direct method for solving the
steady-state probability is not desirable. Iterative methods Baldi et al. [12]
and decomposition methods Avrachenkov and Litvak [9] have been proposed



2.2 Search Engines 49

to solve the problem. Another pressing issue is that the size of the webpages
grows rapidly, and the PageRank of each webpage has to be updated regularly.
Here we seek for adaptive and parallelizable numerical algorithms for solving
the PageRank problem. One potential method is the hybrid iterative method
proposed in Yuen et al. [215]. The hybrid iterative method was first proposed
by He et al. [107] for solving the numerical solutions of PDEs and it has been
also successfully applied to solving the steady-state probability distributions
of queueing networks [215]. The hybrid iterative method combines the evo-
lutionary algorithm and the Successive Over-Relaxation (SOR) method. The
evolutionary algorithm allows the relaxation parameter w to be adaptive in
the SOR method. Since the cost of SOR method per iteration is more expan-
sive and less efficient in parallel computing for our problem (as the matrix
system is huge), here we will also consider replacing the role of SOR method
by the Jacobi Over-Relaxation (JOR) method [101, 130]. The reason is that
JOR method is easier to be implemented in parallel computing environment.
Here we present hybrid iterative methods based on SOR/JOR and evolution-
ary algorithm. The hybrid method allows the relaxation parameter w to be
adaptive in the SOR/JOR method. We give a brief mathematical discussion
on the PageRank approach. We then briefly describe the power method, a
popular approach for solving the PageRank.

2.2.1 The PageRank Algorithm

The PageRank Algorithm has been used successfully in ranking the impor-
tance of web-pages by Google [223]. Consider a web of N webpages with Q
being the hyperlink matrix. Since the matrix Q can be reducible, to tackle
this problem, one can consider the revised matrix P :

P = α

⎛
⎜⎜⎜⎝

Q11 Q12 · · · Q1N

Q21 Q22 · · · Q2N

...
...

...
...

QN1 QN2 · · · QNN

⎞
⎟⎟⎟⎠+

(1 − α)
N

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1

⎞
⎟⎟⎟⎠ (2.13)

where 0 < α < 1. In this case, the matrix P is irreducible and aperiodic,
therefore the steady state probability distribution exists and is unique [180].
Typical values for α are 0.85 and (1−1/N), see for instance [12, 223, 106]. The
value α = 0.85 is a popular one because power method works very well for
this problem [106]. However, this value can be considered to be too small and
may distort the original ranking of the webpages, see the example in Section
2.2.3.

One can interpret (2.13) as follows. The idea of the algorithm is that,
for a network of N webpages, each webpage has an inherent importance of
(1 − α)/N . If a page Pi has an importance of pi, then it will contribute an
importance of αpi which is shared among the webpages that it points to. The
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importance of webpage Pi can be obtained by solving the following linear
system of equations subject to the normalization constraint:⎛

⎜⎜⎜⎝
p1

p2

...
pN

⎞
⎟⎟⎟⎠ = α

⎛
⎜⎜⎜⎝

Q11 Q12 · · · Q1N

Q21 Q22 · · · Q2N

...
...

...
...

QN1 QN2 · · · QNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

p1

p2

...
pN

⎞
⎟⎟⎟⎠+

(1 − α)
N

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ . (2.14)

Since
N∑

i=1

pi = 1,

(2.14) can be re-written as

(p1, p2, . . . , pN )T = P (p1, p2, . . . , pN )T .

2.2.2 The Power Method

The power method is a popular method for solving the PageRank problem.
The power method is an iterative method for solving the largest eigenvalue in
modulus (the dominant eigenvalue) and its corresponding eigenvector [101].
The idea of the power method can be briefly explained as follows. Given an
n× n matrix A and suppose that (i) there is a single eigenvalue of maximum
modulus and the eigenvalues λ1, λ2, · · · , λn be labelled such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|;

(ii) there is a linearly independent set of n unit eigenvectors. This means that
there is a basis {

u(1),u(2), . . . ,u(n)
}

such that

Au(i) = λiu(i), i = 1, 2, . . . , n, and ‖u(i)‖ = 1.

Then begin with an initial vector x(0), one may write

x(0) = a1u(1) + a2u(2) + · · · + anu(n).

Now we iterate the initial vector with the matrix A as follows:

Akx(0) = a1A
ku(1) + . . . + anAku(n) = a1λ

k
1u

(1) + . . . + anλk
nu(n)

= λk
1

{
a1u(1) +

(
λ2

λ1

)k

anu(2) + . . . +
(

λn

λ1

)k

anu(n)

}
.

Since
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|λi|
|λ1|

< 1 for i = 2, . . . , n,

we have

lim
k→∞

|λi|k
|λ1|k

= 0 for i = 2, . . . , n.

Hence we have
Akx(0) ≈ a1λ

k
1u

(1).

To get an approximation for u(1) we introduce a normalization in the iteration:

rk+1 =
Ak+1x(0)

‖Akx(0)‖2

then we have

lim
k→∞

rk+1 = lim
k→∞

a1λ
k+1
1 u(1)

‖a1λk
1u(1)‖2

= λ1u(1).

It turns out that for the PageRank problem, the largest eigenvalue of P
is 1 and the corresponding eigenvector in normalized form is the PageRank
vector. The main computational cost of this method comes from the matrix-
vector multiplications. The convergence rate of the power method depends
on the ratio of |λ2/λ1| where λ1 and λ2 are respectively the largest and the
second largest eigenvales of the matrix P . It was proved by Haveliwala and
Kamvar [106] that for the second largest eigenvalue of P , we have

|λ2| ≤ α for 0 ≤ α ≤ 1.

Since λ1 = 1, the convergence rate of the power method is α, see for instance
[101]. A popular value for α is 0.85. With this value, it was mentioned in
Kamvar et al. [123] that the power method on a web data set of over 80
million pages converges in about 50 iterations.

2.2.3 An Example

In this subsection, we consider a small example of six webpages. This example
demonstrates that the value of α = 0.85 can be too small and distort the true
ranking of the webpages even if the web size is small. In the example, the
webpages are organized as follows:

Webpage 1 → 1, 3, 4, 5.
Webpage 2 → 2, 3, 5, 6.
Webpage 3 → 1, 2, 3, 4, 5, 6.
Webpage 4 → 2, 3, 4, 5.
Webpage 5 → 1, 3, 5.
Webpage 6 → 1, 6.
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From the given structure of the webpages, we have the hyperlink matrix as
follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2500 0.0000 0.1667 0.0000 0.3333 0.5000
0.0000 0.2500 0.1667 0.2500 0.0000 0.0000
0.2500 0.2500 0.1667 0.2500 0.3333 0.0000
0.2500 0.0000 0.1667 0.2500 0.0000 0.0000
0.2500 0.2500 0.1667 0.2500 0.3333 0.0000
0.0000 0.2500 0.1667 0.0000 0.0000 0.5000

⎞
⎟⎟⎟⎟⎟⎟⎠

then the steady state probability distribution is given by

(0.2260, 0.0904, 0.2203, 0.1243, 0.2203, 0.1186)T

and the ranking should be 1 > 3 ≥ 5 > 4 > 6 > 2. For α = 0.85, we have

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2375 0.0250 0.1667 0.0250 0.3083 0.4500
0.0250 0.2375 0.1667 0.2375 0.0250 0.0250
0.2375 0.2375 0.1667 0.2375 0.3083 0.0250
0.2375 0.0250 0.1667 0.2375 0.0250 0.0250
0.2375 0.2375 0.1667 0.2375 0.3083 0.0250
0.0250 0.2375 0.1667 0.0250 0.0250 0.4500

⎞
⎟⎟⎟⎟⎟⎟⎠ .

In this case, the steady state probability distribution is given by

(0.2166, 0.1039, 0.2092, 0.1278, 0.2092, 0.1334)T

and the ranking should be 1 > 3 ≥ 5 > 6 > 4 > 2. We observe that the
ranking of states 6 and 4 are inter-changed in the two approaches.

2.2.4 The SOR/JOR Method and the Hybrid Method

In this section, we present a hybrid algorithm for solving the steady state
probability of a Markov chain, Yuen et al. [215, 216]. We first give a review
on the JOR method for solving linear system, in particular solving the steady
state probability distribution of a finite Markov chain. We then introduce
the hybrid algorithm based on the SOR/JOR method and the evolutionary
algorithm. For the SOR method, it has been discussed in Chapter one. Now we
consider a non-singular linear system Bx = b, the JOR method is a classical
iterative method. The idea of JOR method can be explained as follows. We
write B = D − (D −B) where D is the diagonal part of the matrix B. Given
an initial guess of the solution, x0, the JOR iteration scheme reads:

xn+1 = (I − wD−1B)xn + wD−1b
≡ Bwxn + wD−1b.

(2.15)

The parameter w is called the relaxation parameter and it lies between 0 and
1 [11]. Clearly if the scheme converges, the limit will be the solution of
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Bx = b.

The choice of the relaxation parameter w affects the convergence rate of the
SOR/JOR method very much, see for instance [215, 216]. In general, the
optimal value of w is unknown. For more details about the SOR/JOR method
and its property, we refer readers to [11, 101].

The generator matrix P of an irreducible Markov chain is singular and
has a null space of dimension one (the null vector corresponds to the steady
state probability distribution). One possible way to solve the steady state
probability distribution is to consider the following revised system:

Ax = (P + eT
nen)x = eT

n (2.16)

where en = (0, 0, . . . , 0, 1) is a unit vector. The steady state probability distri-
bution is then obtained by normalizing the solution x, see for instance Ching
[52]. We remark that the linear system (2.16) is irreducibly diagonal dominant.
The hybrid method based on He et al. [107] and Yuen et al. [215] consists of
four major steps: initialization, mutation, evaluation and adaptation.

In the initialization step, we define the size of the population k of the
approximate steady-state probability distribution. This means that we also
define k approximates to initialize the algorithm. Then use the JOR itera-
tion in (2.15) as the “mutation step”. In the evaluation step, we evaluate how
“good” each member in the population is by measuring their residuals. In
this case, it is clear that the smaller the residual the better the approximate
and therefore the better the member in the population. In the adaptation
step, the relaxation parameters of the “weak” members are migrated (with
certain probability) towards the best relaxation parameter. The hybrid algo-
rithm reads:

Step 1: Initialization: We first generate an initial population of k (2 ≤ k ≤
n) identical steady-state probability distributions as follows:

{ei : i = 1, 2, . . . , k}

where ei = (1, 1, . . . , 1). We then compute

ri = ||Bei − b||2

and define a set of relaxation parameters {w1, w2, . . . , wk} such that

wi = τ +
(1 − 2τ)(k − i)

k − 1
, i = 1, 2, . . . , k.

Here τ ∈ (0, 1) and therefore wi ∈ [τ, 1− τ ]. We set τ = 0.01 in our numerical
experiments. We then obtain a set of ordered triples

{(ei, wi, ri) : i = 1, 2, . . . , k}.
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Step 2: Mutation: The mutation step is carried out by doing a SOR/JOR
iteration on each member xi (xi is used as the initial in the SOR/JOR) of the
population with their corresponding wi. We then get a new set of approximate
steady-state probability distributions: xi for i = 1, 2, . . . , k. Hence we have a
new set of

{(xi, wi, ri) : i = 1, 2, . . . , k}.

Goto Step 3.

Step 3: Evaluation: For each xi, we compute and update its residual

ri = ||Bxi − b||2.

This is used to measure how “good” an approximate xi is. If rj < tol for some
j then stop and output the approximate steady state probability distribution
xj . Otherwise we update ri of the ordered triples

{(xi, wi, ri) : i = 1, 2, . . . , k}

and goto Step 4.

Step 4: Adaptation: In this step, the relaxation factors wk of the weak
members (relatively large ri) in the population are moving towards the best
one with certain probability. This process is carried out by first performing a
linear search on {ri} to find the best relaxation factor, wj . We then adjust all
the other wk as follows:

wk =
{

(0.5 + δ1) ∗ (wk + wj) if (0.5 + δ1) ∗ (wk + wj) ∈ [τ, 1 − τ ]
wk otherwise,

where δ1 is a random number in [−0.01, 0.01]. Finally the best wj is also
adjusted by

wj = δ2 ∗ wj + (1 − δ2) ∗
(w1 + w2 + . . . + wj−1 + wj+1 + . . . + wk)

k − 1

where δ2 is a random number in [0.99, 1]. A new set of {wi} is then obtained
and hence

{(xi, wi, ri) : i = 1, 2, . . . , k}.

Goto Step 2.

2.2.5 Convergence Analysis

In this section, we consider the linear system Bx = b where B is strictly
diagonal dominant, i.e.
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|Bii| >

N∑
j=1,j �=i

|Bij | for i = 1, 2, . . . , N

where N is the size of the matrix.
We first prove that the hybrid algorithm with SOR method converges for

a range of w. We begin with the following lemma.

Lemma 2.3. Let B be a strictly diagonal dominant square matrix and

K = max
i

⎧⎨
⎩

m∑
j=1,j �=i

|Bij |
|Bii|

⎫⎬
⎭ < 1,

then
||Bw||∞ < 1 for 0 < w < 2/(1 + K)

where Bw is defined in (2.13).

Proof. Let x be an n × 1 vector such that ||x||∞ = 1. We are going to prove
that

||Bwx||∞ ≤ 1 for 0 < w < 2/(1 + K).

Consider
y = (D − wL)−1((1 − w)D + wU)x

and we have
(D − wL)y = ((1 − w)D + wU)x

i.e., ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B11 0 · · · · · · 0

−wB21 B22
. . .

...
...

. . . . . .
...

...
. . . 0

−wBm1 · · · · · · −wBm,m−1 Bmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

...
ym

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(1 − w)B11 wB12 · · · · · · wB1m

0 (1 − w)B22
. . .

...
...

. . . . . .
...

...
. . . wBm−1,m

0 · · · · · · 0 (1 − w)Bmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

...
xm

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Case 1: 1 ≤ w < 2/(K + 1).

For the first equation, we have
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B11y1 = (1 − w)B11x1 + w

m∑
j=2

B1jxj .

Since

|xi| ≤ 1 and
m∑

j=2

|B1j | < K|B11|,

we have
|y1| ≤ |1 − w| + wK = w(1 + K) − 1 < 1.

For the second equation, we have

B22y2 = (1 − w)B22x2 + wB21y1 + w

m∑
j=3

B2jxj .

Since

|y1| ≤ 1, |xi| ≤ 1 and
m∑

j=1,j �=2

|B2j | < K|B22|,

we have
|y2| ≤ |1 − w| + wK = w(1 + K) − 1 < 1.

Inductively, we have |yi| < 1 and hence ||y||∞ < 1. Therefore we proved that

||Bw||∞ < 1 for 1 ≤ w < 2/(1 + K).

Case 2: 0 < w < 1.

For the first equation, we have

B11y1 = (1 − w)B11x1 + w

m∑
j=2

B1jxj .

Since

|xi| ≤ 1 and
m∑

j=2

|B1j | < |B11|,

we have
|y1| < 1 − w + w = 1.

For the second equation, we have

B22y2 = (1 − w)B22x2 + wB21y1 + w

m∑
j=3

B2jxj .

Since

|y1| ≤ 1, |xi| ≤ 1 and
m∑

j=1,j �=2

|B2j | < |B22|,
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we have
|y2| < 1 − w + w = 1.

Inductively, we have |yi| < 1 and hence ||y||∞ < 1. Therefore

||Bw||∞ < 1 for 0 < w < 1.

Combining the results, we have

||Bw||∞ < 1 for 0 < w < 2/(1 + K).

Proposition 2.4. The hybrid algorithm converges for w ∈ [τ, 2/(1 + K) − τ ]
where 0 < τ < 1/(1 + K).

Proof. We note that

f(τ) = max
w∈[τ,2/(1+K)−τ ]

{||(Bw)||∞}

exists and less than one and let us denote it by 0 ≤ f(τ) < 1. Therefore in
each iteration of the hybrid method, the matrix norm ( ||.||∞ ) of the residual
is decreased by a fraction not less than f(τ). By using the fact that

||ST ||∞ ≤ ||S||∞||T ||∞,

the hybrid algorithm is convergent.

We then prove that the hybrid algorithm with JOR method converges for
a range of w. We have the following lemma.

Lemma 2.5. Let B be a strictly diagonal dominant square matrix and

K = max
i

⎧⎨
⎩

N∑
j=1,j �=i

|Bji|
|Bii|

⎫⎬
⎭ < 1,

then
||Bw||1 ≤ 1 − (1 − K)w < 1 for τ < w < 1 − τ

where Bw is defined in (2.13).

By using the similar approach in as in Proposition 2.4, one can prove that

Proposition 2.6. The hybrid iterative method converges for w ∈ [τ, 1 − τ ].

Proof. We observe that

f(τ) = max
w∈[τ,1−τ ]

{||Bw||1}

exists and less than one and let us denote it by 0 ≤ f(τ) < 1. Therefore in
each iteration of the hybrid method, the matrix norm ( ||.||1 ) of the residual
is decreased by a fraction not less than f(τ). By using the fact that

||ST ||1 ≤ ||S||1||T ||1,

the hybrid algorithm is convergent.
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We note that the matrix A in (2.14) is irreducibly diagonal dominant only
but not strictly diagonal dominant. Therefore the condition in Lemma 2.3
and 2.5 is not satisfied. However, one can always consider a regularized linear
system as follows:

(A + εI)x = b.

Here I is the identity matrix and ε > 0 can be chosen as small as possible.
Then the matrix (A+ εI) is strictly diagonal dominant but this will introduce
a small error of O(ε) to the linear system. Numerical results in Yuen et al.
[215, 216] indicate that the hybrid algorithm is very efficient in solving steady
state distribution of queueing systems and ranking webpages in the Web.
Here we present some small scale numerical results (three different data sets)
for two typical values of α in Tables 2.1 and 2.2 (Taken from [216]). Here k is
the size of population and N is the number of webpages.

Table 2.1. Number of iterations for convergence (α = 1 − 1/N).

JOR Data Set 1 Data Set 2 Data Set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k = 2 41 56 42 42 57 95 58 70 31 26 32 25
k = 3 56 60 42 42 56 75 57 61 31 35 43 25
k = 4 46 59 42 42 55 72 58 62 31 32 38 25
k = 5 56 60 43 43 56 68 57 60 32 30 36 26

SOR Data Set 1 Data Set 2 Data Set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k = 2 20 18 17 17 16 15 16 15 18 14 19 15
k = 3 30 27 17 25 16 23 16 23 18 21 29 15
k = 4 25 24 19 22 17 21 16 21 18 19 26 18
k = 5 30 28 19 23 17 21 16 20 20 20 25 17

2.3 Summary

In this chapter, we discussed two important applications of Markov chain, the
classical Markovian queueing networks and the Modern PageRank algorithm.
For the latter application, in fact, it comes from the measurement of prestige
in a network. The computation of prestige in a network is an important issue
Bonacich and Lloyd [25, 26] and it has many other applications such as social
networks Wasserman and Faust [206] and disease transmission, Bell et al. [15].
A number of methods based on the computation of eigenvectors have been
proposed in the literatures, see for instance Langville and Meyer [137]. Further
research can be done in developing models and algorithms for the case when
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Table 2.2. Number of iterations for convergence (α = 0.85).

JOR Data Set 1 Data Set 2 Data Set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k = 2 42 56 44 47 61 82 66 64 18 28 32 26
k = 3 55 60 45 52 62 81 63 62 18 36 42 26
k = 4 53 59 45 49 58 71 62 62 18 33 38 26
k = 5 53 65 45 49 61 70 64 62 18 32 37 26

SOR Data Set 1 Data Set 2 Data Set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k = 2 19 17 17 16 16 14 15 15 15 14 19 16
k = 3 28 26 17 24 16 22 15 23 15 23 29 16
k = 4 24 23 19 21 16 20 16 21 17 20 25 16
k = 5 28 26 19 21 17 21 16 20 16 20 23 16

there are negative relations in the network, Tai et al. [195]. In a network, being
chosen or nominated by a popular or powerful person (webpage) would add
one’s popularity. Instead of supporting a member, a negative relation means
being against by a member in the network.
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Re-manufacturing Systems

3.1 Introduction

In this chapter, the inventory controls of demands and returns of single-item
inventory systems is discussed. In fact, there are many research papers on
inventory control of repairable items and returns, most of them describe the
system as a closed-loop queueing network with constant number of items
inside [78, 158, 201]. Disposal of returns [127, 200] is allowed in the models
presented here. The justification for disposal is that accepting all returns will
lead to extremely high inventory level and hence very high inventory cost.
Sometimes transshipment of returns is allowed among the inventory systems
to reduce the rejection rate of returns. Other re-manufacturing models can be
found in [117, 200, 196] and good reviews and current advances of the related
topics can be found in [23, 84, 92, 132, 157].

As a modern marketing strategy to encourage the customers to buy prod-
ucts, the customers are allowed to return the bought product with full refund
within a period of one week. As a result, many customers may take advantage
of this policy and the manufacturers have to handle a lot of such returns.
Very often, the returns are still in good condition, and can be put back to
the market after checking and packaging. The first model we introduce here
attempt to model this situation. The model is a single-item inventory sys-
tem for handling returns is captured by using a queueing network. In this
model, the demands and the returns are assumed to follow two independent
Poisson processes. The returns are tested and repaired with the standard re-
quirements. Repaired returns will be put into the serviceable inventory and
non-repairable returns will be disposed. The repairing time is assumed to be
negligible. A similar inventory model with returns has been discussed in [110].
However, the model in [110] includes neither the replenishment costs nor the
transshipment of returns. In this model, the inventory system is controlled
by a popular (r,Q) continuous review policy. The inventory level of the ser-
viceable product is modelled as an irreducible continuous time Markov chain.
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The generator matrix for the model is given and a closed form solution for
the system steady state probability distribution is also derived.

Next, two independent identical inventory systems are considered and
transshipment of returns from one inventory system to another is allowed.
The joint inventory levels of the serviceable product is modelled as a two-
dimensional irreducible continuous time Markov chain. The generator matrix
for this advanced model is given and a closed form approximation of the solu-
tion of the system steady state probability distribution is derived. Analysis of
the average running cost of the joint inventory system can be carried out by
using the approximated probability distribution. The focus is on the inven-
tory cost and the replenishment cost of the system because the replenishment
lead time is assumed to be zero and there is no backlog or loss of demands.
It is shown that in the transshipment model, the rejection rate of the returns
is extremely small and decreases significantly when the re-order size (Q + 1)
is large. The model is then extended to multiple inventory/return systems
with a single depot. This kind of model is of particular interest when the re-
manufacturer has several re-cycling locations. Since the locations can be easily
connected by an information network, excessive returns can be forwarded to
the nearby locations or to the main depot directly. This will greatly cut down
the disposal rate. The handling of used machines in IBM (a big recovery net-
work) serves as a good example for the application of this model [92]. More
examples and related models can be found in [92, pp. 106-131].

Finally, a hybrid system consists of a re-manufacturing process and a
manufacturing process is discussed. The hybrid system captures the re-
manufacturing process and the system can produce serviceable product when
the return rate is zero.

The remainder of this chapter is organized as follows. In Section 3.2, a
single-item inventory model for handling returns is presented. In Section 3.3,
the model is extended to the case that lateral transshipment of returns is
allowed among the inventory systems. In Section 3.4, we discuss a hybrid re-
manufacturing system. Finally, concluding remarks are given in Section 3.5.

3.2 An Inventory Model for Returns

In this section, a single-item inventory system is presented. The demands
and returns of the product are assumed to follow two independent Poisson
processes with mean rates λ and µ respectively. The maximum inventory
capacity of the system is Q. When the inventory level is Q, any arrived return
will be disposed. A returned product is checked/repaired before putting into
the serviceable inventory. Here it is assumed that only a stationary proportion,
let us say a×100% of the returned product is repairable and a non-repairable
return will be disposed. The checking/repairing time of a returned product is
assumed to be negligible. The notations for later discussions is as follows:

(i) λ−1, the mean inter-arrival time of demands,
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(ii) µ−1, the mean inter-arrival time of returns,
(iii) a, the probability that a returned product is repairable,
(iv) Q, maximum inventory capacity,
(v) I, unit inventory cost,
(vi) R, cost per replenishment order.

An (r,Q) inventory control policy is employed as inventory control. Here,
the lead time of a replenishment is assumed to be negligible. For simplicity
of discussion, here we assume that r = 0. In a traditional (0, Q) inventory
control policy, a replenishment size of Q is placed whenever the inventory
level is 0. Here, we assume that there is no loss of demand in our model. A
replenishment order of size (Q+1) is placed when the inventory level is 0 and
there is an arrived demand. This will then clear the arrived demand and bring
the inventory level up to Q, see Fig. 3.1 (Taken from [76]). In fact, State ‘−1’
does not exist in the Markov chain, see Fig. 3.2 (Taken from [76]) for instance.

Returns
�

µ

Checking/
Repairing

�

aµ

�

Disposal (1 − a)µ

�

Replenishment

-1 0 1 Q· · · · · ·
Demands

�

λ

Fig. 3.1. The single-item inventory model.

The states of the Markov chain are ordered according to the inventory
levels in ascending order and get the following Markov chain.

The (Q + 1) × (Q + 1) system generator matrix is given as follows:

A =

0
1
...
...
Q

⎛
⎜⎜⎜⎜⎜⎝

λ + aµ −λ 0
−aµ λ + aµ −λ

. . . . . . . . .
−aµ λ + aµ −λ

−λ −aµ λ

⎞
⎟⎟⎟⎟⎟⎠ . (3.1)

The steady state probability distribution p of the system satisfies
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Fig. 3.2. The Markov chain.

Ap = 0 and 1T p = 1. (3.2)

By direct verification the following propositions and corollary were obtained.

Proposition 3.1. The steady state probability distribution p is given by

pi = K(1 − ρi+1), i = 0, 1, . . . , Q (3.3)

where
ρ =

aµ

λ
and K =

1 − ρ

(1 + Q)(1 − ρ) − ρ(1 − ρQ+1)
.

By using the result of the steady state probability in Proposition 3.1, the
following corollary is obtained.

Corollary 3.2. The expected inventory level is

Q∑
i=1

ipi =
Q∑

i=1

K(i − iρi+1) = K

(
Q(Q + 1)

2
+

QρQ+2

1 − ρ
− ρ2(1 − ρQ)

(1 − ρ)2

)
,

the average rejection rate of returns is

µpQ = µK(1 − ρQ+1)

and the mean replenishment rate is

λ × p0 ×
λ−1

λ−1 + (aµ)−1
=

λK(1 − ρ)ρ
(1 + ρ)

.

Proposition 3.3. If ρ < 1 and Q is large then

K ≈ (1 + Q)−1

and the approximated average running cost (inventory and replenishment cost)
is
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C(Q) ≈ QI

2
+

λ(1 − ρ)ρR

(1 + ρ)(1 + Q)
.

The optimal replenishment size is

Q∗ + 1 ≈

√
2λ(1 − ρ)ρR

(1 + ρ)I
=

√
2aµR

I

(
2λ

λ + aµ
− 1
)

. (3.4)

One can observe that the optimal replenishment size Q∗ increases if λ, R
increases or I decreases.

We end this section by the following remarks.

• The model can be extended to multi-item case when there is no limit in
the inventory capacity. The trick is to use independent queueing networks
to model individual products. Suppose there are s different products and
their demand rates, return rates, unit inventory costs, cost per replenish-
ment order and the probability of getting a repairable return are given by
λi, µi, Ii, Ri and ai respectively. Then the optimal replenishment size of
each product i will be given by (3.4)

Q∗
i + 1 ≈

√
2aiµiRi

Ii

(
2λi

λi + aiµi
− 1
)

for i = 1, 2, . . . , s.

• To include the inventory capacity in the system. In this case, one can have
approximations for the steady state probability distributions for the in-
ventory levels of the returns and the serviceable product if it is assumed
that capacity for storing returns is large. Then the inventory levels of the
returns form an M/M/1 queue and the output process of an M/M/1 queue
in steady-state is again a Poisson process with same mean rate, see the
lemma below.

Lemma 3.4. The output process of an M/M/1 queue in steady state is
again a Poisson process with same mean as the input rate.

Proof. We first note that if X and Y be two independent exponential ran-
dom variables with means λ−1 and µ−1 respectively. Then the probability
density function for the random variable Z = X + Y is given by

f(z) =
λµ

µ − λ
e−λz − λµ

µ − λ
e−µz.

Let the arrival rate of the M/M/1 queue be λ and the service rate of the
server be µ. There are two cases to be considered: the server is idle (the
steady-state probability is (1 − λ/µ) by (see Chapter 2) and the server is
not idle (the steady state probability is λ/µ.)
For the former case, the departure time follows f(z) (a waiting time for an
arrival plus a service time). For the latter case, the departure time follows
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µe−µz. Thus the probability density function g(z) for the departure time
is given by

(1 − λ

µ
)f(z) +

λ

µ
(µe−µz) =

λµ

µ − λ
e−λz − λµ

µ − λ
e−µz

− λ2

µ − λ
e−λz +

λ2

µ − λ
e−µz + λe−µz.

Thus
g(z) = λe−λz

is the exponential distribution. This implies that the departure process is
a Poisson process. Because from Proposition 1.35, the departure process
is a Poisson process with mean λ if and only if the inter-departure time
follows the exponential distribution with mean λ−1.

• One can also take into account the lead time of a replenishment and the
checking/repairing time of a return. In this case, it becomes a tandem
queueing network and the analytic solution for the system steady state
probability distribution is not available in general. Numerical method
based on preconditioned conjugate gradient method has been applied to
solve this type of tandem queueing system, see for instance [43, 44, 48,
50, 52, 55].

3.3 The Lateral Transshipment Model

In this section, an inventory model which consists of two independent inven-
tory systems as described in the previous section is considered. For simplicity
of discussion, both of them are assumed to be identical. A special feature
of this model is that lateral transshipment of returns between the inventory
systems is allowed. Lateral transshipment of demands has been studied in a
number of papers [49, 76]. Substantial savings can be realized by sharing of
inventory via the lateral transshipment of demands [179]. Here, this concept
is extended to the handling of returns. Recall that an arrived return will be
disposed if the inventory level is Q in the previous model. In the new model,
lateral transshipment of returns between the inventory systems is allowed
whenever one of them is full (whenever the inventory level is Q) and the other
is not yet full (the inventory level is less than Q). Denote x(t) and y(t) to
be the inventory levels of the serviceable product in the first and the second
inventory system at time t respectively. Then, the random variables x(t) and
y(t) take integral values in [0, Q]. Thus, the joint inventory process

{(x(t), y(t)), t ≥ 0}

is again a continuous time Markov chain taking values in the state space
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S = {(x, y) : x = 0, · · · , Q, y = 0, · · · , Q.}.

The inventory states were ordered lexicographically, according to x first and
then y. The generator matrix for the joint inventory system can be written
by using Kronecker tensor product as follows:

B = IQ+1 ⊗ A + A ⊗ IQ+1 + ∆ ⊗ Λ + Λ ⊗ ∆ (3.5)

where

Λ =

⎛
⎜⎜⎜⎜⎜⎝

1 0
−1 1

. . . . . .
−1 1

0 −1 0

⎞
⎟⎟⎟⎟⎟⎠ (3.6)

and

∆ =

⎛
⎜⎜⎜⎜⎜⎝

0 0
0

. . .
0

0 aµ

⎞
⎟⎟⎟⎟⎟⎠ (3.7)

and IQ+1 is the (Q+1)×(Q+1) identity matrix. The steady state probability
vector q satisfies

Bq = 0 and 1T q = 1. (3.8)

We note that the generator B is irreducible and it has a one-dimensional
null-space with a right positive null vector, see [101, 203]. The steady state
probability vector q is the normalized form of the positive null vector of B. Let
qij be the steady state probability that the inventory level of the serviceable
product is i in the first inventory system and j in the second inventory system.
Many important quantities of the system performance can be written in terms
of qij . For example the return rejection probability is qQQ. Unfortunately,
closed form solution of q is not generally available. Very often by making use
of the block structure of the generator matrix B, classical iterative methods
such as Block Gauss-Seidel (BGS) method is applied to solve the steady state
probability distribution [50, 101, 203]. In the following, instead of solving the
steady state probability distribution numerically, closed form approximation
for the probability distribution q is derived under some assumptions.

Proposition 3.5. Let p be the steady state probability distribution for the
generator matrix A in Proposition 3.1. If ρ < 1 then

||B(p ⊗ p)||∞ ≤ 4aµ

(Q + 1)2(1 − ρ)2

The probability vector q = p ⊗ p is an approximation of the steady state
probability vector when Q is large.
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Proof. The probability vector p is just the solution of (3.2). By direct verifi-
cation, one have 1t(p ⊗ p) = 1 and

(I ⊗ A + A ⊗ I)(p ⊗ p) = (p ⊗ Ap + Ap ⊗ p) = (p ⊗ 0 + 0 ⊗ p) = 0.

Therefore from (3.5)

B(p ⊗ p) = (Λ ⊗ ∆)(p ⊗ p) + (∆ ⊗ Λ)(p ⊗ p) = (Λp ⊗ ∆p) + (∆p ⊗ Λp).

One could observe that

||Λ||∞ = 2, ||p||∞ ≤ K and ||∆||∞ = aµ.

The l∞-norm of an p × q matrix Z is defined as follows:

||Z||∞ = max

⎧⎨
⎩

q∑
j=1

|Z1j |,
q∑

j=1

|Z2j |, · · · ,
q∑

j=1

|Zpj |

⎫⎬
⎭ .

Therefore,

||B(p ⊗ p)||∞ ≤ 2||Λ||∞||p||∞||∆||∞||p||∞
= 4aµK2

≤ 4aµ

(Q + 1)2(1 − ρ)2

(3.9)

If one adopt q = p ⊗ p to be the system steady state probability distri-
bution, then the approximated optimal replenishment size of each inventory
system is the same as in Proposition 3.3. By allowing transshipment of returns,
the rejection rate of returns of the two inventory systems will be decreased
from

2µK(1 − ρQ+1) ≈ 2µ

Q + 1
to

µK2(1 − ρQ+1)2 ≈ µ

(Q + 1)2
.

Note that the approximation is valid only if Q is large, the error is of order
O(Q−2).

3.4 The Hybrid Re-manufacturing Systems

In this section, we propose a hybrid system, a system consists of a re-
manufacturing process and a manufacturing process. The proposed hybrid
system captures the re-manufacturing process and the system can produce
serviceable product when the return rate is zero. The demands and the re-
turns are assumed to follow independent Poisson processes. The serviceable
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product inventory level and the outside procurements are controlled by a
popular (r,Q) continuous review policy. The inventory level of the serviceable
product is modelled as an irreducible continuous time Markov chain and the
generator matrix is constructed. It is found that the generator matrix has a
near-Toeplitz structure.

Then a direct method is proposed for solving the steady state probabili-
ties. The direct method is based on Fast Fourier Transforms (FFTs) and the
Sherman-Morrison-Woodbury Formula (Proposition 1.36). The complexity of
the method is then given and some special cases analysis are also discussed.

3.4.1 The Hybrid System

In this subsection, an inventory model which captures the re-manufacturing
process is proposed. Disposal of returned product is allowed when the return
capacity is full. In the model, there are two types of inventory to be man-
aged, the serviceable product and the returned product. The demands and
the returns are assumed to follow independent Poisson process with mean
rates λ and γ respectively. The re-manufacturing process is then modelled by
an M/M/1/N queue: a returned product acts as a customer and a reliable
re-manufacturing machine (with processing rate µ) acts as the server in the
queue. The re-manufacturing process is stopped whenever there is no space
for placing the serviceable product (ie. when the serviceable product inventory
level is Q). Here we also assume that when the return level is zero, the system
can produce at a rate of τ (exponentially distributed).

The serviceable product inventory level and the outside procurements are
controlled by a popular (r,Q) continuous review policy. This means that when
the inventory level drops to r, an outside procurement order of size (Q − r)
is placed and arrived at once. For simplicity of discussion, the procurement
level r is assumed to be −1. This means that whenever there is no serviceable
product in the system and there is an arrival of demand then a procurement
order of size (Q+1) is placed and arrived at once. Therefore the procurement
can clear the backlogged demand and bring the serviceable product inventory
to Q. We also assume that it is always possible to purchase the required
procurement. The inventory levels of both the returns and the serviceable
product are modelled as Markovian process. The capacity N for the returns
and the capacity Q for serviceable product Q are assumed to be large. Fig. 3.3
(Taken from [73, 77]) gives the framework of the re-manufacturing system.

3.4.2 The Generator Matrix of the System

In this subsection, the generator matrix for the re-manufacturing system is
constructed. Let x(t) and y(t) be the inventory levels of the returns and
the inventory levels of the serviceable products at time t respectively. Then
x(t) and y(t) take integral values in [0, N ] and [0, Q] respectively. The joint
inventory process
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Fig. 3.3. The hybrid system.

{(x(t), y(t)), t ≥ 0}
is a continuous time Markov chain taking values in the state space

S = {(x, y) : x = 0, · · · , N, y = 0, · · · , Q}.

By ordering the joint inventory states lexicographically, according to x first
and then y, the generator matrix for the joint inventory system can be written
as follows:

A1 =

⎛
⎜⎜⎜⎜⎜⎝

B0 −U 0
−γIQ+1 B −U

. . . . . . . . .
−γIQ+1 B −U

0 −γIQ+1 BN

⎞
⎟⎟⎟⎟⎟⎠ , (3.10)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
µ 0

. . . . . .
. . . . . .

0 µ 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3.11)

B0 = γIQ+1 +

⎛
⎜⎜⎜⎜⎜⎜⎝

τ + λ −λ 0
−τ τ + λ −λ

−τ
. . . −λ
. . . τ + λ −λ

−λ −τ λ

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3.12)
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B = γIQ+1 +

⎛
⎜⎜⎜⎜⎜⎝

λ + µ −λ 0
λ + µ −λ

. . . −λ
λ + µ −λ

−λ λ

⎞
⎟⎟⎟⎟⎟⎠ , (3.13)

BN = B − γIQ+1.

Here IQ+1 is the (Q+1)×(Q+1) identity matrix . The steady state probability
distribution p is required if one wants to get the performance of the system.
Note that the generator A1 is irreducible and from the Perron and Frobenius
theory [101] it is known that it has a 1-dimensional null-space with a right
positive null vector. Hence, as mentioned in Section 3.2.1, one can consider
an equivalent linear system instead.

Gx ≡ (A1 + ffT)x = f , where f = (0, . . . , 0, 1)T . (3.14)

Proposition 3.6. The matrix G is nonsingular.

However, the closed form solution of p is not generally available. Iterative
methods such as (PCG) method is efficient in solving the probability vector p
when one of the parameters N and Q is fixed, see for instance [48, 50, 52, 55].
However, when both Q and N are getting large, the fast convergence rate
of PCG method cannot be guaranteed especially when the smallest singular
value tends to zero very fast [49, 53]. Other approximation methods for solving
the problem can be found in [50]. In the following subsection, a direct method
is proposed for solving (3.14).

3.4.3 The Direct Method

We consider taking circulant approximations to the matrix blocks in A1. We
define the following circulant matrices:

c(G) =

⎛
⎜⎜⎜⎜⎜⎝

c(B̄0) −c(U)
−γIQ+1 c(B) −c(U)

. . . . . . . . .
−γIQ+1 c(B) −c(U)

−γIQ+1 c(BN )

⎞
⎟⎟⎟⎟⎟⎠ , (3.15)

where

c(U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 µ
µ 0

. . . . . .
. . . . . .

0 µ 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3.16)

(3.17)
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c(B̄0) = γIQ+1 +

⎛
⎜⎜⎜⎜⎜⎜⎝

τ + λ −λ −τ
−τ τ + λ −λ

. . . . . . −λ
. . . τ + λ −λ

−λ −τ τ + λ

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3.18)

c(B) = γIQ+1 +

⎛
⎜⎜⎜⎜⎜⎝

λ + µ −λ 0
λ + µ −λ

. . . −λ
λ + µ −λ

−λ λ + µ

⎞
⎟⎟⎟⎟⎟⎠ , (3.19)

(3.20)

c(BN ) = c(B) − γIQ+1. (3.21)

We observe that

c(U) − U = µeT
1 eQ+1, c(B̄0) − B̄0 = −τeT

1 eQ+1,

c(B) − B = µeT
Q+1eQ+1, and c(BN ) − BN = µeT

Q+1eQ+1

where
e1 = (1, 0, . . . , 0) and eQ+1 = (0, . . . , 0, 1)

are 1-by-(Q + 1) unit vectors. Here we remark that

B̄0 = B0 + τeT
Q+1eQ+1.

Therefore the matrix G is a sum of a circulant block matrix and another block
matrix with small rank except the first and the last diagonal blocks.

In view of the above formulation, the problem is equivalent to consider
the solution of the linear system having the form Az = b where A is a block-
Toeplitz matrix given by

A =

⎛
⎜⎜⎜⎝

A11 . . . . . . A1m

A21 . . . . . . A2m

...
...

...
...

Am1 . . . . . . Amm

⎞
⎟⎟⎟⎠ . (3.22)

Here
Aij = Ci−j + uT

i−jv (3.23)

where Ci−j is an n × n circulant matrix, and ui−j and v are k × n matrices
and k << m,n so that Aij is an n × n near-circulant matrix, i.e., finite rank
being less than or equal to k. We remark that the class of matrices A is
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closely related to the generator matrices of many Markovian models such as
queueing systems [50, 142, 143], manufacturing systems [48, 50, 52, 55, 58]
and re-manufacturing systems [76, 92, 201].

Next, we note that an n×n circulant matrix can be diagonalized by using
the discrete Fourier matrix Fn. Moreover, its eigenvalues can be obtained in
O(n log n) operations by using the FFT, see for instance Davis [82]. In view
of this advantage, consider

(Im ⊗ F ∗
n)A(Im ⊗ Fn) =

⎛
⎜⎜⎜⎝

D11 . . . D1m

D21 . . . D2m

...
...

...
Dm1 . . . Dmm

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

E11 . . . E1m

E21 . . . E2m

...
...

...
Em1 . . . Emm

⎞
⎟⎟⎟⎠

≡ D + E.

(3.24)

Here Dij is a diagonal matrix containing the eigenvalues of Ci−j and

Eij = (F ∗
nuT

i−j)(vFn) ≡ (xT
i−j)(y). (3.25)

Also note that

E =

⎛
⎜⎜⎜⎝

xT
0 y . . . . . . xT

1−my
xT

1 y . . . . . . xT
2−my

...
...

...
...

xT
m−1y . . . . . . xT

0 y

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

xT
0 . . . xT

1−m

xT
1 . . . xT

2−m
...

...
...

xT
m−1 . . . xT

0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y 0 . . . 0 0
0 y 0 . . . 0
...

...
. . . . . .

...
0 . . . . . . 0 y

⎞
⎟⎟⎟⎠

≡ XY.

(3.26)

Note that D is still a block-Toeplitz matrix and there exists a permutation
matrix P such that

PDPT = diag(T1, T2, . . . , Tn) (3.27)

where Ti is an m × m Toeplitz matrix. In fact direct methods for solving
Toeplitz systems that are based on the recursion formula are in constant use,
see for instance, Trench [199]. For an m×m Toeplitz matrix Ti, these methods
require O(m2) operations. Faster algorithms that require O(m log2 m) opera-
tions have been developed for symmetric positive definite Toeplitz matrices,
see Ammar and Gragg [5] for instance. The stability properties of these direct
methods are discussed in Bunch [38]. Hence by using direct methods, the lin-
ear system Dz = b can be solved in O(nm2) operations. The matrix X is an
mn × mk matrix and the matrix Y is an mk × mn matrix.

To solve the linear system, we apply the Sherman-Morrison-Woodbury
Formula (Proposition 1.36). The solution of Az = b can be written as follows:

z = D−1b − D−1X(Imk + Y D−1X)−1Y D−1b. (3.28)
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3.4.4 The Computational Cost

In this section, the computational cost of the proposed method is discussed.
The main computational cost of (3.28) consists of

(C0) FFT operations in (3.25);
(C1) Solving r = D−1b;
(C2) Solving W = D−1X;
(C3) Matrix multiplication of Y W ;
(C4) Matrix multiplication of Y r;
(C5) Solving (Imk + Y D−1X)−1r.

The operational cost for (C0) is of O(mn log n). The operational cost for (C1)
is at most O(nm2) operations by using direct solvers for Toeplitz system. The
cost for (C2) is at most O(knm3) operations in view of (C1). The operational
cost for (C3) is of O(k2nm2) because of the sparse structure of Y . The cost for
(C4) is O(knm) operations. Finally the cost of (C5) is O((km)3) operations.
Hence the overall cost will be (km3(n + k2)) operations.

In fact the nice structure of D allows us to solve Dr = b in a parallel
computer. Moreover DW = X consists of n separate linear systems (a mul-
tiple right hand sides problem). Again this can also be solved in a parallel
computer. Therefore the cost of (C1) and (C2) can be reduced by using par-
allel algorithms. Assuming that k is small, the costs of (C1) and (C2) can
be reduced to O(m2) and (O(m3)) operations time units respectively when n
parallel processors are used.

3.4.5 Some Special Cases Analysis

In this section, k is assumed to be small and some special cases of solving
(3.28) is discussed.

Case (i) When all the ui−j in (3.23) are equal, then we see that all the columns
of X are equal and the cost (C2) will be at most O(nm2) operations. Hence
the overall cost will be O(m2(m + n) + mn log n) operations.

Case (ii) If the matrix A is a block-circulant matrix, then all the matrices Ti

in (3.27) are circulant matrices. The cost of (C1) and (C2) can be reduced
to O(nm log m) and O(nm2 log m) operations respectively. Hence the overall
cost will be O(m3 + nm(m log m + log n)) operations.

Case (iii) If the matrix A is a block tri-diagonal matrix, then all the matrices
Ti in (3.27) are tri-diagonal matrices. The cost of (C0) will be O(n log n).
The cost of (C1) and (C2) can be reduced to O(nm) and O(nm2) operations
respectively. Hence the overall cost will be O(m3 +n(m2 + log n)) operations.

We end this section by the following proposition. The proposition gives
the complexity for solving the steady state probability distribution p for the
generator matrix (3.10) when Q ≈ N .
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Proposition 3.7. The steady state probability distribution p can be obtained
in O(N3) operations when Q ≈ N .

Proof. In the view of case (iii) in this section, the complexity of our method
for solving (3.14) is O(N3) when Q ≈ N while the complexity of solving (3.14)
by LU decomposition is O(N4).

3.5 Summary

In this chapter, we present the concept of re-manufacturing systems. Sev-
eral stochastic models for re-manufacturing systems are discussed. The steady
state probability distributions of the models are either obtained in closed form
or can be solved by fast numerical algorithms. The models here concern only
single-item, it will be interesting to extend the results to multi-item case.



4

Hidden Markov Model for Customers
Classification

4.1 Introduction

In this chapter, a new simple Hidden Markov Model (HMM) is proposed. The
process of the proposed HMM can be explained by the following example.

4.1.1 A Simple Example

We consider the process of choosing a die of four faces (a tetrahedron) and
recording the number of dots obtained by throwing the die [173]. Suppose we
have two dice A and B, each of them has four faces (1, 2, 3 and 4). Moreover,
Die A is fair and Die B is biased. The probability distributions of dots obtained
by throwing dice A and B are given in Table 4.1.

Table 4.1. Probability distributions of dice A and dice B.

Dice 1 2 3 4

A 1/4 1/4 1/4 1/4
B 1/6 1/6 1/3 1/3

Each time a die is to be chosen, we assume that with probability α, Die A
is chosen, and with probability (1−α), Die B is chosen. This process is hidden
as we don’t know which die is chosen. The value of α is to be determined. The
chosen die is then thrown and the number of dots (this is observable) obtained
is recorded. The following is a possible realization of the whole process:

A → 1 → A → 2 → B → 3 → A → 4 → B → 1 → B → 2 → · · · → .

We note that the whole process of the HMM can be modelled by a classical
Markov chain model with the transition probability matrix being given by
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A
B
1
2
3
4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 α α α α
0 0 1 − α 1 − α 1 − α 1 − α

1/4 1/6 0 0 0 0
1/4 1/6 0 0 0 0
1/4 1/3 0 0 0 0
1/4 1/3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The rest of the chapter is organized as follows. In Section 4.2, the estima-
tion method will be demonstrated by the example giving in Section 4.1. In
Section 4.3, the proposed method is extended to a general case. In Section
4.4, some analytic results of a special case are presented. In Section 4.5, an
application in customers classification with practical data taken from a com-
puter service company is presented and analyzed. Finally, a brief summary is
given in Section 4.6 to conclude this chapter.

4.2 Parameter Estimation

In this section, we introduce a simple estimation method of α, Ching and
Ng [60] Clearly in order to define the HMM, one has to estimate α from an
observed data sequence. We suppose that the distribution of dots (in steady
state) is given by

(
1
6
,
1
4
,
1
4
,
1
3
)T

then the question is: how to estimate α? We note that

P 2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α α 0 0 0 0
1 − α 1 − α 0 0 0 0

0 0 1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
0 0 1

6 + α
12

1
6 + α

12
1
6 + α

12
1
6 + α

12
0 0 1

3 − α
12

1
3 − α

12
1
3 − α

12
1
3 − α

12
0 0 1

3 − α
12

1
3 − α

12
1
3 − α

12
1
3 − α

12

⎞
⎟⎟⎟⎟⎟⎟⎠ ≡

(
R 0
0 P̃

)
.

If we ignore the hidden states (the first diagonal block R), then the ob-
servable states follow the transition probability matrix given by the following
matrix

P̃ =

⎛
⎜⎜⎝

1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
1
6 + α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12
1
3 − α

12

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
6 + α

12
1
6 + α

12
1
3 − α

12
1
3 − α

12

⎞
⎟⎟⎠ (1, 1, 1, 1) .
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Thus it is easy to see that the stationary probability distribution of P̃ is
given by

p = (
1
6

+
α

12
,
1
6

+
α

12
,
1
3
− α

12
,
1
3
− α

12
)T .

This probability distribution p should be consistent with the observed distri-
bution q of the observed sequence, i.e.

p = (
1
6

+
α

12
,
1
6

+
α

12
,
1
3
− α

12
,
1
3
− α

12
)T ≈ q = (

1
6
,
1
4
,
1
4
,
1
3
)T .

This suggests a nature method to estimate α. The unknown transition prob-
ability α can then be obtained by solving the minimisation problem:

min
0≤α≤1

||p − q||.

If we choose ||.|| to be the ||.||2 then one may consider the following minimi-
sation problem:

min
0≤α≤1

||p − q||22 = min
0≤α≤1

4∑
i=1

(pi − qi)2.

In this case, it is a standard constrained least squares problem and can be
solved easily. For more detailed discussion on statistical inference of a HMM,
we refer readers to the book by MacDonald and Zucchini [149].

4.3 Extension of the Method

In this section, the parameter estimation method is extended to a general
HMM with m hidden states and n observable states. In general the number
of hidden states can be more than two. Suppose the number of hidden states
is m and the stationary distribution of the hidden states is given by

α = (α1, α2, . . . , αm).

Suppose the number of observable state is n and when the hidden state is
i(i = 1, 2, . . . , m), the stationary distribution of the observable states is

(pi1, pi2, . . . , pin).

We assume that m,n and pij are known. Given an observed sequence of the
observable states, one can calculate the occurrences of each state in the se-
quence and hence the observed distribution q. Using the same trick discussed
in Section 3, if we ignore the hidden states, the observable states follow the
one-step transition probability matrix:
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P̃2 =

⎛
⎜⎜⎜⎝

p11 p21 · · · pm1

p12 p22 · · · pm2

...
...

...
...

p1n p2n · · · pmn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

α1 α2 · · · α1

α2 α2 · · · α2

...
...

...
...

αm αm · · · αm

⎞
⎟⎟⎟⎠ = p(1, 1, . . . , 1) (4.1)

where

p = (
m∑

k=1

αkpk1,

m∑
k=1

αkpk2, . . . ,

m∑
k=1

αkpkn)T .

It is easy to check that

P̃2p = p and
n∑

k=1

pk = 1.

Thus the following proposition can be proved easily.

Proposition 4.1. The vector p is the stationary probability distribution of
P̃2.

Therefore the transition probabilities of the hidden states

α = (α1, α2, . . . , αm)

can be obtained by solving
min

α
||p − q||22

subject to
m∑

k=1

αk = 1 and αk ≥ 0.

4.4 Special Case Analysis

In this section, a detailed discussion is given for the model having 2 hidden
states. In this case one may re-write (4.1) as follows:

P̄ =

⎛
⎜⎜⎜⎝

p11 p21

p12 p22

...
...

p1n p2n

⎞
⎟⎟⎟⎠
(

α1 α1 · · · α1

1 − α1 1 − α1 · · · 1 − α1

)
= p(1, 1, . . . , 1) (4.2)

where

p = (αp11 + (1 − α)p21, αp12 + (1 − α)p22, . . . , αp1n + (1 − α)p2n)T .

It is easy to check that
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P̄p = p and
n∑

i=1

pi = 1

and therefore p is the steady state probability distribution.
Suppose the observed distribution q of the observable states is given, then

α can be estimated by the following minimization problem:

min
α

||p − q||22

subject to 0 ≤ α ≤ 1 or equivalently

min
0≤α≤1

n∑
k=1

{αp1k + (1 − α)p2k − qk}2
.

The following proposition can be obtained by direct verification.

Proposition 4.2. Let

τ =

n∑
j=1

(qj − p2j)(p1j − p2j)

n∑
j=1

(p1j − p2j)2

then the optimal value of α is given as follows:

α =

⎧⎨
⎩

0 if τ ≤ 0;
τ if 0 < τ < 1;
1 if τ ≥ 1.

One may interpret the result in Proposition 4.2 as follows.

τ =
< (q − p2), (p1 − p2) >

< (p1 − p2), (p1 − p2) >
=

||q − p2||2 cos(θ)
||p1 − p2||2

. (4.3)

Here < ., . > is the standard inner product on the vector space Rn,

p1 = (p11, p12, . . . , p1n)T

and
p2 = (p21, p22, . . . , p2n)T .

Moreover, ||.||2 is the L2-norm on Rn and θ is the angle between the vectors

(q − p2) and (p1 − p2).

Two hyperplanes H1 and H2 are defined in Rn. Both hyperplanes are perpen-
dicular to the vector (p1 −p2) and Hi contains the point pi (distribution) for
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i = 1, 2, see Fig. 4.1 (Taken from [69]). From (4.3), Proposition 4.2 and Fig.
4.4, any point q′ on the left of the hyperplane H1 has the following property:

||q − p2||2 cos(θ) ≥ ||p1 − p2||2.

Hence for such q′, the optimal α is 1. For a point q′′ on the right of the
hyperplane H2, then cos(θ) ≤ 0 and hence the optimal α is zero. Lastly, for
a point q in between the two hyperplanes, the optimal α lies between 0 and
1 and the optimal value is given by τ in (4.3). This special case motivates us
to apply the HMM in the classification of customers.
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Fig. 4.1. The graphical interpretation of Proposition 4.2.

4.5 Application to Classification of Customers

In this section, the HMM discussed in the Section 4.4 is applied to the cus-
tomers classification of a computer service company. We remark that there are
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a number of classification methods such as machine learning and Bayesian
learning, interested readers can consult the book by Young and Calvert [214].
In this problem, HMM is an efficient and effective classification method but
we make no claim that HMM is the best one.

A computer service company offers four types of distant calls services I, II,
III and IV (four different periods of a day). From the customer database of the
users, the information of the expenditure distribution of 71 randomly chosen
customers is obtained. A longitudinal study has been carried out for half a year
to investigate the customers. Customers’ behavior and responses are captured
and monitored during the period of investigation. For simplicity of discussion,
the customers are classified into two groups. Among them 22 customers are
known to be loyal customers (Group A) and the other 49 customers are not
loyal customers (Group B). This classification is useful to marketing managers
when they plan any promotions. For the customers in Group A, promotions
on new services and products will be given to them. While for the customers
in Group B, discount on the current services will be offered to them to prevent
them from switching/churning to the competitor companies.

Two-third of the data are used to build the HMM and the remaining data
are used to validate the model. Therefore, 16 candidates are randomly taken
(these customers are labelled in the first 16 customers in Table 4.2) from
Group A and 37 candidates from group B. The remaining 6 candidates (the
first 6 customers in Table 4.2) from Group A and 12 candidates from Group B
are used for validating the constructed HMM. A HMM having four observable
states (I, II, III and IV) and two hidden states (Group A and Group B) is
then built.

From the information of the customers in Group A and Group B in Table
4.3, the average expenditure distributions for both groups are computed in
Table 4.3. This means that a customer in Group A (Group B) is characterized
by the expenditure distribution in the first (second) row of Table 4.3.

An interesting problem is the following. Given the expenditure distribution
of a customer, how to classify the customer correctly (Group A or Group B)
based on the information in Table 4.4? To tackle this problem, one can apply
the method discussed in previous section to compute the transition probability
α in the hidden states. This value of α can be used to classify a customer. If
α is close to 1 then the customer is likely to be a loyal customer. If α is close
to 0 then the customer is likely to be a not-loyal customer.

The values of α for all the 53 customers are listed in Table 4.2. It is
interesting to note that the values of α of all the first 16 customers (Group A)
lie in the interval [0.83, 1.00]. While the values of α of all the other customers
(Group B) lie in the interval [0.00, 0.69]. Based on the values of α obtained, the
two groups of customers can be clearly separated by setting the cutoff value β
to be 0.75. A possible decision rule can therefore be defined as follows: Classify
a customer to Group A if α ≥ β, otherwise classify the customer to Group
B. Referring to Fig. 4.1, it is clear that the customers are separated by the
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Table 4.2. Two-third of the data are used to build the HMM.

Customer I II III IV α Customer I II III IV α

1 1.00 0.00 0.00 0.00 1.00 2 1.00 0.00 0.00 0.00 1.00
3 0.99 0.01 0.00 0.00 1.00 4 0.97 0.03 0.00 0.00 1.00
5 0.87 0.06 0.04 0.03 0.98 6 0.85 0.15 0.00 0.00 0.92
7 0.79 0.18 0.02 0.01 0.86 8 0.77 0.00 0.23 0.00 0.91
9 0.96 0.01 0.00 0.03 1.00 10 0.95 0.00 0.02 0.03 1.00
11 0.92 0.08 0.00 0.00 1.00 12 0.91 0.09 0.00 0.00 1.00
13 0.83 0.00 0.17 0.00 0.97 14 0.82 0.18 0.00 0.00 0.88
15 0.76 0.04 0.00 0.20 0.87 16 0.70 0.00 0.00 0.30 0.83

17 0.62 0.15 0.15 0.08 0.69 18 0.57 0.14 0.00 0.29 0.62
19 0.56 0.00 0.39 0.05 0.68 20 0.55 0.36 0.01 0.08 0.52
21 0.47 0.52 0.00 0.01 0.63 22 0.46 0.54 0.00 0.00 0.36
23 0.25 0.75 0.00 0.00 0.04 24 0.22 0.78 0.00 0.00 0.00
25 0.21 0.01 0.78 0.00 0.32 26 0.21 0.63 0.00 0.16 0.03
27 0.18 0.11 0.11 0.60 0.22 28 0.18 0.72 0.00 0.10 0.00
29 0.15 0.15 0.44 0.26 0.18 30 0.07 0.93 0.00 0.00 0.00
31 0.04 0.55 0.20 0.21 0.00 32 0.03 0.97 0.00 0.00 0.00
33 0.00 0.00 1.00 0.00 0.10 34 0.00 1.00 0.00 0.00 0.00
35 0.00 0.00 0.92 0.08 0.10 36 0.00 0.94 0.00 0.06 0.00
37 0.03 0.01 0.96 0.00 0.13 38 0.02 0.29 0.00 0.69 0.00
39 0.01 0.97 0.00 0.02 0.00 40 0.01 0.29 0.02 0.68 0.00
41 0.00 0.24 0.00 0.76 0.00 42 0.00 0.93 0.00 0.07 0.00
43 0.00 1.00 0.00 0.00 0.00 44 0.00 1.00 0.00 0.00 0.00
45 0.00 0.98 0.02 0.00 0.00 46 0.00 0.00 0.00 1.00 0.06
47 0.00 1.00 0.00 0.00 0.00 48 0.00 0.96 0.00 0.04 0.00
49 0.00 0.91 0.00 0.09 0.00 50 0.00 0.76 0.03 0.21 0.00
51 0.00 0.00 0.32 0.68 0.07 52 0.00 0.13 0.02 0.85 0.01
53 0.00 0.82 0.15 0.03 0.00

Table 4.3. The average expenditure of Group A and B.

Group I II III IV

A 0.8806 0.0514 0.0303 0.0377
B 0.1311 0.5277 0.1497 0.1915

hyperplane Hβ . The hyperplane Hβ is parallel to the two hyperplanes H1 and
H2 such that it has a perpendicular distance of β from H2.

The decision rule is applied to the remaining 22 captured customers.
Among them, 6 customers (the first six customers in Table 4.4) belong to
Group A and 12 customers belong to Group B. Their α values are computed
and listed in Table 4.4. It is clear that if the value of β is set to be 0.75, all
the customers will be classified correctly.
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Table 4.4. The remaining one-third of the data for the validation of the HMM.

Customer I II III IV α Customer I II III IV α

1’ 0.98 0.00 0.02 0.00 1.00 2’ 0.88 0.01 0.01 0.10 1.00
3’ 0.74 0.26 0.00 0.00 0.76 4’ 0.99 0.01 0.00 0.00 1.00
5’ 0.99 0.01 0.00 0.00 1.00 6’ 0.89 0.10 0.01 0.00 1.00

7’ 0.00 0.00 1.00 0.00 0.10 8’ 0.04 0.11 0.68 0.17 0.08
9’ 0.00 0.02 0.98 0.00 0.09 10’ 0.18 0.01 0.81 0.00 0.28
11’ 0.32 0.05 0.61 0.02 0.41 12’ 0.00 0.00 0.97 0.03 0.10
13’ 0.12 0.14 0.72 0.02 0.16 14’ 0.00 0.13 0.66 0.21 0.03
15’ 0.00 0.00 0.98 0.02 0.10 16’ 0.39 0.00 0.58 0.03 0.50
17’ 0.27 0.00 0.73 0.00 0.38 18’ 0.00 0.80 0.07 0.13 0.00

4.6 Summary

In this chapter, we propose a simple HMM with estimation methods. The
framework of the HMM is simple and the model parameters can be estimated
efficiently. Application to customers classification with practical data taken
from a computer service company is presented and analyzed. Further disus-
sions on new HMMs and applications will be given in Chapter 8.



5

Markov Decision Process for Customer
Lifetime Value

5.1 Introduction

In this chapter a stochastic dynamic programming model with Markov chain
is proposed to capture the customer behavior. The advantage of using the
Markov chain is that the model can take into the account of the switch of
the customers between the company and its competitors. Therefore customer
relationships can be described in a probabilistic way, see for instance Pfeifer
and Carraway [169]. Stochastic dynamic programming is then applied to solve
the optimal allocation of promotion budget for maximizing the CLV. The
proposed model is then applied to the practical data in a computer services
company.

The customer equity should be measured in making the promotion plan
so as to achieve an acceptable and reasonable budget. A popular approach
is the Customer Lifetime Value (CLV). Kotler and Armstrong [134] defined
a profitable customer as “a person, household, or company whose revenues
over time exceeds, by an acceptable amount, the company costs consist of
attracting, selling, and servicing that customer.” This excess is called the
CLV. In some literatures, CLV is also referred to “customer equity” [19]. In
fact, some researchers define CLV as the customer equity less the acquisition
cost. Nevertheless, in this thesis CLV is defined as the present value of the
projected net cash flows that a firm expects to receive from the customer
over time [42]. Recognizing the importance in decision making, CLV has been
successfully applied in the problems of pricing strategy [18], media selection
[115] and setting optimal promotion budget [22].

To calculate the CLV, a company should estimate the expected net cash
flows receiving from the customer over time. The CLV is the present value of
that stream of cash flows. However, it is a difficult task to estimate the net
cash flows to be received from the customer. In fact, one needs to answer, for
example, the following questions:
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(i) How many customers one can attract given a specific advertising budget?
(ii) What is the probability that the customer will stay with the company?
(iii) How does this probability change with respect to the promotion budget?

To answer the first question, there are a number of advertising models, one
can find in the book by Lilien, Kotler and Moorthy [146]. The second and
the third questions give rise to an important concept, the retention rate. The
retention rate [118] is defined as “the chance that the account will remain with
the vendor for the next purchase, provided that the customer has bought from
the vendor on each previous purchase”. Jackson [118] proposed an estimation
method for the retention rate based on historical data. Other models for the
retention rate can also be found in [89, 146].

Blattberg and Deighton [22] proposed a formula for the calculation of
CLV (customer equity). The model is simple and deterministic. Using their
notations (see also [18, 19]), the CLV is the sum of two net present values:
the return from acquisition spending and the return from retention spending.
In their model, CLV is defined as

CLV = am − A︸ ︷︷ ︸
acquisition

+
∞∑

k=1

a(m − R

r
)[r(1 + d)−1]k

︸ ︷︷ ︸
retention

= am − A + a(m − R
r ) × r

(1+d−r)

(5.1)

where a is the acquisition rate, A is the level of acquisition spending, m is the
margin on a transaction, R is the retention spending per customer per year,
r is the yearly retention rate (a proportion) and d is the yearly discount rate
appropriate for marketing investment. Moreover, they also assume that the
acquisition rate a and retention rate r are functions of A and R respectively,
and are given by

a(A) = a0(1 − e−K1A)

and
(R) = r0(1 − e−K2R)

where a0 and r0 are the estimated ceiling rates, K1 and K2 are two positive
constants. In this chapter, a stochastic model (Markov decision process) is
proposed for the calculation of CLV and the promotion planning.

The rest of the chapter is organized as follows. In Section 5.2, the Markov
chain model for modelling the behavior of the customers is presented. In Sec-
tion 5.3, stochastic dynamic programming is then used to calculate the CLV
of the customers for three different scenarios:

(i) infinite horizon without constraint (without limit in the number of promo-
tions),
(ii) finite horizon (with limited number of promotions), and
(iii) infinite horizon with constraints (with limited number of promotions).
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In Section 5.4, we consider higher-order Markov decision process with appli-
cations to CLV problem. Finally a summary is given to conclude the chapter
in Section 5.5.

5.2 Markov Chain Models for Customers’ Behavior

In this section, Markov chain model for modelling the customers’ behavior in
a market is introduced. According to the usage of the customer, a company
customer can be classified into N possible states

{0, 1, 2, . . . , N − 1}.

Take for example, a customer can be classified into four states (N = 4):
low-volume user (state 1), medium-volume user (state 2) and high-volume
user (state 3) and in order to classify all customers in the market, state 0 is
introduced. A customer is said to be in state 0, if he/she is either a customer
of the competitor company or he/she did not purchase the service during the
period of observation. Therefore at any time a customer in the market belongs
to exactly one of the states in {0, 1, 2, . . . , N − 1}. With these notations, a
Markov chain is a good choice to model the transitions of customers among
the states in the market.

A Markov chain model is characterized by an N ×N transition probability
matrix P . Here Pij(i, j = 0, 1, 2, . . . , N − 1) is the transition probability that
a customer will move to state i in the next period given that currently he/she
is in state j. Hence the retention probability of a customer in state i(i =
0, 1, . . . , N − 1) is given by Pii. If the underlying Markov chain is assumed to
be irreducible then the stationary distribution p exists, see for instance [180].
This means that there is an unique

p = (p0, p1, . . . , pN−1)T

such that

p = Pp,

N−1∑
i=0

pi = 1, pi ≥ 0. (5.2)

By making use of the stationary distribution p, one can compute the retention
probability of a customer as follows:

N−1∑
i=1

(
pi∑N−1

j=1 pj

)
(1 − Pi0) = 1 − 1

1 − p0

N−1∑
i=1

piP0i

= 1 − p0(1 − P00)
1 − p0

.

(5.3)

This is the probability that a customer will purchase service with the company
in the next period. Apart from the retention probability, the Markov model
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can also help us in computing the CLV. In this case ci is defined to be the
revenue obtained from a customer in state i. Then the expected revenue is
given by

N−1∑
i=0

cipi. (5.4)

The above retention probability and the expected revenue are computed under
the assumption that the company makes no promotion (in a non-competitive
environment) through out the period. The transition probability matrix P can
be significantly different when there is promotion making by the company. To
demonstrate this, an application is given in the following subsection. Moreover,
when promotions are allowed, what is the best promotion strategy such that
the expected revenue is maximized? Similarly, what is the best strategy when
there is a fixed budget for the promotions, e.g. the number of promotions
is fixed? These issues will be discussed in the following section by using the
stochastic dynamic programming model.

5.2.1 Estimation of the Transition Probabilities

In order to apply the Markov chain model, one has to estimate the transi-
tion probabilities from the practical data. In this subsection, an example in
the computer service company is used to demonstrate the estimation. In the
captured database of customers, each customer has four important attributes
(A,B, C, D). Here A is the “Customer Number”, each customer has an unique
identity number. B is the “Week”, the time (week) when the data was cap-
tured. C is the “Revenue” which is the total amount of money the customer
spent in the captured week. D is the “Hour”, the number of hours that the
customer consumed in the captured week.

The total number of weeks of data available is 20. Among these 20 weeks,
the company has a promotion for 8 consecutive weeks and no promotion for
other 12 consecutive weeks. The behavior of customers in the period of promo-
tion and no-promotion will be investigated. For each week, all the customers
are classified into four states (0, 1, 2, 3) according to the amount of “hours”
consumed, see Table 5.1. We recall that a customer is said to be in state 0, if
he/she is a customer of competitor company or he/she did not use the service
for the whole week.

Table 5.1. The four classes of customers.

State 0 1 2 3

Hours 0.00 1 − 20 21 − 40 > 40

From the data, one can estimate two transition probability matrices, one
for the promotion period (8 consecutive weeks) and the other one for the
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no-promotion period (12 consecutive weeks). For each period, the number of
customers switching from state i to state j is recorded. Then, divide it by
the total number of customers in the state i, one can get the estimations for
the one-step transition probabilities. Hence the transition probability matrices
under the promotion period P (1) and the no-promotion period P (2) are given
respectively below:

P (1) =

⎛
⎜⎜⎝

0.8054 0.4163 0.2285 0.1372
0.1489 0.4230 0.3458 0.2147
0.0266 0.0992 0.2109 0.2034
0.0191 0.0615 0.2148 0.4447

⎞
⎟⎟⎠

and

P (2) =

⎛
⎜⎜⎝

0.8762 0.4964 0.3261 0.2380
0.1064 0.4146 0.3837 0.2742
0.0121 0.0623 0.1744 0.2079
0.0053 0.0267 0.1158 0.2809

⎞
⎟⎟⎠ .

P (1) is very different from P (2). In fact, there can be more than one type of
promotion in general, the transition probability matrices for modelling the
behavior of the customers can be more than two.

5.2.2 Retention Probability and CLV

The stationary distributions of the two Markov chains having transition prob-
ability matrices P (1) and P (2) are given respectively by

p(1) = (0.2306, 0.0691, 0.0738, 0.6265)T

and
p(2) = (0.1692, 0.0285, 0.0167, 0.7856)T .

The retention probabilities (cf. (5.3)) in the promotion period and no-promotion
period are given respectively by 0.6736 and 0.5461. It is clear that the reten-
tion probability is significantly higher when the promotion is carried out.

From the customer data in the database, the average revenue of a customer
is obtained in different states in both the promotion period and no-promotion
period, see Table 5.2 below. We remark that in the promotion period, a big
discount was given to the customers and therefore the revenue was significantly
less than the revenue in the no-promotion period.
From (5.4), the expected revenue of a customer in the promotion period (as-
sume that the only promotion cost is the discount rate) and no-promotion
period are given by 2.42 and 17.09 respectively.

Although one can obtain the CLVs of the customers in the promotion pe-
riod and the no-promotion period, one would expect to calculate the CLV in a
mixture of promotion and no-promotion periods. Especially when the promo-
tion budget is limited (the number of promotions is fixed) and one would like
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Table 5.2. The average revenue of the four classes of customers.

State 0 1 2 3

Promotion 0.00 6.97 18.09 43.75

No-promotion 0.00 14.03 51.72 139.20

to obtain the optimal promotion strategy. Stochastic dynamic programming
with Markov process provides a good approach for solving the above prob-
lems. Moreover, the optimal stationary strategy for the customers in different
states can also be obtained by solving the stochastic dynamic programming
problem.

5.3 Stochastic Dynamic Programming Models

The problem of solving the optimal promotion strategy can be fitted into
the framework of stochastic dynamic programming models. In this section,
stochastic dynamic programming models are presented for maximizing the
CLV under optimal promotion strategy. The notations of the model are given
as follows:

(i) N , the total number of states (indexed by i = 0, 1, . . . , N − 1);
(ii) Ai, the set containing all the actions in state i (indexed by k);
(iii) T , number of months remained in the planning horizon
(indexed by t = 1, . . . , T );
(iv) dk, the resources required for carrying out the action k in each period;
(v) c

(k)
i , the revenue obtained from a customer in state i with

the action k in each period;
(vi) p

(k)
ij , the transition probability for customer moving from state j

to state i under the action k in each period;
(vii) α, discount rate.

Similar to the MDP introduced in Chapter 1, the value of an optimal policy
vi(t) is defined to be the total expected revenue obtained in the stochastic
dynamic programming model with t months remained for a customer in state
i for i = 0, 1, . . . , N − 1 and t = 1, 2, . . . , T . Therefore, the recursive relation
for maximizing the revenue is given as follows:

vi(t) = max
k∈Ai

⎧⎨
⎩c

(k)
i − dk + α

N−1∑
j=0

p
(k)
ji vj(t − 1)

⎫⎬
⎭ . (5.5)

In the following subsections, three different CLV models based on the above re-
cursive relation are considered. They are infinite horizon without constraints,
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finite horizon with hard constraints and infinite horizon with constraints. For
each case, an application with practical data in a computer service company
is presented.

5.3.1 Infinite Horizon without Constraints

The problem is considered as an infinite horizon stochastic dynamic program-
ming. From the standard results in stochastic dynamic programming [209],
for each i, the optimal values vi for the discounted infinite horizon Markov
decision process satisfy the relationship

vi = max
k∈Ai

⎧⎨
⎩c

(k)
i − dk + α

N−1∑
j=0

p
(k)
ji vj

⎫⎬
⎭ . (5.6)

Therefore we have

vi ≥ c
(k)
i − dk + α

N−1∑
j=0

p
(k)
ji vj (5.7)

for each i. In fact, the optimal values vi are the smallest numbers (the least
upper bound over all possible policy values) that satisfy these inequalities.
This suggests that the problem of determining the vi’s can be transformed
into the following linear programming problem [4, 208, 209]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x0 =
N−1∑
i=0

vi

subject to

vi ≥ c
(k)
i − dk + α

N−1∑
j=0

p
(k)
ji vj , for i = 0, . . . , N − 1;

vi ≥ 0 for i = 0, . . . , N − 1.

(5.8)

The above linear programming problem can be solved easily by using EXCEL
spreadsheet. In addition, a demonstration EXCEL file is available at the fol-
lowing site [224], see also Fig 5.1 (Taken from [70]). Return to the model for
the computer service company, there are 2 actions available (either (P ) pro-
motion or (NP ) no-promotion) for all possible states. Thus Ai = {P,NP} for
all i = 0, . . . , N − 1. Moreover, customers are classified into 4 clusters, there-
fore N = 4 (possible states of a customer are 0, 1, 2, 3). Since no promotion
cost is incurred for the action (NP ), therefore dNP = 0. For simplification, d
is used to denote the only promotion cost instead of dP in the application.

Table 5.4 presents optimal stationary policies (i.e., to have promotion Di =
P or no-promotion Di = NP depends on the state i of customer) and the
corresponding revenues for different discount factors α and fixed promotion
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Fig. 5.1. EXCEL for solving infinite horizon problem without constraint.

costs d. For instance, when the promotion cost is 0 and the discount factor is
0.99, then the optimal strategy is that when the current state is 0 or 1, the
promotion should be done i.e. D0 = D1 = P , and when the current state is
2 or 3, no promotion is required, i.e. D2 = D3 = NP , (see the first column
of the upper left hand box of Table 5.3). The other values can be interpreted
similarly. From the numerical examples, the following conclusions are drawn.

• When the fixed promotion cost d is large, the optimal strategy is that the
company should not conduct any promotion on the active customers and
should only conduct promotion scheme to both inactive (purchase no ser-
vice) customers and customers of the competitor company. However, when
d is small, the company should take care of the low-volume customers to
prevent this group of customers from churning to the competitor compa-
nies.

• It is also clear that the CLV of a high-volume user is larger than the CLV
of other groups.
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• The CLVs of each group depend on the discount rate α significantly. Here
the discount rate can be viewed as the technology depreciation of the
computer services in the company. Therefore, in order to generate the
revenue of the company, new technology and services should be provided.

Table 5.3. Optimal stationary policies and their CLVs.

d = 0 d = 1 d = 2

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 4791 1149 687 4437 1080 654 4083 1012 621

v0 1112 204 92 1023 186 83 934 168 74
v1 1144 234 119 1054 216 110 965 198 101
v2 1206 295 179 1118 278 171 1030 261 163
v3 1328 415 296 1240 399 289 1153 382 281

D0 P P P P P P P P P
D1 P P P P P P P P P
D2 NP NP NP NP NP NP NP NP NP
D3 NP NP NP NP NP NP NP NP NP

d = 3 d = 4 d = 5

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 3729 943 590 3375 879 566 3056 827 541

v0 845 151 65 755 134 58 675 119 51
v1 877 181 94 788 164 88 707 151 82
v2 942 245 156 854 230 151 775 217 145
v3 1066 366 275 978 351 269 899 339 264

D0 P P P P P P P P P
D1 P P NP P NP NP NP NP NP
D2 NP NP NP NP NP NP NP NP NP
D3 NP NP NP NP NP NP NP NP NP

5.3.2 Finite Horizon with Hard Constraints

In the computer service and telecommunication industry, the product life cy-
cle is short, e.g., it is usually one year. Therefore, the case of finite horizon
with limited budget constraint is considered. This problem can also be solved
efficiently by using stochastic dynamic programming and the optimal rev-
enues obtained in the previous section is used as the boundary conditions.
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The model’s parameters are defined as follows:

n = number of weeks remaining;
p = number of possible promotions remaining.

The recursive relation for the problem is given as follows:

vi(n, p) = max {c(P )
i − dP + α

∑N−1
j=0 p

(P )
ji vj(n − 1, p − 1),

c
(NP )
i − dNP + α

∑N−1
j=0 p

(NP )
ji vj(n − 1, p)}

(5.9)

for n = 1, . . . , nmax and p = 1, . . . , pmax and

vi(n, 0) = c
(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(n − 1, 0) (5.10)

for n = 1, . . . , nmax. The above dynamic programming problem can be solved
easily by using spreadsheet EXCEL. A demonstration EXCEL file can be
found at the following site [225], see also Fig. 5.2 (Taken from [70]). In the
numerical experiment of the computer service company, the length of planning
period is set to be nmax = 52 and the maximum number of promotions is
pmax = 4. By solving the dynamic programming problem, the optimal values
and promotion strategies are listed in Table 5.4. The optimal solution in the
table is presented as follows:

(t1, t2, t3, t4, r∗),

where r∗ is the optimal expected revenue, and ti is the promotion week of
the optimal promotion strategy and “-” means no promotion. Findings are
summarized as follows:

• For different values of the fixed promotion cost d, the optimal strategy for
the customers in states 2 and 3 is to conduct no promotion.

• While for those in state 0, the optimal strategy is to conduct all the four
promotions as early as possible.

• In state 1, the optimal strategy depends on the value of d. If d is large, then
no promotion will be conducted. However, when d is small, promotions are
carried out and the strategy is to put the promotions as late as possible.

5.3.3 Infinite Horizon with Constraints

For comparisons, the model in Section 5.3.2 is extended to the infinite hori-
zon case. Similar to the previous model, the finite number of promotions
available is denoted by pmax. Then the value function vi(p), which represents
the optimal discounted utility starting at state i when there are p number of
promotions remaining, is the unique fixed point of the equations:
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Fig. 5.2. EXCEL for solving finite horizon problem without constraint.

vi(p)

= max

⎧⎨
⎩c

(P )
i − dP + α

N−1∑
j=0

p
(P )
ji vj(p − 1), c(NP )

i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(p)

⎫⎬
⎭ ,

(5.11)

for p = 1, . . . , pmax, and

vi(0) = c
(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(0). (5.12)
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Table 5.4. Optimal promotion strategies and their CLVs.

α State 0 State 1 State 2 State 3

0.9 (1, 2, 3, 4, 67) (1, 45, 50, 52, 95) (-,-,-,-,158) (-,-,-,-,276)
d = 0 0.95 (1, 2, 3, 4, 138) (45, 48, 50, 51, 169) (-,-,-,-,234) (-,-,-,-,335)

0.99 (1, 2, 3, 4, 929) (47, 49, 50, 51, 963) (-,-,-,-,1031) (-,-,-,-,1155)

0.9 (1, 2, 3, 4, 64) (47, 49, 51, 52, 92) (-,-,-,-,155) (-,-,-,-,274)
d = 1 0.95 (1, 2, 3, 4, 133) (47, 49, 51, 52, 164) (-,-,-,-,230) (-,-,-,-,351)

0.99 (1, 2, 3, 4, 872) (47, 49, 51, 52, 906) (-,-,-,-,974) (-,-,-,-,1098)

0.9 (1, 2, 3, 4, 60) (49, 50, 51, 52, 89) (-,-,-,-,152) (-,-,-,-,271)
d = 2 0.95 (1, 2, 3, 4, 128) (48, 50, 51, 52, 160) (-,-,-,-,225) (-,-,-,-,347)

0.99 (1, 2, 3, 4, 815) (48, 49, 51, 52, 849) (-,-,-,-,917) (-,-,-,-,1041)

0.9 (1, 2, 3, 4, 60) (−,−,−,−, 87) (-,-,-,-,150) (-,-,-,-,269)
d = 3 0.95 (1, 2, 3, 4, 123) (49, 50, 51, 52, 155) (-,-,-,-,221) (-,-,-,-,342)

0.99 (1, 2, 3, 4, 758) (48, 50, 51, 52, 792) (-,-,-,-,860) (-,-,-,-,984)

0.9 (1, 2, 3, 4, 54) (−,−,−,−, 84) (-,-,-,-,147) (-,-,-,-,266)
d = 4 0.95 (1, 2, 3, 4, 119) (−,−,−,−, 151) (-,-,-,-,217) (-,-,-,-,338)

0.99 (1, 2, 3, 4, 701) (49, 50, 51, 52, 736) (-,-,-,-,804) (-,-,-,-,928)

0.9 (1, 2, 3, 4, 50) (-,-,-,-,81) (-,-,-,-,144) (-,-,-,-,264)
d = 5 0.95 (1, 2, 3, 4, 114) (-,-,-,-,147) (-,-,-,-,212) (-,-,-,-,334)

0.99 (1, 2, 3, 4, 650) (-,-,-,-,684) (-,-,-,-,752) (-,-,-,-,876)

Since [p(k)
ij ] is a transition probability matrix, the set of linear equations (5.12)

with four unknowns has a unique solution. We note that (5.11) can be com-
puted by the value iteration algorithm, i.e. as the limit of vi(n, p) (computed
in Section 5.3.2), as n tends to infinity. Alternatively, it can be solved by linear
programming [4]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x0 =
N−1∑
i=0

pmax∑
p=1

vi(p)

subject to

vi(p) ≥ c
(P )
i − d1 + α

N−1∑
j=0

p
(P )
ji vj(p − 1),

for i = 0, . . . , N − 1, p = 1, . . . , pmax;

vi(p) ≥ c
(NP )
i − d2 + α

N−1∑
j=0

p
(NP )
ji vj(p),

for i = 0, . . . , N − 1, p = 1, . . . , pmax.

We note that vi(0) is not included in the linear programming constraints and
the objective function; vi(0) is solved before hand using (5.12). A demonstra-
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tion EXCEL file can be found at the following site [226], see also Fig. 5.3
(Taken from [70]).

Fig. 5.3. EXCEL for solving infinite horizon problem with constraints.

Tables 5.5 and 5.6 give the optimal values and promotion strategies of the
computer service company. For instance, when the promotion cost is 0 and
the discount factor is 0.99, then the optimal strategy is that when the current
state is 1, 2 or 3, the promotion should be done when there are some available
promotions, i.e. D1(p) = D2(p) = D3(p) = P for p = 1, 2, 3, 4, and when the
current state is 0, no promotion is required, i.e. D0(p) = NP for p = 1, 2, 3, 4.
Their corresponding CLVs vi(p) for different states and different numbers of
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remaining promotion are also listed (see the first column in the left hand side
of Table 5.6.

From Tables 5.5 and 5.6, the optimal strategy for the customers in states
1, 2 and 3 is to conduct no promotion. Moreover, it is not affected by the
promotion cost and the discount factor. These results are slightly different
from those for the finite horizon case. However, the optimal strategy is to
conduct all the four promotions to customer with state 0 as early as possible.

Table 5.5. Optimal promotion strategies and their CLVs.

d = 0 d = 1 d = 2

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 11355 3378 2306 11320 3344 2277 11277 3310 2248

v0(1) 610 117 55 609 116 54 608 115 53
v1(1) 645 149 85 644 148 84 643 147 84
v2(1) 713 215 149 712 214 148 711 213 147
v3(1) 837 337 267 836 336 267 845 335 266
v0(2) 616 122 60 614 120 58 612 118 56
v1(2) 650 154 89 648 152 87 647 150 86
v2(2) 718 219 152 716 218 151 714 216 149
v3(2) 842 341 271 840 339 269 839 338 268
v1(3) 656 158 92 654 156 90 650 153 88
v2(3) 724 224 155 722 221 153 718 219 151
v3(3) 848 345 273 846 343 271 842 340 270
v0(4) 628 131 67 624 128 63 620 124 60
v1(4) 662 162 95 658 159 92 654 158 89
v2(4) 730 228 157 726 225 155 722 221 152
v3(4) 854 349 276 850 346 273 846 343 271

D0(1) P P P P P P P P P
D1(1) NP NP NP NP NP NP NP NP NP
D2(1) NP NP NP NP NP NP NP NP NP
D3(1) NP NP NP NP NP NP NP NP NP
D0(2) P P P P P P P P P
D1(2) NP NP NP NP NP NP NP NP NP
D2(2) NP NP NP NP NP NP NP NP NP
D3(2) NP NP NP NP NP NP NP NP NP
D0(3) P P P P P P P P P
D1(3) NP NP NP NP NP NP NP NP NP
D3(3) NP NP NP NP NP NP NP NP NP
D0(4) P P P P P P P P P
D1(4) NP NP NP NP NP NP NP NP NP
D2(4) NP NP NP NP NP NP NP NP NP
D3(4) NP NP NP NP NP NP NP NP NP
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Table 5.6. Optimal promotion strategies and their CLVs.

d = 3 d = 4 d = 5

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 11239 3276 2218 11200 3242 2189 11161 3208 2163

v0(1) 607 114 52 606 113 51 605 112 50
v1(1) 641 146 83 641 146 82 640 145 81
v2(1) 710 212 146 709 211 145 708 211 145
v3(1) 834 334 265 833 333 264 832 332 264
v0(2) 610 116 54 608 114 52 606 112 50
v1(2) 645 149 84 643 147 83 641 145 81
v2(2) 713 214 148 711 213 146 709 211 145
v3(2) 837 336 266 835 334 265 833 333 264
v0(3) 613 119 56 610 116 53 607 113 50
v1(3) 647 151 86 645 148 83 642 146 81
v2(3) 715 216 149 713 214 147 710 211 145
v3(3) 839 338 268 837 336 266 834 333 264
v0(4) 616 121 57 612 117 54 608 113 50
v1(4) 650 152 87 646 149 84 643 146 81
v2(4) 718 218 150 714 215 147 711 212 145
v3(4) 842 340 269 838 337 266 835 334 265

D0(1) P P P P P P P P P
D1(1) NP NP NP NP NP NP NP NP NP
D2(1) NP NP NP NP NP NP NP NP NP
D3(1) NP NP NP NP NP NP NP NP NP
D0(2) P P P P P P P P P
D1(2) NP NP NP NP NP NP NP NP NP
D2(2) NP NP NP NP NP NP NP NP NP
D3(2) NP NP NP NP NP NP NP NP NP
D0(3) P P P P P P P P P
D1(3) NP NP NP NP NP NP NP NP NP
D2(3) NP NP NP NP NP NP NP NP NP
D3(3) NP NP NP NP NP NP NP NP NP
D0(4) P P P P P P P P P
D1(4) NP NP NP NP NP NP NP NP NP
D2(4) NP NP NP NP NP NP NP NP NP
D3(4) NP NP NP NP NP NP NP NP NP



102 5 Markov Decision Process for Customer Lifetime Value

5.4 Higher-order Markov decision process

The MDP presented in previous section is a first-order type, i.e., the transition
probabilities depend on the current state only. A brief introduction has been
given in Chapter 1. For the HDMP, the transition probabilities depend on the
current state and a number of previous states. For instance, the probabilities
of a second-order MDP moving from state si to state sj depend only on the
latest two states, the present state si and the previous state sh. The transition
probability is denoted by phij . In this section, we are interested in studying a
Higher-order Markov Decision Process (HMDP) with applications to the CLV
problems.

In the infinite horizon case, there are infinite number of policies with the
initial state si and the previous state sh. The policy D prescribes an alterna-
tive, say k∗, for the transition out of states sh and state si. The probability
of being in state sj after one transition is p

(k∗)
hij and this probability is re-

written as p(1, j). Now using the alternatives directed by D, one can calculate
the probabilities of being in the various states after two transitions; these
probabilities can be denoted by

p(2, l) for l = 0, 1, . . . , N − 1.

Similarly one can calculate the probability p(n, j) of being in state si and state
sh after n transitions. Denoting by D(n, h, i) the alternative that D prescribes
for use after n transitions if the system is in state sj , the expected reward to
be earned by D on the (n + 1)-transition would be

N−1∑
j=0

p(n, j)qD(n,h,i)
j (5.13)

and the present value of this sum is

αn
N−1∑
j=0

p(n, j)qD(n,h,i)
j . (5.14)

Thus the total expected reward of D is given by

q
(k∗)
i +

∞∑
n=1

αn
N−1∑
j=0

p(n, j)qD(n,h,i)
j . (5.15)

Choosing Q such that

|q(k)
l | ≤ Q for all l = 0, 1, . . . , N − 1. (5.16)

and k ∈ Ai, the sum is absolutely convergent. This sum is called the value of
the policy D, and it is denoted by whi(D). It is clear that

|whi(D)| ≤ Q(1 − α)−1. (5.17)
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5.4.1 Stationary policy

A stationary policy is a policy that the choice of alternative depends only on
the state the system is in and is independent of n. D(h, i) is defined to be the
stationary policy with the current state si and the previous sh. For a Markov
decision process with infinite horizon and discount factor α, 0 < α < 1, the
value of an optimal policy is defined as follows:

vhi = lub {whi(D)|D a policy with initial state si and previous state sh}(5.18)

where lub is the standard abbreviation for least upper bound.

Proposition 5.1. For a Markov decision process with infinite horizon, dis-
count factor α, where 0 < α < 1, and

uhi = max
k∈Ai

{q(k)
i + α

N−1∑
j=0

p
(k)
hijvij}, h, i = 0, 1, . . . , N − 1. (5.19)

Then, for each h, i, uhi = vhi.

Proof. Fixing h, i = 0, 1, . . . , N − 1, let D be any policy with initial state
si and previous state sh. Suppose D prescribes alternative k∗ on the first
transition out of sh, si; and denote by D̄ij the associated one-step-removed
policy. Then

whi(D) = q
(k∗)
i + α

N−1∑
j=0

p
(k∗)
hij wij(D̄ij)

≤ q
(k∗)
i + α

N−1∑
j=0

p
(k∗)
hij vij

≤ max
k∈Ai

{q(k)
i + α

N−1∑
j=0

p
(k)
hijvij} = uhi.

Therefore uhi is an upper bound for the set

{whi(D)|D a policy with initial state si previous state sh}

and
vhi = lub {whi(D)} ≤ uhi.

Considering an alternative khi such that

uhi = max
k∈Ai

{q(k)
i + α

N−1∑
j=0

p
(k)
hijvij} = q

(khi)
i + α

N−1∑
j=0

p
(khi)
hij vij .

For any given ε > 0 and for each j, a policy D∗
hi is chosen with initial state si

and previous state sh such that
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vhi − ε < whi(D∗
hi).

Define a policy D with initial state si and previous state sh as follows: use
alternative khi out of states sh and state si, then for each h, i if the system
moves to state sj on the first transition, policy D∗

ij is used thereafter. We have

uhi = q
(khi)
i + α

N−1∑
j=0

p
(khi)
hij vij

≤ q
(khi)
i + α

N−1∑
j=0

p
(khi)
hij (wij(D∗

ij) + ε)

= q
(khi)
i + α

N−1∑
j=0

p
(khi)
hij wij(D∗

ij) + αε

N−1∑
j=0

p
(khi)
hij

= whi(D) + αε

< vhi + ε.

Since ε is arbitrary, uhi ≤ vhi. The result follows.

Proposition 5.2. (Stationary Policy Theorem) Given a Markov decision pro-
cess with infinite horizon and discount factor α, 0 < α < 1, choose, for each
h, i, an alternative khi such that

max
k∈Ai

{q(k)
i + α

N−1∑
j=0

p
(k)
hijvij} = q

(khi)
i + α

N−1∑
j=0

p
(khi)
hij vij .

Define the stationary policy D by D(h, i) = khi. Then for each h, i, whi(D) =
vhi.

Proof. Since

vhi = q
(khi)
i + α

N−1∑
j=0

p
(khi)
hij vij ,

we have
v = q + αPv

where
v = [v0,0, v0,1, . . . v0,N−1, v1,0, . . . vN−1,N−1]T ,

q = [q0, q1, . . . , qN−1, q0, . . . , qN−1]T ,

and
P = [p(khi)

hij ].

The superscript are omitted in the above vectors. For 0 < α < 1, the matrix
(I − αP ) is nonsingular and the result follows.
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According to the above two propositions, the optimal stationary policy
can be obtained by solving the following LP problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min {x0,0 + x0,1 + · · · + x0,N−1 + x1,0 + · · · + xN−1,N−1}
subject to

xhi ≥ q
(k)
i + α

N−1∑
j=0

p
(k)
hijxij , h, i = 0, 1, . . . , N − 1,

k ∈ Ai.

(5.20)

5.4.2 Application to the calculation of CLV

In previous sections, a first-order MDP is applied to a computer service com-
pany. In this section, the same set of customers’ database is used with the
HMDP. Comparison of two models will be given, Ching et al. [72].

The one-step transition probabilities are given in Section 5.3. Similarly, one
can estimate the second-order (two-step) transition probabilities. Given that
the current state i and previous state h, the number of customers switching
to state j is recorded. Then, divide it by the total number of customers in the
current state i and previous state j. The values obtained are the second-order
transition probabilities. The transition probabilities under the promotion and
no-promotion period are given respectively in Table 5.7.

Table 5.7. The second-order transition probabilities.

Promotion No-Promotion

States 0 1 2 3 0 1 2 3

(0,0) 0.8521 0.1225 0.0166 0.0088 0.8957 0.0904 0.0098 0.0041
(0,1) 0.5873 0.3258 0.0549 0.0320 0.6484 0.3051 0.0329 0.0136
(0,2) 0.4471 0.3033 0.1324 0.1172 0.5199 0.3069 0.0980 0.0753
(0,3) 0.3295 0.2919 0.1482 0.2304 0.4771 0.2298 0.1343 0.1587
(1,0) 0.6739 0.2662 0.0394 0.0205 0.7287 0.2400 0.0227 0.0086
(1,1) 0.3012 0.4952 0.1661 0.0375 0.3584 0.5117 0.1064 0.0234
(1,2) 0.1915 0.4353 0.2169 0.1563 0.2505 0.4763 0.1860 0.0872
(1,3) 0.1368 0.3158 0.2271 0.3203 0.1727 0.3750 0.2624 0.1900
(2,0) 0.5752 0.2371 0.1043 0.0834 0.6551 0.2253 0.0847 0.0349
(2,1) 0.2451 0.4323 0.2043 0.1183 0.3048 0.4783 0.1411 0.0757
(2,2) 0.1235 0.3757 0.2704 0.2304 0.2032 0.3992 0.2531 0.1445
(2,3) 0.1030 0.2500 0.2630 0.3840 0.1785 0.2928 0.2385 0.2901
(3,0) 0.4822 0.2189 0.1496 0.1494 0.6493 0.2114 0.0575 0.0818
(3,1) 0.2263 0.3343 0.2086 0.2308 0.2678 0.4392 0.1493 0.1437
(3,2) 0.1286 0.2562 0.2481 0.3671 0.2040 0.3224 0.2434 0.2302
(3,3) 0.0587 0.1399 0.1855 0.6159 0.1251 0.1968 0.1933 0.4848
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The transition probability from state 0 to state 0 is very high in the first-
order model for both promotion and no-promotion period. However, in the
second-order model, the transition probabilities

(0, 0) → 0, (1, 0) → 0, (2, 0) → 0 and (3, 0) → 0

are very different. It is clear that the second-order Markov chain model can
better capture the customers’ behavior than the first-order Markov chain
model.

In Tables 5.8, 5.9 and 5.10, the optimal stationary policy is given for
the first-order and the second-order MDP respectively for different values of
discount factor α and promotion cost d. Once again, (P) represents to conduct
promotion and (NP) represents to make no promotion. It is found that the
optimal stationary policies for both models are consistent in the sense that
Di = Dii for i = 0, 1, 2, 3 in all the tested cases. For the second-order case, the
optimal stationary policy Dii depends not only on states (the optimal policy
depends on the current state only in the first-order model) but also on the
value of α and d. It is observed that the second-order Markov decision process
always gives better objective value.

5.5 Summary

Finally, we end this chapter by the following summary. In this chapter,
stochastic dynamic programming models are proposed for the optimization
of CLV. Both cases of infinite horizon and finite horizon with budget con-
straints are discussed. The former case can be solved by using linear program-
ming techniques, the later problem can be solved by using dynamic program-
ming approach. For both cases, they can be implemented easily in an EXCEL
spreadsheet. The models are then applied to practical data of a computer ser-
vice company. The company makes use of the proposed CLV model to make
and maintain value-laden relationships with the customers. We also extend
the idea of MDP to a higher-order setting. Optimal stationary policy is also
obtained in this case.

Further research can be done in promotion strategy through advertising.
Advertising is an important tool in modern marketing. The purpose of adver-
tising is to enhance potential users’ responses to the company by providing
information for choosing a particular product or service. A number of mar-
keting models can be found in Lilien et al. [146] and the references therein. It
has been shown that a pulsation advertising policy is effective, Mesak et al.
[150, 151, 152, 153] and Ching et al. [74]. It will be interesting to incorporate
the pulsation advertising policy in the CLV model.
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Table 5.8. Optimal strategies when the first-order MDP is used.

d = 0 d = 1 d = 2

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 4791 1149 687 4437 1080 654 4083 1012 621

v0 1112 204 92 1023 186 83 934 168 74
v1 1144 234 119 1054 216 110 965 198 101
v2 1206 295 179 1118 278 171 1030 261 163
v3 1328 415 296 1240 399 289 1153 382 281

D0 P P P P P P P P P
D1 P P P P P P P P P
D2 NP NP NP NP NP NP NP NP NP
D3 NP NP NP NP NP NP NP NP NP

d = 3 d = 4 d = 5

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 3729 943 590 3375 879 566 3056 827 541

v0 845 151 65 755 134 58 675 119 51
v1 877 181 94 788 164 88 707 151 82
v2 942 245 156 854 230 151 775 217 145
v3 1066 366 275 978 351 269 899 339 264

D0 P P P P P P P P P
D1 P P NP P NP NP NP NP NP
D2 NP NP NP NP NP NP NP NP NP
D3 NP NP NP NP NP NP NP NP NP
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Table 5.9. Optimal strategies when the second-order MDP is used.

d = 0 d = 1 d = 2

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 19001 5055 3187 17578 4785 3066 16154 4520 2950

v00 1034 177 74 943 158 65 853 140 56
v01 1081 217 108 991 200 100 901 182 93
v02 1168 299 184 1080 282 177 991 266 170
v03 1309 433 312 1220 417 305 1132 401 298
v10 1047 188 83 956 169 74 866 152 66
v11 1110 242 129 1020 224 120 930 207 112
v12 1195 322 204 1107 306 196 1019 290 190
v13 1347 466 339 1259 450 333 1171 434 326
v20 1071 209 102 981 191 93 891 174 85
v21 1135 265 149 1046 247 141 957 230 133
v22 1217 341 221 1129 325 214 1041 310 207
v23 1370 487 358 1283 471 352 1195 456 345
v30 1094 230 120 1004 212 112 915 195 104
v31 1163 290 171 1074 273 163 985 256 156
v32 1239 359 236 1151 343 229 1062 327 223
v33 1420 531 398 1333 516 391 1245 501 385

D00 P P P P P P P P P
D01 P P P P P NP P NP NP
D02 NP NP NP NP NP NP NP NP NP
D03 NP NP NP NP NP NP NP NP NP
D10 P P P P P P P P P
D11 P P P P P P P P P
D12 NP NP NP NP NP NP NP NP NP
D13 NP NP NP NP NP NP NP NP NP
D20 P P P P P P P P P
D21 P P P P P P P P P
D22 NP NP NP NP NP NP NP NP NP
D23 NP NP NP NP NP NP NP NP NP
D30 P P P P P P P P P
D31 P P P P P P P P P
D32 P NP NP P NP NP P NP NP
D33 NP NP NP NP NP NP NP NP NP
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Table 5.10. Optimal strategies when the second-order MDP is used.

d = 3 d = 4 d = 5

α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90 α = 0.99 α = 0.95 α = 0.90

x0 14731 4277 2858 13572 4148 2825 13224 4093 2791

v00 763 124 50 690 117 49 670 115 48
v01 811 167 87 739 159 86 717 156 84
v02 902 251 164 830 243 162 809 240 160
v03 1044 386 293 972 378 290 951 375 288
v10 776 135 59 703 127 57 682 124 55
v11 841 191 107 768 182 105 745 179 103
v12 930 275 184 858 267 182 836 263 180
v13 1083 420 321 1012 412 319 990 409 317
v20 801 158 79 728 150 77 707 146 74
v21 867 214 127 794 206 124 771 201 121
v22 953 295 202 881 287 200 859 284 198
v23 1107 442 340 1035 434 338 1014 430 336
v30 825 179 97 752 171 95 731 167 93
v31 896 240 149 823 231 147 800 227 144
v32 973 313 218 901 305 216 879 301 213
v33 1158 487 381 1087 480 379 1065 476 377

D00 P P NP NP NP NP NP NP NP
D01 P NP NP NP NP NP NP NP NP
D02 NP NP NP NP NP NP NP NP NP
D03 NP NP NP NP NP NP NP NP NP
D10 P P P P P P P P P
D11 P P NP P NP NP P NP NP
D12 NP NP NP NP NP NP NP NP NP
D13 NP NP NP NP NP NP NP NP NP
D20 P P P P P P P P P
D21 P P P P P P P P P
D22 NP NP NP NP NP NP NP NP NP
D23 NP NP NP NP NP NP NP NP NP
D30 P P P P P P P P P
D31 P P P P P P P P P
D32 P NP NP P NP NP NP NP NP
D33 NP NP NP NP NP NP NP NP NP
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Higher-order Markov Chains

6.1 Introduction

Data sequences or time series occur frequently in many real world applications.
One of the most important steps in analyzing a data sequence (or time series)
is the selection of an appropriate mathematical model for the data. Because
it helps in predictions, hypothesis testing and rule discovery. A data sequence
{X(n)} can be logically represented as a vector

(X(1), X(2), · · · , X(T )),

where T is the length of the sequence, and X(i) ∈ DOM(A) (1 ≤ i ≤ T ),
associated with a defined semantic and a data type. In our context, we consider
and assume other types used can be mapped to one of these two types. The
domains of attributes associated with these two types are called numeric and
categorical respectively. A numeric domain consists of real numbers. A domain
DOM(A) is defined as categorical if it is finite and unordered, e.g., for any
a, b ∈ DOM(A), either a = b or a �= b, see for instance [102]. Numerical data
sequences have been studied in detail, see for instance [33]. Mathematical tools
such as Fourier transform and spectral analysis are employed frequently in the
analysis of numerical data sequences. Many different time sequences models
have been proposed and developed in the literatures, see for instance [33].

For categorical data sequences, there are many situations that one would
like to employ higher-order Markov chain models as a mathematical tool, see
for instance [2, 140, 147, 149, 174]. A number of applications can be found in
the literatures [114, 149, 175, 207]. For example, in sales demand prediction,
products are classified into several states: very high sales volume, high sales
volume, standard, low sales volume and very low sales volume (categorical
type: ordinal data). A higher-order Markov chain model has been used in
fitting observed data and apply to the wind turbine design. Alignment of
sequences (categorical type: nominal data) is an important topic in DNA
sequence analysis. It involves searching of patterns in a DNA sequence of
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huge size. In these applications and many others, one would like to
(i) characterize categorical data sequences for the purpose of comparison and
classification; or
(ii) to model categorical data sequences and hence to make predictions in the
control and planning process.
It has been shown that higher-order Markov chain models can be a promising
approach for these purposes [114, 174, 175, 207].

The remainder of this chapter is organized as follows. In Section 6.2, we
present the higher-order Markov chain model. Estimation methods for the
model parameters are also discussed. In Section 6.3, the higher-order Markov
chain model is applied to a number of applications such as DNA sequences,
sales demand predictions and web page predictions. Further extension of the
model is then discussed in Section 6.4. In Section 6.5, we apply the model to
the Newsboy’s problem, a classical problem in management sciences. Finally
a summary is given in Section 6.6.

6.2 Higher-order Markov Chains

In the following, we assume that each data point X(n) in a categorical data
sequence takes values in the set

M ≡ {1, 2, . . . , m}

and m is finite, i.e., a sequence has m possible categories or states. The conven-
tional model for a k-th order Markov chain has (m−1)mk model parameters.
The major problem in using such kind of model is that the number of param-
eters (the transition probabilities) increases exponentially with respect to the
order of the model. This large number of parameters discourages people from
using a higher-order Markov chain directly.

In [174], Raftery proposed a higher-order Markov chain model which in-
volves only one additional parameter for each extra lag. The model can be
written as follows:

P (X(n) = j0 | X(n−1) = j1, . . . , X
(n−k) = jk) =

k∑
i=1

λiqj0ji
(6.1)

where
k∑

i=1

λi = 1

and Q = [qij ] is a transition matrix with column sums equal to one, such that

0 ≤
k∑

i=1

λiqj0ji ≤ 1, j0, ji ∈ M. (6.2)
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The constraint in (6.2) is to guarantee that the right-hand-side of (6.1) is
a probability distribution. The total number of independent parameters in
this model is of size (k + m2). Raftery proved that (6.1) is analogous to the
standard AR(n) model in the sense that each additional lag, after the first is
specified by a single parameter and the autocorrelations satisfy a system of lin-
ear equations similar to the Yule-Walker equations. Moreover, the parameters
qj0ji and λi can be estimated numerically by maximizing the log-likelihood of
(6.1) subjected to the constraints (6.2). However, this approach involves solv-
ing a highly non-linear optimization problem. The proposed numerical method
neither guarantees convergence nor a global maximum even if it converges.

6.2.1 The New Model

In this subsection, we extend Raftery’s model [174] to a more general higher-
order Markov chain model by allowing Q to vary with different lags. Here we
assume that the weight λi is non-negative such that

k∑
i=1

λi = 1. (6.3)

It should be noted that (6.1) can be re-written as

X(n+k+1) =
k∑

i=1

λiQX(n+k+1−i) (6.4)

where X(n+k+1−i) is the probability distribution of the states at time (n +
k + 1 − i). Using (6.3) and the fact that Q is a transition probability matrix,
we note that each entry of X(n+k+1) is in between 0 and 1, and the sum of
all entries is also equal to 1. In Raftery’s model, it does not assume λ to be
non-negative and therefore the additional constraints (6.2) should be added
to guarantee that X(n+k+1) is the probability distribution of the states.

Raftery’s model in (6.4) can be generalized as follows:

X(n+k+1) =
k∑

i=1

λiQiX(n+k+1−i). (6.5)

The total number of independent parameters in the new model is (k + km2).
We note that if

Q1 = Q2 = . . . = Qk

then (6.5) is just the Raftery’s model in (6.4).
In the model we assume that X(n+k+1) depends on X(n+i) (i = 1, 2, . . . , k)

via the matrix Qi and weight λi. One may relate Qi to the i-step transition
matrix of the process and we will use this idea to estimate Qi. Here we as-
sume that each Qi is an non-negative stochastic matrix with column sums
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equal to one. Before we present our estimation method for the model param-
eters we first discuss some properties of our proposed model in the following
proposition.

Proposition 6.1. If Qk is irreducible and λk > 0 such that

0 ≤ λi ≤ 1 and
k∑

i=1

λi = 1

then the model in (6.5) has a stationary distribution X̄ when n → ∞ in-
dependent of the initial state vectors X(0),X(1), . . . ,X(k−1). The stationary
distribution X̄ is also the unique solution of the following linear system of
equations:

(I −
n∑

i=1

λiQi)X̄ = 0 and 1T X̄ = 1.

Here I is the m-by-m identity matrix (m is the number of possible states taken
by each data point) and 1 is an m × 1 vector of ones.

Proof. We first note that if λk = 0, then this is not an kth order Markov chain.
Therefore without loss of generality, one may assume that λk > 0. Secondly if
Qk is not irreducible, then we consider the case that λk = 1 and in this case,
clearly there is no unique stationary distribution for the system. Therefore Qk

is irreducible is a necessary condition for the existence of a unique stationary
distribution.

Now let
Y(n+k+1) = (X(n+k+1),X(n+k), . . . ,X(n+2))T

be an nm × 1 vector. Then one may write

Y(n+1) = RY(n)

where

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1Q1 λ2Q2 · · · λn−1Qn−1 λnQn

I 0 · · · 0 0

0 I 0
...

...
. . . . . . . . . 0

0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (6.6)

is an km × km square matrix. We then define

R̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1Q1 I 0 0 · · · · · · 0
... 0 I 0

...
... 0 0

. . . . . .
...

...
...

. . . . . . . . . . . . 0

λn−1Qn−1

...
. . . . . . I

λnQn 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.7)
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We note that R and R̃ have the same characteristic polynomial in τ :

det[(−1)k−1((λ1Q1 − τI)τk−1 +
k∑

i=2

λiQiτ
k−i)].

Thus R and R̃ have the same set of eigenvalues.
It is clear that R̃ is an irreducible stochastic matrix with column sums

equal to one. Then from Perron-Frobenius Theorem [11, p. 134], all the eigen-
values of R̃ (or equivalently R) lie in the interval (0, 1] and there is exactly
one eigenvalue equal to one. This implies that

lim
n→∞

n︷ ︸︸ ︷
R . . . R = lim

n→∞
(R)n = VUT

is a positive rank one matrix as R is irreducible. Therefore we have

lim
n→∞

Y(n+k+1) = lim
n→∞

(R)nY(k+1)

= V(UtY(k+1))
= αV.

Here α is a positive number because Yk+1 �= 0 and is non-negative. This
implies that X(n) also tends to a stationary distribution as t goes to infinity.
Hence we have

lim
n→∞

X(n+k+1) = lim
n→∞

k∑
i=1

λiQiX(n+k+1−i)

and therefore we have

X̄ =
k∑

i=1

λiQiX̄.

The stationary distribution vector X̄ satisfies

(I −
k∑

i=1

λiQi)X̄ = 0 with 1T X̄ = 1. (6.8)

The normalization constraint is necessary as the matrix

(I −
k∑

i=1

λiQi)

has an one-dimensional null space. The result is then proved.

We remark that if some λi are equal to zero, one can rewrite the vector
Yn+k+1 in terms of Xi where λi are nonzero. Then the model in (6.5) still has
a stationary distribution X̄ when n goes to infinity independent of the initial
state vectors. Moreover, the stationary distribution X̄ can be obtained by
solving the corresponding linear system of equations with the normalization
constraint.
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6.2.2 Parameters Estimation

In this subsection, we present efficient methods to estimate the parameters
Qi and λi for i = 1, 2, . . . , k. To estimate Qi, one may regard Qi as the i-
step transition matrix of the categorical data sequence {X(n)}. Given the
categorical data sequence {X(n)}, one can count the transition frequency f

(i)
jl

in the sequence from State l to State j in the i-step. Hence one can construct
the i-step transition matrix for the sequence {X(n)} as follows:

F (i) =

⎛
⎜⎜⎜⎜⎝

f
(i)
11 · · · · · · f

(i)
m1

f
(i)
12 · · · · · · f

(i)
m2

...
...

...
...

f
(i)
1m · · · · · · f

(i)
mm

⎞
⎟⎟⎟⎟⎠ . (6.9)

From F (i), we get the estimates for Qi = [q(i)
lj ] as follows:

Q̂i =

⎛
⎜⎜⎜⎜⎝

q̂
(i)
11 · · · · · · q̂

(i)
m1

q̂
(i)
12 · · · · · · q̂

(i)
m2

...
...

...
...

q̂
(i)
1m · · · · · · q̂

(i)
mm

⎞
⎟⎟⎟⎟⎠ (6.10)

where

q̂
(i)
lj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
(i)
lj

m∑
l=1

f
(i)
lj

if
m∑

l=1

f
(i)
lj �= 0

0 otherwise.

(6.11)

We note that the computational complexity of the construction of F (i) is of
O(L2) operations, where L is the length of the given data sequence. Hence the
total computational complexity of the construction of {F (i)}k

i=1 is of O(kL2)
operations. Here k is the number of lags.

The following proposition shows that these estimators are unbiased.

Proposition 6.2. The estimators in (6.11) satisfies

E(f (i)
lj ) = q

(i)
lj E

⎛
⎝ m∑

j=1

f
(i)
lj

⎞
⎠ .

Proof. Let T be the length of the sequence, [q(i)
lj ] be the i-step transition

probability matrix and X̄l be the steady state probability that the process is
in state l. Then we have
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E(f (i)
lj ) = T · X̄l · q(i)

lj

and

E(
m∑

j=1

f
(i)
lj ) = T · X̄l · (

m∑
j=1

q
(i)
lj ) = T · X̄l.

Therefore we have

E(f (i)
lj ) = q

(i)
lj · E(

m∑
j=1

f
(i)
lj ).

In some situations, if the sequence is too short then Q̂i (especially Q̂k)
contains a lot of zeros (therefore Q̂n may not be irreducible). However, this
did not occur in the tested examples. Here we propose the second method
for the parameter estimation. Let W(i) be the probability distribution of the
i-step transition sequence, then another possible estimation for Qi can be
W(i)1t. We note that if W(i) is a positive vector, then W(i)1t will be a
positive matrix and hence an irreducible matrix.

Proposition 6.1 gives a sufficient condition for the sequence X(n) to con-
verge to a stationary distribution X. Suppose X(n) → X̄ as n goes to infinity
then X̄ can be estimated from the sequence {X(n)} by computing the propor-
tion of the occurrence of each state in the sequence and let us denote it by X̂.
From (6.8) one would expect that

k∑
i=1

λiQ̂iX̂ ≈ X̂. (6.12)

This suggests one possible way to estimate the parameters

λ = (λ1, . . . , λk)

as follows. One may consider the following minimization problem:

min
λ

||
k∑

i=1

λiQ̂iX̂ − X̂||

subject to
k∑

i=1

λi = 1, and λi ≥ 0, ∀i.

Here ||.|| is certain vector norm. In particular, if ||.||∞ is chosen, we have the
following minimization problem:

min
λ

max
l

∣∣∣∣∣
[

k∑
i=1

λiQ̂iX̂ − X̂

]
l

∣∣∣∣∣
subject to



118 6 Higher-order Markov Chains

k∑
i=1

λi = 1, and λi ≥ 0, ∀i.

Here [·]l denotes the lth entry of the vector. The constraints in the optimiza-
tion problem guarantee the existence of the stationary distribution X. Next
we see that the above minimization problem can be formulated as a linear
programming problem:

min
λ

w

subject to ⎛
⎜⎜⎜⎝

w
w
...
w

⎞
⎟⎟⎟⎠ ≥ X̂ −

[
Q̂1X̂ | Q̂2X̂ | · · · | Q̂nX̂

]
⎛
⎜⎜⎜⎝

λ1

λ2

...
λn

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

w
w
...
w

⎞
⎟⎟⎟⎠ ≥ −X̂ +

[
Q̂1X̂ | Q̂2X̂ | · · · | Q̂nX̂

]
⎛
⎜⎜⎜⎝

λ1

λ2

...
λn

⎞
⎟⎟⎟⎠ ,

w ≥ 0,
k∑

i=1

λi = 1, and λi ≥ 0, ∀i.

We can solve the above linear programming problem efficiently and obtain the
parameters λi. In next subsection, we will demonstrate the estimation method
by a simple example.

Instead of solving an min-max problem, one can also choose the ||.||1 and
formulate the following minimization problem:

min
λ

m∑
l=1

∣∣∣∣∣
[

k∑
i=1

λiQ̂iX̂ − X̂

]
l

∣∣∣∣∣
subject to

k∑
i=1

λi = 1, and λi ≥ 0, ∀i.

The corresponding linear programming problem is given as follows:

min
λ

m∑
l=1

wl

subject to
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⎜⎜⎜⎝

w1

w2

...
wm

⎞
⎟⎟⎟⎠ ≥ X̂ −

[
Q̂1X̂ | Q̂2X̂ | · · · | Q̂kX̂

]
⎛
⎜⎜⎜⎝

λ1

λ2

...
λk

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

w1

w2

...
wm

⎞
⎟⎟⎟⎠ ≥ −X̂ +

[
Q̂1X̂ | Q̂2X̂ | · · · | Q̂kX̂

]
⎛
⎜⎜⎜⎝

λ1

λ2

...
λk

⎞
⎟⎟⎟⎠ ,

wi ≥ 0, ∀i,

k∑
i=1

λi = 1, and λi ≥ 0, ∀i.

In the above linear programming formulation, the number of variables is equal
to k and the number of constraints is equal to (2m + 1). The complexity of
solving a linear programming problem is O(k3L) where n is the number of
variables and L is the number of binary bits needed to store all the data (the
constraints and the objective function) of the problem [91].

We remark that other norms such as ||.||2 can also be considered. In this
case, it will result in a quadratic programming problem. It is known that in
approximating data by a linear function [79, p. 220], ||.||1 gives the most robust
answer, ||.||∞ avoids gross discrepancies with the data as much as possible and
if the errors are known to be normally distributed then ||.||2 is the best choice.
In the tested examples, we only consider the norms leading to solving linear
programming problems.

6.2.3 An Example

We consider a sequence {X(n)} of three states (m = 3) given by

{1, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2}. (6.13)

The sequence {X(n)} can be written in vector form

X(1) = (1, 0, 0)T , X(2) = (1, 0, 0)T , X(3) = (0, 1, 0)T , . . . , X(20) = (0, 1, 0)T .

We consider k = 2, then from (6.13) we have the transition frequency matrices

F (1) =

⎛
⎝1 3 3

6 1 1
1 3 0

⎞
⎠ and F (2) =

⎛
⎝1 4 1

3 2 3
3 1 0

⎞
⎠ . (6.14)

Therefore from (6.14) we have the i-step transition probability matrices (i =
1, 2) as follows:
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Q̂1 =

⎛
⎝ 1/8 3/7 3/4

3/4 1/7 1/4
1/8 3/7 0

⎞
⎠ and Q̂2 =

⎛
⎝ 1/7 4/7 1/4

3/7 2/7 3/4
3/7 1/7 0

⎞
⎠ (6.15)

and
X̂ = (

2
5
,
2
5
,
1
5
)T .

Hence we have
Q̂1X̂ = (

13
35

,
57
140

,
31
140

)T ,

and
Q̂2X̂ = (

47
140

,
61
140

,
8
35

)T .

To estimate λi one can consider the optimization problem:

min
λ1,λ2

w

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w ≥ 2
5
− 13

35
λ1 −

47
140

λ2

w ≥ −2
5

+
13
35

λ1 +
47
140

λ2

w ≥ 2
5
− 57

140
λ1 −

61
140

λ2

w ≥ −2
5

+
57
140

λ1 +
61
140

λ2

w ≥ 1
5
− 31

140
λ1 −

8
35

λ2

w ≥ −1
5

+
31
140

λ1 +
8
35

λ2

w ≥ 0, λ1 + λ2 = 1, λ1, λ2 ≥ 0.

The optimal solution is

(λ∗
1, λ

∗
2, w

∗) = (1, 0, 0.0286),

and we have the model
X(n+1) = Q̂1X(n). (6.16)

We remark that if we do not specify the non-negativity of λ1 and λ2, the
optimal solution becomes

(λ∗∗
1 , λ∗∗

2 , w∗∗) = (1.80,−0.80, 0.0157),

the corresponding model is
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X(n+1) = 1.80Q̂1X(n) − 0.80Q̂2X(n−1). (6.17)

Although w∗∗ is less than w∗, the model (6.17) is not suitable. It is easy to
check that

1.80Q̂1

⎛
⎝ 1

0
0

⎞
⎠− 0.80Q̂2

⎛
⎝ 0

1
0

⎞
⎠ =

⎛
⎝−0.2321

1.1214
0.1107

⎞
⎠ ,

therefore λ∗∗
1 and λ∗∗

2 are not valid parameters.
We note that if we consider the minimization problem:

min
λ1,λ2

w1 + w2 + w3

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 ≥ 2
5
− 13

35
λ1 −

47
140

λ2

w1 ≥ −2
5

+
13
35

λ1 +
47
140

λ2

w2 ≥ 2
5
− 57

140
λ1 −

61
140

λ2

w2 ≥ −2
5

+
57
140

λ1 +
61
140

λ2

w3 ≥ 1
5
− 31

140
λ1 −

9
35

λ2

w3 ≥ −1
5

+
31
140

λ1 +
9
35

λ2

w1, w2, w3 ≥ 0, λ1 + λ2 = 1, λ1, λ2 ≥ 0.

The optimal solution is the same as the previous min-max formulation and is
equal to

(λ∗
1, λ

∗
2, w

∗
1 , w∗

2 , w∗
3) = (1, 0, 0.0286, 0.0071, 0.0214).

6.3 Some Applications

In this section we apply our model to some data sequences. The data sequences
are the DNA sequence and the sales demand data sequence. Given the state
vectors X(i), i = n− k, n− k + 1, . . . , k − 1, the state probability distribution
at time n can be estimated as follows:

X̂(n) =
k∑

i=1

λiQ̂iX(n−i).

In many applications, one would like to make use of the higher-order Markov
chain models for the purpose of prediction. According to this state probability
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distribution, the prediction of the next state X̂(n) at time n can be taken as
the state with the maximum probability, i.e.,

X̂(n) = j, if [X̂(n)]i ≤ [X̂(n)]j , ∀1 ≤ i ≤ m.

To evaluate the performance and effectiveness of the higher-order Markov
chain model, a prediction accuracy r is defined as

r =
1
T

T∑
t=k+1

δt,

where T is the length of the data sequence and

δt =
{

1, if X̂(t) = X(t)

0, otherwise.

Using the example in the previous section, two possible prediction rules can
be drawn as follows: ⎧⎨

⎩
X̂(n+1) = 2, if X(n) = 1,

X̂(n+1) = 1, if X(n) = 2,

X̂(n+1) = 1, if X(n) = 3

or ⎧⎨
⎩

X̂(n+1) = 2, if X(n) = 1,

X̂(n+1) = 3, if X(n) = 2,

X̂(n+1) = 1, if X(n) = 3.

The prediction accuracy r for the sequence in (6.13) is equal to 12/19 for
both prediction rules. While the prediction accuracies of other rules for the
sequence in (6.13) are less than the value 12/19.

Next we present other numerical results on different data sequences are
discussed. In the following tests, we solve min-max optimization problems to
determine the parameters λi of higher-order Markov chain models. However,
we remark that the results of using the ||.||1 optimization problem as discussed
in the previous section are about the same as that of using the min-max
formulation.

6.3.1 The DNA Sequence

In order to determine whether certain short DNA sequence (a categorical data
sequence of four possible categories: A,C,G and T) occurred more often than
would be expected by chance, Avery [8] examined the Markovian structure
of introns from several other genes in mice. Here we apply our model to the
introns from the mouse αA-crystallin gene see for instance [175]. We compare
our second-order model with the Raftery’s second-order model. The model
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Table 6.1. Prediction accuracy in the DNA sequence.

2-state model 3-state model 4-state model

New Model 0.57 0.49 0.33
Raftery’s Model 0.57 0.47 0.31
Random Chosen 0.50 0.33 0.25

parameters of the Raftery’s model are given in [175]. The results are reported
in Table 6.1.

The comparison is made with different grouping of states as suggested in
[175]. In grouping states 1 and 3, and states 2 and 4 we have a 2-state model.
Our model gives

Q̂1 =
(

0.5568 0.4182
0.4432 0.5818

)
,

Q̂2 =
(

0.4550 0.5149
0.5450 0.4851

)

X̂ = (0.4858, 0.5142)T , λ1 = 0.7529 and λ2 = 0.2471.

In grouping states 1 and 3 we have a 3-state model. Our model gives

Q̂1 =

⎛
⎝ 0.5568 0.3573 0.4949

0.2571 0.3440 0.2795
0.1861 0.2987 0.2256

⎞
⎠ ,

Q̂2 =

⎛
⎝ 0.4550 0.5467 0.4747

0.3286 0.2293 0.2727
0.2164 0.2240 0.2525

⎞
⎠

X̂ = (0.4858, 0.2869, 0.2272)T , λ1 = 1.0 and λ2 = 0.0

If there is no grouping, we have a 4-state model. Our model gives

Q̂1 =

⎛
⎜⎜⎝

0.2268 0.2987 0.2274 0.1919
0.2492 0.3440 0.2648 0.2795
0.3450 0.0587 0.3146 0.3030
0.1789 0.2987 0.1931 0.2256

⎞
⎟⎟⎠ ,

Q̂2 =

⎛
⎜⎜⎝

0.1891 0.2907 0.2368 0.2323
0.3814 0.2293 0.2773 0.2727
0.2532 0.2560 0.2305 0.2424
0.1763 0.2240 0.2555 0.2525

⎞
⎟⎟⎠
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X̂ = (0.2395, 0.2869, 0.2464, 0.2272)T , λ1 = 0.253 and λ2 = 0.747.

When using the expected errors (assuming that the next state is randomly
chosen with equal probability for all states) as a reference, the percentage gain
in effectiveness of using higher-order Markov chain models is in the 3-state
model. In this case, our model also gives a better estimation when compared
with Raftery’s model. Raftery [174] considered using BIC to weight efficiency
gained in terms of extra parameters used. This is important in his approach
since his method requires to solve a highly non-linear optimization problem.
The complexity of solving the optimization problem increases when there are
many parameters to be estimated. We remark that our estimation method is
quite efficient.

6.3.2 The Sales Demand Data

A large soft-drink company in Hong Kong presently faces an in-house problem
of production planning and inventory control. A pressing issue that stands out
is the storage space of its central warehouse, which often finds itself in the state
of overflow or near capacity. The company is thus in urgent needs to study
the interplay between the storage space requirement and the overall growing
sales demand. There are product states due to the level of sales volume. The
states include

state 1: very slow-moving (very low sales volume);
state 2: slow-moving;
state 3: standard;
state 4: fast-moving;
state 5: very fast-moving (very high sales volume).

Such labellings are useful from both marketing and production planning points
of view. For instance, in the production planning, the company can develop a
dynamic programming (DP) model to recommend better production planning
so as to minimize its inventory build-up, and to maximize the demand satis-
faction as well. Since the number of alternatives at each stage (each day in the
planning horizon) are very large (the number of products raised to the power
of the number of production lines), the computational complexity of the DP
model is enormous. A priority scheme based on the state (the level of sales
volume) of the product is introduced to tackle this combinatorial problem,
and therefore an effective and efficient production plan can be obtained. It is
obvious that the accurate prediction of state (the level of sales volume) of the
product is important in the production planning model.

In Figure 6.1 (Taken from [62]), we show that the states of four of the
products of the soft-drink company for some sales periods. Here we employ
higher-order Markov chain models to predict categories of these four products
separately. For the new model, we consider a second-order (n = 2) model and
use the data to estimate Q̂i and λi (i = 1, 2). The results are reported in
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Table 6.2. For comparison, we also study the first-order and the second-order
full Markov chain model. Results shows the effectiveness of our new model.
We also see from Figure 6.1 that the change of the states of the products A, B
and D is more regular than that of the product C. We find in Table 6.2 that
the prediction results for the products A, B and D are better than that of C.

Table 6.2. Prediction accuracy in the sales demand data.

Product A Product B Product C Product D

First-order Markov Chain Model 0.76 0.70 0.39 0.74
Second-order Markov Chain Model 0.79 0.78 0.51 0.83
New Model (n = 2) 0.78 0.76 0.43 0.78
Random Chosen 0.20 0.20 0.20 0.20
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Fig. 6.1. The states of four products A,B,C and D.
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6.3.3 Webpages Prediction

The Internet provides a rich environment for users to retrieve useful informa-
tion. However, it is easy for a user to get lost in the ocean of information. One
way to assist the user with their informational need is to predict a user’s future
request and use the prediction for recommendation. Recommendation systems
reply on a prediction model to make inferences on users’ interests based upon
which to make recommendations. Examples are the WebWatcher [121] system
and Letzia [141] system. Accurate prediction can potentially shorten the users’
access times and reduce network traffic when the recommendation is handled
correctly. In this subsection, we use a higher-order Markov chain model to
exploit the information from web server logs for predicting users’ actions on
the web.

The higher-order Markov chain model is built on a web server log file. We
consider the web server log file to be preprocessed into a collection of user
sessions. Each session is indexed by a unique user ID and starting time [183].
Each session is a sequence of requests where each request corresponds to a
visit to a web page. We represent each request as a state. Then each session is
just a categorical data sequence. Moreover, we denote each Web page (state)
by an integer.

Web Log Files and Preprocessing

Experiments were conducted on a real Web log file taken from the Internet.
We first implemented a data preprocessing program to extract sessions from
the log file. We downloaded two web log files from the Internet. The data set
was a web log file from the EPA WWW server located at Research Triangle
Park, NC. This log contained 47748 transactions generated in 24 hours from
23:53:25 EDT, August 29, to 23:53:07, August 30, 1995. In preprocessing, we
removed all the invalid requests and the requests for images. We used Host
ID to identify visitors and a 30 minutes time threshold to identify sessions.
428 sessions of lengths between 16 and 20 were identified from the EPA log
file. The total number of web pages (states) involved is 3753.

Prediction Models

By exploring the session data from the web log file, we observed that a large
number of similar sessions rarely exist. This is because in a complex web site
with variety of pages, and many paths and links, one should not expect that
in a given time period, a large number of visitors follow only a few paths. If
this is true, it would mean that the structure and contents of the web site
had a serious problem. Because only a few pages and paths were interested by
the visitors. In fact, most web site designers expect that the majority of their
pages, if not every one, are visited and paths followed (equally) frequently. The
first and the second step transition matrices of all sessions are very sparse in
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our case. In fact, there are 3900 and 4747 entries in the first and the second step
transition matrices respectively. Nonzero entries only contain about 0.033%
in the total elements of the first and the second step transition matrices.

Based on these observations, if we directly use these transition matrices to
build prediction models, they may not be effective. Since the number of pages
(states) are very large, the prediction probability for each page may be very
low. Moreover, the computational work for solving the linear programming
problem in the estimation of λi are also high since the number of constraints
in the linear programming problem depends on the number of pages (states).
Here we propose to use clustering algorithms [114] to cluster the sessions. The
idea is to form a transition probability matrix for each session, to construct the
distance between two sessions based on the Frobenius norm (See Definition
1.40 of Chapter one) of the difference of their transition probability matrices,
and then to use k-means algorithm to cluster the sessions. As a result of the
cluster analysis, the web page cluster can be used to construct a higher-order
Markov chain model. Then we prefetch those web documents that are close
to a user-requested document in a Markov chain model.

We find that there is a clear similarity among these sessions in each clus-
ter for the EPA log file. As an example, we show in Figure 6.2 (Taken from
[62]) that the first, the second and the third step transition probability ma-
trices of a cluster in EPA log file. There are 70 pages involved in this cluster.
Non-zero entries contain about 1.92%, 2.06% and 2.20% respectively in the
total elements of the first, the second and the third step transition matrices.
Usually, the prediction of the next web page is based on the current page and
the previous few pages [1]. Therefore, we use a third-order model (n = 3) and
consider the first, the second and the third transition matrices in the con-
struction of the Markov chain model. After we find the transition matrices,
we determine λi and build our new higher-order Markov chain model for each
cluster. For the above mentioned cluster, its corresponding λ1, λ2 and λ3 are
0.4984, 0.4531 and 0.0485 respectively. The parameters show that the predic-
tion of the next web page strongly depends on the current and the previous
pages.

Prediction Results

We then present the prediction results for the EPA log file. We perform clus-
tering based on their transition matrices and parameters. Sixteen clusters are
found experimentally based on their average within-cluster distance. There-
fore sixteen third-order Markov chain model for these clusters are determined
for the prediction of user-request documents. For comparison, we also com-
pute the first-order Markov chain model for each cluster. Totally, there are
6255 web documents for the prediction test. We find the prediction accuracy
of our method is about 77%, but the prediction accuracy of using the first-
order full Markov chain model is only 75%. Results show an improvement in
the prediction. We have applied these prediction results to the problem of
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Fig. 6.2. The first (a), second (b), third (c) step transition matrices.

integrated web caching and prefetching [212]. The slight increase of the pre-
diction accuracy can enhance a prefetching engine. Experimental results in
[212] show that the resultant system outperforms web systems that are based
on caching alone.
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6.4 Extension of the Model

In this section, we consider an extension of the higher-order Markov chain
model, Ching et al. [71]. The higher-order Markov chain model (6.5):

Xn+k+1 =
k∑

i=1

λiQiXn+k+1−i

can be further generalized by replacing the constraints

0 ≤ λi ≤ 1, i = 1, 2, . . . , k and
k∑

i=1

λi = 1

by

0 ≤
k∑

i=1

λiq
(i)
j0ji

≤ 1, j0, ji ∈ M and
k∑

i=1

λi = 1.

We expect this new model will have better prediction accuracy when appro-
priate order of model is used.

Next we give the sufficient condition for the proposed model to be station-
ary. Similar to the proof in [174], it can be shown that

Proposition 6.3. Suppose that {X(n), n ∈ N} is defined by (6.5) where the
constraints 0 ≤ λ ≤ 1 are replaced by

0 <

k∑
i=1

λiq
(i)
j0ji

≤ 1,

then the model (6.5) has a stationary distribution X̄ when n → ∞ independent
of the initial state vectors

(X(0),X(1), . . . ,X(k−1)).

The stationary distribution X̄ is also the unique solution of the linear system
of equations:

(I −
k∑

i=1

λiQi)X̄ = 0 and 1T X̄ = 1.

We can use the method in Section 6.2.2 to estimate the parameters Qi. For
λi, the linear programming formulation can be considered as follows. In view
of Proposition 6.3, suppose the model is stationary then we have a stationary
distribution X̄. Then X̄ can be estimated from the observed sequence {X(s)}
by computing the proportion of the occurrence of each state in the sequence.
In Section 6.2.2, it suggests one possible way to estimate the parameters

λ = (λ1, . . . , λk)
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as follows. In view of (6.12) one can consider the following optimization prob-
lem:

min
λ

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

λiQ̂iX̂ − X̂

∣∣∣∣∣
∣∣∣∣∣
∞

= min
λ

max
j

[∣∣∣∣∣
k∑

i=1

λiQ̂iX̂ − X̂

∣∣∣∣∣
]

j

subject to
k∑

i=1

λi = 1,

and

0 ≤
k∑

i=1

λiq
(i)
j0ji

≤ 1, j0, ji ∈ M.

Here [·]j denotes the jth entry of the vector. We see that the above opti-
mization problem can be re-formulated as a linear programming problem as
stated in the previous section. Instead of solving a min-max problem, one can
also formulate the l1-norm optimization problem In these linear programming
problems, we note that the number of variables is equal to k and the number
of constraints is equal to (2mk+1+2m+1). With the following proposition (see
also [175]), we can reduce number of constraints to (4m + 1) if we formulate
the estimation problem as a nonlinear programming.

Proposition 6.4. The constraints

0 ≤
k∑

i=1

λiq
(i)
j0ji

≤ 1, j0, ji ∈ M

are equivalent to

k∑
i=1

(
max{λi, 0}min

ji

{q(i)
j0ji

} − max{−λi, 0}max
ji

{q(i)
j0ji

}
)

≥ 0 (6.18)

and

k∑
i=1

(
max{λi, 0}max

ji

{q(i)
j0ji

} − max{−λi, 0}min
ji

{q(i)
j0ji

}
)

≤ 1 (6.19)

Proof. We prove the first part of the inequality. If inequality (6.18) holds,
then

k∑
i=1

λiq
(i)
j0ji

=
∑
λi≥0

λiq
(i)
j0ji

+
∑
λi<0

λiq
(i)
j0ji

≥
∑
λi≥0

λi min
ji

{q(i)
j0ji

} +
∑
λi<0

λi max
ji

{q(i)
j0ji

}

≥ 0.

Conversely, we assume that
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∀j0, ji ∈ M,

k∑
i=1

λiq
(i)
j0ji

≥ 0.

Suppose
min

ji

{q(i)
j0ji

} = q
(i)
j0ji0

and
max

ji

{q(i)
j0ji

} = q
(i)
j0ji1

then∑
λi≥0

λi min
ji

{q(i)
j0ji

} +
∑
λi<0

λi max
ji

{q(i)
j0ji

} =
∑
λi≥0

λiq
(i)
j0ji0

+
∑
λi<0

λiq
(i)
j0ji1

≥ 0.

This is equivalent to (6.18). One can use similar method to prove the second
part and hence the proof.

In the following, we give a simple example to demonstrate our estimation
methods. We consider a sequence {X(t)} of two states (m = 2) given by

{1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2}. (6.20)

The sequence {X(t)} can be written in vector form

X(1) = (1, 0)T , X(2) = (1, 0)T , X(3) = (0, 1)T , . . . , X(20) = (0, 1)T .

We consider k = 2, 3, 4, then from (6.20) we have the transition frequency
matrices

F (1) =
(

1 5
6 7

)
, F (2) =

(
0 5
7 6

)
, (6.21)

F (3) =
(

5 0
2 10

)
, F (4) =

(
1 4
5 6

)
. (6.22)

Therefore from (6.21) we have the i-step transition matrices (i = 1, 2, 3, 4) as
follows:

Q̂1 =
(

1/7 5/12
6/7 7/12

)
, Q̂2 =

(
0 5/11
1 6/11

)
, (6.23)

Q̂3 =
(

5/7 0
2/7 1

)
, Q̂4 =

(
1/6 4/10
5/6 6/10

)
(6.24)

and X̂ = (0.35, 0.65)T . In this example, the model parameters can be obtained
by solving a linear programming problem. It turns out that the parameters
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obtained are identical the same for both ‖ · ‖1 and ‖ · ‖∞. We report the
parameters for the case of k = 2, 3, 4. For k = 2, we have

(λ∗
1, λ

∗
2) = (1.4583,−0.4583).

For k = 3, we have
(λ∗

1, λ
∗
2, λ

∗
3) = (1.25, 0,−0.25).

For k = 4, we have

(λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4) = (0, 0,−0.3043, 1.3043).

Next we present the numerical comparisons with the data set in the pre-
vious section, (let us denote it by “Sample”) and also the DNA data set
of 3-state sequence from the mouse αA-crystallin gene, (let us denote it by
“DNA”). The length of the sequence of “Sample” is 20 and the length of the
sequence of “DNA” is 1307. The results are reported in Tables 6.3 and 6.4
below.

We then present the χ2 statistics method. From the observed data se-
quence, one can obtain the distribution of states

(O1, O2, . . . , Om).

From the model parameters Qi and λi, by solving:

X =
n∑

i=1

λiQ̂iX with 1T X = 1

one can obtain the theoretical probability distribution of the states

(E1, E2, . . . , Em).

Then the χ2 statistics is defined as

χ2 = L

m∑
i=1

(Ei − Oi)2

Ei
.

The smaller this value is the better the model will be.
We note that for the “Sample” data set, significant improvement in predic-

tion accuracy is observed when the order is increased from 2 to 4. In this case,
except the last state all the other states can be predicted correctly. For all the
“DNA” data set, the best model is our new extended model with order 4, 3, 2
corresponding to 2-state, 3-state, 4-state sequence. For the 2-state and 3-state
sequence, we can get much better prediction accuracy than the higher-order
Markov chain in the previous section. For the 4-state sequence, we also can
get the same prediction accuracy as the model in previous section.
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Table 6.3. Prediction accuracy and χ2 value.

n = 2 Sample (2-state) DNA (2-state)

Extended Model (||.||∞) 0.3889 (χ2 = 1.2672) 0.5295 (χ2 = 0.0000)
Extended Model (||.||1) 0.3889 (χ2 = 1.2672) 0.5295 (χ2 = 0.0000)
Ching’s Model (||.||∞) 0.6842 (χ2 = 3.1368) 0.5295 (χ2 = 0.0000)
Ching’s Model (||.||1) 0.6842 (χ2 = 3.1368) 0.5295 (χ2 = 0.0000)
Randomly Chosen 0.5000 0.5000

n = 3 Sample (2-state) DNA (2-state)

Extended Model (||.||∞) 0.3529 (χ2 = 0.3265) 0.5299 (χ2 = 0.0000)
Extended Model (||.||1) 0.3529 (χ2 = 0.3265) 0.5299 (χ2 = 0.0000)
New Model (||.||∞) 0.6842 (χ2 = 3.1368) 0.5295 (χ2 = 0.0000)
New Model (||.||1) 0.6842 (χ2 = 3.1368) 0.5295 (χ2 = 0.0000)
Randomly Chosen 0.5000 0.5000

n = 4 Sample (2-state) DNA (2-state)

Extended Model (||.||∞) 0.9375 (χ2 = 0.2924) 0.5375(χ2 = 0.0000)
New Model (||.||1) 0.9375 (χ2 = 0.2924) 0.5372(χ2 = 0.0000)
New Model (||.||∞) 0.6842 (χ2 = 3.1368) 0.5295(χ2 = 0.0000)
New Model (||.||1) 0.6842 (χ2 = 3.1368) 0.5295(χ2 = 0.0000)
Randomly Chosen 0.5000 0.5000

Table 6.4. Prediction accuracy and χ2 value.

n = 2 DNA (3-state) DNA (4-state)

Extended Model (||.||∞) 0.4858 (χ2 = 7.09E − 4) 0.3303 (χ2 = 0.0030)
Extended Model (||.||1) 0.4858 (χ2 = 7.09E − 4) 0.3287 (χ2 = 0.0022)
New Model (||.||∞) 0.4858 (χ2 = 7.09E − 4) 0.3303 (χ2 = 0.0030)
New Model (||.||1) 0.4858 (χ2 = 7.09E − 4) 0.3287 (χ2 = 0.0022)
Randomly Chosen 0.3333 0.2500

n = 3 DNA (3-state) DNA (4-state)

Extended Model (||.||∞) 0.4946 (χ2 = 4.24E − 4) 0.3083 (χ2 = 0.0039)
Extended Model (||.||1) 0.4893(χ2 = 8.44E − 5) 0.3282 (χ2 = 0.0050)
New Model (||.||∞) 0.4858 (χ2 = 7.09E − 4) 0.3277 (χ2 = 0.0032)
New Model (||.||1) 0.4858 (χ2 = 7.09E − 4) 0.3282 (χ2 = 0.0052)
Randomly Chosen 0.3333 0.2500

n = 4 Sample (3-state) DNA (4-state)

Extended Model (||.||∞) 0.4666 (χ2 = 1.30E − 4) 0.3085 (χ2 = 0.0039)
Extended Model (||.||1) 0.4812(χ2 = 4.55E − 5) 0.3031 (χ2 = 0.0047)
New Model (||.||∞) 0.4858(χ2 = 7.09E − 4 ) 0.3277 (χ2 = 0.0032)
New Model (||.||1) 0.4858(χ2 = 7.09E − 4) 0.3285 (χ2 = 0.0044)
Randomly Chosen 0.3333 0.2500
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6.5 Newboy’s Problems

The Newsboy’s problem is a well-known classical problem in management
science [158] and it can be described as follows. A newsboy start selling news-
paper every morning. The cost of each newspaper remaining unsold at the
end of the day is Co (overage cost) and the cost of each unsatisfied demand is
Cs (shortage cost). Suppose that the probability distribution function of the
demand D is given by

Prob (D = d) = pd ≥ 0, d = 1, 2, . . . , m. (6.25)

The objective here is to determine the best amount r∗ of newspaper to be
ordered such that the expected cost is minimized. To write down the expected
long-run cost for a given amount of order size r we have the following two cases.

(i) If the demand d < r, then the cost will be (r − d)Co and
(ii) if the demand d > r, then the cost will be (d − r)Cs.

Therefore the expected cost when the order size is r is given by

E(r) = Co

r∑
d=1

(r − d)pi︸ ︷︷ ︸
Expected Overage Cost

+ Cs

m∑
d=r+1

(d − r)pi

︸ ︷︷ ︸
Expected Shortage Cost

. (6.26)

Let us define the cumulative probability function of the demand D as follows:

F (d) =
d∑

i=1

pi = Prob (D ≤ d) for d = 1, 2, . . . ,m. (6.27)

We have the following results.

Proposition 6.5.

E(r) − E(r + 1) = Cs − (Co + Cs)F (r) (6.28)

and
E(r) − E(r − 1) = −Cs + (Co + Cs)F (r − 1). (6.29)

By using the above lemma and making use of the fact that F (r) is monoton-
ically increasing in r, we have the following proposition.

Proposition 6.6. The optimal order size r∗ is the one which satisfies

F (r∗ − 1) <
Cs

Cs + Co
≤ F (r∗). (6.30)
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6.5.1 A Markov Chain Model for the Newsboy’s Problem

One can further generalize the Newsboy’s problem as follows. Suppose that the
demand is governed by a Markov chain, i.e., the demand tomorrow depends
on the demand today. Again the demand has m possible states. We shall order
the states in increasing order. The demand at time t is said to be in state i if
the demand is i and is denoted by the vector

Xt = (0, . . . , 0, 1︸︷︷︸
ith entry

, 0 . . . , 0)T .

We let Q (an m × m matrix) to be the transition probability matrix of the
Markov process of the demand. Therefore we have

Xt+1 = QXt.

Here we assume that Q is irreducible and hence the stationary probability
distribution S exists, i.e.

lim
t→∞

Xt = S = (s1, s2, . . . , sm)T .

Now we let rj ∈ {1, 2, . . . , m} be the size of the next order given that the
current demand is j and C(rj , i) be the cost of the situation that the size
of order is rj and the actual next demand is i. We note that C(rj , i) is a
more general cost than the one in (6.26). Clearly the optimal ordering policy
depends on the state of the current demand because the demand probability
distribution in the next period depends on the state of the current demand.
The expected cost is then given by

E({r1, r2, . . . , rm}) =
m∑

j=1

sj ×
(

m∑
i=1

C(rj , i)qij

)
(6.31)

where qij = [Q]ij is the transition probability of the demand from the state
j to the state i. In other words, qij is the probability that the next demand
will be in state i given that the current demand is in state j. The optimal
ordering policy

(r∗1 , r∗2 , . . . , r∗m)

is the one which minimizes (6.31). We observe that if the current demand is
j, then we only need to choose the ordering size rj to minimize the expected
cost. Since

min
rj

E({r1, r2, . . . , rm}) =
m∑

j=1

sj ×
(

min
rj

m∑
i=1

C(rj , i)qij

)
, (6.32)

the optimal ordering size r∗j can be obtained by solving
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min
rj

m∑
i=1

C(rj , i)qij . (6.33)

By using Proposition 6.6, we have

Proposition 6.7. If

C(rj , i) =
{

Co(rj − i) if rj ≥ i
Cs(i − rj) if rj < i

(6.34)

and let

Fj(k) =
k∑

i=1

qij

then the optimal ordering size r∗j satisfies

Fj(r∗j − 1) <
Cs

Cs + Co
≤ Fj(r∗j ).

We remark that one has to estimate qij before one can apply the Markov
chain model. We will propose an estimation method for qij as discussed in
the previous section. We note that when qij = qi for i, j = 1, 2, . . . , m, (the
demand distribution is stationary and independent of the current demand
state) then the Markov Newsboy model described above reduces to the classi-
cal Newsboy’s problem. Let us consider an example to demonstrate that the
extension to a Markov chain model is useful and important.

Example 6.8. Suppose that the demand (1, 2, . . . , 2k) (m = 2k) follows a
Markov process with the transition probability matrix Q of size 2k×2k given
by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

1 0
. . . 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.35)

and the cost is given in (6.34) with Co = Cs. Clearly the next demand can be
determined certainly by the state of the current demand, and hence the opti-
mal expected cost is equal to zero when the Markov chain model is used. When
the classical Newsboy model is used, we note that the stationary distribution
of Q is given by

1
2k

(1, 1, . . . , 1)T .

The optimal ordering size is equal to k by Proposition 6.6 and therefore the
optimal expected cost is Cok.
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According to this example, it is obvious that the more “information” one
can extract from the demand sequence, the better the model will be and hence
the better the optimal ordering policy one can obtain. Therefore it is natural
for one to consider a higher-order Markov chain model. The only obstacle
here is the huge number of states and parameters. We employ a higher-order
Markov chain model that can cope with the difficulty.

Let us study the optimal ordering policy for this higher-order Markov chain
model. Define the set

Φ = {G = (j1, j2, . . . , jn)T | jk ∈ {1, 2, . . . , m} for k = 1, 2, . . . , n}.

let

pi,G = P (Xt+n+1 = Ei | Xt+1 = Ej1 , Xt+2 = Ej2 , . . . , Xt+n = Ejn}

(G = (j1, j2, . . . , jn)T ) to be the probability that the demand at time (t+n+1)
is i given that the demand at the time t + k is jk ∈ {1, 2, . . . ,m} for k =
1, 2, . . . , n. Here Ei is an unit vector representing the state of demand. This
means that the demand distribution at time (t + n + 1) depends only on the
states of the demand at the time t+1, t+2, . . . , t+n, and this is also true for
the optimal ordering policy. In the higher-order Markov chain model (3.26),
we have

pi,G =
n∑

i=1

λiQiEji

Under some practical conditions as described in previous sections, one can
show that

lim
t→∞

P (Xt+1 = Ej1 , Xt+2 = Ej2 , . . . , Xt+n = Ejn) = sG

where sG is independent of t. Let

rG, (G = (j1, j2, . . . , jn)T )

be the ordering policy when the demands of the previous n periods are
j1, j2, . . . , jn. The expected cost for all ordering policies G ∈ Φ is then given
by

E(Φ) =
∑
G∈Φ

sG

(
m∑

i=1

C(rG, i)pi,G

)
. (6.36)

The optimal ordering policy {r∗G | G ∈ Φ} is the one which minimizes (6.36).
We remark the computational complexity for computing all the optimal or-
dering policies r∗G is of O(mn) operations because |Φ| = mn. However, we
observe that if the demands of the previous n periods are j1, j2, . . . , jn, then
we only need to solve the ordering size rG which minimizes the expected cost.
Since
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min
rG

E(Φ) =
m∑

j=1

sG ×
(

min
rG

m∑
i=1

C(rG, i)pi,G

)
, (6.37)

the optimal ordering size r∗G can be obtained by solving

min
rG

m∑
i=1

C(rG, i)pi,G, rG ∈ {1, 2, . . . , m}.

By Proposition 6.6 again, if

C(rG, i) =
{

Co(rG − i) if rG ≥ i
Cs(i − rG) if rG < i

and let

FG(k) =
k∑

i=1

pi,G

then the optimal ordering size r∗G satisfies the inequalities

FG(r∗G − 1) <
Cs

Cs + Co
≤ FG(r∗G).

Therefore, in order to compute the optimal ordering size, the main task here
is to estimate the probabilities pi,G or equivalently to estimate the parameters
λi and Qi based on the observed data sequence.

6.5.2 A Numerical Example

In this subsection, we present an application of the higher-order Markov model
to a generalized Newsboy’s problem [57]. The background is that a large soft-
drink company faces an in-house problem of production planning and inven-
tory control. There are three types of products A, B and C having five different
possible sales volume (1, 2, 3, 4 and 5). Such labelling is useful from both mar-
keting and production planning points of view. The categorical data sequences
for the demands of three products of the soft-drink company for some sales
periods can be found in [57]. Based on the sales demand data, we build the
higher-order Markov models of different orders. These models are then applied
to the problem of long-run production planning and the following cost matrix
is assumed

C =

⎛
⎜⎜⎜⎜⎝

0 100 300 700 1500
100 0 100 300 700
300 100 0 100 300
700 300 100 0 100
1500 700 300 100 0

⎞
⎟⎟⎟⎟⎠ .

Here [C]ij is the cost when the production plan is for sales volume of state i and
the actual sales volume is state j. We note that the costs here are non-linear,
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i.e. [C]ij �= c|i−j|, where c is a positive constant. When the unsatisfied demand
is higher, the shortage cost is larger. Similarly, when the holding product is
more, the overage cost is larger. For the higher-order Markov model, we find
that the third-order model gives the best optimal cost. Here we also report
the results on the first-order model and the stationary model for the three
product demand sequences. The results are given in Table 6.5 (taken from
[57]).

Table 6.5. The optimal costs of the three different models.

Product A Product B Product C

Third-order Markov Model 11200 9300 10800
First-order Markov Model 27600 18900 11100
Stationary Model 31900 18900 16300

6.6 Summary

In this chapter, a higher-order Markov chain model is proposed with esti-
mation methods for the model parameters. The higher-order Markov chain
model is then applied to a number of applications such as DNA sequences,
sales demand predictions and web page predictions, Newsboy’s problem. Fur-
ther extension of the model is also discussed.
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Multivariate Markov Chains

7.1 Introduction

By making use of the transition probability matrix in Chapter 6, a categor-
ical data sequence of m states can be modeled by an m-state Markov chain
model. In this chapter, we extend this idea to model multiple categorical data
sequences. One would expect categorical data sequences generated by similar
sources or same source to be correlated to each other. Therefore by exploring
these relationships, one can develop better models for the categorical data
sequences and hence better prediction rules.

The outline of this chapter is as follows. In Section 7.1, we present the mul-
tivariate Markov chain model with estimation methods for the model param-
eters. In Section 7.3, we apply the model to multi-product demand estimation
problem. In Section 7.4, an application to credit rating is discussed. In Section
7.5, an application to multiple DNA sequences is presented. In Section 7.6, we
apply the model to genetic networks. In Section 7.7, we extend the model to
a higher-order multivariate Markov chain model. Finally, a summary is given
in Section 7.8 to conclude the chapter.

7.2 Construction of Multivariate Markov Chain Models

In this section, we propose a multivariate Markov chain model to represent
the behavior of multiple categorical sequences generated by similar sources or
same source. Here we assume that there are s categorical sequences and each
has m possible states in the set

M = {1, 2, . . . , m}.

Let X(j)
n be the state vector of the jth sequence at time n. If the jth sequence

is in state l at time n then we write
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X(j)
n = el = (0, . . . , 0, 1︸︷︷︸

jth entry

, 0 . . . , 0)t.

In the proposed multivariate Markov chain model, we assume the following
relationship:

X(j)
n+1 =

s∑
k=1

λjkP (jk)X(k)
n , for j = 1, 2, . . . , s (7.1)

where
λjk ≥ 0, 1 ≤ j, k ≤ s (7.2)

and
s∑

k=1

λjk = 1, for j = 1, 2, . . . , s. (7.3)

The state probability distribution of the kth sequence at time (n+1) depends
on the weighted average of P (jk)X(k)

n . Here P (jk) is a transition probability
matrix from the states in the kth sequence to the states in the jth sequence,
and X(k)

n is the state probability distribution of the kth sequences at time n.
In matrix form we write

Xn+1 ≡

⎛
⎜⎜⎜⎜⎝

X(1)
n+1

X(2)
n+1
...

X(s)
n+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λ11P
(11) λ12P

(12) · · · λ1sP
(1s)

λ21P
(21) λ22P

(22) · · · λ2sP
(2s)

...
...

...
...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

X(1)
n

X(2)
n

...
X(s)

n

⎞
⎟⎟⎟⎟⎠

≡ QXn

or
Xn+1 = QXn.

Although the column sum of Q is not equal to one (the column sum of P (jk)

is equal to one), we still have the following proposition.

Proposition 7.1. If the parameters λjk > 0 for 1 ≤ j, k ≤ s, then the matrix
Q has an eigenvalue equal to one and the eigenvalues of Q have modulus less
than or equal to one.

Proof. By using (7.2), the column sum of the following matrix

Λ =

⎛
⎜⎜⎜⎝

λ1,1 λ2,1 · · · λs,1

λ1,2 λ2,2 · · · λs,2

...
...

...
...

λ1,s λ2,s · · · λs,s

⎞
⎟⎟⎟⎠

is equal one. Since λjk > 0, Λ is nonnegative and irreducible. By Perron-
Frobenius Theorem, there exists a vector



7.2 Construction of Multivariate Markov Chain Models 143

y = (y1, y2, . . . , ys)T

such that
yT Λ = yT .

We note that
1mP (ij) = 1m, 1 ≤ i, j ≤ s,

where 1m is the 1 × m vector of all ones, i.e.,

1m = (1, 1, . . . , 1).

Then it is easy to show that we have

(y11m, y21m, . . . , ys1m)Q = (y11m, y21m, . . . , ys1m).

and hence one must be an eigenvalue of Q.
We then show that all the eigenvalues of Q are less than or equal to one.

Let us define the following vector-norm

||z||V = max
1≤i≤s

{||zi||1 : z = (z1, z2, · · · , zs), zj ∈ Rm, 1 ≤ j ≤ s} .

It is straightforward to show that || · ||V is a vector-norm on Rms. It follows
that we can define the following matrix norm

||Q||M ≡ sup {||Qz||V : ||z||V = 1} .

Since P (ij) is a transition matrix, each element of P (ij) are less than or equal
to 1. We have

‖P (ij)zj‖1 ≤ ‖zj‖1 ≤ 1, 1 ≤ i, j ≤ s.

Here ||.||1 is the 1-norm for a vector. It follows that

‖λi1P
(i1)z1 + λi2P

(i2)z2 + · · · + λisP
(is)zs‖1 ≤ ||z||V ·

s∑
j=1

λij = 1, 1 ≤ i ≤ s

and hence ||Q||M ≤ 1. Since the spectral radius of Q is always less than or
equal to any matrix norm of Q, the result follows.

Proposition 7.2. Suppose that the matrices P (jk) (1 ≤ j, k ≤ s) are irre-
ducible and λjk > 0 for 1 ≤ j, k ≤ s. Then there is a unique vector

x = (x(1),x(2), . . . ,x(s))T

such that x = Qx and

m∑
i=1

[x(j)]i = 1, 1 ≤ j ≤ s.
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Proof. By Proposition 7.1, there is exactly one eigenvalue of Q equal to one.
This implies that

lim
n→∞

Qn = vuT

is a positive rank one matrix as Q is irreducible. Therefore we have

lim
n→∞

xn+1 = lim
n→∞

Qxn = lim
n→∞

Qnx0 = vuT x0 = αv.

Here α is a positive number since x �= 0 and is nonnegative. This implies that
xn tends to a stationary vector as n goes to infinity. Finally, we note that if
x0 is a vector such that

m∑
i=1

[x(j)
0 ]i = 1, 1 ≤ j ≤ s,

then Qx0 and x are also vectors having this property.
Now Suppose that there exists y such that y �= x and

y = lim
n→∞

xn.

Then we have
||x − y|| = ||x − Qx|| = 0.

This is a contradiction and therefore the vector x must be unique. Hence the
result follows.

We note that x is not a probability distribution vector, but x(j) is a prob-
ability distribution vector. The above proposition suggests one possible way
to estimate the model parameters λij . The idea is to find λij which minimizes
||Qx̂ − x̂|| under certain vector norm || · ||.

7.2.1 Estimations of Model Parameters

In this subsection we propose some methods for the estimations of P (jk) and
λjk. For each data sequence, we estimate the transition probability matrix
by the following method. Given the data sequence, we count the transition
frequency from the states in the kth sequence to the states in the jth se-
quence. Hence one can construct the transition frequency matrix for the data
sequence. After making a normalization, the estimates of the transition prob-
ability matrices can also be obtained. We note that one has to estimate s2

m×m transition frequency matrices for the multivariate Markov chain model.
More precisely, we count the transition frequency f

(jk)
ijik

from the state ik in

the sequence {x(k)
n } to the state ij in the sequence {x(j)

n } and therefore the
transition frequency matrix for the sequences can eb constructed as follows:
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F (jk) =

⎛
⎜⎜⎜⎜⎝

f
(jk)
11 · · · · · · f

(jk)
m1

f
(jk)
12 · · · · · · f

(jk)
m2

...
...

...
...

f
(jk)
1m · · · · · · f

(jk)
mm

⎞
⎟⎟⎟⎟⎠ .

From F (jk), we get the estimates for P (jk) as follows:

P̂ (jk) =

⎛
⎜⎜⎜⎜⎝

p̂
(jk)
11 · · · · · · p̂

(jk)
m1

p̂
(jk)
12 · · · · · · p̂

(jk)
m2

...
...

...
...

p̂
(jk)
1m · · · · · · p̂

(jk)
mm

⎞
⎟⎟⎟⎟⎠

where

p̂
(jk)
ijik

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
(jk)
ijik

m∑
ik=1

f
(jk)
ijik

if
m∑

ik=1

f
(jk)
ijik

�= 0

0 otherwise.

Besides the estimates of P (jk), one needs to estimate the parameters λjk.
We have seen that the multivariate Markov chain model has a stationary
vector x in Proposition 7.2. The vector x can be estimated from the sequences
by computing the proportion of the occurrence of each state in each of the
sequences, and let us denote it by

x̂ = (x̂(1), x̂(2), . . . , x̂(s))T .

One would expect that⎛
⎜⎜⎜⎝

λ11P
(11) λ12P

(12) · · · λ1sP
(1s)

λ21P
(21) λ22P

(22) · · · λ2sP
(2s)

...
...

...
...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)

⎞
⎟⎟⎟⎠ x̂ ≈ x̂. (7.4)

From (7.4), it suggests one possible way to estimate the parameters λ =
{λjk} as follows. In fact, by using ||.||∞ as the vector norm for measuring
the difference in (7.4), one may consider solving the following minimization
problem:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ

max
i

∣∣∣∣∣
[

m∑
k=1

λjkP̂ (jk)x̂(k) − x̂(j)

]
i

∣∣∣∣∣
subject to

s∑
k=1

λjk = 1,

and
λjk ≥ 0, ∀k.

(7.5)

Problem (7.5) can be formulated as s linear programming problems as follows,
see for instance [79].

For each j: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ

wj

subject to ⎛
⎜⎜⎜⎝

wj

wj

...
wj

⎞
⎟⎟⎟⎠ ≥ x̂(j) − B

⎛
⎜⎜⎜⎝

λj1

λj2

...
λjs

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

wj

wj

...
wj

⎞
⎟⎟⎟⎠ ≥ −x̂(j) + B

⎛
⎜⎜⎜⎝

λj1

λj2

...
λjs

⎞
⎟⎟⎟⎠ ,

wj ≥ 0,

s∑
k=1

λjk = 1, λjk ≥ 0, ∀k,

where
B = [P̂ (j1)x̂(1) | P̂ (j2)x̂(2) | · · · | P̂ (js)x̂(s)].

In the next subsection, we give an example to demonstrate the construction
of a multivariate Markov chain model from two data sequences.

7.2.2 An Example

Consider the following two categorical data sequences:

S1 = {4, 3, 1, 3, 4, 4, 3, 3, 1, 2, 3, 4}

and
S2 = {1, 2, 3, 4, 1, 4, 4, 3, 3, 1, 3, 1}.

By counting the transition frequencies
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S1 : 4 → 3 → 1 → 3 → 4 → 4 → 3 → 3 → 1 → 2 → 3 → 4

and
S2 : 1 → 2 → 3 → 4 → 1 → 4 → 4 → 3 → 3 → 1 → 3 → 1

we have

F (11) =

⎛
⎜⎜⎝

0 0 2 0
1 0 0 0
1 1 1 2
0 0 2 1

⎞
⎟⎟⎠ and F (22) =

⎛
⎜⎜⎝

0 0 2 1
1 0 0 0
1 1 1 1
1 0 1 1

⎞
⎟⎟⎠ .

Moreover by counting the inter-transition frequencies

S1 : 4 3 1 3 4 4 3 3 1 2 3 4
↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

S2 : 1 2 3 4 1 4 4 3 3 1 3 1

and
S1 : 4 3 1 3 4 4 3 3 1 2 3 4

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
S2 : 1 2 3 4 1 4 4 3 3 1 3 1

we have

F (21) =

⎛
⎜⎜⎝

1 0 2 0
0 0 0 1
0 1 3 0
1 0 0 2

⎞
⎟⎟⎠ , F (12) =

⎛
⎜⎜⎝

0 1 1 0
0 0 1 0
2 0 1 2
1 0 1 1

⎞
⎟⎟⎠ .

After making a normalization, we have the transition probability matrices:

P̂ (11) =

⎛
⎜⎜⎝

0 0 2
5 0

1
2 0 0 0
1
2 1 1

5
2
3

0 0 2
5

1
3

⎞
⎟⎟⎠ , P̂ (12) =

⎛
⎜⎜⎝

0 1 1
4 0

0 0 1
4 0

2
3 0 1

4
2
3

1
3 0 1

4
1
3

⎞
⎟⎟⎠ ,

P̂ (21) =

⎛
⎜⎜⎝

1
2 0 2

5 0
0 0 0 1

3
0 1 3

5 0
1
2 0 0 2

3

⎞
⎟⎟⎠ , P̂ (22) =

⎛
⎜⎜⎝

0 0 1
2

1
3

1
3 0 0 0
1
3 1 1

4
1
3

1
3 0 1

4
1
3

⎞
⎟⎟⎠ .

Moreover we also have

x̂1 = (
1
6
,

1
12

,
5
12

,
1
3
)T and x̂2 = (

1
3
,

1
12

,
1
3
,
1
4
)T

By solving the corresponding linear programming problems, the multivariate
Markov chain models for the two categorical data sequences S1 and S2 are
then given by {

x(1)
n+1 = 0.5000P̂ (11)x(1)

n + 0.5000P̂ (12)x(2)
n

x(2)
n+1 = 0.8858P̂ (21)x(1)

n + 0.1142P̂ (22)x(2)
n .
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7.3 Applications to Multi-product Demand Estimation

Let us consider demand estimation problems stated as in Section 6.3.2. We
study the customer’s sales demand of five important products of the company
in a year. The sales demand sequences are generated by the same customer and
therefore we expect that they should be correlated to each other. Therefore by
exploring these relationships, one can develop the multivariate Markov chain
model for such demand sequences, hence obtain better prediction rules.

We first estimate all the transition probability matrices P (ij) by using the
method proposed in Section 7.2 and we also have the estimates of the state
distribution of the five products:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂1 = (0.0818, 0.4052, 0.0483, 0.0335, 0.0037, 0.4275)T ,
x̂2 = (0.3680, 0.1970, 0.0335, 0.0000, 0.0037, 0.3978)T ,
x̂3 = (0.1450, 0.2045, 0.0186, 0.0000, 0.0037, 0.6283)T ,
x̂4 = (0.0000, 0.3569, 0.1338, 0.1896, 0.0632, 0.2565)T ,
x̂5 = (0.0000, 0.3569, 0.1227, 0.2268, 0.0520, 0.2416)T .

By solving the corresponding minimization problems through linear program-
ming we obtain the optimal solution:

Λ = [λjk] =

⎛
⎜⎜⎜⎜⎝

0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.4741 0.5259
0.0000 0.0000 0.0000 1.0000 0.0000

⎞
⎟⎟⎟⎟⎠

and the multivariate Markov chain model for these five sequences is as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(1)
n+1 = P (12)x(2)

n

x(2)
n+1 = P (22)x(2)

n

x(3)
n+1 = P (35)x(5)

n

x(4)
n+1 = 0.4741P (44)x(4)

n + 0.5259P (45)x(5)
n

x(5)
n+1 = P (54)x(4)

n

where

P (12) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0707 0.1509 0.0000 0.2000 0.0000 0.0660
0.4343 0.4528 0.4444 0.2000 1.0000 0.3491
0.0101 0.1321 0.2222 0.2000 0.0000 0.0283
0.0101 0.0943 0.2222 0.2000 0.0000 0.0094
0.0000 0.0000 0.2000 0.0000 0.0000 0.0094
0.4747 0.1698 0.1111 0.2000 0.0000 0.5377

⎞
⎟⎟⎟⎟⎟⎟⎠

P (22) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.4040 0.2075 0.0000 0.2000 1.0000 0.4340
0.1111 0.4717 0.3333 0.2000 0.0000 0.1321
0.0202 0.0566 0.3333 0.2000 0.0000 0.0094
0.0000 0.0000 0.0000 0.2000 0.0000 0.0000
0.0000 0.0000 0.1111 0.2000 0.0000 0.0000
0.4646 0.2642 0.2222 0.2000 0.0000 0.4245

⎞
⎟⎟⎟⎟⎟⎟⎠
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P (35) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2000 0.0947 0.1515 0.1639 0.0714 0.2154
0.2000 0.1895 0.2727 0.2295 0.1429 0.1846
0.2000 0.0421 0.0000 0.0000 0.0000 0.0154
0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.0105 0.0000 0.0000 0.0000 0.0000
0.2000 0.6632 0.5758 0.6066 0.7857 0.5846

⎞
⎟⎟⎟⎟⎟⎟⎠

P (44) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.4947 0.1389 0.0196 0.0588 0.6087
0.2000 0.0842 0.3056 0.1765 0.0588 0.1014
0.2000 0.0000 0.3056 0.5686 0.5294 0.0290
0.2000 0.0105 0.0556 0.1569 0.3529 0.0000
0.2000 0.4105 0.1944 0.0784 0.0000 0.2609

⎞
⎟⎟⎟⎟⎟⎟⎠

P (45) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.4737 0.2121 0.0328 0.0000 0.6462
0.2000 0.1053 0.2121 0.1967 0.0714 0.0923
0.2000 0.0000 0.2424 0.5410 0.5714 0.0308
0.2000 0.0105 0.0303 0.1803 0.2857 0.0000
0.2000 0.4105 0.3030 0.0492 0.0714 0.2308

⎞
⎟⎟⎟⎟⎟⎟⎠

P (54) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.4842 0.1667 0.0196 0.0588 0.6087
0.2000 0.1053 0.1667 0.1569 0.0588 0.1159
0.2000 0.0000 0.4444 0.6275 0.6471 0.0290
0.2000 0.0105 0.0278 0.1569 0.2353 0.0000
0.2000 0.4000 0.1944 0.0392 0.0000 0.2464

⎞
⎟⎟⎟⎟⎟⎟⎠ .

According to the multivariate Markov chain model, Products A and B are
closely related. In particular, the sales demand of Product A depends strongly
on Product B. The main reason is that the chemical nature of Products A
and B is the same, but they have different packaging for marketing purposes.
Moreover, Products C, D and E are closely related. Similarly, products C and
E have the same product flavor, but different packaging. It is interesting to
note that even through Products D and E have different chemical nature but
similar flavor, the results show that their sales demand are also closely related.

Next we use the multivariate Markov chain model, to make predictions
on the state x̂t at time t which can be taken as the state with the maximum
probability, i.e.,

x̂t = j, if [x̂t]i ≤ [x̂t]j ,∀1 ≤ i ≤ m.

To evaluate the performance and effectiveness of our multivariate Markov
chain model, a prediction result is measured by the prediction accuracy r
defined as

r =
1
T

×
T∑

t=n+1

δt × 100%,
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where T is the length of the data sequence and

δt =
{

1, if x̂t = xt

0, otherwise.

For the sake of comparison, we also give the results for the first-order Markov
chain model of individual sales demand sequence. The results are reported in
Table 7.1. There is noticeable improvement in prediction accuracy in Product
A while improvements are also observed in Product D and Product E. The
results show the effectiveness of our multivariate Markov chain model.

Table 7.1. Prediction accuracy in the sales demand data.

Product A Product B Product C Product D Product E

First-order Markov Chain 46% 45% 63% 51% 53%
Multivariate Markov Chain 50% 45% 63% 52% 55%

7.4 Applications to Credit Rating

In the last decade, there has been a considerable interest in modelling the
dependency of the credit risks due to the practical importance and relevance
of risk analysis of credit portfolios [6, 7, 20, 30, 85, 86, 87, 88, 90, 93, 120, 119,
122, 161, 164, 168, 182, 210, 211]. The specification of the model that explains
and describes the dependency of the credit risks can have significant impli-
cations in pricing credit risky securities and managing credit risky portfolios.
The discrete-time homogeneous Markov Chain model has been used among
academic researchers and market practitioners in modelling the transitions
of the ratings of a credit risk over time. The credit transition probability
matrix represents the likelihood of the future evolution of the ratings. The
credit transition probability matrix can be estimated based on the available
empirical data for credit ratings. Standard & Poor and Moodys are the major
providers of the credit rating data. They provide and update from time to
time the historical data for various individual companies and countries.

Credibility theory has been widely applied in the actuarial discipline for
calculating a policyholder’s premium through experience rating of the policy-
holder’s past claims. Mowbray [155], Bühlmann [37] and Klugman, Panjer and
Willmot [133] provided an excellent account on actuarial credibility theory.
Siu and Yang [190] and Siu, Tong and Yang [191] provided some discussions on
the use of Bayesian credibility theory for risk measurement. By employing the
idea of credibility theory, one can provide an estimate for the credit transition
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probability matrix as a linear combination of the empirical credit transition
probability matrix and a prior credit transition probability matrix [113] et
al. Here we consider an approach that can provide an analytically tractable
way to estimate credit transition probability matrix. The estimator for tran-
sition probability matrices of ratings is a linear combination of a prior matrix
given by the empirical transition matrix estimated directly from Standard &
Poor’s data and a model-based updating matrix evaluated from the ordered
probit model. This approach provides market practitioners with an intuitively
appealing and convenient way for the estimation of the unknown parameters
and credit transition probability matrices in the multivariate Markov chain
model Kijima et al [128].

7.4.1 The Credit Transition Matrix

In this subsection, we assume that the estimate of each credit transition prob-
ability matrix can be represented as a linear combination of prior credit transi-
tion probability matrix and the empirical credit transition probability matrix,
where the empirical credit transition probability matrix is calculated based on
the transition frequencies of ratings (see Section 7.3). Then, by Proposition
7.1, there exists a vector X of stationary probability distributions, we can
estimate the necessary parameters based on the stationary distributions for
the ratings.

Let Q(jk) denote the prior credit transition probability matrix. The empir-
ical estimate P̂ (jk) of the credit transition probability matrix can be obtained
using the method in Section 7.2.1. Here, we specify the prior credit transition
probability matrix by the credit transition probability matrix created by Stan-
dard & Poor’s. The credit transition probability matrix produced by Standard
& Poor’s has widely been used as a benchmark for credit risk measurement
and management in the finance and banking industries. For the purpose of
illustration, we assign a common prior credit transition probability matrix for
the two credit risky assets as the credit transition probability matrix created
by Standard & Poor’s to represent the belief that the credit transition prob-
ability matrices for the two credit risky assets are essentially the same based
on the prior information. If more prior information about the credit rating
of each credit risky asset is available, we can determine a more informative
prior credit transition probability matrix for each credit risky asset. For a
comprehensive overview and detailed discussion on the choice of prior distri-
butions based on prior information, refer to some representative monographs
in Bayesian Statistics, such as Lee [139], Bernardo and Smith [17] and Robert
[178], etc. Then, the estimate P

(jk)
e of the credit transition probability P (jk)

is given by

P (jk)
e = wjkQ(jk) + (1 − wjk)P̂ (jk) , j, k = 1, 2, . . . , n , (7.6)

where 0 ≤ wjk ≤ 1, for each j, k = 1, 2, . . . , n. From proposition 7.1, we have
that
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⎜⎜⎜⎜⎝

λ11P
(11)
e λ12P

(12)
e · · · λ1nP

(1n)
e

λ21P
(21)
e λ22P

(22)
e · · · λ2nP

(2n)
e

...
...

...
...

λn1P
(n1)
e λn2P

(n2)
e · · · λnnP

(nn)
e

⎞
⎟⎟⎟⎟⎠ x̂ ≈ x̂. (7.7)

Let
λ̃1

jk = λjkwjk

and
λ̃2

jk = λjk(1 − wjk).

Then, it is easy to check that for each j, k = 1, 2, . . . , n, we have

λ̃1
jk + λ̃2

jk = λjk.

We note that the estimation of λjk and wjk is equivalent to the estimation of
λ̃1

jk and λ̃2
jk. Then, (7.7) can be written in the following form:

⎛
⎜⎜⎜⎝

λ̃1
11Q

(11) + λ̃2
11P̂

(11) · · · λ̃1
1nQ(1n) + λ̃2

1nP̂ (1n)

λ̃1
21Q

(21) + λ̃2
21P̂

(21) · · · λ̃1
2nQ(2n) + λ̃2

2nP̂ (2n)

...
...

...
λ̃1

n1Q
(n1) + λ̃2

n1P̂
(n1) · · · λ̃1

nnQ(nn) + λ̃2
nnP̂ (nn)

⎞
⎟⎟⎟⎠ X̂ ≈ X̂ . (7.8)

Now, we can formulate our estimation problem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ̃1,λ̃2

max
i

∣∣∣∣∣
[

m∑
k=1

(λ̃1
jkQ(jk) + λ̃2

jkP̂ (jk))X̂(k) − X̂(j)

]
i

∣∣∣∣∣
subject to

n∑
k=1

(λ̃1
jk + λ̃2

jk) = 1, λ̃1
jk ≥ 0

and
λ̃2

jk ≥ 0, ∀j, k.

(7.9)

Let

Oj = max
i

∣∣∣∣∣
[

m∑
k=1

(λ̃1
jkQ(jk) + λ̃2

jkP̂ (jk))x̂(k) − x̂(j)

]
i

∣∣∣∣∣ .
Then, Problem (7.9) can be re-formulated as the following set of n linear
programming problems as in Chapter 6. It is clear that, one can also choose
vector ||.||1 instead of the vector norm ||.||∞. The resulting problem can be
still as a linear programming problem. A detailed application in credit rating
can be found in Siu et al. [188].
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7.5 Applications to DNA Sequences Modeling

In this section, we test multivariate Markov chain models for DNA sequences
and analyze their correlations, Ching et al [66]. Because of its extraordinary
position as a preferred model in biochemical genetics, molecular biology, and
biotechnology, Escherichia coli K-12 was the earliest organism to be suggested
as a candidate for whole genome sequencing. The complete genome sequence
of E. coli was obtained in 1997 [24]. A complete listing of E. coli open reading
frames (ORFs), that is, long contiguous reading frame without STOP codons,
is now available at the website [227]. In the tests, we used this database in all
of our computations. The lengths of the DNA sequences we tested are from
1000 to 4000.

In the first test, we tried to use (A,C, G, T ) as the set of possible states that
a multivariate Markov chain model can take. However, we find that we cannot
construct any useful models. Each DNA sequence is independent of the other
DNA sequences, i.e., λii = 1 and λij = 0 for i �= j. It is well-known that amino
acids are encoded by consecutive sequences of 3 nucleotides, called codon.
Taking this fact into account, in the construction of multivariate Markov
chain model, one identifies 12 symbols: the four nucleotides (A, T, G, C) in
the first position, the four letters

(A′, T ′, G′, C ′)

in the second position and the four same letters

(A′′, T ′′, G′′, C ′′)

in the third position of a reading frame of period three. Using this approach,
alphabet sequence

ACTGTT . . . . . .

is re-written as
AC ′T ′′GT ′T ′′ . . . . . . ,

and therefore the transition probability for a letter doublet being different
according to the position in the hypothetical codon. For instance, below is
the transition matrix for the DNA sequence (b2647) in the database:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0.4067 0.3898 0.3109 0.3320
0 0 0 0 0 0 0 0 0.1498 0.1332 0.1965 0.1066
0 0 0 0 0 0 0 0 0.3303 0.3608 0.3812 0.4344
0 0 0 0 0 0 0 0 0.1131 0.1162 0.1114 0.1270

0.3648 0.3722 0.2400 0.2324 0 0 0 0 0 0 0 0
0.3007 0.1570 0.2083 0.3622 0 0 0 0 0 0 0 0
0.1352 0.1614 0.3550 0.0865 0 0 0 0 0 0 0 0
0.1993 0.3094 0.1967 0.3189 0 0 0 0 0 0 0 0

0 0 0 0 0.2189 0.3030 0.1173 0.1788 0 0 0 0
0 0 0 0 0.2274 0.2576 0.3548 0.2291 0 0 0 0
0 0 0 0 0.1684 0.2449 0.1848 0.2821 0 0 0 0
0 0 0 0 0.3853 0.1944 0.3431 0.3101 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because we order the states as
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(ATGCA′T ′G′C ′A′′T ′′G′′C ′′),

the transition matrix is a 3-by-3 cyclic matrix. The cyclic matrix has nonzero
blocks at (2, 1)th, (3, 2)th and (1, 3)th blocks and other blocks are zero. This
structure allows us to implement the multivariate Markov chain model more
efficiently in the estimation of the parameters.

E. coli has been a paradigm for the identification of motifs. The basic idea
for identifying significant motifs is to design, a priori, a probabilistic model
permitting generation of a theoretical genetic sequence and then compute the
expected frequency of a given motif in this model-derived sequence. This lat-
ter theoretical motif frequency is subsequently compared with the frequency
observed in the real sequence. If the difference between the two frequencies
is important, one can surmise that the motif reflects a process of biological
significance (c.f. [108]). Several periodic Markov chain models have been intro-
duced for this purpose, see for instance [28] and [131]. Our model is different
from the previous ones in the sense that we used the information from more
than one ORF sequences. This approach may be useful if certain ‘style’ exists
within the genes of the organism (in fact, codon usage biases do exist in E.
coli).

We have tried to construct the multivariate Markov chain models for the
DNA sequences in the database of E. coli. Some results for modeling DNA
sequences are reported in Table 7.2. In Table 7.2, the target DNA sequences
in the first column means that the multivariate Markov chain models are con-
structed for these DNA sequences. The DNA sequences in the second column
are the related DNA sequences in the multivariate Markov chain model for the
target DNA sequence. The number in the bracket is the weighting parameter
(λjk) of the related DNA sequence in the multivariate Markov chain model.
For instance, the model for the DNA sequence (b0890) is as follows:

X(b0890)
n = 0.918P̂ (b0890 b3593)Xb3593

n + 0.082P̂ (b0890 b0890)X(b0890)
n .

We see from Table 7.2 that there are some DNA sequences depending only on
the other DNA sequences, e.g.,

b4289, b2150, b1320, b4232, b2411, b2645,

and
b0344, b1687, b3894, b1510, b1014, b2557.

These DNA sequences were selected to evaluate their biological functions and
understand their dependence of other DNA sequences.

We would like to consider the state vector X(b0924)
n of the DNA sequence

(b0924) at the base n depends on the state vectors X(b2647)
n of the DNA

sequence (b2647), and itself. More precisely, we have the following multivariate
Markov chain model:

X(b0924)
n = 0.356P̂ (b0924 b2647)Xb2647

n + 0.644P̂ (b0924 b0924)X(b0924)
n .
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The transition matrices P̂ (b0924 b2647) and P̂ (b0924 b0924) are given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0.1465 0.1853 0.2197 0.2263
0 0 0 0 0 0 0 0 0.3248 0.3553 0.2962 0.3060
0 0 0 0 0 0 0 0 0.4108 0.3198 0.3662 0.3621
0 0 0 0 0 0 0 0 0.1178 0.1396 0.1178 0.1056

0.3556 0.3146 0.3763 0.3631 0 0 0 0 0 0 0 0
0.1907 0.2347 0.1820 0.2083 0 0 0 0 0 0 0 0
0.1796 0.2066 0.1714 0.1548 0 0 0 0 0 0 0 0
0.2741 0.2441 0.2703 0.2738 0 0 0 0 0 0 0 0

0 0 0 0 0.1530 0.1257 0.1640 0.1751 0 0 0 0
0 0 0 0 0.2616 0.3115 0.2397 0.2404 0 0 0 0
0 0 0 0 0.3548 0.3403 0.3975 0.3056 0 0 0 0
0 0 0 0 0.2306 0.2225 0.1987 0.2789 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0.2026 0.2360 0.1618 0.2023
0 0 0 0 0 0 0 0 0.3216 0.2335 0.3950 0.3092
0 0 0 0 0 0 0 0 0.4009 0.3985 0.3256 0.3497
0 0 0 0 0 0 0 0 0.0749 0.1320 0.1175 0.1387

0.3605 0.3061 0.4628 0.1798 0 0 0 0 0 0 0 0
0.1905 0.0713 0.2695 0.3146 0 0 0 0 0 0 0 0
0.1429 0.3040 0.1097 0.1011 0 0 0 0 0 0 0 0
0.3061 0.3187 0.1580 0.4045 0 0 0 0 0 0 0 0

0 0 0 0 0.3133 0.1065 0.0379 0.0501 0 0 0 0
0 0 0 0 0.2026 0.2715 0.4545 0.2180 0 0 0 0
0 0 0 0 0.2946 0.4570 0.0720 0.5263 0 0 0 0
0 0 0 0 0.1895 0.1649 0.4356 0.2055 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

respectively. We see that P̂ (b0924 b2647) and P̂ (b0924 b0924) are cyclic matrices.
It is interesting to note from our analysis that the DNA sequence (b2647) plays
an important role in the construction of multivariate Markov chain models of
other DNA sequences. We check that this DNA sequence corresponds to outer
membrane proteins involved in the so-called antigenic variation phenomenon,
that allows the cell to escape the immune response of the host.

We also compare the multivariate Markov chain model with the Markov
model of a single DNA sequence. The improvement in accuracy of using the
multivariate Markov chain model over the Markov chain model of a single
DNA sequence is reported in the last column of Table 7.2. We find that the
prediction accuracy of using the multivariate Markov chain model is signif-
icantly higher than that of using the Markov chain model of a single DNA
sequence.

On the other hand, one would like to construct the conventional first-
order Markov chain describing multiple DNA sequences. However, such model
require a large number of training data (i.e., the length of the DNA sequence
should be long enough) to accurately estimate the transition probabilities of
each base occurring after every possible combination of the proceeding bases.
In the tests, the lengths of short DNA sequences are about 1000 and there
are 97% transition probabilities of the conventional model that cannot be
estimated. For the long DNA sequences (their lengths are about 4000), there
are still 96% transition probabilities of the model that cannot be estimated.
Therefore, the applicability of such conventional model is difficult.
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Table 7.2. Results of the multivariate Markov chain models.

Target DNA sequences in the Improvement in
DNA sequences multivariate Markov chain model accuracy (%)

(weighting parameters)

b4289 b1415 (1) 56.25
b2150 b3830 (1) 49.00
b2410 b3830 (1) 47.16
b1320 b2410 (0.9963), b2546 (0.0037) 41.32
b4232 b1415 (0.9992), b3830 (0.0008) 36.57
b779 b779 (0.457), b3081 (0.260), 57.81

b2411 (0.106), b1645 (0.177)
b3081 b3081 (0.426), b2411 (0.574) 43.02
b1023 b1023 (0.252), b2411 (0.748) 15.40
b2411 b779 (0.476), b1645 (0.524) 39.37
b2645 b1645 (1) 40.70
b1435 b3081 (0.5), b1435 (0.5) 49.09
b2076 b2076 (0.417), b0344 (0.583) 27.83
b0344 b2076 (0.826), b1474 (0.174) 60.07
b1687 b2076 (0.937), b0059 (0.0626) 13.94
b3894 b0344 (1) 27.79
b3593 b3482 (0.453), b3593 (0.547) 36.23
b3987 b3988 (0.081), b0700 (0.668), 54.06

b3987 (0.171), b1014 (0.080)
b0890 b3593 (0.818), b0890 (0.182) 30.37
b1510 b3593 (0.685), b3987 (0.315) 37.61
b1014 b3988 (1) 44.43
b2557 b3482 (0.114), b3987 (0.886) 39.23
b0924 b2647 (0.918), b0924 (0.082) 54.53

The advantage of the Markov chain model in biological applications is its
effectiveness in prediction. However, its use is limited to a single DNA se-
quence. The multivariate Markov chain model presented here has removed
this limitation whilst preserving its effectiveness. The extension allows us to
model multiple DNA sequences directly and analyze them as a whole. Because
biological applications deal with a very large number of DNA sequences, scal-
ability is a basic requirement to these applications. Our experimental results
have demonstrated that the multivariate Markov chain model is indeed scal-
able to very large DNA sequences.

7.6 Applications to Genetic Networks

In this section, we applied the multivariate Markov chain model to model
genetic networks, Ching et al. [64]. One of the important focus of genomic
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research is to understand the mechanism in which cells execute and control
the huge number of operations for normal functions, and also the way in
which the cellular systems fail in disease. Models based on methods such as
neural networks, non-linear ordinary, Petri nets, differential equations have
been proposed for such problem, see for instance Smolen et al. [192], Bower
[29] and DeJong [83].

Another approach is to model the genetic regulatory system by a Boolean
network and infer the network structure and parameters by real gene expres-
sion data. By using the inferred network model, we may be able to discover the
underlying gene regulatory mechanisms and therefore it helps to make useful
predictions by computer simulation. The Boolean network model was first in-
troduced by Kauffman [125, 126]. Advantages of this model can be found in
Akutsu et al. [3], Kauffman [125, 126] and Shmulevich et al. [184, 185].

In this network model, each gene is regarded as a vertex of the network
and is quantized into two levels only (express (0) or not-express (1)). Akutsu
et al. [3] proposed the noisy Boolean networks together with an identification
algorithm. In their model, they relax the requirement of consistency imposed
by the Boolean functions. Regarding the effectiveness of a Boolean formalism,
Shmulevich et al. [184, 185] proposed a PBN that can share the appealing
rule-based properties of Boolean networks and it is robust in the presence of
uncertainty. Their model is able to show a clear separation between different
subtypes of gliomas as well as between different sarcomas by using multi-
dimensional scaling. A logical representation of cell cycle regulation can also
be found in Shmulevich et al. [184, 185]. However, it is widely recognized
that reproducibility of measurements and between-slide variation are major
issues. Moreover, genetic regulation also exhibits uncertainty on the biological
level. Shmulevich also proposed a means of structural intervention method for
controlling the stationary behavior in PBNs.

Boolean network modelling is commonly used for studying generic coarse-
grained properties of large genetic networks without knowing specific quan-
titative details. Boolean network is deterministic, the only uncertainty is the
initial starting state. Generally speaking, a Boolean network G(V,F) consists
of a set of nodes

V = {v1, v2, . . . , vn}
and vi(t) represents the state (0 or 1) of vi at time t. A list of Boolean functions

F = {f (1), f (2), . . . , f (n)}

represents the rules regulatory interaction between nodes:

vi(t + 1) = f (i)(v(t)), i = 1, 2, . . . , n,

where
v(t) = (v1(t), v2(t), . . . , vn(t)).

In general, there may contain some unnecessary nodes in a Boolean function.
For a Boolean function f (j), the variable vi(t) is said to be fictitious if
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f (j)(v1(t), . . . , vi−1(t), 0, vi+1(t), . . . , vn(t))
= f (j)(v1(t), . . . , vi−1(t), 1, vi+1(t), . . . , vn(t))

for all possible values of

v1(t), . . . , vi−1(t), vi+1(t), . . . , vn(t).

We remark that when a Boolean network is used in the construction of under-
lying genetic networks, then n represents the number of genes under considera-
tion, each vertex vi represents the ith gene, and vi(t) represents the expression
level of the ith gene at time t, taking either 0 or 1. The expression level of each
gene is functionally related to that of other genes. Computational models that
reveal these logical relations have been constructed in Bodnar [27], Mendoza
et al. [154] and Huang et al. [116].

Standard Boolean networks are deterministic. However, in the biological
aspect, an inherent determinism is not reasonable as it assumes an environ-
ment without uncertainty. The existence regularity of genetic function and
interaction is caused by intrinsic self-organizing stability of the dynamical
system instead of “hard-wired” logical rules, Shmulevich et al. [184]. In the
empirical aspect, sample noise and relatively small amount of samples may
cause incorrect results in logical rules. In order to overcome the deterministic
rigidity of Boolean networks, the development of Probabilistic Boolean net-
works (PBNs) is essential. Not only PBN shares the appealing properties of
Boolean networks, but also it is able to cope with uncertainty, including the
data and model selection, Shmulevich et al. [184].

PBNs were firstly proposed by Shmulevich et al. [186] for genetic regula-
tory network. The model can be written as:

Fi = {f (i)
j }j=1,...,l(i),

where each predictor f
(i)
j is a predictor determining the value of the gene vi

and l(i) is the number of possible predictors for the gene vi. It is clear that

F =
n⋃

i=1

Fi.

We notice that when the number of possible PBN realization N is equal to 1
(i.e.,

∏n
i=1 l(i) = 1), the PBN reduces to the standard Boolean network. Let

c
(i)
j be the probability that the j-th predictor, f

(i)
j , is chosen to predict the ith

gene if c
(i)
j is positive and this probability can be estimated by Coefficient of

Determination (COD); Dougherty et al. (2000). Let us briefly describe COD
here. Firstly, let ε

(i)
j be the optimal error achieved by f

(i)
j and εi is the error

of best estimate of ith gene in the absence of any conditional variable, then
we have

θ
(i)
j =

εi − ε
(i)
j

εi
.
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For all positive θ
(i)
j , we can obtain c

(i)
j by:

c
(i)
j =

θ
(i)
j

l(i)∑
k=1

{θ(i)
k : θ

(i)
k > 0}

.

Clearly, c
(i)
j must satisfies

l(i)∑
j=1

c
(i)
j = 1. for i = 1, . . . , n.

For any given time point, the expression level of the ith gene is determined
by one of the possible predictors f

(i)
j for 1 ≤ j ≤ l(i). The probability of a

transition from v(t) to v(t + 1) can be obtained as

n∏
i=1

⎡
⎣ l(i)∑

k=1

{
c
(i)
k : f

(i)
k (v(t)) = vi(t + 1)

}⎤⎦ .

On the other hand, the level of influences from gene j to gene i can be esti-
mated by

Ij(vi) =
∑l(i)

k=1 Prob(f (i)
k (v1, . . . , vj−1, 0, vj+1, . . . , vn)

�= f
(i)
k (v1, . . . , vj−1, 1, vj+1, . . . , vn))c(i)

k .
(7.10)

Before evaluating either state transition probabilities or Ij(vi), we first need
to obtain all the predictors

⋃n
i=1 Fi. We remark that for each set of Fi with

1 ≤ i ≤ n, the maximum number of predictors is equal to 22n

as 1 ≤ l(i) ≤ 22n

,
it is also true for their corresponding probabilities

{c(i)
1 , . . . , c

(i)
l(i)}.

It implies that the number of parameters in the PBN model is about O(n22n

).
Obviously, the number of parameters increases exponentially with respect the
number of genes n. Also, the COD used in obtaining c

(i)
k must be estimated

from the training data. Hence, it is almost impractical to apply this model
due to either its model complexity or parameters imprecision owing to limited
sample size. For the microarray-based analysis done by Kim et al. (2000), the
number of genes in each set of Fi was kept to a maximum of three.

We note that PBN is a discrete-time process, the probability distribution
of gene expression at time t + 1 of the ith gene can be estimated by the
gene expression of other n genes at time t via one-lag transition matrix. This
is a Markov process framework. We consider the multivariate Markov chain
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model to infer the genetic network of n genes. In this network, no prior in-
formation on n genes relationships is assumed, our proposed model is used to
uncover the underlying various gene relationships, including genes and genes
cyclic or acyclic relationships. From our own model parameters, it is sufficient
to uncover the gene regulatory network. However, one would like to have a
fair performance comparison between PBNs and our model, we would like
to illustrate using our model parameters to estimate some commonly used
parameters in PBNs efficiently. In PBNs with n genes, there are n disjoint
sets of predictors Fi and each of them is used for an unique gene sequence.
In particular, for the d-th set of predictors Fd, we notice that the possibility
corresponding to each predictor f

(d)
j can be obtained from our probability

stationary vector and the detail is given as follows. We can estimate the con-
ditional probability distribution X

(d)
i1,...,in

for d output expression at base t+1
given by a set of genes input expression at base t, i.e.,

X
(d)
i1,...,in

= Prob(V (d)
t+1 | V

(k)
t = Eik

for k = 1, . . . , n)

=
n∑

k=1

λdkP (dk)Eik
=

n∑
k=1

λdkP
(dk)
(·,ik)

where ik ∈ {0, 1} and P
(dk)
(·,i) denote the i column of P (dk). Clearly, each prob-

ability vector X
(d)
i1,...,in

is a unit vector and for each d, there are 2n number of
probability vectors we need to estimate. If λdj = 0 for some j ∈ {1, . . . , n},
it represents that the j-th gene does not have any influence to the d-th gene,
and

X
(d)
i1,...,ij−1,0,ij+1,...,in

≡ X
(d)
i1,...,ij−1,1,ij+1,...,in

the number of estimated probability vectors could be reduced by half. After all
the essential X

(d)
i1,...,in

has been estimated, the probability c
(d)
g of the predictor

f
(d)
g can be estimated by

c(d)
g =

∏
ik∈{0,1},k=1,...,n

X
(d)
i1,...,in

(f (d)
g (i1, . . . , in) + 1)

where
f (d)

g (i1, . . . , in) ∈ {0, 1}

and Xi1,...,in
(h) denotes the h entry of the vector Xi1,...,in

. If c
(d)
g = 0, the

predictor f
(d)
g does not exist and it should be eliminated. It is interesting to

justify how the expression of ith gene is affected by the expression of jth gene,
therefore, the degree of sensitivity from jth gene to ith gene can be estimated
by equation (7.10) mentioned in previous section. We notice that there are
two situations that Ij(Vi) = 0, Shmulevich et al. [186], namely,

(i) If λij = 0, then jth gene does not give any influence on ith gene.
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(ii) The first two columns of the matrix P (ij) are identical, that means no
matter the expression of jth gene is, the result of the probability vector is
not affected.

7.6.1 An Example

Here we give an example to demonstrate the construction of our model pa-
rameters. We consider the following two binary sequences:

s1 = {0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0}

and
s2 = {1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1}.

We have the frequency matrices as follows:

F (11) =
(

6 2
2 1

)
, F (12) =

(
5 3
2 1

)
,

F (21) =
(

5 2
3 1

)
, F (22) =

(
4 3
3 1

)
.

After normalization we have the transition probability matrices:

P̂ (11) =
(

3
4

2
3

1
4

1
3

)
, P̂ (12) =

(
5
7

3
4

2
7

1
4

)
,

P̂ (21) =
(

5
8

2
3

3
8

1
3

)
, P̂ (22) =

(
4
7

3
4

3
7

1
4

)
.

Moreover we also have
V̂1 = (

3
4
,
1
4
)T

and
V̂2 = (

7
12

,
5
12

)T .

After solving the linear programming problem, the multivariate Markov model
of the two binary sequences is given by{

V(1)
t+1 = 0.5P̂ (11)V(1)

t + 0.5P̂ (12)V(2)
t

V(2)
t+1 = 1.0P̂ (21)V(1)

t + 0.0P̂ (22)V(2)
t .

The conditional probability distribution vector X
(1)
0,0 can be estimated as:

X
(1)
0,0 = 0.5P̂ (11)(1, 0)T + 0.5P̂ (12)(1, 0)T = (

41
56

,
15
56

)T .

We can obtain the rest of the vectors in the similar way and get:
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X
(1)
0,1 = (

3
4
,
1
4
)T , X

(1)
1,0 = (

29
42

,
13
42

)T

and
X

(1)
1,1 = (

17
24

,
7
24

)T .

As λ2,2 = 0, therefore we have,

X
(2)
0,0 = X

(2)
0,1 = (

5
8
,
3
8
)T

and
X

(2)
1,0 = X

(2)
1,1 = (

2
3
,
1
3
)T .

From previous section, the probability c
(i)
j can be obtained and the results are

given in the Tables 7.3 and 7.4.

Table 7.3. The first sequence results.

v1 v2 f
(1)
1 f

(1)
2 f

(1)
3 f

(1)
4 f

(1)
5 f

(1)
6 f

(1)
7 f

(1)
8

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

c
(1)
j 0.27 0.11 0.12 0.05 0.08 0.04 0.04 0.02

v1 v2 f
(1)
9 f

(1)
10 f

(1)
11 f

(1)
12 f

(1)
13 f

(1)
14 f

(1)
15 f

(1)
16

0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

c
(1)
j 0.1 0.04 0.04 0.02 0.03 0.01 0.02 0.01

For instance,

c
(1)
6 = [X(1)

0,0 ]1 × [X(1)
0,1 ]2 × [X(1)

1,0 ]1 × [X(1)
1,1 ]2

=
41
56

× 1
4
× 29

42
× 7

24
= 0.04.

Because of λ22 = 0, the set of predictors for the second sequence can reduce
significantly.

From Tables 7.3 and 7.4, the level of sensitivity Ij(vi) can be obtained by
direct calculation. For example,
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Table 7.4. The second sequence results.

v1 v2 f
(2)
1 f

(2)
2 f

(2)
3 f

(2)
4

0 — 0 0 1 1
1 — 0 1 0 1

c
(2)
j 0.42 0.2 0.25 0.13

I1(v1) = 0(0.27) + 1
2 (0.11) + 1

2 (0.12) + 0.05
+ 1

2 (0.08) + 0(0.04) + 0.04 + 1
2 (0.02)

+ 1
2 (0.1) + 0.04 + 0(0.04) + 1

2 (0.02)
+(0.03) + 1

2 (0.01) + 1
2 (0.02) + 0(0.01)

= 0.4.

and we have

I2(v1) = 0.4, I1(v2) = 0.45 and I2(v2) = 0.

According to the calculated values Ii(vj), we know that the first sequence
somehow determine the second sequence. However, this phenomena is already
illustrated by the fact that λ22 = 0 (λ21 = 1) in the multivariate Markov
chain model.

7.6.2 Fitness of the Model

The multivariate Markov chain model presented here is a stochastic model.
Given all the state vectors V(k)

t with k = 1, . . . , n, the state probability distri-
bution V(k)

t+1 can be estimated by using (7.1). According to this state proba-
bility distribution, one of the prediction methods for the jth sequence at time
t + 1 can be taken as the state with the maximum probability, i.e.,

V̂(t + 1) = j, if [V̂(t + 1)]i ≤ [V̂(t + 1)]j for all 1 ≤ i ≤ 2.

By making use of this treatment, our multivariate Markov chain model can
be used to uncover the rules (build a truth table) for PBNs. With higher
prediction accuracy, we have more confidence that the true genetic networks
are uncovered by our model. To evaluate the performance and effectiveness,
the prediction accuracy of all individual sequences r and the joint sequences
R are defined respectively as follow:

r =
1

nT
×

n∑
i=1

T∑
t=1

δ
(i)
t × 100%,

where

δ
(i)
t =

{
1, if v̂i(t) = vi(t)
0, otherwise.
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and

R =
1
T

×
T∑

t=1

δt × 100%,

where

δt =
{

1, if v̂i(t) = vi(t) for all 1 ≤ i ≤ n
0, otherwise.

Here T is the length of the data sequence. From the values of r and R, the
accuracy of network realization for an individual sequence and for a whole set
of sequences could be determined respectively. In this subsection, we test our
multivariate Markov chain model for yeast data sequence.

Test with the Gene Expression Data of Yeast

Genome transcriptional analysis has been shown to be important in medicine,
and etiology as well as in bioinformatics. One of the applications of genome
transcriptional analysis is the eukaryotic cell cycle in yeast. The fundamental
periodicity in eukaryotic cell cycle includes the events of DNA replication,
chromosome segregation and mitosis. Hartwell and Kastan [105] suggested
that improper cell cycle regulation may lead to genomic instability, especially
in etiology of both hereditary and spontaneous cancers, Wang et al. [205];
Hall and Peters [104]. Eventually, it is believed to play one of the important
roles in the etiology of both hereditary and spontaneous cancers. Genome
transcriptional analysis helps in exploring the cell cycle regulation and the
mechanism behind the cell cycle. Raymond et al. [176] examined the present of
cell cycle-dependent periodicity in 6220 transcripts and found that cell cycles
appear in about 7% of transcripts. Those transcripts are then extracted for
further examination. When the time course was divided into early G1, late G1,
S, G2 and M phase, the result showed that more than 24% of transcripts are
directly adjacent to other transcripts in the same cell cycle phase. The division
is based on the size of the bugs and the cellular position of the nucleus. Further
investigating result on those transcripts also indicated that more than half are
affected by more than one cell cycle-dependent regulatory sequence.

In our study, we use the data set selected from Yeung and Ruzzo [213].
In the discretization, if an expression level is above (below) its standard de-
viation from the average expression of the gene, it is over-expressed (under-
expressed) and the corresponding state is 1 (0). Our main goal is to find out
the relationship in 213 well-known yeast transcripts with cell cycle in order
to illustrate the ability of our proposed model. This problem can be solved
by using a PBN theoretically. However, there are problems in using PBNs in
practice. It is clearly that the method of COD is commonly used to estimate
the probabilities of each predictor c

(d)
g for transcript d. Unfortunately, owing

to limited time points of the expression level of each gene (there are only 17
time points for the yeast data set), it is almost impossible to find a value of
c
(d)
g which is strictly greater than that of the best estimation in the absence
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of any conditional variables. Therefore, most of the transcripts do not have
any predictor and it leads to all of the parameters in PBN are impossible
to be estimated. Moreover, PBN seems to be unable to model a set of genes
when n is quite large. Nir et al. [162] suggested Bayesian networks can infer a
genetic network successfully, but it is unable to infer a genetic network with
cell cycle relationship. Ott et al. [165] also suggested that even if in a acyclic
genetic network with constraints situation, the number of genes in Bayesian
networks should not be greater than 40 if BNRC score are used. Kim et al.
[129] proposed a dynamic Bayesian network which can construct of cyclic reg-
ulations for medium time-series, but still it cannot handle a large network.
Here, we use the multivariate Markov chain model for training the yeast data.
The construction of a multivariate Markov chain model for such data set only
requires around 0.1 second. We assume that there is no any prior knowledge
about the genes. In the construction of the multivariate Markov chain model,
each target gene can be related to other genes. Based on the values of λij in
our model, one can determine the occurrence of cell cycle in jth transcript,
i.e., in a set of transcripts, there present a inter-relationship of any jth tran-
script in this set. Based on the built multivariate Markov chain model, 93%
of transcripts possibly involves in some cell cycles were found. Some of the
results are shown in Table 7.5.

Table 7.5. Results of our multivariate Markov chain model.

No. Name of Cell Length Related transcripts
target cycle of cell (its phase λij ,

transcript phase cycle level of influence)

(1) YDL101c late G1 1 YMR031c(1,1.00,1.00)
(2) YKL113c late G1 2 YDL018c (2,0.50,0.50)

YOR315w(5,0.50,0.50)
YML027w(2,0.33,0.39)
YJL079c(5,0.33,0.38)

(3) YLR121c late G1 3 YPL158c(1,0.33,0.42)
YDL101c(2,0.33,0.43)
YKL069w(4,0.33,0.43)
YER001w(3,0.50,0.50)

(4) YLR015w early G1 4 YKL113c(2,1.00,0.88)

In Table 7.5, the first column indicates the number of data set we display.
The second column gives the name of target transcript. The third column
shows which phase the target gene belongs to. The fourth column shows the
most possibly cell cycle length of the target transcript. Finally, the last column
displays the name of required transcripts for predicting the target transcript,
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the corresponding phase of required transcripts, their corresponding weights
λij in the model, as well as an estimated value of the level of influence from
related transcript to the target transcript. Although the level of influence can
be estimated based on our model parameters, its computational cost in the
PBN method increases exponentially respect to the value of n.

We find in Table 7.5 that the weighting λij provides a reasonable measure
for the level of influence. Therefore the proposed method can estimate the
level of influence very efficiently. Finally, we present in Table 7.6 the prediction
results of different lengths of cell cycles for the whole data set and the results
show that the performance of the model is good.

Table 7.6. Prediction results.

Length of No. of occurrence Average Example
cell cycle in this type prediction in

phases required of cell cycle accuracy Table 7.5

1 5 % 86 % (1)
2 9 % 87 % (2)
3 9 % 83 % (3)
4 70 % 86 % (4)

Further research can be done in gene perturbation and intervention. We
note that a PBN allows uncertainty of inter-gene relations in the dynamic
process and it will evolve only according to certain fixed transition probabili-
ties. However, there is no mechanism to control this process so as to achieve
some desirable states. To facilitate PBNs to evolve towards some desirable
directions, intervention has been studied. It has been shown that given a tar-
get state, one can facilitate the transition to it by toggling the state of a
particular gene from on to off or vice-versa Shmulevich et al. [187]. But mak-
ing a perturbation or a forced intervention can only be applied at one time
point. The dynamics of the system thereafter still depends on the network it-
self. Thus the network may eventually return to some undesirable state after
a number of steps. Another way to tackle this problem is to by use struc-
tural intervention to change the stationary behavior of the PBNs Shmulevich
et al. [185]. This approach constitutes transient intervention. It involves the
structural intervention and therefore it will be more permanent. By using the
proposed multivariate Markov chain model, it is possible to formulate the gene
intervention problem as a linear control model. To increase the likelihood of
transitions to a desirable state, more auxiliary variables can be introduced in
the system Datta et al. [81]. Moreover, costs can be assigned to the control
inputs and also the states researched such that higher terminal costs are as-
signed to those undesirable states. The objective here is to achieve a target
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state probability distribution with a minimal control cost. The model can be
formulated as a minimization problem with integer variables and continuous
variables, Zhang et al [218].

7.7 Extension to Higher-order Multivariate Markov
Chain

In this section, we present our higher-order multivariate Markov chain model
for modelling multiple categorical sequences based on the models in Sections
6.2 and 7.2. We assume that there are s categorical sequences with order n
and each has m possible states in M. In the extended model, we assume that
the state probability distribution of the jth sequence at time t = r+1 depends
on the state probability distribution of all the sequences (including itself) at
times t = r, r − 1, . . . , r − n + 1. Using the same notations as in the previous
two subsections, our proposed higher-order (nth-order) multivariate Markov
chain model takes the following form:

x(j)
r+1 =

s∑
k=1

n∑
h=1

λ
(h)
jk P

(jk)
h x(k)

r−h+1, j = 1, 2, . . . , s (7.11)

where
λ

(h)
jk ≥ 0, 1 ≤ j, k ≤ s, 1 ≤ h ≤ n (7.12)

and
s∑

k=1

n∑
h=1

λ
(h)
jk = 1, j = 1, 2, . . . , s.

The probability distribution of the jth sequence at time t = r + 1 depends
on the weighted average of P

(jk)
h x(k)

r−h+1. Here P
(jk)
h is the hth-step transition

probability matrix which describes the hth-step transition from the states in
the kth sequence at time t = r − h + 1 to the states in the jth sequence at
time t = r + 1 and λ

(h)
jk is the weighting of this term.

From (7.11), if we let

X(j)
r = (x(j)

r ,x(j)
r−1, . . . ,x

(j)
r−n+1)

T for j = 1, 2, . . . , s

be the nm×1 vectors then one can write down the following relation in matrix
form:

Xr+1 ≡

⎛
⎜⎜⎜⎜⎝

X(1)
r+1

X(2)
r+1
...

X(s)
r+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

B(11) B(12) · · · B(1s)

B(21) B(22) · · · B(2s)

...
...

...
...

B(s1) B(s2) · · · B(ss)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

X(1)
r

X(2)
r

...
X(s)

r

⎞
⎟⎟⎟⎟⎠ ≡ QXr

where
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B(ii) =

⎛
⎜⎜⎜⎜⎜⎝

λ
(n)
ii P

(ii)
n λ

(n−1)
ii P

(ii)
n−1 · · · λ

(2)
ii P

(ii)
2 λ

(1)
ii P

(ii)
1

I 0 · · · 0 0
0 I · · · 0 0
...

. . . . . . . . . 0
0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎠

mn×mn

and if i �= j then

B(ij) =

⎛
⎜⎜⎜⎜⎜⎝

λ
(n)
ij P

(ij)
n λ

(n−1)
ij P

(ij)
n−1 · · · λ

(2)
ij P

(ij)
2 λ

(1)
ij P

(ij)
1

0 0 · · · 0 0
0 0 · · · 0 0
...

. . . . . . . . . 0
0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

mn×mn

.

We note that each column sum of Q is not necessary equal to one but each
column sum of P

(jk)
h is equal to one. We have the following propositions.

Proposition 7.3. If λ
(h)
jk > 0 for 1 ≤ j, k ≤ s and 1 ≤ h ≤ n, then the matrix

Q has an eigenvalue equal to one and the eigenvalues of Q have modulus less
than or equal to one.

Proposition 7.4. Suppose that P
(jk)
h (1 ≤ j, k ≤ s, 1 ≤ h ≤ n) are irreducible

and λ
(h)
jk > 0 for 1 ≤ j, k ≤ s and 1 ≤ h ≤ n. Then there is a vector

X = (X(1),X(2), . . . ,X(s))T

with
X(j) = (x(j),x(j), . . . ,x(j))T

such that
X = QX and 1x(j) = 1, for 1 ≤ j ≤ s

1 = (1, 1, . . . , 1) of length m.

The transition probabilities Ph
jk can be estimated by counting the tran-

sition frequency as described in Section 6.2 of Chapter 6 and Section 7.2.
Moreover, we note that X is not a probability distribution vector, but x(j) is
a probability distribution vector. The above proposition suggests one possi-
ble way to estimate the model parameters λ

(h)
ij . The key idea is to find λ

(h)
ij

which minimizes ||Qx̂ − x̂|| under certain vector norm || · ||. The estimation
method is similar to those in Chapter 6. The proofs of Propositions 7.3 and
7.4 and detailed examples of demonstration with an application in production
planning can be found in Ching et al. [65].
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7.8 Summary

In this chapter, we present the a multivariate Markov chain model with estima-
tion methods for the model parameters based on solving linear programming
problem. The model has been applied to multi-product demand estimation
problem, credit rating problem, multiple DNA sequences and genetic net-
works. We also extend the model to a higher-order multivariate Markov chain
model. Further research can be done on the following issues.

(i) New estimation methods when there are missing data in the given se-
quences.

(ii) The case when the model parameters λij are allowed to take negative
values. The treatment can be similar to the discussion in Section 6.4.
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Hidden Markov Chains

8.1 Introduction

Hidden Markov models (HMMs) have been applied to many real-world appli-
cations. Very often HMMs only deal with the first-order transition probability
distribution among the hidden states, see for instance Section 1.4. Moreover,
the observable states are affected by the hidden states but not vice versa. In
this chapter, we study both higher-order hidden Markov models and interac-
tive HMM in which the hidden states are directly affected by the observed
states. We will also develop estimation methods for the model parameters in
both cases.

The remainder of this chapter is organized as follows. In Section 8.2, we
present a higher-order hidden Markov model. In Section 8.3, we discuss an
interactive HMM. In Section 8.4, we discuss a double higher-order hidden
Markov models. Finally, a summary will be given to conclude this chapter in
Section 8.5.

8.2 Higher-order HMMs

In this section, we present a higher-order Hidden Markov Model (HMM) and
the model is applied to modeling DNA sequences, see Ching et al. [61]. HMMs
have become increasingly popular in the last few decades. Since HMMs are
very rich in mathematical structure, they can form the theoretical basis in a
wide range of applications such as the DNA sequences [135], speech recognition
[173] and computer version [39]. A standard HMM is usually characterized by
the following elements [173]:

(i) N , the number of states in the model. Although the states are hidden, for
many practical applications, very often, there is physical significance to
the states. We denote the individual states as

S = {S1, S2, . . . , SN},
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and the state at the length t as qt.
(ii) M , the number of distinct observation symbols (or state) for the hidden

states. The observation symbols correspond to the physical output of the
system being modeled. We denote the individual symbols as

V = {v1, v2, . . . , vM}.

(iii) The state transition probability distribution

A = {aij}

where
aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N.

(iv) The observation probability distribution in state j, B = {bj(k)}, where

bj(k) = P (Ot = vk|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

(v) The initial state distribution Π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ N.

Given appropriate values of N,M, A,B and Π, the HMM can be used as
a generator to give an observation sequence

O = O1O2 . . . OT

where each observation Ot is one of the symbols from V, and T is the number
of observations in the sequence. For simplicity, we use the compact notation

Λ = (A,B, Π)

to indicate the complete parameter set of the HMM. According to the above
specification, very often a first order Markov process is used in modeling
the transitions among the hidden states in a HMM. In the DNA sequence
analysis, higher-order Markov models have been used to model the transitions
among the observable states, see [28, 100]. An mth order Markov process is
a stochastic process where each event depends on the previous m events. It
is believed that higher-order Markov model (in the hidden layer) can better
capture a number of data sequences such as the DNA sequences. The main aim
of this paper is to develop higher-order HMMs (higher-order Markov model for
the hidden states). The main difference between the traditional HMM and a
higher-order HMM is that in the hidden layer, the state transition probability
is governed by the mth order higher-order Markov model

ait−m+1,...,it+1 = P (qt+1 = Sit+1 |qt = Sit , . . . , qt−m+1 = Sit−m+1).

We assume that the distribution Π of initial m states is given by
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πi1,i2,...,im = P (q1 = Si1 , q2 = Si2 , . . . , qm = Sim).

Here we will present solution to the three problems for higher-order HMMs.
Recall that they are practical problems in the traditional HMMs (see Section
1.4).

• Problem 1 Given the observation sequence

O = O1O2 . . . OT

and a higher-order HMM, how to efficiently compute the probability of
the observation sequence?

• Problem 2 Given the observation sequence

O = O1O2 . . . OT

and a higher-order HMM, how to choose a corresponding state sequence

Q = q1q2 . . . qT

which is optimal in certain sense (e.g. in the sense of maximum likelihood)?
• Problem 3 Given the observation sequence

O = O1O2 . . . OT

and a higher-order HMM, how to choose the model parameters?

8.2.1 Problem 1

For Problem 1, we calculate the probability of the observation sequence,

O = O1O2 . . . OT ,

given the higher-order HMM, i.e., P [O|Λ]. One possible way of doing this is
through enumerating each possible state sequence of length T . However, this
calculation is computationally infeasible even for small values of T and N .
We apply the forward-backward procedure [14] to calculate this probability
of the observation sequence. We define the forward variable

αt(it−m+1, . . . , it)

as follows:

αt(it−m+1, . . . , it) = P (O1, . . . , Ot, qt−m+1 = Sit−m+1 , . . . , qt = Sit |Λ),

where m ≤ t ≤ T , i.e., the conditional probability that the subsequence of
the first t observations and the subsequence of last m hidden states ending at
time t are equal to

v1 . . . vt and Sit−m+1 . . . Sit
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respectively, are given by the model parameters Λ. We see that if we can
obtain the values of

αT (iT−m+1, . . . , iT ) ∀ iT−m+1, . . . , iT ,

then it is obvious that P [O|Λ] can be obtained by summing up all the values
of

αT (iT−m+1, . . . , iT ).

It is interesting to note that the values of αT (iT−m+1, . . . , iT ) can be obtained
by the following recursive equation and the details are given as follows:

(F1) Initialization: αm(i1, i2, . . . , im) = πi1,i2,...,im ·
m∏

j=1

bij (vj).

(F2) Recursive Equation: αt+1(it−m+2, it−m+3, . . . , it+1) =

N∑
it−m+1=1

αt(it−m+1, . . . , it) · P (Ot+1|Λ, qt+1 = Sit+1)·

P (qt+1 = Sit+1 |Λ, qt−m+1 = Sit−m+1 , . . . , qt = Sit))

=
N∑

it−m+1=1

αt(it−m+1, . . . , it) · ait−m+1it,it+1bit+1(vt+1).

(F3) Termination: P (O|Λ) =
N∑

iT−m+1,...,iT =1

αT (iT−m+1, . . . , iT ).

The initiation step calculates the forward probabilities as the joint proba-
bility of hidden states and initial observations. The recursion step, which
is the main part of the forward calculation. Finally, the last step gives the
desired calculation of P [O|Λ] as the sum of the terminal forward variables
αT (iT−m+1, . . . , iT ). In a similar manner, a backward variable βt(i1, i2, . . . , im)
can be defined as follows: βt(i1, i2, . . . , im) =

P (Ot+m . . . OT |qt = Sit , . . . , qt+m−1 = Sit+m−1 , Λ), 0 ≤ t ≤ T − m.

(B1) Initialization: βT−t(i1, . . . , im) = 1, 0 ≤ t ≤ m − 1, 1 ≤ i1, . . . , im ≤ N .

(B2) Recursive equation: βt(i1, i2, . . . , im) =

N∑
it+m=1

P (Ot+m+1 . . . OT |qt+1 = Sit+1 , . . . , qt+m−1 = Sit+m−1 , qt+m = Sit+m , Λ)·

P (Ot+m|qt+m = Sit+m , Λ) · P (qt+m = Sit+m |qt = Sit , . . . , qt+m−1 = Sit+m−1 , Λ)

=
N∑

k=1

bk(Ot+m)βt+1(i2, . . . , im, k) · ai2,...,im,k.

The initialization step arbitrarily defines βT−t(i1, i2, . . . , im) to be 1. The in-
duction step of the backward calculation is similar to the forward calculation.
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8.2.2 Problem 2

In Problem 2, we attempt to uncover the whole hidden sequence give the
observations, i.e. to find the most likely state sequence. In practical situa-
tions, we use an optimality criteria to solve this problem as good as possible.
The most widely used criterion is to find the best sequence by maximizing
P [Q|Λ,O]. This is equivalent to maximize P (Q,O|Λ). We note that

P (Q|Λ, O) =
P (Q,O|Λ)
P (O|Λ)

.

Viterbi algorithm [204] is a technique for finding this “best” hidden sequence
Q = {q1, q2, . . . , qT } for a given observation sequence O = {O1, O2, . . . , OT }.
Here we need to define the following quantity:

δt(it−m+1, . . . , it) = max
q1,...,qt−m

P (q1 = Si1 , . . . , qt = Sit , O1, . . . , Ot|Λ),

for m ≤ t ≤ T and δt(it−m+1, . . . , it) is the best score (highest probability)
along a single best state sequence at time t, which accounts for the first t
observations and ends in state Sit

. By induction, we have

δt+1(it−m+2, . . . , it+1)
= max

1≤qt−m+1≤N
{δt(it−m+1, . . . , it) · ait−m+1,...,it+1} · bit+1(Ot+1). (8.1)

To retrieve the state sequence, ones needs to keep track of the argument which
maximized (8.1) for each t and it−m+1, . . ., it. this can be done via the array
∆t+1(it−m+2, . . . , it+1). The complete procedure for finding the best state
sequence is as follows:

(U1) Initialization:

δm(i1, . . . , im) = P (q1 = Si1 , . . . , qm = Sim , O1, . . . , Om|Λ)

= P (q1 = Si1 , . . . , qm = Sim |Λ) ·
m∏

j=1

P (Oj |Λ, qj = Sij )

= πi1,i2,...,im

m∏
j=1

bij
(vj), 1 ≤ i1, i2, . . . , im ≤ N.

We also set ∆m(i1, . . . , im) = 0.

(U2) Recursion:

δt+1(it−m+2, . . . , it+1)
= max

q1,...,qt−m+1
P (qt+1 = Sit+1 , Ot+1|Λ, q1 = i1, . . . , qt = it, O1, . . . , Ot) ·

P (q1 = Si1 , . . . , qt = Sit , O1, . . . , Ot|Λ)
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= max
1≤qt−m+1≤N

δt(it−m+1, . . . , it) ·

P (Ot+1|Λ, q1 = Si1 , . . . , qt+1 = Sit+1 , O1, . . . , Ot) ·
P (qt+1 = Sit+1 |Λ, q1 = Si1 , . . . , qt = Sit

, O1, . . . , Ot)
= max

1≤qt−m+1≤N
δt(it−m+1, . . . , it) · P (Ot+1|Λ, qt+1 = Sit+1) ·

P (qt+1 = Sit+1 |Λ, qt−m+1 = Sit−m+1 , . . . , qt = Sit
)

= max
1≤qt−m+1≤N

{δt(it−m+1, . . . , it) · ait−m+1,...,it+1} · bit+1(vt+1).

For m + 1 ≤ t ≤ T and 1 ≤ it+1 ≤ N , we have

∆t+1(it−m+2, . . . , it+1)
= argmax1≤qt−m+1≤N{δt(it−m+1, . . . , it) · ait−m+1,...,it+1}.

(U3) Termination

P ∗ = max
1≤qT−m+1,...,qT ≤N

{δqT−m+1,...,qT
}

(q∗T−m+1, . . . , q
∗
T ) = argmax1≤qT−m+1,...,qT ≤N{δqT−m+1,...,iT

}

8.2.3 Problem 3

In Problem 3, we attempt to adjust the model parameters Λ by maximizing
the probability of the observation sequence given the model. Here we choose
Λ such that P [O|Λ] is maximized with the assumption that the distribution
Π of the initial m states is known by using the EM algorithm. Define

C(Λ,Λ) =
∑
Q

P (Q|O, Λ) log P (O,Q|Λ).

The EM algorithm includes two main steps, namely E-step, calculating the
function C(Λ, Λ) and the M-step, maximizing C(Λ, Λ) with respect to Λ. Now,
we define εt(i1, i2, . . . , im+1) as follows:

εt(i1, i2, . . . , im+1) = P (qt = Si1 , qt+1 = Si2 , . . . , qt+m = Sim+1 |O, Λ).

We can write down the expression of εt(i1, i2, . . . , im+1) in terms of α(·) and
β(·) that are computed in the previous two sub-sections:

εt(i1, i2, . . . , im+1)
= bim+1(Ot+m)P [Ot+m+1 . . . OT |qt+1 = Si2 , . . . , qt+m = Sim+1 , Λ] ·

P (qt+m = Sim+1 |qt = Si1 , qt+1 = Si2 , . . . , qt+m−1 = Sim , Λ] ·
P [O1O2 . . . Ot+m−1, qt = Si1 , qt+1 = Si2 , . . . , qt+m−1 = Sim |Λ)

= αt+m−1(i1, i2, . . . , im)ai1,...,im+1bim+1(Ot+m)βt+1(i2, i3, . . . , im+1).
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Therefore we obtain

εt(i1, i2, . . . , im+1) = P (qt = Si1 , qt+1 = Si2 , . . . , qt+m = Sim+1 |O, Λ)

=
αt+m−1(i1, i2, . . . , im)ai1,...,im+1bim+1(Ot+m)βt+1(i2, ie, . . . , im+1)

P [O|Λ]
.

Next we define

γt(i1, i2, . . . , ik) =
N∑

ik+1=1

. . .

N∑
im+1=1

εt(i1, i2, . . . , im+1).

If we sum εt(i1, i2, . . . , im+1) over the index t, we get a quantity which
can be interpreted as the expected number of times that state sequence
Si1Si2 · · ·Sim+1 occurred. Similarly, if we sum γt(i1, i2, . . . , im) over t, we get
a quantity which can be interpreted as the expected number of times that
state sequence Si1Si2 · · ·Sim occurred. Hence, a set of re-estimation formulae
is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γt(i1) =
N∑

i2=1

N∑
i3=1

. . .

N∑
im+1=1

εt(i1, i2, . . . , im+1),

γt(i1, i2) =
N∑

i3=1

. . .

N∑
im+1=1

εt(i1, i2, . . . , im+1),

...

γt(i1, i2, . . . , im) =
N∑

im+1=1

εt(i1, i2, . . . , im+1),

πi1 = γ1(i1),
πi1i2 = γ1(i1, i2),

...
πi1i2...im

= γ1(i1, i2, . . . , im),

Ai1i2...im+1 =
T−m∑
t=1

εt(i1, i2, . . . , im+1),

Ai1i2...im
=

N∑
im+1=1

Ai1i2...im+1 ,

ai1,...,im+1 = Ai1i2...im+1/

N∑
im+1=1

Ai1i2...im+1 ,

Ej(vk) =
T−m∑

t=1, such that Ot=vk

γt(j),

bj(vk) = Ej(vk)/
M∑

k=1

Ej(vk).
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8.2.4 The EM Algorithm

In this subsection, we discuss the convergence of the EM algorithm. We begin
with the following lemma.

Lemma 8.1. Given pi, qi ≥ 0 such that∑
i

pi =
∑

i

qi = 1,

then ∑
i

pi log
pi

qi
≥ 0

and the equality holds if and only if pi = qi for all i.

Proof. Suppose that pi, qi ≥ 0 and∑
i

pi =
∑

i

qi = 1,

then we have
−
∑

i

pi log
pi

qi
=
∑

i

pi log
qi

pi

≤
∑

i

pi(
qi

pi
− 1)

=
∑

i

(qi − pi)

= 0.

This is true because we have the following inequality

log x ≤ x − 1 for x ≥ 0

and the equality holds if and only if x = 1. Hence the result follows.

Now, suppose we have a model with parameter set Λ and we want to
obtain a better model with parameter set Λ. Then one can consider the log
likelihood as follows:

log P [O|Λ] =
∑
Q

log P [O, Q|Λ].

Since
P [O, Q|Λ] = P [Q|O, Λ]P [O|Λ],

we get
log P [O|Λ] = log P [O,Q|Λ] − log P [Q|O,Λ].

By multiplying this with P [Q|O,Λ] and summing over Q, we get the following
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log P [O|Λ] =
∑
Q

P [Q|O,Λ] log P [O,Q|Λ] −
∑
Q

P [Q|O,Λ] log P [Q|O, Λ].

We denote
C(Λ, Λ) =

∑
Q

P [Q|O, Λ] log P [O, Q|Λ]

then we have

log P [O|Λ] − log P [O|Λ] = C(Λ, Λ) − C(Λ,Λ)

+
∑
Q

P [Q|O, Λ] log
P [Q|O,Λ]
P [Q|O,Λ]

.

The last term of the right-hand-side is the relative entropy of P [Q|O, Λ]
relative to P [Q|O, Λ] which is always non-negative by Lemma 8.1.

Hence we have

log P [O|Λ] − log P [O|Λ] ≥ C(Λ, Λ) − C(Λ,Λ)

and equality holds only if
Λ = Λ

or if
P [Q|O, Λ] = P [Q|O, Λ]

for some other Λ �= Λ. By choosing

Λ = arg max
Λ′

C(Λ,Λ′)

one can always make the difference non-negative. Thus the likelihood of the
new model is greater than or equal to the likelihood of the old model. In fact,
if a maximum is reached then Λ = Λ and the likelihood remains unchanged.
Therefore it can be shown that the EM algorithm converges to a (local or
global) maximum.

Proposition 8.2. The EM algorithm converges to a (local or global) maxi-
mum.

8.2.5 Heuristic Method for Higher-order HMMs

The conventional model for an mth order Markov model has O(Nm+1) un-
known parameters (transition probabilities) where N is number of states. The
major problem in using such kind of model is that the number of parameters
(transition probabilities) increases exponentially with respect to the order of
the model. This large number of parameters discourages the use of higher-
order Markov models directly. In this subsection, we develop an efficient esti-
mation method for building a higher-order HMM when the observation symbol
probability distribution B is known.
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We consider the higher-order Markov model discussed in Chapter 6 whose
number of states is linear in m. Our idea is to approximate an nth order
Markov model of the demand as follows:

Qt+m =
m∑

i=1

λiPiQt+m−i (8.2)

where Qt+i is the state probability distribution vector at time (t + i). In
this model we assume that Qt+n+1 depends on Qt+i (i = 1, 2, . . . , n) via
the matrices Pi and the parameters λi. One may relate Pi to the ith step
transition probability matrix for the hidden states. In the model, the number
of states is O(mN2) whereas the conventional nth order Markov model has
O(Nm+1) parameters to be determined.

Given the hidden state probability distribution, the observation probabil-
ity distribution is given by

Yt = BXt (8.3)

where B is the emission probabilities matrix. Hence (8.2) and (8.3) form a
higher-order HMM.

For Model (8.2), in Chapter 6 we have proposed efficient methods to esti-
mate Ai and λi. Given an observed sequence of {Xt}T

t=1, Ai are estimated by
first counting the i-step transition frequency from the observed data sequence
and then by normalization to get the transition probabilities. In Chapter 6,
we have proved that

lim
t→∞

Xt = Z and Z =
m∑

i=1

λiPiZ

where Z can be estimated from {Xt}T
t=1 by first counting the occurrence

frequency of each state and then by normalization. They considered solving
λi by the following minimization problem:

min ||Z −
m∑

i=1

λiPiZ||

subject to
m∑

i=1

λi = 1 and λi ≥ 0.

It can be shown easily that if ||.|| is taken to be ||.||1 or ||.||∞ then the above
problem can be reduced to a linear programming problem and hence can be
solved efficiently.

Consider a higher-order HMM with known emission probabilities B and
observation data sequence

O1O2 . . . OT ,
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how to choose Ai and λi so as to build a higher-order HMM? We note that
by (8.3), the stationary probability distribution vector for the observation
symbols is given by W = BZ. Therefore if W can be estimated and B is given,
the probability distribution vector Z for the hidden states can be obtained.
For such stationary vector Z, the first-order transition probability matrix A
for the hidden states is then given by

A = Z(1, 1, . . . , 1)T (8.4)

(noting that AZ = vecZ). With this idea, we propose the following steps to
construct a higher-order HMM.

Step 1: The lth element of W is approximated by

1
T

T∑
i=1

IOi=vl
.

Step 2: From (8.3), we expect (W − BZ) to be close to the zero vector.
Therefore we consider solving Z by minimizing

||W − BZ||∞.

Step 3: Find the most probable hidden sequence Q1, Q2, . . ., QT based
on the observation sequence

O1, O2, . . . , OT

and the matrix A is computed by (8.4).

Step 4: With the most probable hidden sequence

Q1, Q2, . . . , QT ,

we can estimate Pi by counting the number of the transition frequency of
the hidden states and then by normalization.

Step 5: Solve λi by solving

min ||Z −
m∑

i=1

λiPiZ||∞

subject to
m∑

i=1

λi = 1 and λi ≥ 0.

The advantage of our proposed method is that one can solve the model pa-
rameters efficiently with reasonable accuracy. In the next section, we illustrate
the effectiveness of this efficient method.
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8.2.6 Experimental Results

In this section, we test our higher-order HMMs and the heuristic model for the
CpG island data. We simulate a higher-order HMM for the CpG islands. In
the genome where-ever the dinucleotide CG occurs (frequently written CpG to
distinguish it from the C-G base pair across the two strands) the C nucleotide
(cytosine) is typically chemically modified by methylation. There is a relatively
high chance of this methyl-C mutating into a T, with the consequence that
in general CpG dinucleotides are rarer in the genome than would be expected
from the independent probabilities of C and G. Usually, this part corresponds
to the promoters or “start” regions of many genes [31]. In DNA sequence
analysis, we often focus on which part of the sequence belongs to CpG island
and which part of the sequence belongs to non-CpG islands. In the HMM
formulation, we have two hidden states (N = 2):

S1 = CpG island and S2 = non − CpG island,

and we have four observations symbols (M = 4):

v1 = A, v2 = C, v3 = G, v4 = T.

The model parameters based on the information of CpG island are used. The
transition probabilities are then given by

P (qt = S1|qt−1 = S1, qt−2 = S1) = 0.72,
P (qt = S1|qt−1 = S1, qt−2 = S2) = 0.81,
P (qt = S1|qt−1 = S2, qt−2 = S1) = 0.12,
P (qt = S1|qt−1 = S2, qt−2 = S2) = 0.21,
P (qt = S2|qt−1 = S1, qt−2 = S1) = 0.28,
P (qt = S2|qt−1 = S1, qt−2 = S2) = 0.19,
P (qt = S2|qt−1 = S2, qt−2 = S1) = 0.88,
P (qt = S2|qt−1 = S2, qt−2 = S2) = 0.79.

and
P (Ot = A|qt = S1) = 0.1546,
P (Ot = C|qt = S1) = 0.3412,
P (Ot = G|qt = S1) = 0.3497,
P (Ot = T |qt = S1) = 0.1544,
P (Ot = A|qt = S2) = 0.2619,
P (Ot = C|qt = S2) = 0.2463,
P (Ot = G|qt = S2) = 0.2389,
P (Ot = T |qt = S2) = 0.2529.

Given these values, the HMM can be used as a generator to give an obser-
vation sequence. We generate 100 observation sequences of length T = 3000.
Based on these observation sequences, we train three models. The three models
assume that the hidden states sequence is a first-order model, a second-order
model and a third-order model respectively. We calculate
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P (O|Λ) and P (Q,O|Λ)

for each of the models. We also report the results obtained by using our
proposed heuristic model. The average results of 100 comparisons are given
in Table 8.1. It is clear that the proposed estimation algorithm can recover
the second-order Markov model of the hidden states.

Table 8.1. log P [O|Λ].

First-order Second-order Third-order

The Heuristic Method -1381 -1378 -1381

EM Algorithm (no. of iter) -1377 (2.7) -1375 (3.5) -1377 (3.4)

Finally, we present the computation times (per iteration) required for the
heuristic method and the EM algorithms in Table 8.2. We remark that the
heuristic method requires only one iteration. we see that the proposed heuristic
method is efficient.

Table 8.2. Computational times in seconds.

First-order Second-order Third-order

The Heuristic Method 1.16 1.98 5.05

EM Algorithm 4.02 12.88 40.15

8.3 The Interactive Hidden Markov Model

In this section, we propose an Interactive Hidden Markov Model (IHMM)
where the transitions of hidden states depend on the current observable states.
The IHHM is a generalization of the HMM discussed in Chapter 4. We note
that this kind of HMM is different from classical HMMs where the next hidden
states are governed by the previous hidden states only. An example is given
to demonstrate IHMM. We then extend the results to give a general IHMM.

8.3.1 An Example

Suppose that we are given a categorical data sequence (in steady state) of
volumn of transactions as follows:
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1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 3, 3, 4, 1.

Here 1=high transaction volume, 2= medium transaction volume, 3=low
transaction volume and 4=very low transaction volume. Suppose there are
two hidden states: A (bull market period) and B (bear market period). In
period A, the probability distribution of the transaction volume is assumed
to follow

(1/4, 1/4, 1/4, 1/4).

In period B, the probability distribution of the transaction volume is assumed
to follow

(1/6, 1/6, 1/3, 1/3).

In the proposed model, we assume that hidden states are unobservable but
the transaction volume are observable. We would like to uncover the hidden
state by modelling the dynamics by a Markov chain.

In the Markov chain, the states are

A,B, 1, 2, 3, 4.

We assume that when the observable state is i then the probabilities that
the hidden state is A and B are given by αi and 1 − αi (depending on i)
respectively in next time step. The transition probability matrix governing
the Markov chain is given by

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1/4 1/4 1/4 1/4
0 0 1/6 1/6 1/3 1/3
α1 1 − α1 0 0 0 0
α2 1 − α2 0 0 0 0
α3 1 − α3 0 0 0 0
α4 1 − α4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

8.3.2 Estimation of Parameters

In order to define the IHMM, one has to estimate the model parameters
α1, α2, α3 and α4 from an observed data sequence. One may consider the
following two-step transition probability matrix as follows:

P 2
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1+α2+α3+α4
4 1 − α1+α2+α3+α4

4 0 0 0 0
α1+α2

6 + α3+α4
3 1 − α1+α2

6 − α3+α4
3 0 0 0 0

0 0 1
6 + α1

12
1
6 + α1

12
1
3 − α1

12
1
3 − α1

12
0 0 1

6 + α2
12

1
6 + α2

12
1
3 − α2

12
1
3 − α2

12
0 0 1

6 + α3
12

1
6 + α3

12
1
3 − α3

12
1
3 − α3

12
0 0 1

6 + α4
12

1
6 + α4

12
1
3 − α4

12
1
3 − α4

12

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Using the same track as in Chapter 4, one can extract the one-step tran-
sition probability matrix of the observable states from P 2

2 as follows:
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P̃2 =

⎛
⎜⎜⎝

1
6 + α1

12
1
6 + α1

12
1
3 − α1

12
1
3 − α1

12
1
6 + α2

12
1
6 + α2

12
1
3 − α2

12
1
3 − α2

12
1
6 + α3

12
1
6 + α3

12
1
3 − α3

12
1
3 − α3

12
1
6 + α4

12
1
6 + α4

12
1
3 − α4

12
1
3 − α4

12

⎞
⎟⎟⎠ .

However, in this case, we do not have a closed form solution for the station-
ary distribution of the process. To estimate the parameter αi, we first estimate
the one-step transition probability matrix from the observed sequence. This
can be done by counting the transition frequencies of the states in the observed
sequence and we have

P̂2 =

⎛
⎜⎜⎝

0 4
5

1
5 0

1
2

1
3 0 1

6
0 0 1

2
1
2

1 0 0 0

⎞
⎟⎟⎠ .

We expect that
P̃2 ≈ P̂2

and hence αi can be obtained by solving the following minimization problem:

min
αi

||P̃2 − P̂2||2F (8.5)

subject to
0 ≤ αi ≤ 1.

Here ||.||F is the Frobenius norm, i.e.

||A||2F =
n∑

i=1

n∑
i=1

A2
ij .

This is equivalent to solve the following four independent minimization prob-
lems (i) - (iv) and they can be solved in parallel. This is an advantage of
the estimation method. We remark that one can also consider other matrix
norms for the objective function (8.5), let us say ||.||M1 or ||.||M∞ and they
may result in linear programming problems.

(i) α1: min
0≤α1≤1

{(1
6

+
α1

12
)2 + (

1
6

+
α1

12
− 4

5
)2 + (

1
3
− α1

12
− 1

5
)2 + (

1
3
− α1

12
)2};

(ii) α2: min
0≤α2≤1

{(1
6

+
α1

12
− 1

2
)2+(

1
6

+
α1

12
− 1

3
)2+(

1
3
− α1

12
)2 +(

1
3
− α1

12
− 1

6
)2};

(iii) α3: min
0≤α3≤1

{(1
6

+
α1

12
)2 + (

1
6

+
α1

12
)2 + (

1
3
− α1

12
− 1

2
)2 + (

1
3
− α1

12
− 1

2
)2};
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(iv) α4: min
0≤α4≤1

{(1
6

+
α1

12
− 1)2 + (

1
6

+
α1

12
)2 + (

1
3
− α1

12
)2 + (

1
3
− α1

12
)2}.

Solving the above optimization problems, we have

α∗
1 = 1, α∗

2 = 1, α∗
3 = 0, α∗

4 = 1.

Hence we have

P2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1/4 1/4 1/4 1/4
0 0 1/6 1/6 1/3 1/3
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (8.6)

and

P 2
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

3/4 1/4 0 0 0 0
2/3 1/3 0 0 0 0
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/6 1/6 1/3 1/3
0 0 1/4 1/4 1/4 1/4

⎞
⎟⎟⎟⎟⎟⎟⎠ . (8.7)

8.3.3 Extension to the General Case

The method can be extended to a general case of m hidden states and n
observable states. We note the one-step transition probability matrix of the
observable states is given by

P̃2 =

⎛
⎜⎜⎜⎝

α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

...
...

αn1 αm2 · · · αnm

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

...
...

pm1 pm2 · · · pmn

⎞
⎟⎟⎟⎠ , (8.8)

i.e.

[P̃2]ij =
m∑

k=1

αikpkj i, j = 1, 2, . . . , n.

Here we assume that αij are unknowns and the probabilities pij are given.
Suppose [Q]ij is the one-step transition probability matrix estimated from the
observed sequence. Then for each fixed i, αij , j = 1, 2, . . . , m can be obtained
by solving the following constrained least squares problem:

min
αik

⎧⎨
⎩

n∑
j=1

(
m∑

k=1

αikpkj − [Q]ij

)2
⎫⎬
⎭
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subject to
m∑

k=1

αik = 1

and
αik ≥ 0 for all i, k.

The idea of the IHMM presented in this subsection is further extended to
address the following applications and problems in Ching et al. [67].

(i) IHMM is applied to some practical data sequences in sales demand data
sequences.

(ii) there are only a few works on modelling the non-linear behavior of cate-
gorical time series can be found in literature. In the continuous-state case,
the threshold auto-regressive model is a well-known approach. The idea
is to provide a piecewise linear approximation to a non-linear autoregres-
sive time series model by dividing the state space into several regimes
via threshold principle. The IHMM provides a first-order approximation
of the non-linear behavior of categorical time series by dividing the state
space of the Markov chain process into several regimes.

8.4 The Double Higher-order Hidden Markov Model

In this section, we present a discrete model for extracting information about
the hidden or unobservable states information from two observation sequences.
The observations in each sequence not only depends on the hidden state in-
formation, but also depends on its previous observations. It is clear that both
the dynamics of hidden states and observation states are required to model
higher-order Markov chains. We call this kind of models to be Double Higher-
order Hidden Markov Models (DHHMMs).

The model can be described as follows. We write T for the time index set

{0, 1, 2, . . .}

of the model. Let {Vt}t∈T be an unobservable process representing the hidden
states over different time periods. We assume that {Vt}t∈T is an nth-order
discrete-time time-homogeneous Markov chain process with the state space

V = {v1, v2, . . . , vM}.

The state transition probabilities matrix

A = {a(jt+n)}

of the nth-order Markov chain {Vt}t∈T are given by



188 8 Hidden Markov Chains

a(jt+n) = P (Vt+n = vjt+n |Vt = vjt , . . . , Vt+n−1 = vjt+n−1)
1 ≤ jt, . . . , jt+n−1 ≤ M. (2.1)

To determine the probability structure for the nth-order Markov chain {Vt}t∈T
uniquely, we need to specify the initial state conditional probabilities

Π = {π(ij)}

as follows:

π(jk) = P (Vk = vjk
|V1 = vj1 , V2 = vj2 , . . . , Vk−1 = vjk−1), 1 ≤ k ≤ n.

(2.2)

Let
{It}t∈T

for a stochastic process and it is assumed to be a (l, n)-order double hidden
Markov chain process. Their corresponding states are given by

{it}t∈T .

Let
It = (It, It−1, . . . , It−l+1)

and
it = (it, it−1, . . . , it−l+1).

Then, we assume that the transition probabilities matrix

B = {bit,v(it+1)}

of the process {It}t∈T when It = it and the hidden state Vt+1 = v. The initial
distribution Π for {It}t∈T should be specified. Given appropriate values for n,
M , I, A, l, Π and B, the DHHMM can be adopted to describe the generator
that drives the realization of the observable sequence

I = I1I2 . . . IT ,

where T is the number of observations in the sequence. In order to determine
the DHHMM for our applications one can apply similar method of maximum
likelihood estimation and the EM algorithm discussed in Section 8.2. A de-
tailed discussion of the model and method of estimation with applications
to the extraction of unobservable states of an economy from observable spot
interest rates and credit ratings can be found in Siu et al. [189].



8.5 Summary 189

8.5 Summary

In this chapter, we present several new frameworks of hidden Markov models
(HMMs). They include Higher-order Hidden Markov Model (HHMM), In-
teractive Hidden Markov Model (IHMM) and Double Higher-order Hidden
Markov Model (DHHMM). For both HHMM and IHMM, we present both
methods and efficient algorithms for the estimation of model parameters. Fur-
ther research can be done in the applications of these new HMMs.
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