CS 188: Artificial Intelligence

Markov Decision Processes III + RL

Instructor: Nathan Lambert

University of California, Berkeley

Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions A
o Transitions P(s” | s,a) (or T(s,a,s”))
o Rewards R(s,a,s”) (and discount v) 53,8

o MDP quantities so far:

o Policy = Choice of action for each state 10
o Utility = sum of (discounted) rewards a b c

Values of States

o Recursive definition of value:

V*(s) = max Q7(s,a)

a

Q* (S, 61) :Z T(S, a, S/) [R(S, a, S/)_|_ Y V>|< (S/)] .
s’ sas

V*(s) = mfoT(s, a,s")[R(s,a,s") +yV*(s)]

Value Iteration

o Start with V(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vi(s) values, do one ply of expectimax from each state:

Vk+1(s)
/ / / /o
Vit1(s) & max3 T(s,a,) R(s,a,5") + 7 Vi(s))]
S

o Repeat until convergence

o (Complexity of each iteration: O(S?A))

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s) .n.
0.95) 0.98 » 1.00
o How should we act?
4« 0.89 -1.00
o It’s not obvious!
o . 0.92 |« 0.91 0.80
o Weneed to do a mini-expectimax (one step))

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

o This is called policy extraction, since it gets the policy implied by the
values

O

O

O

O

Policy Evaluation

How do we calculate the V’s for a fixed policy n?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(8) < > T(s,7m(s), sH[R(s,m(s),s") + V()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

Policy Iteration

o Evaluation: For fixed current policy , find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl

O

O

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs

Convergence when Solving MDPs

o Redefine value update as general Bellman Utility update
o Recursive update or utility (sum of discounted reward)

Vit 1 (s) < Y T(s,mi(s),s") |R(s,mi(s),s") + v Vi(s)]

o How does this converge?
o Assume fixed policy m;(s).
o R(s) is the short term reward of being in s

Convergence when Solving MDPs

o How does this update rule converge?

Uit1(s) < R(s) + 7~ max, P(s'|s,a)U;(s)
ac S
/
o Re-write update: U;+1 < BU; v = Av
o B is a linear operator (like a matrix)
o U 1s a vector

|Uir1 — Ui ||

o Interested in delta between Utilities:

|BU;11 — BU;|| <~||Us41 — Uy

Convergence when Solving MDPs

o How does this delta converge?
|BUi+1 — BU|| < 7[|Uis1 — Ui
o Utility error estimate reduced by y each iteration:

o Total Utilities are bounded,

Z Rma:v’yi 4 Rma:z;

=0 (1—7)
o Consider minimum initial error: U, — U < 2Rmaa
o (Max norm) (1 —7)

o Max error: reduce by discount each step.

Utility Error Bound

o Error at step 0: 'R
|Up = U <
(1=7)
o Error at step N: 2R maz
|[Un - Ul =~" <€

(1 =)

o Steps for error below e: oR
 log(Z=e5)

log()

MDP Convergence Visualized

[

o Value iteration Max orror
converges exponentially ., g - Policy loss --------
(with discount factor) 2

= 0.6
@)
. . . =
o Policy iteration will S 04
. O
converge linearly to 0. x
= 0.2
0

4 6 8 10 12 14

Number of iterations

-
(\®)

Summary: MDP Algorithms

o So you want to....

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all ook the same!

o Tl
o Tl

ney basically are — they are all variations of Bellman updates
hey all use one-step lookahead expectimax fragments

o Tl

hey differ only in whether we plug in a fixed policy or max over actions

Partially Observed MDPs

o How accurate is our model of MDPs?
o Example: Robot
o Example: Video game

o Do the pixels constitute all the information of a system?
o Notion of observing some states!
o Belief distribution

o Partially Observed MDP (POMDP)

Partially Observed MDPs

o How accurate is our model of MDPs?
o Example: Robot
o Example: Video game

o Do the pixels constitute all the information of a system?
o Notion of observing some states!
o Belief distribution over true states (from observations)

o Partially Observed MDP (POMDP)

Partially Observed MDPs

o Consider an example:

R . . . R RDR
o Finite number of pixels + srms

. e ; . Lol a2
o Finite number of actions d Ealee

o Finite number of timesteps : &2

o Huge state-space.

o Can we solve an MDP with observations instead of states?
o How is this solved?
o Deep Q-learning (approximate Q values)
o Are the transitions and reward functions known?

Seminal Paper

o Mnih, Volodymyr, et al. "Human-level control through
deep reinforcement learning." Nature 518.7540 (2015): 529-

533.

Convolution Convolution Fully connected
v v v

B
c
<
3
S
=]
®
o
2
®
Q

P4
¢}
e

HHHD DD =
g e

2 2829 B

a //
o //
g // ° o\
:]/"/ \ \\
// / \\ [] [] \
o/ \\ \\\
T et g/ o« e o« 1\
) g —] . > — N\
8\ ° 7o o«
o\ /|
‘\\\ L]
8\ o
Ao \\
o \\
SN0 \\ \

G

A A =

= N

AIMNIR € eV N>
+ i+ +0+0+0+0+0+
(@] (@] (@) (@) (@) (@) (@] (@)

DeepMind Atari (©Two Minute Lectures)

19

Reinforcement Learning

Double Bandits

Double-Bandit MDP

o Actions: Blue, Red 4)

No discount
o States: Win, Lose 025 %0 10 time steps

Both states have
the same value

Ofttline Planning

o Solving MDPs is offline planning

o You determine all quantities through computation
o You need to know the details of the MDP
o You do not actually play the game!

4 N

Value
Play Red 15
Play Blue 10

- /

No discount
10 time steps

Both states have
the same value

~

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

o Rules changed! Red’s win chance is different.

Let’s Play!

$2 §2 S2 S0 SO SO SO SO SO
S2

What Just Happened?

o That wasn’t planning, it was learning!

o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computa
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A setof statess € S

o A set of actions (per state) A ﬁs
o A model T(s,a,s’) \ i

o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R

o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/

Environment

(&

Receive feedback in the form of rewards
Agent’s utility is defined by the reward function

o Basic idea:

Must (learn to) act so as to maximize expected rewards

o
o
o
o All learning is based on observed samples of outcomes!

Example: Learning to Fly

Rollout O

Random

[Lambert et. al, RA-L 2019] [Video: quad-fly]

Example: Sidewinding

IR e G TS

[Andrew Ng] [Video: SNAKE — climbStep+sidewinding]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A setof statess € S

o A set of actions (per state) A ﬁs
o A model T(s,a,s’) \ i

o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R
o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn
o Get ‘measurement’ of R at each step

Offline (MDPs) vs. Online (RL)

g

s

Offline Solution Online Learning

Model-Free Learning

Model-Based Learning

Passive Reinforcement Learning

