Markov Decision Processes



Infinite-horizon discounted MDPs

AnMDP M =(S, A,P.R, y)

State space S. We will only consider discrete and finite

Action space A. spaces in this course (w/o losing much).
Transition function P : SxA—A(S). A(S) is the probability simplex
over S, i.e., all non-negative vectors of length |S| that sums up to 1

Reward function R: SxA—R. (deterministic reward function)
Discount factor y € [0,1)

The agent starts in some state si, takes action aj, receives reward
r1 = R(s1, m1), transitions to s, ~ P(s1, 1), takes action a,, so on so
forth — the process continues forever

Objective: (discounted) expected total reward
* other terms used: return, value, utility, long-term reward, etc



Additional/alternative notations

* The probability of transitioning to a particular state: P(s’|s, a)
* Sometimes reward is random and/or depends on the next-state,
e.g., R(s, a, s”), or R(s, a) is a random variable

* The most general case: given (s, a), (r, s”) is drawn from some

joint distribution (Sutton & Barto 2nd ed; see link on course
website)

* When we consider random rewards we will assume a simplified
case: r and s” are independent conditioned on (s, a)

* Such differences usually don’t matter—we will revisit later
* Sometimes the available actions depend on the state, A

* Again, the theory/algs developed for fixed action spaces
usually extend to state-dependent action spaces



Toy Example

P(SO S2, ao) — 04
P(Sl S2, ao) — O
P(Sz S2, ao) — 06

If there is only 1 action, the MDP
becomes a Markov chain 1
(associated with a reward
function)

As another special case, if there
are multiple actions but
transition is deterministic, the
MDP becomes a directed graph



Example: Gridworld
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“Absorbing state”: emulate
the termination of a task in
infinite-horizon MDPs

State: grid No. (or integer X, y
coordinates)

Action: N, S, E, W
Dynamics:

* Deterministic transitions to the
adjacent grid in the direction of
action in most cases.

* Keep in the current state if
moving towards wall or having
reached goal

Reward: O in the goal state and -1
everywhere else

Discount factor y: 0.99



Why discounting?

* When defining the MDP (esp. the reward function & the
discount factor/horizon), you should make sure that the total
expected reward of a policy precisely reflects how you like that
policy. Don’t worry about learning yet.

* e.g., inthe grid world example, if there is no discounting (y
= 1), the total expected reward is the negative expected
number of steps before reaching the goal

» After you've learned a policy, you should evaluate the policy
using this reward function / horizon

* So why discounting?

* In the previous example, y =1 allows some strategies to
obtain -c0 expected return—we don't like infinities



Why discounting? (cont.)

As a mathematical convenience...

We introduce a discount factor close to (but smaller than) 1, so
that even the agent moves in circles, the expected total reward
is still finite.

On the other hand, for most reasonable policies (esp. the near-
optimal ones), the total reward is still approximately the
negative total number of steps—our training objective closely
tracks what we really care about

Reason 2: discounting + infinite horizon = stationary optimal
policy & value functions, again a mathematical convenience

Reason 3: heavy discounting (small y) yields faster planning /
learning (we will see)

Discounting does have economic interpretations, but they are
seldom relevant in RL



Homework

e Homework O (handled via Gradescope; more info to come on
Campuswire)

e Due 1 week from now, before class starts

e Main purpose: remind you some maths & set the expectation
about how mathy this course will be

e Does not count towards final grades but (1) we will look at it,
and (2) you have to submit in time otherwise you use up your
change to drop the lowest score for homework (see late policy)

e Reading: Sutton & Barto, Chap 3
e Note difference in notations

e Focus on understanding how to translate between Table 3.1
and Fig 3.2. Also Chap 3.4; Example 3.6; Example 3.10



Value and policy

Want to take actions in a way that maximizes value (of return): [ E‘ﬁ
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* This value depends on where you@ﬁt and how you act

Often assume boundedness of rewards: r, € [0, R ., ]

* What's the range of E [Zzl}’t_lrt] ? ‘W

A (deterministic) policy m: S—~A describes how the agent acts:

state s;, chooses action a; = 7'c(st)
-
More generally, the agent may choose actions randomly (t: S—

A(A)), or even in a way that varies across time steps (“non-
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Bellman equation for policy evaluation
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Bellman equahon for policy evaluation

5'~Ps, $,T() @s\ g \/ ( . HZ‘S'
V() =(R(s, 2(s))|+ r(PC s o), Vi) °
& ‘ 2%
Matrix form: define CHLU> 7% 0@1‘ P,W&Wf_
. V:”as the |S|x1 vector [V™(s)]ses = Uty

. li as the vector [ljgizgg))]ses ﬂ?\'é"(w]

* P™ as the matrix [P(s’|'s, 7(s))]ses, SES) &7
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Th|s is always mvertlble (Proof?), i.e., solution
to Bellman equation is always unique
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Some remarks about rewards [¥]
(510‘ - a
o&fw o(mmm;gha N fn : K Hgy{;’

e For more general formulations of rewards (e.g., random rewards,
; YT ']
rewards that depend on s’ etc) [ f,u’[s,ﬂci y] {.Xg g[\/ (g/)]
Vﬂ(S) — [Ei",SllS,JZ'(S)[r +ZV7T(S,)] A

e -
* Can also be translated to an equivalent problem where rewards
deterministically depends on (s,a): R(s, a) := E, ,[7]

* |n infinite-horizon discounted MDPs, shifting the reward function
by a constant for every state-action pair does not change

anything R(Q,ﬂx) , R/(S,”l) = R(SQ){'Q-

* |f we increase the reward functionAby ¢, you are just earning an
extra ¢ units of “background” rewards however you behave

* All value functions increase by ¢/(1-y)
—
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Interpretation of (I — ;/P”)é EE R
> (2-¢7)” R

Each row of this matrix (indexed by s) is the unnormalized discounted
state occupancy, whose (s')-th entry is d;(s)/(1 - y), where QOI

) STyt 1

{ _

5 ds)=(—p)- [E[Zy”ﬂ[st n] 2\ Y “(=Y
._4— 5 t—lw—%—/

o [[ - ]isthe indicator function: =1 if (.) is true, and =0 if false.

 Eachrow of (I - ;/P”):1 is like a distribution vector—except that the
entries sum up to 1/(1-y). Multiplying by 1-y normalizes it

N Can also be interpreted as the value function of indicator reward
function: d7(s’) = (1 — y)V*(s), where V*is defined wrt the reward
function that is equal to 1 at state s”and O elsewher ﬁﬁ,%’[

Mot 0(1(-(5“(“)
* Can similarly define state-action occupancy ”U ! sy S

0[” (s'a) = (-Y) &[Zzﬁ‘ﬂ[g =8, 0= ({:QJ
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More on State occupancy e olisomted
kg o(L.

« Alternative way of defining state occupancy: let d* \be a
(distribution) vector such that d7 (s") = Pr[s, = 5| 5] = s, 7]
A

T ——
* |t's the t-th step state distribution induced by startmg at state s

and following policy m J 5 ( ) |
« The discounted ocdc/upancy isdf=(1-pY> v 14@ &

A
e The s-th row of (I — yP*)~is d7/(1 — y), because:
f\.\_’/'\
* Lete,=[0 - 0 1 0 - 0]' wherethe 1is a s-th entry

« sthrowof (I — yP7)~Lis for- xele,), u-yj)" [+ XX
el (I—yP) P =el (> (vP) )
Ay 7\ 1

—

Z,yt 1€T(P7r)t—1 _ Z,yt—l( ;r’t)"l'
t=1 — T =1 ‘

—
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Alternative formula for value function

* Some further exercise that helps understanding
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f(,(ae: 8“‘7/4 Optimality

For infinite-horizon discounted MDPs, there always exists a
stationary and deterministic policy that is optimal for all starting
states simultaneously

e Proof: Puterman’94, Thm 6.2.7 (reference due to Sh|pra Agrawal

Let 7* denote this optimal policy, and V™ : | @%
6N (53)

Bellman Optimality Equaﬂon

V*(s) = R(s a) +yE, ~p<s " [v*(s)
If we know V*, how to get t* ? +~a? W(SB)
Easier to work with Q-values: Q*(s, a), as #*(s) = arg max 0*(s, a)

__6———-
@Q*(S, a) = R(s,a) + yEy p(s q) [r;lélj\( Q*(s',a )]

Note that V*(s) = max Q*(s,a) = Q*(s, 7*(s))

a€eA
-
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Optimality

e Similar to the Bellman equations for policy evaluation, the Bellman
optimality equations also have unique solutions V* and Q*

e But 7* may not be unigue

* e.g., in the state shown in the figure, ; ; ; |
the optimal policy can take any of S S ———
the following % | |

e Goright |

e Go down

e Any probability diStribuUtion over |
right and down (stochastic policy) F N

e Remark: the fact that a deterministic & stationary optimal policy
exists does NOT mean that all optimal policies have to be this
way (they can be stochastic and/or non-stationary)
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(Policy-specific) Q-functions
05, @) =E| T2 7 n s = 5.0, = s

* V(s)=Q"(s, m(s))
* When 7t is stochastic, RHS becomes E;-n¢15[Q(s, a)]

* We will often abbreviate Q" (s, 7t(s)) as Q™ (s, 7)

* Also satisfies a similar Bellman equation
Q™(s,a) = R(s,a) + yEy _p( 5.0 |Q"(s's )]
 Compare to the optimality equation

Q*(S’ a) = R(s,a) + 7[ES’~P(-|s,a) nfl:j( Q*(S’, a/)]
a

* The only difference is in the action-selection operator at the
next-state s”: if you choose a’ greedily (max operator), you get

Q% if you choose a’ according to 7, you get Q™
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Clarification on definition of value functions

* V(s), Q%(s, a), V'(s), Q(s, a)

* they are the expected return when starting from of s;=s and

following the behaviors below:

* V(s): a1~7i(s1), ax~7i(s2), az~7i(s3), ...

* Q%(s, a): a1=a, ax~71(s2), az~m(s3), ...

* V(s) = V™ (s): ai~mt*(s1), ax~1t*(s2), az~1t*(s3), ...

* Q(s,a)=Q" (s, a): a1=a, ax~1t*(52), a3~1*(53), ...

- The policy (or *) on the superscript denotes the long-term

behavior

- For Q values, the second argument of the function specifies the

first action; all future actions are according to the policy on the
superscript



Some Subtleties in Formulating
Problems as MDPs



$ Defining the state (in toy problems)

| | | | * The agent can move around just as
% in the previous example

---------------- * Reward: +1 when reaching food for
| 5 | 5 the first time, and 0 otherwise

* i.e., food is consumable

---------------- * How to define state?

* The status of the food (consumed
or not) also needs to be part of
the state representation

* |n general, make sure that you can fully determine reward and (the
distribution of) next-state using (s, a) alone without other info

* The tricky part of this example is that dynamics are Markovian in
the coordinates, but reward function is not
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Defining state beyond toy problems

In toy problems, we can give any information about the system
to the agent, so that the agent always has a (Markov) state

In reality, agent receives limited sensory inputs every time step
l.e., a trajectory looks like o1, a1, 11,02, a2, 12, 03...

We say that the problem is Markov (in 0), if the future
observations and rewards are independent of the past
conditioned on the current observation (and o is state)

But this is generally not true...

Need to construct an (approximate) state
from history

Will come back to this when we discuss
POMDPs later in this course




Alternative notions of horizons

* |t is often more natural to model the problem as indefinite-horizon
undiscounted MDPs

Some states are considered terminal
Trajectory does not go on forever—it stops at terminal states

The length of a trajectory is not fixed—it's random and/or may
depend on the policy

e.g., navigation task: goal state is terminal, -1 per step before
you terminate

Natural to model episodic tasks in this way

* Bellman equations remain the same for non-terminal states

* For terminal states, V(s) = 0 (regardless of V™ or V%)
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Fixed-horizon MDPs

Specified by (S, A, R, P, H)

All trajectories end in precisely H steps

No terminal states; termination is enforced “externally”
Optimal policy may additionally depend on the time step

* When selling goods, may price things differently near the end
of the season, even if we assume the demand doesn’t change

* |In the navigation example, when you are too far away from
goal to reach it within the remaining steps, any action is
optimal (there is nothing you can do)

So do (policy-specific/optimal) value functions: V7 ,(s) =0
V;;(S) — R(Sa ﬂ(S)) + [Es’NP(S’a)[V;;_l(S,)]

Similar to the discounted setting, shifting rewards by constant
doesn’t change the relative preference over policies (all value
functions increase by cH)
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Translating between indefinite-horizon and fixed
horizon MDPs

“=>": |f trajectory length has an upper bound, set H to be this
upper bound and add a dummy absorbing state; if a trajectory
terminates early, loop in the dummy state for the remaining steps

“<="1 Augment state space: include time step as part of the
state representation, and define all states at time H+1 as
terminal, i.e., If P is the dynamics of the fixed horizon MDP, then
define a new transition function

P'((s",h")|(s,h),a) =1[""=h+ 1] - P(s'|s,a)
e State augmentation is a common trick when we convert

between different formulations in RL (e.g., non-Markov
problems become Markov if we view history as state)
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Translating between different formulations

* For discounted & fixed horizon, shifting rewards don’t matter
* What about indefinite-horizon?

* Think about what happens with the navigation example

e Shift -1 to 1: you are rewarded if you don'’t reach the goall!
* Why is that?

* For indefinite-horizon problems, since trajectory length is a
variable, the positivity of reward actually carries a meaning:

+” means “live longer”, and “-“ means “finish faster”
* For the other two formulations, such meaning doesn'’t exist

* In-class exercise: formulate the navigation problem as a fixed
horizon problem, then shift the reward. Explain why shifting
rewards is fine in this case.



27

The navigation example

* Qriginal formulation: indef-horizon
* -1 reward per step everywhere {

e Goal is terminal Actions
e Cannot shift reward % |
» Translate into fixed-horizon ----------------

* Make goal state absorbing
* Oreward in goal and -1

everywhere else ---------------
e Terminate in H steps | | i i
e Shift reward? F"
* Have to shift everywhere, \)

including the goal
* e.g., if shift by 1, then +1 in goal and O everywhere else

* No penalty, but being rewarded when looping in goal



