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Stochastic Processes

A stochastic process X “ tX ptq : t P T u is a collection of
random variables. The index t usually represents time.

We call X ptq the state of the process at time t.

If T is countably infinite, then we call X a discrete time process.
We will mainly choose T to be the set of nonnegative integers.
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Markov Chains

Definition

A discrete time process X “ tX0,X1,X2,X3, . . .u is called a Markov chain if and
only if the state at time t merely depends on the state at time t ´ 1. More
precisely, the transition probabilities

PrrXt “ at | Xt´1 “ at´1, . . . ,X0 “ a0s “ PrrXt “ at | Xt´1 “ at´1s

for all values a0, a1, . . . , at and all t ě 1.

In other words, Markov chains are “memoryless” discrete time processes. This
means that the current state (at time t ´ 1) is sufficient to determine the
probability of the next state (at time t). All knowledge of the past states is
comprised in the current state.
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Homogeneous Markov Chains

Definition
A Markov chain is called homogeneous if and only if the transition
probabilities are independent of the time t, that is, there exist
constants Pi ,j such that

Pi ,j “ PrrXt “ j | Xt´1 “ is

holds for all times t.

Assumption

We will assume that Markov chains are homogeneous unless stated
otherwise.
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Discrete State Space

Definition
We say that a Markov chain has a discrete state space if and
only if the set of values of the random variables is countably infinite

tv0, v1, v2, . . .u.

For ease of presentation we will assume that the discrete state
space is given by the set of nonnegative integers

t0, 1, 2, . . .u.
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Finite State Space

Definition
We say that a Markov chain is finite if and only if the set of values
of the random variables is a finite set

tv0, v1, v2, . . . , vn´1u.

For ease of presentation we will assume that finite Markov chains
have values in

t0, 1, 2, . . . , n ´ 1u.
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Transition Probabilities

The transition probabilities

Pi ,j “ PrrXt “ j | Xt´1 “ is.

determine the Markov chain. The transition matrix

P “ pPi ,jq “

¨

˚

˚

˚

˚

˚

˝

P0,0 P0,1 ¨ ¨ ¨ P0,j ¨ ¨ ¨

P1,0 P1,1 ¨ ¨ ¨ P1,j ¨ ¨ ¨
...

... . . . ... . . .

Pi ,0 Pi ,1 ¨ ¨ ¨ Pi ,j ¨ ¨ ¨
...

... . . . ... . . .

˛

‹

‹

‹

‹

‹

‚

comprises all transition probabilities.
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Multiple Step Transition Probabilities

For any m ě 0, we define the m-step transition probability

Pm
i ,j “ PrrXt`m “ j | Xt “ is.

This is the probability that the chain moves from state i to state j
in exactly m steps.

If P “ pPi ,jq denotes the transition matrix, then the m-step
transition matrix is given by

pPm
i ,jq “ Pm.
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Small Example

Example

P “

¨

˚

˚

˝

0 1
4 0 3

4
1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4

˛

‹

‹

‚

P20 “

¨

˚

˚

˝

0.00172635 0.00268246 0.992286 0.00330525
0.00139476 0.00216748 0.993767 0.00267057

0 0 1 0
0.00132339 0.00205646 0.994086 0.00253401

˛

‹

‹

‚
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Graphical Representation

A Markov chain with state space V and transition matrix P can be represented
by a labeled directed graph G “ pV ,E q, where edges are given by transitions
with nonzero probability

E “ tpu, vq | Pu,v ą 0u.

The edge pu, vq is labeled by the probability Pu,v .

Self-loops are allowed in these directed graphs, since we might have Pu,u ą 0.
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Example of a Graphical Representation

P “

¨

˚

˚

˝

0 1
4 0 3

4
1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4

˛

‹

‹

‚

0

1 2

3

1{
4

3{4

1{
2

1{3

1{6

1

1{2

1{
4

1{
4
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Irreducible Markov Chains
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Accessible States

We say that a state j is accessible from state i if and only if there
exists some integer n ě 0 such that

Pn
i ,j ą 0.

If two states i and j are accessible from each other, then we say
that they communicate and we write i Ø j .

In the graph-representation of the chain, we have i Ø j if and only
if there are directed paths from i to j and from j to i .
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Irreducible Markov Chains

Proposition

The communication relation is an equivalence relation.

By definition, the communication relation is reflexive and
symmetric. Transitivity follows by composing paths.

Definition
A Markov chain is called irreducible if and only if all states belong
to one communication class. A Markov chain is called reducible if
and only if there are two or more communication classes.
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Irreducible Markov Chains

Proposition

A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.
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Exercise

P “

¨

˚

˚

˝

0 1
4 0 3

4
1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4

˛

‹

‹

‚

0

1 2

3

1{
4

3{4

1{
2

1{3

1{6

1

1{2

1{
4

1{
4

Question

Is this Markov chain irreducible?

Answer
No, since no other state can be reached from 2.
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Periodic and Aperiodic Markov Chains
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Period

Definition

The period dpkq of a state k of a homogeneous Markov chain with
transition matrix P is given by

dpkq “ gcdtm ě 1: Pm
k ,k ą 0u.

if dpkq “ 1, then we call the state k aperiodic.

A Markov chain is aperiodic if and only if all its states are
aperiodic.

19 / 58



Exercise

P “

¨

˚

˚

˝

0 1
4 0 3

4
1
2 0 1

3
1
6

0 0 0 1
0 1

2
1
4

1
4

˛

‹

‹

‚

0

1 2

3

1{
4

3{4

1{
2

1{3

1{6

1

1{2

1{
4

1{
4

Question

What is the period of each state?

dp0q “ 1, dp1q “ 1, dp2q “ 1, dp3q “ 1, so the chain is aperiodic.
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Aperiodic Markov Chains

Aperiodicity can lead to the following useful result.

Proposition

Suppose that we have an aperiodic Markov chain with finite state
space and transition matrix P . Then there exists a positive integer
N such that

pPm
qi ,i ą 0

for all states i and all m ě N .

Before we prove this result, let us explore the claim in an exercise.
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Exercise

P “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
3
4 0 0 1

4

˛

‹

‹

‚ 0

1 2

3

1

1

1

3{4

1{
4

Question
What is the smallest number of steps Ni such that Pm

i ,i ą 0 for all m ě N for
i P t0, 1, 2, 3u?

Answer
N0 “ 4, N1 “4, N2 “ 4, N3 “ 4.

22 / 58



Exercise

P “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
3
4 0 0 1

4

˛

‹

‹

‚ 0

1 2

3

1

1

1

3{4

1{
4

Question
What is the smallest number of steps Ni such that Pm

i ,i ą 0 for all m ě N for
i P t0, 1, 2, 3u?

Answer
N0 “

4, N1 “4, N2 “ 4, N3 “ 4.

22 / 58



Exercise

P “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
3
4 0 0 1

4

˛

‹

‹

‚ 0

1 2

3

1

1

1

3{4

1{
4

Question
What is the smallest number of steps Ni such that Pm

i ,i ą 0 for all m ě N for
i P t0, 1, 2, 3u?

Answer
N0 “ 4, N1 “

4, N2 “ 4, N3 “ 4.

22 / 58



Exercise

P “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
3
4 0 0 1

4

˛

‹

‹

‚ 0

1 2

3

1

1

1

3{4

1{
4

Question
What is the smallest number of steps Ni such that Pm

i ,i ą 0 for all m ě N for
i P t0, 1, 2, 3u?

Answer
N0 “ 4, N1 “4, N2 “ 4, N3 “ 4.

22 / 58



Aperiodic Markov Chains

Now back to the general statement.

Proposition

Suppose that we have an aperiodic Markov chain with finite state
space and transition matrix P . Then there exists a positive integer
N such that

pPm
qi ,i ą 0

for all states i and all m ě N .

Let us now prove this claim.
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Proof.

We will use the following fact from number theory.

Lemma
If a subset A of the set of nonnegative integers is

1 closed under addition, A` A Ď A, and

2 satisfies gcdta | a P Au “ 1,

then it contains all but finitely many nonnegative integers, so there
exists a positive integer n such that tn, n ` 1, n ` 2, . . .u Ď A.
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Proof of the Lemma.

Suppose that A “ ta1, a2, a3, . . .u. Since gcdA “ 1, there must exist some
postiive integer k such that

gcdpa1, a2, . . . , akq “ 1.

Thus, there exist integers n1, n2, . . . , nk such that

n1a1 ` n2a2 ` ¨ ¨ ¨ ` nkak “ 1.

We can split this sum into a positive part P and a negative part N such that

P ´ N “ 1.

As sums of elements in A, both P and N are contained in A.
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Proof of the Lemma (Continued)

Suppose that n is a positive integer such that n ě NpN ´ 1q. We can express n
in the form

n “ aN ` r

for some integer a and a nonnegative integer r in the range 0 ď r ď N ´ 1.

We must have a ě N ´ 1. Indeed, if a were less than N ´ 1, then we would have
n “ aN ` r ă NpN ´ 1q, contradicting our choice of n.

We can express n in the form

n “ aN ` r “ aN ` rpP ´ Nq “ pa ´ rqN ` rP .

Since a ě N ´ 1 ě r , the factor pa´ rq is nonnegative. As N and P are in A, we
must have n “ pa ´ rqN ` rP P A.

We can conclude that all sufficiently large integers n are contained in A.
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Proof of the Proposition.

For each state i , consider the set Ai of possible return times

Ai “ tm ě 1 | Pm
i ,i ą 0u.

Since the Markov chain in aperiodic, the state i is aperiodic, so gcdAi “ 1.

If m,m1 are elements of Ai , then

PrrXm “ i | X0 “ is ą 0 and PrrXm`m1 “ i | Xm “ is ą 0.

Therefore,

PrrXm`m1 “ i | X0 “ is ě PrrXm`m1 “ i | Xm “ isPrrXm “ i | X0 “ is ą 0.

So m `m1 is an element of Ai . Therefore, Ai ` Ai Ď Ai .

By the lemma, Ai contains all but finitely many nonnegative integers. Therefore,
A contains all but finitely many nonnegative integers. 2
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Aperiodic Irreducible Markov Chains

Proposition

Let X be an irreducible and aperiodic Markov chain with finite
state space and transition matrix P . Then there exists an M ă 8

such that pPmqi ,j ą 0 for all states i and j and all m ě M .

In other words, in an irreducible, aperiodic, and finite Markov chain,
one can reach each state from each other state in an arbitrary
number of steps with a finite number of exceptions.
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Proof.
Since the Markov chain is aperiodic, there exist a positive integer N such that
pPnqi ,i ą 0 for all states i and all n ě N .

Since P is irreducible, there exist a positive integer ni ,j such that P
ni,j
i ,j ą 0. After

m ě N ` ni ,j steps, we have

PrrXm “ j | X0 “ is
looooooooooomooooooooooon

Pm
i,ją0

ě PrrXm “ j | Xm´ni,j “ is
looooooooooooomooooooooooooon

“P
ni,j
i,j ą0

PrrXm´ni,j “ i | X0 “ is
looooooooooooomooooooooooooon

“P
m´ni,j
i,i ą0

.

In other words, we have Pm
i ,j ą 0, as claimed.
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Stationary Distributions
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Stationary Distribution

Definition
Suppose that X is a finite Markov chain with transition matrix P .
A row vector v “ pp0, p1, . . . , pn´1q is called a stationary
distribution for P if and only if

1 the pk are nonnegative real numbers such that
n´1
ÿ

k“0

pk “ 1.

2 vP “ v .
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Examples

Example

Every probability distribution on the states is a stationary
probability distribution when P is the identity matrix.

Example

If P “

ˆ

1{2 1{2
1{10 9{10

˙

, then v “ p1{6, 5{6q satisfies vP “ v .
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Existence and Uniqueness of Stationary Distribution

Proposition

Any aperiodic and irreducible finite Markov chain has precisely one
stationary distribution.
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Total Variation Distance

Definition

If p “ pp0, p1, . . . , pn´1q and q “ pq0, q1, . . . , qn´1q are probability
distributions on a finite state space, then

dTV pp, qq “
1

2

n´1
ÿ

k“0

|pk ´ qk |

is called the total variation distance between p and q.

In general, 0 ď dTV pp, qq ď 1. If p “ q, then dTV pp, qq “ 0.
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Convergence in Total Variation

Definition

If ppmq “ pp
pmq
0 , p

pmq
1 , . . . , p

pmq
n´1q is a probability distribution for each

m ě 1 and p “ pp0, p1, . . . , pn´1q is a probability distribution, then
we say that ppmq converges to p in total variation if and only if

lim
mÑ8

dTV pp
pmq, pq “ 0.
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Convergence Theorem

Proposition

Let X be a finite irreducible aperiodic Markov chain with transition
matrix P . If pp0q is some initial probability distribution on the states
and p is a stationary distribution, then ppmq “ pp0qPm converges in
total variation to the stationary distribution,

lim
mÑ8

dTV pp
pmq, pq “ 0.
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Reversible Markov Chains
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Definition
Suppose that X is a Markov chain with finite state space and
transition matrix P . A probability distribution π on S is called
reversible for the chain if and only if

πiPi ,j “ πjPj ,i

holds for all states i and j in S .

A Markov chain is called reversible if and only if there exists a
reversible distribution for it.
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Reversible Markov Chains

Proposition

Suppose that X is a Markov chain with finite state space and
transition matrix P . If π is a reversible distribution for the Markov
chain, then it is also a stationary distribution for it.
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Proof.
We need to show that πP “ π. In other words, we need to show
that

πj “
ÿ

kPS

πkPk,j .

holds for all states j .
This is straightforward, since

πj “ πj
ÿ

kPS

Pj ,k “
ÿ

kPS

πjPj ,k “
ÿ

kPS

πkPk,j ,

where we used the reversibility condition πjPj ,k “ πkPk,j in the last
equality.
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Random Walks
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Random Walks

Definition

A random walk on an undirected graph G “ pV ,E q is given by
the transitition matrix P with

Pu,v “

#

1
dpuq if pu, vq P E ,

0 otherwise.
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Properties

Proposition

For a random walk on a undirected graph with transition matrix P ,
we have

1 P is irreducible if and only if G is connected,

2 P is aperiodic if and only if G is not bipartite.

Proof.
If P is irreducible, then the graphical representation is a strongly
connected directed graph, so the underlying undirected graph is
connected. The converse is clear.
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Proof. (Continued)

The Markov chain corresponding to a random walk on an
undirected graph has either period 1 or 2. It has period 2 if and
only if G is bipartite. In other words, P is aperiodic if and only if G
is not bipartite.
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Reversible Markov Chain

Proposition

A random walk on a graph with vertex set V “ tv1, v2, . . . , vnu is a
Markov chain with reversible distribution

π “

ˆ

dpv1q

d
,
dpv2q

d
, . . . ,

dpvnq

d

˙

,

where d “
ř

vPV dpvq is the total degree of the graph.
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Proof.
Suppose that u and v are adjacent vertices. Then

πuPu,v “
dpuq

d

1

dpuq
“

1

d
“

dpvq

d

1

dpvq
“ πvPv ,u.

If u and v are non-adjacent vertices, then

πuPu,v “ 0 “ πvPv ,u,

since Pu,v “ 0 “ Pv ,u.
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Example

|V | “ 8 and |E | “ 12

8
ÿ

k“1

dpvkq “ 2|E | “ 24

π “

ˆ

2

24
,

3

24
,

5

24
,

3

24
,

2

24
,

3

24
,

3

24
,

3

24

˙

v1

v2 v3 v4

v5

v6 v7 v8
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Markov Chain Monte Carlo Algorithms
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Markov Chain Monte Carlo Algorithms

The Idea
Given a probability distribution π on a set S , we want to be able to
sample from this probability distribution.
In MCMC, we define a Markov chain that has π as a stationary
distribution. We run the chain for some iterations and then sample
from it.

Why?

Sometimes it is easier to construct the Markov chain than the
probability distribution π.
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Hardcore Model

Definition

Let G “ pV ,E q be a graph. The hardcore model of G randomly
assigns either 0 or 1 to each vertex such that no neighboring
vertices both have the value 1.

Assignment of the values 0 or 1 to the vertices are called
configurations. So a configuration is a map in t0, 1uV .

A configuration is called feasible if and only if no adjacent vertices
have the value 1.

In the hardcore model, the feasible configurations are chosen
uniformly at random.
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Hardcore Model

Question

For a given graph G , how can you directly choose a feasible
configuration uniformly at random?

An equivalent question is:

Question

For a given graph G , how can you directly choose independent sets
of G uniformly at random?
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Grid Graph Example

Observation

In an n ˆ n grid graph, there are 2n
2

configurations.

Observation

There are at least 2n
2{2 feasible configurations in the grid graph.

Indeed, set every other node in the grid graph to 0. For example, if we label the
vertices by tpx , yq | 0 ď x ă n, 0 ď y ă nu. Then set all vertices with x ` y ” 0
pmod 2q to 0. The value of the remaining n2{2 vertices can be chosen arbitrarily,
giving at least 2n2{2 feasible configurations.

Direct sampling from the feasible configurations seems difficult.

52 / 58



Grid Graph Example

Observation

In an n ˆ n grid graph, there are 2n
2

configurations.

Observation

There are at least 2n
2{2 feasible configurations in the grid graph.

Indeed, set every other node in the grid graph to 0. For example, if we label the
vertices by tpx , yq | 0 ď x ă n, 0 ď y ă nu. Then set all vertices with x ` y ” 0
pmod 2q to 0. The value of the remaining n2{2 vertices can be chosen arbitrarily,
giving at least 2n2{2 feasible configurations.

Direct sampling from the feasible configurations seems difficult.

52 / 58



Hardcore Model Markov Chain

Given a graph G “ pV ,E q with a set F of feasible configurations.
We can define a Markov chain with state space F and the following
transitions

1 Let Xn be the current feasible configuration. Pick a vertex
v P V uniformly at random.

2 For all vertices w P V ztvu, the value of the configuration
will not change: Xn`1pwq “ Xnpwq.

3 Toss a fair coin. If the coin shows heads and all neighbors of
v have the value 0, then Xn`1pvq “ 1; otherwise
Xn`1pvq “ 0.
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Hardcore Model

Proposition

The hardcore model Markov chain is irreducible.

Proof.
Given an arbitrary feasible configuration with m ones, it is possible
to reach the configuration with all zeros in m steps.
Similarly, it is possible to go from the zero configuration to an
arbitrary feasible configuration with positive probability in a finite
number of steps.
Therefore, it is possible to go from an arbitrary feasible
configuration to another in a finite number of steps with positive
probability.
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Hardcore Model

Proposition

The hardcore model Markov chain is aperiodic.

Proof.
For each state, there is a small but nonzero probability that the
Markov chain stays in the same state. Thus, each state is
aperiodic. Therefore, the Markov chain is aperiodic.
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Hardcore Model

Proposition

Let π denote the uniform distribution on the set of feasible
configurations F . Let P denote the transition matrix. Then

πfPf ,g “ πgPg ,f

for all feasible configurations f and g .
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Proof.

Since πf “ πg “ 1{|F |, it suffices to show that Pf ,g “ Pg ,f .

1 This is trivial if f “ g .

2 If f and g differ in more than one vertex, then
Pf ,g “ 0 “ Pg ,f .

3 If f and g differ only on the vertex v . If G has k vertices,
then

Pf ,g “
1

2
¨

1

k
“ Pg ,f .
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Hardcore Model

Corollary

The stationary distribution of the hardcore model Markov chain is
the uniform distribution on the set of feasible configurations.
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