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Preface

Models in mathematical finance, for example stock price processes, are often
defined in continuous-time. Hence optimization problems like consumption-
investment problems lead to stochastic control problems in continuous-time.
However, only a few of these problems can be solved explicitly. When nu-
merical methods have to be applied, it is sometimes wise to start with a
process in discrete-time, as done for example in the approximating Markov
chain approach. The resulting optimization problem is then a Markov Deci-
sion Problem and there is a rich toolbox available for solving these kind of
problems theoretically and numerically.

The purpose of this book is to present selected parts of the theory of Markov
Decision Processes and show how they can be applied in particular to prob-
lems in finance and insurance. We start by explaining the theory for problems
with finite time horizon. Since we have financial applications in mind and
since we do not want to restrict to binomial models we have to work with
Borel state and action spaces. This framework is also needed for studying
Partially Observable Markov Decision Processes and Piecewise Determinsitic
Markov Decision Processes. In contrast to the case of a discrete (finite or
countable) state space the theory is more demanding since non-trivial mea-
surability problems have to be solved. However, we have decided to circum-
vent these kind of problems by introducing a so-called structure assumption
for the model. The advantage is that in applications this structure assumption
is often easily verified and avoids some of the technicalities. This makes the
book accessible to readers who are not familiar with general probability and
measure theory. Moreover, we present numerous different applications and
show how this structure assumption can be verified. Applications range from
consumption-investment problems, mean-variance problems, dividend prob-
lems in risk theory to indifference pricing and pricing of American options,
just to name a few. The book is unique in the presentation and collection of
these financial applications. Some of them appear for the first time in a book.
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viii Preface

We also consider the theory of infinite horizon Markov Decision Processes
where we treat so-called contracting and negative Markov Decision Prob-
lems in a unified framework. Positive Markov Decision Problems are also
presented as well as stopping problems. A particular focus is on problems
with partial observation. These kind of problems cover situations where the
decision maker is not able to observe all driving factors of the model. Special
cases are Hidden Markov Models and Bayesian Decision Problems. They in-
clude statistical aspects, in particular filtering theory and can be solved by
so-called filtered Markov Decision Processes. Moreover Piecewise Determinis-
tic Markov Decision Processes are discussed and we give recent applications
to finance.

It is our aim to present the material in a mathematically rigorous framework.
This is not always easy. For example, the last-mentioned problems with par-
tial observation need a lot of definitions and notation. However each chapter
on theory is followed by a chapter with applications and we give examples
throughout the text which we hope shed some light on the theory. Also at
the end of each chapter on theory we provide a list of exercises where the
reader can test her knowledge.
Having said all this, not much general probability and optimization theory
is necessary to enjoy this book. In particular we do not need the theory of
stochastic calculus which is a necessary tool for continuous-time problems.
The reader should however be familiar with concepts like conditional expec-
tation and transition kernels. The only exception is Section 2.4 which is a
little bit more demanding. Special knowledge in finance and insurance is not
necessary. Some fundamentals are covered in the appendix. As outlined above
we provide an example-driven approach. The book is intended for graduate
students, researchers and practitioners in mathematics, finance, economics
and operations research. Some of the chapters have been tried out in courses
for masters students and in seminars.
Last but not least we would like to thank our friends and colleagues Alfred
Müller, Jörn Sass, Manfred Schäl and Luitgard Veraart who have carefully
read parts of an earlier version and provided helpful comments and sugges-
tions. We are also grateful to our students Stefan Ehrenfried, Dominik Joos
and André Mundt who gave significant input and corrected errors, as well as
to the students at Ulm University and KIT who struggled with the text in
their seminars. Special thanks go to Rolf Bäuerle and Sebastian Urban for
providing some of the figures.

Bretten and Ulm, Nicole Bäuerle
September 2010 Ulrich Rieder
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Chapter 1

Introduction and First Examples

Suppose a system is given which can be controlled by sequential decisions.
The state transitions are random and we assume that the system state process
is Markovian which means that previous states have no influence on future
states. Given the current state of the system (which could be for example
the wealth of an investor) the controller or decision maker has to choose an
admissible action (for example a possible investment). Once an action is cho-
sen there is a random system transition according to a stochastic law (for
example a change in the asset value) which leads to a new state. The task
is to control the process in an optimal way. In order to formulate a reason-
able optimization criterion we assume that each time an action is taken, the
controller obtains a certain reward. The aim is then to control the system in
such a way that the expected total discounted rewards are maximized. All
these quantities together which have been described in an informal way, de-
fine a so-called Markov Decision Process. The Markov Decision Process is the
sequence of random variables (Xn) which describes the stochastic evolution
of the system states. Of course the distribution of (Xn) depends on the cho-
sen actions. Figure 1.1 shows the schematic evolution of a Markov Decision
Process.

We summarize the main model data in the following list:

• E denotes the state space of the system. A state x ∈ E is the information
which is available for the controller at time n. Given this information an
action has to be selected.

• A denotes the action space. Given a specific state x ∈ E at time n, a
certain subclass Dn(x) ⊂ A of actions may only be admissible.

• Qn(B|x, a) is a stochastic transition kernel which gives the probability
that the next state at time n+ 1 is in the set B if the current state is x
and action a is taken at time n.

• rn(x, a) gives the (discounted) one-stage reward of the system at time n
if the current state is x and action a is taken.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction and First Examples

state at
stage n:

xn

Controller

reward at
stage n:
rn(xn,an)

random

transition 
with

distribution

Qn(.|xn,an)

state at
stage n+1:

xn+1

Fig. 1.1 General evolution of a Markov Decision Model.

• gN (x) gives the (discounted) terminal reward of the system at the end of
the planning horizon.

An important assumption about these processes is that the evolution is
Markovian. Since the system obeys a stochastic transition law, the sequence
of visited states is not known at the beginning. Thus, a control π is a sequence
of decision rules (fn) with fn : E → A where fn(x) ∈ Dn(x) determines for
each possible state x ∈ E the next action fn(x) at time n. Such a sequence
π = (fn) is called policy or strategy. Formally the Markov Decision Problem
is given by

V0(x) := sup
π

IE
π
x

[
N−1∑

k=0

rk
(
Xk, fk(Xk)

)
+ gN (XN )

]

, x ∈ E,

where the supremum is taken over all admissible policies. Obviously the opti-
mization problem is non-trivial since a decision today does not only determine
the current reward but also has complicated influences on future states. The
policies which have been defined above are Markovian by definition since the
decision depends only on the current state. Indeed it suffices to search for
the optimal control among all Markovian policies, though sometimes it is
convenient to consider history-dependent policies.
The theory of Markov Decision Processes deals with stochastic optimization
problems in discrete time. The time steps do not have to be equal but this is
often assumed. Sometimes problems which are formulated in continuous-time
can be reduced to a discrete-time model by considering an embedded state
process. The theory of stochastic control problems in continuous time is quite
different and not a subject of this book. However, when continuous-time prob-
lems have to be solved numerically, one way is to consider an approximation
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of the state process in discrete time. This procedure is called the approximat-
ing Markov chain approach. The resulting problem can then be solved with
the techniques presented here. Still the theory on Markov Decision Processes
encompasses a lot of different models and formulations, and we will not deal
with all of them. Since we have mainly applications in finance in mind we
consider Markov Decision Processes with arbitrary state and action spaces
(more precisely Borel spaces). Note that in these applications the spaces are
often not discrete. Markov Decision Processes are also called Markov Control
Processes or Stochastic Dynamic Programs. We distinguish problems with

• finite horizon N <∞ – infinite horizon N = ∞,
• complete state observation – partial state observation,
• problems with constraints – without constraints,
• total (discounted) cost criterion – average cost criterion.

We will consider Markov Decision Problems with finite horizon in Chapter 2
and models with infinite horizon in Chapter 7. Sometimes models with infi-
nite horizon appear in a natural way (for example when the original problem
has a random horizon or when the original problem has a fixed time horizon
but random time steps are used to solve it) and often these models can be
seen as approximations of Markov Decision Problems with finite but large
horizon. We will encounter different approaches to problems with infinite
horizon in Chapter 7 and in Section 10.2 where unbounded stopping prob-
lems are treated. In any case, some convergence assumptions are needed to
ensure that the infinite horizon Markov Decision Problem is well-defined. The
solution of such optimization problems is then often easier because the value
function can be characterized as the unique fixed point or as the smallest
superharmonic function of an operator, and moreover the optimal policy is
stationary. We will treat so-called negative Markov Decision Problems where
the reward functions are negative (or zero) and contracting Markov Decision
Problems where the maximal reward operator is contracting, in a unified
framework. Besides these models we also consider so-called positive Markov
Decision Problems where the reward functions are positive (or zero).
Another way to distinguish Markov Decision Problems is according to what
can be observed by the controller. This is in contrast to deterministic control
problems where the information for the controller is determined by the deter-
ministic transition law. In stochastic control models also statistical aspects
come into play. For example when a part of the state cannot be observed
(e.g. some fundamental economic indicators which influence the asset price
change), however due to observations of the state some information about the
unobservable part is obtained. Such a model is called a Partially Observable
Markov Decision Problem. In this case the statistical filtering theory has to
be combined with the optimization problem. It will turn out that the Par-
tially Observable Markov Decision Problem can be reformulated as a Markov
Decision Problem with complete observation by enlarging the state space.
Indeed an estimate of relevant information has to be added to the state and
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updated during each new observation. Given this information a decision is
taken. This is called the separation principle of estimation and control.
Markov Decision Problems already take some constraints about admissible
actions into account. However, sometimes optimization problems arise where
there are additional constraints. We do not treat these kind of problems in
a systematic way but we consider for example mean-variance problems or
mean-risk problems where the portfolio strategy of the investor has to sat-
isfy some risk constraints. In Chapter 8 we consider Piecewise Deterministic
Markov Decision Processes. These continuous-time optimization problems
can be solved by discrete-time Markov Decision Processes with an action
space consisting of functions. More precisely we have to introduce relaxed
control functions. In Chapter 10 we deal with discrete-time stopping prob-
lems. Given that the underlying process is Markovian we show that stopping
problems can be solved by Markov Decision Processes.

The theory of Markov Decision Processes which is outlined in this book ad-
dresses questions like: Does an optimal policy exist? Has it a particular form?
Can an optimal policy be computed efficiently? Is it possible to derive proper-
ties of the optimal value function analytically? Besides developing the theory
of Markov Decision Problems a main aim of this book is to show Markov De-
cision Problems in action. The applications are mostly taken from finance and
insurance but are not limited to these areas. This book focuses on Markov
Decision Processes with the total reward criterion. Problems with average-
reward and risk-sensitive criteria are not treated in this book.

1.1 Applications

We will mainly focus on applications in finance, however the areas where
Markov Decision Processes are used to solve problems are quite diverse. They
appear in production planning, inventory control, operations management,
engineering, biology and statistics, just to name a few. Let us consider some
applications.

Example 1.1.1 (Consumption Problem). Suppose there is an investor with
given initial capital. At the beginning of each of N periods she can decide
how much of the capital she consumes and how much she invests into a risky
asset. The amount she consumes is evaluated by a utility function U as well
as the terminal wealth. The remaining capital is invested into a risky asset
where we assume that the investor is small and thus not able to influence the
asset price and the asset is liquid. How should she consume/invest in order
to maximize the sum of her expected discounted utility?
The state x of the system is here the available capital. The action a = f(x)
is the amount of money which is consumed, where it is reasonable to assume
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that 0 ≤ a ≤ x. The reward is given by U(a) and the terminal reward by
U(x). Hence the aim is to maximize

IE
π
x

[
N−1∑

k=0

U
(
fk(Xk)

)
+ U(XN)

]

where the maximization is over all policies π = (f0, . . . , fN−1). This problem
is solved in Section 4.3. �

Example 1.1.2 (Cash Balance or Inventory Problem). Imagine a company
which tries to find the optimal level of cash over a finite number of N periods.
We assume that there is a random stochastic change in the cash reserve each
period (due to withdrawal or earnings). Since the firm does not earn interest
from the cash position, there are holding cost for the cash reserve if it is
positive, but also interest (cost) in case it is negative. The cash reserve can
be increased or decreased by the management at each decision epoch which
implies transfer costs. What is the optimal cash balance policy?
The state x of the system is here the current cash reserve. The action a = f(x)
is either the new cash reserve or the amount of money which is transferred
from the cash reserve to assets. The reward is a negative cost determined
by the transfer cost and the holding or understocking cost. This example is
treated in Sections 2.6.2 as a finite horizon problem and in Section 7.6.2 as
an infinite horizon problem. �

Example 1.1.3 (Mean-Variance Problem). Consider a small investor who acts
on a given financial market. Her aim is to choose among all portfolios which
yield at least a certain expected return (benchmark) after N periods, the one
with smallest portfolio variance. What is the optimal investment strategy?
This is an optimization problem with an additional constraint. As in the
first example the state x of the system is the available capital. The action
a = f(x) is the investment decision. When we assume that there are d differ-
ent assets available, then a = (a1, . . . , ad) ∈ R

d and ak gives the amount of
money which is invested in asset k. The aim is to solve

(MV )

⎧
⎨

⎩

Varπx0
[XN ] → min

IE
π
x0

[XN ] ≥ μ

where the minimization is over all policies π = (f0, . . . , fN−1). In order to
get rid of the constraint and to define the one-stage reward there is some
work needed. This problem is investigated intensively in Section 4.6 and with
partial observation in Section 6.2. �

Example 1.1.4 (Dividend Problem in Risk Theory). Imagine we consider the
risk reserve of an insurance company which earns some premia on the one
hand but has to pay out possible claims on the other hand. At the beginning
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of each period the insurer can decide upon paying a dividend. A dividend can
only be paid when the risk reserve at that time point is positive. Once the risk
reserve got negative we say that the company is ruined and has to stop its
business. Which dividend pay-out policy maximizes the expected discounted
dividends until ruin?
The state x of the system is here the current risk reserve. The action a = f(x)
is the dividend which is paid out where a ≤ x. The one-stage reward is the
dividend which is paid. This problem has to be dealt with as one with infinite
horizon since the time horizon is not fixed in advance. This example is treated
in Section 9.2. It can be shown that the optimal policy is stationary and has
a certain structure which is called band-policy. �

Example 1.1.5 (Bandit Problem). Suppose we have two slot machines with
unknown success probability θ1 and θ2. At each stage we have to choose one
of the arms. We receive one Euro if the arm wins, else no cash flow appears.
How should we play in order to maximize our expected total reward over N
trials?
This problem is a Partially Observable Markov Decision Problem since the
success probabilities are not known. Hence the state of the system must
here be interpreted as the available information of the decision maker. This
information can be represented as the number of successes and failures at
both arms up to this time point. Here x = (m1, n1,m2, n2) ∈ N

4
0 denotes the

number of successes mi and failures ni at arm i. An estimate for the win
probability at arm i is then mi

mi+ni
. The action is obviously to choose one

of the arms. The one-stage reward is the expected one-stage reward under
the given information. This problem is treated in Section 5.5. Under some
assumptions it can be shown that a so-called index-policy is optimal.
Bandit problems are generic problems which have a number of serious appli-
cations, for example medical trials of a new drug. �

Example 1.1.6 (Pricing of American Options). In order to find the fair price
of an American option and its optimal exercise time, one has to solve an
optimal stopping problem. In contrast to a European option the buyer of
an American option can choose to exercise any time up to and including
the expiration time. In Section 11.1 we show how such an optimal stopping
problem can be solved in the framework of Markov Decision Processes. �

1.2 Organization of the Book

The book consists of eleven chapters which can be roughly grouped into four
parts. The first part from Chapter 2 to 4 deals with the theory of Markov
Decision Problems with finite time horizon, introduces the financial markets
which are used later and provides some applications. The second part, which
consists of Chapters 5 and 6, presents the theory of Partially Observable



1.3 Notes and References 7

Markov Decision Processes and provides some applications. Part III, which
consists of Chapters 7, 8 and 9, investigates Markov Decision Problems with
infinite time horizon, Piecewise Deterministic Markov Decision Processes,
as well as applications. The last part – Chapters 10 and 11 – deals with
stopping problems. Chapters with theory and applications alternate. The
theory of Markov Decision Problems is presented in a self-contained way in
Chapters 2, 5, 7, 8 and 10. Section 2.4 deals with conditions under which
Markov Decision Problems satisfy the structure assumption. This part is
slightly more advanced than the other material and might be skipped at first
reading. Chapters 5 and 6 are not necessary for the understanding of the
remaining chapters of the book (despite two examples in Chapters 10 and
11).

1.3 Notes and References

Historical Notes:
The first important books on Markov Decision Processes are Bellman (1957)
(for a reprint see Bellman (2003)) and Howard (1960). The term ‘Markov De-
cision Process’ was coined by Bellman (1954). Shapley (1953) (for a reprint
see Shapley (2003)) was the first study of Markov Decision Processes in the
context of stochastic games. For more information on the origins of this re-
search area see Puterman (1994) and Feinberg and Shwartz (2002). Later a
more mathematical rigorous treatment of this theory appeared in Dubins and
Savage (1965), Blackwell (1965), Shiryaev (1967) and Hinderer (1970). The
fascinating book of Dubins and Savage (1965) deals with gambling models,
however the underlying ideas are essentially the same. Blackwell (1965) in-
troduces the model description which is used up to now. He was the first to
give a rigorous treatment of discounted problems with general state spaces.
Hinderer (1970) deals with general non-stationary models where reward func-
tions and transition kernels may depend on the whole history of the under-
lying process. Another step towards generalizing the models are the books of
Bertsekas and Shreve (1978) and Dynkin and Yushkevich (1979). There also
the basic measurability questions are investigated.

Related Textbooks:
Nowadays a lot of excellent textbooks and handbooks on Markov Decision
Processes exist and we are not able to give a complete list here. Thus we
restrict to those books which we have frequently consulted or which are a
reasonable addition and contain supplementary material.
By now, classical textbooks on Markov Decision Processes (besides the ones
we have already mentioned in the ‘Historical Notes’) are Derman (1970),
Ross (1970, 1983), Hordijk (1974), Whittle (1982, 1983), Schäl (1990), White
(1993), Puterman (1994), Hernández-Lerma and Lasserre (1996), Filar and
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Vrieze (1997), Bertsekas (2001, 2005) and Powell (2007). Schäl (1990) deals
with discrete Markov Decision Processes and presents an interesting bridge
between stochastic dynamic programming, gambling models and stopping
problems. The book of Puterman (1994) is very comprehensive and treats
also average reward criteria and semi-Markov decision models. The state
and action spaces are mostly assumed to be discrete. Hernández-Lerma and
Lasserre (1996) investigate Markov Decision Processes with Borel state and
action spaces which have a semicontinuous-semicompact structure. Bertsekas
(2001, 2005) considers deterministic and stochastic dynamic programs with
a view towards applications and practical implementation issues. Moreover
the Handbook of Markov Decision Processes, edited by Feinberg and Shwartz
(2002), contains recent state-of-the-art contributions. Of particular interest in
our context is the contribution of Schäl (2002) on ‘Markov decision processes
in finance and dynamic options’. Finally the focus of Powell (2007) is on
approximate dynamic programming which helps to solve large-scale problems
efficiently.
It is also worth mentioning that Kumar and Varaiya (1986) and Hernández-
Lerma (1989) consider adaptive control problems or Partially Observable
Markov Decision Processes. This research area is often not covered in text-
books. The same is true for Piecewise Deterministic Markov Decision Pro-
cesses. Davis (1993) studies these optimization problems as control problems
in continuous and in discrete time. Continuous-time Markov Decision Chains
are an important subclass (see e.g. Guo and Hernández-Lerma (2009)).
The presentation of Markov Decision Processes is here restricted to the total
reward criterion. Average-reward and sensitive discount criteria are treated
in e.g. Hernández-Lerma and Lasserre (1999), whereas risk-sensitive control
problems are considered in e.g. Whittle (1990) and Bielecki et al. (1999).
Non-standard criteria for Markov Decision Processes are studied in e.g. Ja-
quette (1973), White (1988), Bouakiz and Sobel (1992), Huang and Kallen-
berg (1994), Feinberg and Shwartz (1994) and Boda et al. (2004). Markov
Decision Processes with delayed dynamics are investigated in Bauer (2004)
and Bauer and Rieder (2005).
Books with various applications of Markov Decision Processes in economics
are Heyman and Sobel (2004a,b) and Stokey and Lucas (1989). Ingersoll
(1987) and Huang and Litzenberger (1988) investigate intertemporal port-
folio selection problems and Pliska (2000) considers consumption-investment
problems in discrete-time financial markets (with finite state space). Also in-
teresting is the reprint of Ziemba and Vickson (2006) on static and dynamic
portfolio selection problems.

Complementary Textbooks:
Of course, Markov Decision Processes can be used in quite different appli-
cations. A very active area is the control of queues. References for this area
are e.g. Kitaev and Rykov (1995), Sennott (1999), Tijms (2003) and Meyn
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(2008). The latter book is very comprehensive and also deals with recent
numerical approaches, e.g. fluid approximations.
Markov Decision Processes with constraints are systematically treated in
Kallenberg (1983), Borkar (1991), Piunovskiy (1997) and Altman (1999).
In particular, they also describe the convex analytic approach for solving
Markov Decision Problems.

Stochastic control problems with diffusions are not treated in this book. In
principle, the solution method is similar: Here one considers a local form of
the Bellman equation which is called the Hamilton–Jacobi–Bellman equation.
Since the Hamilton–Jacobi–Bellman equation is a partial differential equa-
tion, the mathematical problems are quite different. In particular, it is often
not clear whether the optimal value function itself satisfies the Hamilton–
Jacobi–Bellman equation because this would involve that the optimal value
function is twice continuously differentiable. In discrete-time problems the
optimal value function is always a solution of the Bellman equation (if the
optimization problem is well-defined). Moreover, the study of controlled diffu-
sion problems needs advanced knowledge in stochastic analysis and stochastic
processes. Recent books on controlled diffusions are e.g. Fleming and Soner
(1993), Yong and Zhou (1999), Kushner and Dupuis (2001) and Øksendal and
Sulem (2005). The latter two books deal with the control of jump-diffusion
processes. Yong and Zhou (1999) also use Pontryagin’s optimality principle
to solve stochastic control problems. The recent textbook of Seierstad (2009)
treats stochastic control problems in discrete and continuous time. Books on
portfolio optimization problems in continuous-time are e.g. Korn (1997) and
Pham (2009).
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Finite Horizon Optimization Problems
and Financial Markets
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Chapter 2

Theory of Finite Horizon Markov
Decision Processes

In this chapter we will establish the theory of Markov Decision Processes with
a finite time horizon and with general state and action spaces. Optimization
problems of this kind can be solved by a backward induction algorithm. Since
state and action space are arbitrary, we will impose a structure assumption
on the problem in order to prove the validity of the backward induction and
the existence of optimal policies. The chapter is organized as follows.
Section 2.1 provides the basic model data and the definition of policies. The
precise mathematical model is then presented in Section 2.2 along with a
sufficient integrability assumption which implies a well-defined problem. The
solution technique for these problems is explained in Section 2.3. Under struc-
ture assumptions on the model it will be shown that Markov Decision Prob-
lems can be solved recursively by the so-called Bellman equation. The next
section summarizes a number of important special cases in which the struc-
ture assumption is satisfied. Conditions on the model data are given such
that the value functions are upper semicontinuous, continuous, measurable,
increasing, concave or convex respectively. Also the monotonicity of the opti-
mal policy under some conditions is established. This is an essential property
for computations. Finally the important concept of upper bounding func-
tions is introduced in this section. Whenever an upper bounding function
for a Markov Decision Model exists, the integrability assumption is satisfied.
This concept will be very fruitful when dealing with infinite horizon Markov
Decision Problems in Chapter 7. In Section 2.5 the important case of station-
ary Markov Decision Models is investigated. The notion ‘stationary’ indicates
that the model data does not depend on the time index. The relevant theory
is here adopted from the non-stationary case. Finally Section 2.6 highlights
the application of the developed theory by investigating three simple exam-
ples. The first example is a special card game, the second one a cash balance
problem and the last one deals with the classical stochastic LQ-problems.
The last section contains some notes and references.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 2,
c© Springer-Verlag Berlin Heidelberg 2011
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2.1 Markov Decision Models

After having discussed the scope of Markov Decision Models informally in
Chapter 1 we will now give a precise definition of a Markov Decision Model.
This can be done by defining the ingredients or input data of the model in
mathematical terms.

Definition 2.1.1. A (non-stationary) Markov Decision Model with plan-
ning horizon N ∈ N consists of a set of data (E,A,Dn, Qn, rn, gN ) with the
following meaning for n = 0, 1, . . . , N − 1:

• E is the state space, endowed with a σ-algebra E. The elements (states)
are denoted by x ∈ E.

• A is the action space, endowed with a σ-algebra A. The elements (actions)
are denoted by a ∈ A.

• Dn ⊂ E×A is a measurable subset of E×A and denotes the set of possible
state-action combinations at time n. We assume that Dn contains the
graph of a measurable mapping fn : E → A, i.e. (x, fn(x)) ∈ Dn for all
x ∈ E. For x ∈ E, the set Dn(x) = {a ∈ A | (x, a) ∈ Dn} is the set of
admissible actions in state x at time n.

• Qn is a stochastic transition kernel from Dn to E, i.e. for any fixed pair
(x, a) ∈ Dn, the mapping B �→ Qn(B|x, a) is a probability measure on
E and (x, a) �→ Qn(B|x, a) is measurable for all B ∈ E. The quantity
Qn(B|x, a) gives the probability that the next state at time n + 1 is in
B if the current state is x and action a is taken at time n. Qn describes
the transition law.

• rn : Dn → R is a measurable function. rn(x, a) gives the (discounted)
one-stage reward of the system at time n if the current state is x and
action a is taken.

• gN : E → R is a measurable mapping. gN (x) gives the (discounted)
terminal reward of the system at time N if the state is x.

Remark 2.1.2. a) In many applications the state and action spaces are Borel
subsets of Polish spaces (i.e. complete, separable, metric spaces) or finite or
countable sets. The σ-algebras E and A are then given by the σ-algebras
B(E) and B(A) of all Borel subsets of E and A respectively. Often in
applications E and A are subsets of R

d or R
d
+.

b) If the one-stage reward function r′n also depends on the next state, i.e.
r′n = r′n(x, a, x′), then define

rn(x, a) :=
∫
r′n(x, a, x′)Qn(dx′|x, a).

c) Often Dn and Qn are independent of n and rn(x, a) := βnr(x, a) and
gN(x) := βNg(x) for a (discount) factor β ∈ (0, 1]. In this case the Markov
Decision Model is called stationary (see Section 2.5). ♦
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The stochastic transition law of a Markov Decision Model is often given
by a transition or system function. To make this more precise, suppose that
Z1, Z2, . . . , ZN are random variables with values in a measurable space (Z,Z).
These random variables are called disturbances. Zn+1 influences the transition
from the state at time n of the system to the state at time n + 1. The
distribution QZn of Zn+1 may depend on the current state and action at time
n such that QZn (·|x, a) is a stochastic kernel for (x, a) ∈ Dn. The new state
of the system at time n + 1 can now be described by a transition or system
function Tn : Dn ×Z → E such that

xn+1 = Tn(xn, an, zn+1).

Thus, the transition law of the Markov Decision Model is here determined
by Tn and QZn .

Theorem 2.1.3. A Markov Decision Model is equivalently described by the
set of data (E,A,Dn,Z, Tn, QZn , rn, gN) with the following meaning:

• E,A,Dn, rn, gN are as in Definition 2.1.1.
• Z is the disturbance space, endowed with a σ-algebra Z.
• QZn (B|x, a) is a stochastic transition kernel for B ∈ Z and (x, a) ∈ Dn

and QZn (B|x, a) denotes the probability that Zn+1 is in B if the current
state is x and action a is taken.

• Tn : Dn × Z → E is a measurable function and is called transition or
system function. Tn(x, a, z) gives the next state of the system at time n+1
if at time n the system is in state x, action a is taken and the disturbance
z occurs at time n+ 1.

Proof. Suppose first a Markov Decision Model as in Definition 2.1.1 is given.
Obviously we can choose Z := E, Tn(x, a, z) := z and QZn (B|x, a) :=
Qn(B|x, a) for B ∈ E. Conversely, if the data (E,A,Dn,Z, Tn, QZn , rn, gN) is
given then by setting

Qn(B|x, a) := QZn

(
{z ∈ Z | Tn(x, a, z) ∈ B}

∣
∣
∣ x, a

)
, B ∈ E,

we obtain the stochastic kernel of the Markov Decision Model. ��

Let us next consider the consumption problem of Example 1.1.1 and set it
up as a Markov Decision Model.

Example 2.1.4 (Consumption Problem; continued). Let us consider the con-
sumption problem of Example 1.1.1. We denote by Zn+1 the random return
of our risky asset over period [n, n+ 1). Further we suppose that Z1, . . . , ZN
are non-negative, independent random variables and we assume that the con-
sumption is evaluated by utility functions Un : R+ → R. The final capital is
also evaluated by a utility function UN . Thus we choose the following data:
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• E := R+ where xn ∈ E denotes the wealth of the investor at time n,
• A := R+ where an ∈ A denotes the wealth which is consumed at time n,
• Dn(x) := [0, x] for all x ∈ E, i.e. we are not allowed to borrow money.
• Z := R+ where z denotes the random return of the asset,
• Tn(xn, an, zn+1) := (xn − an)zn+1 is the transition function,
• QZn (·|x, a) := distribution of Zn+1 (independent of (x, a)),
• rn(x, a) := Un(a) is the one-stage reward,
• gN(x) := UN (x). �

In what follows we assume that there is a fixed planning horizon N ∈ N,
i.e. N denotes the number of stages. Of course when we want to control a
Markov Decision Process, due to its stochastic transitions, it is not reasonable
to determine all actions at all time points at the beginning. Instead we have to
react to random changes. Thus we have to choose a control at the beginning
which takes into account the future time points and states.

Definition 2.1.5. a) A measurable mapping fn : E → A with the property
fn(x) ∈ Dn(x) for all x ∈ E, is called a decision rule at time n. We
denote by Fn the set of all decision rules at time n.

b) A sequence of decision rules π = (f0, f1, . . . , fN−1) with fn ∈ Fn is called
an N -stage policy or N -stage strategy.

Note that Fn �= ∅ since by Definition 2.1.1 Dn contains the graph of a mea-
surable mapping fn : E → A.

Remark 2.1.6 (Randomized Policies). It is sometimes reasonable to allow for
randomized policies or decision rules respectively. A randomized Markov pol-
icy π = (f0, f1, . . . , fN−1) is given if fn(B|x) is a stochastic kernel with
fn(Dn(x)|x) = 1 for all x ∈ E. In order to apply such a policy we have to do
a random experiment to determine the action. Randomized decision rules are
related to relaxed controls or Young measures and are sometimes necessary
to guarantee the existence of optimal policies (cf. Section 8.2). ♦

We consider a Markov Decision Model as an N -stage random experiment.
Thus, in order to be mathematically precise we have to define the under-
lying probability space. The canonical construction is as follows. Define a
measurable space (Ω,F) by

Ω = EN+1, F = E ⊗ . . .⊗ E.

We denote ω = (x0, x1, . . . , xN ) ∈ Ω. The random variables X0, X1, . . . , XN

are defined on the measurable space (Ω,F) by

Xn(ω) = Xn((x0, x1, . . . , xN )) = xn,
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being the n-th projection of ω. The random variable Xn represents the state
of the system at time n and (Xn) is called Markov Decision Process. Suppose
now that π = (f0, f1, . . . , fN−1) is a fixed policy and x ∈ E is a fixed initial
state. According to the Theorem of Ionescu-Tulcea (see Appendix B) there
exists a unique probability measure IP

π
x on (Ω,F) with

(i) IP
π
x(X0 ∈ B) = δx(B) for all B ∈ E.

(ii) IP
π
x(Xn+1 ∈ B|X1, . . . , Xn) = IP

π
x(Xn+1 ∈ B|Xn) = Qn

(
B|Xn, fn(Xn)

)
.

Equation (ii) is the so-called Markov property, i.e. the sequence of random
variables X0, X1, . . . , Xn is a non-stationary Markov process with respect
to IP

π
x . By IE

π
x we denote the expectation with respect to IP

π
x . Moreover we

denote by IP
π
nx the conditional probability IP

π
nx(·) := IP

π(· | Xn = x). IE
π
nx is

the corresponding expectation operator.

2.2 Finite Horizon Markov Decision Models

Now we have to impose an assumption which guarantees that all appearing
expectations are well-defined. By x+ = max{0, x} we denote the positive part
of x.

Integrability Assumption (AN): For n = 0, 1, . . . , N

δNn (x) := sup
π

IE
π
nx

[
N−1∑

k=n

r+k (Xk, fk(Xk)) + g+
N(XN )

]

<∞, x ∈ E.

We assume that (AN ) holds for the N -stage Markov Decision Problems
throughout the following chapters. Obviously Assumption (AN ) is satisfied if
all rn and gN are bounded from above. The main results are even true under
a weaker assumption than (AN ) (see Remark 2.3.14).

Example 2.2.1 (Consumption Problem; continued). In the consumption prob-
lem Assumption (AN ) is satisfied if we assume that the utility functions are
increasing and concave and IEZn <∞ for all n, because then rn and gN can
be bounded by an affine-linear function c1 + c2x with c1, c2 ≥ 0 and since
Xn ≤ xZ1 . . . Zn a.s. under every policy, the function δNn satisfies

δNn (x) = sup
π

IE
π
nx

[
N−1∑

k=n

U+
k (fk(Xk)) + U+

N (XN )

]

≤ Nc1 + xc2

N∑

k=n

IEZ1 . . . IEZk <∞, x > 0

which implies the statement. �
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We can now introduce the expected discounted reward of a policy and the
N -stage optimization problem we are interested in. For n = 0, 1, . . . , N and
a policy π = (f0, . . . , fN−1) let Vnπ(x) be defined by

Vnπ(x) := IE
π
nx

[
N−1∑

k=n

rk
(
Xk, fk(Xk)

)
+ gN (XN )

]

, x ∈ E.

Vnπ(x) is the expected total reward at time n over the remaining stages n to
N if we use policy π and start in state x ∈ E at time n. The value function
Vn is defined by

Vn(x) := sup
π
Vnπ(x), x ∈ E.

Vn(x) is the maximal expected total reward at time n over the remaining
stages n to N if we start in state x ∈ E at time n. The functions Vnπ and
Vn are well-defined since

Vnπ(x) ≤ Vn(x) ≤ δNn (x) <∞, x ∈ E.

Note that VNπ(x) = VN (x) = gN (x) and that Vnπ depends only on
(fn, . . . , fN−1). Moreover, it is in general not true that Vn is measurable.
This causes theoretical inconveniences. Some further assumptions are needed
to imply this (see Section 2.4).

A policy π ∈ F0 × . . . × FN−1 is called optimal for the N -stage Markov
Decision Model if V0π(x) = V0(x) for all x ∈ E.

Until now we have considered Markov policies. One could ask why the de-
cision rules are only functions of the current state and do not depend on
the complete history? Let us now introduce the sets of histories which are
denoted by

H0 := E,

Hn := Hn−1 ×A× E.

An element hn = (x0, a0, x1, . . . , xn) ∈ Hn is called history up to time n.

Definition 2.2.2. a) A measurable mapping fn : Hn → A with the prop-
erty fn(hn) ∈ Dn(xn) for all hn ∈ Hn is called a history-dependent deci-
sion rule at stage n.

b) A sequence π = (f0, f1, . . . , fN−1) where fn is a history-dependent de-
cision rule at stage n, is called a history-dependent N -stage policy. We
denote by ΠN the set of all history-dependent N -stage policies.

Let π ∈ ΠN be a history-dependent policy. Then Vnπ(hn) is defined as
the conditional expectation of the total reward in [n,N ], given the history
hn ∈ Hn. The following theorem states that history-dependent policies do
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not improve the maximal expected rewards. For a proof see Hinderer (1970),
Theorem 18.4.

Theorem 2.2.3. For n = 0, . . . , N it holds:

Vn(xn) = sup
π∈ΠN

Vnπ(hn), hn = (x0, a0, x1, . . . , xn).

Though we are in general satisfied with the value function V0(x), it turns
out that on the way computing V0(x) we also have to determine the value
function Vn(x). This is a standard feature of many multistage optimization
techniques and explained in the next section.

2.3 The Bellman Equation

For a fixed policy π ∈ F0×. . .×FN−1 we can compute the expected discounted
rewards recursively by the so-called reward iteration. But first we introduce
some important operators which simplify the notation. In what follows let us
denote by

IM(E) := {v : E → [−∞,∞) | v is measurable}.

Due to our assumptions we have Vnπ ∈ IM(E) for all π and n.

Definition 2.3.1. We define the following operators for n = 0, 1, . . . , N − 1.

a) For v ∈ IM(E) define

(Lnv)(x, a) := rn(x, a) +
∫
v(x′)Qn(dx′|x, a), (x, a) ∈ Dn

whenever the integral exists.
b) For v ∈ IM(E) and f ∈ Fn define

(Tnfv)(x) := (Lnv)(x, f(x)), x ∈ E.

c) For v ∈ IM(E) define

(Tnv)(x) := sup
a∈Dn(x)

(Lnv)(x, a), x ∈ E.

Tn is called the maximal reward operator at time n.

Remark 2.3.2. a) We have the following relation between the operators
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Tnv = sup
f∈Fn

Tnfv.

b) It holds that Tnfv ∈ IM(E) for all v ∈ IM(E), but Tnv does not belong to
IM(E) in general.

c) If a Markov Decision Model with disturbances (Zn) is given as in Theorem
2.1.3, then Lnv can be written as

(Lnv)(x, a) = rn(x, a) + IE

[
v
(
Tn(x, a, Zn+1)

)]
.

This representation is often more convenient. ♦

Notation: In what follows we will skip the brackets (Tnv)(x) around the
operators and simply write Tnv(x) in order to ease notation. When we have
a sequence of operators like TnTn+1v then the order of application is given
by (Tn(Tn+1v)), i.e. the inner operator is applied first. The same convention
applies to the other operators.

The operators have the following important properties.

Lemma 2.3.3. All three operators are monotone, i.e. for v, w ∈ IM(E) with
v(x) ≤ w(x) for all x ∈ E it holds:

a) Lnv(x, a) ≤ Lnw(x, a) for all (x, a) ∈ Dn,
b) Tnfv(x) ≤ Tnfw(x) for all x ∈ E, f ∈ Fn,
c) Tnv(x) ≤ Tnw(x) for all x ∈ E.

Proof. Let v(x) ≤ w(x) for all x ∈ E. Then
∫
v(x′)Qn(dx′|x, a) ≤

∫
w(x′)Qn(dx′|x, a).

Thus, Lnv(x, a) ≤ Lnw(x, a) which implies the first and second statement.
Taking the supremum over all a ∈ Dn(x) implies the third statement. ��

The operators Tnf can now be used to compute the value of a policy recur-
sively.

Theorem 2.3.4 (Reward Iteration). Let π = (f0, . . . , fN−1) be an
N -stage policy. For n = 0, 1, . . . , N − 1 it holds:

a) VNπ = gN and Vnπ = TnfnVn+1,π ,
b) Vnπ = Tnfn . . . TN−1fN−1gN .
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Proof. a) For x ∈ E we have

Vnπ(x) = IE
π
nx

[
N−1∑

k=n

rk
(
Xk, fk(Xk)

)
+ gN (XN )

]

= IE
π
nx[rn

(
x, fn(x)

)
] + IE

π
nx

[
N−1∑

k=n+1

rk
(
Xk, fk(Xk)

)
+ gN(XN )

]

= rn
(
x, fn(x)

)

+ IE
π
nx

[

IE
π
nx

[
N−1∑

k=n+1

rk
(
Xk, fk(Xk)

)
+ gN (XN )

∣
∣
∣ Xn+1

]]

= rn
(
x, fn(x)

)

+
∫

IE
π
n+1,x′

[
N−1∑

k=n+1

rk
(
Xk, fk(Xk)

)
+ gN (XN )

]

Qn
(
dx′|x, fn(x)

)

= rn
(
x, fn(x)

)
+
∫
Vn+1,π(x′)Qn

(
dx′|x, fn(x)

)

where we have used the properties of IP
π
xn in the fourth equality.

b) Follows from a) by induction. ��

Example 2.3.5 (Consumption Problem; continued). We revisit again Example
2.1.4. First note that for fn ∈ Fn the Tnfn operator in this example reads

Tnfnv(x) = Un
(
fn(x)

)
+ IE v

(
(x− fn(x))Zn+1

)
.

Now let us assume that Un(x) := log x for all n and gN(x) := log x. Moreover,
we assume that the return distribution is independent of n and has finite
expectation IEZ. Then (AN ) is satisfied as we have shown in Example 2.2.1.
If we choose the N -stage policy π = (f0, . . . , fN−1) with fn(x) = cx and
c ∈ [0, 1], i.e. we always consume a constant fraction of the wealth, then the
Reward Iteration in Theorem 2.3.4 implies by induction on N that

V0π(x) = (N + 1) log x+N log c+
(N + 1)N

2

(
log(1 − c) + IE logZ

)
.

Hence π∗ = (f∗
0 , . . . , f

∗
N−1) with f∗

n(x) = c∗x and c∗ = 2
N+3 maximizes the

expected log-utility (among all linear consumption policies). �

The next definition will be crucial for the solution of Markov Decision Prob-
lems.

Definition 2.3.6. Let v ∈ IM(E). A decision rule f ∈ Fn is called a max-
imizer of v at time n if Tnfv = Tnv, i.e. for all x ∈ E, f(x) is a maximum
point of the mapping a �→ Lnv(x, a), a ∈ Dn(x).
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Theorem 2.3.8 below gives the key solution method for Markov Decision
Problems. They can be solved by successive application of the Tn-operators.
As mentioned earlier it is in general not true that Tnv ∈ IM(E) for v ∈ IM(E).
However, it can be shown that Vn is analytically measurable and the sequence
(Vn) satisfies the so-called Bellman equation

VN = gN ,

Vn = TnVn+1, n = 0, 1, . . . , N − 1,

see e.g. Bertsekas and Shreve (1978). In the next theorem we show that
whenever a solution of the Bellman equation exists together with a sequence
of maximizers, then this yields the solution of our optimization problem.

Theorem 2.3.7 (Verification Theorem). Let (vn) ⊂ IM(E) be a solu-
tion of the Bellman equation. Then it holds:

a) vn ≥ Vn for n = 0, 1, . . . , N.
b) If f∗

n is a maximizer of vn+1 for n = 0, 1, . . . , N−1, then vn = Vn and
the policy π∗ = (f∗

0 , f
∗
1 , . . . , f

∗
N−1) is optimal for the N -stage Markov

Decision Problem.

Proof. a) For n = N we have vN = gN = VN . Suppose vn+1 ≥ Vn+1, then
for all π = (f0, . . . , fN−1)

vn = Tnvn+1 ≥ TnVn+1 ≥ Tn,fnVn+1,π = Vnπ.

Taking the supremum over all policies π yields vn ≥ Vn.
b) We show recursively that vn = Vn = Vnπ∗ . For n = N this is obvious.

Suppose the statement is true for n+ 1, then

Vn ≤ vn = Tnf∗
n
vn+1 = Tnf∗

n
Vn+1 = Vnπ∗ ≤ Vn

and the theorem holds. ��

The Verification Theorem is similar to statements which are usually delivered
for stochastic control problems in continuous time. It is sufficient for applica-
tions where a solution of the Bellman equation is obvious and the existence
of maximizers easy (e.g. if state and action spaces are finite). In general the
existence of an optimal policy is not guaranteed. We have to make further as-
sumptions about the structure of the problem to ensure this. In what follows
we will first make a structure assumption to state our main theorem. Impor-
tant cases where this assumption is satisfied are then discussed in Section
2.4. Also note that the value of an optimization problem is always unique
whereas an optimal policy may not be unique.
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Structure Assumption (SAN ): There exist sets IMn ⊂ IM(E) and
Δn ⊂ Fn such that for all n = 0, 1, . . . , N − 1:

(i) gN ∈ IMN .
(ii) If v ∈ IMn+1 then Tnv is well-defined and Tnv ∈ IMn.
(iii) For all v ∈ IMn+1 there exists a maximizer fn of v with fn ∈ Δn.

Often IMn is independent of n and it is possible to choose Δn = Fn ∩Δ for a
set Δ ⊂ {f : E → A measurable}, i.e all value functions and all maximizers
have the same structural properties.

The next theorem is the main result of this section. It shows how Markov
Decision Problems can be solved recursively by solving N (one-stage) opti-
mization problems.

Theorem 2.3.8 (Structure Theorem). Let (SAN) be satisfied. Then
it holds:

a) Vn ∈ IMn and the sequence (Vn) satisfies the Bellman equation, i.e.
for n = 0, 1, . . . , N − 1

VN (x) = gN (x),

Vn(x) = sup
a∈Dn(x)

{

rn(x, a) +
∫
Vn+1(x′)Qn(dx′|x, a)

}

, x ∈ E.

b) Vn = TnTn+1 . . . TN−1gN .
c) For n = 0, 1, . . . , N − 1 there exist maximizers fn of Vn+1 with fn ∈
Δn, and every sequence of maximizers f∗

n of Vn+1 defines an optimal
policy (f∗

0 , f
∗
1 , . . . , f

∗
N−1) for the N -stage Markov Decision Problem.

Proof. Since b) follows directly from a) it suffices to prove a) and c). We
show by induction on n = N − 1, . . . , 0 that Vn ∈ IMn and that

Vnπ∗ = TnVn+1 = Vn

where π∗ = (f∗0 , . . . , f
∗
N−1) is the policy generated by the maximizers of

V1, . . . , VN and f∗
n ∈ Δn. We know VN = gN ∈ IMN by (SAN ) (i). Now

suppose that the statement is true for N − 1, . . . , n + 1. Since Vk ∈ IMk for
k = N, . . . , n+ 1, the maximizers f∗

n, . . . , f
∗
N−1 exist and we obtain with the

reward iteration and the induction hypothesis (note that f∗
0 , . . . , f

∗
n−1 are not

relevant for the following equation)

Vnπ∗ = Tnf∗
n
Vn+1,π∗ = Tnf∗

n
Vn+1 = TnVn+1.

Hence Vn ≥ TnVn+1. On the other hand for an arbitrary policy π
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Vnπ = TnfnVn+1,π ≤ TnfnVn+1 ≤ TnVn+1

where we have used the order preserving property of Tnfn . Taking the supre-
mum over all policies yields Vn ≤ TnVn+1. Altogether it follows that

Vnπ∗ = TnVn+1 = Vn

and in view of (SAN ), Vn ∈ IMn. ��

From this result we conclude directly the following corollary.

Corollary 2.3.9. Let (SAN) be satisfied. If n ≤ m ≤ N then it holds:

Vn(x) = sup
π

IE
π
nx

[m−1∑

k=n

rk
(
Xk, fk(Xk)

)
+ Vm(Xm)

]
, x ∈ E.

Theorem 2.3.8 implies the following recursive algorithm to solve Markov De-
cision Problems:

Backward Induction Algorithm.

1. Set n := N and for x ∈ E:

VN (x) := gN (x).

2. Set n := n− 1 and compute for all x ∈ E

Vn(x) = sup
a∈Dn(x)

{
rn(x, a) +

∫
Vn+1(x′)Qn(dx′|x, a)

}
.

Compute a maximizer f∗
n of Vn+1.

3. If n = 0, then the value function V0 is computed and the optimal policy
π∗ is given by π∗ = (f∗

0 , . . . , f
∗
N−1). Otherwise, go to step 2.

Theorem 2.3.8 tells us that the maximizers yield an optimal strategy. However
the reverse statement is not true: optimal strategies do not necessarily contain
only maximizers. This is shown by the following example.

Example 2.3.10. Let N = 2 be the planning horizon and state and action
spaces be given by S = {0, 1} = A = Dn(x) for all x ∈ E. The transition
probabilities are given by Qn({x′}|x, a) = 1 if a = x′ and zero otherwise (see
Figure 2.1). The reward functions are given by rn(x, a) = a for (x, a) ∈ Dn

and g2(x) = x. The optimal policy is easily computed to be π∗ = (f∗
0 , f

∗
1 )

with f∗
0 (x) = 1 and f∗

1 (x) = 1 for all x ∈ E. However, it is easy to see
that π = (f0, f1) with f0(x) ≡ 1, and f1(0) = 0, f1(1) = 1 yields the same
expected total reward and is thus optimal, too. Obviously the reason is that
under an optimal policy state 0 will not be visited after time 1. ♦
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0 1

action a=0

action a=1

action a=0 action a=1

Fig. 2.1 Transition probabilities of Example 2.3.10.

Example 2.3.11 (Consumption Problem; continued). Let us now solve the
consumption problem of Example 2.3.5. First suppose that the Structure
Assumption (SAN ) is satisfied and we can apply Theorem 2.3.8. Thus, we
obtain VN (x) = log x and

VN−1(x) = TN−1VN (x) = sup
a∈[0,x]

{
log a+ log(x− a) + IE logZ

}

= 2 log x+ 2 log 0.5 + IE logZ

where the maximizer is given by f∗N−1(x) = 0.5x. Now by induction we obtain

Vn(x) = (N − n+ 1) log x+ dn, 0 ≤ n ≤ N

where dN = 0 and

dn = dn+1 + (N − n) IE logZ − log
(
N − n+ 1

)
+ (N − n) log

( N − n

N − n+ 1

)
,

and we obtain the maximizer f∗n(x) = 1
N−n+1

x. Thus, the optimal fraction
which is consumed is independent of the wealth and increases over time.
Finally it remains to show that (SAN ) is satisfied. But this can now be easily
verified by choosing

IMn := {v ∈ IM(E) | v(x) = b logx+ d for constants b, d ∈ R}

Δn := {f ∈ Fn | f(x) = cx for c ∈ R}.

Indeed, the necessary calculations are pretty much the same as we have per-
formed before. �

In order to obtain a good guess about how IMn and Δn look like it is rea-
sonable to compute the first steps of the Backward Induction Algorithm and
investigate the structure of the value functions.

The solution method in Theorem 2.3.8 relies on a very simple but general ob-
servation which is called the Principle of Dynamic Programming. Informally
it says that whenever we have an optimal policy π∗ over a certain horizon
N and consider the process now only on a subinterval of [0, N ], then the
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corresponding policy which is obtained by restricting π∗ to this subinterval
is again optimal. This can be formalized as follows.

Theorem 2.3.12 (Principle of Dynamic Programming). Let (SAN) be
satisfied. Then it holds for n ≤ m ≤ N :

Vnπ∗(x) = Vn(x) ⇒ Vmπ∗ = Vm IP
π∗
nx−a.s.,

i.e. if (f∗
n, . . . , f

∗
N−1) is optimal for the time period [n,N ] then (f∗

m, . . . , f
∗
N−1)

is optimal for [m,N ].

Proof. It follows from the Reward Iteration (Theorem 2.3.4) and the defini-
tion of Vm that

Vn(x) = Vnπ∗(x) = Tnf∗
n
. . . Tm−1,f∗

m−1
Vmπ∗(x)

= IE
π∗
nx

[m−1∑

k=n

rk
(
Xk, f

∗
k (Xk)

)
+ Vmπ∗(Xm)

]

≤ IE
π∗
nx

[m−1∑

k=n

rk
(
Xk, f

∗
k (Xk)

)
+ Vm(Xm)

]
≤ Vn(x)

where we have used Corollary 2.3.9 for the last inequality. This implies that
we have indeed equality and that IE

π∗
nx

[
Vm(Xm) − Vmπ∗(Xm)

]
= 0 which

means that Vmπ∗ = Vm IP
π∗
nx−a.s. ��

Sometimes Markov Decision Models are such that the state space contains an
absorbing subset (‘cemetery’ subset) which will never be left once it is reached
and where we obtain no reward. Let us call this set G ⊂ E. Obviously such a
set is not very interesting and can in principle be neglected when formulating
the Markov Decision Model. However this leads at least for some stages to a
substochastic transition law. This is explained in the next example.

Example 2.3.13 (Absorbing Markov Decision Model). Suppose that a Markov
Decision Model is given, where E is the state space, ∅ �= G ⊂ E and A is the
action space. We suppose that Qn(G|x, a) = 1 for x ∈ G, i.e. G will never be
left, once it is entered. Moreover rn(x, a) = 0 and gN (x) = 0 for all x ∈ G
and a ∈ Dn(x). Then it is sufficient to consider the following substochastic
Markov Decision Model (Ẽ, Ã, D̃n, Q̃n, r̃n, g̃N ) with

• Ẽ := E \G,
• Ã := A,
• D̃n(x) := Dn(x) for x ∈ Ẽ and D̃n := {(x, a) | x ∈ Ẽ, a ∈ D̃n(x)},
• Q̃n(B|x, a) := Qn(B|x, a) for (x, a) ∈ D̃n and B ∈ E, B ⊂ Ẽ,
• r̃n(x, a) := rn(x, a) for (x, a) ∈ D̃,
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• g̃N(x) := gN (x) for x ∈ Ẽ.

Typically Q̃n(Ẽ|x, a) < 1 for some x ∈ E, since G is deleted from the state
space and may be entered with positive probability. Moreover, by definition
we have VN (x) = 0 for x ∈ G. It is now easy to see by induction using
Theorem 2.3.8 that Vn(x) = 0 for all x ∈ G. This implies that it holds for all
x ∈ Ẽ:

Vn(x) = sup
a∈Dn(x)

{
rn(x, a) +

∫
Vn+1(x′)Qn(dx′|x, a)

}

= sup
a∈D̃n(x)

{
r̃n(x, a) +

∫

Ẽ

Vn+1(x′)Q̃n(dx′|x, a)
}

where we have used that Vn+1 vanishes on G. As a consequence, we can
restrict ourselves to consider the Bellman equation on Ẽ. For an application
see Section 2.6.1. �

Remark 2.3.14. a) The statements in Theorem 2.3.8 remain valid when we
replace the Assumption (AN ) by the following weaker assumption: Assume
that for n = 0, 1, . . . , N

N−1∑

k=n

r+k (Xk, fk(Xk)) + g+
N(XN )

is P πnx-integrable for all π and x ∈ E. However, in this case we might have
Vn(x) = +∞ for some x ∈ E.

b) It is well known that the Bellman equation holds under much weaker as-
sumptions than in Theorem 2.3.8 (see Hinderer (1970), Theorem 14.4). In
particular, if the reward functions rn and gN are non-negative (and with-
out any further assumptions), the value functions Vn satisfy the Bellman
equation. ♦

Remark 2.3.15 (Minimizing Cost). Instead of one-stage rewards rn and a ter-
minal reward gN , sometimes problems are given where we have a one-stage
cost cn and a terminal cost hN . In this case we want to minimize

IE
π
nx

[
N−1∑

k=n

ck
(
Xk, fk(Xk)

)
+ hN (XN )

]

, x ∈ E

for π = (f0, . . . , fN−1). But this problem can be transformed into a reward
maximization problem by setting rn(x, a) := −cn(x, a), gN(x) := −hN (x).
Thus, all the statements so far remain valid. We will use the same nota-
tion Vnπ and Vn for the cost functions under policy π and the minimal cost
function. Moreover, the minimal cost operator Tn has the form
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(Tnv)(x) = inf
a∈Dn(x)

{
cn(x, a) +

∫
v(x′)Qn(dx′|x, a)

}
.

In this case Vn is also called cost-to-go function. ♦

2.4 Structured Markov Decision Models

In this section we give sufficient conditions under which assumptions (AN )
and (SAN ) in the preceding section are satisfied and thus imply the validity
of the Bellman equation and the existence of optimal policies. For (SAN )
we will identify conditions which imply that special sets IMn and Δn can be
chosen. Of course it is interesting to choose the sets IMn and Δn as small as
possible. The smaller the sets, the more information we have about the value
functions and the optimal policy. On the other hand, small sets imply that
we have to prove a lot of properties of Tnv if v ∈ IMn+1.
Let us first consider the Integrability Assumption (AN ). It is fulfilled when
the Markov Decision Model has a so-called upper bounding function.

Definition 2.4.1. A measurable function b : E → R+ is called an upper
bounding function for the Markov Decision Model if there exist cr, cg, αb ∈ R+

such that for all n = 0, 1, . . . , N − 1:

(i) r+n (x, a) ≤ crb(x) for all (x, a) ∈ Dn,
(ii) g+

N (x) ≤ cgb(x) for all x ∈ E,
(iii)

∫
b(x′)Qn(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ Dn.

If rn and gN are bounded from above, then obviously b ≡ 1 is an upper
bounding function.
Let b be an upper bounding function for the Markov Decision Model. For
v ∈ IM(E) we denote the weighted supremum norm by

‖v‖b := sup
x∈E

|v(x)|
b(x)

(with the convention 0
0

:= 0) and define the set

IBb := {v ∈ IM(E) | ‖v‖b <∞}.

Equivalently IBb can be written as

IBb := {v ∈ IM(E) | |v(x)| ≤ cb(x) for all x ∈ E and for some c ∈ R+}.

The concept of upper bounding functions is of particular interest for Markov
Decision Models with infinite time horizon (cp. Chapter 7). The next result
is fundamental for many applications.
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Proposition 2.4.2. If the Markov Decision Model has an upper bounding
function b, then δNn ∈ IBb and the Integrability Assumption (AN) is satisfied.

Proof. Since δNn ≥ 0 we have to show that δNn (x) ≤ cb(x) for some c ∈ R+.
From the properties of an upper bounding function it follows that

IE
π
x

[
r+k
(
Xk, fk(Xk)

)
| Xk−1

]
=
∫
r+k
(
x′, fk(x′)

)
Qk
(
dx′ | Xk−1, fk−1(Xk−1)

)

≤ crαbb(Xk−1)

and by iteration we obtain

IE
π
x

[
r+k
(
Xk, fk(Xk)

)]
≤ crα

k
b b(x), x ∈ E.

Analogously we get

IE
π
x

[
g+
N(XN )

]
≤ cgα

N
b b(x), x ∈ E

and the result follows. ��

For the rest of Section 2.4 we assume that E and A are Borel spaces (see
Remark 2.1.2 a)). Also Dn is assumed to be a Borel subset of E×A. Further
we suppose that our Markov Decision Model has an upper bounding function
b and we introduce the set

IB+
b := {v ∈ IM(E) | ‖v+‖b <∞}.

Equivalently IB+
b can be written as

IB+
b := {v ∈ IM(E) | v+(x) ≤ cb(x) for all x ∈ E and for some c ∈ R+}.

2.4.1 Semicontinuous Markov Decision Models

In so-called semicontinuous Markov Decision Models the Structure Assump-
tion (SAN ) is fulfilled with IMn being a subset of upper semicontinuous func-
tions. This is a consequence of the following results (for the definition of upper
semicontinuity and properties of set-valued functions the reader is referred
to the Appendix A).

Proposition 2.4.3. Let v ∈ IB+
b be upper semicontinuous. Suppose the fol-

lowing assumptions are satisfied:

(i) Dn(x) is compact for all x ∈ E and x �→ Dn(x) is upper semicontinuous,
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(ii) (x, a) �→ Lnv(x, a) is upper semicontinuous on Dn.

Then Tnv is upper semicontinuous and there exists a maximizer fn of v.

Remark 2.4.4. Condition (i) in Proposition 2.4.3 can be replaced by the fol-
lowing condition: For all x ∈ E the level sets {a ∈ Dn(x) | Lnv(x, a) ≥ c}
are compact for all c ∈ R and the set-valued mapping

x �→ {a ∈ Dn(x) | Lnv(x, a) = Tnv(x)}

is upper semicontinuous. ♦

Proof. To ease notation let us define

w(x, a) := Lnv(x, a), w∗(x) := Tnv(x)

and D(x) := Dn(x). For x0 ∈ E select a sequence (xn) ⊂ E converging to x0

such that the limit of w∗(xn) exists. We have to show that

lim
n→∞w∗(xn) ≤ w∗(x0).

Since a �→ w(x, a) is upper semicontinuous on the compact set D(x), it
attains its supremum on D(x) (see Theorem A.1.2). Let an ∈ D(xn) be a
maximum point of a �→ w(xn, a) on D(xn). By the upper semicontinuity of
x �→ D(x) there is a subsequence (ank

) of (an) converging to some a0 ∈ D(x0).
The upper semicontinuity of w implies

lim
n→∞w∗(xn) = lim

k→∞
w∗(xnk

) = lim
k→∞

w(xnk
, ank

) ≤ w(x0, a0) ≤ w∗(x0),

i.e. w∗ is upper semicontinuous.
Since w and w∗ are measurable, it follows easily that

D∗ := {(x, a) ∈ D | w(x, a) = w∗(x)}

is a Borel subset of E ×A and each D∗(x) is compact since

D∗(x) := {a ∈ D(x) | w(x, a) ≥ w∗(x)}.

Then, applying the selection theorem of Kuratowski and Ryll-Nardzewski
(see Appendix, Theorem A.2.3), we obtain a Borel measurable selector f for
D∗. This is the desired maximizer of v. ��

Remark 2.4.5. If A ⊂ R then there exists a smallest and a largest maximizer
of v ∈ IB+

b . Note that the set
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D∗
n(x) := {a ∈ Dn(x) | Lnv(x, a) = Tnv(x)}

is compact for x ∈ E. Then maxD∗
n(x) and minD∗

n(x) are maximizers of v
by the Selection Theorem A.2.3. ♦

A set of sufficient conditions on the data of a Markov Decision Model in order
to assure that (SAN ) is satisfied with IMn being the set of upper semicontinu-
ous functions v ∈ IB+

b and with Δn := Fn is given below. Consequently under
these assumptions Theorem 2.3.8 is valid. The proof follows immediately from
Proposition 2.4.3.

Theorem 2.4.6. Suppose the Markov Decision Model has an upper
bounding function b and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(x) is compact for all x ∈ E and x �→ Dn(x) is upper semicontin-
uous,

(ii) (x, a) �→
∫
v(x′)Qn(dx′|x, a) is upper semicontinuous for all upper

semicontinuous v ∈ IB+
b ,

(iii) (x, a) �→ rn(x, a) is upper semicontinuous,
(iv) x �→ gN(x) is upper semicontinuous.

Then the sets IMn := {v ∈ IB+
b | v is upper semicontinuous} and

Δn := Fn satisfy the Structure Assumption (SAN). In particular,
Vn ∈ IMn and there exists a maximizer f∗

n ∈ Fn of Vn+1. The policy
(f∗

0 , . . . , f
∗
N−1) is optimal.

Instead of checking condition (ii) of Theorem 2.4.6 directly, we can alterna-
tively use the following Lemma:

Lemma 2.4.7. Let b be a continuous upper bounding function.Then the fol-
lowing statements are equivalent:

(i) (x, a) �→
∫
v(x′)Q(dx′|x, a) is upper semicontinuous for all upper semi-

continuous v ∈ IB+
b .

(ii) (x, a) �→
∫
b(x′)Q(dx′|x, a) is continuous, and (x, a) �→

∫
v(x′)Q(dx′|x, a)

is continuous and bounded for all continuous and bounded v on E.

A stochastic kernel Q with the last property is called weakly continuous.

Proof. The proof that (ii) implies (i) is as follows: Let v ∈ IB+
b be upper semi-

continuous. Then we have v−cb ≤ 0 for some c ∈ R+ and x �→ v(x) − cb(x) is
upper semicontinuous. According to Lemma A.1.3 this implies the existence
of a sequence

(
ṽk
)

of continuous and bounded functions such that ṽk ↓ v−cb.
Due to our assumption the function (x, a) �→

∫
ṽk(x′)Q(dx′|x, a) is now con-

tinuous and bounded. Moreover, monotone convergence implies that
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∫
ṽk(x′)Q(dx′|x, a)

⏐
�
∫

(v − cb)(x′)Q(dx′|x, a) for k → ∞.

Thus, we can again conclude with Lemma A.1.3 that the limit is upper
semicontinuous. However in view of our assumption this implies (x, a) �→∫
v(x′)Q(dx′|x, a) is upper semicontinuous.

Next we prove that (i) implies (ii): Since b and −b are in IB+
b , we get

(x, a) �→
∫
b(x′)Q(dx′|x, a)

is continuous. If v is bounded and continuous, then the functions v−‖v‖ and
−v − ‖v‖ belong to IB+

b and are upper semicontinuous. Hence the function
(x, a) �→

∫
v(x′)Q(dx′|x, a) is continuous. ��

2.4.2 Continuous Markov Decision Models

Next we investigate when the Structure Assumption (SAN ) is satisfied with
IMn being a subset of continuous functions.

Proposition 2.4.8. Let v ∈ IB+
b be continuous. Suppose the following as-

sumptions are satisfied:

(i) Dn(x) is compact for all x ∈ E and x �→ Dn(x) is continuous,
(ii) (x, a) �→ Lnv(x, a) is continuous on Dn.

Then Tnv is continuous and there exists a maximizer fn ∈ Fn of v. If v has
a unique maximizer fn ∈ Fn at time n, then fn is continuous.

Proof. We use the same notation as in the proof of Proposition 2.4.3. In view
of Proposition 2.4.3 it is sufficient to show that w∗ is lower semicontinuous, i.e.
that w∗(x0) ≤ limn→∞ w∗(xn) for each sequence (xn) ⊂ E which converges
to x0 ∈ E and for which limn→∞ w∗(xn) exists. We know by assumption that
w∗(x0) = w(x0, a0) for some a0 ∈ D(x0). Since x �→ D(x) is continuous, there
exists a subsequence (xnk

) of (xn) and a sequence of points ank
∈ D(xnk

)
converging to a0. Hence we have (xnk

, ank
) → (x0, a0). It follows from the

continuity of w that

w∗(x0) = w(x0, a0) = lim
k→∞

w(xnk
, ank

) ≤ lim
k→∞

w∗(xnk
) = lim

n→∞w∗(xn).

Since x �→ D(x) is upper semicontinuous, D is closed and it follows that

D∗ := {(x, a) ∈ D | w(x, a) = w∗(x)}



2.4 Structured Markov Decision Models 33

is a closed subset of D. Then we obtain that x �→ D∗(x) is also upper semi-
continuous. Thus, if v has a unique maximizer fn, i.e. D∗

n(x) = {fn(x)} for
all x ∈ E, then fn must be continuous. ��

Remark 2.4.9. If A ⊂ R, then the smallest (largest) maximizer of v is lower
semicontinuous (upper semicontinuous). This can be seen as follows: If A ⊂ R,
then x �→ f(x) := maxD∗(x) is the largest maximizer. Choose x0, xn ∈ E
such that xn → x0 and the limit of (f(xn)) exists. Since an := f(xn) ∈
D∗(xn) and x �→ D∗(x) is upper semicontinuous, (an) has an accumulation
point in D∗(x0) which must be limn→∞ f(xn). It follows that

lim
n→∞ f(xn) ≤ maxD∗(x0) = f(x0),

i.e. the largest maximizer is upper semicontinuous. In the same way it can
be shown that the smallest maximizer is lower semicontinuous. ♦

It is now rather straightforward that the following conditions on the data
of a Markov Decision Model imply by using Proposition 2.4.8 that (SAN ) is
satisfied and that Theorem 2.3.8 is valid.

Theorem 2.4.10. Suppose a Markov Decision Model with upper bounding
function b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(x) is compact for all x ∈ E and x �→ Dn(x) is continuous,
(ii) (x, a) �→

∫
v(x′)Qn(dx′|x, a) is continuous for all continuous v ∈ IB+

b ,
(iii) (x, a) �→ rn(x, a) is continuous,
(iv) x �→ gN(x) is continuous.

Then the sets IMn := {v ∈ IB+
b | v is continuous} and Δn := Fn satisfy the

Structure Assumption (SAN). If the maximizer of Vn is unique, then Δn can
be chosen as the set of continuous functions.

2.4.3 Measurable Markov Decision Models

Sometimes the Structure Assumption (SAN ) can be fulfilled with IMn = IB+
b .

For this case the following result is useful.

Proposition 2.4.11. Let v ∈ IB+
b and suppose the following assumptions are

satisfied:

(i) Dn(x) is compact for all x ∈ E,
(ii) a �→ Lnv(x, a) is upper semicontinuous on Dn(x) for all x ∈ E.

Then Tnv is measurable and there exists a maximizer fn ∈ Fn of v.
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Proof. We use the same notation as in the proof of Proposition 2.4.3. Let
α ∈ R. It is sufficient to prove that {x ∈ E | w∗(x) ≥ α} is a Borel set. But

{x ∈ E | w∗(x) ≥ α} = {x ∈ E | w(x, a) ≥ α for some a ∈ D(x)}
= projE{(x, a) ∈ D | w(x, a) ≥ α}.

This set is Borel by a result of Kunugui and Novikov (see Himmelberg et al.
(1976)), since D is Borel with compact values (i.e. compact vertical sections)
and {(x, a) ∈ D | w(x, a) ≥ α} is a Borel subset of D with closed (and
therefore compact) values. Actually, Kunugui and Novikov prove that the
projection of a Borel subset of E × A with compact values is a Borel subset
of E. The existence of a maximizer can be shown in the same way as in the
proof of Proposition 2.4.3. ��

Remark 2.4.12. a) If A is countable and Dn(x) is finite for all x ∈ E, then
both assumptions (i) and (ii) of Proposition 2.4.11 are fulfilled.

b) Condition (i) in Proposition 2.4.11 can be replaced by: For all x ∈ E the
level set {a ∈ Dn(x) | Lnv(x, a) ≥ c} is compact for all c ∈ R. ♦

The following theorem follows directly from Proposition 2.4.11. In particular
the main result (Theorem 2.3.8) holds under the assumptions of Theorem
2.4.13.

Theorem 2.4.13. Suppose a Markov Decision Model with upper bounding
function b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(x) is compact for all x ∈ E,
(ii) a �→

∫
v(x′)Qn(dx′|x, a) is upper semicontinuous for all v ∈ IB+

b and
for all x ∈ E,

(iii) a �→ rn(x, a) is upper semicontinuous for all x ∈ E.

Then the sets IMn := IB+
b and Δn := Fn satisfy the Structure Assumption

(SAN).

In a more general framework one can choose IMn as the set of upper semian-
alytic functions (see Bertsekas and Shreve (1978)). But of course, one wants
to choose IMn and Δn as small as possible.

2.4.4 Monotone and Convex Markov Decision Models

Structural properties (e.g. monotonicity, concavity and convexity) for the
value functions and also for the maximizers are important for applications.
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Results like these also simplify numerical solutions. In order to ease the ex-
position we assume now that E ⊂ R

d and A ⊂ R
m endowed with the usual

preorder ≤ of componentwise comparison e.g. x ≤ y for x, y ∈ R
d if xk ≤ yk

for k = 1, . . . , d.

Theorem 2.4.14. Suppose a Markov Decision Model with upper bounding
function b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(·) is increasing, i.e. x ≤ x′ implies Dn(x) ⊂ Dn(x′),
(ii) the stochastic kernels Qn(·|x, a) are stochastically monotone for all a ∈

Dn(x), i.e. the mapping x �→
∫
v(x′)Qn(dx′|x, a) is increasing for all

increasing v ∈ IB+
b and for all a ∈ Dn(x),

(iii) x �→ rn(x, a) is increasing for all a,
(iv) gN is increasing on E,
(v) for all increasing v ∈ IB+

b there exists a maximizer fn ∈ Δn of v.

Then the sets IMn := {v ∈ IB+
b | v is increasing} and Δn satisfy the Structure

Assumption (SAN ).

Proof. Obviously condition (iv) shows that gN ∈ IMN . Let now v ∈ IMn+1.
Then conditions (ii) and (iii) imply that x �→ Lnv(x, a) is increasing for all a.
In view of (i) we obtain Tnv ∈ IMn. Condition (v) is equivalent to condition
(iii) of (SAN ). Thus, the statement is shown. ��

It is more complicated to identify situations in which the maximizers are
increasing. For this property we need the following definition.

Definition 2.4.15. A set D ⊂ E × A is called completely monotone if
for all points (x, a′), (x′, a) ∈ D with x ≤ x′ and a ≤ a′ it follows that
(x, a), (x′, a′) ∈ D.

An important special case where D is completely monotone is given if D(x)
is independent of x. If A = R and D(x) = [d(x), d̄(x)]. Then D is completely
monotone if and only if d : E → R and d̄ : E → R are increasing.

For a definition and properties of supermodular functions see Appendix A.3.

Proposition 2.4.16. Let v ∈ IB+
b and suppose the following assumptions are

satisfied where D∗
n(x) := {a ∈ Dn(x) | Lnv(x, a) = Tnv(x)} for x ∈ E:

(i) Dn is completely monotone,
(ii) Lnv is supermodular on Dn,
(iii) there exists a largest maximizer f∗n of v i.e. for all x ∈ E it holds:

f∗
n(x) ≥ a for all a ∈ D∗

n(x) which are comparable with f∗
n(x).

Then f∗n is weakly increasing, i.e. x ≤ x′ implies f∗
n(x) ≤ f∗

n(x′), whenever
f∗n(x) and f∗

n(x′) are comparable.
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Proof. Suppose that f∗
n is not increasing, i.e. there exist x, x′ ∈ E with x ≤ x′

and f∗
n(x) =: a > a′ := f∗n(x′). Due to our assumptions (i) and (ii) we know

that (x, a′), (x′, a) ∈ Dn and
(
Lnv(x, a′) − Lnv(x, a)

)
+
(
Lnv(x′, a) − Lnv(x′, a′)

)
≥ 0.

Since a is a maximum point of b �→ Lnv(x, b) and a′ is a maximum point of
b �→ Lnv(x′, b) the expressions in brackets are non-positive. Thus, we must
have Lnv(x′, a′) = Lnv(x′, a) which means in particular that a is also a
maximum point of b �→ Lnv(x′, b). But this contradicts the definition of f∗

n

as the largest maximizer of v, and the statement follows. ��

Remark 2.4.17. a) A similar result holds for the smallest maximizer of v.
b) If we reverse the relation on the state or the action space we obtain con-

ditions for weakly decreasing maximizers. ♦

If our Markov Decision Model fulfills all assumptions of Theorem 2.4.14 and
Proposition 2.4.16, then

IMn := {v ∈ IB+
b | v is increasing}

Δn := {f ∈ Fn | f is weakly increasing}

satisfy the Structure Assumption (SAN ).

Of particular interest are concave or convex value functions.

Proposition 2.4.18. Let v ∈ IB+
b and suppose the following assumptions are

satisfied:

(i) Dn is convex in E ×A,
(ii) Lnv(x, a) is concave on Dn.

Then Tnv is concave on E.

Proof. First note that Tnv(x) < ∞ for all x ∈ E and that E is convex. Let
x, x′ ∈ E and α ∈ (0, 1). For ε > 0 there exist a ∈ Dn(x) and a′ ∈ Dn(x′)
with

Lnv(x, a) ≥ Tnv(x) − ε,

Lnv(x′, a′) ≥ Tnv(x′) − ε.

The convexity of Dn implies

α(x, a) + (1 − α)(x′, a′) ∈ Dn

which means that αa+ (1 − α)a′ ∈ Dn(αx + (1 − α)x′). Hence by (ii)



2.4 Structured Markov Decision Models 37

Tnv(αx + (1 − α)x′) ≥ Lnv
(
αx + (1 − α)x′, αa+ (1 − α)a′

)

≥ αLnv(x, a) + (1 − α)Lnv(x′, a′)
≥ αTnv(x) + (1 − α)Tnv(x′) − ε.

This is true for all ε > 0, and the statement follows. ��

Proposition 2.4.18 now directly implies that the following conditions on the
data of the Markov Decision Model guarantee that (SAN ) is satisfied with
the set IMn being a subset of concave functions.

Theorem 2.4.19. Suppose a Markov Decision Model with upper bounding
function b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn is convex in E ×A,
(ii) the mapping (x, a) �→

∫
v(x′)Qn(dx′|x, a) is concave for all concave

v ∈ IB+
b ,

(iii) (x, a) �→ rn(x, a) is concave,
(iv) gN is concave on E,
(iv) for all concave v ∈ IB+

b there exists a maximizer fn ∈ Δn of v.

Then the sets IMn := {v ∈ IB+
b | v is concave} and Δn satisfy the Struc-

ture Assumption (SAN ).

Remark 2.4.20. If A = R and D(x) = [d(x), d̄(x)] then D is convex in E ×A
if and only if E is convex, d : E → R is convex and d̄ : E → R is concave. ♦

Proposition 2.4.21. Let v ∈ IB+
b and suppose that the following assump-

tions are satisfied:

(i) E is convex and Dn := E ×A,
(ii) x �→ Lnv(x, a) is convex for all a ∈ A.

Then Tnv is convex on E. If moreover A is a polytope and a �→ Lnv(x, a) is
convex for all x ∈ E, then there exists a so-called bang-bang maximizer f∗

n

of v at time n, i.e. f∗
n(x) is a vertex of A for all x ∈ E.

Proof. The first statement follows from the fact that the supremum of an
arbitrary number of convex functions is again convex (because Tnv < ∞).
Now if A is a polytope, the convex function a �→ Lnv(x, a) attains its supre-
mum in a vertex and the set of all maximum points of a �→ Lnv(x, a) which
are vertices, is finite for all x ∈ E. Then, by applying the Selection Theorem
A.2.3, we obtain the second statement. ��
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Proposition 2.4.21 now directly implies that the following conditions on the
data of the Markov Decision Model guarantee that (SAN ) is satisfied with
the set IMn being a subset of convex functions.

Theorem 2.4.22. Suppose a Markov Decision Model with upper bounding
function b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) E is convex and Dn := E ×A,
(ii) for all convex v ∈ IB+

b , x �→
∫
v(x′)Qn(dx′|x, a) is convex for all

a ∈ A,
(iii) x �→ rn(x, a) is convex for all a ∈ A,
(iv) gN is convex,
(v) for all convex v ∈ IB+

b there exists a maximizer fn ∈ Δn of v.

Then the sets IMn := {v ∈ IB+
b | v is convex} and Δn satisfy the Structure

Assumption (SAN).

2.4.5 Comparison of Markov Decision Models

When the value functions of a Markov Decision Model have one of the prop-
erties of the last section (e.g. monotonicity, convexity, concavity), then it is
possible to discuss the qualitative influence of the transition kernel on the
value function. More precisely, we want to know in which direction the value
function changes, if the transition kernel Qn(·|x, a) is replaced by Q̃n(·|x, a).
To this end, denote

IMst := {v ∈ IB+
b | v is increasing}

IMcv := {v ∈ IB+
b | v is concave}

IMcx := {v ∈ IB+
b | v is convex}.

We denote by (Ṽn) the value functions of the Markov Decision Model with
transition kernels Q̃n. In the following theorem we use stochastic orders for
the transition kernels (see Appendix B.3 for details).

Theorem 2.4.23. Suppose a Markov Decision Model with upper bounding
function b is given which satisfies the Structure Assumption (SAN ) with the
set IM�

n where � ∈ {st, cv, cx}. If for all n = 0, 1, . . . , N − 1

Qn(·|x, a) ≤� Q̃n(·|x, a), for all (x, a) ∈ D

then Vn ≤ Ṽn for n = 0, 1, . . . , N − 1.
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The proof follows directly from the properties of the stochastic orders (see
Appendix B.3).

2.5 Stationary Markov Decision Models

In this section we consider stationary Markov Decision Models, i.e. the data
does not depend on n and is given by (E,A,D,Q, rn, gN ) with rn := βnr,
gN := βNg and β ∈ (0, 1].

We denote by F the set of all decision rules f : E → A with f(x) ∈ D(x) for
x ∈ E. Then FN is the set of all N -stage policies π = (f0, . . . , fN−1).

The expected discounted reward over n stages under a policy π ∈ F n is given
by

Jnπ(x) := IE
π
x

[
n−1∑

k=0

βkr
(
Xk, fk(Xk)

)
+ βng(Xn)

]

, x ∈ E

when the system starts in state x ∈ E. The maximal expected discounted
reward over n stages is defined by

J0(x) := g(x)
Jn(x) := sup

π∈Fn

Jnπ(x), x ∈ E, 1 ≤ n ≤ N.

In order to obtain a well-defined stochastic optimization problem we need
the following integrability assumption (see Section 2.2):

Assumption (AN ): For x ∈ E

δN (x) := sup
π

IE
π
x

[
N−1∑

k=0

βkr+(Xk, fk(Xk)) + βNg+(XN )

]

<∞.

Remark 2.5.1. Since δ0 := g+ ≤ δn−1 ≤ δn ≤ δN and

δNn = βnδN−n, n = 0, 1 . . . , N,

the Integrability Assumption (AN ) is equivalent to the integrability assump-
tion in Section 2.2 when we have a stationary Markov Decision Model. ♦

As explained in Section 2.4 it is convenient to show that (AN ) is satisfied
by proving the existence of an upper bounding function. The definition of
an upper bounding function for a stationary Markov Decision Model is as
follows.
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Definition 2.5.2. A measurable mapping b : E → R+ is called an upper
bounding function for the stationary Markov Decision Model if there exist
cr, cg, αb ∈ R+, such that:

(i) r+(x, a) ≤ crb(x) for all (x, a) ∈ D,
(ii) g+(x) ≤ cgb(x) for all x ∈ E,
(iii)

∫
b(x′)Q(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ D.

If the stationary Markov Decision Model has an upper bounding function
b, then we have δN ∈ IBb and the Integrability Assumption (AN ) is sat-
isfied (cf. Proposition 2.4.2). Obviously every stationary model is a special
non-stationary model. We obtain the following relation between the value
functions Jn and Vn:

Vn(x) = βnJN−n(x), x ∈ E, n = 0, 1, . . . , N.

But on the other hand, every non-stationary Markov Decision Model can
be formulated as a stationary one. The idea is to extend the state space by
including the time parameter.

As in Definition 2.3.1 we introduce the following operators for v ∈ IM(E):

Lv(x, a) := r(x, a) + β

∫
v(x′)Q(dx′|x, a), (x, a) ∈ D,

Tfv(x) := Lv
(
x, f(x)

)
, x ∈ E

T v(x) := sup
a∈D(x)

Lv(x, a), x ∈ E.

T is called the maximal reward operator. The reward iteration reads now as
follows.

Theorem 2.5.3 (Reward Iteration). For π = (f0, . . . , fn−1) it holds:

Jnπ = Tf0 . . . Tfn−1g.

The Structure Assumption (SAN ) has to be modified for stationary Markov
Decision Models.

Structure Assumption (SAN):There exist sets IM ⊂ IM(E) and Δ ⊂ F
such that:

(i) g ∈ IM .
(ii) If v ∈ IM then T v(x) is well-defined and T v ∈ IM .
(iii) For all v ∈ IM there exists a maximizer f ∈ Δ of v, i.e.

Tfv(x) = T v(x), x ∈ E.



2.5 Stationary Markov Decision Models 41

The main Theorem 2.3.8 about the recursive computation of the optimal
value functions has now the following form.

Theorem 2.5.4 (Structure Theorem). Let (SAN ) be satisfied.

a) Then Jn ∈ IM and the Bellman equation Jn = T Jn−1 holds, i.e.

J0(x) = g(x)

Jn(x) = sup
a∈D(x)

{

r(x, a) + β

∫
Jn−1(x′)Q(dx′|x, a)

}

, x ∈ E.

Moreover, Jn = T ng.
b) For n = 1, . . . , N there exist maximizers f∗

n of Jn−1 with f∗
n ∈ Δ, and

every sequence of maximizers f∗
n of Jn−1 defines an optimal policy

(f∗
N , . . . , f

∗
1 ) for the stationary N -stage Markov Decision Model.

In many examples we will see that the Structure Assumption is naturally ful-
filled. For some conditions which imply (SAN ) see Section 2.4. The simplest
case arises when both E and A are finite. Here the Structure Assumption
(SAN ) is satisfied with IM := {v : E → R} because every function is mea-
surable and maximizers exist. Moreover, the transition kernel has a discrete
density and we denote

q(x′|x, a) := Q({x′}|x, a)

for x, x′ ∈ E and a ∈ D(x).
Analogously to the non-stationary case, Theorem 2.5.4 gives a recursive al-
gorithm to solve Markov Decision Problems. Due to the stationarity of the
data however, it is not necessary to formulate the algorithm as a backward
algorithm.

Forward Induction Algorithm.

1. Set n := 0 and for x ∈ E:

J0(x) := g(x).

2. Set n := n+ 1 and compute for all x ∈ E

Jn(x) = sup
a∈D(x)

{
r(x, a) +

∫
Jn−1(x′)Q(dx′|x, a)

}
.

Compute a maximizer f∗
n of Jn−1.

3. If n = N , then the value function JN is computed and the optimal
policy π∗ is given by π∗ = (f∗

N , . . . , f
∗
1 ). Otherwise, go to step 2.
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The induction algorithm computes the n-stage value functions and the op-
timal decision rules recursively over the stages, beginning with the terminal
reward function. We illustrate this procedure with the following numerical
example which is known as Howard’s toymaker in the literature.

Example 2.5.5 (Howard’s Toymaker). Suppose a Markov Decision Model is
given by the following data. The planning horizon is N = 4. The state space
consists of two states E = {1, 2} as well as the action space A = {1, 2}. We
have no restriction on the actions, i.e. D(x) = A. The reward is discounted by
a factor β ∈ (0, 1) and the one-stage reward is given by r(1, 1) = 6, r(2, 1) =
−3, r(1, 2) = 4, r(2, 2) = −5.The terminal reward is g(1) = 105, g(2) = 100.
The transition probabilities are denoted by the following matrices (see Figure
2.2)

q(·|·, 1) =

⎛

⎝
0.5 0.5

0.4 0.6

⎞

⎠ q(·|·, 2) =

⎛

⎝
0.8 0.2

0.7 0.3

⎞

⎠ .

Note that q(·|·, 1) gives the transition probabilities if action a = 1 is chosen
and q(·|·, 2) gives the transition probabilities if action a = 2 is chosen.

1 2

action a=1
0,5

0,5

0,4
0,6

1 2

action a=2

0,8

0,2

0,7
0,3

Fig. 2.2 Transition probabilities of Howard’s toymaker.

The result of the computation with β = 0.98 is shown in Table 2.1. By D∗
n(x)

we denote the set

D∗
n(x) := {a ∈ D(x) | a maximizes b �→ r(x, b) + β

∑

x′∈E
q(x′|x, b)Jn−1(x′)}.

In particular, the value function of the 4-stage problem is given by
J4(1) = 106.303 and J4(2) = 96.326.
Moreover, if Δ0 := J0(1) − J0(2) ≥ 0 then the following Turnpike Theorem
can be shown:

• If β < 20
29

, then there exists an N∗ = N∗(β,Δ0) ∈ N such that
D∗
n(1) = D∗

n(2) = {1} for n ≥ N∗ and 2 ∈ D∗
n(1) = D∗

n(2) for n < N∗.
• If β > 20

29 , then there exists an N∗ = N∗(β,Δ0) ∈ N such that
D∗
n(1) = D∗

n(2) = {2} for n ≥ N∗ and 1 ∈ D∗
n(1) = D∗

n(2) for n < N∗.
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n Jn(1) Jn(2) D∗
n(1) D∗

n(2)

0 105 100
1 106.45 96.96 1 1

2 106.461 96.531 2 2

3 106.385 96.412 2 2
4 106.303 96.326 2 2

Table 2.1 Computational results of the Backward induction algorithm.

• If β = 20
29

, then

D∗
n(1) = D∗

n(2) = {1} for all n ∈ N if Δ0 <
29
3

D∗
n(1) = D∗

n(2) = A for all n ∈ N if Δ0 = 29
3

D∗
n(1) = D∗

n(2) = {2} for all n ∈ N if Δ0 >
29
3
. �

The following Markov Decision Model with random discounting has impor-
tant applications in finance and insurance.

Example 2.5.6 (Random Discounting). Suppose a stationary Markov Decision
Model (E,A,D,Q, βnr, βNg) is given. Sometimes the discount factors for
the stages vary randomly. Here we assume that the (non-negative) discount
factors (βn) form a Markov process, given by a transition kernel Qβ(B|y) and
β0 is given. We suppose that (βn) is independent of the state process. (Also
the more general case where (βn) depends on the state process can be dealt
with.) Then we are interested in finding the maximal expected discounted
reward over all policies π ∈ FN , i.e. we want to maximize the expression

IE
π
x

[
N−1∑

n=0

( n−1∏

k=0

βk
)
r
(
Xn, fn(β0, . . . , βn−1, Xn)

)
+
(N−1∏

k=0

βk
)
g(XN )

]

, x∈E.

Of course we assume that the Markov process (βn) can be observed by the
decision maker and thus the decision rules are allowed to depend on it. This
problem can again be solved via a standard Markov Decision Model by ex-
tending the state space E. Let us define:

• Ẽ := E × [0,∞)× [0,∞) where (x, β, δ) ∈ Ẽ denotes the state x, the new
discount factor β and the product δ of the discount factors realized so far,

• Ã = A,
• D̃(x, β, δ) = D(x) for all (x, β, δ) ∈ E,
• Q̃(B × B1 × B2|x, β, δ, a) = Q(B|x, a) ⊗ Qβ(B1|β) ⊗ 1B2(δ · β) for all

(x, β, δ) ∈ Ẽ and suitable measurable sets B,B1, B2,
• r̃
(
(x, β, δ), a

)
= δr(x, a) for all (x, β, δ) ∈ Ẽ,

• g̃(x, β, δ) = δg(x).

Then the maximal reward operator for v ∈ IM(E) is given by
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T v(x, β, δ) = sup
a∈D(x)

{

δr(x, a) +
∫
Q(dx′|x, a)

∫
Qβ(dy′|β)v(x′, y′, δβ)

}

and the solution of the preceding problem with random discounting is given
by the value

JN (x, β0, 1) = T N g̃(x, β0, 1).

Note that the optimal decision rule at time n depends on xn, βn and the
product of the discount factors δn =

∏n−1
k=0 βk. �

2.6 Applications and Examples

In this section we collect some applications of the theory presented so far.
Further examples with a focus on financial optimization problems can be
found in Chapter 4.

2.6.1 Red-and-Black Card Game

Consider the following simple card game: The dealer uncovers successively
the cards of a well-shuffled deck which initially contains b0 black and r0 red
cards. The player can at any time stop the uncovering of the cards. If the
next card at the stack is black (red), the player wins (loses) 1 Euro. If the
player does not stop the dealer, then the colour of the last card is decisive.
When the player says stop right at the beginning then the probability of
winning 1 Euro is obviously b0

b0+r0
and her expected gain will be b0−r0

b0+r0
. The

same holds true when the player waits until the last card. Is there a strategy
which yields a larger expected gain? The answer is no! We will prove this by
formulating the problem as a stationary Markov Decision Model. The state
of the system is the number of cards in the stack, thus

E := {x = (b, r) ∈ N
2
0 | b ≤ b0, r ≤ r0}.

The state (0, 0) will be absorbing, thus in view of Example 2.3.13 we define
G := {(0, 0)} as the set of absorbing states. Once, we have entered G the
reward is zero and we stay in G. For x ∈ E and x /∈ {(0, 1), (1, 0)} we have
D(x) = A = {0, 1} with the interpretation that a = 0 means ‘go ahead’
and a = 1 means ‘stop’. Since the player has to take the last card if she
had not stopped before we have D

(
(0, 1)

)
= D

(
(1, 0)

)
= {1}. The transition

probabilities are given by
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q
(
(b, r − 1) | (b, r), 0

)
:=

r

r + b
, r ≥ 1, b ≥ 0

q
(
(b − 1, r) | (b, r), 0

)
:=

b

r + b
, r ≥ 0, b ≥ 1 (2.1)

q
(
(0, 0) | (b, r), 1

)
:= 1, (b, r) ∈ E.

q
(
(0, 0) | (0, 0), a

)
:= 1, a ∈ A.

The one-stage reward is given by the expected reward (according to Remark
2.1.2),

r
(
(b, r), 1

)
:=

b− r

b+ r
for (b, r) ∈ E \G,

and the reward is zero otherwise. Finally we define

g(b, r) :=
b− r

b+ r
for (b, r) ∈ E \G

and g((0, 0)) = 0. We summarize now the data of the stationary Markov
Decision Model.

• E := {x = (b, r) ∈ N
2
0 | b ≤ b0, r ≤ r0} where x = (b, r) denotes the

number of black and red cards in the stack,
• A := {0, 1} where a = 0 means ‘go ahead’ and a = 1 means ‘stop’,
• D(x) = A for x /∈ {(0, 1), (1, 0)} and D

(
(0, 1)

)
= D

(
(1, 0)

)
= {1},

• the transition probabilities are given by equation (2.1),
• the one-stage reward is r

(
x, 1
)

= b−r
b+r

for x = (b, r) ∈ E\G and 0 otherwise,
• g(x) = b−r

b+r for x = (b, r) ∈ E \G, g((0, 0)) = 0,
• N := r0 + b0 and β := 1.

Since E and A are finite, (AN ) and also the Structure Assumption (SAN ) is
clearly satisfied with

IM := {v : E → R | v(x) = 0 for x ∈ G} and Δ := F.

In particular we immediately know that an optimal policy exists. The maxi-
mal reward operator is given by

T v(b, r) := max
{
b− r

b+ r
,

r

r + b
v(r − 1, b) +

b

r + b
v(r, b − 1)

}

for b+ r ≥ 2,

T v(1, 0) := 1,
T v(0, 1) := −1,
T v(0, 0) := 0.

It is not difficult to see that g = T g. For x = (b, r) ∈ E with r + b ≥ 2 the
computation is as follows:
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T g(b, r) = max
{
b− r

b+ r
,

r

r + b
g(r − 1, b) +

b

r + b
g(r, b− 1)

}

= max
{
b− r

b+ r
,

r

r + b
· b− r + 1
r + b− 1

+
b

r + b
· b− r − 1
r + b− 1

}

= max
{
b− r

b+ r
,
b− r

b+ r

}

= g(b, r).

Since both expressions for a = 0 and a = 1 are identical, every f ∈ F is a
maximizer of g. Applying Theorem 2.5.4 we obtain that Jn = T ng = g and
we can formulate the solution of the card game.

Theorem 2.6.1. The maximal value of the card game is given by

Jr0+b0(b0, r0) = g(b0, r0) =
b0 − r0
b0 + r0

,

and every strategy is optimal.

Thus, there is no strategy which yields a higher expected reward than the
trivial ones discussed above. Note that the game is fair (i.e. JN (b0, r0) = 0)
if and only if r0 = b0.

2.6.2 A Cash Balance Problem

The cash balance problem involves the decision about the optimal cash level
of a firm over a finite number of periods. The aim is to use the firm’s liquid
assets efficiently. There is a random stochastic change in the cash reserve each
period (which can be both positive and negative). Since the firm does not earn
interest from the cash position, there are holding cost or opportunity cost for
the cash reserve if it is positive. But also in case the cash reserve is negative
the firm incurs an out-of-pocket expense and has to pay interest. The cash
reserve can be increased or decreased by the management at the beginning
of each period which implies transfer costs. To keep the example simple we
assume that the random changes in the cash flow are given by independent
and identically distributed random variables (Zn) with finite expectation. The
transfer cost are linear. More precisely, let us define a function c : R → R+

by
c(z) := cuz

+ + cdz
−

where cu, cd > 0. The transfer cost are then given by c(z) if the amount z is
transferred. The cost L(x) have to be paid at the beginning of a period for
cash level x. We assume that

• L : R → R+, L(0) = 0,
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• x �→ L(x) is convex,
• lim|x|→∞

L(x)
|x| = ∞.

This problem can be formulated as a Markov Decision Model with distur-
bances (Zn) and with state space E := R, where the state x ∈ E is the
current cash level. At the beginning of each period we have to decide upon
the new cash level a ∈ A := R. All actions are admissible, i.e. D(x) := A.
The reward is then given as the negative cost r(x, a) := −c(a− x) − L(a) of
transfer and holding cost. The transition function is given by

T (x, a, z) := a− z

where z is a realization of the stochastic cash change Zn+1. There is no
terminal reward, i.e. g ≡ 0 and cost are discounted by a factor β ∈ (0, 1].
The planning horizon N is given. We summarize the data of the stationary
Markov Decision Model:

• E := R where x ∈ E denotes the cash level,
• A := R where a ∈ A denotes the new cash level after transfer,
• D(x) := A,
• Z := R where z ∈ Z denotes the cash change,
• T (x, a, z) := a− z,
• QZ(·|x, a) := distribution of Zn+1 (independent of (x, a)),
• r(x, a) := −c(a− x) − L(a),
• g ≡ 0,
• β ∈ (0, 1].

Obviously the reward is bounded from above, i.e. b ≡ 1 is an upper bounding
function. In what follows we will treat this problem as one of minimizing cost
which seems to be more natural. The minimal cost operator is given by:

T v(x) := min

{

inf
a>x

{
(a− x)cu + L(a) + β IE v(a− Z)

}
, (2.2)

L(x) + β IE v(x− Z), (2.3)

inf
a<x

{
(x− a)cd + L(a) + β IE v(a− Z)

}
}

(2.4)

where Z := Z1. We will next check the Structure Assumption (SAN ). Thus,
we first have to find a reasonable set IM . Looking at T v we choose the Ansatz:

IM := {v : E → R+ | v is convex and v(x) ≤ c(−x) + d for some d ∈ R+}.

Moreover, we will see below that the set of minimizers is of a special form.
Obviously 0 ∈ IM . Now let v ∈ IM and define the functions
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hu(a) := (a− x)cu + L(a) + β IE v(a− Z),
hd(a) := (x − a)cd + L(a) + β IE v(a− Z).

By the definition of IM both functions are finite on R, since for a ∈ A we
obtain

IE v(a− Z) ≤ d+ IE c(Z − a) ≤ d+ IE |a− Z|(cu + cd) <∞.

Also both functions are convex and lim|a|→∞ hu(a) = lim|a|→∞ hd(a) = ∞.
Thus, both have a well-defined finite minimum point. Moreover, the convexity
implies that the right- and left-hand side derivative at each point exist. A
minimum point is characterized by a non-negative right-hand side derivative
and a non-positive left-hand side derivative. Thus, we define

S− := inf
{
a ∈ R | ∂

+

∂a
hu(a) ≥ 0

}
,

S+ := sup
{
a ∈ R | ∂

−

∂a
hd(a) ≤ 0

}
,

where ∂+

∂a h and ∂−
∂a h denote the right- and left-hand side derivative respec-

tively. Since hu(a) − hd(a) = (a − x)(cu + cd) is increasing in a, we have
S− ≤ S+. It is important to note that S− and S+ do not depend on x. In
order to determine a minimum point of T v we distinguish three cases:

(i) x < S−: In this case the infimum of (2.4) is obtained if we plug in a = x
and thus the values of (2.4) and (2.3) are equal. However, the infimum of
(2.2) is attained in a = S− and is less or equal to the value of (2.3) since
hu(S−) ≤ hu(x) = L(x) + β IE v(x − Z).

(ii) S− ≤ x ≤ S+: Here the minimum values of the three expressions are
equal and a = x is the global minimum point.

(iii) S+ < x: This case is analogous to the first one and the global minimum
is attained in a = S+.

Hence we have shown that a minimizer f∗ exists and is of the form

f∗(x) =

⎧
⎨

⎩

S− if x < S−
x if S− ≤ x ≤ S+

S+ if x > S+.
(2.5)

This means that if the cash level is below S−, sell enough securities to bring
the cash level up to S−. If the cash level is between the limits do nothing,
and if the cash level is above S+, buy securities to reduce the cash level to
this critical level. Note that S+ and S− depend on v. As a consequence we
define
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Δ :=
{
f ∈ F

∣
∣
∣ there exist S−, S+ ∈ R with

S− ≤ S+ and f is of the form (2.5)
}
.

Inserting the minimizer gives

T v(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(S− − x)cu + L(S−) + β IE v(S− − Z) if x < S−

L(x) + β IE v(x− Z) if S− ≤ x ≤ S+

(x− S+)cd + L(S+) + β IE v(S+ − Z) if x > S+.

It is not difficult to verify that this function is again in IM . First there exists
d ∈ R+ such that T v(x) ≤ d + c(−x). The convexity of T v on the intervals
(−∞, S−), (S−, S+), (S+,∞) is also obvious. It remains to investigate the
points S− and S+. Here we have to show that the left-hand side derivative is
less than or equal to the right-hand side derivative. Due to the definition of
S− and S+ we obtain

cu +
∂+

∂x

(
L(x) + β IE v(x − Z)

)∣
∣
∣
x=S−

≥ 0

−cd +
∂−

∂x

(
L(x) + β IE v(x− Z)

)∣
∣
∣
x=S+

≤ 0

since S− and S+ are the minimum points. This observation yields T v ∈ IM .
Thus, the Structure Assumption (SAN ) is satisfied for IM and Δ. Theorem
2.5.4 can be applied to the cash balance problem and we obtain the following
result.

Theorem 2.6.2. a) There exist critical levels Sn− and Sn+ such that for
n = 1, . . . , N

Jn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(Sn− − x)cu + L(Sn−) + β IE Jn−1(Sn− − Z) if x < Sn−

L(x) + β IE Jn−1(x − Z) if Sn−≤ x≤Sn+

(x− Sn+)cd + L(Sn+) + β IE Jn−1(Sn+ − Z) if x > Sn+.

with J0 ≡ 0.
b) The optimal cash balance policy is given by (f∗

N , . . . , f
∗
1 ) where f∗n is

f∗
n(x) :=

⎧
⎨

⎩

Sn− if x < Sn−
x if Sn− ≤ x ≤ Sn+

Sn+ if x > Sn+.
(2.6)

Note that the critical levels which determine the transfer regions (sell, buy,
do nothing) depend on n. Obviously the transfer cost imply that it is unlikely
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that many transfers occur. Hence the problem is sometimes also called
smoothing problem.

2.6.3 Stochastic Linear-Quadratic Problems

A famous class of control problems with various different applications are
linear-quadratic problems (LQ-problems). The name stems from the linear
state transition function and the quadratic cost function. In what follows
we suppose that E := R

m is the state space of the underlying system
and Dn(x) := A := R

d, i.e. all actions are admissible. The state transi-
tion functions are linear in state and action with random coefficient matrices
A1, B1, . . . , AN , BN with suitable dimensions, i.e. the system transition func-
tions are given by

Tn(x, a,An+1, Bn+1) := An+1x+Bn+1a.

Thus, the disturbance in [n, n + 1) is given by Zn+1 := (An+1, Bn+1). The
distribution of Zn+1 is influenced neither by the state nor by the action, and
the random matrices Z1, Z2, . . . are supposed to be independent but not nec-
essarily identically distributed and have finite expectation and covariance.
Moreover, we assume that IE

[
B�
n+1QBn+1

]
is positive definite for all sym-

metric positive definite Q. Obviously we obtain a non-stationary problem.
The one-stage reward is a negative cost function

rn(x, a) := −x�Qnx

and the terminal reward is

gN (x, a) := −x�QNx

with deterministic, symmetric and positive definite matrices Q0, Q1, . . . , QN .
There is no discounting. The aim is to minimize

IE
π
x

[
N∑

k=0

X�
k QkXk

]

over all N -stage policies π. Thus, the aim is here to keep the state of the
system close to zero. We summarize the data of the Markov Decision Model
with disturbances (Zn) as follows.

• E := R
m where x ∈ E denotes the system state,

• A := R
d = Dn(x) where a ∈ A denotes the action,

• Z := R
(m,m) × R

(m,d) where Z = (A,B) with values in Z denotes the
random transition coefficients of the linear system,



2.6 Applications and Examples 51

• Tn(x, a,A,B) := Ax+Ba,
• QZ(·|x, a) := distribution of Zn+1 := (An+1, Bn+1) (independent of

(x, a)),
• rn(x, a) := −x�Qnx,
• gN(x, a) := −x�QNx,
• β := 1.

We have r ≤ 0 and b ≡ 1 is an upper bounding function. Thus, (AN ) is
satisfied. We will treat this problem as a cost minimization problem, i.e. we
suppose that Vn is the minimal cost in the period [n,N ]. For the calculation
below we assume that all expectations exist. There are various applications
of this regulation problem in engineering, but it will turn out that problems
of this type are also important for example for quadratic hedging or mean-
variance problems. The minimal cost operator is given by

Tnv(x) = inf
a∈Rd

{
x�Qnx+ IE v

(
An+1x+Bn+1a

)}
.

We will next check the Structure Assumption (SAN ). It is reasonable to
assume that IMn is given by

IMn := {v : R
m → R+ | v(x) = x�Qx with Q symmetric, positive definite}.

It will also turn out that the sets Δn := Δ ∩ Fn can be chosen as the set of
all linear functions, i.e.

Δ := {f : E → A | f(x) = Cx for some C ∈ R
(d,m)}.

Let us start with (SAN )(i): Obviously x�QNx ∈ IMN . Now let
v(x) = x�Qx ∈ IMn+1. We try to solve the following optimization prob-
lem

Tnv(x) = inf
a∈Rd

{
x�Qnx+ IE v

(
An+1x+Bn+1a

)}

= inf
a∈Rd

{
x�Qnx+ x� IE

[
A�
n+1QAn+1

]
x+ 2x� IE

[
A�
n+1QBn+1

]
a

+ a� IE
[
B�
n+1QBn+1

]
a
}
.

Since Q is positive definite, we have by assumption that IE
[
B�
n+1QBn+1

]
is

also positive definite and thus regular and the function in brackets is convex
in a (for fixed x ∈ E). Differentiating with respect to a and setting the
derivative equal to zero, we obtain that the unique minimum point is given
by

f∗
n(x) = −

(
IE
[
B�
n+1QBn+1

])−1

IE
[
B�
n+1QAn+1

]
x.

Inserting the minimum point into the equation for Tnv yields
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Tnv(x) = x�
(
Qn + IE

[
A�
n+1QAn+1

]
− IE
[
A�
n+1QBn+1

](
IE
[
B�
n+1QBn+1

])−1

IE
[
B�
n+1QAn+1

])
x = x�Q̃x

where Q̃ is defined as the expression in the brackets. Note that Q̃ is symmetric
and since x′Q̃x = Tnv(x) ≥ x�Qnx, it is also positive definite. Thus T v ∈
IMn and the Structure Assumption (SAN ) is satisfied for IMn and Δn =
Δ∩Fn. Now we can apply Theorem 2.3.8 to solve the stochastic LQ-problem.

Theorem 2.6.3. a) Let the matrices Q̃n be recursively defined by

Q̃N := QN

Q̃n := Qn + IE
[
A�
n+1Q̃n+1An+1

]

− IE
[
A�
n+1Q̃n+1Bn+1

](
IE
[
B�
n+1Q̃n+1Bn+1

])−1
IE
[
B�
n+1Q̃n+1An+1

]
.

Then Q̃n are symmetric, positive semidefinite and Vn(x) = x�Q̃nx for
x ∈ E.

b) The optimal policy (f ∗
0 , . . . , f

∗
N−1) is given by

f∗
n(x) := −

(
IE
[
B�
n+1Q̃n+1Bn+1

])−1

IE
[
B�
n+1Q̃n+1An+1

]
x.

Note that the optimal decision rule is a linear function of the state and the
coefficient matrix can be computed off-line. The minimal cost function is
quadratic.
Our formulation of the stochastic LQ-problem can be generalized in different
ways without leaving the LQ-framework. For example the transition function
can be extended to

Tn(x, a,An+1, Bn+1, Cn+1) := An+1x+Bn+1a+ Cn+1

where Cn are vectors with random entries. Thus, the stochastic disturbance
variable is extended to Zn := (An, Bn, Cn) with the usual independence
assumptions. Moreover, the cost function can be generalized to

IE
π
x

[
N∑

k=0

(Xk − bk)�Qk(Xk − bk) +
N−1∑

k=0

fk(Xk)�Q̂kfk(Xk)

]

where Q̂k are deterministic, symmetric positive semidefinite matrices and bk
are deterministic vectors. In this formulation the control itself is penalized
and the distance of the state process to the benchmarks bk has to be kept
small. Note that in both generalizations the value functions remain of linear-
quadratic form.
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2.7 Exercises

Exercise 2.7.1 (Howard’s Toymaker). Consider Howard’s toymaker of
Example 2.5.5. Show the stated Turnpike Theorem by conducting the follow-
ing steps:

a) For a function v : E → R let Δv := v(1) − v(2) and show for all a ∈ A
that Lv(1, a) − Lv(2, a) = 9 + 0.1βΔv.

b) Show that ΔJn = 9
∑n−1
k=0 (0.1β)k + (0.1β)nΔJ0 for n ∈ N.

Exercise 2.7.2. Suppose a stationary Markov Decision Model with planning
horizon N is given which satisfies (AN ) and (SAN ). We define Jn = T ng and
Ĵn = T nĝ for two terminal reward functions g, ĝ ∈ IM . Show:

a) For all k = 1, . . . , N it holds:

JN − Ĵk ≤ βN sup
x

(
g(x) − ĝ(x)

)
+ sup

x

(
Ĵk(x) − Ĵk−1(x)

)N−k∑

j=1

βj .

b) For all k = 1, . . . , N it holds:

JN − Ĵk ≥ βN inf
x

(
g(x) − ĝ(x)

)
+ inf

x

(
Ĵk(x) − Ĵk−1(x)

)N−k∑

j=1

βj .

c) The bounds for JN in a) and b) are decreasing in k.

Exercise 2.7.3 (Card Game). Consider the following variant of the red-
and-black card game. Suppose we have a deck of 52 cards which is turned
over and cards are uncovered one by one. The player has to say ‘stop’ when
she thinks that the next card is the ace of spades. Which strategy maximizes
the probability of a correct guess? This example is taken from Ross (1983).

Exercise 2.7.4 (Casino Game). Imagine you enter a casino and are al-
lowed to play N times the same game. The probability of winning one game
is p ∈ (0, 1) and the games are independent. You have an initial wealth x > 0
and are allowed to stake any amount in the interval [0, x]. When you win,
you obtains twice your stake otherwise it is lost. The aim is to maximize the
expected wealth IE

π
x [XN ] after N games.

a) Set this up as a Markov Decision Model.
b) Find an upper bounding function and show that (SAN ) can be satisfied.
c) Determine an optimal strategy for the cases p < 1

2 , p = 1
2 and p > 1

2 .
d) What changes if you want to maximize IE

π
x [U(XN )] where U : R+ → R is

a strictly increasing and strictly concave utility function?

Exercise 2.7.5 (LQ-problem). Consider the following special LQ-problem
(see Bertsekas (2005) Section 4.1 for more details): The transition function
is given by
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Tn(x, a, z) := An+1x+Bn+1a+ z

where x ∈ R
m, a ∈ R

d and An, Bn are deterministic matrices of appropri-
ate dimension. The disturbances Z1, Z2, . . . are independent and identically
distributed with finite expectation and covariance matrix. The cost

IE
π
x

[
N∑

k=0

X�
k QkXk

]

have to be minimized where the Qn are positive definite.

a) Show that (AN ) and (SAN ) are satisfied.
b) Show that the minimal cost-to-go function is given by

V0(x) = x�Q̃0x+
N∑

k=1

IE[Z�
k Q̃kZk], x ∈ R

m

where

Q̃N := QN

Q̃n := Qn +A�
n+1Q̃n+1An+1

−A�
n+1Q̃n+1Bn+1

(
B�
n+1Q̃n+1Bn+1

)−1
B�
n+1Q̃n+1An+1

and the optimal policy (f∗0 , . . . , f
∗
N−1) is given by

f∗
n(x) = −

(
B�
n+1Q̃n+1Bn+1

)−1

B�
n+1Q̃n+1An+1x.

c) Let now Ak = A, Bk = B and Qk = Q for all k and consider the so-called
discrete Riccati equation

Q̃N := Q

Q̃n := Q+A�Q̃n+1A−A�Q̃n+1B
(
B�Q̃n+1B

)−1
B�Q̃n+1A.

Moreover, assume that the matrix

[B,AB,A2B, . . . , AN−1B]

has full rank. Show that there exists a positive definite matrix Q̃ such that
limn→∞ Q̃n = Q̃. Moreover, Q̃ is the unique solution of

Q̃ = Q+A�Q̃A−A�Q̃B
(
B�Q̃B

)−1
B�Q̃A

within the class of positive semidefinite matrices.

Remark: The convergence of Q̃k in the case of stochastic coefficients is more
delicate.
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Exercise 2.7.6 (Binary Markov Decision Model). Suppose a stationary
Markov Decision Model is given with A = {0, 1}. Such a model is called a
binary Markov Decision Model. We suppose that the reward functions r and
g are bounded. Define r(x, 1) = r1(x) and r(x, 0) = r0(x) for x ∈ E. For
v : E → R measurable and bounded and a ∈ A we denote

(Qav)(x) :=
∫
v(y)Q(dy|x, a), x ∈ E.

a) Show that (AN ) and (SAN ) are satisfied.
b) Show that the value function satisfies

Jn = max{r0 + βQ0Jn−1, r1 + βQ1Jn−1} =: max{L0Jn−1, L1Jn−1}.

c) If we denote dn(x) = L1Jn−1(x) − L0Jn−1(x), n ∈ N, x ∈ E show that

dn+1 = L1L0Jn−1 − L0L1Jn−1 + βQ1d
+
n − βQ0d

−
n .

Exercise 2.7.7 (Replacement Problem). A machine is in use over several
periods. The state of the machine is randomly deteriorating and the reward
which is obtained depends on the state of the machine. When should the
machine be replaced by a new one? The new machine costs a fix amount
K ≥ 0.
We assume that the evolution of the state of the machine is a Markov process
with state space E = R+ and transition kernel Q where Q([x,∞)|x) = 1. A
large state x refers to a worse condition/quality of the machine. The reward is
r(x) if the state of the machine is x. We assume that the measurable function
r : E → R is bounded and for the terminal reward g = r. In what follows we
use the abbreviation

(Qv)(x) :=
∫
v(x′)Q(dx′|x), (Q0v)(x) :=

∫
v(x′)Q(dx′|0).

Note that (Q0v)(x) does not depend on x!

a) Show that (AN ) and (SAN ) are satisfied.
b) Show that the maximal reward operator is given by

T v(x) = r(x) + max{β(Qv)(x),−K + β(Q0v)(x)}, x ≥ 0.

c) Let dn(x) := −K + β(Q0Jn−1)(x) − β(QJn−1)(x), n ∈ N, x ∈ E. Show
that

dn+1 = −(1 − β)K − βQr − βQd−n + cn

where cn := βQ0Jn − β2Q0Jn−1 is independent of x ∈ E.
d) If r is decreasing and the transition kernel Q is stochastically monotone

prove that a maximizer f∗
n of Jn−1 is of the form
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f∗
n(x) =

{
replace if x ≥ x∗n
not replace if x < x∗n

for x∗n ∈ R+. The value x∗n is called the threshold or control limit.

Exercise 2.7.8 (Terminating Markov Decision Model). Suppose a sta-
tionary Markov Decision Model with β = 1 is given with the following prop-
erties:

• There exists a set G ⊂ E such that r(x, a) = 0 and Q({x}|x, a) = 1 for all
x ∈ G and a ∈ D(x).

• For all x ∈ E there exists an N(x) ≤ N such that IP
π
x(XN(x) ∈ G) = 1 for

all policies π.

Define J(x) := JN(x)(x) for all x ∈ E. Such a Markov Decision Model is
called terminating.

a) Show that J(x) = g(x) for x ∈ G and J(x) = T J(x) for x /∈ G.
b) If f ∈ F satisfies TfJ(x) = T J(x) for x /∈ G and f(x) ∈ D(x) arbitrary

for x ∈ G, then the stationary policy (f, f, . . . , f) ∈ FN is optimal.
c) Show that the Red-and-Black card game of Section 2.6.1 is a terminating

Markov Decision Model.

Exercise 2.7.9. You are leaving your office late in the evening when it sud-
denly starts raining and you realize that you have lost your umbrella some-
where during the day. The umbrella can only be at a finite number of places,
labelled 1, . . . ,m. The probability that it is at place i is pi with

∑m
i=1 pi = 1.

The distance between two places is given by dij where i, j ∈ {0, 1, . . . ,m} and
label 0 is your office. In which sequence do you visit the places in order to
minimize the expected length of the journey until you find your umbrella? Set
this up as a Markov Decision Problem or as a terminating Markov Decision
Model and write a computer program to solve it.

2.8 Remarks and References

In this chapter we consider Markov Decision Models with Borel state and
action spaces and unbounded reward functions. In order to increase the read-
ability and to reduce the mathematical framework (e.g. measurability and
existence problems) we introduce the Structure Assumption (SAN ) and the
notion of an (upper) bounding function in Section 2.4. This framework is very
useful for applications in finance (see Chapter 4) where the state spaces are
often uncountable subsets of Euclidean spaces and the utility functions are
unbounded. A similar approach is also used in Schäl (1990) and Puterman
(1994).

Section 2.4: Semi-continuous Markov Decision Models have been investi-
gated e.g. in Bertsekas and Shreve (1978), Dynkin and Yushkevich (1979)
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and Hernández-Lerma and Lasserre (1996). Properties of the value functions
like increasing, concave, convex and combinations thereof were first rigor-
ously studied in Hinderer (1985). For a recent paper see Smith and McCar-
dle (2002). Moreover, Hinderer (2005) and Müller (1997) discuss Lipschitz-
continuity of the value functions. The fact that supermodular functions are
important for obtaining monotone maximizers was first discussed by Top-
kis (1978). Altman and Stidham (1995) investigate so-called binary Markov
Decision Models with two actions (e.g. in replacement problems) and derive
general conditions for the existence of threshold policies. The comparison re-
sults for Markov Decision Problems can been found in Müller and Stoyan
(2002), see also Bäuerle and Rieder (1997).

Section 2.6: The ‘Red-and-Black’ card game was presented by Connelly
(1974) under the name ‘Say red’. It can also be solved by martingale ar-
guments. Other interesting game problems and examples can be found in
Ross (1970, 1983). Heyman and Sobel (2004a,b) consider various stochastic
optimization problems in Operations Research, in particular cash balance
models, inventory and queueing problems. For a recent extension of the cash
balance problem, where the cash changes depend on an underlying Markov
process, see Hinderer and Waldmann (2001). Stochastic LQ-problems have
been investigated by many authors. For a comprehensive treatment see e.g.
Bertsekas (2001).
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Chapter 3

The Financial Markets

In this chapter we introduce the financial markets which will appear in our
applications. In Section 3.1 a financial market in discrete time is presented.
A prominent example is the binomial model. However, we do not restrict to
finite probability spaces in general. We will define portfolio strategies and
characterize the absence of arbitrage in this market. In later chapters we
will often restrict to Markov asset price processes in order to be able to use
the Markov Decision Process framework. In Section 3.2 a special financial
market in continuous time is considered which is driven by jumps only. More
precisely the asset dynamics follow so-called Piecewise Deterministic Markov
Processes. Though portfolio strategies are defined in continuous time here we
will see in Section 9.3 that portfolio optimization problems in this market
can be solved with the help of Markov Decision Processes. In Section 3.3
we will briefly investigate the relation of the discrete-time financial market
to the standard Black-Scholes-Merton model as a widely used benchmark
model in mathematical finance. Indeed if the parameters in the discrete-time
financial market are chosen appropriately, this market can be seen as an
approximation of the Black-Scholes-Merton model or of even more general
models. This observation serves as one justification for the importance of
discrete-time models. Other justifications are that trading in continuous time
is not possible or expensive in reality (because of transaction cost) and that
continuous-time trading strategies are often pretty risky. In Section 3.4 utility
functions and the concept of expected utility are introduced and discussed
briefly. The last section contains some notes and references.

3.1 Asset Dynamics and Portfolio Strategies

We assume that asset prices are monitored in discrete time. The German
stock index DAX for example is computed every second. But larger time
periods of no trade may be applicable. Thus, we suppose that time is divided

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 3,
c© Springer-Verlag Berlin Heidelberg 2011
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into periods of length Δt and tn = nΔt. The most common form of an asset
price is a multiplicative model, i.e. if Sn is the price at time tn > 0 then

Sn+1 = SnR̃n+1.

The positive random variable R̃n+1 defines the relative price change Sn+1/Sn
between time tn and tn+1. For a riskless bond the relative price change
S0
n+1/S

0
n is chosen to be 1 + in+1 with deterministic interest rate in+1 ∈ R+.

There are two important special cases of the multiplicative model. The first
one is the binomial model or Cox-Ross-Rubinstein model. Here it is assumed
that there exists one bond with in+1 ≡ i and one stock with relative price
changes which are independent and identically distributed and can take two
values: either u > 0 for up or d > 0 for down where we assume that d < u.
The probabilities for up and down are p and 1 − p respectively, i.e.

IP(R̃n = u) = p, IP(R̃n = d) = 1 − p.

The stock price evolution is shown in Figure 3.1. If we want to model d assets
simultaneously a multinomial model is adequate, i.e R̃n can take values in
{u,d}d = {z1, . . . , z2d} and

IP(R̃n = zk) = pk, k = 1, . . . , 2d

with
∑2d

k=1 pk = 1, pk ≥ 0.

S0

S0u

S0u2

S0u3

S0u4

S0u3d

S0u2d2

S0ud3

S0d4

S0d2

S0d

S0du

S0u2d

S0ud2

S0d3

Fig. 3.1 Evolution of stock price in the binomial lattice model.

The second important special case is a discretization of the Black-Scholes-
Merton model. In the standard Black-Scholes-Merton market model it is
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assumed that the stock price evolves according to

dSt = St(μdt+ σdWt)

where (Wt) is a Wiener process, μ ∈ R and σ > 0 are given parameters.
Thus, if we take a time step Δt we obtain

Sn+1 = Sn exp
(
(μ− 1

2
σ2)Δt+ σWΔt

)
.

In this case R̃n has a lognormal distribution or log R̃n is normally distributed.
The multivariate version is thus log R̃n ∼ N (a,Σ), i.e. log R̃n (the log is
taken componentwise) has a multivariate normal distribution. Note that in
both special cases we have R̃n > 0 and thus it is guaranteed that the stock
price will stay positive with probability one.

In what follows we will consider an N -period financial market with d risky
assets and one riskless bond. We assume that all random variables are defined
on a probability space (Ω,F , IP) with filtration (Fn) and F0 := {∅, Ω}. The
financial market is given by:

• A riskless bond with S0
0 ≡ 1 and

S0
n+1 := S0

n(1 + in+1), n = 0, 1, . . . , N − 1

where in+1 denotes the deterministic interest rate for the time period
[n, n+ 1). If the interest rate is constant, i.e. in ≡ i, then S0

n = (1 + i)n.
• There are d risky assets and the price process of asset k is given by Sk0 = sk0

and
Skn+1 = SknR̃

k
n+1, n = 0, 1, . . . , N − 1.

The processes (Skn) are assumed to be adapted with respect to the filtration
(Fn) for all k. Moreover, we suppose that R̃kn+1 > 0 IP-a.s. for all k and n
and that sk0 is deterministic. R̃kn+1 is the relative price change in the time
interval [n, n+ 1) for the risky asset k.

In what follows we denote Sn := (S1
n, . . . , S

d
n), R̃n := (R̃1

n, . . . , R̃
d
n) and

FS
n := σ(S0, . . . , Sn). Since (Sn) is (Fn)-adapted it holds: FS

n ⊂ Fn for
n = 0, 1, . . . , N . In most cases we will later assume that the random vec-
tors R̃1, . . . , R̃N are independent, however we do not impose this restrictive
assumption now, because we will also consider some models where the inde-
pendence assumption is not satisfied. Suppose now we are able to invest into
this financial market.

Definition 3.1.1. A portfolio or a trading strategy is an (Fn)-adapted sto-
chastic process φ = (φ0

n, φn) where φ0
n ∈ R and φn = (φ1

n, . . . , φ
d
n) ∈ R

d for
n = 0, 1, . . . , N − 1. The quantity φkn denotes the amount of money which is
invested into asset k during the time interval [n, n+ 1).
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Remark 3.1.2. Note that in general we make no restriction on the sign of φkn.
In particular φkn is allowed to be negative which in case k = 0 implies that a
loan is taken and that the interest rate is the same for borrowing and lending.
In case φkn < 0 for k �= 0 this corresponds to short selling of asset k. ♦

The vector (φ0
0, φ0) is called the initial portfolio of the investor. The value of

the initial portfolio is given by

X0 :=
d∑

k=0

φk0 = φ0
0 + φ0 · e

where x · y =
∑d
k=1 xkyk denotes the inner product of the vectors x, y ∈ R

d

and e := (1, . . . , 1) ∈ R
d.

Let φ be a portfolio strategy and denote by Xn− the value of the portfolio
at time n before trading. Then

Xn := Xn− :=
d∑

k=0

φkn−1R̃
k
n = φ0

n−1(1 + in) + φn−1 · R̃n.

The value of the portfolio at time n after trading is given by

Xn+ :=
d∑

k=0

φkn = φ0
n + φn · e.

In what follows we sometimes write Xφ
n when we want to make the depen-

dence on the portfolio strategy φ explicit.

Definition 3.1.3. A portfolio strategy φ is called self-financing if

Xφ
n− = Xφ

n+ IP -a.s.

for all n = 1, . . . , N−1, i.e. the current wealth is just reassigned to the assets.

In the sections to come we will restrict to self-financing portfolio strategies
and we will tacitly assume that whenever we consider a portfolio strategy
that it is self-financing. The self-financing condition implies that the following
equivalence holds for all n = 1, . . . , N − 1:

Xn = Xn+, ⇐⇒ φ0
n + φn · e = φ0

n−1(1 + in) + φn−1 · R̃n.

This equation can be used to derive an important recursive formula for the
wealth evolution which will be used throughout the following chapter. This
recursive equation is derived next (the self-financing condition is applied in
the last equality):
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Xn+1 = X0 +
n+1∑

t=1

(Xt −Xt−1)

= X0 +
n+1∑

t=1

(
φ0
t − φ0

t−1 + φt · e− φt−1 · e
)

= X0 +
n+1∑

t=1

(
φ0
t−1it + φt−1 · (R̃t − e)

)
.

Since φ0
n = Xn − φn · e, we can eliminate φ0

n to obtain

Xn+1 = Xn +
(
φ0
nin+1 + φn · (R̃n+1 − e)

)

= Xn

(
1 + in+1

)
+

d∑

k=1

φkn

(
R̃kn+1 − 1 − in+1

)
.

When we introduce the so-called relative risk process (Rn) defined by
Rn := (R1

n, . . . , R
d
n) and

Rkn :=
R̃kn

1 + in
− 1, k = 1, . . . , d,

we obtain the important recursive formula

Xn+1 =
(
1 + in+1

)(
Xn + φn ·Rn+1

)
. (3.1)

The advantage of equation (3.1) is that only the investment into the stocks
enters the equation and (φn) can be completed to a self-financing portfolio
strategy. This formula will be used extensively throughout the next chapters.
As usual we have to exclude arbitrage opportunities in the financial market.
An arbitrage opportunity is formally defined as follows.

Definition 3.1.4. An arbitrage opportunity is a self-financing portfolio strat-
egy φ = (φ0

n, φn) with the following property: Xφ
0 = 0 and

IP(Xφ
N ≥ 0) = 1 and IP(Xφ

N > 0) > 0.

Loosely speaking an arbitrage opportunity is a riskless investment strategy
with the chance of a gain. In real markets such opportunities sometimes exist
but once detected by traders they will soon disappear. The following theorem
characterizes the absence of arbitrage opportunities. It shows that the market
is free from arbitrage opportunities if and only if there is locally no arbitrage
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opportunity. This property is important when we reduce multiperiod opti-
mization problems to one-period problems.

Theorem 3.1.5. Consider an N -period financial market. The following
two statements are equivalent:

a) There are no arbitrage opportunities.
b) For n = 0, 1, . . . , N − 1 and for all Fn-measurable φn ∈ R

d it holds:

φn · Rn+1 ≥ 0 IP -a.s. ⇒ φn · Rn+1 = 0 IP -a.s.

Proof. Suppose first that there exists an n ∈ {1, . . . , N} and an Fn−1 mea-
surable ϕ ∈ R

d such that

ϕ ·Rn ≥ 0 IP -a.s. and IP(ϕ ·Rn > 0) > 0.

Then an arbitrage strategy φ can be constructed as follows:
Let Xφ

0 = 0 and define the portfolio strategy

φk :=
{
ϕ if k = n− 1,
0 otherwise.

Then Xφ
n−1 = φ0

n−1 + φn−1 · e = 0 and Xφ
n = (1 + in)(ϕ · Rn). Hence

IP(Xφ
n ≥ 0) = 1 and IP(Xφ

n > 0) > 0. Since Xφ
N = (1 + in+1) · · · (1 + iN)Xφ

n ,
the strategy φ is an arbitrage strategy.
In order to show the reverse implication suppose that there exists an arbitrage
strategy φ = (φ0

n, φn). Let

m := min
{
n | IP(Xφ

n ≥ 0) = 1 and IP(Xφ
n > 0) > 0

}
.

Then m ≤ N by assumption. Define ϕ := 1[Xφ
m−1≤0]φm−1. Then ϕ is Fm−1-

measurable and we can consider the portfolio strategy ψ which invests the
same amounts as φ from time 0 to m− 2 and at time m− 1 the amount ϕ in
the risky assets. It holds

Xψ
m = (1 + im)(Xφ

m−1 + ϕ · Rm).

Since IP(Xψ
m ≥ 0) = 1 it follows that ϕ · Rm ≥ 0 IP-a.s. By definition of m

we have either IP(Xφ
m−1 = 0) = 1 or IP(Xφ

m−1 < 0) > 0. In the first case we
obtain

IP(ϕ ·Rm > 0) = IP(Xφ
m > 0) > 0

and in the second case we have IP(ϕ·Rm > 0) ≥ IP(Xφ
m−1 < 0) > 0. Altogether

we have shown IP(ϕ · Rm ≥ 0) = 1 and IP(ϕ · Rm > 0) > 0 which implies the
statement. �
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Remark 3.1.6. When the random variables R1, . . . , RN are independent and
Fn := FS

n := σ(S0, . . . , Sn) = σ(R1, . . . , Rn) we obtain the following even
simpler characterization of the absence of arbitrage: For all n = 0, 1, . . . , N−1
and for all φ ∈ R

d it holds:

φ · Rn+1 ≥ 0 IP -a.s. ⇒ φ ·Rn+1 = 0 IP -a.s. (3.2)

Note that φ is deterministic here. It is not difficult to see that this statement
is equivalent to Theorem 3.1.5 part b). The proof is as follows: Theorem 3.1.5
part b) implies (3.2) since every φ ∈ R

d is Fn-measurable. Now suppose (3.2)
holds and there exists an Fn-measurable φn ∈ R

d such that

φn · Rn+1 ≥ 0 IP -a.s.

and IP(φn · Rn+1 > 0) > 0. Define φ̃n := IE[φn] ∈ R
d. Then we obtain

IE[φn · Rn+1|Rn+1] = φ̃n · Rn+1 ≥ 0 IP -a.s. and IP(φ̃n · Rn+1 > 0) > 0 which
is a contradiction. ♦

Example 3.1.7 (Binomial or Cox-Ross-Rubinstein Model). In the binomial
financial market a necessary and sufficient condition for the absence of arbi-
trage opportunities is that the model parameters satisfy

d < 1 + i < u.

This can be seen as follows. First note that φR1 can take the two values

φ
( d

1 + i
− 1

)
and φ

( u

1 + i
− 1

)
.

Thus, if d < 1+ i < u then φR1 ≥ 0 implies φ ≡ 0 and hence φR1 = 0 holds.
If u > d ≥ 1 + i we obtain for all φ > 0 that φR1 ≥ 0 and IP(φR1 > 0) > 0.
Similarly if 1 + i ≥ u > d we have for all φ < 0 that φR1 ≥ 0 and
IP(φR1 > 0) > 0. Altogether the statement is shown. �

Remark 3.1.8. The absence of arbitrage opportunities is also equivalent to
the existence of at least one equivalent martingale measure. This character-
ization is important when prices of contingent claims have to be computed
(see Appendix C). ♦
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3.2 Jump Markets in Continuous Time

In this section we consider a special class of continuous-time financial mar-
kets where asset dynamics follow a so-called Piecewise Deterministic Markov
Process. The reason is twofold: First it can be shown that Lévy processes
can be approximated arbitrarily close by such type of processes and second,
optimization problems arising from these models can essentially be solved via
discrete-time Markov Decision Models (see Chapter 8).
As before we suppose that we have d risky assets and one riskless bond. The
evolution of the price processes is now given continuously over the time in-
terval [0, T ]. The definition of the price dynamics is as follows. Suppose now
we have a probability space (Ω,F , IP) and on this space there is a homoge-
neous Poisson process (Nt) with rate λ > 0 and a sequence of independent
and identically distributed random vectors (Yn) with values in (−1,∞)d. The
random vectors Yn are assumed to have a distribution QY and are indepen-
dent of (Nt). Thus, we can define the R

d-valued compound Poisson process

Ct :=
Nt∑

n=1

Yn

where the empty sum is supposed to be zero. By (Ckt ) we denote the k-th
component i.e. Ckt :=

∑Nt

n=1 Y
k
n . The financial market is then given by:

• A riskless bond with deterministic price process (S0
t ) where

S0
t := eρt, t ∈ [0, T ]

and ρ ≥ 0 denotes the continuous interest rate.
• There are d risky assets and the price process of asset k is given by the

stochastic differential equation:

dSkt = Skt−
(
μkdt+ dCkt

)
, t ∈ [0, T ]

where μk ∈ R is given and Sk0 = sk0 > 0 is deterministic. Thus, we obtain

Skt = sk0 + μk

∫ t

0

Sks ds+
∫ t

0

Sks−dC
k
s , t ∈ [0, T ].

We assume that the filtration (Ft) is generated by (Ct) or equivalently gen-
erated by the asset price processes (Skt ) which implies that they are auto-
matically adapted to the filtration.
In this financial market, the price processes are Piecewise Deterministic
Markov Processes, i.e. they show a deterministic evolution between jumps
and the jumps occur at random time points according to a Poisson process
and have a random height. If we denote by 0 := T0 < T1 < T2 < . . . the jump
time points of the Poisson process then for t ∈ [Tn, Tn+1)
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Skt = SkTn
exp

(
μk(t− Tn)

)
.

At the time of a jump we have

ΔSkTn
= SkTn

− SkTn− = SkTn−Y
k
n .

Thus, Y kn gives the relative jump height of asset k at the n-th jump. Since
Y kn > −1, our asset prices stay positive. At first glance it seems to be quite
special that the asset prices can only have joint jumps at the time points
T0 < T1 < T2 < . . .. However, note that the distribution of Y might well
have probability mass on points Y kek, where ek is the k-th unit vector. In
what follows we denote St := (S1

t , . . . , S
d
t ).

Of course we want to invest into this financial market. A decision about
rearranging the portfolio has to be done before we know whether or not a
jump in the asset prices will occur. In mathematical terms this means that
the portfolio strategy has to be predictable (for a definition see Appendix
B.2).

Definition 3.2.1. A portfolio or a trading strategy is an (Ft)-predictable
stochastic process φ = (φ0

t , φt) where φ0
t ∈ R and φt = (φ1

t , . . . , φ
d
t ) ∈ R

d.
The quantity φkt denotes the amount of money which is invested in asset k
at time t.

The wealth process (Xφ
t ) determined by the trading strategy φ is then given

by

Xφ
t :=

d∑

k=0

φkt = φ0
t + φt · e

where
X0 = x0 := φ0

0 + φ0 · e

is the initial wealth. The trading strategy φ is called self-financing when a
change in the wealth at time t is only due to a change in an asset price and not
due to additional money or consumption. Thus, the wealth at time t consists
only of the initial wealth and the gains or losses which are accumulated over
the interval [0, t] by trading into the assets.

Definition 3.2.2. A portfolio strategy φ is called self-financing if

Xφ
t = x0 +

∫ t

0

φ0
s

dS0
s

S0
s

+
d∑

k=1

∫ t

0

φks
dSks
Sks

, t ∈ [0, T ].

In differential form the self-financing condition reads:

dXφ
t = φ0

t

dS0
t

S0
t

+
d∑

k=1

φkt
dSkt
Skt

=: φ0
t

dS0
t

S0
t

+ φt
dSt
St

. (3.3)
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Inserting the wealth dynamics yields

dXt =
(
φ0
t ρ+ φt · μ

)
dt+ φtdCt.

Using the fact that Xφ
t = φ0

t + φt · e we can eliminate φ0
t in the differential

equation and obtain

dXt =
(
Xtρ+ φt · (μ− ρe)

)
dt+ φtdCt. (3.4)

Thus, between jumps, i.e. if t ∈ [Tn, Tn+1), the evolution of the wealth is
given by

Xt = eρ(t−Tn)
(
XTn +

∫ t

Tn

e−ρ(s−Tn)φs · (μ− ρe)ds
)
. (3.5)

At jumps we have
ΔXTn = φTn · Yn. (3.6)

In general we obtain the following explicit expression for the wealth process:

Xt = eρtx0 +
∫ t

0

(
eρ(t−s)φs · (μ− ρe)

)
ds+

Nt∑

j=1

φTj · Yj eρ(t−Tj).

For some considerations it is simpler to express the trading strategy in terms
of the fraction of invested money. Let a trading strategy φ be given with
Xφ
t > 0 for all t and define

πkt :=
φkt
Xt−

which is the fraction of the money invested in asset k at time t. If we replace
φ by π in the wealth equation (3.4) we obtain:

dXt = Xt−
(
ρ+ πt · (μ− ρe)dt+ πtdCt

)
. (3.7)

On t ∈ [Tn, Tn+1), we obtain for an arbitrary trading strategy π

Xt = XTn exp
( ∫ t

Tn

(
ρ+ πs · (μ− ρe)

)
ds

)
.

At the time of a jump we have

ΔXTn = XTn−(πTn · Yn).

Altogether we obtain the following explicit expression for the wealth process
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Xt = x0 exp
(∫ t

0

(
ρ+ πs · (μ− ρe)

)
ds

) Nt∏

j=1

(
1 + πTj · Yj

)
, t ∈ [0, T ].

3.3 Weak Convergence of Financial Markets

It is possible to approximate the asset price process of the Black-Scholes-
Merton model by the asset price process in a binomial model. For this
purpose we choose u,d and p such that the first and second moments of
the stock price in the binomial model match the respective moments in the
Black-Scholes-Merton model. Recall that the stock price process in the Black-
Scholes-Merton model is given by

dSt = St(μdt+ σdWt)

where (Wt) is a Wiener process, μ ∈ R and σ > 0 are given parameters.
Now we choose a small step length h := 1

N and equate the first and second
moment of an increment of the stock price process in the Black-Scholes-
Merton model over a time interval of length h with the first and second
moment of the stock price increment in the binomial model. When we assume
that the stock price process at the beginning of this time interval is s, we
obtain the following local consistency conditions which have to be solved for
uN ,dN and pN :

sμh = pN

(
s(uN − 1)

)
+ (1 − pN )

(
s(dN − 1)

)
(3.8)

σ2s2h = pN

(
s(uN − 1)

)2

+ (1 − pN)
(
s(dN − 1)

)2

. (3.9)

Obviously we have one degree of freedom for choosing the parameters uN ,dN
and pN . Thus, when we set uN − 1 = 1 − dN , we obtain

uN = 1 +
σ√
N
, dN = 1 − σ√

N
, pN =

1
2

+
1
2

μ

σ
√
N
.

This approach has been suggested in Cox and Rubinstein (1985). Let (R̃Nk ) be
a sequence of independent and identically distributed random variables which
take the value uN with probability pN and dN with probability 1−pN . Then
we can define the stochastic price processes

S
(N)
t := S0

�Nt�∏

k=1

R̃Nk , t ∈ [0, T ]
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which is a Semi-Markov chain with RCLL (right continuous with left-hand
limits) sample paths. For large N this price process is now somehow close to
the price process in the Black-Scholes-Merton model. More precisely, recall
that weak convergence can be defined on metric spaces (see Definition B.1.2).
The metric space which is used here is given by D[0, T ], the space of all
RCLL functions on [0, T ] with the Skorohod topology. The next theorem
follows essentially from Donsker’s invariance principle (see e.g. Prigent (2003),
chapter 3).

Theorem 3.3.1. The sequence of stochastic processes (S(N)
t ) converges

weakly to the stock price (St) in the Black-Scholes-Merton model for N → ∞.

Note that this particular choice of parameters uN ,dN and pN establishes
weak convergence however is not efficient for computational issues because
the binomial tree is not recombining (for a discussion see Section 3.6).

3.4 Utility Functions and Expected Utility

There exists a well-established axiomatic theory on preference relations on
sets of uncertain payoffs or lotteries. Under some conditions these preferences
can be represented by a numerical function which assigns a real number
to each lottery and thus induces a complete order on the lotteries. This
numerical function is given by an expected utility. The axiomatic approach
was pioneered by von Neumann and Morgenstern (1947). In general a utility
function is a mapping U : domU → R which is applied to a random outcome
of an investment. In particular, if we have two random variables X and Y , we
can compare them by comparing IEU(X) with IEU(Y ) where the larger value
is preferred. This concept is closely related to stochastic orders (cf. Appendix
B.3). The idea is that U is chosen by an individual and should to some
extend also reflect her risk tolerance. A reasonable U should be increasing
which means more money is better than less. Often it is also assumed that U
is concave which means that for an individual the marginal utility of wealth
is decreasing. For example if you own 100 Euro another 10 Euro of income is
quite a lot. However if you own 1,000,000 Euro another 10 Euro is not worth
much. If U is concave everywhere, then U or the individual who employs it,
is said to be risk averse. This interpretation follows from the von Neumann-
Morgenstern representation of the underlying preference relation. The Jensen
inequality implies in particular that IEU(X) ≤ U(IEX) if IE |X | < ∞ which
means that a sure investment with the same expectation is always preferred
by a risk averse investor.

Definition 3.4.1. A function U : dom U → R is called a utility function, if
U is strictly increasing, strictly concave and continuous on dom U .
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If dom U is an open interval, then the concavity of U immediately implies
that U is also continuous. If domU = [0,∞), then U is continuous on (0,∞)
and we suppose that U is also right-continuous in 0.
If an investor chooses U(x) = x (which is not a utility function by definition
since it is not strictly concave) then she is said to be risk neutral since no
account for risk is made. The following utility functions are standard.

Example 3.4.2. a) Logarithmic utility. Here we have U(x) = log(x) and
dom U = (0,∞). Note that the logarithm penalizes outcomes near zero
heavily.

b) Power utility. Here we have U(x) = 1
γ
xγ and dom U = [0,∞) when

0 < γ < 1. If γ < 0 we have dom U = (0,∞).
c) Exponential utility. Here we have U(x) = − 1

γ
e−γx with γ > 0 and

dom U = R.
d) Quadratic utility. Here we have U(x) = x− γx2 for γ > 0 and dom U =

(−∞, (2γ)−1). This function is only increasing for x < (2γ)−1. �

Empirical and psychological experiments have revealed that the behaviour
of many decision makers is in contrast to expected utility theory. In par-
ticular small probabilities are often overweighted. A popular example is the
Allais Paradox where decision makers have to choose in two experiments be-
tween two lotteries. This has led to modified expected utility theory known
as generalized expected utility or non-expected utility theory.
Let U be a utility function and X a random outcome with values in dom U .
Due to the intermediate value theorem there exists a number ceq(X) ∈ R such
that IEU(X) = U(ceq(X)). The value ceq(X) is called certainty equivalent
and R(X) := IEX − ceq(X) > 0 is called risk premium. If U is at least twice
continuously differentiable we obtain with the Taylor series expansion:

U(ceq(X)) ≈ U(IEX) + U ′(IEX)
(
ceq(X) − IEX

)
,

U(X) ≈ U(IEX) + U ′(IEX)(X − IEX) +
1
2
U ′′(IEX)(X − IEX)2.

The last equation implies that

U(ceq(X)) = IEU(X) ≈ U(IEX) +
1
2
U ′′(IEX)Var(X).

Combining this with the first approximation and recalling the definition of
the risk premium we obtain

R(X) ≈ −1
2
U ′′(IEX)
U ′(IEX)

Var(X).
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Hence the risk premium is equal to the variance multiplied by a coefficient
which depends on the utility function. This coefficient determines the degree
of risk aversion.

Definition 3.4.3. Let U be a utility function which is twice differentiable.
Then the Arrow-Pratt absolute risk aversion coefficient of U given level x is
defined by

αAP (x) := −U
′′(x)

U ′(x)
, x ∈ dom U.

The function αAP (x) shows how risk aversion changes with the level of wealth.
A reasonable assumption is that αAP (x) is decreasing, since more money
increases the tendency to take a risk. The utility functions we have presented
so far belong to certain classes of risk aversion.

Example 3.4.4. a) Constant absolute risk aversion (CARA). This class of util-
ity functions is defined by αAP (x) ≡ αAP > 0. It consists of utility func-
tions of the form

U(x) = a− be−αx

for a ∈ R, b, α > 0 and dom U = R.
b) Hyperbolic absolute risk aversion (HARA). This class of utility functions

is defined by αAP (x) = (cx + d)−1. It consists of utility functions of the
form

U(x) =
1
γ

(ax+ b)γ

for γ < 1, γ �= 1 and a > 0, b ≥ 0. If 0 < γ < 1 then dom U = [− b
a ,∞),

otherwise domU = (− b
a
,∞). All previously discussed utility functions may

be seen as special cases of the HARA utility at least in a limiting sense
(cf. Luenberger (1998)). �

3.5 Exercises

Exercise 3.5.1. Consider the financial market of Section 3.2. A self-financing
trading strategy φ is an arbitrage opportunity if there exists a time point
t0 ∈ (0, T ] such that IP(Xφ

t0 ≥ 0) = 1 and IP(Xt0 > 0) > 0. A self-financing
trading strategy φ is called bounded if supt,ω |φkt (ω)| < ∞ for k = 1, . . . , d.
We suppose now that QY has bounded support.
Show that there are no bounded arbitrage opportunities if and only if there
exists a QY -integrable function h > 0 such that for k = 1, . . . , d

∫

Rd\{0}
ykh(y)QY (dy) = ρ− μk.
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Hint: For a complete proof see Jacobsen (2006), Chapter 10.

Exercise 3.5.2 (St. Petersburg Paradox). Suppose a fair coin is tossed
until a head appears. If a head appears on the n-th toss, the player receives
2n−1 Euro. Hence the distribution of the lottery is given by

IP(X = 2n−1) = 2−n, n ∈ N.

a) Show that IEX = ∞, i.e. the ‘fair value’ of the lottery is infinity.
b) Suppose now the player uses a utility function to evaluate the lottery.

Compute the expected utility and the certainty equivalent for U(x) =
√
x

and U(x) = log x.
Hint: The certainty equivalents are 2.91 and 2 respectively and thus con-
siderably smaller than ∞.

Exercise 3.5.3. We say an investor uses a mean-variance criterion when
she prefers the lottery X to the lottery Y in case IEX ≥ IEY and V ar(X) ≤
V ar(Y ). When X and Y are normally distributed, the mean-variance cri-
terion is equivalent to the expected utility approach. In order to prove this
show that for X ∼ N (μ, σ2) and Y ∼ N (ν, τ2) we have IEU(X) ≤ IEU(Y )
for all utility functions U if and only if ν ≥ μ and τ2 ≤ σ2.
For a further treatment of mean-variance problems see Section 4.6.

3.6 Remarks and References

There are a lot of excellent textbooks on mathematical finance today.
Discrete-time financial markets are investigated e.g. in Föllmer and Schied
(2004), van der Hoek and Elliott (2006), Shreve (2004a) and Pliska (2000).
A linear programming approach to general finite financial markets can be
found in Cremer (1998). An introduction into financial markets driven by a
Piecewise Deterministic Markov Process is given in Jacobsen (2006). Gen-
eral continuous-time financial markets are considered e.g. in Jeanblanc et al.
(2009), Williams (2006), Cont and Tankov (2004), Shreve (2004b), Elliott
and Kopp (2005), Musiela and Rutkowski (2005), Björk (2004), Bingham
and Kiesel (2004), Duffie (1988, 2001) and Shiryaev (1999).
Details about the weak convergence of financial markets can be found in
Prigent (2003). The particular choice of parameters in the binomial model
given in Section 3.3 implies weak convergence to the Black-Scholes-Merton
model, however this choice is not useful for computation of option prices since
the tree is not recombining. A simple recombining tree is obtained when we
choose

uN = exp
( σ√

N

)
, dN = exp

(
− σ√

N

)
, pN =

1
2

+
1
2
μ− 1

2σ
2

σ
√
N

.
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Similar parameters are proposed by Cox et al. (1979). For more computa-
tionally simple approximations consult Nelson and Ramaswamy (1990). For
a different approach based on scenario tree generation see Pflug (2001).
For discussions about properties and applications of utility functions in fi-
nance we refer the reader to Föllmer and Schied (2004). For the Allais paradox
see e.g. Levy (2006), Section 14. Kahneman and Tversky (1979) developed
the so-called Prospect Theory. Daniel Kahneman received a Nobel prize in
economics in 2002 for his insights from psychological research into economic
sciences. Maurice Allais received the Nobel prize in economics in 1988 for his
pioneering contributions to the theory of markets and efficient utilization of
resources.



Chapter 4

Financial Optimization Problems

The theory of Markov Decision Processes which has been presented in Chap-
ter 2 will now be applied to some selected dynamic optimization problems
in finance. The basic underlying model is the financial market of Chapter
3. We will always assume that investors are small and cannot influence the
asset price process. We begin in the first two sections with the classical prob-
lem of maximizing the expected utility of terminal wealth. In Section 4.1 we
consider the general one-period model. It will turn out that the existence
of an optimal portfolio strategy is equivalent to the absence of arbitrage in
this market. Moreover, the one-period problem is the key building block for
the multiperiod problems which are investigated in Section 4.2 and which
can be solved with the theory of Markov Decision Processes. In this section
we will also present some results for special utility functions and the rela-
tion to continuous-time models is highlighted. In Section 4.3 consumption
and investment problems are treated and solved explicitly for special utility
functions. The next section generalizes these models to include regime switch-
ing. Here a Markov chain is used to model the changing economic conditions
which give rise to a changing return distribution. Under some simplifying
assumptions this problem is solved and the influence of the environment is
discussed. Section 4.5 deals with models with proportional transaction cost.
For homogeneous utility functions it will turn out that the action space is
separated into sell-, buy- and no-transaction regions which are defined by
cones. The next section considers dynamic mean-variance problems. In con-
trast to utility functions the idea is now to measure the risk by the portfolio
variance and to search among all portfolios which yield at least a certain
expected return, the one with smallest portfolio variance. The challenge is
here to reduce this problem to a Markov Decision Problem first. Essentially
the task boils down to solving a linear-quadratic problem. In Section 4.7 the
variance is replaced by the risk measure ‘Average-Value-at-Risk’. In order to
obtain an explicit solution in this mean-risk model, only the binomial model
is considered here and the relation to the mean-variance problem is discussed.
Section 4.8 deals with index-tracking problems and Section 4.9 investigates the

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 4,
c© Springer-Verlag Berlin Heidelberg 2011
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problem of indifference pricing in incomplete markets. Finally, the last but
one section explains the relation to continuous-time models and introduces
briefly the approximating Markov chain approach. The last section contains
some remarks and references.

4.1 The One-Period Optimization Problem

In this section we investigate the one-period utility maximization problem.
To ease notation we skip the time index on i1, R̃1 and R1 in this section and
write i, R̃ and R instead. We will see in Section 4.2 that problems of this
type arise when we solve the multiperiod portfolio problem. We suppose that
we have an investor with utility function U : dom U → R and initial wealth
x > 0. Let us denote by

Δ(x) :=
{
(φ0, φ) ∈ R

1+d | φ0(1 + i) + φ · R̃ ∈ dom U IP -a.s., φ0 + φ · e ≤ x
}

the set of admissible one-period portfolio strategies. A straightforward for-
mulation of the one-period utility maximization problem is

sup
φ∈Δ(x)

IEU(φ0(1 + i) + φ · R̃). (4.1)

Hence the investor maximizes the expected utility of her investment under
the constraint that the return is in the domain of the utility function with
probability one and that the budget constraint φ0 + φ · e ≤ x is satisfied.
In order to have a well-defined model we make the following integrability
assumption where ‖x‖ := |x1| + . . .+ |xd| for x ∈ R

d.

Assumption: IE ‖R‖ <∞.

Obviously IE ‖R‖ < ∞ is equivalent to IE ‖R̃‖ < ∞. Since U is concave,
the utility function can be bounded from above by an affine-linear function
cu(1 + x) with cu ∈ R+. Thus the assumption implies that

IEU(φ0(1 + i) + φ · R̃) ≤ cu
(
1 + φ0(1 + i) + φ · IE ‖R̃‖

)
<∞

for all (φ0, φ) ∈ R
1+d. The following observation is simple, but crucial: Sup-

pose (φ0, φ) is a portfolio with φ0 + φ · e < x. Then we can construct a new
portfolio by investing the remaining wealth x − φ0 − φ · e in the bond. This
new portfolio is denoted by (ϕ0, ϕ) := (x − φ · e, φ). Since utility functions
are strictly increasing we obtain at once that

IEU(ϕ0(1 + i) + ϕ · R̃) > IEU(φ0(1 + i) + φ · R̃).
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In view of problem (4.1) we can conclude that without loss of generality
the budget constraint can be formulated as φ0 + φ · e = x which allows to
eliminate the bond component and to obtain an unconstrained problem. From
our preceding considerations we know that we can write

φ0(1 + i) + φ · R̃ = Xφ
1 = (1 + i)(x + φ · R).

Hence the admissible one-period investments in the risky assets are given by

D(x) :=
{
a ∈ R

d | (1 + i)(x+ a ·R) ∈ dom U IP -a.s.
}
.

For a ∈ D(x) the amount invested in the bond is given by x − a · e. Hence
when we define

u(x, a) := IEU
(
(1 + i)(x + a ·R)

)

an equivalent formulation of (4.1) is

v(x) := sup
a∈D(x)

u(x, a). (4.2)

The following result shows that the absence of arbitrage opportunities is
equivalent to the existence of an optimal solution for problem (4.2).

Theorem 4.1.1. Let U be a utility function with dom U = [0,∞) or
dom U = (0,∞). Then it holds:

a) There are no arbitrage opportunities if and only if there exists a mea-
surable function f∗ : dom U → R

d such that

u
(
x, f∗(x)

)
= v(x), x ∈ dom U.

b) The function v(x) is strictly increasing, strictly concave and continuous
on dom U .

Remark 4.1.2. If dom U = R and U is bounded from above, then Theorem
4.1.1 also holds true. This is shown e.g. in Föllmer and Schied (2004), The-
orem 3.5. This situation covers the exponential utility function. If U is not
bounded from above on dom U = R then Theorem 4.1.1 is no longer true
(see Example 7.3 in Rásonyi and Stettner (2005)). dom U = (0,∞) can be
applied to the case of a logarithmic utility or a power utility with negative
coefficient γ and dom U = [0,∞) applies to the case of a power utility with
positive coefficient γ. ♦

Proof. We will only consider the case dom U = (0,∞). The case
dom U = [0,∞) can be treated similarly.
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We will first prove part a). Suppose that the market admits an arbitrage
opportunity. Fix x ∈ dom U and suppose f∗(x) is an optimal solution of
(4.2). Then according to Theorem 3.1.5 there exists a portfolio a ∈ R

d with
a · R ≥ 0 IP-a.s. and IP(a · R > 0) > 0. Thus f∗(x) + a ∈ D(x) and

v(x) = u
(
x, f∗(x)

)
< u

(
x, f∗(x) + a

)

which is a contradiction.
Now suppose that there are no arbitrage opportunities. Without loss of gen-
erality we suppose that a ·R = 0 IP -a.s. necessarily implies that a = 0. This
property is called non-redundancy. Otherwise there exists at least one asset
which can be perfectly replicated by a linear combination of the other assets.
Thus, it can be eliminated from the market without losing a payoff profile.
Next we consider for a fixed initial wealth x the level sets

L(b) := {a ∈ D(x) | u(x, a) ≥ b}, b ∈ R.

Since a = 0 is an element of D(x) we have that at least L
(
u(x, 0)

)
�= ∅. We

will show that L(b) is compact. First suppose that there exists an unbounded
sequence (an) ⊂ L(b). Choose a convergent subsequence (ank

/‖ank
‖) which

converges against a∗. Obviously ‖a∗‖ = 1 and since ank
∈ D(x) we obtain

a∗ ·R = lim
k→∞

ank
· R

‖ank
‖ ≥ lim

k→∞
−x

‖ank
‖ = 0.

Moreover we must have IP(a∗ · R > 0) > 0 due to our non-redundancy as-
sumption since a∗ �= 0. Thus, a∗ constitutes an arbitrage opportunity which
is a contradiction. Hence L(b) must be bounded. Following the same proof it
is also possible to show that D(x) is bounded.
Next we show that the mapping a �→ u(x, a) is upper semicontinuous. Since
U is continuous the statement follows when we can apply Fatou’s Lemma to
interchange the limit and the expectation. But this can be done since

u(x, a) ≤ cu
(
1+(1+ i)(x+a · IER)

)
≤ cu

(
1+(1+ i)(x+ max

a∈D(x)
a · IER)

)
<∞

is an integrable upper bound (where D(x) is the closure of D(x)). Thus,
a �→ u(x, a) is upper semicontinuous and it follows from Lemma A.1.3 that
L(b) is closed. Altogether we have now shown that L(b) is compact. By Propo-
sition 2.4.11 together with Remark 2.4.12 there exists a measurable function
f∗ : dom U → R

d such that

u
(
x, f∗(x)

)
= v(x), x ∈ dom U.

Let us now prove part b). First we show that v is strictly increasing. Obviously
D(x) ⊂ D(x′) if x ≤ x′. Moreover, the mapping x �→ u(x, a) is strictly
increasing by our assumptions. Hence the statement follows from Theorem
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2.4.14. The strict concavity follows from Proposition 2.4.18 since the set

{(x, a) | a ∈ D(x), x > 0}

is convex and (x, a) �→ u(x, a) is strictly concave. The continuity follows from
Proposition 2.4.8. �

Remark 4.1.3. Note that the optimal solution in Theorem 4.1.1 of the one-
period utility maximization problem is unique if the financial market is non-
redundant, i.e. there does not exist an asset which can be perfectly replicated
by a linear combination of the other assets. ♦

4.2 Terminal Wealth Problems

At the beginning of this section we investigate the multiperiod extension of
the utility maximization problem of Section 4.1. Suppose we have an investor
with utility function U : domU → R with domU = [0,∞) or domU = (0,∞)
and initial wealth x > 0. A financial market with d risky assets and one
riskless bond is given (for a detailed description see Section 3.1). Here we
assume that the random vectors R1, . . . , RN are independent but not neces-
sarily identically distributed. Moreover we assume that (Fn) is the filtration
generated by the stock prices, i.e. Fn = FS

n . The following assumption on
the financial market is used throughout this section.

Assumption (FM):

(i) There are no arbitrage opportunities.
(ii) IE ‖Rn‖ <∞ for all n = 1, . . . , N .

Our agent has to invest all the money into this market and is allowed to
rearrange her portfolio over N stages. The aim is to maximize the expected
utility of her terminal wealth. Recall that utility functions are strictly in-
creasing, strictly concave and continuous by definition. According to (3.1)
the wealth process (Xn) evolves as follows

Xn+1 =
(
1 + in+1

)(
Xn + φn · Rn+1

)

where φ = (φn) is a portfolio strategy. The optimization problem is then
⎧
⎨

⎩

IEx U(Xφ
N ) → max

φ is a portfolio strategy and Xφ
N ∈ dom U IP -a.s.

(4.3)
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Since this problem has a Markovian structure it can be shown that the op-
timal portfolio strategy is among the set of all Markov portfolio strategies
(φn) (see e.g. Theorem 2.2.3). Moreover φn depends only on the wealth Xn

and not on the stock prices Sn which can be seen from the wealth equation.
Thus, problem (4.3) can be solved via the following Markov Decision Model:
The state space is E := domU , where x ∈ E is the available wealth. A := R

d

is the action space and

Dn(x) :=
{
a ∈ R

d |
(
1 + in+1

)(
x+ a · Rn+1

)
∈ dom U IP -a.s.

}
(4.4)

is the set of admissible actions. This restriction guarantees that a portfolio
can be chosen for the remaining stages such that the final wealth XN is with
probability one in E. Though it is enough to have XN ∈ dom U IP-a.s., the
absence of arbitrage implies that we have to require Xn ∈ dom U IP-a.s. for
all stages n. The transition function is given by

Tn(x, a, z) =
(
1 + in+1

)(
x+ a · z

)
(4.5)

where z ∈ [−1,∞)d denotes the relative risk in [n, n + 1). Since we do not
have any intertemporal utility we choose rn ≡ 0 and gN (x) = U(x). The data
of our Markov Decision Model is summarized as follows:

• E := dom U where x denotes the wealth,
• A := R

d where a is the amount of money invested in the risky assets,
• Dn(x) is given by (4.4),
• Z := [−1,∞)d where z denotes the relative risk,
• Tn(x, a, z) is given by (4.5),
• QZn (·|x, a) := distribution of Rn+1 (independent of (x, a)),
• rn ≡ 0, and gN(x) := U(x).

Problem (4.3) can now equivalently be solved by the Markov Decision Model.
The value functions are given by

Vn(x) = sup
π

IE
π
nx U(XN ) (4.6)

where the supremum is taken over all policies π and V0(x) is the value of
problem (4.3). Due to our assumption, the Markov Decision Model has an
upper bounding function.

Proposition 4.2.1. The function b(x) := 1+x is an upper bounding function
for the Markov Decision Model.

Proof. We have to check conditions (i)–(iii) of Definition 2.4.1. Condition (i)
is obvious. Condition (ii) follows since any concave function can be bounded
from above by a linear affine function and (iii) holds since there exist con-
stants c, αb > 0 such that
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∫
b(x′)Qn(dx′|x, a) = 1 + (1 + in+1)(x + a · IERn+1)

≤ 1 + (1 + in+1)(x + cx) ≤ αb(1 + x), x ∈ E

for all a ∈ Dn(x). The proof that a · IERn+1 ≤ cx is as follows: In view of the
no arbitrage assumption the support of Rkn+1 contains elements zk1 ∈ (−1, 0)
and zk2 ∈ (0,∞). Hence for all a ∈ D(x) we have

− x

zk2
≤ ak ≤ − x

zk1
, k = 1, . . . , d

which implies a · IERn+1 ≤ cx. Note that IERn+1 < ∞ due to Assumption
(FM)(ii). �

We are now in a position to apply our main Theorem 2.3.8 and obtain the
following statements.

Theorem 4.2.2. For the multiperiod terminal wealth problem it holds:

a) The value functions Vn are strictly increasing, strictly concave and con-
tinuous.

b) The value functions can be computed recursively by the Bellman equa-
tion

VN (x) = U(x),

Vn(x) = sup
a∈Dn(x)

IEVn+1

(
(1 + in+1)(x+ a ·Rn+1)

)
, x ∈ E.

c) There exist maximizers f∗
n of Vn+1, and the portfolio strategy

(f∗0 , f
∗
1 , . . . , f

∗
N−1) is optimal for the N -stage terminal wealth problem.

Proof. We show that the Structure Assumption (SAN ) is satisfied with

IMn := {v ∈ IB+
b | v is strictly increasing, strictly concave and continuous}

and Δn := Fn. The statements then follow immediately from Theorem 2.3.8.

(i) gN = U ∈ IMN holds by definition of utility functions.
(ii) Now suppose that v ∈ IMn+1. Note that

Tnv(x) = sup
a∈Dn(x)

IE v
(
(1 + in+1)(x + a · Rn+1)

)
, x ∈ E.

Since v satisfies all properties of a utility function with dom v = E and
since the absence of arbitrage is a local property (see Theorem 3.1.5) we
obtain Tnv ∈ IMn from Theorem 4.1.1.
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(iii) The existence of a maximizer follows again from Theorem 4.1.1. �

Remark 4.2.3. Theorem 4.2.2 can also be formulated in a similar way when
dom U = R. In this case Dn(x) = R. We solve the terminal wealth problem
with an exponential utility later in this section. ♦

Of course it is no problem to incorporate constraints on the portfolio strategy
like short-selling constraints or constraints on the risk of the strategy. The
only thing that changes is the set of admissible actions D(x) which has to be
defined accordingly.

There is one particular special case where the portfolio problem (4.3) has a
very simple solution. This situation is formulated in the next theorem.

Theorem 4.2.4. Let IERn = 0 for n = 1, . . . , N . Then it holds:

a) The value functions are given by

Vn(x) = U
(
x
S0
N

S0
n

)
, x ∈ E.

b) The optimal portfolio strategy (f∗0 , f
∗
1 , . . . , f

∗
N−1) is given by

f∗n(x) ≡ 0,

i.e. the strategy ‘invest all the money in the bond’ is optimal.

Proof. Suppose that π = (f0, f1, . . . , fN−1) is an arbitrary portfolio strategy.
It is easy to verify that the discounted wealth process

(
Xn/S

0
n

)
is a martingale

under the assumptions of this theorem (for a definition of martingales see
Section B.2): Obviously the expectation is well-defined and we obtain

IE
π
[Xn+1

S0
n+1

∣
∣
∣
Xn
S0
n

]
= IE

π
[
(S0
n)

−1
(
Xn + fn(Xn) ·Rn+1

) ∣
∣
∣
Xn

S0
n

]
=
Xn

S0
n

.

Thus, using Jensen’s inequality it holds that

Vnπ(x) = IE
π
nx U(XN ) ≤ U

(
IE
π
n,x

[XN
S0
N

]
S0
N

)
= U

(
x
S0
N

S0
n

)

which implies the statements. �

Remark 4.2.5. a) Since Sk
n+1
S0

n+1
= Sk

n

S0
n
(1 +Rkn+1), the condition IERkn = 0 for all

n means that the discounted stock price process
(
Skn/S

0
n

)
is a martingale.
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b) If short-selling is not allowed (i.e. a ∈ R
d
+) then the portfolio strategy

(f∗
0 , f

∗
1 , . . . , f

∗
N−1) with f∗

n(x) ≡ 0 is optimal if IERn ≤ 0 for n = 1, . . . , N .
This follows from the proof of Theorem 4.2.4. ♦

For some utility functions the portfolio optimization problem (4.6) can be
solved rather explicitly. We summarize some of these results. Throughout we
suppose that Assumption (FM) is valid.

Power Utility

Let us suppose that the utility function in problem (4.6) is given by

U(x) =
1
γ
xγ , x ∈ [0,∞)

with 0 < γ < 1. Here we have E = [0,∞). Since it will be more convenient
to work with fractions of invested money instead of amounts we define the
set of admissible fractions by

An := {α ∈ R
d | 1 + α · Rn+1 ≥ 0 IP -a.s.}

and the generic one-period optimization problem by

vn := sup
α∈An

IE
(
1 + α · Rn+1

)γ
. (4.7)

According to Theorem 4.1.1 this problem has a solution and we denote the
optimal solution by α∗

n ∈ R
d.

Theorem 4.2.6. Let U be the power utility with 0 < γ < 1. Then it holds:

a) The value functions are given by

Vn(x) = dnx
γ , x ≥ 0

with

dN =
1
γ

and dn =
1
γ

N−1∏

k=n

(1 + ik+1)γvk .

b) The optimal amounts which are invested in the stocks are given by

f∗
n(x) = α∗

n x, x ≥ 0

where α∗
n is the optimal solution of (4.7). The optimal portfolio strat-

egy is given by (f∗
0 , f

∗
1 , . . . , f

∗
N−1).
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Note that the optimal portfolio strategy is myopic in the sense that the
optimal fractions which are invested in the assets at time n depend only on
the distribution of the relative risk Rn+1. Moreover, it is easy to see that the
sequence dn is decreasing in n.

Proof. In order to apply Theorem 2.3.8 we have to find sets IMn and Δn

which satisfy the Structure Assumption (SAN ). We will first show that the
sets can be chosen as

IMn := {v : E → R+ | v(x) = bxγ for b > 0},

Δn := {f ∈ Fn| f(x) = α x for α ∈ R
d}.

We have to check the following conditions

(i) Obviously gN = U ∈ IMN .
(ii) Let v ∈ IMn+1. Then we obtain

Tnv(x) = sup
a∈Dn(x)

IE v
(
(1 + in+1)(x+ a · Rn+1)

)

= b(1 + in+1)γ sup
a∈Dn(x)

IE(x+ a ·Rn+1)γ.

If x = 0 then only a = 0 is admissible. Hence suppose x > 0. We use the
transformation a = αx to obtain

Tnv(x) = b(1 + in+1)γxγ sup
α∈An

IE(1 + α ·Rn+1)γ

= b(1 + in+1)γxγvn.

Thus Tnv(x) = b̃xγ ∈ IMn with b̃ := b(1 + in+1)γvn > 0.
(iii) For all v ∈ IMn+1 there exists a maximizer f ∗

n of v with f∗
n ∈ Δn. This

follows from Theorem 4.1.1 and (ii).

Hence we have shown that the Structure Assumption (SAN ) holds. The state-
ment now follows by induction from Theorem 2.3.8. We obtain

Vn(x) = sup
α∈An

dn+1(1 + in+1)γxγ IE
(
1 + α ·Rn+1

)γ

= dn+1(1 + in+1)γvnxγ .

If we define dn := dn+1(1 + in+1)γvn > 0 then the statements in part a)
follow and part b) can be concluded from the considerations in (ii). �

If the relative stock price changes R̃1, R̃2, . . . are identically distributed and
in = i for all n, then α∗

n ≡ α∗ is independent of n. In this case the Markov
Decision Model is stationary. If we further assume that there is only one
stock, then the optimal portfolio strategy can be characterized by a constant
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optimal stock to bond ratio (Merton-line) which is equal to α∗
1−α∗ . If the

current stock to bond ratio is larger, then the stock has to be sold and if it
is smaller, then the stock has to be bought. This is illustrated in Figure 4.1.

Fig. 4.1 Optimal stock to bond ratio (Merton-line).

Remark 4.2.7. In the case of a power utility function U(x) = 1
γ
xγ with γ < 0

we can proceed almost in the same way. In this case we do not need an
integrability condition on the relative risk process, since the utility function
is bounded from above by 0. Moreover, in this case dom U = (0,∞) and we
define

An := {α ∈ R
d | 1 + α ·Rn+1 > 0 IP -a.s.}.

Theorem 4.2.6 can be stated in exactly the same way, the only difference is
that vn and α∗

n are now defined as the value and the optimal solution of

vn := inf
α∈An

IE
(
1 + α · Rn+1

)γ
. (4.8)

According to Theorem 4.1.1 this problem has a solution. ♦

Remark 4.2.8. Some authors also consider the power utility problem with
parameter γ > 1 which reflects a risk-seeking investor. In this case the value
functions are convex and it is reasonable to restrict to a compact set for the
admissible portfolio strategy, e.g. by excluding short-sellings. In this case we
have

Dn(x) = {a ∈ R
d
+ | a · e ≤ x}.

Since a convex function attains its maximum at the boundary it is in this
case optimal for the investor to concentrate her investment on one asset k,
namely the one which maximizes IE(1 +Rkn+1)

γ , i.e. she puts ‘all her eggs in
one basket’. ♦
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Imagine we have one stock and the price process follows the binomial model
as described in Section 3.1. The optimization problem (4.7) reduces to (we
skip the constant (1 + i)−γ in front of sup).

sup
α0≤α≤α1

(
1 + i+ α(u − 1 − i)

)γ
p+

(
1 + i+ α(d − 1 − i)

)γ
(1 − p)

where
α0 :=

1 + i

1 + i− u
< 0 and α1 :=

1 + i

1 + i− d
> 0.

If we define δ := (1 − γ)−1, the optimal solution is of the form

α∗ :=
1 + i

(1 + i− d)(u − 1 − i)
· (u − 1 − i)δpδ − (1 + i− d)δ(1 − p)δ

(u − 1 − i)δγpδ + (1 + i− d)δγ(1 − p)δ
. (4.9)

Note that this number is in the interval [α0, α1]. In the case γ < 0, we obtain
the same expression for α∗ which is now a minimum point of problem (4.8). In
the binomial model we can discuss how the probability for an up movement of
the stock price influences the optimal fraction which is invested in the stock.

Lemma 4.2.9. Consider the binomial model with power utility and parame-
ter γ < 1, γ �= 0.

a) The optimal fraction α∗ which is invested in the stock is given in (4.9).
b) The function α∗ = α∗(p) is increasing in p.
c) If p = 1+i−d

u−d then α∗ = α∗(p) = 0.

Proof. Suppose first that 0 < γ < 1. For our purpose it is convenient to
discuss the maximum points of the mapping:

h(α) :=
(
1 + i+ α(u − 1 − i)

)γ + λ
(
1 + i+ α(d − 1 − i)

)γ

where λ = 1−p
p . Differentiating with respect to α we obtain that the maximum

is attained at (we denote δ := (1 − γ)−1)

α∗(λ) = (1 + i)
λ−δ(1 + i− d)−δ − (u − 1 − i)−δ

(u − 1 − i)−δγ + (1 + i− d)−δγλ−δ

whenever this point is in the interval [α0, α1]. Rearranging terms we end up
with formula (4.9). Since h(α) is concave, α∗(λ) is indeed a maximum point.
The function λ = λ(p) = 1−p

p is decreasing in p, thus it remains to determine
whether α∗(λ) is increasing or decreasing in λ. Differentiating α∗(λ) with
respect to λ yields ∂

∂λα
∗(λ) ≤ 0 if and only if

(u − 1 − r)γ + (1 + r − d) ≥ 0
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which is true. Thus, α∗(p) is increasing in p. In particular it can now easily
be verified that indeed α∗ ∈ [α0, α1] by inserting p = 0 and p = 1 in equation
(4.9). If p = 1+i−d

u−d , then IERn = 0 for all n and Theorem 4.2.4 applies. �

As a consequence we obtain from Lemma 4.2.9 that if p < 1+i−d
u−d it is optimal

to sell the stock, and if p > 1+i−d
u−d it is optimal to buy the stock.

Remark 4.2.10. In the standard continuous-time Black-Scholes-Merton model
(see Section 3.1), the optimal portfolio strategy in the case of a power utility
is to invest a constant fraction of the wealth in the stock. This fraction is
independent of the time and given by the so-called Merton ratio

1
1 − γ

μ− ρ

σ2
. (4.10)

As before, μ is the drift of the stock, σ the volatility and ρ is the riskfree
interest rate, i.e. we have 1 + i = eρΔt. Since we can approximate the Black-
Scholes-Merton model by the binomial model (see Section 3.3) we would
expect that the optimal fraction computed in (4.9) is close to the expression
(4.10). Indeed, if we define (cf. Section 3.6)

u := exp
(
σ
√
Δt

)
, d := exp

(
− σ

√
Δt

)

p :=
1
2

+
1
2
μ− 1

2σ
2

σ

√
Δt, 1 + i = eρΔt

we obtain
lim
Δt↓0

α∗(Δt) =
1

1 − γ

μ− ρ

σ2
.

However the proof is quite lengthy (using Taylor series expansions with re-
spect to Δt). ♦

HARA-Utility

The HARA-utility has been defined in Section 3.4 and can be seen as a
shifted power utility. Thus it is not surprising that maximizing a HARA-
utility can be reduced to maximizing a power utility. Since this case is of some
importance and since some subtle differences arise we state the respective
theorem separately. Suppose for simplicity that the utility function in problem
(4.3) is given by

U(x) = (x + b)γ

where b ≥ 0 and 0 < γ < 1. We have domU = {x ∈ R | x+ b ≥ 0}. Note that
if we insert the wealth X1 at stage 1 according to formula (3.1) we obtain

IEU(X1) = (1 + i1)γ IE

(
x+

b

1 + i1
+ a · R1

)γ
.
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In order to obtain a well-defined optimization problem and in view of the no
arbitrage assumption we must assume that x(1+ i1) ≥ −b. By induction this
yields for the multiperiod problem with HARA-utility that the initial wealth
x has to satisfy xS0

N ≥ −b. We define E := dom U as the state space of the
Markov Decision Model. In what follows it will be convenient to denote

En := {x ∈ R | xS0
N/S

0
n + b ≥ 0}.

The set En consists of all possible wealths at stage n such that the condition
XN ∈ E can be satisfied with probability one. Thus, admissible investments
at stage n are

Dn(x) :=
{
a ∈ R

d | S0
N/S

0
n

(
x+ a · Rn+1

)
∈ E IP -a.s.

}

=
{
a ∈ R

d | (1 + in+1)
(
x+ a ·Rn+1

)
∈ En+1 IP -a.s.

}
, x ∈ En.

We obtain the following result:

Theorem 4.2.11. Let U(x) = (x + b)γ be the HARA-utility with b ≥ 0
and 0 < γ < 1. Then it holds:

a) The value functions are given by

Vn(x) = dn
(
x S0

N/S
0
n + b

)γ
, x ∈ En

with

dN = 1 and dn =
N−1∏

k=n

vk,

and vn is the value of problem (4.7).
b) The optimal amounts which are invested in the stocks are given by

f∗n(x) = α∗
n

(

x+
bS0
n

S0
N

)

, x ∈ En

where α∗
n is the optimal solution of problem (4.7). The optimal port-

folio strategy is given by (f∗
0 , f

∗
1 , . . . , f

∗
N−1).

Proof. We proceed in the same way as in the proof of Theorem 4.2.6. To
apply Theorem 2.3.8 we choose

IMn := {v : En → R+ | v(x) = c(x S0
N/S

0
n + b)γ for c > 0},

Δn := {f : En → R
d | f(x) = c0(x+ c1) for c0 ∈ R

d and c1 > 0} ∩ Fn.

We now have to check the three conditions:
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(i) Obviously gN = U ∈ IMN .
(ii) Let v ∈ IMn+1. Then

Tnv(x) = c
(S0

N

S0
n

)γ
sup

a∈Dn(x)
IE

(
x+

bS0
n

S0
N

+ a · Rn+1

)γ

= c
(S0

N

S0
n

)γ(
x+

bS0
n

S0
N

)γ sup
α∈An

IE

(
1 + α · Rn+1

)γ

where we have used the transformation

α
(
x+

bS0
n

S0
N

)
:= a

and
An = {α ∈ R

d | 1 + α ·Rn+1 ≥ 0 IP -a.s.}.

If x = −bS0
n/S

0
N , then only a = 0 is admissible. Suppose now that

x > −bS0
n/S

0
N . The variable α is the fraction of a new wealth

x̃ = x+
bS0
n

S0
N

which has to be invested. The optimization problem is now the same as
in the power utility case and Tnv ∈ IMn.

(iii) For v ∈ IMn+1 there exists a maximizer f∗
n ∈ Δn of v. This follows from

Theorem 4.1.1 and the considerations in part (ii).

The induction step is along the lines of the proof of Theorem 4.2.6. �

Remark 4.2.12. If the HARA utility function is given by U(x) = b0(x + b)γ

with γ < 0 and b0 < 0 we obtain an analogous result as in the power utility
case with negative exponent (cf. Remark 4.2.7). ♦

Logarithmic Utility

Here we assume that the utility function in problem (4.3) is of the form
U(x) = log x with dom U = (0,∞). In this case it is again convenient to
consider the fraction of wealth which is invested into the assets. Thus, we
define the set

An = {α ∈ R
d | 1 + α · Rn+1 > 0 IP -a.s.}.

Note that we need a strict inequality this time. Let us introduce the following
generic one-period optimization problem:

vn := sup
α∈An

IE log
(
1 + α · Rn+1

)
. (4.11)



90 4 Financial Optimization Problems

According to Theorem 4.1.1 this problem can be solved and we denote the
optimal solution by α∗

n ∈ R
d.

Theorem 4.2.13. Let U be the logarithmic utility. Then it holds:

a) The value functions are given by

Vn(x) = log x+ dn, x > 0

where

dN = 0 and dn =
N−1∑

k=n

(
log(1 + ik+1) + vk

)

and vn is the value of problem (4.11).
b) The optimal amounts which are invested in the stocks are given by

f∗
n(x) = α∗

nx, x > 0

where α∗
n is the optimal solution of (4.11). The optimal portfolio strategy

is given by (f∗
0 , f

∗
1 , . . . , f

∗
N−1).

The proof can be done in the same way as for the power utility and we skip
it here. In case we have one stock and the price process follows the binomial
model as described in Section 3.1, the optimization problem in (4.11) reduces
to

sup
α0<α<α1

p log
(
1 + i+ α(u − 1 − i)

)
+ (1 − p) log

(
1 + i+ α(d − 1 − i)

)

where again

α0 :=
1 + i

1 + i− u
< 0 and α1 :=

1 + i

1 + i− d
> 0.

Thus, the optimal fraction which is invested in the stock is of the form

α∗ := (1 + i)
( p

1 + i− d
− 1 − p

u − 1 − i

)
. (4.12)

Note that α∗ ∈ (α0, α1). As in the proof of Lemma 4.2.9 it can be shown that
α∗ = α∗(p) is increasing in p and α∗(p) = 0 if p = 1+i−d

u−d .

Remark 4.2.14. The logarithmic utility can be see as a limiting case of the
power utility with γ ↓ 0. Thus, the following observation is not surprising: If
α∗

pw(γ) is the optimal fraction in the binomial model with power utility, then

lim
γ→0

α∗
pw(γ) = α∗

log



4.2 Terminal Wealth Problems 91

where α∗
pw(γ) and α∗

log are given in (4.9) and (4.12) respectively. This follows
after some simple but tedious algebra. ♦

Exponential Utility

Finally we investigate the case where the utility function in problem (4.3) is
of the form U(x) = − 1

γ e
−γx with γ > 0 and dom U = R. In this case the

utility function is bounded from above and we do not need the Integrabil-
ity Assumption (ii) of (FM). It is sufficient that no arbitrage opportunities
are available. Since the domain of the exponential utility is R we have no
restrictions on the investment decisions and obtain Dn(x) = R

d. Again we
introduce a generic one-period optimization problem which has the following
form:

vn := inf
a∈Rd

IE exp
(
− γ S0

N/S
0
n a · Rn+1

)
. (4.13)

According to Remark 4.1.2 this problem can be solved and we denote the
optimal solution by a∗n ∈ R

d. The solution is of the form a∗n = 1
γ
S0

n

S0
N
ãn where

ãn is the minimum point of

a �→ IE exp
(
− a · Rn+1

)
, a ∈ R

d. (4.14)

If the random vectors R1, R2, . . . are identically distributed, then ãn is inde-
pendent of n.

Theorem 4.2.15. Let U be the exponential utility. Then it holds:

a) The value functions are given by

Vn(x) = dn exp
(
−γ S0

N/S
0
n x

)
, x ∈ R

where

dN = − 1
γ

and dn = − 1
γ

N−1∏

k=n

vk

and vn is the value of problem (4.13).
b) The optimal amounts which are invested in the stocks are given by

f∗
n(x) = a∗n, x ∈ R

where a∗n is the optimal solution of problem (4.13), and the policy
(f∗0 , . . . , f

∗
N−1) is optimal.

Note that the optimal amounts which are invested in the risky assets depend
only on the distribution of the relative risksRn and not on the current wealth.
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Proof. We proceed in the same way as in the proof of Theorem 4.2.6 by
applying Theorem 2.3.8. This time we choose

IMn := {v : R → R | v(x) = −b0 exp(−b1x) for b0, b1 > 0},

Δn := {f ∈ Fn | f(x) ≡ c0 for c0 ∈ R
d}.

Checking the three conditions is simple:

(i) Obviously gN = U ∈ IMN .
(ii) Let v ∈ IMn+1. Then we obtain the following problem

Tnv(x) = −b0 exp
(
− b1(1 + in+1)x

)
inf
a∈Rd

IE exp
(
− b1(1 + in+1)a · Rn+1

)
.

This optimization problem has a solution according to Remark 4.1.2,
part a) and thus Tnv ∈ IMn.

(iii) For v ∈ IMn+1 there exists a maximizer fn(x) ∈ Δn of v. This follows
from Remark 4.1.2 and the considerations in part (ii).

Working out the induction step is not hard, one simply has to keep track of
the factors dn. �

Remark 4.2.16. Let us denote by Mn(x) := IE exp(x · Rn+1) the moment
generating function Mn : R

d → R of Rn+1 and let us assume thatMn(x) <∞
for all x ∈ R

d. Then problem (4.14) is the same as

inf
a∈Rd

Mn(−a). (4.15)

Since the moment generating function is convex and since the derivative of
Mn exists (see e.g. Billingsley (1995), section 21) we can conclude that ãn is
optimal if and only if the first order condition

∇xMn(−ãn) = 0

holds. ♦

Remark 4.2.17. For the binomial model it is easy to show that the solution
of (4.14) has the form

ãn = (1 + i)
( log

(
1−q
1−p

)
− log

(
q
p

)

u − d

)

where q = 1+i−d
u−d . Here ãn is independent of n. Obviously ã > 0 ⇔ p > q and

ã < 0 ⇔ p < q and a∗n is increasing in n (decreasing in n) if p > q (p < q).
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Remark 4.2.18. When we deal with the exponential utility, the problem of
maximizing the expected terminal wealth is also well-defined in case the
wealth can get negative (which is not allowed in the previous cases). Thus,
we can approximate the random relative risk in period [n − 1, n) by a d-
dimensional normal distribution, i.e. Rn ∼ N (μn, Σn) and Rn takes values
below −1. In particular we obtain for a ∈ R

d that

a · Rn+1 ∼ N
(
a · μn+1, a

	Σn+1a
)
.

Recall that for Z ∼ N (μ, σ2) we obtain IE eθZ = eμθ+
1
2σ

2θ2 . In our case this
yields

IE exp (−a ·Rn+1) = exp
(
− a · μn+1 +

1
2
a	Σn+1a

)
.

The minimum of this expression is obviously attained at

ãn := Σ−1
n+1μn+1

and

a∗n =
1
γ

S0
n

S0
N

Σ−1
n+1μn+1.

This expression is similar to the Merton ratio, cf. also Remark 4.2.10. ♦

4.3 Consumption and Investment Problems

We consider now the following extension of the consumption problem of Ex-
ample 2.1.4. Our investor has an initial wealth x > 0 and at the beginning
of each of N periods she can decide how much of the wealth she consumes
and how much she invests into the financial market given as in Section 4.2.
In particular Fn := FS

n . The amount cn which is consumed at time n is
evaluated by a utility function Uc(cn). The remaining wealth is invested in
the risky assets and the riskless bond, and the terminal wealth XN yields
another utility Up(XN ). How should the agent consume and invest in order
to maximize the sum of her expected utilities?
As in Section 4.2 we impose the Assumption (FM) on the financial market.
Moreover, we assume that the utility functions Uc and Up satisfy dom Uc =
dom Up := [0,∞). Analogously to (3.1) the wealth process (Xn) evolves as
follows

Xn+1 = (1 + in+1)(Xn − cn + φn ·Rn+1)

where (c, φ) = (cn, φn) is a consumption-investment strategy, i.e. (φn) and
(cn) are Fn-adapted and 0 ≤ cn ≤ Xn.
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The consumption-investment problem is then given by
⎧
⎪⎪⎨

⎪⎪⎩

IEx

[∑N−1
n=0 Uc(cn) + Up(X

c,φ
N )

]
→ max

(c, φ) is a consumption-investment strategy with
Xc,φ
N ∈ dom Up IP -a.s.

(4.16)

Problem (4.16) can be solved by the following Markov Decision Model (using
the same arguments as in Section 4.2 for the terminal wealth problem):

• E := [0,∞) where x ∈ E denotes the wealth,
• A := R+ ×R

d where a ∈ R
d is the amount of money invested in the risky

assets and c ∈ R+ the amount which is consumed,
• Dn(x) is given by

Dn(x) :=
{

(c, a) ∈ A | 0 ≤ c ≤ x and

(1 + in+1)(x− c+ a · Rn+1) ∈ E IP -a.s.
}
,

• Z := [−1,∞)d where z ∈ Z denotes the relative risk,
• Tn

(
x, c, a, z

)
:= (1 + in+1)(x− c+ a · z),

• QZn (·|x, c, a) := distribution of Rn+1 (independent of (x, c, a)),
• rn

(
x, c, a

)
:= Uc(c),

• gN(x) := Up(x).

The given consumption-investment problem (4.16) can now be solved by using
the results of Section 2.3. The value functions are defined by

Vn(x) = sup
π

IE
π
nx

[
N−1∑

k=n

Uc
(
cn(Xn)

)
+ Up(XN )

]

where the supremum is taken over all policies π = (f0, . . . , fN−1) with
fn(x) =

(
cn(x), an(x)

)
and V0(x) is the value of the given problem (4.16).

The Markov Decision Model has an upper bounding function b(x) := 1 + x
(cf. Proposition 4.2.1). In order to apply Theorem 2.3.8 we have to look at the
following one-period optimization problem (cf. Section 4.1). For x ∈ dom Up
consider

D(x) := {(c, a) ∈ A | 0 ≤ c ≤ x and (1 + i)(x− c+ a ·R) ∈ dom Up IP -a.s.} ,

u(x, c, a) := Uc(c) + IEUp
(
(1 + i)(x− c+ a ·R)

)

and let
v(x) := sup

(c,a)∈D(x)

u(x, c, a).

Analogous to the pure investment problem we obtain:
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Theorem 4.3.1. Let Uc and Up be utility functions with dom Uc =
dom Up = [0,∞). Then it holds:

a) There are no arbitrage opportunities if and only if there exists a mea-
surable function f∗ : dom Up → A such that

u
(
x, f∗(x)

)
= v(x), x ∈ dom Up.

b) v(x) is strictly increasing, strictly concave and continuous on dom Up.

The proof follows along the same lines as the proof of Theorem 4.1.1 and
makes use of the iterated supremum

sup
(c,a)∈D(x)

u(x, c, a) = sup
0≤c≤x

sup
a∈A(c)

u(x, c, a)

with A(c) := {a ∈ R
d | (1 + i)(x− c+ a ·R) ∈ dom Up IP -a.s.}.

Remark 4.3.2. If dom Uc = dom Up = R and Uc and Up are bounded from
above, then the statements in Theorem 4.3.1 are also true. ♦

Now we are able to state the solution of the consumption-investment problem.

Theorem 4.3.3. For the multiperiod consumption-investment problem it
holds:

a) The value functions Vn are strictly increasing, strictly concave and con-
tinuous.

b) The value functions can be computed recursively by the Bellman equa-
tion

VN (x) = Up(x),

Vn(x) = sup
(c,a)∈Dn(x)

{
Uc(c) + IE Vn+1

(
(1 + in+1)(x − c+ a ·Rn+1

)}
.

c) There exist maximizers f∗n of Vn+1 and the strategy (f∗0 , f∗
1 , . . . , f

∗
N−1)

is optimal for the N -stage consumption-investment problem.

Proof. We show that the Structure Assumption (SAN ) is satisfied with

IMn := {v ∈ IB+
b | v is strictly increasing, strictly concave and continuous}

and Δn := Fn. The statements then follow from Theorem 2.3.8.

(i) gN = Up ∈ IMN holds, since Up is a utility function.
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(ii) Now let v ∈ IMn+1. Then

Tnv(x) = sup
(c,a)∈Dn(x)

{
Uc(c) + IE v

(
(1 + in+1)(x− c+ a ·Rn+1)

)}
, x ∈ E

and by Theorem 4.3.1 we obtain Tnv ∈ IMn.
(iii) The existence of maximizers follows from Theorem 4.3.1. �

Remark 4.3.4. The results of Theorem 4.3.3 also hold if the utility functions
Uc and Up satisfy dom Uc = dom Up = R and Uc and Up are bounded from
above (e.g. exponential utilities).

Theorem 4.2.4 can be extended to the consumption-investment problem.

Theorem 4.3.5. Let IERn = 0 for all n = 1, . . . , N . Then the optimal
consumption-investment strategy (f∗0 , f

∗
1 , . . . , f

∗
N−1) is given by

f∗
n(x) = (c∗n(x), a

∗
n(x)) with a∗n(x) ≡ 0,

i.e. the strategy ‘invest all the money in the bond’ is the optimal investment
strategy.

Proof. As in the proof of Theorem 4.2.4 we consider for v ∈ IMn+1 the
optimization problem

Tnv(x) = sup
(c,a)∈Dn(x)

{
Uc(c) + IE v

(
Tn(x, c, a, Rn+1)

)}

≤ sup
0≤c≤x

{
Uc(c) + v

(
(1 + in+1)(x− c)

)}

by using Jensen’s inequality and IERn+1 = 0. Thus a∗n(x) ≡ 0. �

Power Utility

Let us assume that the utility functions are now given by

Uc(x) = Up(x) =
1
γ
xγ , x ∈ [0,∞)

with 0 < γ < 1. Here we obtain the following general results for the
consumption-investment problem.



4.3 Consumption and Investment Problems 97

Theorem 4.3.6. a) The value functions are given by

Vn(x) = dnx
γ , x ≥ 0

where (dn) satisfy the recursion

dδn = γ−δ +
(
(1 + in+1)γvn

)δ
dδn+1, dN =

1
γ

with δ = (1 − γ)−1 and where vn is the value of problem (4.7).
b) The optimal consumption c∗n(x) is given by

c∗n(x) = x(γdn)−δ , x ≥ 0

and the optimal amounts which are invested in the stocks are given by

a∗n(x) = x
(γdn)δ − 1

(γdn)δ
α∗
n, x ≥ 0

where α∗
n is the optimal solution of problem (4.7). The opti-

mal consumption-investment strategy (f∗0 , . . . , f
∗
N−1) is defined by

f∗
n := (c∗n, a

∗
n), n = 0, 1, . . . , N − 1.

Note that the optimal consumption and investment fractions are independent
of the wealth. Moreover, since a∗n(x) = α∗

n

(
x− c∗n(x)

)
, the optimal fractions

of the remaining wealth after consumption which are invested in the assets
are the same as in the problem (4.7) (without consumption). Since dn ≥ dn+1

the optimal consumptions satisfy c∗n(x) ≤ c∗n+1(x), in particular the optimal
fractions of consumption are increasing in n.

Proof. Again we have to find sets IMn and Δn which satisfy the Structure
Assumption (SAN ) of Theorem 2.3.8. We try

IMn := {v : E → R+ | v(x) = bxγ for b > 0}

Δn := {f ∈ Fn | f(x) = (ζx, αx) for α ∈ R
d, ζ ∈ R+}.

We check now

(i) gN = Up is obviously in IMN .
(ii) Let v ∈ IMn+1. Then we obtain

Tnv(x) = sup
(c,a)∈Dn(x)

{
1
γ
cγ + b IE

(
Tn

(
x, c, a, Rn+1

))γ
}

= sup
(c,a)∈Dn(x)

{
1
γ
cγ + b(1 + in+1)γ IE

(
x− c+ a ·Rn+1

)γ
}

.
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If x = 0 then only (c, a) = (0, 0) is admissible. Hence suppose x > 0. We
use the transformation c = ζx and a = α(x − c) = α(1 − ζ)x to obtain

Tnv(x) = xγ sup
0≤ζ≤1

{
1
γ
ζγ + b(1 + in+1)γ(1 − ζ)γ sup

α∈An

IE
(
1 + α · Rn+1

)γ
}

= xγ sup
0≤ζ≤1

{
1
γ
ζγ + b(1 + in+1)γvn(1 − ζ)γ

}

where vn is the value of problem (4.7). Thus, Tnv(x) = b̃xγ ∈ IMn with

b̃ = sup
0≤ζ≤1

{
1
γ
ζγ + b(1 + in+1)γvn(1 − ζ)γ

}

.

Note that b̃ > 0.
(iii) For v ∈ IMn+1 we have to prove the existence of a maximizer in the set

Δn. Since the optimization problem in (ii) separates, it suffices to solve
the consumption problem

sup
0≤ζ≤1

{
1
γ
ζγ + b(1 + in+1)γvn(1 − ζ)γ

}

.

For the solution of this problem we recall the following general result:
The optimization problem

sup
0≤a≤1

g(a) (4.17)

where g(a) := baγ+d(1−a)γ with b > 0, d > 0, has the optimal solution:

a∗ =
bδ

bδ + dδ

g(a∗) = (bδ + dδ)1−γ = (bδ + dδ)
1
δ ,

with δ = (1− γ)−1. Note that a∗ is unique and 0 < a∗ < 1. From (4.17)
we conclude that a maximizer of v ∈ IMn+1 exists in the set Δn.

The statements now follow from Theorem 2.3.8 by induction. From the pre-
ceding considerations we obtain the recursion

dn = sup
0≤ζ≤1

{
1
γ
ζγ + dn+1(1 + in+1)γvn(1 − ζ)γ

}

and by inserting the maximum point

dδn = γ−δ +
(
(1 + in+1)γvn

)δ
dδn+1.

Finally we obtain from the optimization problem (4.17) that
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c∗n(x) = x(γdn)−δ and a∗n(x) = α∗
n

(
x− c∗n(x)

)
= α∗

n

(
1 − (γdn)−δ

)
x

which concludes the proof. �

Logarithmic Utility

Here we assume that both utility functions are of the form

Uc(x) = Up(x) = log x, x > 0.

The proof of the following result is similar to the proof for the power utility.

Theorem 4.3.7. a) The value functions are given by

Vn(x) = (N − n+ 1) log x+ dn, x > 0

with dn ∈ R.
b) The optimal consumption c∗n(x) is given by

c∗n(x) :=
x

N − n+ 1
, x > 0

and the optimal amounts which are invested in the stocks are given by

α∗
n(x) := x

N − n

N − n+ 1
α∗
n, x > 0

where α∗
n is the optimal solution of (4.11). The optimal consumption-

investment strategy (f∗0 , . . . , f
∗
N−1) is defined by f∗

n := (c∗n, a
∗
n) for

n = 0, 1, . . . , N − 1.

Proof. For the Structure Assumption (SAN ) we choose

IMn := {v : E → R | v(x) = (N − n+ 1) log x+ b for b ∈ R},

Δn := {f ∈ Fn | f(x) = (ζx, αx) for α ∈ R
d, ζ ∈ R+}.

We have to check the following conditions:

(i) Obviously gN (x) = log x ∈ IMN .
(ii) Let v ∈ IMn+1. Then we obtain

Tnv(x) = sup
(c,a)∈Dn(x)

{
log c+ (N − n) IE log

(
Tn

(
x, c, a, Rn+1

))
+ b

}

= sup
(c,a)∈Dn(x)

{
log c+ (N − n) log(1 + in+1) + b

+(N − n) IE log
(
x− c+ a · Rn+1

)}
.
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Again we use the transformation c = ζx and a = α(x − c) = α(1 − ζ)x
to obtain

Tnv(x) = sup
0≤ζ≤1

{
log(ζx) + (N − n) log

(
(1 − ζ)x

)
+ (N − n)vn

+(N − n) log(1 + in+1) + b
}

where vn is the value of problem (4.11).
Thus, Tnv(x) = (N − n+ 1) log x+ b̃ ∈ IMn with

b̃ = (N−n)
(

log(N−n)+vn+log(1+in+1)
)
−(N−n+1) log(N−n+1)+b.

(iii) The existence of a maximizer in the setΔn follows from the considerations
in (ii). By induction we finally obtain

c∗n(x) =
x

N − n+ 1

a∗n(x) = α∗
n

(
x− c∗n(x)

)
= x

N − n

N − n+ 1
α∗
n

and the statements are shown. �

4.4 Optimization Problems with Regime Switching

A popular way of allowing random variations of the return distributions over
time is to include an environment process in the form of a Markov chain
which determines the return distributions. Sometimes these models are called
regime switching models or Markov-modulated models. The idea is that a
Markov chain can model the changing economic conditions which determine
the distribution of the relative risk process. This underlying Markov chain
can be interpreted as an environment process which collects relevant factors
for the stock price dynamics like technical progress, political situations, law
or natural catastrophes. Statistical investigations have shown a rather good
fit of these kind of models.
In what follows we denote the external Markov chain by (Yn) and call it the
environment process. We assume that (Yn) is observable by the agent and
has finite state space EY . We consider a financial market with one riskless
bond (with interest rate in = i) and d risky assets with relative risk process
(Rn) = (R1

n, . . . , R
d
n). Here we assume that the distribution of Rn+1 depends

on Yn. More precisely, we assume that (Rn, Yn) is a stationary Markov process
and that the following conditional independence holds:
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IP
(
Rn+1 ∈ B, Yn+1 = k|Yn = j, Rn

)
(4.18)

= IP
(
Rn+1 ∈ B, Yn+1 = k|Yn = j

)

= IP
(
Rn+1 ∈ B|Yn = j) · IP

(
Yn+1 = k|Yn = j

)
=: Qj(B)pjk

for B ∈ B(Rd), j, k ∈ EY . The quantities pjk are the transition probabilities
of the Markov chain (Yn) and Qj is the distribution of Rn+1 given Yn = j
(independent of n). In the following, let R(j) be a random variable with
distribution Qj , i.e. IP(R(j) ∈ B) = Qj(B) = IP(Rn+1 ∈ B|Yn = j). Given
(Yn), the random variables R1, R2, . . . are independent and given Yn, the
random variables Rn+1 and Yn+1 are independent.
We investigate the consumption-investment problem as introduced in the last
section. The filtration (Fn) to which portfolio strategies have to be adapted
is here given by

Fn := σ(S0, . . . , Sn, Y0, . . . , Yn).

Note that Fn = σ(R1, . . . , Rn, Y0, . . . , Yn). Throughout this section we im-
pose the following assumption on the financial market (cf. Section 4.2).

Assumption (FM):

(i) There are no arbitrage opportunities in the market, i.e. for all j ∈ EY
and all φ ∈ R

d it holds:

φ · R(j) ≥ 0 IP -a.s. ⇒ φ · R(j) = 0 IP -a.s.

(ii) IE ‖R(j)‖ <∞ for all j ∈ EY .

As in Remark 3.1.6 it is possible to show that the first assumption is indeed
equivalent to the absence of arbitrage if all states of the Markov chain are
reached with positive probability.
We assume again that the utility functions Uc and Up satisfy dom Uc =
dom Up = [0,∞). The wealth process (Xn) evolves as follows

Xn+1 = (1 + i)
(
Xn − cn + φn · Rn+1

)

where (c, φ) = (cn, φn) is a consumption-investment strategy, i.e. φn and cn
are (Fn)-adapted and 0 ≤ cn ≤ Xn. The consumption-investment problem
with regime switching is then defined for (X0, Y0) = (x, j) by

⎧
⎪⎪⎨

⎪⎪⎩

IExj

[∑N−1
n=0 β

nUc(cn) + βNUp(X
c,φ
N )

]
→ max

(c, φ) is a consumption-investment strategy with
Xc,φ
N ∈ dom Up IP -a.s.

(4.19)

Here β ∈ (0, 1] is a discount factor. Because of the Markovian structure
of problem (4.19) it can be shown as in Section 4.2 that the optimal
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consumption-investment strategy belongs to the set of all Markov strate-
gies (cn, φn) where φn and cn depend only on Xn and Yn (see e.g. Theorem
2.2.3). Thus, problem (4.19) can be solved by the following stationary Markov
Decision Model (cf. Section 4.3):

• E := [0,∞) × EY where (x, j) ∈ E denotes the wealth and environment
state respectively,

• A := R+ ×R
d where a ∈ R

d is the amount of money invested in the risky
assets and c ∈ R+ the amount which is consumed,

• D(x, j) is given by

D(x, j) := {(c, a) ∈ A | 0 ≤ c ≤ x and (1 + i)(x− c+ a ·R(j)) ≥ 0 IP -a.s.},

• Z := [−1,∞)d × EY where (z, k) ∈ Z denotes the relative risk and the
new environment state,

• T
(
(x, j), (c, a), (z, k)

)
:=

(
(1 + i)

(
x− c+ a · z

)
, k

)
,

• QZ(B × {k}|(x, j), (a, c)) := Qj(B)pjk , for j, k ∈ EY and B ∈ B(Rd),
• r

(
(x, j), (c, a)

)
:= Uc(c),

• g(x, j) := Up(x),
• β ∈ (0, 1].

Note that the disturbances are given by Zn+1 = (Rn+1, Yn+1). The con-
sumption-investment problem can now be solved by this stationary Markov
Decision Model. The value functions are defined by

Jn(x, j) := sup
π

IE
π
xj

[
n−1∑

k=0

βkUc
(
ck(Xk, Yk)

)
+ βnUp(Xn)

]

, (x, j) ∈ E

where the supremum is taken over all policies π = (f0, . . . , fN−1) with

fn(Xn, Yn) :=
(
cn(Xn, Yn), an(Xn, Yn)

)
.

The general solution of the consumption-investment problem with regime
switching is contained in the next theorem.

Theorem 4.4.1. a) The value functions x �→ Jn(x, j) are strictly increasing,
strictly concave and continuous.

b) The value functions can be computed recursively by the Bellman equation

J0(x, j) = Up(x),

Jn+1(x, j) = sup
(a,c)

{
Uc(c) + β

∑

k∈EY

pjk

∫
Jn

(
(1 + i)

(
x− c+ a · z

)
, k

)
Qj(dz)

}
.

c) There exist maximizers f∗
n of Jn−1 and (f∗

N , . . . , f
∗
1 ) is optimal for the

N -stage consumption-investment problem.
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Proof. It is easily shown by using part (ii) of Assumption (FM) that the sta-
tionary Markov Decision Model has an upper bounding function
b(x, j) := 1+x (cf. Proposition 4.2.1). Then the Structure Assumption (SAN )
is satisfied for the sets

IM :=
{
v ∈ IB+

b | x �→ v(x, j) is strictly increasing,

strictly concave and continuous for all j ∈ EY
}

and Δ := F . The proof follows along the same lines as the proof of Theorem
4.3.3. In particular the existence of a maximizer of v ∈ IM follows from
Assumption (FM) (cf. Theorem 4.3.1) since for v ∈ IM the function

x �→ β
∑

k∈EY

pjkv(x, k)

is strictly increasing, concave and continuous for all j. The optimization prob-
lem at stage n then reduces to the problem in Theorem 4.3.1. Finally we
obtain all statements from Theorem 2.3.8. �

Power Utility

Let us now assume that the consumption and the terminal wealth are evalu-
ated by the power utility, i.e.

Uc(x) = Up(x) =
1
γ
xγ , x ∈ [0,∞)

with 0 < γ < 1. In order to formulate the main result we consider the generic
one-period optimization problem

v(j) := sup
α∈A(j)

IE

(
1 + α ·R(j)

)γ
, j ∈ EY (4.20)

where A(j) := {α ∈ R
d | 1 + α · R(j) ≥ 0 IP -a.s.}. There exists an optimal

solution α∗(j) of problem (4.20) in view of (FM).

Theorem 4.4.2. a) The value functions are given by

Jn(x, j) = dn(j)xγ , x ≥ 0, j ∈ EY

where the dn(j) > 0 satisfy the recursion

d0(j) = γ−1

dδn+1(j) = γ−δ +
(
β(1 + i)γv(j)

)δ( ∑

k∈EY

pjkdn(k)
)δ
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with δ := (1 − γ)−1 and v(j) is the value of problem (4.20).
b) The optimal consumption c∗n(x, j) is given by

c∗n(x, j) = x
(
γdn(j)

)−δ

and the optimal amounts which are invested in the stocks are given by

a∗n(x, j) =
(
x− c∗n(x, j)

)
α∗(j)

where α∗(j) is the optimal solution of (4.20). The optimal consumption-
investment strategy (f∗

N , . . . , f
∗
1 ) is then defined by

f∗
n(x, j) :=

(
c∗n(x, j), a

∗
n(x, j)

)
, (x, j) ∈ E.

The proof follows along the same lines as the proof of Theorem 4.3.6. Note
that the Markov Decision Model is stationary in this section.

Remark 4.4.3. If we consider the same optimization problem without con-
sumption, we obtain

Jn(x, j) = dn(j)xγ , (x, j) ∈ E

and the sequence dn(j) > 0 is given recursively by d0(j) ≡ γ−1 and

dn+1(j) = β(1 + i)γv(j)
∑

k∈EY

pjkdn(k), j ∈ EY .

This result can be derived analogously to Theorem 4.4.2. ♦

In this model it is now rather interesting to do some sensitivity analysis
with respect to the input parameters and in particular with respect to the
environment process (Yn). From now on we assume that we have only one
stock and that the support of R(j) is independent from j. Then A(j) = Ã
and the optimization problem (4.20) reduces to

v(j) := sup
α∈Ã

IE

(
1 + α ·R(j)

)γ
, j ∈ EY . (4.21)

Again the optimal solution of (4.21) is denoted by α∗(j). In the following
Lemma we use the increasing concave order for the return distributions (cf.
Appendix B.3):

Theorem 4.4.4. If Qj ≤icv Qk, then α∗(j) ≤ α∗(k), i.e. the fraction
which is invested in the stock in environment state k is larger than the
invested fraction in environment state j.
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Proof. We can use Proposition 2.4.16 to prove the statement. In the proof
of the previous theorem we have seen that the consumption and investment
decision separates. Here we are only interested in the investment decision.
Thus we have to show that

h(α) :=
∫

(1 + αy)γQk(dy) −
∫

(1 + αy)γQj(dy)

is increasing in α ∈ Ã. This can be done by computing the derivative

h′(α) = γ

∫
(1 + αy)γ−1yQk(dy) − γ

∫
(1 + αy)γ−1yQj(dy).

Then h′(α) ≥ 0 since Qj ≤icv Qk and

y �→ y

(1 + αy)1−γ

is increasing and concave for α ∈ Ã. �

For the next lemma we need the notion of stochastic monotonicity of the
Markov chain (Yn) which is explained in Appendix B.3. Moreover to simplify
the notation we assume that EY = {1, . . . ,m}.

Theorem 4.4.5. Let (Yn) be stochastically monotone and suppose that
Q1 ≤icv Q2 ≤icv . . . ≤icv Qm.

a) Then Jn(x, j) is increasing in j and c∗n(x, j) is decreasing in j.
b) If α∗(j) ≥ 0 for j ∈ EY then a∗n(x, j) is increasing in j.

Proof. a) According to Theorem 4.4.2 it suffices to show that dn(j) is in-
creasing in j. For n = 0 this is clear. Now suppose the statement holds for
n. Due to the recursion for dn+1(j) we have to show that

j �→
∫ (

1 + α∗(j)y
)γ
Qj(dy)

m∑

k=1

pjkdn(k) (4.22)

is increasing in j. By the induction hypothesis and the assumption that
(Yn) is stochastically monotone we have that

j �→
m∑

k=1

pjkdn(k)

is increasing in j. Moreover, the first factor in (4.22) is increasing in j, since
α∗(j) is increasing by Theorem 4.4.4 and y �→

(
1 + α∗(j)y

)γ is increasing
and concave. Note that both factors are non-negative.
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b) By Theorem 4.4.2 we have

a∗n(x, j) =
(
x− c∗n(x, j)

)
α∗(j).

Thus the statement follows from a). �

4.5 Portfolio Selection with Transaction Costs

We consider now the utility maximization problem of Section 4.2 under pro-
portional transaction costs. For the sake of simplicity we restrict to one bond
and one risky asset. If an additional amount of a (positive or negative) is
invested in the stock, then proportional transaction costs of c|a| are incurred
which are paid from the bond position. We assume that 0 ≤ c < 1. In order
to compute the transaction costs, not only is the total wealth interesting,
but also the allocation between stock and bond matters. Thus, in contrast
to the portfolio optimization problems so far, the state space of the Markov
Decision Model is two-dimensional and consists of the amounts held in the
bond and in the stock. We assume that x = (x0, x1) ∈ E := R

2
+ where x0

and x1 are the amounts held in the bond and stock respectively. Note that
short-sellings are not allowed. The action space is A := R

2
+ and (a0, a1) ∈ A

denotes the amount invested in the bond and stock respectively after trans-
action. Since transaction costs have to be subtracted we obtain the following
set of admissible bond and stock holdings after transaction:

D(x0, x1) = {(a0, a1) ∈ A | a0 + a1 ≤ x0 + x1 − c|a1 − x1|}. (4.23)

The independent disturbances (Zn) are given by the relative price changes
(R̃n) of the stock. Recall that R̃n+1 = Sn+1/Sn. Thus, the transition function
at time n is given by

Tn
(
x, (a0, a1), zn+1

)
:=

(
a0(1 + in+1), a1zn+1

)
. (4.24)

The one-stage reward is rn ≡ 0 and gN (x0, x1) := U(x0 + x1) where U is the
utility function of the investor with domU = [0,∞). The data of the Markov
Decision Model is summarized as follows:

• E := R
2
+ where x = (x0, x1) ∈ E denotes the amount invested in bond

and stock,
• A := R

2
+ where (a0, a1) ∈ A denotes the amount invested in bond and

stock after transaction,
• D(x) is given in (4.23),
• Z := R+ where z ∈ Z denotes the relative price change of the stock,
• Tn is given by (4.24),
• QZn (·|x, a0, a1) := the distribution of R̃n+1 (independent of (x, a0, a1)),
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• rn ≡ 0,
• gN(x) := U(x0 + x1), x = (x0, x1) ∈ E.

The General Model with Transaction Costs

The terminal wealth problem with transaction costs is now

sup
π

IE
π
x U(X0

N +X1
N ) (4.25)

where X0
N and X1

N are the terminal amounts in the bond and stock, respec-
tively. Note that transaction costs are considered through the set of admissible
actions. We make the following assumptions throughout this section.

Assumption (FM):

(i) The utility function U is homogeneous of degree γ, i.e. U(λx) = λγU(x)
for all λ > 0 and x ≥ 0.

(ii) IE ‖R̃n‖ <∞ for all n = 1, . . . , N .

Obviously condition (FM) (i) is fulfilled for the power utility (see also Remark
4.5.3). Note that we allow for arbitrage opportunities in the financial market.
However since short-sellings are excluded, the set of admissible actions is
compact and we will see that an optimal portfolio strategy exists. First we
obtain:

Proposition 4.5.1. The function b(x) := 1 + x0 + x1, x ∈ E is an upper
bounding function for the Markov Decision Model.

Proof. We have to check conditions (i)–(iii) of Definition 2.4.1. Part (i) is
obvious. Part (ii) follows since any concave function can be bounded from
above by an affine-linear function and (iii) holds since

IE b
(
a0(1 + in+1), a1R̃n+1

)
= 1 + a0(1 + in+1) + a1 IE R̃n+1 ≤ d0b(x)

for all (a0, a1) ∈ D(x) and for some d0 > 0. �

In what follows we will call a function v : E → R homogeneous of degree γ if
it satisfies

v(λx0, λx1) = λγv(x0, x1)

for all λ > 0 and (x0, x1) ∈ E. Let us consider the set

IM :=
{
v ∈ IB+

b | v is increasing, concave and homogeneous of degree γ
}

where increasing means that v is increasing in each component. For v ∈ IM
we have
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Tnv(x) = sup
(a0,a1)∈D(x)

IE v
(
a0(1 + in+1), a1R̃n+1

)
.

Since v is increasing, the supremum is attained at the upper boundary of
D(x) (see Figure 4.2) which is given by the function (note that transaction
costs are paid from the bond position)

h(x, a1) :=
{
x0 + (1 − c)(x1 − a1), if 0 ≤ a1 ≤ x1

x0 + (1 + c)(x1 − a1), if x1 < a1 ≤ x1 + x0
1+c

.

Fig. 4.2 Admissible stock and bond holdings after transaction.

Thus, we can also write

D(x0, x1) =
{
(a0, a1) ∈ A

∣
∣
∣ a0 ≤ h(x, a1), 0 ≤ a1 ≤ x1 +

x0

1 + c

}

and the operator Tn is given by

Tnv(x) = sup
0≤a1≤x1+

x0
1+c

IE v
(
h(x, a1)(1 + in+1), a1R̃n+1

)
, x = (x0, x1) ∈ E.

When we have a maximum point a∗1 of this problem, then

f1
n(x) = a∗1 and f0

n(x) = h(x, a∗1)

give the optimal amounts invested in the stock and the bond after transac-
tion, respectively. In particular this means that it is enough to determine the
amount invested in the stock after transaction and this is what we will do in
the sequel. We denote this quantity by a instead of a1.
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Proposition 4.5.2. The Structure Assumption (SAN) is satisfied with the
sets IMn := IM and Δn := Δ ∩ Fn where Δ consists of all functions
f : E → R+ such that there exist constants 0 ≤ q− ≤ q+ ≤ ∞ and mea-
surable functions f+, f− : E → R+ with

f(x0, x1) =

⎧
⎨

⎩

f+(x0, x1), if x1
x0
> q+

x1, if q− ≤ x1
x0

≤ q+
f−(x0, x1), if x1

x0
< q−

(4.26)

and f+(x0, x1) < x1, f−(x0, x1) > x1.

Note that f(x0, x1) ∈ Δn describes the amount invested in the stock if the
state (x0, x1) ∈ E is given. We will later show that the optimal policy is
characterized by sell-, buy- and hold regions which are defined by cones.

Proof. Part (i) of (SAN ) is satisfied since gN (x) = U(x0 + x1) ∈ IM . In what
follows suppose v ∈ IM . For fixed n define

L(x, a) := IE v
(
h(x, a)(1 + in+1), aR̃n+1

)
, 0 ≤ a ≤ x1 +

x0

1 + c
.

Note that a �→ L(x, a) is concave. We have to show that

Tnv(x) = sup
0≤a≤x1+

x0
1+c

L(x, a) ∈ IM

and that a maximizer exists. Let us denote the (largest) maximizer of the
right-hand side by f∗(x) (if it exists). The proof of the existence of f∗(x) and
its form is now structured by the following steps.

(i) For λ > 0 and x ∈ E we have due to the homogeneity of v and the
piecewise linearity of h:

Tnv(λx) = sup
0≤a≤λx1+

λx0
1+c

L(λx, a) = λγ sup
0≤a′≤x1+

x0
1+c

L(x, a′)

where λa′ = a. This implies

f∗(λx) = λf∗(x). (4.27)

(ii) Next we consider the special state x = (0, 1), i.e. one unit in the stock
and nothing in the bond. Here we obtain

Tnv(0, 1) = sup
0≤a≤1

IE v
(
(1 − c)(1 − a)(1 + in+1), aR̃n+1

)
.

Since we have to maximize a concave function on the compact interval
[0, 1], a maximum point exists and we denote by a+ the largest maximum
point of this problem. Thus we have
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f∗(0, 1) = a+.

Moreover, we define

q+ :=
{ a+

(1−c)(1−a+)
if a+ < 1

∞ if a+ = 1.
(4.28)

We can also write
q+ =

a+

h
(
(0, 1), a+

)

which shows that q+ is the optimal stock to bond ratio after transaction
in state x = (0, 1).

(iii) We claim now that for any x ∈ E with x1
x0
> q+ it holds that

f∗(x) =
(
x1 +

x0

1 − c

)
a+ =

x0 + (1 − c)x1

1 + (1 − c)q+
q+ < x1

and
(
h(x, f∗(x)), f∗(x)

)
∈ L1 := {x ∈ R

2
+ | x1 = q+x0}.

Fig. 4.3 Construction of the optimal solution.

The proof is as follows: Consider the point x′ :=
(
0, x1 + x0

1−c
)
. Due to

property (4.27) we obtain

f∗(x′) = x′1f
∗(0, 1) = x′1a+ =

(
x1 +

x0

1 − c

)
a+.

We will show that f∗(x) and f∗(x′) are equal. For this instance, note
first that x1

x0
> q+ implies f∗(x′) < x1 and that we have

h(x′, a) = x0 + (1 − c)(x1 − a)
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on the interval 0 ≤ a ≤ x1 + x0
1−c . On the other hand we have for x ∈ E:

h(x, a) =
{
x0 + (1 − c)(x1 − a), if 0 ≤ a ≤ x1

x0 + (1 + c)(x1 − a), if x1 < a ≤ x1 + x0
1+c .

Thus, h(x′, a) = h(x, a) on 0 ≤ a ≤ x1 and h(x′, a) ≥ h(x, a) on
x1 < a ≤ x1 + x0

1+c
. Since L(x′, a) attains its maximum point on the

interval 0 ≤ a ≤ x1 and due to the fact that v is increasing we obtain

f∗(x) = f∗(x′) =
(
x1 +

x0

1 − c

)
a+

which implies the first part of the statement.
The fact that

(
h(x, f∗(x)), f∗(x)

)
∈ L1 can be verified by directly in-

serting the expression for f∗(x).
Note that

(
h(x, f∗(x)), f∗(x)

)
is in the intersection of L1 and the line

through x and x′ (see Figure 4.3).
(iv) As in step (ii) we consider the special state x = (1, 0), i.e. one unit in

the bond and nothing in the stock. Here we obtain

Tnv(1, 0) = sup
0≤a≤ 1

1+c

IE v
(
(1 − (1 + c)a)(1 + in+1), aR̃n+1

)
.

We denote by a− the largest maximum point of this problem. Thus we
have f∗(1, 0) = a−. Moreover, we define

q− :=
{ a−

1−(1+c)a− , if a− < 1
1+c

∞, if a− = 1
1+c .

(4.29)

We can also write
q− =

a−
h
(
(1, 0), a−

)

which shows that q− is the optimal stock to bond ratio after transaction.
(v) As in step (iii) we can show that for any x ∈ E with x1

x0
< q− it holds

that

f∗(x) =
(
x0 + (1 + c)x1

)
a− =

x0 + (1 + c)x1

1 + (1 + c)q−
q− > x1

and
(
h(x, f∗(x)), f∗(x)

)
∈ L2 := {x ∈ R

2
+ | x1 = q−x0}.

(vi) We show that q− ≤ q+. Suppose this is not the case, then there exists
an x ∈ E such that

q+ <
x1

x0
< q−.

But following (iii) and (v) this would imply that f∗(x) < x1 < f∗(x)
which is a contradiction. Thus, we must have q− ≤ q+.
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(vi) Finally we have to investigate the case x ∈ E and q− < x1
x0

< q+.
Using similar arguments as before we obtain here that f∗(x) = x1, i.e.
no transaction is done.

All parts together prove that a maximizer f∗(x) exists and is of the form
(4.26). It remains to show that Tnv ∈ IM . Theorem 2.4.14 implies that Tnv is
increasing, since D(x) ⊂ D(x′) for x ≤ x′, gN (x) = U(x0 + x1) is increasing
by assumption and x �→ L(x, a) is increasing for all a. The concavity of
Tnv can be shown with Theorem 2.4.19. For the homogeneity, note that the
considerations in (i)–(vi) imply that

Tnv(x0, x1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IE v
(
f∗(x)q−1

+ (1 + in+1), f∗(x)R̃n+1

)
, if x1

x0
> q+

IE v
(
x0(1 + in+1), x1R̃n+1

)
, if q− ≤ x1

x0
≤ q+

IE v
(
f∗(x)q−1

− (1 + in+1), f∗(x)R̃n+1

)
, if x1

x0
< q−

with f∗(x0, x1) = (x1 + x0
1−c )a+ in the first case and in the second case

f∗(x0, x1) = (x0 + (1 + c)x1)a−. Since v is homogeneous of degree γ, we
obviously obtain that Tnv is homogeneous of degree γ. �

Remark 4.5.3. There is another version of Proposition 4.5.2. Assume that the
given utility function U : (0,∞) → R is differentiable and the derivative of
U is homogeneous of degree γ. The power and logarithmic utility functions
satisfy this assumption. Then Proposition 4.5.2 remains valid with the same
Δn and

IM := {v ∈ IB+
b | v is increasing, concave, differentiable and the gradient of

v is homogeneous of degree γ}.

♦

The next theorem summarizes the result for the terminal wealth problem
with transaction costs. In order to state it we define for v ∈ IM

q+(v) := argmaxq≥0 IE v
( 1 + in+1

1 + q(1 − c)
,

qR̃n+1

1 + q(1 − c)

)
(4.30)

q−(v) := argmaxq≥0 IE v
( 1 + in+1

1 + q(1 + c)
,

qR̃n+1

1 + q(1 + c)

)
. (4.31)

With the help of these quantities the optimal investment strategy can be
characterized by three regions: a ‘buy’ region, a ‘sell’ region and a region of
‘no transaction’.
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Theorem 4.5.4. For the terminal wealth problem with transaction costs
it holds:

a) The value functions Vn are concave, increasing and homogeneous of
degree γ and for x = (x0, x1) ∈ E given by

VN (x) = U(x0 + x1)
Vn(x) = sup

0≤a≤x1+
x0
1+c

IE Vn+1

(
h(x, a)(1 + in+1), aR̃n+1

)
.

b) The optimal amount invested in the stock at time n, is given by

f∗
n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x0+(1−c)x1
1+(1−c)q+(Vn+1)

q+(Vn+1), if x1
x0
> q+(Vn+1)

x1, if q−(Vn+1) ≤ x1
x0

≤ q+(Vn+1)
x0+(1+c)x1

1+(1+c)q−(Vn+1)
q−(Vn+1), if x1

x0
< q−(Vn+1)

(4.32)
and the optimal amount invested in the bond at time n is equal to
h(x, f∗n(x)), x ∈ E.

Proof. The proof follows directly from Proposition 4.5.2 and Theorem 2.3.8.
Note that for v ∈ IM the optimization problem

sup
q≥0

IE v
( 1 + in+1

1 + q(1 − c)
,

qR̃n+1

1 + q(1 − c)

)

is equivalent to

sup
0≤a≤1

IE v
(
(1 − c)(1 − a)(1 + in+1), aR̃n+1

)

when we use the transformation

q =
a

(1 − c)(1 − a)
⇔ 1

1 + q(1 − c)
= 1 − a ⇔ q

1 + q(1 − c)
=

a

1 − c
.

An analogous statement holds for q−. �

The optimal investment policy from Theorem 4.5.4 has the following inter-
esting properties:

(i) It holds that

f∗n(x)
h
(
x, f∗

n(x)
) =

⎧
⎪⎪⎨

⎪⎪⎩

q+(Vn+1), if x1
x0
> q+(Vn+1)

x1
x0
, if q−(Vn+1) ≤ x1

x0
≤ q+(Vn+1)

q−(Vn+1), if x1
x0
< q−(Vn+1)

(4.33)
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i.e. the optimal stock to bond ratio after transaction is q+(Vn+1) if
x1
x0

> q+(Vn+1) and q−(Vn+1) if x1
x0

< q−(Vn+1). If the stock to bond
ratio is between the two levels, then no transaction is taken. This is illus-
trated in Figure 4.4. In other words, if the current stock to bond holding

Fig. 4.4 Optimal trading regions.

x1
x0

is less than q−(Vn+1), then purchase stocks until the stock to bond
holding equals q−(Vn+1). If the current stock to bond holding is greater
than q+(Vn+1), then sell stocks until the stock to bond holding equals
q+(Vn+1). If the current stock to bond holding lies between the two lim-
its, do not trade.

(ii) In case we have no transaction costs, i.e. c = 0, we obtain q+(v) =
q−(v) = α∗

n

1−α∗
n

where α∗
n is given by (4.7) in case 0 < α∗

n < 1. Note that
in Section 4.2 we do not have excluded short-sellings.

Binomial Model with Transaction Costs

Finally let us compute the optimal portfolio strategy in a one-period bino-
mial model explicitly (i.e. N = 1). Here we use the power utility function
U(x) = 1

γ
xγ with 0 < γ < 1 and we skip the time index on the bond and

stock return rates to ease notation. Note that R̃ takes only the two values u
and d with probability p and (1 − p). Moreover, we assume that

d < (1 + i)(1 − c) =: c−, c+ := (1 + i)(1 + c) < u.
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We have to derive the maximum points q+ := q+(v) and q− := q−(v) in (4.30)
and (4.31), respectively for v(x0, x1) := 1

γ
(x0 + x1)γ , (x0, x1) ∈ E. Thus, we

have to determine

q+ := argmaxq≥0 p
( (1 + i) + qu

1 + q(1 − c)

)γ
+ (1 − p)

((1 + i) + qd

1 + q(1 − c)

)γ

q− := argmaxq≥0 p
( (1 + i) + qu

1 + q(1 + c)

)γ
+ (1 − p)

((1 + i) + qd

1 + q(1 + c)

)γ
.

We obtain by setting the derivative with respect to q equal to zero that

q− =
((1 + i)(1 −M−)

uM− − d

)+

with

M− :=
(

(1 − p)(c+ − d)
p(u − c+)

)δ

and δ = (1 − γ)−1. Analogously we obtain

q+ =
((1 + i)(1 −M+)

uM+ − d

)+

with

M+ :=
(

(1 − p)(c− − d)
p(u − c−)

)δ
.

It is not difficult to see that q− < q+ and that q+ is increasing in c and
q− is decreasing in c, i.e. if the transaction costs get large, the region of no
transaction also gets larger. Depending on p the sell-, buy- and no transaction
regions have different sizes. In order to discuss this issue, we introduce the
following definitions:

p1
− :=

c− − d

u − d

p1
+ :=

c+ − d

u − d

p2
− :=

u1−γ(c− − d)
u1−γ(c− − d) + d1−γ(u − c−)

p2
+ :=

u1−γ(c+ − d)
u1−γ(c+ − d) + d1−γ(u − c+)

.

Note that we always have p1
− ≤ p1+ and p2

− < p2
+. Moreover, we assume that

(c+ − d)(u − c−)d1−γ ≤ u1−γ(c− − d)(u − c+)
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which is certainly satisfied for small c. This implies p1
+ ≤ p2

−. Altogether we
have

p1
− ≤ p1+ ≤ p2

− < p2
+.

We distinguish the following cases

Fig. 4.5 Limits q+ and q− as a function of the transaction costs c.

(i) p ≤ p1
−: In this case q+ = 0 and there is only a sell region.

(ii) p1
− < p ≤ p1

+: Here q+ ∈ (0,∞) and q− = 0, i.e. there are only a sell and
a no transaction region.

(iii) p1
+ < p < p2

−: Here q+, q− ∈ (0,∞) and there are all three regions.
(iv) p2

− ≤ p < p2
+: Here q+ = ∞ and q− ∈ (0,∞), i.e. there are only a buy

and a no transaction region.
(v) p ≥ p2

+: Here q− = ∞ and there is only a buy region.

Note that in case c+ ≥ u we always have p1
+ ≥ 1 and thus the optimal

strategy is not to buy stocks at all. The intuition is as follows: An increase of
1 Euro in the stock yields a (1+c) Euro reduction in the bond. The marginal
investment in the stock yields either u Euro or d Euro which is in each case
not better than the return c+ we get from a (1 + c) Euro investment in the
bond. If d ≥ c−, then p2− ≤ 0 and a similar argument yields that it is optimal
not to buy bonds at all.
Figure 4.5 shows the limits q+ and q− as a function of the transaction costs
c. As data we have chosen p = 0.55,u = 1.2, i = 0,d = 0.8 and γ = 0.2. Note
that in case c = 0, i.e. we have no transaction costs, q+ = q− = α∗

1−α∗ = 1.658
(cf. (4.9)).
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4.6 Dynamic Mean-Variance Problems

An alternative approach towards finding an optimal investment strategy was
introduced by Markowitz in 1952 and indeed a little bit earlier by de Finetti.
In contrast to utility functions the idea is now to measure the risk by the port-
folio variance and incorporate this measure as follows: Among all portfolios
which yield at least a certain expected return (benchmark), choose the one
with smallest portfolio variance. The single-period problem was solved in the
1950s. It still has great importance in real-life applications and is widely ap-
plied in risk management departments of banks. The problem of multiperiod
portfolio-selection was proposed in the late 1960s and early 1970s and has
been solved recently. The difficulty here is that the original formulation of the
problem involves a side constraint. However, this problem can be transformed
into one without constraint by the Lagrange multiplier technique. Then we
solve this stochastic Lagrange problem by a suitable Markov Decision Model.
We use the same non-stationary financial market as in Section 4.2 with inde-
pendent relative risk variables. Our investor has initial wealth x0 > 0. This
wealth can be invested into d risky assets and one riskless bond. How should
the agent invest over N periods in order to find a portfolio with minimal
variance which yields at least an expected return of μ?
For the mathematical formulation of the problem we restrict without loss
of generality to Markov portfolio strategies and consider a non-stationary
Markov Decision Model with the following data (where rn and gN will be
specified later):

• E := R where x ∈ E denotes the wealth,
• A := R

d where a ∈ A is the amount of money invested in the risky assets,
• Dn(x) := A,
• Z := [−1,∞)d where z ∈ Z denotes the relative risk,
• Tn(x, a, z) := (1 + in+1)

(
x+ a · z

)
,

• QZn (·|x, a) := distribution of Rn+1 (independent of (x, a)).

The mean-variance problem is given by

(MV )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Varπx0
[XN ] → min

IE
π
x0

[XN ] ≥ μ

π ∈ FN .

We will also introduce the problem where the expected return has to be equal
to μ:

(MV=)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Varπx0
[XN ] → min

IE
π
x0

[XN ] = μ

π ∈ FN .



118 4 Financial Optimization Problems

In order to obtain a well-defined problem we make the following assumptions
throughout this section.

Assumption (FM):

(i) IE ‖Rn‖ <∞ and IERn �= 0 for all n = 1, . . . , N .
(ii) The covariance matrix of the relative risk process

(
Cov(Rjn, R

k
n)

)

1≤j,k≤d

is positive definite for all n = 1, . . . , N .
(iii) x0S

0
N < μ.

If IERn = 0 for all n = 1, . . . , N then
(
Xn/S

0
n

)
is a martingale and there exists

no strategy for (MV) with IE
π
x0

[XN ] ≥ μ in view of assumption x0S
0
N < μ.

Since Var[a ·Rn] = aCov(Rin, R
j
n)a

	 assumption (ii) means that the financial
market is non-redundant, i.e. there does not exist an asset which can be
replicated by the others. Assumption (iii) excludes a trivial case: If (iii) is not
satisfied, then an expected return of at least μ can be achieved by investing
in the riskless asset only. This strategy of course has a variance of zero and
is thus optimal. Note that we do not exclude arbitrage opportunities here.
The next lemma reveals that problems (MV) and (MV=) are indeed equiva-
lent.

Lemma 4.6.1. A strategy π∗ is optimal for (MV) if and only if π∗ is optimal
for (MV=).

Proof. Suppose that π∗ is optimal for (MV). We will then show that nec-
essarily IE

π∗
x0

[XN ] = μ by contradiction. Suppose that IE
π∗
x0

[XN ] > μ. Define
π̂ := απ∗ = (αf∗

0 , . . . , αf
∗
N−1) with

α :=
μ− x0S

0
N

IE
π∗
x0

[XN ] − x0S0
N

.

Obviously π̂ ∈ FN and 0 < α < 1. Since the wealth process of π̂ satisfies

Xn+1 =
(
1 + in+1

)(
Xn + αf∗n(Xn) ·Rn+1

)

=
(
1 + in+1

)(
(1 + in)

(
Xn−1 + αf∗n−1(Xn−1) · Rn

)
+ αf∗

n(Xn) ·Rn+1

)

= S0
n+1x0 + α

n∑

j=0

n+1∏

k=j+1

(1 + ik)f∗j (Xj) ·Rj+1

we obtain
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IE
π̂
x0

[XN ] = S0
Nx0 + α IE

π̂
x0

⎡

⎣
N−1∑

j=0

N∏

k=j+1

(1 + ik)f∗j (Xj) ·Rj+1

⎤

⎦ = μ

and
Varπ̂x0

[XN ] = α2Varπ
∗
x0

[XN ] < Varπ
∗
x0

[XN ]

which is a contradiction to the optimality of π∗. Thus we necessarily have
IE
π∗
x0

[XN ] = μ. This observation now directly implies the statement of the
Lemma. �

Problem (MV) can be solved via the well-known Lagrange multiplier tech-
nique. Let Lx0(π, λ) be the Lagrange-function, i.e.

Lx0(π, λ) := Varπx0
[XN ] + 2λ

(
μ− IE

π
x0

[XN ]
)

for π ∈ FN , λ ≥ 0.

As usual, (π∗, λ∗) is called a saddle-point of the Lagrange-function Lx0(π, λ)
if

sup
λ≥0

Lx0(π
∗, λ) = Lx0(π

∗, λ∗) = inf
π∈FN

Lx0(π, λ
∗).

Lemma 4.6.2. Let (π∗, λ∗) be a saddle-point of Lx0(π, λ). Then the value of
(MV) is given by

inf
π∈FN

sup
λ≥0

Lx0(π, λ) = sup
λ≥0

inf
π∈FN

Lx0(π, λ) = Lx0(π
∗, λ∗)

and π∗ is optimal for (MV).

Proof. Obviously the value of (MV) is equal to infπ∈FN supλ≥0 Lx0(π, λ) and

inf
π∈FN

sup
λ≥0

Lx0(π, λ) ≥ sup
λ≥0

inf
π∈FN

Lx0(π, λ).

For the reverse inequality we obtain

inf
π∈FN

sup
λ≥0

Lx0(π, λ) ≤ sup
λ≥0

Lx0(π
∗, λ) = Lx0(π

∗, λ∗)

= inf
π∈FN

Lx0(π, λ
∗) ≤ sup

λ≥0
inf

π∈FN
Lx0(π, λ),

and the first statement follows. Further from the definition of a saddle-point
we obtain for all λ ≥ 0

λ∗
(
μ− IE

π∗
x0

[XN ]
)
≥ λ

(
μ− IE

π∗
x0

[XN ]
)
,

and hence IE
π∗
x0

[XN ] ≥ μ. Then we conclude Lx0(π∗, λ∗) = V arπ
∗
x0

[XN ] and
π∗ is optimal for (MV). �
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From Lemma 4.6.2 we see that it is sufficient to look for a saddle point (π∗, λ∗)
of Lx0(π, λ). It is not difficult to see that the pair (π∗, λ∗) is a saddle-point
if λ∗ > 0 and π∗ = π∗(λ∗) satisfy

π∗ is optimal for P (λ∗) and IE
π∗
x0

[XN ] = μ.

Here, P (λ) denotes the so-called Lagrange-problem for the parameter λ > 0

P (λ)

⎧
⎨

⎩

Lx0(π, λ) → min

π ∈ FN .

Note that the problem P (λ) is not a standard Markov Decision Problem and
is hard to solve directly due to the variance in the objective function (which
is not separable). We embed the problem P (λ) into a tractable auxiliary
problem QP (b) that turns out to be a stochastic LQ-problem (cf. Section
2.6.3). For b ∈ R define

QP (b)

⎧
⎨

⎩

IE
π
x0

[
(XN − b)2

]
→ min

π ∈ FN .

The following result shows the relationship between the problems P (λ) and
QP (b).

Lemma 4.6.3. If π∗ is optimal for P (λ), then π∗ is optimal for QP (b) with
b := IE

π∗
x0

[XN ] + λ.

Proof. Suppose π∗ is not optimal for QP (b) with b := IE
π∗
x0

[XN ] + λ. Then
there exists π ∈ FN such that

IE
π
x0

[X2
N ] − 2b IE

π
x0

[XN ] < IE
π∗
x0

[X2
N ] − 2b IE

π∗
x0

[XN ].

Define the function U : R
2 → R by

U(x, y) := y − x2 + 2λ(μ− x).

Then U is concave and U(x, y) = Lx0(π, λ) for x := IE
π
x0

[XN ] and
y := IE

π
x0

[X2
N ]. Moreover, we set x∗ := IE

π∗
x0

[XN ] and y∗ := IE
π∗
x0

[X2
N ]. The

concavity of U implies (since Ux = −2(λ+ x) and Uy = 1)

U(x, y) ≤ U(x∗, y∗) − 2(λ+ x∗)(x − x∗) + y − y∗

= U(x∗, y∗) − 2b(x− x∗) + y − y∗ < U(x∗, y∗),

where the last inequality is due to our assumption y−2bx < y∗−2bx∗. Hence
π∗ is not optimal for P (λ), leading to a contradiction. �
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The implication of Lemma 4.6.3 is that any optimal solution of P (λ) (as long
as it exists) can be found by solving problem QP (b).
Problem QP (b) now obviously is a Markov Decision Problem with the same
data E,A,Dn(x),Z, Tn, QZn as before and reward functions

• rn(x, a) := 0,
• gN(x) := −(x− b)2.

Assumption (AN ) is satisfied, since rn and gN are non-positive. Here we treat
the problem as a cost minimizing problem. For the remaining part we define
for n = 0, 1, . . . , N the numbers dn recursively:

Cn := IE[RnR	
n ], �n := (IE[Rn])	C−1

n IE[Rn],
dN := 1, dn := dn+1(1 − �n+1). (4.34)

Before we state the next theorem it is crucial to make the following observa-
tion.

Lemma 4.6.4. For all n = 0, 1, . . . , N − 1 it holds that 0 < dn < 1.

Proof. Let us denote υn := IE[Rn] and Σn :=
(
Cov(Rjn, R

k
n)

)
. Then it follows

from the definition of the covariance matrix that

Cn = Σn + υnυ
	
n .

Since Σn is positive definite by Assumption (FM) and υnυ
	
n is positive

semidefinite, Cn is itself positive definite. This implies that C−1
n is positive-

definite and since υn �= 0 by assumption we have �n > 0. By the Sherman-
Morrison formula we obtain

C−1
n = Σ−1

n −
(
1 + υ	nΣ

−1
n υn

)−1
Σ−1
n υnυ

	
nΣ

−1
n .

Thus, it follows that

�n = υ	nC
−1
n υn =

(
1 + υ	nΣ

−1
n υn

)−1
υ	nΣ

−1
n υn < 1.

Altogether we have 0 < 1 − �n < 1 and the statement follows easily by
induction. �

Theorem 4.6.5. For the solution of the Markov Decision Problem QP (b) it
holds:

a) The value functions are given by

Vn(x) =
(xS0

N

S0
n

− b
)2

dn, x ∈ E

where (dn) is defined in (4.34). Then V0(x0) is the value of problem QP (b).
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b) The optimal policy π∗ = (f∗0 , . . . , f
∗
N−1) is given by

f∗n(x) =
(
bS0
n

S0
N

− x

)

C−1
n+1 IERn+1, x ∈ E.

c) The first and the second moment of XN under π∗ are given by

IE
π∗
x0

[XN ] = x0S
0
Nd0 + b(1 − d0)

IE
π∗
x0

[X2
N ] = (x0S

0
N )2d0 + b2(1 − d0).

Proof. The problem QP (b) is of linear-quadratic form and close to Section
2.6.3. However, the cost function involves a linear term. We show that the
Structure Assumption (SAN ) of Theorem 2.3.8 is satisfied for the cost-to-go
functions with

IMn := {v : R → R | v(x) = (c1x− c2)2 for c1, c2 ∈ R}
Δn := {f : R → R

d | f(x) = (c3 − x)c4 for c3 ∈ R, c4 ∈ R
d}.

Let us check the conditions:

(i) (x − b)2 ∈ IMN .
(ii) Let v ∈ IMn+1. We assume that v(x) = (c1x − b)2 and obtain with the

abbreviation c5 := c1(1 + in+1):

Tnv(x) = inf
a∈Rd

IE

[
v
(
(1 + in+1)(x+ a ·Rn+1)

)]

= inf
a∈Rd

IE

[(
c1(1 + in+1)(x+ a ·Rn+1) − b

)2]

= inf
a∈Rd

{
c25x

2 + 2c25xa IE[Rn+1] + c25a
	Cn+1a− 2bc5(x+ a IE[Rn+1]) + b2

}
.

The minimum point has to satisfy

c5Cn+1a− b IE[Rn+1] + c5x IE[Rn+1] = 0.

Hence the minimizer is given by

f∗
n(x) =

(b− c5x)
c5

C−1
n+1 IE[Rn+1].

Inserting the minimizer into the equation for Tnv gives

Tnv(x) = c25x
2 − (b − c5x)2 IE[Rn+1]	C−1

n+1 IE[Rn+1] − 2bc5x+ b2

= (c5x− b)2
(
1 − IE[Rn+1]	C−1

n+1 IE[Rn+1]
)
∈ IMn.
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(iii) The existence and structure of the minimizer has already been shown in
part (ii).

Thus, we can apply Theorem 2.3.8 and obtain

VN (x) = (x− b)2

and by induction using the results from (ii)

Vn(x) = TnVn+1(x) = dn+1(1 − �n+1)
(S0

Nx

S0
n

− b
)2

with 0 < dn+1 < 1 according to Lemma 4.6.4. The minimizers have been
computed in part (ii) and give the optimal policy.
Inserting the optimal policy π∗ into the wealth equation yields the statements
in part c). �

Now we are able to compute λ∗ > 0 and π∗ = π∗(λ∗) such that IE
π∗
x0

[XN ] = μ
and π∗ is optimal for P (λ∗). From Lemma 4.6.3 and Theorem 4.6.5 we obtain

b∗ := IE
π∗
x0

[XN ] + λ∗ = μ+ λ∗

IE
π∗
x0

[XN ] = x0S
0
Nd0 + b∗(1 − d0)

= x0S
0
Nd0 + (μ+ λ∗)(1 − d0)

!= μ

and therefore
λ∗ = (μ− x0S

0
N )

d0

1 − d0

since d0 ∈ (0, 1). Using b∗ = μ + λ∗ we get the following solution of the
mean-variance problem which is the main result of this section.

Theorem 4.6.6. For the mean-variance problem (MV) it holds:

a) The value of (MV) is given by

Varπ
∗
x0

[XN ] =
d0

1 − d0

(
IE
π∗
x0

[XN ] − x0S
0
N

)2

where d0 is given in (4.34). Note that IE
π∗
x0

[XN ] = μ.
b) The optimal portfolio strategy π∗ = (f∗

0 , . . . , f
∗
N−1) is given by

f∗
n(x) =

((μ− d0x0S
0
N

1 − d0

) S0
n

S0
N

− x

)

C−1
n+1 IE[Rn+1], x ∈ E.

Since x0S
0
N < μ, a higher expected return corresponds to a higher variance

of the portfolio. Now if we assume that we have initially x0 Euro available
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for investment, then Theorem 4.6.6 yields the following linear dependence of
the expected return of the portfolio on the standard deviation:

μ(σ) := μ = x0S
0
N + σ

√
1 − d0

d0

where σ2 := V arπ
∗
x0

[XN ]. This curve is called the efficient frontier or capital
market line and gives the solution of the portfolio problem as a function of σ.
The slope is called the price of risk or Sharpe ratio. Moreover, the so-called
Two-Fund Theorem which is well known in the classical Markowitz model,
can be recovered in the multistage problem.

Corollary 4.6.7 (Two-Fund Theorem). At any time, the optimal policy
invests a certain amount of money in the bond and the remaining money is
invested in a mutual fund.

Proof. In the representation of the optimal policy π∗ = (f∗
0 , . . . , f

∗
N−1) in

Theorem 4.6.6, the first factor is a real number and C−1
n+1 IE[Rn+1] is a vector

which determines the mutual fund. �

Remark 4.6.8 (Hedging of Claims). When the initial wealth of an investor
is insufficient to hedge a contingent claim perfectly, the investor can try to
minimize the distance of her terminal wealth to the payoffH of the contingent
claim. Hence an optimization problem of the following type arises:

min
π∈FN

IE
π
x

[
�(H −XN )

]

where the function �measures the loss. This is again a Markov Decision Prob-
lem if H = h(SN ) is a European claim. In this case besides the wealth, also
the current stock price has to be part of the state of the Markov Decision
Model. If H is an arbitrary claim then it would be necessary to keep track of
the complete history. There are different reasonable choices for the loss func-
tion �. Popular choices are �(x) = x2 or �(x) = x+. The first function leads
to variance optimal hedging and the second one to shortfall minimization. ♦

4.7 Dynamic Mean-Risk Problems

In the preceding section the role of the variance is to measure the risk of
the portfolio strategy. However, the variance has many drawbacks, one for
example is that it measures deviations which are below and above the mean.
Recently a new axiomatic theory of how to measure risk has emerged which is
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to a considerable extent motivated by practical considerations. In this section
we will solve, at least in the binomial model, the problem of the previous
section when the variance is replaced by the Average-Value-at-Risk which is
for X ∈ L1(Ω,F , IP) given by

AV aRγ(X) =
1

1 − γ

∫ 1

γ

V aRα(X)dα

where γ ∈ (0, 1) and V aRα(X) is the Value-at-Risk at level α. For a short
review of risk measures the reader is referred to Appendix C.2.
Let us now consider the binomial model or Cox-Ross-Rubinstein model of
Section 3.1 with one stock and one bond (with interest rate i = 0). As in
the previous section we look at the following Markov Decision Model with
disturbances Zn = Rn (where r and g will be defined later):

• E := R where x ∈ E denotes the wealth,
• A := R where a ∈ A is the amount of money invested in the risky asset,
• D(x) := A,
• Z := {d − 1,u − 1} where z ∈ Z denotes the relative risk,
• T (x, a, z) := x+ az,
• QZ({u − 1}|x, a) := p ∈ (0, 1).

For π ∈ FN we denote by AV aRx0,π
γ (XN ) the Average-Value-at-Risk of

the terminal wealth XN under portfolio strategy π and initial wealth x0.
Note that the AV aR can also be characterized as the solution of a convex
optimization problem (see Example C.2.2). Since we assume a binomial model
we obtain IE

π
x0

[XN ] ∈ R and hence AV aRπx0,γ
(XN ) ∈ R for all γ ∈ (0, 1). We

want to solve

(MR)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AV aRπx0,γ
(XN ) → min

IE
π
x0

[XN ] ≥ μ

π ∈ FN .

We are in particular interested in large values for γ, e.g. γ = 0.995. Denote
the value of the problem by VMR(x0). To ease the exposition we will make
the following assumptions throughout this section.

Assumption (FM):

(i) There exist no arbitrage opportunities, i.e. d < 1 < u.
(ii) p > q where

q :=
1 − d

u − d
∈ (0, 1).

(iii) 0 < x0 < μ.

In contrast to the mean-variance problem we need a no-arbitrage condition
here. Otherwise the value of (MR) would be equal to −∞. The probability
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q ∈ (0, 1) is the risk neutral probability for an up movement under which
the stock price process becomes a martingale. The case p < q can be treated
similarly (cf. Theorem 4.7.4). If p = q then (Xn) is a martingale and there
exists no admissible strategy of (MR) since x0 < μ. In this case the value
(MR) is equal to +∞. Moreover, as in the mean-variance problem condition
(iii) is reasonable because otherwise the constraint can be fulfilled by just
investing in the bond.
We solve problem (MR) by the well-known Lagrange approach (see Section
4.6): For this purpose let us denote the Lagrange function by

Lx0(π, λ) := AV aRπx0,γ(XN ) + λ
(
μ− IE

π
x0

[XN ]
)
, λ ≥ 0.

Obviously we have VMR(x0) = infπ∈FN supλ≥0 Lx0(π, λ). We will first con-
sider the dual problem VD(x0) = supλ≥0 infπ∈FN Lx0(π, λ). In order to solve
it we can write the objective function as follows where we make use of the rep-
resentation of the Average-Value-at-Risk as the solution of an optimization
problem (see Example C.2.2):

sup
λ≥0

inf
π∈FN

{
inf
b∈R

{
b+

1
1 − γ

IE
π
x0

[
(XN + b)−

]}
+ λ

(
μ− IE

π
x0

[XN ]
)}

= sup
λ≥0

inf
b∈R

{
b+ inf

π

{
IE
π
x0

[
(XN + b)−

]

1 − γ
+ λ IE

π
x0

[
(−XN − b)

]}
+ λb + λμ

}

= sup
λ≥0

inf
b∈R

{
b(1 + λ) + λμ+ inf

π∈FN

{( 1
1 − γ

+ λ
)

IE
π
x0

[
(XN + b)−

]

−λ IE
π
x0

[
(XN + b)+

]}}
.

Next we aim to solve the inner stochastic optimization problem

P (λ, b)

⎧
⎪⎨

⎪⎩

(
1

1−γ + λ
)

IE
π
x0

[
(XN + b)−

]
− λ IE

π
x0

[
(XN + b)+

]
→ min

π ∈ FN

where λ ≥ 0 and b ∈ R. The problem P (λ, b) is a Markov Decision Problem
with the same data as before and reward functions

• r(x, a) := 0,
• g(x) := λ(x + b)+ −

(
1

1−γ + λ
)
(x+ b)−.

In what follows we treat this problem as a cost minimization problem. For
n = 0, 1, . . . , N let

cn :=
(
λ+

1
1 − γ

)(
1 − p

1 − q

)N−n
, and dn := λ

(
p

q

)N−n
.
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Note that g(x) = dN (x + b)+ − cN(x + b)− and that c0 ≥ d0 if γ is large.
Moreover it holds: c0 ≥ d0 is equivalent to cn ≥ dn for all n = 0, 1, . . . , N .

Theorem 4.7.1. For the solution of the Markov Decision Problem P (λ, b) it
holds:

a) If c0 ≥ d0, then the value functions are given by

Vn(x) = cn(x+ b)− − dn(x+ b)+, x ∈ E

and V0(x0) is the value of problem P (λ, b). If c0 < d0, then the value of
P (λ, b) is equal to −∞.

b) If c0 ≥ d0, then the optimal policy π∗ = (f∗
0 , . . . , f

∗
N−1) is stationary and

given by

f∗n(x) = f∗(x) := max
{ x+ b

1 − u
,
x+ b

1 − d

}
, x ∈ E.

Proof. Suppose c0 ≥ d0. We show that the Structure Assumption (SAN ) is
fulfilled with

IMn := {v : E → R | v(x) = c(x+ b)− − d(x+ b)+,
for 0 ≤ d ≤ dn ≤ cn ≤ c}

Δn := {f : R → R
d | f(x) = max{c1(x+ b), c2(x+ b)}

for c1 < 0 < c2}.

In this example our strong Integrability Assumption (AN ) is not satisfied,
however Theorem 2.5.4 still holds true (see Remark 2.3.14). Let us check the
conditions:

(i) cN (x + b)− − dN (x+ b)+ ∈ IMN is obvious.
(ii) Let v ∈ IMn+1 and suppose v(x) = c(x+ b)− − d(x+ b)+. We obtain:

T v(x) = inf
a∈R

{
p
[
c
(
x+ b + a(u − 1)

)− − d
(
x+ b+ a(u − 1)

)+
]

+(1 − p)
[
c
(
x+ b+ a(d − 1)

)− − d
(
x+ b+ a(d − 1)

)+
]}

=: inf
a∈R

h(a).

Let us first assume that x + b ≥ 0. The function h is piecewise linear
with slope changing at a1 := x+b

1−u < 0 and a2 := x+b
1−d > 0. The slope on

the right hand side of a2 is non-negative if and only if 1−p
1−q c ≥

p
qd which

is the case by our assumption since

p

q
d ≤ p

q
dn+1 = dn ≤ cn =

1 − p

1 − q
cn+1 ≤ 1 − p

1 − q
c.
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Note that the slope on the left hand side of a1 is negative. Finally we
investigate the slope on the interval [a1, a2]. It can be shown that this
slope is negative if d > 0 and zero if d = 0. Hence the minimum is
attained at a∗ = a2. Moreover, we obtain

T v(x) = −p
q
d(x + b).

In case x + b < 0 we obtain a2 < a1. Since 1−p
1−q c ≥

p
q
d, we get a∗ = a1

as a minimum point. Summarizing we obtain

T v(x) =
1 − p

1 − q
c(x+ b)− − p

q
d(x+ b)+ ∈ IMn.

(iii) The existence and structure of the minimizer has already been shown in
part (ii).

The statement for c0 ≥ d0 then follows by induction. In case c0 < d0 define
n∗ := inf{n ∈ N | cn ≥ dn} and consider the strategy π = (f0, f1, . . . , fN−1)
with

fn(x) =

⎧
⎨

⎩

0, n = 0, . . . , n∗ − 2
a, n = n∗ − 1
f∗(x), n ≥ n∗

where f∗(x) := max
{
x+b
1−u,

x+b
1−d

}
and a ∈ A = R. By the reward iteration

we get

V0π(x0) = T0f0 . . . TN−1fN−1gN (x0)

= p
[
cn∗

(
x0 + b+ a(u − 1)

)− − dn∗
(
x0 + b+ a(u − 1)

)+
]

+(1 − p)
[
cn∗

(
x0 + b+ a(d − 1)

)− − dn∗
(
x0 + b+ a(d − 1)

)+
]
.

Following the discussion in part (ii) we finally obtain that lima→∞ V0π(x0) =
−∞ and the value of problem P (λ, b) is equal to −∞. �

In what follows we write V b0 (x0) = V0(x0) and f b(x) = f∗(x) to stress the
dependence on b. Next we have to solve

P (λ)

⎧
⎨

⎩

Lx0(π, λ) → min

π ∈ FN

where λ ≥ 0. For this purpose define
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γ1 := 1 −
(1 − p

1 − q

)N
,

γ2 := pN
(1 − q)N − (1 − p)N

(
p(1 − q)

)N −
(
q(1 − p)

)N ,

λ∗ = λ∗(γ) := min
{

qN

pN − qN
;

(1 − p)N (1 − γ)−1 − (1 − q)N

(1 − q)N − (1 − p)N

}

.

Note that γ1 ≤ γ2. With these definitions we can formulate the solution of
the optimization problem P (λ) as follows.

Proposition 4.7.2. a) The value of problem P (λ) is given by

inf
π∈FN

Lx0(π, λ) =

{
(μ− x0)λ− x0 if λ ∈ [0, λ∗], γ ≥ γ1

−∞ else.

b) The optimal policy π∗ for P (λ) is stationary, i.e. π∗ = (f b, . . . , f b) ∈ FN

with

b ∈

⎧
⎪⎪⎨

⎪⎪⎩

{−x0} if λ ∈
[
0, λ∗

)

[−x0,∞) if λ = λ∗, γ ≥ γ2

(−∞,−x0] if λ = λ∗, γ1 ≤ γ ≤ γ2.

Proof. Recall that

inf
π∈FN

Lx0(π, λ) = inf
b∈R

{
b(1 + λ) + λμ+ V b0 (x0)

}
.

Therefore define
h(λ, b) := b(1 + λ) + λμ+ V b0 (x0),

i.e. we have to solve infb∈R h(λ, b). From Theorem 4.7.1 we know that
V b0 (x0) = −∞ if and only if

c0 < d0 ⇔ λ >

(
(1 − p)q

)N

(
p(1 − q)

)N
−

(
(1 − p)q

)N (1 − γ)−1 =: λ∗1(γ).

Hence for λ ∈ [0, λ∗1(γ)] we obtain

h(λ, b) = b(1 + λ) + λμ+ c0(x0 + b)− − d0(x0 + b)+

which is piecewise linear in b and the slope changes at −x0. The slope for
b < −x0 is given by 1 + λ + c0 and for b > −x0 by 1 + λ − d0. In order
to obtain a minimum point of h(λ, b), the slope on the left-hand side of
−x0 has to be non-positive and the slope on the right-hand side of −x0 has
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to be non-negative. This is the case if and only if λ ≤ λ∗. If λ < λ∗ the
minimum point is unique. Thus, the value of our problem can only be finite
if λ ∈

[
0, min{λ∗, λ∗1(γ)}

]
. If γ < γ1 we obtain λ∗ < 0 and no λ exists for

which the value is finite. Now if γ ≥ γ1 it can be shown that λ∗ < λ∗1(γ). In
this case the value of the problem is given by

inf
b∈R

h(λ, b) = −x0(1 + λ) + λμ = (μ− x0)λ− x0.

The optimal policy follows from the preceding discussions. �

Now we are ready to state the solution of the initially posed mean-risk prob-
lem (MR).

Theorem 4.7.3. For the mean-risk problem (MR) it holds:

a) The value of problem (MR) is given by

VMR(x0) =

{
(μ− x0)λ∗ − x0 if γ ≥ γ1

−∞ else.

b) The optimal policy π∗ is stationary, i.e. π∗ = (f∗, . . . , f∗) ∈ FN with

f∗(x) =

⎧
⎪⎨

⎪⎩

1
1−d

(
(μ− x0) qN

pN−qN − x0 + x
)

if γ ≥ γ2

1
1−u

(
(x0 − μ) (1−q)N

(1−q)N−(1−p)N − x0 + x
)

if γ1 ≤ γ ≤ γ2.

Proof. If γ < γ1, then by Proposition 4.7.2 we obtain infπ∈FN Lx0(π, λ) =
−∞ for all λ and the statement follows. Let now γ ≥ γ1. We derive from
Proposition 4.7.2 that

sup
λ≥0

inf
π∈FN

Lx0(π, λ) = sup
0≤λ≤λ∗

{
(μ− x0)λ − x0

}
= (μ− x0)λ∗ − x0.

Next we search for an optimal policy π∗ in Proposition 4.7.2 such that
π∗ = π∗(λ∗) and λ∗ satisfy:

IE
π∗
x0

[XN ] ≥ μ and λ∗
(

IE
π∗
x0

[XN ] − μ
)

= 0.

If γ > γ1 we have λ∗ > 0 and we have to find π∗ such that IE
π∗
x0

[XN ] = μ. It
can be shown that a policy π∗ = (f b, . . . , f b) ∈ FN as defined in Proposition
4.7.2 yields for b ≥ −x0:

IE
fb

x0
[XN ] = x0 + (x0 + b)

pN − qN

qN
. (4.35)
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If γ ≥ γ2 we have to find b ∈ [−x0,∞) such that the expression in (4.35) is
equal to μ. Indeed, if we solve the equation we obtain

b∗ = (μ− x0)
qN

pN − qN
− x0 > −x0

which defines the optimal policy. Similar arguments lead to the optimal policy
in the case γ ∈ (γ1, γ2].
If γ = γ1 we have λ∗ = 0. In this case we only have to find an optimal π∗

that is admissible for (MR). This is fulfilled for every f b with

b ≤ (x0 − μ)
(1 − q)N

(1 − q)N − (1 − p)N
− x0.

Altogether we obtain now

inf
π

sup
λ≥0

Lx0(π, λ) ≥ sup
λ≥0

inf
π
Lx0(π, λ) = Lx0(π

∗, λ∗) ≥ inf
π

sup
λ≥0

Lx0(π, λ),

i.e. (π∗, λ∗) is a saddle-point of Lx0(π, λ). Hence by Lemma 4.6.2, π∗ is opti-
mal for (MR). �

Though we have restricted our analysis to the case p > q so far, for the sake
of completeness we will present the solution of problem (MR) also in the case
p < q. Here other definitions for γ1, γ2 and λ∗ = λ∗(γ) are necessary:

γ1 :=
qN − pN

qN
,

γ2 := (1 − p)N
qN − pN

(
(1 − p)q

)N −
(
(1 − q)p

)N ,

λ∗ := min
{

(1 − q)N

(1 − p)N − (1 − q)N
;
pN (1 − γ)−1 − qN

qN − pN

}

.

Theorem 4.7.4. Suppose p < q. For the mean-risk problem (MR) it
holds:

a) The value of problem (MR) is the same as in Theorem 4.7.3 with λ∗

and γ1 as defined above.
b) The optimal policy π∗ is stationary, i.e. π∗ = (f∗, . . . , f∗) ∈ FN with

f∗(x) =

⎧
⎪⎨

⎪⎩

1
1−d

(
(μ− x0) qN

pN−qN − x0 + x
)

if γ1 ≤ γ ≤ γ2

1
1−u

(
(x0 − μ) (1−q)N

(1−q)N−(1−p)N − x0 + x
)

if γ ≥ γ2.
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Remark 4.7.5. a) Note that, as in the mean-variance problem, the efficient
frontier is linear

μ(ρ) =
ρ+ x0

λ∗
+ x0

where ρ := AV aRπ
∗
x0,γ

(XN ). The slope of this function is given by 1
λ∗ . In

the case p > q we have

λ∗ =
qN

pN − qN
⇔ γ ≥ γ2.

Otherwise, the slope is given by

(1 − p)N (1 − γ)−1 − (1 − q)N

(1 − q)N − (1 − p)N
.

b) In case p = q the stock is a martingale and hence we cannot improve our
wealth on average and the value of (MR) is +∞. If p > q the amount
invested in the stock is always positive and in the case p < q it is always
negative. Moreover, the larger |p − q|, the less is the absolute amount
which is invested. The explanation is as follows: compare this situation to
the classical red-and-black casino game. There, a timid strategy is optimal
if the game is favourable. Since short-sellings are allowed in the financial
model, the case p < q is also favourable by short-selling the stock. If |p−q|
is large we can invest less since the probability for a gain is large. If |p− q|
is small, then we have to take a higher risk and play a bold strategy. ♦

4.8 Index-Tracking

The problem of index-tracking which is formulated below can be seen as an
application of mean-variance hedging in an incomplete market. Suppose we
have a financial market with one bond and d risky assets as in Section 3.1.
Besides the tradeable assets there is a non-tradable asset whose price process
(Ŝn) evolves according to

Ŝn+1 = ŜnR̂n+1.

The positive random variable R̂n+1 which is the relative price change of the
non-traded asset may be correlated with Rn+1. It is assumed that the random
vectors (R1, R̂1), (R2, R̂2), . . . are independent and the joint distribution of
(Rn, R̂n) is given. The aim now is to track the non-traded asset as closely as
possible by investing into the financial market. The tracking error is measured
in terms of the quadratic distance of the portfolio wealth to the price process
(Ŝn), i.e. the optimization problem is then
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⎧
⎪⎨

⎪⎩

IExŝ

[
N∑

n=0

(
Xφ
n − Ŝn

)2
]

→ min

φ = (φn) is a portfolio strategy
(4.36)

where φn is Fn = σ(R1, . . . , Rn, R̂1, . . . , R̂n)-measurable. This problem can
be formulated as a linear-quadratic problem (see Section 2.6.3). It is impor-
tant to note here however, that the state space of the Markov Decision Model
has to include (besides the wealth) the price of the non-traded asset. Thus,
the data is given as follows:

• E := R × R+ where (x, ŝ) ∈ E and x is the wealth and ŝ the value of the
non-traded asset,

• A := R
d where a ∈ A is the amount of money invested in the risky assets,

• D(x, ŝ) := A,
• Z := (−1,∞)d × R+ where z = (z1, z2) ∈ Z and z1 is the relative risk

of the traded assets and z2 is the relative price change of the non-traded
asset.

• The transition function is given by

Tn
(
(x, ŝ), a, (z1, z2)

)
:=

(
1 + in+1 0

0 z2

)(
x
ŝ

)

+
(

(1 + in+1)z	1
0

)

a,

• QZn
(
· |(x, ŝ), a

)
:= joint distribution of (Rn+1, R̂n+1) (independent of(

(x, ŝ), a
)
),

• rn
(
(x, ŝ), a

)
:= −(x− ŝ)2,

• gN(x, ŝ) := −(x− ŝ)2.

Problem (4.36) can now be solved by the Markov Decision Model. The value
functions (cost-to-go functions) are given by

Vn(x, ŝ) := inf
π

IE
π
nxŝ

[
N∑

k=n

(Xk − Ŝk)2
]

, (x, ŝ) ∈ E

and V0(x, ŝ) is the minimal value of problem (4.36). When we define

Q :=
(

1 −1
−1 1

)

the problem is equivalent to minimizing

IE
π
nxŝ

[
N∑

k=n

(
Xk

Ŝk

)	
Q

(
Xk

Ŝk

)]

.

The linear-quadratic problem in Section 2.6.3 yields the following result.
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Theorem 4.8.1. a) The value functions of problem (4.36) are given by

Vn(x, ŝ) = (x, ŝ)Qn

(
x
ŝ

)

, (x, ŝ) ∈ E

where the matrices Qn can be computed recursively as in Theorem 2.6.3.
In particular Qn are symmetric and positive semidefinite.

b) The optimal portfolio strategy π∗ = (f∗0 , . . . , f
∗
N−1) is linear and given

by

f∗
n(x, ŝ) = −

(
IE

[
Rn+1R

	
n+1

])−1

· IE
[
(
Rn+1,

q21n+1
(1+in+1)q11n+1

R̂n+1Rn+1

)
](

x
ŝ

)

where the elements of Qn+1 are denoted by qijn+1.

Instead of tracking an index, the problem can be modified slightly such that
the investor tries to outperform the index. This can be achieved by adding
to (Ŝn) an additional (deterministic) amount, say (bn), and minimizing

IExŝ

[
N∑

n=0

(Xφ
n − Ŝn − bn)2

]

over all portfolio strategies φ. This problem can be solved in the same way.

4.9 Indifference Pricing

In this section we introduce indifference pricing, a method to price contin-
gent claims in incomplete markets which has attained considerable attention
in recent years. More precisely we assume here that the incompleteness of
the market comes from an additional asset which cannot be traded. The un-
derlying idea of the indifference pricing approach can be traced back to the
zero-utility premium principle in insurance: Suppose an investor with a util-
ity function and initial wealth x > 0 is given as well as a contingent claim
with payoff H ≥ 0 at maturity where the payoff depends both on the traded
and non-traded asset. What is the fair price at which the investor is willing
to sell H at time 0?
The indifference pricing approach says that this is the amount v0(H) such
that the following quantities are equal:
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• The maximal expected utility the investor achieves when she only uses her
wealth x and invests in the traded asset.

• The maximal expected utility the investor achieves when she sells short H
for the price v0 and uses the wealth x+ v0 to invest in the traded asset.

Of course, the price of a contingent claim in this approach depends on the
utility function of the investor. In what follows we will be more precise and
use an exponential utility function. In order to keep the outline simple, we
will start with a one-period model.

One-Period Financial Market

Suppose we have a one-period financial market with one bond, a traded risky
asset and a non-traded risky asset. For simplicity we assume that the bond
has zero interest, i.e. i ≡ 0. We denote the price process of the traded asset
by S = (Sn) and the price process of the non-traded asset by Ŝ = (Ŝn).
The initial prices S0 = s and Ŝ0 = ŝ are given and at time 1 we assume
that S1 = S0R̃ and Ŝ1 = Ŝ0R̂ where R̃ and R̂ are the random relative price
changes. We suppose that Ω := {ω1, ω2, ω3, ω4} and

R̃(ω1) = R̃(ω2) = u R̃(ω3) = R̃(ω4) = d

R̂(ω1) = R̂(ω3) = û R̂(ω2) = R̂(ω4) = d̂

and the joint distribution of (R̃, R̂) can be computed from the given proba-
bilities pk := IP({ωk}) > 0, k = 1, . . . , 4. Throughout this section we assume

Assumption (FM): 0 < d < 1 < u and d̂ < û.

If the amount a ∈ R is invested into asset S at time 0, the wealth of the
investor at time 1 is given by

X1 = x+ a(R̃− 1).

We assume that the investor has an exponential utility function, i.e.

U(x) = −e−γx, x ∈ R, γ > 0.

Next we consider a contingent claim whose payoff depends on both assets
i.e. the payoff is given by a non-negative random variable H such that
H = h(S1, Ŝ1). Now define by

V H0 (x, s, ŝ) := sup
a∈R

IE

[
−e−γx−γa(R̃−1)+γH

]
(4.37)

the expected utility the investor achieves when she has initial wealth x and
is short in H . If H ≡ 0 then we write V 0

0 (x, s, ŝ). Formally, the indifference
price is defined as follows.
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Definition 4.9.1. The indifference price of the contingent claim H is the
amount v0 = v0(H, s, ŝ) such that

V 0
0 (x, s, ŝ) = V H0 (x+ v0, s, ŝ)

for all x ∈ R, s > 0, ŝ > 0.

Note that v0 does not depend on x. In our one-period market it is pretty
simple to compute the indifference price. For convenience we denote by

q :=
1 − d

u − d

the risk neutral probability and define h̃(S1, Ŝ1) = H̃ := eγH and

hu(s, ŝ) := p1 · h̃(su, ŝû) + p2 · h̃(su, ŝd̂)

hd(s, ŝ) := p3 · h̃(sd, ŝû) + p4 · h̃(sd, ŝd̂).

Then we obtain

Theorem 4.9.2. For the one-period financial market it holds:

a) The solution of problem (4.37) is given by

V H0 (x, s, ŝ) = −e−γx
(hu(s, ŝ)

q

)q(hd(s, ŝ)
1 − q

)1−q
.

b) The indifference price of the contingent claim H is given by

v0(H, s, ŝ) =
q

γ
log

(hu(s, ŝ)
p1 + p2

)
+

1 − q

γ
log

(hd(s, ŝ)
p3 + p4

)
.

Proof. The proof of part a) is straightforward. In order to solve the problem
(4.37) we have to minimize the function

a �→ e−γa(u−1)hu(s, ŝ) + e−γa(d−1)hd(s, ŝ).

Note that this function is convex, thus it is sufficient to find the zero of the
first derivative. The minimum is attained at

a∗ =
log(u − 1) − log(1 − d) + log(hu(s, ŝ)) − log(hd(s, ŝ))

γ(u − d)
.

Inserting a∗ yields V H0 . For part b) note that we obtain from the first part
that

V 0
0 (x, s, ŝ) = −e−γx

(
p1 + p2

q

)q (
p3 + p4

1 − q

)1−q
.



4.9 Indifference Pricing 137

Using the definition of the indifference price the statement follows immedi-
ately. �

Remark 4.9.3 (Minimal Entropy Martingale Measure). Suppose we define a
new measure Q on Ω by setting

Q({ωk}) = qk := q
pk

p1 + p2
, for k = 1, 2

Q({ωk}) = qk := (1 − q)
pk

p3 + p4
, for k = 3, 4.

It is easy to check that Q is indeed a probability measure on Ω and that

(i) IEQ S1 = S0.

(ii)Q(Ŝ1 ∈ B|S1) = IP(Ŝ1 ∈ B|S1) for all B ⊂ {ŝd̂, ŝû}.

Moreover Q is the minimal entropy martingale measure in the sense that it
solves

min
Q

IEQ

[
log

dQ

d IP

]

where the minimum is taken over all IP-equivalent measures which satisfy
condition (i) (i.e. all equivalent martingale measures). Having this measure
it is interesting to note that the indifference price of Theorem 4.9.2 can be
written as

v0(H, s, ŝ) =
1
γ

IEQ

[
log IEQ

[
eγH |S1

]∣∣
∣S0 = s, Ŝ0 = ŝ

]
.

Thus, in case the payoff of the contingent claim depends only on the traded
asset, i.e. H = h(S1), we obtain

v0(H, s, ŝ) = IEQ[H |S0 = s]

independent of ŝ. Moreover, it is easy to see that in this case the measure
Q coincides on the σ-algebra

{
∅, Ω, {ω1, ω2}, {ω3, ω4}

}
with the unique risk

neutral measure in the binomial model. Thus the indifference pricing formula
is consistent with the arbitrage free pricing formula (see Appendix C.1). ♦

Multiperiod Financial Market

In this section we extend the one-period financial market of the previous
section to an N -period model by setting

Sn+1 = SnR̃n+1, Ŝn+1 = ŜnR̂n+1, n = 0, 1, . . . , N − 1
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where we assume that the random vectors (R̃1, R̂1), (R̃2, R̂2), . . . are indepen-
dent and identically distributed and have the same distribution as in the last
section. We have here Fn = σ(R1, . . . , Rn, R̂1, . . . , R̂n).
Now let H = h(SN , ŜN ) be the payoff of a contingent claim. The evolution
of the wealth process (Xn) is here given by

Xn+1 = Xn + φn(R̃n+1 − 1)

where φ = (φn) is a portfolio strategy. As in the one-period market the
investor has an exponential utility function U(x) = −e−γx, γ > 0. Following
the theory in Section 4.2 we can formulate the utility maximization problem
as a Markov Decision Problem. Since H = h(SN , ŜN ) we have to include the
prices of the traded and non-traded assets in the state space:

• E := R × R
2
+ where (x, s, ŝ) ∈ E and x is the wealth and s and ŝ are the

values of the traded and non-traded assets respectively,
• A := R where a ∈ A is the amount of money invested in the traded asset,
• D(x, s, ŝ) := A,
• Z := R+ ×R+ where z = (z1, z2) ∈ Z are the relative price changes of the

traded and non-traded assets respectively,
• T

(
(x, s, ŝ), a, (z1, z2)

)
:=

(
x+ a(z1 − 1), sz1, ŝz2

)
,

• QZ
(
· |(x, s, ŝ), a

)
:= joint distribution of (R̃n+1, R̂n+1) given by (p1, p2,

p3, p4) (independent of
(
(x, s, ŝ), a

)
),

• rn ≡ 0,
• gN(x, s, ŝ) := −e−γ(x−h(s,ŝ)).

For n = 0, 1, . . . , N we define the value functions by

V Hn (x, s, ŝ) := sup
π

IE
π
n,x,s,ŝ

[
−e−γ(XN−H)

]
. (4.38)

If H ≡ 0, then we write V 0
n (x, s, ŝ). The indifference price of H at time

n which we denote by vn = vn(H, s, ŝ), is then defined as the value which
satisfies:

V 0
n (x, s, ŝ) = V Hn (x+ vn, s, ŝ), x ∈ R, s > 0, ŝ > 0.

This time it is not possible to obtain a closed formula for the indifference
price, however, some important structural properties can be shown. In what
follows we denote

v := inf
a∈R

IE

[
e−γa(R̃1−1)

]
. (4.39)

In view of (FM) this problem has an optimal solution and the value v is
positive and finite. We obtain:
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Theorem 4.9.4. For the multiperiod financial market it holds:

a) The value functions of problem (4.38) are given by

V Hn (x, s, ŝ) = −e−γxdn(s, ŝ),

where (dn) satisfy the recursion

dN (s, ŝ) := eγh(s,ŝ),

dn(s, ŝ) := inf
a∈R

IE

[
e−γa(R̃n+1−1)dn+1(sR̃n+1, ŝR̂n+1)

]
.

In particular, V 0
n (x, s, ŝ) = −e−γxvN−n.

b) The indifference price of the contingent claim H is given by

vn(H, s, ŝ) =
1
γ

log
(dn(s, ŝ)
vN−n

)
.

c) The indifference prices satisfy the following consistency condition on
Ω:

vn
(
vn+1(H, sR̃n+1, ŝR̂n+1), s, ŝ

)
= vn(H, s, ŝ), n = 0, 1, . . . , N − 1.

Proof. a) The expression for V 0
n follows from Theorem 4.2.15. The statement

for V Hn follows by induction. Note that the value iteration has the form

V HN (x, s, ŝ) = −e−γxeγh(s,ŝ) = e−γxdN (s, ŝ)

V Hn (x, s, ŝ) = sup
a∈R

IE

[
V Hn+1

(
x+ a(R̃n+1 − 1), sR̃n+1, ŝR̂n+1

)]
.

b) The indifference price follows from part a).
c) Let vn := vn(H, s, ŝ) and wn := vn

(
vn+1(H, sR̃n+1, ŝR̂n+1), s, ŝ

)
. Then,

vn is the solution of

V 0
n (x, s, ŝ) = V Hn (x+ vn, s, ŝ)

which can be written as

−e−γxvN−n = −e−γ(x+vn) inf
a∈R

IE

[
e−γa(R̃n+1−1)dn+1(sR̃n+1, ŝR̂n+1)

]
.

On the other hand wn is the price at time n of a contingent claim with
payoff

vn+1(H, sR̃n+1, ŝR̂n+1) =
1
γ

log
(dn+1(sR̃n+1, ŝR̂n+1)

vN−n−1

)
.
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Using the result of the one-period model, the price wn is here the solution
of

−e−γxv = −e−γ(x+wn) inf
a∈R

IE

[

e−γa(R̃n+1−1) dn+1(sR̃n+1, ŝR̂n+1)
vN−n−1

]

.

Comparing the last two equations we obtain vn = wn.
�

The indifference price vn(H, s, ŝ) is positive since dn(s, ŝ) ≥ vN−n > 0. The
inequality follows by induction from part a). Due to part c) and to Remark
4.9.3 we can also compute the indifference price by iterating the expectation
operator with respect to the minimal entropy martingale measure.

4.10 Approximation of Continuous-Time Models

Many financial models are defined in continuous-time and involve continuous-
time stochastic processes like the Wiener process. The corresponding opti-
mization problems are then also defined in continuous time. However, in most
cases these problems can be approximated by discrete-time problems which
reduce to Markov Decision Problems when the original problem is Markovian
too. This observation can be used for numerical purposes. For another discus-
sion into this direction see the example in Section 9.3. Moreover, sometimes
the assumption of continuous trading may be questioned since interventions
at discrete time points are more realistic. In order to illustrate the relation
between continuous- and discrete-time problems, we will briefly explain in an
informal way the so-called approximating Markov chain approach. For more
details we refer the reader to Kushner and Dupuis (2001) or Prigent (2003).
To outline the approach we assume that the controlled state processX = (Xt)
is given by the stochastic differential equation

dXt = μ(Xt, ut)dt+ σ(Xt, ut)dWt,

X0 = x,

where W = (Wt) is a Wiener process. For simplicity we assume that X
is real-valued and that the control u = (ut) has to satisfy ut ∈ U for all
t ≥ 0 where U is an arbitrary compact set. The function μ and σ should be
such that a solution of the stochastic differential equation exists. Of course,
admissible controls have to be adapted with respect to a reasonable filtration
(e.g. the filtration generated by the Wiener process). The aim is to maximize
the expression
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Vu(x) = IE
u
x

[∫ T

0

r(t,Xt, ut)dt+ g(XT )

]

, x ∈ R

over all admissible controls where r and g are suitably defined reward func-
tions. We define the maximal value function by V (x) = supu Vu(x), x ∈ R.

Now we search for a Markov chain which approximates the state process
and for a reward functional such that Vu is approximated. These quantities
together define the corresponding Markov Decision Problem. It seems to be
reasonable to choose a state spaceE := G, a finite gridG ⊂ R, an action space
A = U and define D(x) := A. The step size is given by h. The approximating
Markov chain (X̃n) and thus the transition kernel is obtained by the following
local consistency conditions:

IE
π
nx[X̃n+1 − X̃n] = IE

u
tx

[ ∫ t+h

t

μ(Xs, us)ds
]

= μ(x, ut)h+ o(h),

IE
π
nx

[
(X̃n+1 − X̃n)2

]
= IE

u
tx

[( ∫ t+h

t

σ(Xs, us)dWs

)2]
+ o(h)

= σ2(x, ut)h+ o(h)

where t = nh and fn(x) = ut. In general these conditions do not determine
the transition kernelQ of the Markov Decision Model uniquely, so there is still
some freedom to choose the parameters. Note that it is also possible to use
the variance of X̃n+1 − X̃n instead of the second moment since for h→ 0 the
limits are the same. The reward function is defined by rn(x, a) := r(nh, x, a)h
and the terminal reward function is g. Thus we obtain with N = T

h

V0π(x) = V h0π(x) = IE
π
x

[
N−1∑

n=0

rn(X̃n, An) + g(X̃N)

]

and the maximal value V0(x) = V h0 (x) = supπ V0π(x). Now under some
additional conditions (like continuity and growth conditions) we obtain

lim
h→0

V h0 (x) = V (x), x ∈ E.

Often it is also possible to show that the optimal policies of the Markov
Decision Problem approximate the optimal control in the continuous-time
problem, but this is more demanding and yields further regularity conditions.
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4.11 Remarks and References

Pliska (2000) uses the so-called martingale method (or dual method) to solve
portfolio optimization problems. This method utilizes the fact that in com-
plete financial markets every contingent claim can be perfectly hedged. Then
the dynamic stochastic optimization problem can be split into two steps: (1)
Find the optimal terminal wealth (via a Lagrangian approach) and (2) com-
pute a hedging strategy w.r.t. the optimal terminal wealth. A more economic
treatment of intertemporal portfolio selection can be found in Ingersoll (1987)
and Huang and Litzenberger (1988).
Korn and Schäl (1999) consider value preserving and growth optimal port-
folio strategies. Risk-sensitive portfolio optimization problems are studied in
Bielecki and Pliska (1999), Bielecki et al. (1999), Stettner (1999, 2004) and
Di Masi and Stettner (1999). Prigent (2007) investigates a lot of practical
aspects of portfolio optimization in a static setting as well as in continuous-
time.
Sections 4.1, 4.2 and 4.3: An investigation of the one-period optimiza-
tion problem and its relation to the existence of no arbitrage opportunities
can be found in Föllmer and Schied (2004). The equivalence between the
existence of optimal portfolios for multiperiod utility maximization problems
and absence of arbitrage opportunities follows essentially from the one-period
problem since both the optimization problem and the arbitrage condition
can be formulated in a local form. Some authors have investigated the rela-
tion between the existence of optimal portfolios and existence of equivalent
martingale measures, the latter being equivalent to the absence of arbitrage
opportunities. A first approach can be found in Hakansson (1971b) who used
a ‘no-easy-money-condition’. Further papers which treat this question are
Schäl (1999, 2000, 2002), Rásonyi and Stettner (2005), and Rogers (1994).
Discrete-time multistage portfolio problems have been considered since the
late 1960s by e.g. Mossin (1968), Samuelson (1969) Hakansson (1970, 1971a,
1974), Kreps and Porteus (1979) and Bodily and White (1982). He and Pear-
son (1991a,b) investigate consumption-investment problems with incomplete
markets and short-sale constraints. Edirisinghe (2005) treats the terminal
wealth problem with additional liability constraints. In Li and Wang (2008)
martingale measures are identified from consumption problems. References
for continuous-time portfolio selection problems are Korn (1997) and Pham
(2009).

Section 4.4: Regime-switching is a well-known technique to generalize
Markov models. A consumption-investment model with regime-switching can
be found in Cheung and Yang (2007). In the earlier paper Cheung and Yang
(2004) the authors consider the problem without consumption. Çanakoğlu
and Özekici (2009) investigate exponential utility maximization whereas in
Çanakoğlu and Özekici (2010) they consider the HARA utility problem and
also allow the utility function to depend on the underlying Markov chain.
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Shortfall risk minimization with regime switching is considered by Awanou
(2007). In continuous-time, the classical utility maximization problem has
been generalized in this way by Bäuerle and Rieder (2004). An interesting
question in this context is how does the Markov-modulation influence the
value function and the optimal policy? Often things become more risky with
stochastically varying parameters.

Section 4.5: The transaction cost model is based on Kamin (1975), see also
Gennotte and Jung (1994), Dumas and Luciano (1991) and Constantinides
(1979). They show that the optimal portfolio strategy is to do nothing when-
ever it is in a certain region and to transact to the nearest boundary if the
portfolio is outside this region. A more general model is treated in Abrams
and Karmarkar (1980) where not necessarily convex no-transactions regions
appear. More recent treatments of problems with transaction costs are con-
tained in Bobryk and Stettner (1999), Sass (2005) and Trivellato (2009).

Section 4.6: Static mean-variance portfolio theory was investigated in
Markowitz (1952) (see also the textbooks Markowitz (1987a,b)). Recently
it has been rediscovered that the Italian mathematician Bruno de Finetti
already anticipated much of Markowitz’s mean-variance analysis by over a
decade (see de Finetti (1940) and for an English translation see Barone
(2006)). A discussion of the historical development can also be found in
Rubinstein (2006). Tobin (1958) contributed the two-fund argument. Re-
cently the multiperiod mean-variance problem has been solved explicitly by
Li and Ng (2000). For an overview see e.g. Steinbach (2001). A version with
regime-switching can be found in Çakmak and Özekici (2006), Costa and
Araujo (2008) and Yin and Zhou (2004). Additional intertemporal restric-
tions are treated in Costa and Nabholz (2007). Zhu et al. (2004) study the
mean-variance problem with bounds on the probability of bankruptcy in each
period. A more general problem, namely variance-optimal hedging of claims
in discrete time for arbitrary stock processes, has been considered in Schäl
(1994), Schweizer (1995) and Motoczyński (2000). A mean-variance problem
for an insurance company is investigated in Bäuerle (2005). In continuous-
time there are different models and methods for dynamic mean-variance opti-
mization problems. We just mention here Zhou and Li (2000) who solved the
problem in a complete market driven by a diffusion process with deterministic
coefficients. For an overview see Zhou (2003).

Section 4.7: A thorough analysis of the mean-risk problem can be found
in Mundt (2007) and Bäuerle and Mundt (2009). There also the problem of
intermediate risk constraints is considered in the binomial financial market.
There is a growing number of papers which study different problems where
the trade-off between expected return and risk is treated. Runggaldier et al.
(2002) investigate the shortfall probability when a contingent claim has to
be hedged in a binomial model. The authors also consider the problem with
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partial information. Favero and Vargiolu (2006) extend this analysis to convex
and concave loss functions.

Section 4.8: Evolutionary heuristics for solving index tracking problems are
treated in Beasley et al. (2003) and variance-optimal strategies in Bergtholdt
(1998).

Section 4.9: The idea of indifference pricing is similar to the zero-utility
premium principle in actuarial sciences. Most papers on this topic deal with
continuous-time markets (a recent survey of theory and applications of indif-
ference pricing is Carmona (2009)). The presentation of this section is based
on Musiela and Zariphopoulou (2004). They present the recursive pricing
algorithm with the minimal entropy martingale measure.

Section 4.10: A thorough analysis of the approximating Markov chain ap-
proach can be found in Kushner and Dupuis (2001) (see also Prigent (2003)).
For an application to the Merton problem see Munk (2003). Discrete-time ap-
proximations of the dynamic programming equation using analytical methods
can be found in Bensoussan and Robin (1982).
There are also a number of papers which investigate the convergence of op-
timal portfolio strategies in a discrete-time optimization problem to optimal
portfolio strategies in a continuous-time problem. He (1991) considers optimal
consumption-investment problems and uses the martingale method whereas
in Fitzpatrick and Fleming (1991) viscosity solution techniques are used.
Duffie and Protter (1992) consider weak convergence of stochastic integrals
and apply it to the gain process in financial markets. Rogers (2001) compares
a classical continuous-time investor in a Black-Scholes-Merton market with
an investor who rebalances her portfolio only at times which are multiples of
h. His findings show that the difference is typically low.
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Chapter 5

Partially Observable Markov Decision
Processes

In many applications the decision maker has only partial information about
the state process, i.e. part of the state cannot be observed. Examples can be
found in engineering, economics, statistics, speech recognition and learning
theory among others. An important financial application is given when the
drift of a stock price process is unobservable and hard to estimate.
In contrast to the previous sections we cannot observe the complete state
directly. Thus it is natural to assume that the admissible policies can only
depend on the observed history. Since however the reward and the transition
kernel may also depend on the unobservable part of the state it is a priori
not clear how to solve the optimization problem. However, by introducing
an information process (filter) the problem can be reformulated in terms of
a Markov Decision Process with complete information and the theory de-
veloped in Chapter 2 can be applied. This approach works here since the
separation principle of estimation and control holds, i.e. the estimation step
is done first and then the optimization. The price one has to pay for this re-
formulation is an enlarged state space. More precisely, besides the observable
part of the state, a probability distribution enters the new state space which
defines the conditional distribution of the unobserved state given the history
of observations so far.
In Section 5.1 we introduce the Partially Observable Markov Decision Model.
In what follows the two important special cases of a Hidden Markov Model
and a Bayesian Model will be of particular interest. In a Hidden Markov
Model, the unobservable process is a Markov chain with finite state space
and in a Bayesian Model the unobservable process is simply a parameter
which does not change in time. In Section 5.2 we deal with the probability
distribution which enters the state space and derive a recursive formula which
is called filter equation. In Section 5.3 we explain the reformulation as a
classical Markov Decision Model (so-called filtered model) with enlarged state
space. In Section 5.4 we treat in more detail the Bayesian Model. In particular
we introduce the concept of a sufficient statistic here which enables us to
simplify in some cases the state space. This concept is well known in statistics.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 5,
c© Springer-Verlag Berlin Heidelberg 2011
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Controller

reward at
stage n:
r(xn,yn,an)

random

transition with

distribution

Q(.|xn,yn,an)

state at
stage n:

observable 
part xn

unobservable 
part yn

state at
stage n+1:

observable 
part xn+1

unobservable 
part yn+1

Fig. 5.1 General evolution of a Partially Observable Markov Decision Model.

The key observation is that only a part of the observable history is necessary
to determine the conditional distribution of the unknown parameter. We close
this chapter with the investigation of two-armed Bernoulli bandits which is
a prominent example of Partially Observable Markov Decision Models.

5.1 Partially Observable Markov Decision Processes

We first define the ingredients of a Partially Observable Markov Decision
Model where we restrict to stationary data. For the evolution of such models
see Figure 5.1.

Definition 5.1.1. A Partially Observable Markov Decision Model consists of
a set of data (EX ×EY , A,D,Q,Q0, r, g, β) with the following interpretation:

• EX × EY is the state space. We assume that EX and EY are Borel sub-
sets of Polish spaces. Let (x, y) ∈ EX × EY . Then x is the observable
component of the state and y the part which cannot be observed.

• A is the action space. We assume that A is a Borel subset of a Polish
space.

• D ⊂ EX × A is the set of possible state-action pairs. As usual,
D(x) = {a ∈ A|(x, a) ∈ D} is the set of feasible actions depending only
on the observable part x ∈ EX . We assume that D contains the graph of
a measurable function from EX to A.

• Q is a stochastic kernel from D ×EY to EX ×EY which determines the
distribution of the new state, given the current state and action, i.e. if
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(x, y) ∈ EX ×EY is the current state, a ∈ D(x) the action, we have that

Q(B × C|x, y, a)

is the probability that the new state is in the Borel set B×C ⊂ EX×EY .
• Q0 is the initial distribution of Y0.
• r : D × EY → R is a measurable function. r(x, y, a) gives the one-stage

reward of the system in state (x, y) if action a is taken.
• g : EX × EY → R is a measurable mapping. g(x, y) gives the terminal

reward of the system.
• β ∈ (0, 1] is the discount factor.

The planning horizon of the system is N ∈ N.

As in Chapter 2 we can define a Partially Observable Markov Decision Pro-
cess (Xn, Yn) on a common probability space (this will be done later in this
section). By (Xn) we denote the observable process and by (Yn) the unob-
servable process.
In what follows it is convenient to introduce

QX(B|x, y, a) := Q(B × EY |x, y, a), B ∈ B(EX) (5.1)

the marginal transition probability of the observable part. In our applications
the following special cases play a key role.

Example 5.1.2 (Hidden Markov Model). In this case (Yn) constitutes a (sta-
tionary) Markov chain on a finite state space which can neither be controlled
nor observed but which influences the reward and the dynamics of our system.
Moreover, we assume that the transition of this Markov chain is independent
from the transition of the observable part. Thus, our general model specializes
in the following way: Suppose without loss of generality that EY = {1, . . . ,m}
is the state space of the Markov chain. If we denote by

pij := IP(Yn+1 = j | Yn = i)

the transition probabilities of the Markov chain, the transition kernel for the
state process is

Q(B × {j}|x, i, a) = pijQ
X(B|x, i, a)

where QX still has to be specified. �

In order to define policies we have to introduce the sets of observable histories
which are denoted by

H0 := EX ,

Hn := Hn−1 ×A× EX .
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An element hn = (x0, a0, x1, . . . , xn) ∈ Hn is called observable history up to
time n.

Definition 5.1.3. a) A measurable mapping fn : Hn → A with the prop-
erty fn(hn) ∈ D(xn) for hn ∈ Hn is called a decision rule at stage n.

b) A sequence π = (f0, f1, . . . , fN−1) where fn is a decision rule at stage n
for all n, is called N -stage policy. We denote by ΠN the set of all N -stage
policies.

Let π = (f0, f1, . . . , fN−1) ∈ ΠN be an arbitrary N -stage policy and let
x ∈ EX be an initial state. Then the initial conditional distribution Q0

together with the transition probability Q define a probability measure IP
π
x

on (EX×EY )N+1 endowed with the product σ-algebra. This follows from the
Theorem of Ionescu Tulcea (see Appendix, Proposition B.2.5). More precisely
IP
π
x(·) =

∫
P πxy(·)Q0(dy). For ω = (x0, y0, . . . , xN , yN ) ∈ (EX × EY )N+1 we

define the random variablesXn and Yn in a canonical way by their projections

Xn(ω) = xn, Yn(ω) = yn.

If π = (f0, f1, . . . , fN−1) ∈ ΠN is a given policy, we define recursively

A0 := f0(X0)
An := fn(X0, A0, X1, . . . , Xn),

the sequence of actions which are chosen successively under policy π. It should
always be clear from the context which policy generates (An). The optimiza-
tion problem is now defined as follows. For π ∈ ΠN and X0 = x denote

JNπ(x) :=
∫

IE
π
xy

[
N−1∑

n=0

βnr(Xn, Yn, An) + βNg(XN , YN )

]

Q0(dy)

and
JN (x) := sup

π∈ΠN

JNπ(x). (5.2)

Problem (5.2) is called an N -stage Partially Observable Markov Decision
Problem and the process (Xn, Yn) is called a Partially Observable Markov
Decision Process. Note that the objective in (5.2) has a different form than
in Chapter 2. Here we have an additional expectation with respect to Q0. Fur-
thermore the admissible policies have to be independent of the unobservable
states. Hence we cannot use the results of Chapter 2 directly. But in Section
5.3 we will reformulate this optimization problem as a standard Markov Deci-
sion Process. In order to obtain a well-defined problem we assume throughout
this section:
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Assumption: For all x ∈ Ex it holds

sup
π

∫
IE
π
xy

[
N−1∑

n=0

βnr+(Xn, Yn, An) + βNg+(XN , YN )

]

Q0(dy) <∞.

5.2 Filter Equations

In the analysis which follows, the conditional distribution of the unobserved
state Yn, given the information σ

(
X0, A0, X1, . . . , An−1, Xn

)
will be crucial.

This conditional distribution can be computed recursively and this recursion
is called a filter equation. In this section we will derive this equation and give
some examples.
To begin with, let us denote by IP (EY ) the space of all probability measures
on EY . Note that if EY is a Borel space, IP (EY ) is a Borel space, too. In
what follows we assume that the transition kernel Q has a density q with
respect to some σ-finite measures λ and ν, i.e.

Q(d(x′, y′)|x, y, a) = q(x′, y′|x, y, a)λ(dx′)ν(dy′).

The key building block of the filter equation is the so-called Bayes operator
Φ : EX × IP (EY ) ×A× EX → IP (EY ) defined by

Φ(x, ρ, a, x′)(C) :=

∫
C

( ∫
q(x′, y′|x, y, a)ρ(dy)

)
ν(dy′)

∫
EY

( ∫
q(x′, y′|x, y, a)ρ(dy)

)
ν(dy′)

, C ∈ B(EY ).

We will see in Theorem 5.2.1 below that if ρ is a (conditional) distribution
of Yn, then Φ(x, ρ, a, x′) is a conditional distribution of Yn+1 given ρ, the
current observation x, action a and the next observation x′.
Let us next define for hn+1 = (hn, an, xn+1) ∈ Hn+1 = Hn × A × EX and
C ∈ B(EY ) recursively

μ0 := Q0 (5.3)

μn+1(C | hn, an, xn+1) := Φ
(
xn, μn(· | hn), an, xn+1

)
(C). (5.4)

This recursion is called a filter equation. The following theorem shows that μn
is indeed a conditional distribution of Yn given (X0, A0, X1, . . . , An−1, Xn).
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Theorem 5.2.1. For all π ∈ ΠN we have for C ∈ B(EY )

μn
(
C | X0, A0, X1, . . . , Xn

)
= IP

π
x

(
Yn ∈ C | X0, A0, X1, . . . , Xn

)
.

For the proof we need the following lemma.

Lemma 5.2.2. Let v : Hn × EX × EY → R be measurable. Then for all
hn ∈ Hn and an ∈ D(xn) it holds:

∫
μn(dyn|hn)

∫
Q

(
d(xn+1, yn+1) | xn, yn, an

)
v(hn, xn+1, yn+1)

=
∫
μn(dyn|hn)

∫
QX(dxn+1|xn, yn, an)

∫
Φ(xn, μn, an, xn+1)(dyn+1)v(hn, xn+1, yn+1)

provided the integrals exist.

Proof. The left-hand side of the equation can be written as
∫
μn(dyn|hn)

∫
λ(dxn+1)

∫
ν(dyn+1)q(xn+1, yn+1|xn, yn, an)

v(hn, xn+1, yn+1).

For the right-hand side we obtain

∫
μn(dyn|hn)

∫
λ(dxn+1)

∫
ν(dy)q(xn+1, y|xn, yn, an)

∫
Φ(xn, μn, an, xn+1)(dyn+1)v(hn, xn+1, yn+1).

Inserting the definition of the Bayes operator and applying Fubini’s theorem
we see that the right-hand side is equal to the left-hand side. ��

Proof. (of Theorem 5.2.1) It follows by induction from Lemma 5.2.2 that

IE
π
x [v(X0, A0, X1, . . . , Xn, Yn)] = IE

π
x [v

′(X0, A0, X1, . . . , Xn)] (5.5)

for all v : Hn × EY → R and v′(hn) :=
∫
v(hn, yn)μn(dyn|hn) provided that

the expectations exist. For n = 0 both sides reduce to
∫
v(x, y)Q0(dy). For a

given observable history hn−1 it holds:
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IE
π
x [v(hn−1, An−1, Xn, Yn)]

=
∫
μn−1(dyn−1|hn−1)

∫
Q

(
d(xn, yn)|xn−1, yn−1, fn−1(hn−1)

)

v
(
hn−1, fn−1(hn−1), xn, yn

)

IE
π
x

[
v′(hn−1, An−1, Xn)

]

=
∫
μn−1(dyn−1|hn−1)

∫
QX

(
dxn|xn−1, yn−1, fn−1(hn−1)

)

v′
(
hn−1, fn−1(hn−1), xn

)
.

Lemma 5.2.2 and the definition of μn imply that both expectations are equal.
The induction step gives finally (5.5). In particular for v = 1B×C we obtain

IP
π
x

(
(X0, A0, X1, . . . , Xn) ∈ B, Yn ∈ C

)

= IE
π
x

[
1B(X0, A0, X1, . . . , Xn)μn

(
C|X0, A0, X1, . . . , Xn

)]
,

i.e. μn
(
· |X0, A0, X1, . . . , Xn

)
is a conditional IP

π
x-distribution of Yn given

(X0, A0, X1, . . . , Xn). ��

The next example shows what the Bayes operator looks like in the Hidden
Markov Model.

Example 5.2.3 (Hidden Markov Model). Let us recall Example 5.1.2. We have
assumed that EY = {1, . . . ,m}. Thus,

IP (EY ) =
{
p ∈ [0, 1]m |

m∑

i=1

pi = 1
}
.

Moreover, let us suppose that the transition kernel QX of the observable part
defined in (5.1) has a λ-density qX . Then the Bayes operator for the Hidden
Markov Model is given by:

Φ(x, ρ, a, x′)({k}) =

m∑

i=1

ρ(i)pikqX(x′ | x, i, a)
m∑

i=1
ρ(i)qX(x′ | x, i, a)

, k = 1, . . . ,m

and Theorem 5.2.1 implies for k = 1, . . . ,m:

μn
(
{k} | X0, A0, X1, . . . , Xn

)
= IP

π
x

(
Yn = k|X0, A0, X1, . . . , Xn

)
. �

Often in applications the state transition depends on disturbances (Zn) which
are observable, but the distribution of Zn+1 depends on the unobservable
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state Yn. The random variables (Zn) take values in a Borel subset Z of a
Polish space. More precisely, it is assumed that instead of the transition
kernel Q a stochastic kernel QZ,Y is given, where QZ,Y (B × C|x, y, a) is the
probability that the disturbance variable Zn+1 is in B and the unobservable
state Yn+1 is in C, given the system state is (Xn, Yn) = (x, y) and action
a ∈ D(x) is taken. In what follows we will denote by

QZ(B|x, y, a) := QZ,Y (B × EY |x, y, a), B ∈ B(Z)

the marginal distribution of the disturbance variable Zn+1. The new observ-
able state is then determined by a transition function TX : EX×A×Z �→ EX
via

xn+1 = TX(xn, an, zn+1).

The transition kernel Q of the Partially Observable Markov Decision Model
is defined for B ∈ B(EX) and C ∈ B(EY ) by

Q(B × C|x, y, a) = QZ,Y
(
{z ∈ Z|TX(x, a, z) ∈ B} × C|x, y, a

)
.

Here it is now reasonable to introduce the sets of observable histories includ-
ing the disturbance by

H̃0 := EX ,

H̃n := H̃n−1 ×A×Z ×EX .

Elements are denoted by h̃n = (x0, a0, z1, x1, . . . , zn, xn) ∈ H̃n. When we
suppose that QZ,Y has a density with respect to some σ-finite measures λ
and ν, i.e.

QZ,Y (d(z, y′)|x, y, a) = qZ,Y (z, y′|x, y, a)λ(dz)ν(dy′)

then the Bayes operator can be written as

Φ(x, ρ, a, z)(C) :=

∫
C

( ∫
qZ,Y (z, y′|x, y, a)ρ(dy)

)
ν(dy′)

∫
EY

( ∫
qZ,Y (z, y′|x, y, a)ρ(dy)

)
ν(dy′)

, C ∈ B(EY ).

(5.6)
Note that we use the same notation Φ here (the meaning should always be
clear from the context). If we define for C ∈ B(EY )

μ0 := Q0

μn+1(C | h̃n, an, zn+1, xn+1) := Φ
(
xn, μn(· | h̃n), an, zn+1

)
(C)

then

μn
(
C | X0, . . . , Zn, Xn

)
= IP

π
x

(
Yn ∈ C | X0, . . . , Zn, Xn

)
.
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Note that μn
(
C | h̃n

)
= μn(C | x0, a0, z1, x1, . . . , zn, xn) does not depend on

xn. The following example contains an important special case.

Example 5.2.4 (Bayesian Model). In a Bayesian Model the process (Yn) is
given by Yn = ϑ for all n, i.e. Q(B × C|x, θ, a) := QXθ (B|x, a)δθ(C). This
means that the rewards and the transition kernel depend on a parameter θ
which is not known despite its initial distribution Q0, which is called the prior
distribution of ϑ. In this case it is common to write EY = Θ. We suppose
that the observable part of the state is updated by a transition function
TX : EX ×A×Z �→ EX . The Bayes operator is here given by

Φ(x, ρ, a, z)(C) =

∫

C

qZ(z|x, θ, a)ρ(dθ)
∫

Θ

qZ(z|x, θ, a)ρ(dθ) , C ∈ B(Θ). (5.7)

�

The following example shows an important application where the sequence
(μn) can be computed explicitly.

Example 5.2.5 (Kalman-Filter). This example is famous and can be found in
many textbooks. We suppose that EX = R

d, EY = R
l and the state transition

is given by

Yn+1 = BYn + εn+1,

Xn+1 = CYn+1 + ηn+1

with matrices B and C of appropriate dimension. Moreover, the system can-
not be controlled, i.e. D(x) is a singleton. As before, Xn is the observable
part of the state and Yn is the unobservable part of the state at time n.
We assume here that Y0 ∼ Q0 = N (0, S) where N (0, S) is the multivariate
normal distribution with expectation vector 0 and covariance matrix S and
that the disturbance variables ε1, η1, ε2, η2, . . . are all independent and have
a multivariate normal distribution with

Qε(·|x, y, a) = N (0, R), Qη(·|x, y, a) = N (0, S)

where R and S are covariance matrices with RR′ being positive definite.
These assumptions together with the transition functions determine the
stochastic kernel Q of the Partially Observable Markov Decision Model.

It follows from the properties of the normal distribution that μn(·|hn) is a
multivariate normal distribution with mean mn(hn) and covariance matrix
Σn (which is independent of hn), i.e.

μn(·|hn) = N
(
mn(hn), Σn

)
.
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The mean and covariance matrix can be computed recursively by the follow-
ing Kalman-filter equations for n ∈ N:

Σn|n−1 := BΣn−1B
′ + S,

Kn := Σn|n−1C
′
(
CΣn|n−1C

′ +R
)−1

,

Σn := Σn|n−1 −KnCΣn|n−1,

mn(hn) := Bmn−1(hn−1) +Kn

(
xn − CBmn−1(hn−1)

)

where the recursion is started with Σ0 = S andm0 = 0. Using linear transfor-
mations, the filter can be extended to the case where Yn has a deterministic
drift D, i.e. Yn+1 = BYn+D+ εn+1. An illustration of the Kalman-filter can
be seen in Figure 5.2 with Yn+1 = 1.001Yn+0.1+εn+1 and Xn = 2Yn+ηn+1

and independent and N (0, 1)-distributed random variables εn, ηn, . . ..
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Fig. 5.2 Plot of a Kalman filter in the one-dimensional case.

A realization of the sequences (Xn), (Yn) and mn(hn) is plotted. The upper
line of circles is given by the realizations of (Xn) which are observable. The
lower line of circles is given by the unobservable (Yn). The line of triangles
consists of the estimates mn(hn). �
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5.3 Reformulation as a Standard Markov Decision
Model

We introduce now a second problem which is a fully observable Markov De-
cision Problem as in Chapter 2 and which turns out to be equivalent to the
partially observable problem of the previous section. The idea is to enlarge
the state space of the problem by adding the (filtered) probability distribu-
tion of Yn given the history of observations up to time n. This conditional
distribution μn has been computed recursively by the filter equation (5.4). It
will be shown that μn contains exactly the relevant information in order to
derive optimal policies.
Now suppose a Partially Observable Markov Decision Model is given by the
data (EX ×EY , A,D,Q, Q0, r, g, β) as described in Section 5.1. Let us define
the following stationary N -stage Markov Decision Model.

Definition 5.3.1. The filtered Markov Decision Model consists of a set of
data (E,A,D,Q′, r′, g′, β) with the following meaning:

• E := EX × IP (EY ) is the state space. An element is denoted by (x, ρ).
x is the observable part of the state of the Partially Observable Markov
Decision Model and ρ is the (conditional) distribution of the unobservable
state.

• A is the action space.
• D ⊂ E × A is the set of possible state-action pairs. D(x, ρ) := D(x) for

all (x, ρ) ∈ E is the set of feasible actions in state (x, ρ).
• Q′ is a stochastic kernel which determines the distribution of the new

state as follows: For fixed (x, ρ) ∈ E, a ∈ D(x) and Borel subsets B ⊂ EX
and C ⊂ IP (EY ) we have

Q′(B × C | x, ρ, a) :=
∫ ∫

B

1C
(
Φ(x, ρ, a, x′)

)
QX(dx′|x, y, a)ρ(dy).

• r′ : D → R determines the one-stage reward and is given by

r′(x, ρ, a) :=
∫
r(x, y, a)ρ(dy).

• g′ : E → R is the terminal reward given by

g′(x, ρ) :=
∫
g(x, y)ρ(dy).

• β ∈ (0, 1] is the discount factor.

The policies for the filtered Markov Decision Model are well-defined by the
general theory in Chapter 2. It is important to note that the policies π ∈ ΠN
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which depend on the observable history and which have been introduced in
Section 5.1 are feasible for the filtered Markov Decision Model (see Section
2.2). Of course such a policy is in general not Markovian. On the other hand,
if (f ′

0, . . . , f
′
N−1) is a Markov policy for the filtered Markov Decision Model,

then (f0, . . . , fN−1) ∈ ΠN where

fn(hn) := f ′n
(
xn, μn(·|hn)

)
.

Hence the set of all Markov policies for the filtered Markov Decision Model
can be identified as a subset of ΠN . For the optimization we use initially the
larger class ΠN of all history-dependent policies. The value functions for the
filtered Markov Decision Model are defined as in Chapter 2 and denoted by

J ′
Nπ(x, ρ), π ∈ ΠN , (x, ρ) ∈ E

and
J ′
N (x, ρ) = sup

π∈ΠN

J ′
Nπ(x, ρ), (x, ρ) ∈ E.

Now we are able to show that the filtered Markov Decision Model with value
functions J ′

N solves the Partially Observable Markov Decision Problem of
Section 5.1.

Theorem 5.3.2. Let π ∈ ΠN . Then for all x ∈ EX

JNπ(x) = J ′
Nπ

(
x,Q0

)

and hence JN (x) = J ′
N

(
x,Q0

)
.

Proof. The filtered Markov Decision Model induces a probability measure
P̄πxQ0

on EN+1 through π ∈ ΠN , x ∈ EX , the initial distribution Q0 and the
transition probability Q′. The expectation with respect to P̄ πxQ0

is denoted
by ĒπxQ0

. We show that

IE
π
x [v(X0, A0, X1, . . . , Xn, Yn)] = ĪE

π
xQ0

[v′(X0, A0, X1, . . . , Xn, μn)] (5.8)

for all v : Hn × EY → R and v′(hn, ρ) :=
∫
v(hn, y)ρ(dy) provided that the

expectations exist. The proof follows along the same lines as the proof of
(5.5). Then we obtain immediately from (5.8) that

IE
π
x [r(Xn, Yn, An)] = ĪE

π
xQ0

[r′(Xn, μn, An)] (5.9)

and
IE
π
x [g(XN , YN )] = ĪE

π
xQ0

[g′(XN , μN )] . (5.10)
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Now the first statement is true. For the second statement JN (x) = J ′
N

(
x,Q0

)

it is important to note that the value of the filtered Markov Decision Model
is not improved if we use the larger class of policies ΠN instead of Markov
policies, i.e.

sup
π∈ΠN

J ′
Nπ(x, ρ) = sup

π′Markov
J ′
Nπ′(x, ρ), (x, ρ) ∈ E.

(cf. Theorem 2.2.3). Then the proof is complete. ��

Of course we can now solve the Partially Observable Markov Decision Prob-
lem with the methods developed in Chapter 2. Note that the Integrability
Assumption for the Partially Observable Markov Decision Model is equivalent
to (AN ) for the filtered Markov Decision Model. Let us define

QX(B|x, ρ, a) :=
∫
QX(B × EY |x, y, a)ρ(dy)

for B ∈ B(EX). In particular we obtain the following Bellman equation.

Theorem 5.3.3. Suppose the filtered Markov Decision Model satisfies the
Structure Assumption of Theorem 2.3.8.

a) Then the Bellman equation holds, i.e. for (x, ρ) ∈ EX × IP (EY ) :

J ′
0(x, ρ) =

∫
g(x, y)ρ(dy),

J ′
n(x, ρ) = sup

a∈D(x)

{∫
r(x, y, a)ρ(dy)

+β
∫
J ′
n−1

(
x′, Φ(x, ρ, a, x′)

)
QX(dx′|x, ρ, a)

}
.

b) Let f ′
n be a maximizer of J ′

n−1 for n = 1, . . . , N . Then the policy
π∗ := (f∗

0 , . . . , f
∗
N−1) is optimal for the N -stage Partially Observable

Markov Decision Problem, where

f∗n(hn) := f ′N−n
(
xn, μn(·|hn)

)
, hn ∈ Hn.

5.4 Bayesian Decision Models

In this section we consider the Bayesian Model which was introduced in
Example 5.2.4 in more detail, since the formulation of the filtered Markov
Decision Problem can be simplified considerably. It is also interesting to note
that the optimization problem (5.2) can in this case be interpreted as follows:
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Suppose the realization of ϑ is known and equal to θ (i.e. the prior distribution
is concentrated in θ). Then we have an ordinary Markov Decision Model with
disturbance distribution QZ(·|x, θ, a) and we denote the corresponding value
function under a policy π ∈ ΠN by JθNπ(x). Problem (5.2) is then equivalent
to

JN (x) = sup
π∈ΠN

∫
JθNπ(x)Q0(dθ).

Note that in general there does not exist a policy that is optimal for all θ ∈ Θ.
In the Bayesian model the conditional distribution μn(· | h̃n) of ϑ given the
observable history h̃n = (x0, a0, z1, x1, . . . , xn) ∈ H̃n admits the following
explicit formula which can be shown by induction.

Lemma 5.4.1. The posterior distribution μn has a Q0-density, i.e.

μn(C | h̃n) =

∫

C

∏n−1
k=0 q

Z(zk+1 | xk, θ, ak)Q0(dθ)
∫

Θ

∏n−1
k=0 q

Z(zk+1 | xk, θ, ak)Q0(dθ)
, C ∈ B(Θ).

This representation is very useful when properties of μn have to be shown.
Moreover, we obtain from Lemma 5.2.2 the following martingale property of
the filter process (posterior distributions) (μn).

Lemma 5.4.2. For fixed C ∈ B(Θ) the process

Mn := μn
(
C|X0, A0, Z1, X1, . . . , Xn

)

is a martingale, i.e. for all π and x ∈ EX :

IE
π
x

[
Mn+1

∣
∣ X0, A0, Z1, X1, . . . , Xn

]
= Mn, n ∈ N0.

In the next subsection we will present some examples.

Sufficient Statistics

In order to compute μn(· | h̃n) it is sometimes sufficient to know only a part
of h̃n or a certain function (characteristics) of it.

Definition 5.4.3. Let a Bayesian Model be given and let I be an arbitrary
space endowed with a σ-algebra I. A sequence t = (tn) of measurable map-
pings tn : H̃n → I is called a sufficient statistic for (μn), if there exists a
transition kernel μ̂ from I to Θ such that

μn(C | h̃n) = μ̂
(
C | tn(h̃n)

)
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for all h̃n ∈ H̃n, C ∈ B(Θ) and n ∈ N0.

Note that tn(h̃n) is independent of xn, since μn(·|h̃n) is independent of xn by
Lemma 5.4.1. In particular, t0(x0) ≡ t0. In the following examples we present
typical cases where simple sufficient statistics exist.

Example 5.4.4. (i) Suppose we have the special case that QZ(C|x, θ, a) does
only depend on θ, i.e. we have QZ(C|θ). Moreover, we assume that the
disturbance variables are exponentially distributed with unknown param-
eter θ ∈ Θ = R+, i.e. QZ(· | θ) = Exp(θ). According to Lemma 5.4.1 we
obtain

μn(C | h̃n) =

∫

C

θn exp
(
− θ

∑n
k=1 zk

)
Q0(dθ)

∫

Θ

θn exp
(
− θ

∑n
k=1 zk

)
Q0(dθ)

.

Obviously μn depends on the history h̃n only through
∑n

k=1 zk and n. If
we define tn(h̃n) := (

∑n
k=1 zk, n), then for i = (x, n) ∈ I := R+ × N we

obtain that μn(C|h̃n) = μ̂
(
C|tn(h̃n)

)
where

μ̂(C | i) =

∫

C

θn exp
(
− θx

)
Q0(dθ)

∫

Θ

θn exp
(
− θx

)
Q0(dθ′)

.

When Q0 = Γ (α, β), i.e. the initial distribution of ϑ is a Gamma-
distribution with parameters α and β, then μ̂(·|x, n) = Γ (α+ n, β + x).

(ii) As in example (i) we assume that QZ(C|x, θ, a) does only depend on
θ. Now suppose the disturbance variables are only zero or one, i.e.
QZ(· | θ) = B(1, θ). According to Lemma 5.4.1 we obtain

μn(C | h̃n) =

∫

C

θ
∑ n

k=1 zk(1 − θ)n−
∑n

k=1 zkQ0(dθ)
∫

Θ

θ
∑

n
k=1 zk(1 − θ)n−

∑
n
k=1 zkQ0(dθ)

.

Obviously μn depends on the history h̃n only through
∑n

k=1 zk and n.
Thus, if we define tn(h̃n) := (

∑n
k=1 zk, n), then for i = (s, n) ∈ I :=

{(s, n) ∈ N
2
0|s ≤ n} we obtain that μn(C|h̃n) = μ̂

(
C|tn(h̃n)

)
where

μ̂(C | i) :=

∫

C

θs(1 − θ)n−sQ0(dθ)
∫

Θ

θs(1 − θ)n−sQ0(dθ)
.

Note that in case Q0 = U(0, 1), i.e. the initial distribution of ϑ is the uni-
form distribution on the interval (0, 1), then μ̂(·|s, n) is a Beta distribution
with parameters (s+ 1, n− s+ 1). �
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Definition 5.4.5. Let a Bayesian Model be given and suppose there is a
sufficient statistic (tn) given for (μn) with the property

tn+1(h̃n+1) = tn+1(h̃n, an, zn+1) = Φ̂
(
xn, tn(h̃n), an, zn+1

)

for h̃n+1 = (h̃n, an, zn+1, xn+1) ∈ H̃n+1 and for a measurable function
Φ̂ : EX × I × A × Z → I. Then the sequence (tn) is called a sequential
sufficient statistic.

Obviously we have in the Examples 5.4.4 also a sequential sufficient statistic.
If there exists a sequential sufficient statistic, then the formulation of the fil-
tered Markov Decision Model can be simplified. Instead of enlarging the state
space by the posterior distributions μn, it is sufficient to include the infor-
mation state in = tn(h̃n). The resulting information-based Markov Decision
Model is defined as follows.

Definition 5.4.6. Suppose a Bayesian Model with a sequential sufficient
statistic (tn) is given. The information-based Markov Decision Model is a
set of data (E,A,D,Z, T̂ , Q̂Z , r̂, ĝ, β) with the following properties:

• E := EX × I is the state space. EX is the observable part of the state
space and I is the space of information states.

• A is the action space.
• D ⊂ E×A is the set of possible state-action pairs. D(x, i) := D(x) is the

set of feasible actions in state (x, i).
• Z is the disturbance space.
• T̂ : EX × I ×A×Z → EX × I is a measurable transition function. More

precisely we define

(xn+1, in+1) = T̂ (xn, in, an, zn+1)
:=

(
TX(xn, an, zn+1), Φ̂(xn, in, an, zn+1)

)
.

• Q̂Z is a stochastic kernel which determines the distribution of the distur-
bance variable Zn+1 as follows: For fixed (x, i) ∈ EX × I, a ∈ D(x) and
B ∈ B(Z) we define

Q̂Z(B|x, i, a) :=
∫
QZ(B|x, θ, a)μ̂(dθ|i).

• r̂ : D × I → R is the one-stage reward function

r̂(x, i, a) :=
∫
r(x, θ, a)μ̂(dθ|i)

whenever the integral exists.
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• ĝ : E × I → R is the terminal reward function

ĝ(x, i) :=
∫
g(x, θ)μ̂(dθ|i)

provided the integral exists.
• β ∈ (0, 1] is the discount factor.

This is a Markov Decision Model as introduced in Chapter 2. The value
functions for the information-based Markov Decision Model are denoted
by Ĵnπ(x, i) for π ∈ Π̃n and Ĵn(x, i), where Π̃n is the set of all poli-
cies π = (f0, . . . , fn−1) with measurable decision rules fk : H̃k → A,
fk(h̃k) ∈ D(xk), k = 0, . . . , n− 1.

Theorem 5.4.7. Suppose π ∈ Π̃N . Then it holds for x ∈ EX :

JNπ(x) = ĴNπ(x, t0) and JN (x) = ĴN
(
x, t0

)
.

The proof follows along the same lines as the proof of Theorem 5.3.2. Again
we can apply Theorem 2.3.8 to obtain:

Theorem 5.4.8. Suppose the information-based Markov Decision Model
satisfies the Structure Assumption of Theorem 2.3.8.

a) Then the Bellman equation holds, i.e. for (x, i) ∈ EX × I:

Ĵ0(x, i) =
∫
g(x, θ)μ̂(dθ|i)

Ĵn(x, i) = sup
a∈D(x)

{∫
r(x, θ, a)μ̂(dθ|i) +

β

∫ ∫
Ĵn−1

(
TX(x, a, z), Φ̂(x, i, a, z)

)
QZ(dz|x, θ, a)μ̂(dθ|i)

}

.

b) Let f̂n be a maximizer of Ĵn−1 for n = 1, . . . , N . Then the policy
π∗ := (f∗

0 , . . . , f
∗
N−1) is optimal for the N -stage Bayesian Model,

where
f∗
n(h̃n) := f̂N−n

(
xn, tn(h̃n)

)
, h̃n ∈ H̃n.

Finally we note that information-based Markov Decision Models are more
general than Bayesian Markov Decision Models. This follows since a triv-
ial sufficient statistics for (μn) is given by tn(h̃n) := μn(·|h̃n). In this case
I := IP (Θ).
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Monotonicity Results

In order to apply Theorem 5.4.8, the structure assumption has to be satisfied.
In what follows we deal as an example with the ‘increasing case’. To ease the
notation we make the following simplifying assumptions:

Assumptions:

(i) Z ⊂ R, EX ⊂ R
d and Θ ⊂ R.

(ii) QZ(·|x, θ, a) is independent of x and has a density qZ(·|θ, a) with respect
to a σ-finite measure.

(iii) μ̂ has a Q0-density p̂(θ|i), i.e. μ̂(θ|i) = p̂(θ|i)Q0(dθ).

Assumption (ii) implies that Φ is independent of x and also Φ̂ can be supposed
to be independent of x. In order to speak about monotonicity we have to
introduce a partial order relation on the state space EX × I and on Z. Since
EX ⊂ R

d and Z ⊂ R we can use the usual componentwise partial order. On
I we define

i ≤ i′ :⇔ μ̂(·|i) ≤lr μ̂(·|i′)

where ≤lr is the likelihood ratio order, i.e.

p̂(θ|i′)
p̂(θ|i) is increasing in θ

(see Appendix B.3). A function v : I → R is called increasing if

i ≤ i′ ⇒ v(i) ≤ v(i′).

We need the following preliminary results (for MTP2 functions see the Ap-
pendix B.3).

Lemma 5.4.9. a) If qZ(z|θ, a) is an MTP2 function in (z, θ) for all a, then

(i, z) �→ Φ̂(i, a, z)

is increasing for all a ∈ A.
b) Fix a ∈ A. We have qZ(·|θ, a) ≤lr qZ(·|θ′, a) for all θ ≤ θ′ if and only if
qZ(z|θ, a) is an MTP2 function in (z, θ).

Proof. a) We have to show that (i, z) ≤ (i′, z′) implies Φ̂(i, a, z) ≤ Φ̂(i′, a, z′),
i.e.

μ̂
(
· |Φ̂(i, a, z)

)
≤lr μ̂

(
· |Φ̂(i′, a, z′)

)
.

Note that in = tn(hn) and by definition

μ̂
(
· |Φ̂(in, an, zn)

)
= μ̂

(
· |tn+1(hn+1)

)
= μn+1(·|hn+1)

= Φ
(
· |μn(·|hn), an, zn

)
= Φ

(
· |μ̂(·|in), an, zn

)
.
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Hence it is equivalent to show that

Φ
(
· |μ̂(·|i), a, z

)
≤lr Φ

(
· |μ̂(·|i′), a, z′

)
. (5.11)

By definition of the Bayes operator the distribution Φ
(
· |μ̂(·|i), a, z

)
has

the density
qZ(z|θ, a)p̂(θ|i)

∫
qZ(z|θ̃, a)p̂(θ̃|i)dθ̃

.

Using the definition of the likelihood ratio order, (5.11) is then equivalent
to

qZ(z|θ, a) p̂(θ|i) qZ(z′|θ′, a) p̂(θ′|i′)
≤ qZ(z|θ ∧ θ′, a) p̂(θ ∧ θ′|i) qZ(z′|θ ∨ θ′, a) p̂(θ ∨ θ′|i′)

for θ, θ′ ∈ Θ. This is equivalent to qZ(z|θ, a)p̂(θ|i) being MTP2 in (z, θ, i).
Now qZ(z|θ, a) is MTP2 in (z, θ) by assumption, hence also in (z, θ, i). On
the other hand, μ̂(·|i) ≤lr μ̂(·|i′) means that for i ≤ i′ and θ, θ′ ∈ Θ we
have

p̂(θ|i) p̂(θ′|i′) ≤ p̂(θ ∧ θ′|i) p̂(θ ∨ θ′|i′).

Hence p̂(θ|i) is MTP2 in (z, θ, i). Since the product of MTP2 functions is
MTP2 (see Lemma A.3.4 part b)) the statement follows.

b) The statement follows directly from the definition. See also part a). ��

The previous Lemma is now used to prove the following monotonicity result
for the information-based Markov Decision Model.

Theorem 5.4.10. Suppose an information-based Markov Decision Model
with an upper bounding function b is given and

(i) D(·) is increasing, i.e. x ≤ x′ implies D(x) ⊂ D(x′),
(ii) qZ(·|θ, a) ≤lr qZ(·|θ′, a) for all θ ≤ θ′ and a ∈ A,
(iii) (x, z) �→ TX(x, a, z) is increasing for all a ∈ D(x),
(iv) (θ, x) �→ r(θ, x, a) is increasing for all a ∈ D(x),
(v) (θ, x) �→ g(θ, x) is increasing,
(vi) for all increasing v ∈ IB+

b there exists a maximizer f ∈ Δ of v.

Then the sets IM := {v ∈ IB+
b | v is increasing} and Δ satisfy the Struc-

ture Assumption (SAN ).

Proof. We use the general Theorem 2.4.14 for increasing Markov Decision
Models to show the result. The crucial part is to prove the stochastic mono-
tonicity of the transition kernel since the state space is rather complicated
now. Let us check the conditions (i)–(v) of Theorem 2.4.14:

(i) D(·) is increasing by assumption.
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(ii) The function

(x, i) �→
∫ ∫

v
(
TX(x, a, z), Φ̂(i, a, z)

)
qZ(z|θ, a)dzμ̂(dθ|i)

is increasing for all increasing v ∈ IB+
b .

The monotonicity in x follows directly, since TX and v are both increas-
ing by assumption. Next for i ≤ i′ it is clear from Lemma 5.4.9 and our
assumption (ii) that

v
(
TX(x, a, z), Φ̂(i, a, z)

)
≤ v

(
TX(x, a, z), Φ̂(i′, a, z)

)
.

Now it remains to show that the expression
∫ ∫

v
(
TX(x, a, z), Φ̂(i′, a, z)

)
qZ(z|θ, a)dzμ̂(dθ|i)

is increased if μ̂(dθ|i) is replaced by μ̂(dθ|i′). For i ≤ i′ we have by
definition μ̂(·|i) ≤lr μ̂(·|i′) which implies μ̂(·|i) ≤st μ̂(·|i′) (see Theorem
B.3.6). Thus, in view of Theorem B.3.3 we have to show that

θ �→
∫
v
(
TX(x, a, z), Φ̂(i′, a, z)

)
qZ(z|θ, a)dz

is increasing. But this follows since qZ(·|θ, a) ≤lr qZ(·|θ′, a) for θ ≤ θ′

and
z �→ v

(
TX(x, a, z), Φ̂(i, a, z)

)

is increasing by Lemma 5.4.9 and our assumptions.
(iii) The function (x, i) �→

∫
r(θ, x, a)μ̂(dθ|i) is increasing, since r is increas-

ing in x and θ and μ̂(·|i) ≤st μ̂(·|i′) (see (ii)).
(iv) As in part (iii) it follows that ĝ is increasing.
(v) The existence of maximizers is true by assumption. ��

5.5 Bandit Problems with Finite Horizon

A nice application of Partially Observable Markov Decision Problems are
so-called bandit problems. We will restrict here to Bernoulli bandits with
two arms. The game is as follows: Imagine we have two slot machines with
unknown success probability θ1 and θ2. The success probabilities are chosen
independently from two prior Beta-distributions. At each stage we have to
choose one of the arms. We receive one Euro if the arm wins, else no cash
flow appears. The aim is to maximize the expected total reward over N trials.
One of the first (and more serious) applications is to medical trials of a new
drug. In the beginning the cure rate of the new drug is not known and may
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be in competition with well-established drugs with known cure rate (this
corresponds to one bandit with known success probability). The problem is
not trivial since it is not necessarily optimal to choose the arm with the
higher expected success probability. Instead one has to incorporate ‘learning
effects’ which means that sometimes one has to pull one arm just to get some
information about its success probability. In case of a finite horizon some
nice properties of the optimal policy like the ‘stay-on-a-winner’ rule can be
shown. In case of an infinite horizon (which is treated in Section 7.6.4) it is
possible to prove the optimality of a so-called index-policy, a result which has
been generalized further for multi-armed bandits.
The bandit problem can be formulated as a Partially Observable Markov
Decision Model as follows: Note that there is no observable part of the state,
such that EX and the process (Xn) can be skipped. The remaining data is
as follows:

• EY := Θ := [0, 1]2 where θ = (θ1, θ2) ∈ Θ denotes the (unknown) success
probabilities of arm 1 and 2,

• A := {1, 2} where a ∈ A is the number of the arm which is chosen next,
• D(·) := A,
• Z := {0, 1}, i.e. we observe either success (z = 1) or failure (z = 0),
• QZ({1}|(θ1, θ2), a) := θa,
• Q0 is the initial (prior) distribution of (θ1, θ2). We assume that Q0 is a

product of two uniform distributions, i.e. Q0 = Be(1, 1) ⊗Be(1, 1),
• r(θ, a) := θa,
• g ≡ 0,
• β ∈ (0, 1].

Note that the reward should be understood as an expected reward in the sense
of Remark 2.1.2. By using this definition we make sure that the expected total
reward is really the quantity we maximize.
Obviously we can apply Example 5.4.4 (ii) and obtain as sufficient statistic
the number of successes ma and failures na at both arms a = 1, 2, hence
x = (m1, n1,m2, n2) is an information state and I = N

2
0×N

2
0. The conditional

distribution μ̂(·|x) of θ = (θ1, θ2) is then the product of two Beta distributions
Be(m1 + 1, n1 + 1) ⊗ Be(m2 + 1, n2 + 1). The operator Φ̂ : I × A × Z → I
which yields the sequential sufficient statistic is given by

Φ̂(x, a, z) =
{
x+ e2a−1 if z = 1
x+ e2a if z = 0

where ea is the a-th unit vector. The operator Φ̂ simply adds the observa-
tion (success/failure) to the right component. Altogether we obtain for the
information-based Markov Decision Model:

• E := I = N
2
0 × N

2
0 where x = (m1, n1,m2, n2) ∈ E denotes the number of

successes ma and failures na at arm a,
• A := {1, 2} where a ∈ A is the number of the arm which is chosen next,
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• D(·) := A,
• Z := {0, 1} where z = 1 and z = 0 refer to success and failure respectively,
• T̂ (x, a, z) := Φ̂(x, a, z).
• The distribution of the disturbances is given by

Q̂Z({1}|x, a) =
∫
QZ({1}|θ, a)μ̂(dθ|x) =

ma + 1
ma + na + 2

=: pa(x),

• r̂(x, a) :=
∫
r(θ, a)μ̂(dθ|x) = ma+1

ma+na+2
,

• ĝ ≡ 0,
• β ∈ (0, 1].

Note that the rewards are non-negative and bounded. In this section we will
consider the problem with finite horizon, in Section 7.6.4 the infinite horizon
problem is investigated.
It is convenient to introduce the following abbreviations for v : E → R:

(Qav)(x) := pa(x)v(x + e2a−1) + (1 − pa(x))v(x + e2a), x ∈ E.

Note that since E is countable and A is finite, the Structure Assumption
(SAN ) is satisfied and we obtain with Theorem 5.4.8 that the following re-
cursion is valid (instead of Ĵn we will simply write Jn for the value functions
of the information-based Markov Decision Model):

Jn(x) = max
a=1,2

{
pa(x) + β(QaJn−1)(x)

}
, x ∈ E

where J0 ≡ 0. We immediately obtain the following result.

Theorem 5.5.1. Let dn := p2 + βQ2Jn−1 − p1 − βQ1Jn−1 for n ∈ N. Then
it holds:

a) The policy π∗ = (f∗
N , . . . , f

∗
1 ) is optimal, where

f∗n(x) =
{

2 if dn(x) ≥ 0
1 if dn(x) < 0

is the largest maximizer of Jn−1.
b) The sequence (dn) satisfies the recursion

d1 = p2 − p1,

dn+1 = (1 − β)d1 + βQ2d
+
n − βQ1d

−
n .

c) Let β = 1. Then the ‘stay-on-a-winner’ property holds for the optimal
policy π∗, i.e.

f∗
n+1(x) = a ⇒ f∗n(x + e2a−1) = a.
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The interpretation of the last statement is as follows: First note that the
optimal N -stage policy is given by (f∗

N , . . . , f
∗
1 ). Hence, if it is optimal to

choose arm a in state x (i.e. f∗
n+1(x) = a), and we observe a success (i.e. the

new state is x + e2a−1) then it is also optimal to choose arm a in the new
state (i.e. f∗n(x+ e2a−1) = a).

Proof. a) Note that dn(x) = LJn−1(x, 2) − LJn−1(x, 1) and hence the state-
ment follows directly.

b) Since J0 ≡ 0 we get d1 = p2−p1. For n ≥ 2 we obtain with the abbreviation
Lav(x) := Lv(x, a)

dn+1 = L2Jn − L1Jn = L2(L1Jn−1 + d+
n ) − L1(L2Jn−1 + d−n )

= L2L1Jn−1 + βQ2d
+
n − L1L2Jn−1 − βQ1d

−
n .

Since Q2p1 = p1, Q1p2 = p2 and Q1Q2v = Q2Q1v for bounded v : E → R,
it holds:

L2L1Jn−1 − L1L2Jn−1 = p2 + βQ2p1 − p1 − βQ1p2

+β2
(
Q2Q1Jn−1 −Q1Q2Jn−1

)

= (1 − β)(p2 − p1) = (1 − β)d1

which implies the statement.
c) We show that f∗

n+1(x) = 1 implies f∗
n(x+e1) = 1. The statement for a = 2

can be shown in the same way. Let us consider the following partial order
relation on E = N

2
0 × N

2
0:

x ≤ x′ :⇐⇒
{
m1 ≥ m′

1, m2 ≤ m′
2,

n1 ≤ n′1, n2 ≥ n′2

i.e. state x′ is larger than state x if the second arm performs better and the
first arm performs worse compared with state x. It follows immediately
from part b) by induction on n that dn(x) is increasing in x with respect
to this order. Now assume that f∗

n+1(x) = 1 and f∗
n(x+ e1) = 2. The last

equation implies dn(x+ e1) ≥ 0. Since x+ e1 ≤ x+ e2 and dn is increasing
this leads to dn(x+ e2) ≥ 0. Since β = 1 we obtain from part b) that

dn+1(x) = (Q2d
+
n )(x) − (Q1d

−
n )(x)

= p2(x)d+
n (x+ e3) + (1 − p2(x))d+

n (x + e4)
− p1(x)d−n (x+ e1) − (1 − p1(x))d−n (x+ e2)

= p2(x)d+
n (x+ e3) + (1 − p2(x))d+

n (x + e4) ≥ 0.

This is a contradiction to the assumption f∗
n+1(x) = 1 and the statement

follows. ��



170 5 Partially Observable Markov Decision Processes

We consider now the special case where the success probability of arm 1 is
known, i.e. the prior distribution at arm 1 is concentrated on the point θ1 =
p1 ∈ (0, 1). Then p1(x) = p1. Here obviously the state space reduces to
E := N

2
0, where (m,n) denotes the number m of successes and n of failures

at arm 2. The Bellman equation reduces to

Jk(m,n) = max
{
p1+βJk−1(m,n), p(m,n)+β(PJk−1)(m,n)

}
, (m,n) ∈ E

with J0 ≡ 0, and where we use the obvious change of notation:

(Pv)(m,n) := p(m,n)v(m+ 1, n) + (1 − p(m,n))v(m,n+ 1),

for bounded v : N
2
0 → R and p(m,n) := m+1

m+n+2
.

For the next theorem we introduce the following partial order relation on
E = N

2
0.

(m,n) ≤ (m′, n′) :⇐⇒ m ≤ m′, n ≥ n′. (5.12)

Note that this order is equivalent to the likelihood ratio order for the corre-
sponding Beta distributions with parameters (m+1, n+1) and (m′+1, n′+1)
(see Example B.3.8). With this definition we are able to show:

Theorem 5.5.2. Suppose the success probability at arm 1 is known. Then
it holds:

a) The optimal policy π∗ = (f∗
N , . . . , f

∗
1 ) has the property that f∗k (m,n) is

increasing in (m,n).
b) The stay-on-a-winner property for arm 2 holds, i.e.

f∗
k+1(m,n) = 2 ⇒ f∗

k (m+ 1, n) = 2.

c) The stopping rule for arm 1 holds, i.e.

f∗
k+1(m,n) = 1 ⇒ f∗k (m,n) = 1.

d) The optimal policy is partly myopic:

p(m,n) ≥ p1 ⇒ f∗
k (m,n) = 2, for all k ∈ N.

The ‘stopping rule’ for arm 1 means that once we have decided to play the
arm with the known success probability we will continue to do so because we
do not gain any new information about the success probability of arm 2. The
converse of part d) is not true: There may be cases where p1 > p(m,n) and
it is optimal to choose arm 2.

Proof. a) According to Proposition 2.4.16 it remains to show that LJk−1 is
supermodular or equivalently
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dk(m,n) = LJk−1((m,n), 2) − LJk−1((m,n), 1)

is increasing in (m,n). This can be shown by induction on k. The fact
that d1(m,n) = p(m,n) − p1 is increasing in (m,n) is easy to see. For
the induction step, in view of Theorem 5.5.1 b) we have to show that
the stochastic kernel P is stochastically monotone. But this means by
definition that (m,n) ≤ (m′, n′) implies p(m,n) ≤ p(m′, n′), which follows
directly from the definition of p(m,n).

b) First note that we have by definition the representation

dk+1(m,n) = d1(m,n) + β
(
(PJk)(m,n) − Jk(m,n)

)
.

On the other hand we know from Theorem 5.5.1 b) that

dk+1(m,n) = (1 − β)d1(m,n) + β(Pd+
k )(m,n) − βd−k (m,n).

Solving the first equation for d1 and inserting this into the second equation
yields:

dk+1 = Pd+
k − d−k − (1 − β)(PJk − Jk).

Since it always holds that PJk ≥ Jk we obtain

dk+1(m,n) ≤ (Pd+
k )(m,n) − d−k (m,n).

Now let us assume that f∗k+1(m,n) = 2 and f∗
k (m + 1, n) = 1. The last

equation means that dk(m+ 1, n) < 0. Since obviously

(m,n+ 1) ≤ (m,n) ≤ (m+ 1, n)

and dk(m,n) is increasing in (m,n) we obtain that Pd+
k (m,n) = 0. Thus

we get d−k (m,n) > 0 and this in turn implies dk+1(m,n) ≤ −d−k (m,n) < 0.
From the last inequality we conclude that f∗k+1(m,n) = 1 which is a
contradiction to our assumption.

c) It is easy to show by induction that dk ≤ dk+1. Hence we know that
dk(m,n) ≤ dk+1(m,n) from which we conclude that f∗k+1(m,n) = 1 im-
plies f∗k (m,n) = 1.

d) The condition p(m,n) ≥ p1 implies that d1(m,n) ≥ 0. We know from part
c) that dk(m,n) ≥ 0 which is equivalent to f∗

k (m,n) = 2. ��

5.6 Exercises

Exercise 5.6.1. Prove the explicit representation of the conditional distri-
bution of the unknown parameter in the Bayesian model given in Lemma
5.4.1.
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Exercise 5.6.2 (Conjugate Distributions). Let us consider the Bayesian
Model. A class of prior probability distributions Q0 is said to be conjugate to
a class of likelihood functions QZ(·|θ) if the resulting posterior distributions
μn(·|h̃n) are in the same family as Q0. The parameters of this class then
determine a sufficient statistic for μn.

a) Suppose that QZ(·|θ) = Poi(θ), i.e. the disturbance variables are Poisson-
distributed with parameter θ and Q0 = Γ (α, β), i.e. the prior distribution
of θ is a Gamma distribution with parameters α and β. Show that μn(·|h̃n)
is again Gamma-distributed with parameters

(
α+

∑n
k=1 zk, β + n

)
.

b) Suppose that QZ(·|θ) = N (θ, σ2), i.e. the disturbance variables are
normally-distributed with unknown mean θ and known variance σ2 and
Q0 = N (μ0, σ

2
0), i.e. the prior distribution of θ is a Normal distribu-

tion with parameters μ0 and σ2
0 . Show that μn(·|h̃n) is again normally-

distributed with parameters

(μ0

σ2
0

+
∑n
k=1 zk
σ2

)
/
( 1
σ2

0

+
n

σ2

)
and

( 1
σ2

0

+
n

σ2

)−1

.

Exercise 5.6.3. Consider the binomial distribution B(n, p) and the Beta
distribution Be(α, β) (see Appendix B.3). Show:

a) B(n, p) ≤lr B(m, q) if n ≤ m and p ≤ q.
b) Be(α, β) ≤lr Be(γ, δ) if α ≤ γ and β ≥ δ.

Exercise 5.6.4 (Sequential Ratio Test). Suppose we can observe real-
izations of random variables (Yn) which are independent and identically
distributed and depend on an unknown parameter θ. We want to test
H0 : θ = θ0 against H1 : θ = θ1. There are three actions available:
a = a0, i.e. we decide for H0

a = a1, i.e. we decide for H1

a = a2, i.e. we make a further observation.
For each observation we have to pay a cost c > 0. Wrong decisions are also
punished: We have to pay c1 if we decide for H1 and H0 is correct and we
have to pay c0 if we decide for H0 and H1 is correct.

a) Set this up as an information-based Markov Decision Model. Choose
I = [0, 1] where x ∈ I is the probability that H0 is correct.

b) Show that the Bayes-operator is given by

Φ(x, z) =
xq(z|θ0)

xq(z|θ0) + (1 − x)q(z|θ1)

where q(z|θ0) is the conditional distribution of Y given H0 is correct.
c) Show that Jn is continuous and concave in x ∈ I, Jn(0) = Jn(1) = 0.
d) Show that there exist x∗n and x∗∗n ∈ I such that
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f∗
n(x) =

⎧
⎨

⎩

a0, x ≥ x∗∗n ,
a1, x ≤ x∗n,
a2, x

∗
n < x < x∗∗n

is a minimizer of Jn−1.

5.7 Remarks and References

An early reference for sequential Bayesian Decision Models is Martin (1967).
For the reformulation approach in Section 5.3 we refer the reader in particular
to Rieder (1975a). Textbooks which contain material and historical remarks
on this topic are e.g. Hinderer (1970), van Hee (1978), Bertsekas and Shreve
(1978), Kumar and Varaiya (1986), Hernández-Lerma (1989), Presman and
Sonin (1990) and Runggaldier and Stettner (1994). Sometimes Bayesian Deci-
sion Models are treated under the name Adaptive control model. More details
about models with sufficient statistics can be found in Hinderer (1970) and
Bertsekas and Shreve (1978). In DeGroot (2004) various families of conju-
gate prior distributions are given. Stochastic control of partially observable
systems in continuous-time have been investigated among others by Bensous-
san (1992). Recently Winter (2008) studied the optimal control of Markovian
jump processes with different information structures, see also the paper of
Rieder and Winter (2009). For a finite numerical approximation of filters and
their use in Partially Observable Markov Decision Problems see Pham et al.
(2005) and Corsi et al. (2008).
Structural and comparison results for partially observable Markov Decision
Models can be found in Albright (1979), Lovejoy (1987), Rieder (1991), Rieder
and Zagst (1994), Müller (1997) and Krishnamurthy and Wahlberg (2009).
Zagst (1995) and Brennan (1998) discuss the role of learning in multistage
decision problems. Computational results for partially observable Markov De-
cision Models are given in Monahan (1982b), Lovejoy (1991a,b). Smallwood
and Sondik (1973) and Sondik (1978) investigate partially observable Markov
Decision Processes with finite and infinite horizon.
There are a number of textbooks on (uncontrolled) general filtering problems.
Most of the books treat the problem of filtering from a continuous-time pro-
cess which we do not investigate here. The references Bain and Crisan (2009),
Fristedt et al. (2007) and Elliott et al. (1995) also contain the discrete-time
case. The derivation of the Kalman filter in Example 5.2.5 can be found there.

Section 5.5: Structural results for bandit problems with finite horizon (like
the stopping rule and the stay-on-a-winner property) are derived in Benzing
et al. (1984), Kolonko and Benzing (1985), Kolonko (1986), Benzing and
Kolonko (1987) and Rieder and Wagner (1991), see also the books of Berry
and Fristedt (1985) and Gittins (1989). Applications to sequential sampling
procedures can be found in Rieder and Wentges (1991). In Section 7.6.4 we
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shall discuss Bandit problems with infinite horizon. There further references
on bandit problems are given.



Chapter 6

Partially Observable Markov Decision
Problems in Finance

All the models which have been considered in Chapter 4 may also be treated
in the case of partial information. Indeed models of this type occur somehow
natural in mathematical finance because there are underlying economic fac-
tors influencing asset prices which are not specified and cannot be observed.
Moreover, for example the drift of a stock is notoriously difficult to estimate.
In this chapter we assume that the relative risk return distribution of the
stocks is determined up to an unknown parameter which may change. This
concept can also be interpreted as one way of dealing with model ambiguity.
We choose two of the models from Chapter 4 and extend them to partial
observation. The first is the general terminal wealth problem of Section 4.2
and the second is the dynamic mean-variance problem of Section 4.6.
We consider a financial market with one riskless bond (with interest rate
in = i) and d risky assets with relative risk process (Rn). Here we assume
that the distribution of Rn+1 depends on an underlying stationary Markov
process (Yn) which cannot be observed. In Section 4.4 (Regime-switching
model) the process (Yn) is observable. The state space of (Yn) is EY , a Borel
subset of a Polish space. We assume that (Rn, Yn) is a Markov process and
moreover

IP
(
Rn+1 ∈ B, Yn+1 ∈ C|Yn = y,Rn

)

= IP
(
Rn+1 ∈ B, Yn+1 ∈ C|Yn = y

)
(6.1)

= IP
(
Rn+1 ∈ B|Yn = y) · IP

(
Yn+1 ∈ C|Yn = y

)
=: QR(B|y)QY (C|y)

for B ∈ B(Rd), C ∈ B(EY ). QY is the transition kernel of the ‘hidden’ Markov
process (Yn) and QR(·|y) is the (conditional) distribution of Rn+1 given
Yn = y (independent of n). In the following letR(y) be a random variable with
distribution QR(·|y), i.e. IP(R(y) ∈ B) = QR(B|y) = IP(Rn+1 ∈ B|Yn = y).
Given (Yn), the random vectors R1, R2, . . . are independent, and given Yn,
the random variables Rn+1 and Yn+1 are independent.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 6,
c© Springer-Verlag Berlin Heidelberg 2011
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6.1 Terminal Wealth Problems

We start with problems of terminal wealth maximization under partial ob-
servation. Suppose we have an investor with utility function U : dom U → R

with dom U = [0,∞) or dom U = (0,∞) and initial wealth x > 0. Our in-
vestor can only observe the stock price and not the driving Markov process
(Yn), i.e. the filtration (Fn) to which portfolio strategies have to be adapted
is given by Fn := FS

n = σ(S0, S1, . . . , Sn) = σ(R1, . . . , Rn). The aim is to
maximize the expected utility of her terminal wealth.
The following assumption on the financial market is used throughout this
section.

Assumption (FM):

(i) There are no arbitrage opportunities in the market, i.e. for all y ∈ EY
and φ ∈ R

d it holds:

φ ·R(y) ≥ 0 IP -a.s. ⇒ φ · R(y) = 0 IP -a.s.

(ii) The support of R(y) is independent of y ∈ EY .
(iii) supy IE ‖R(y)‖ <∞.

The second assumption guarantees that the support of Rn+1 is independent
of Yn and n. There are a lot of examples where this assumption is satisfied.
According to (3.1) the wealth process (Xn) evolves as follows

Xn+1 =
(
1 + i

)(
Xn + φn ·Rn+1

)

where φ = (φn) is a portfolio strategy such that φ is (Fn)-adapted. The
partially observable terminal wealth problem is then given by

⎧
⎨

⎩

IEx U(Xφ
N ) → max

φ is a portfolio strategy and Xφ
N ∈ dom U IP -a.s..

(6.2)

Recall that Fn = FS
n i.e. the admissible portfolio strategies depend only on

the observable stock prices (Sn). Problem (6.2) can be solved by the following
stationary Partially Observable Markov Decision Model:

• EX := dom U where x ∈ EX denotes the wealth,
• EY is the state space of (Yn), where y ∈ EY is the unobservable state,
• A := R

d where a ∈ A is the amount of money invested in the risky assets,
• D(x) :=

{
a ∈ R

d |
(
1 + i

)(
x+ a · R(y)

)
∈ dom U IP -a.s.

}
,

• Z := [−1,∞)d where z ∈ Z denotes the relative risk,
• TX

(
x, a, z

)
:= (1 + i)

(
x+ a · z

)
,

• QZ,Y (B × C|x, y, a) := QR(B|y)QY (C|y) for B ∈ B(Z), C ∈ B(EY ),
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• Q0 is the initial (prior) distribution of Y0,
• r ≡ 0,
• g(x, y) := U(x),
• β = 1.

Note that in view of FM (ii)D(x) does not depend on y ∈ EY and henceD(x)
is well-defined. It is assumed (see Section 5.2) that there exist densities of QR

and QY . The Bayes operator Φ depends only on ρ ∈ IP (EY ) and z ∈ Z. From
Section 5.3 we know that we can solve problem (6.2) by a filtered Markov
Decision Model. Theorem 5.3.3 implies the following result.

Theorem 6.1.1. For the multiperiod terminal wealth problem with partial
observation it holds:

a) The value functions Jn(x, ρ) are strictly increasing, strictly concave and
continuous in x ∈ dom U for all ρ ∈ IP (EY ).

b) The value functions can be computed recursively by the Bellman equa-
tion, i.e. for (x, ρ) ∈ EX × IP (EY ) it holds

J0(x, ρ) = U(x),

Jn(x, ρ) = sup
a∈D(x)

∫ ∫
Jn−1

(
(1 + i)(x+ a · z), Φ(ρ, z)

)
QR(dz|y)ρ(dy).

c) The maximal value of problem (6.2) is given by JN (x,Q0).
d) There exists a maximizer f∗n of Jn−1 and the portfolio strategy

(f0, . . . , fN−1) is optimal for the N -stage terminal wealth problem (6.2)
where

fn(hn) := f∗N−n
(
xn, μn(·|hn)

)
, hn = (x0, a0, z1, x1, . . . zn, xn).

Proof. It is easily shown by using Assumption (FM) that the stationary fil-
tered Markov Decision Model has an upper bounding function

b(x, ρ) := 1 + x, (x, ρ) ∈ EX × IP (EY )

(cf. the proof of Proposition 4.2.1). Then the Structure Assumption (SAN )
is satisfied with

IMn := {v ∈ IB+
b | x 	→ v(x, ρ) is strictly increasing, strictly concave

and continuous for all ρ ∈ IP (EY )}

and Δn := Fn. In particular the existence of maximizers follows along the
same lines as the proof of Theorem 4.1.1 in view of (FM). Part c) and d) are
implied by Theorem 5.3.2 and Theorem 5.3.3. 
�
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In the next subsections we will specialize this result to power and logarithmic
utility functions.

Power Utility

Here we assume that the utility function is of the form U(x) = 1
γx

γ with
x ∈ [0,∞) and 0 < γ < 1. For convenience we define

Ã := {α ∈ R
d | 1 + α · R(y) ≥ 0 IP -a.s.}.

Since by Assumption (FM) the support of R(y) is independent of y, the set
Ã is independent of y. The proof of the next theorem is similar to the proof
of Theorem 4.2.6.

Theorem 6.1.2. Let U be the power utility with 0 < γ < 1. Then it holds:

a) The value functions are given by

Jn(x, ρ) = (xS0
n)γdn(ρ), (x, ρ) ∈ EX × IP (EY )

where the sequence (dn) satisfies the following recursion

d0 ≡ 1
γ

dn(ρ) = sup
α∈Ã

∫ ∫
dn−1(Φ(ρ, z))

(
1 + α · z

)γ
QR(dz|y)ρ(dy). (6.3)

b) The optimal amounts which are invested in the stocks are given by

f∗n(x, ρ) = α∗
n(ρ)x, x ≥ 0

where α∗
n(ρ) is the solution of (6.3). The optimal portfolio strategy is

given by (f0, . . . , fN−1) where

fn(hn) := f∗N−n
(
xn, μn(·|hn)

)
, hn = (x0, a0, z1, x1, . . . , xn).

Remark 6.1.3. In the case of a power utility function U(x) = 1
γx

γ with γ < 0
we can proceed in the same way (see Remark 4.2.7) and obtain an analogous
result. ♦

We consider now the special case of a binomial model with one stock and an
unknown probability for an up movement, i.e. we consider a Bayesian model
and assume

IP(R̃ = u|ϑ = θ) = θ, IP(R̃ = d|ϑ = θ) = 1 − θ, θ ∈ (0, 1) = Θ
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where d < 1+ i < u. Obviously Assumption (FM) is satisfied in this market.
Moreover, we exclude short-sellings now, i.e. we set Ã := [0, 1]. Then we are
able to compare the optimal investment strategy with the optimal investment
strategy in the case of complete observation. More precisely the optimization
problem in (6.3) reduces to one which is linear in θ:

dn(ρ) = sup
0≤α≤1

{
dn−1

(
Φ(ρ, ū)

) ∫
θρ(dθ) (1 + i+ α(u − 1 − i))γ (6.4)

+ dn−1

(
Φ(ρ, d̄)

)(
1 −

∫
θρ(dθ)

)
(1 + i+ α(d − 1 − i))γ

}
(1 + i)−γ

where ū := u
1+i

− 1 and d̄ := d
1+i

− 1. We can use Example 5.4.4 to show
that tn(h̃n) := (m,n) is a sufficient statistic where m is the number of ups.
Then we obtain

μn(C | h̃n) = μ̂(C | tn(h̃n)) = μ̂
(
C | (m,n)

)

=

∫

C

θm(1 − θ)n−mQ0(dθ)
∫

Θ

θ′m(1 − θ′)n−mQ0(dθ′)

where Q0 is the given prior distribution of the unknown probability θ. We
define by

DQ0 := {μ̂(·|m,n) | n ∈ N0,m ≤ n}

the set of all possible posterior distributions. The next monotonicity result is
important.

Lemma 6.1.4. For ρ ∈ DQ0 it holds:

a) Φ(ρ, d̄) ≤lr Φ(ρ, ū).
b) ρ ≤lr ρ′ ⇒ dn(ρ) ≤ dn(ρ′).

Proof. a) Let θ ∈ (0, 1) and ρ, ρ′ ∈ DQ0 . We suppose that ρ = μ̂(·|m,n)
and ρ′ = μ̂(·|m′, n′). It holds that ρ ≤lr ρ′ if and only if m′ ≥ m and
n − m ≥ n′ − m′ (cf. equation (5.12) and Example B.3.8). This can be
directly seen by inspecting the ratio

c · θ
m′

(1 − θ)n
′−m′

θm(1 − θ)n−m
.

In particular we have Φ(ρ, d̄) = μ̂(·|m,n+1) ≤lr μ̂(·|m+1, n+1) = Φ(ρ, ū).
b) The proof is done by induction. For n = 0 we have d0 ≡ 1

γ and there is
nothing to show. For convenience let us denote
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cu(α) := (1 + i+ α(u − 1 − i))γ and cd(α) := (1 + i+ α(d − 1 − i))γ .

Suppose the statement is true for k = 0, 1, . . . , n− 1. Since

Φ(ρ, d̄) ≤lr Φ(ρ, ū) ≤lr Φ(ρ′, ū)

and Φ(ρ, d̄) ≤lr Φ(ρ′, d̄) and ρ̄ :=
∫
θρ(dθ) ≤

∫
θρ′(dθ) := ρ̄′ we obtain for

arbitrary α ∈ (0, 1] (note that we have cu(α) > cd(α) since α > 0):

dn−1

(
Φ(ρ, ū)

)
ρ̄cu(α) + dn−1

(
Φ(ρ, d̄)

)(
1 − ρ̄

)
cd(α)

= ρ̄
{
dn−1

(
Φ(ρ, ū)

)
cu(α) − dn−1

(
Φ(ρ, d̄)

)
cd(α)

}
+ dn−1

(
Φ(ρ, d̄)

)
cd(α)

≤ ρ̄′
{
dn−1

(
Φ(ρ, ū)

)
cu(α) − dn−1

(
Φ(ρ, d̄)

)
cd(α)

}
+ dn−1

(
Φ(ρ, d̄)

)
cd(α)

≤ dn−1

(
Φ(ρ′, ū)

)
ρ̄′cu(α) + dn−1

(
Φ(ρ′, d̄)

)(
1 − ρ̄′

)
cd(α)

which implies the result. 
�

Recall that α∗
n(ρ) is the optimal fraction of wealth invested in the stock

at time n when ρ is the posterior distribution of θ. The case of complete
observation reduces to the special case ρ := δθ, and in this case we write
α∗
n(θ) instead of α∗

n(δθ). As before let us denote ρ̄ =
∫
θρ(dθ) ∈ (0, 1).

Theorem 6.1.5. For all n ∈ N0 and ρ ∈ DQ0 it holds:

α∗
n(ρ) ≥ α∗

n(ρ̄) if 0 < γ < 1,
α∗
n(ρ) ≤ α∗

n(ρ̄) if γ < 0.

Proof. Let 0 < γ < 1. By definition α∗
n(ρ) is a maximum point of (6.4). Then

α∗
n(ρ) is also a solution of (we use the same notation as in the last proof)

sup
0≤α≤1

{
cu(α) +

dn−1

(
Φ(ρ, d̄)

)

dn−1

(
Φ(ρ, ū)

)
1 − ρ̄

ρ̄
cd(α)

}
. (6.5)

Let us define the function

h(α) := cu(α) + λcd(α)

and its maximum point (where we set δ := (1 − γ)−1)

α∗(λ) = (1 + i)
λ−δ(1 + i− d)−δ − (u − 1 − i)−δ

(u − 1 − i)−γδ + (1 + i− d)−γδλ−δ

whenever this point is in the interval (0, 1) and α∗(λ) = 1 if the preceding
expression is larger than 1 and α∗(λ) = 0 if the preceding expression is smaller
than 0.
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Inserting

λ =
dn−1

(
Φ(ρ, d̄)

)

dn−1

(
Φ(ρ, ū)

)
(1 − ρ̄)
ρ̄

gives us α∗
n(ρ) and inserting (1 − ρ̄)ρ̄−1 gives us α∗

n(ρ̄). Hence we have to
determine whether α∗(λ) is increasing or decreasing in λ. But this has been
done in Lemma 4.2.9: α∗(λ) is decreasing in λ. Finally, it remains to show
that

0 <
dn−1

(
Φ(ρ, d̄)

)

dn−1

(
Φ(ρ, ū)

) ≤ 1.

But this follows by applying Lemma 6.1.4. For γ < 0 note that dn(ρ) < 0
and hence we have

dn−1

(
Φ(ρ, d̄)

)

dn−1

(
Φ(ρ, ū)

) ≥ 1.


�

Remark 6.1.6. Theorem 6.1.5 tells us that we have to invest more in the stock
in the case of an unobservable up probability, compared with the case where
we know that ρ̄ =

∫
θρ(dθ) is the up probability when γ ∈ (0, 1). If γ < 0

the situation is vice versa. A heuristic explanation of this fact is as follows.
Though in all cases our investor is risk averse, the degree of risk aversion
changes with γ: The risk aversion measured by the Arrow-Pratt absolute
risk aversion coefficient is 1−γ

x
and decreases for all wealth levels with γ. In

particular if γ ∈ (0, 1), the investor is less risk averse than in the logarithmic
utility case (γ = 0) and thus invests more in the stock (the logarithmic case
is treated in the next subsection). ♦

In Figure 6.1 we have computed the optimal fractions α∗
0(ρ) for ρ = U(0, 1)

and α∗
0(

1
2 ) in the case of partial and complete observation for the following

data: N = 2, i = 0,d = 0.95925,u = 1.04248, i.e. we have a two-period
problem and the prior distribution is the uniform distribution on (0, 1). The
parameters belong to a stock with 30% volatility and zero interest rate. Figure
6.1 shows the optimal fractions in the stock in the observed case α∗

0(
1
2
) (solid

line) and in the unobserved case α∗
0(ρ), ρ = U(0, 1) (dotted line) as a function

of γ. For γ = 0 both fractions coincide. Note that α∗
0(γ) is increasing in γ.

Logarithmic Utility

Here we assume that the utility function is of the form U(x) = log(x) with
x ∈ dom U = (0,∞) and we define

Ã := {α ∈ R
d | 1 + α ·R(y) > 0 IP−a.s.}.

We obtain the following statement:
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gamma

Fig. 6.1 Optimal fractions α∗
0 = α∗

0(γ) invested in the stock (cross=unobserved,
solid=observed).

Theorem 6.1.7. Let U be the logarithmic utility. Then it holds:

a) The value functions are given by

Jn(x, ρ) = log(x) + dn(ρ), (x, ρ) ∈ EX × IP(EY )

where the (dn) satisfy the following recursion

d0(ρ) = 0

dn(ρ) = log(1 + i) + sup
α∈Ã

{∫ ∫
log

(
1 + α · z

)
QR(dz|y)ρ(dy)

}

+
∫ ∫

dn−1(Φ(ρ, z))QR(dz|y)ρ(dy). (6.6)

b) The optimal amounts which are invested in the stocks are given by

f∗n(x, ρ) = α∗(ρ)x, x ≥ 0
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where α∗(ρ) is the solution of (6.6). The optimal portfolio strategy is
given by (f0, . . . , fN−1) where

fn(hn) := f∗N−n
(
xn, μn(·|hn)

)
, hn = (x0, a0, z1, x1, . . . , xn).

The proof is analogous to the proof of Theorem 4.2.13. Note that the optimal
amounts which are invested do not depend on n.

We consider now the binomial model with one stock and unknown probability
for an up movement, i.e. we consider the Bayesian model and assume

IP(R̃ = u|ϑ = θ) = θ, IP(R̃ = d|ϑ = θ) = 1 − θ, θ ∈ (0, 1) = Θ

and d < 1 + i < u. The optimization problem in (6.6) reduces to one which
is linear in θ.

sup
α∈Ã

{∫
θ log (1 + i+ α(u − 1 − i)) ρ(dθ)

+
∫

(1 − θ) log (1 + i+ α(d − 1 − i)) ρ(dθ)
}

= sup
α∈Ã

{∫
θρ(dθ) log (1 + i+ α(u − 1 − i))

+(1 −
∫
θρ(dθ)) log (1 + i+ α(d − 1 − i))

}
.

The maximum point of the problem which represents the optimal fraction of
the wealth invested in the stock is given by

α∗(ρ) := (1 + i)
( ∫

θρ(dθ)
1 + i− d

− 1 −
∫
θρ(dθ)

u − 1 − i

)

(cf. equation (4.12)). Thus, the optimal investment strategy is the same as
in a model with complete observation and with probability

∫
θρ(dθ) for an

up-movement of the stock. Hence we simply have to replace the unknown
probability in the formula (4.12) for the optimal invested fraction by its
expectation, i.e. α∗

n(ρ) = α∗
n(ρ̄) with ρ̄ =

∫
θρ(dθ). This phenomenon is

called the certainty equivalence principle.
Note that α∗(ρ) is the limit of the optimal fraction invested in the power
utility case for γ → 0.

6.2 Dynamic Mean-Variance Problems

Let us investigate the dynamic Markowitz problem of Section 4.6 where
the relative risk distribution depends now on the Markov process (Yn) as



184 6 Partially Observable Markov Decision Problems in Finance

described at the beginning of this chapter. Since the discount factors 1 + in
depend on n, the problem is not stationary. In Chapter 5 we restricted the
presentation of Partially Observable Markov Decision Models to stationary
models, however the extension to non-stationary models is straightforward
and we will use appropriate modifications of the theorems here. More pre-
cisely we consider the following Partially Observable Markov Decision Model:

• EX := R where x ∈ EX denotes the wealth,
• EY is the state space of (Yn) where y ∈ EY is the unobservable part of

the state,
• A := R

d where a ∈ A is the amount of money invested in the risky assets,
• Dn(x) := A,
• Z := [−1,∞)d where z ∈ Z denotes the relative risk,
• Tn,X

(
x, a, z

)
:= (1 + in+1)

(
x+ a · z

)
,

• QZ,Y (B × C|x, y, a) := QR(B|y)QY (C|y) for B ∈ B(Z), C ∈ B(EY ),
• Q0 is the given initial (prior) distribution of Y0.

The problem we want to solve is

(MV )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Varπx0
(XN ) → min

IE
π
x0

[XN ] ≥ μ

π ∈ ΠN

where IP
π
x0

is the probability measure on (EX × EY )N+1 which has been
defined on page 150 and ΠN is the set of history-dependent policies, i.e.
π = (f0, . . . , fN−1) ∈ ΠN with fn : Hn → A depends on the observable
history hn until time n.
In order to obtain a well-defined problem we make the following assumptions
throughout this section (cf. Section 4.6).

Assumption (FM):

(i) supy IE ‖R(y)‖ <∞.
(ii) There exists a k ∈ {1, . . . , d} such that IERk(y) > 0 for all y ∈ EY or

IERk(y) < 0 for all y ∈ EY .
(iii) The covariance matrix of the relative risk process

(
Cov(Rj(y), Rk(y))

)

1≤j,k≤d

is positive definite for all y ∈ EY .
(iv) x0S

0
N < μ.

The second assumption implies that the discounted wealth process is not a
martingale. Hence the set of admissible strategies for (MV) is not empty, and
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(MV) is well-defined. For |EY | = 1 the Assumption (FM) reduces to the one
in Section 4.6.
We proceed as in the case of complete observation. In particular the formula-
tion as a Lagrange problem and the reduction to a Markov Decision Problem
follow the same lines as for the classical mean-variance problem. We refer the
reader to Section 4.6 for details. The key Markov Decision Problem we have
to solve is

QP (b)

⎧
⎨

⎩

IE
π
x0

[
(XN − b)2

]
→ min

π ∈ ΠN .

In what follows define for ρ ∈ IP (EY ) and n = 0, 1, . . . , N the real-valued
functions dn(ρ) by backwards recursion:

dN (ρ) = 1,
dn(ρ) = dn+1(ρ) − �n+1(ρ)�Cn+1(ρ)−1�n+1(ρ), (6.7)

where

dn(ρ) =
∫ ∫

dn
(
Φ(ρ, z)

)
QR(dz|y)ρ(dy),

�n(ρ) =
∫ ∫

dn
(
Φ(ρ, z)

)
zQR(dz|y)ρ(dy),

Cn(ρ) =
∫ ∫

dn
(
Φ(ρ, z)

)
zz�QR(dz|y)ρ(dy).

The following lemma will be crucial for Theorem 6.2.3.

Lemma 6.2.1. For all n = 0, 1, . . . , N − 1 and for all ρ ∈ IP (EY ) it holds
that 0 < dn(ρ) < 1.

Proof. We proceed by induction. For n = N − 1 we obtain

dN−1(ρ) = 1 − �N(ρ)�C−1
N (ρ)�N (ρ).

First note that �N(ρ) = 0 due to Assumption (FM) (ii). By definition the
matrix

ΣN := CN (ρ) − �N (ρ)�N (ρ)�

is the covariance matrix of a random vector with distribution
∫
QR(·|y)ρ(dy).

In view of Assumption (FM) (iii) ΣN is positive definite. Following the proof
of Lemma 4.6.4 it can now be shown that 0 < �N (ρ)�C−1

N (ρ)�N (ρ) < 1
and thus 0 < dN−1(ρ) < 1. Assume now that the statement is true for
N − 1, . . . , n+ 1. We can write
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dn(ρ) = dn+1(ρ)
[
1 − �n+1(ρ)

dn+1(ρ)

�(Cn+1(ρ)
dn+1(ρ)

)−1 �n+1(ρ)
dn+1(ρ)

]
. (6.8)

Our assumption implies that 0 < dn+1(ρ) < 1. If �n+1(ρ) = 0 the statement
is shown. Now suppose �n+1(ρ) = 0 and define the probability measure

Qρ(dz) :=

∫
dn+1

(
Φ(ρ, z)

)
QR(dz|y)ρ(dy)

dn+1(ρ)
.

Note that dn+1(
(
Φ(ρ, z)

)
> 0 for all ρ, z by induction hypothesis. Thus we

can interpret 
n+1(ρ)
dn+1(ρ)

as the expectation of a random vector with respect to
Qρ(dz). By definition the matrix

Σn+1 :=
Cn+1(ρ)
dn+1(ρ)

− �n+1(ρ)
dn+1(ρ)

�n+1(ρ)
dn+1(ρ)

�

is the covariance matrix of a random vector with distribution Qρ(dz). Due
to Assumption (FM)(iii) and since dn+1 > 0, the matrix Σn+1 is positive
definite. Following the proof of Lemma 4.6.4, the expression in brackets in
(6.8) is in (0, 1). Thus, the statement holds. 
�

Then we obtain the following result (this can be compared with Theorem
4.6.5 where the LQ-problem is treated without partial observation).

Theorem 6.2.2. For the solution of the Markov Decision Problem QP (b) it
holds:

a) The value functions are given by

Vn(x, ρ) =
(xS0

N

S0
n

− b
)2

dn(ρ), (x, ρ) ∈ EX × IP(EY )

where (dn) is defined in (6.7). Then V0(x0, Q0) is the value of QP (b).
b) Let

f∗
n(x, ρ) =

(
bS0
n

S0
N

− x

)

C−1
n+1(ρ)�n+1(ρ), (x, ρ) ∈ EX × IP (EY ).

Then the portfolio strategy π∗ = (f0, . . . , fN−1) is optimal for QP (b) where

fn(hn) := f∗
n

(
xn, μn(·|hn)

)
, hn = (x0, z1, x1, . . . , xn).

c) The first and the second moment of XN under π∗ are given by

IE
π∗
x0

[XN ] = x0S
0
Nd0(Q0) + b(1 − d0(Q0))

IE
π∗
x0

[X2
N ] = (x0S

0
N )2d0(Q0) + b2(1 − d0(Q0)).
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Proof. For part a) and b) we proceed as in Theorem 4.6.5 by induction using
similar sets for the structure assumption. We restrict here showing that the
Vn satisfy the Bellman equation and that f∗

n is a minimizer. For n = N we
have VN (x, ρ) = (x − b)2 in which case the statement is true. Now suppose
the statement is true for k = n+ 1, . . . , N . The Bellman equation gives

Vn(x, ρ) = inf
a∈Rd

∫ ∫
Vn+1

(
(1 + in+1)(x + a · z), Φ(ρ, z)

)
QR(dz|y)ρ(dy).

Inserting the induction hypothesis and after some algebra we obtain

Vn(x, ρ) = inf
a∈Rd

{(S0
N

S0
n

)2(
x2dn+1(ρ) + 2xa��n+1(ρ) + a�Cn+1(ρ)a

)

− 2
(S0

N

S0
n

)
b
(
xdn+1(ρ) + a�n+1(ρ)

)
+ b2dn+1(ρ)

}
.

The minimizer is given by

f∗
n(x, ρ) =

(bS0
n

S0
N

− x
)
C−1
n+1(ρ)�n+1(ρ).

Inserting the minimizer into the Bellman equation above gives after some
lines of calculation

Vn(x, ρ) =
(xS0

N

S0
n

− b
)2(

dn+1(ρ) − �n+1(ρ)�C−1
n+1(ρ)�n+1(ρ)

)
.

Hence, part a) and b) are shown. For the proof of part c) we show by induction
on n that

IE[XN |Xn, μn] =
S0
N

S0
n

Xndn(μn) + b(1 − dn(μn)).

Since this is more cumbersome than in Theorem 4.6.5 we show the induction
step here:

IE
π∗
x0

[XN |Xn, μn] = IE
[
IE[XN |Xn+1, μn+1]|Xn, μn

]

= IE
π∗
x0

[ S0
N

S0
n+1

Xn+1dn+1(μn+1) + b(1 − dn+1(μn+1))|Xn, μn
]

= IE
π∗
x0

[S0
N

S0
n

(
Xn +

( S0
n

S0
N

b−Xn

)
Rn+1 · C−1

n+1(μn)�n+1(μn)
)
dn+1(μn+1)

+ b(1 − dn+1(μn+1))|Xn, μn

]

=
S0
N

S0
n

Xndn(μn) + b(1 − dn(μn)).

The proof for the second moment can be done similarly. 
�
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In order to solve the original mean-variance problem (MV) we proceed as in
Section 4.6 and set

b∗ := IE
π∗
x0

[XN ] + λ∗ = μ+ λ∗

with

λ∗ = (μ− x0S
0
N )

d0(Q0)
1 − d0(Q0)

.

Note that 0 < d0(Q0) < 1 due to Lemma 6.2.1. Altogether the solution of
the mean-variance problem with partial information is given by:

Theorem 6.2.3. For the mean-variance problem (MV) with partial ob-
servation it holds:

a) The value of (MV) is given by

Varπ
∗
x0

[XN ] =
d0(Q0)

1 − d0(Q0)

(
IE
π∗
x0

[XN ] − x0S
0
N

)2

where d0(Q0) is given in (6.7). Note that IE
π∗
x0

[XN ] = μ.
b) For (x, ρ) ∈ EX × IP (EY ) let

f∗
n(x, ρ) =

((μ− d0(Q0)x0S
0
N

1 − d0(Q0)

) S0
n

S0
N

− x

)

C−1
n+1(ρ)�n+1(ρ).

Then the portfolio strategy π∗ = (f0, . . . , fN−1) is optimal for (MV)
where

fn(hn) := f∗n
(
xn, μn(·|hn)

)
, hn = (x0, z1, x1, . . . , zn, xn).

6.3 Remarks and References

Partially observable portfolio problems in discrete time are sparsely studied
in the literature. The models and results of this chapter seem to be new. Durst
(1991) investigates some Bayesian nonparametric problems. Binomial models
(with an unknown up-probability) have been considered by Runggaldier et al.
(2002) and Favero (2001). Recently Taksar and Zeng (2007) treat a Hidden-
Markov portfolio model with unknown drift and volatility. There are much
more interesting applications in finance which can be investigated in a similar
manner, e.g. mean-risk models, index-tracking and indifference pricing. It is
left to the reader to extend the models of Chapter 4 to the partially observable
setting.
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Continuous-time portfolio problems with partial observation are studied e.g.
in Sass and Haussmann (2004), Bäuerle and Rieder (2007) and Björk et al.
(2010). The comparison result in Theorem 6.1.5 is the discrete-time analogue
to a result in Rieder and Bäuerle (2005).
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Part III

Infinite Horizon Optimization
Problems
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Chapter 7

Theory of Infinite Horizon Markov
Decision Processes

In this chapter we consider Markov Decision Processes with an infinite time
horizon. There are situations where problems with infinite time horizon arise
in a natural way, e.g. when the random lifetime of the investor is considered.
However more important is the fact that Markov Decision Models with finite
but large horizon can be approximated by models with infinite time horizon.
The latter one is often simpler to solve and admits mostly a (time) stationary
optimal policy. On the other hand, the infinite time horizon makes it neces-
sary to invoke some convergence assumptions. Moreover, for the theory it is
necessary that properties of the finite horizon value functions carry over to
the limit function.
The chapter is organized as follows. In Section 7.1 infinite horizon Markov
Decision Models are introduced where we assume that the positive part of
the rewards are bounded and converge. This formulation includes so-called
negative and discounted Markov Decision Models. A first main result (The-
orem 7.1.8) shows that the infinite horizon problem can indeed be seen as
an approximation of the finite time horizon problems, given a structure as-
sumption is satisfied. Moreover, the existence of an optimal stationary policy
is shown. A characterization of the infinite horizon value function as the
largest solution of the Bellman equation is also given. Analogously to Section
2.4, Section 7.2 provides some continuity and compactness conditions under
which the structure assumption for the infinite horizon problem is satisfied.
Section 7.3 deals with the favourable situation of contracting Markov Deci-
sion Models. In this case the maximal reward operator T is contracting on
the Banach space (IBb, ‖ · ‖b) and if a closed subspace IM of IBb can be found
with T : IM → IM then Banach’s fixed point theorem can be applied and
the value function of the infinite horizon problem can be characterized as
the unique fixed point of T . Section 7.4 deals with positive Markov Decision
Models. Here we make assumptions about the boundedness and convergence
of the negative parts of the rewards. The main problem is to identify optimal
policies in this case. A maximizer of the value function now does not neces-
sarily define an optimal policy. In Section 7.5 some computational aspects of

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 7,
c© Springer-Verlag Berlin Heidelberg 2011

193
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infinite horizon problems are treated like Howard’s policy improvement algo-
rithm, solution via linear programming and value iteration on a grid. Finally,
the last section contains four examples which explain the use of the devel-
oped theory. The first example treats a problem with random horizon. In the
second example the cash balance problem of Section 2.6 is revisited and now
treated as an infinite horizon Markov Decision Model. The third example
deals with some classical casino games and the last example with the infinite
horizon bandit.

7.1 Markov Decision Models with Infinite Horizon

Markov Decision Models with infinite horizon can be seen as an approxi-
mation of a model with finite but large horizon. Often the infinite horizon
model is easier to solve and its optimal policy yields a reasonable policy for
the model with finite horizon. This statement is formalized later in this sec-
tion. In what follows we always assume that a (stationary) Markov Decision
Model with infinite horizon is given.

Definition 7.1.1. A stationary Markov Decision Model with infinite horizon
consists of a set of data (E,A,D,Q, r, β), where E,A,D,Q, r and β are given
in Definition 2.1.1 (see also Remark 2.1.2 c) and Section 2.5). There is no
terminal reward, i.e. g ≡ 0.

Let π = (f0, f1, . . .) ∈ F∞ be a policy for the infinite horizon Markov Decision
Model. Then we define

J∞π(x) := IE
π
x

[ ∞∑

k=0

βkr
(
Xk, fk(Xk)

)
]

, x ∈ E

which gives the expected discounted reward under policy π over an infinite
time horizon when we start in state x. The process (Xk) is the corresponding
infinite horizon Markov Decision Process. The performance criterion is then

J∞(x) := sup
π
J∞π(x), x ∈ E. (7.1)

The function J∞(x) gives the maximal expected discounted reward over an
infinite time horizon when we start in state x. A policy π∗ ∈ F∞ is called
optimal if J∞π∗(x) = J∞(x) for all x ∈ E.
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In order to have a well-defined problem we assume throughout the

Integrability Assumption (A):

δ(x) := sup
π

IE
π
x

[ ∞∑

k=0

βkr+
(
Xk, fk(Xk)

)
]

<∞, x ∈ E.

Moreover, it is convenient to introduce the set

IB := {v ∈ IM(E) | v(x) ≤ δ(x) for all x ∈ E}.

Obviously, J∞π ∈ IB for all policies π. In order to guarantee that the infinite
horizon problem is an approximation of the finite horizon model, we make
the following convergence assumption throughout this chapter.

Convergence Assumption (C):

lim
n→∞ sup

π
IE
π
x

[ ∞∑

k=n

βkr+
(
Xk, fk(Xk)

)
]

= 0, x ∈ E.

Below we discuss the convergence assumption and present some simple con-
ditions which imply (C). For this purpose upper bounding functions will be
important. An upper bounding function for a Markov Decision Model with
infinite horizon is defined as follows (cf. Definition 2.4.1).

Definition 7.1.2. A measurable function b : E → R+ is called an upper
bounding function for the Markov Decision Model with infinite horizon, if
there exist constants cr, αb ∈ R+ such that

(i) r+(x, a) ≤ crb(x) for all (x, a) ∈ D.
(ii)

∫
b(x′)Q(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ D.

Let us introduce the operator T◦ by

T◦v(x) := sup
a∈D(x)

β

∫
v(x′)Q(dx′|x, a), x ∈ E,

whenever the integral exists. The operator T◦ causes a time-shift by one time
step, i.e. T◦v(x) is the discounted maximal expectation of v(X1) when the
current state is x. In particular it holds

sup
π

IE
π
x

[ ∞∑

k=n

βkr+
(
Xk, fk(Xk)

)
]

= βn sup
π

IE
π
x [δ(Xn)] = T n

◦ δ(x).
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The last equation is true since δ is the value function of a positive Markov
Decision Model (see Section 7.4) and Remark 2.3.14 applies. In particular if
v ∈ IB then T◦v ≤ δ. The Convergence Assumption (C) can also be expressed
by the condition

lim
n→∞ T n

◦ δ(x) = 0, x ∈ E.

In particular suppose now that the infinite horizon Markov Decision Model
has an upper bounding function b and recall the definition of the set

IB+
b :=

{
v ∈ IM(E) | v+(x) ≤ cb(x) for some c ∈ R+

}
.

If ‖δ‖b < ∞ and T n◦ b → 0, then the Integrability Assumption (A) and the
Convergence Assumption (C) are obviously fulfilled. Next let us define αb by

αb := sup
(x,a)∈D

∫
b(x′)Q(dx′|x, a)

b(x)
.

Then we obtain

T◦b(x) = sup
a∈D(x)

β

∫
b(x′)Q(dx′|x, a)

b(x)
b(x) ≤ βαbb(x)

and by induction
T n
◦ b(x) ≤ (βαb)nb(x).

Moreover we get

δ(x) ≤ cr

∞∑

k=0

(βαb)kb(x).

These inequalities imply that (A) and (C) are satisfied when βαb < 1. Such
a situation emerges in particular in the so-called discounted case, i.e. if the
reward function is bounded from above and β < 1. In this case we have
αb ≤ 1.
Assumptions (A) and (C) are also satisfied for so-called negative Markov
Decision Models, i.e. if the reward function satisfies r ≤ 0.

Remark 7.1.3. It can be shown that history-dependent policies do not im-
prove the maximal expected discounted reward. More precisely, let Π∞ be
the set of history-dependent policies for the infinite horizon Markov Decision
Model. Then it holds:

J∞(x) = sup
π∈F∞

J∞π(x) = sup
π∈Π∞

J∞π(x), x ∈ E.
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For a proof see Hinderer (1970), Theorem 18.4 (see also Theorem 2.2.3). This
result is also valid for positive Markov Decision Models which are investigated
in Section 7.4. ♦

The convergence assumption implies the following (weak) monotonicity prop-
erties of the value functions

Jnπ := Tf0 . . . Tfn−10,
Jn := sup

π
Jnπ.

Lemma 7.1.4. For n,m ∈ N0 with n ≥ m it holds:

a) Jnπ ≤ Jmπ + T m
◦ δ.

b) Jn ≤ Jm + T m◦ δ.

Proof. For part a) let π = (f0, f1 . . .) be an infinite-stage policy. By the
reward iteration (see Theorem 2.5.3) we obtain for n ≥ m

Jnπ = Tf0 . . . Tfn−10

≤ Tf0 . . . Tfm−10 + sup
π′

IE
π′
x

[
n−1∑

k=m

βkr+
(
Xk, f

′
k(Xk)

)
]

≤ Tf0 . . . Tfm−10 + T m
◦ δ = Jmπ + T m

◦ δ.

Part b) follows by taking the supremum over all policies in part a). 	


In view of Lemma 7.1.4, the Convergence Assumption (C) implies in partic-
ular that the sequences (Jnπ) and (Jn) are weakly decreasing. From Lemma
A.1.4 we deduce that the limits limn→∞ Jnπ and limn→∞ Jn exist. Moreover,
for π ∈ F∞ we obtain from Theorem B.1.1

J∞π = lim
n→∞Jnπ.

We define the limit value function by

J(x) := lim
n→∞Jn(x) ≤ δ(x), x ∈ E.

By definition it obviously holds that Jnπ ≤ Jn for all n ∈ N, hence J∞π ≤ J
for all policies π. Taking the supremum over all π implies

J∞(x) ≤ J(x), x ∈ E. (7.2)

Note that in general J �= J∞ (see Example 7.2.4) and the functions Jn, J
and J∞ are not in IB. However J∞ and J are analytically measurable (see
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e.g. Bertsekas and Shreve (1978)). The following lemma shows that the L-
operator and the limit can be interchanged.

Lemma 7.1.5. Assume (C) and let f ∈ F . Then it holds:

a) lim
n→∞LJn(x, a) = LJ(x, a) for all (x, a) ∈ D.

b) lim
n→∞ TfJn(x) = TfJ(x) for all x ∈ E.

Proof. First recall the definition of the operator L

Lv(x, a) := r(x, a) + β

∫
v(x′)Q(dx′|x, a), (x, a) ∈ D, v ∈ IB.

Due to the definition of Tf it suffices to prove part a). If the sequence (Jn)
is monotone decreasing, the statement follows directly from the monotone
convergence theorem. In the general case let

wm(x) := sup
n≥m

Jn(x)

for m ∈ N. Obviously the sequences (wm) and (Lwm) are monotone decreas-
ing and hence limm→∞wm and limm→∞ Lwm exist. Since by Lemma 7.1.4

wm(x) ≥ Jm(x) ≥ wm(x) − T m
◦ δ(x)

Lwm(x, a) ≥ LJm(x, a) ≥ Lwm(x, a) − T m+1
◦ δ(x)

for all m ∈ N, we obtain due to Condition (C)

lim
m→∞wm(x) = lim

m→∞Jm(x) and lim
m→∞Lwm(x, a) = lim

m→∞LJm(x, a).

Finally since wm ≤ δ, we get with monotone convergence

lim
m→∞LJm(x, a)= lim

m→∞Lwm(x, a)= (L lim
m→∞wm)(x, a)= (L lim

m→∞Jm)(x, a).

	


If f∞ := (f, f, . . .) ∈ F∞ is a so-called stationary policy, i.e. the same decision
rule is used at each stage, then we write

Jf := J∞f∞ = lim
n→∞T n

f 0.

From Lemma 7.1.5 we obtain the infinite horizon reward iteration.
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Theorem 7.1.6 (Reward Iteration).
Assume (C) and let π = (f, σ) ∈ F × F∞. Then it holds:

a) J∞π = TfJ∞σ.
b) Jf ∈ IB and Jf = TfJf .

As in Chapter 2 we formulate first a verification theorem in order to avoid
the general measurability problems. It states that candidates for the optimal
solution of problem (7.1) are given by fixed points of the maximal reward
operator T .

Theorem 7.1.7 (Verification Theorem). Assume (C) and let v ∈ IB
be a fixed point of T such that v ≥ J∞. If f∗ is a maximizer of v, then
v = J∞ and the stationary policy (f∗, f∗, . . .) is optimal for the infinite-
stage Markov Decision Model.

Proof. By assumption we obtain

v = Tf∗v = T n
f∗v ≤ T n

f∗0 + T n
◦ δ.

Letting n→ ∞ we conclude v ≤ Jf∗ ≤ J∞. Thus, the statement follows since
J∞ ≤ v. 	


In what follows we want to solve the problem in (7.1) and at the same time
would like to interpret it as a ‘limit case’, i.e. we want to have J = J∞. In
order to guarantee this statement we require a structure assumption (with
terminal reward g ≡ 0, see Section 2.5). Unfortunately the Structure Assump-
tion (SAN ) of Chapter 2 is not enough (see Example 7.2.4). In addition we
have to assume some properties of the limit value function J = limn→∞ Jn.

Structure Assumption (SA): There exist sets IM ⊂ IM(E) and Δ ⊂ F
such that:

(i) 0 ∈ IM .
(ii) If v ∈ IM then

T v(x) := sup
a∈D(x)

{

r(x, a) + β

∫
v(x′)Q(dx′|x, a)

}

, x ∈ E

is well-defined and T v ∈ IM .
(iii) For all v ∈ IM there exists a maximizer f ∈ Δ of v.
(iv) J ∈ IM and J = T J .

Note that conditions (i)–(iii) together constitute the Structure Assumption
of Section 2.5. Condition (iv) imposes additional properties on the limit value
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function. In Section 7.2 we will give important conditions which imply (SA).

Theorem 7.1.8 (Structure Theorem). Let (C) and (SA) be satisfied.
Then it holds:

a) J∞ ∈ IM , J∞ = T J∞ and J∞ = J = limn→∞ Jn (Value iteration).
b) J∞ is the largest r-subharmonic function v in IM ∩ IB, i.e J∞ is the

largest function v in IM with v ≤ T v and v ≤ δ.
c) There exists a maximizer f ∈ Δ of J∞, and every maximizer f∗ of J∞

defines an optimal stationary policy (f∗, f∗, . . .) for the infinite-stage
Markov Decision Model.

Proof. First recall that we always have J∞ ≤ J . The Structure Assump-
tion (SA) parts (iii) and (iv) imply that there exists an f∗ ∈ Δ such that
Tf∗J = T J = J . Thus we obtain by iterating the operator Tf∗ in the same
way as in Lemma 7.1.4:

J = T n
f∗J ≤ T n

f∗0 + T n
◦ δ

for all n ∈ N. Taking the limit n→ ∞ yields

J ≤ Jf∗ ≤ J∞,

since always Jf∗ ≤ J∞. Therefore we get

J∞ = J = Jf∗

and the stationary policy (f∗, f∗, . . .) is optimal. This implies parts a) and c).
For part b) note that J∞ ∈ IM , J∞ = T J∞ and J∞ ≤ δ. Now let v ∈ IM ∩IB
be another r-subharmonic function. Then

v ≤ T nv ≤ T n0 + T n
◦ δ = Jn + T n

◦ δ

for all n ∈ N. For n→ ∞ we obtain: v ≤ J = J∞. 	


The equation J∞ = T J∞ is called the Bellman equation for the infinite
horizon Markov Decision Model. Often this fixed point equation is also called
the optimality equation. Part a) of the preceding theorem shows that J∞ is
approximated by Jn for n large, i.e. the value of the infinite horizon Markov
Decision Problem can be obtained by iterating the T -operator. This justifies
the notion value iteration.

Remark 7.1.9. a) Part c) of Theorem 7.1.8 shows that an optimal policy can
be found among the stationary ones. Formally we have
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J∞ = sup
f∈F

Jf .

b) Under the assumptions of Theorem 7.1.8 the reverse statement of part c)
is also true: if f∞ is optimal, then f is a maximizer of J∞. This can be
seen as follows: Suppose f∞ is optimal, i.e. J∞ = Jf . Since Jf = TfJf by
Theorem 7.1.6 it follows that TfJ∞ = J∞ = T J∞, i.e. f is a maximizer
of J∞. ♦

7.2 Semicontinuous Markov Decision Models

As in Section 2.4 we present some continuity and compactness conditions
which imply the Structure Assumption (SA) and which are useful in applica-
tions. In what follows let E and A be Borel spaces, let D be a Borel subset
of E ×A and define

D∗
n(x) := {a ∈ D(x) | a is a maximum point of a �→ LJn−1(x, a)}

for n ∈ N ∪ {∞} and x ∈ E and define by

LsD∗
n(x) := {a ∈ A | a is an accumulation point of a sequence (an) with

an ∈ D∗
n(x) for n ∈ N}

the upper limit of the set sequence (D∗
n(x)). The set D∗

n(x) consists of the
optimal actions in state x for an n-stage Markov Decision Problem andD∗∞(x)
are the optimal actions for the infinite horizon problem. We can state the
following theorem (see also Theorem 2.4.6).

Theorem 7.2.1. Suppose there exists an upper bounding function b with
T n
◦ b→ 0 for n→ ∞, ‖δ‖b <∞ and the following conditions are satisfied:

(i) D(x) is compact for all x ∈ E and x �→ D(x) is upper semicontinuous,
(ii) (x, a) �→

∫
v(x′)Q(dx′|x, a) is upper semicontinuous for all upper semi-

continuous v ∈ IB+
b ,

(iii) (x, a) �→ r(x, a) is upper semicontinuous.

Then it holds:

a) J∞ ∈ IB+
b , J∞ = T J∞ and J∞ = J (Value Iteration).

b) If b is upper semicontinuous then J∞ is upper semicontinuous.
c) ∅ �= LsD∗

n(x) ⊂ D∗∞(x) for all x ∈ E (Policy Iteration).
d) There exists an f∗ ∈ F with f∗(x) ∈ LsD∗

n(x) for all x ∈ E, and the
stationary policy (f∗, f∗, . . .) is optimal.
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Proof. Assumption (C) is satisfied since δ ∈ IB+
b and T n

◦ b → 0 for n → ∞.
Then let

D∗(x) := {a ∈ D(x) | a is a maximum point of a �→ LJ(x, a)}

for x ∈ E. We will first prove that

∅ �= LsD∗
n(x) ⊂ D∗(x), x ∈ E.

Let x ∈ E be fixed and define for n ∈ N the functions vn : D(x) → R∪{−∞}
by

vn(a) := LJn−1(x, a).

With Lemma 7.1.5 it follows that limn→∞ vn(a) = LJ(x, a) for all a ∈ D(x).
Theorem 2.4.6 and assumptions (i)–(iii) imply that vn is upper semicontinu-
ous, since Jn−1 ∈ IB+

b and Jn−1 is upper semicontinuous. From Lemma 7.1.4
b) we obtain for n ≥ m

vn(a) ≤ L(Jm−1 + T m−1
◦ δ)(x, a) ≤ LJm−1(x, a) + T m

◦ δ(x)
= vm(a) + T m

◦ δ(x).

Thus we can apply Theorem A.1.5 and obtain ∅ �= LsD∗
n(x) ⊂ D∗(x) and

T J(x) = sup
a∈D(x)

lim
n→∞ vn(a) = lim

n→∞ sup
a∈D(x)

vn(a)

= lim
n→∞ T Jn−1(x) = lim

n→∞Jn(x) = J(x).

The limit function J is measurable since Jn is measurable, thus J ∈ IB. By
Theorem 2.4.6 there exist decision rules f∗n ∈ F with f∗n(x) ∈ D∗

n(x) for all
x ∈ E and n ∈ N. In view of the measurable selection theorem (see Theorem
A.2.3) there exists a decision rule f∗ ∈ F such that

f∗(x) ∈ Ls{f∗n(x)} ⊂ LsD∗
n(x) ⊂ D∗(x).

Therefore f ∗ is a maximizer of J and we obtain

J(x) = T n
f∗J(x) ≤ T n

f∗0(x) + T n
◦ δ(x)

for all n ∈ N. Taking the limit n→ ∞ yields

J(x) ≤ Jf∗(x) ≤ J∞(x).

Thus we obtain J(x) = J∞(x) and D∗(x) = D∗
∞(x) for all x ∈ E, and the

stationary policy (f ∗, f∗, . . .) is optimal.
Moreover, we obtain for n ≥ m

Jn ≤ Jm + T m
◦ δ ≤ Jm + cT n

◦ b,
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for some c > 0. Since Jm and T m
◦ b are upper semicontinuous by Theorem

2.4.6, Lemma A.1.4 implies that J∞ is upper semicontinuous. 	


Suppose the assumptions of Theorem 7.2.1 are satisfied and the optimal
stationary policy f∞ is unique, i.e. in view of Remark 7.1.9 we obtain
D∗∞(x) = {f(x)}. Now suppose (f∗

n) is a sequence of decision rules where
f∗
n is a maximizer of Jn−1. According to Theorem 7.2.1 c) we must have

limn→∞ f∗
n = f . This means that we can approximate the optimal policy

for the infinite horizon Markov Decision Problem by a sequence of optimal
policies for the finite-stage problems. This property is called policy iteration.
If A ⊂ R and (f∗n) is a sequence of decision rules where f∗n is a maximizer
of Jn−1 then among others, the stationary policies (lim infn→∞ f∗

n)∞ and
(lim supn→∞ f∗

n)∞ are optimal for the infinite horizon problem.

Corollary 7.2.2. Suppose the Markov Decision Model has an upper semi-
continuous upper bounding function b with βαb < 1. If the conditions (i),(ii)
and (iii) of Theorem 7.2.1 are satisfied, then all statements a)–d) of Theorem
7.2.1 are valid.

The proof follows from Theorem 7.2.1 since βαb < 1 implies ‖δ‖b < ∞ and
T n
◦ b → 0 for n → ∞. The convergence condition in Corollary 7.2.2 is true

for the discounted case (i.e. r is bounded from above and β < 1) and also for
the negative case (i.e. r ≤ 0).

Theorem 7.2.3. Suppose there exists an upper bounding function b with
T n◦ b→ 0 for n→ ∞, ‖δ‖b <∞ and the following conditions are satisfied:

(i) D(x) is compact for all x ∈ E,
(ii) a �→

∫
v(x′)Q(dx′|x, a) is upper semicontinuous for all v ∈ IB+

b and
for all x ∈ E,

(iii) a �→ r(x, a) is upper semicontinuous for all x ∈ E.

Then it holds:

a) J∞ ∈ IB+
b , J∞ = T J∞ and J = J∞ (Value Iteration).

b) ∅ �= LsD∗
n(x) ⊂ D∗

∞(x) for all x ∈ E (Policy Iteration).
c) There exists an f∗ ∈ F with f∗(x) ∈ LsD∗

n(x) for all x ∈ E, and the
stationary policy (f∗, f∗, . . .) is optimal.

Proof. The proof follows along the same lines as the proof of Theorem 7.2.1.
Note that the vn are again upper semicontinuous but we do not need to show
here that J is upper semicontinuous. 	


The preceding theorem gives conditions which guarantee that (SA) is satisfied
for the set IB+

b . It is also possible to derive another set of conditions involving
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continuous functions (using Theorem 2.4.10) which imply the value and policy
iteration but since this is rather obvious we have skipped it here and will
present these conditions only in the contracting case (cf. Theorem 7.3.6).

Example 7.2.4. This example shows that continuity and compactness condi-
tions are necessary for the value and policy iteration stated in Theorem 7.2.1.
We consider the following Markov Decision Model: Suppose that the state
space is E := N and the action space is A := N. Further let D(1) := {3, 4, . . .}
and D(x) := A for x ≥ 2 be the admissible actions. The transition probabil-
ities are given by

q(a|1, a) := 1,
q(2|2, a) := 1,

q(x− 1|x, a) := 1 for x ≥ 3.

All other transition probabilities are zero. Note that state 2 is an absorbing
state (see Figure 7.1). The discount factor is β = 1 and the one-stage reward
function is given by

r(x, a) := −δx3, (x, a) ∈ D.

Since the reward is non-positive, assumptions (A) and (C) are satisfied. How-
ever, the set D(x) is obviously not compact, but all other conditions of The-
orem 7.2.1 are satisfied.

1 2 3

r(3,a)=–1

4

action a

a–1 a

Fig. 7.1 Transition diagram.

We will compute now J and J∞ and the corresponding sets of maximizers. Let
us first consider J∞. Since state 2 is absorbing, we obviously have J∞(2) = 0.
In all other states it is not difficult to see that under any policy we will pass
state 3 exactly once and will then be absorbed in state 2 which yields the
maximal reward J∞(x) = −1 for x �= 2. For state 1 the optimality equation
reads

J∞(1) = sup
a≥3

J∞(a)
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which yields the set D∗
∞(1) = {3, 4, . . .}. On the other hand we obtain for a

finite horizon n ∈ N that

Jn(x) =

⎧
⎨

⎩

0 , for x = 1, 2
−1 , for 3 ≤ x ≤ n+ 2

0 , for x > n+ 2.

Since
Jn(1) = sup

a≥3
Jn−1(a)

the set of maximizers is given by D∗
n(1) = {n + 2, n + 3, . . .}. Thus, taking

the limit n → ∞ we get J(x) = 0 for x = 1, 2 and J(x) = −1 for x ≥ 3.
Altogether, we have

J∞(1) = −1 < 0 = J(1),
LsD∗

n(1) = ∅ �= D∗
∞(1).

We see that the value and policy iteration may no longer be true if D(x) is
not compact. Note that there exists an optimal stationary policy. �

7.3 Contracting Markov Decision Models

An advantageous and important situation arises when the operator T is con-
tracting. Here we assume that the Markov Decision Model has a so-called
bounding function instead of an upper bounding function which we have con-
sidered so far.

Definition 7.3.1. A measurable function b : E → R+ is called a bounding
function for the Markov Decision Model if there exist cr, αb ∈ R+ such that

(i) |r(x, a)| ≤ crb(x) for all (x, a) ∈ D.
(ii)

∫
b(x′)Q(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ D.

If b is a bounding function then (IBb, ‖ · ‖b) is a Banach space. The weighted
supremum norm ‖ ·‖b has been defined in Section 2.4. We recall its definition
here for v ∈ IM(E)

‖v‖b := sup
x∈E

|v(x)|
b(x)

.

Markov Decision Models with a bounding function b and βαb < 1 are called
contracting. We will see in Lemma 7.3.3 that βαb is the module of T .

Remark 7.3.2. a) If r is bounded, then b ≡ 1 is a bounding function. If more-
over β < 1, then the Markov Decision Model is contracting (the classical
discounted case).
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b) For any contracting Markov Decision Model the assumptions (C) and (A)
are satisfied, since δ ∈ IBb and there exists a constant c > 0 with

lim
n→∞ sup

π
IE
π
x

[ ∞∑

k=n

βkr+
(
Xk, fk(Xk)

)
]

≤ c lim
n→∞(βαb)nb(x) = 0. ♦

Lemma 7.3.3. Suppose the Markov Decision Model has a bounding function
b and let f ∈ F .

a) For v, w ∈ IBb it holds:

‖Tfv − Tfw‖b ≤ βαb‖v − w‖b
‖T v − T w‖b ≤ βαb‖v − w‖b.

b) Let βαb < 1. Then Jf = limn→∞ T n
f g for all g ∈ IBb, and Jf is the unique

fixed point of Tf in IBb.

Proof. a) For f ∈ F we obtain

Tfv(x) − Tfw(x) ≤ β sup
a∈D(x)

∫ (
v(x′) − w(x′)

)
Q(dx′|x, a)

≤ β‖v − w‖b sup
a∈D(x)

∫
b(x′)Q(dx′|x, a).

By interchanging v and w we conclude

Tfw(x) − Tfv(x) ≤ β‖v − w‖b sup
a∈D(x)

∫
b(x′)Q(dx′|x, a).

Taking the weighted supremum norm yields

‖Tfv − Tfw‖b ≤ βαb‖v − w‖b.

For the second statement note that for functions g, h : M → R it holds

sup
x∈M

g(x) − sup
x∈M

h(x) ≤ sup
x∈M

(
g(x) − h(x)

)
,

hence

T w(x) − T v(x) ≤ β sup
a∈D(x)

∫ (
v(x′) − w(x′)

)
Q(dx′|x, a).

Proceeding the same way as for Tf we derive the second inequality.
b) In view of part a) the operator Tf is contracting on IBb, and the statements

follow from Banach’s fixed point theorem (Theorem A.3.5). 	
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For contracting Markov Decision Models we are able to give the following
slightly stronger version of the Verification Theorem 7.1.7.

Theorem 7.3.4 (Verification Theorem). Let b be a bounding function,
βαb < 1 and v ∈ IBb be a fixed point of T : IBb → IBb. If f∗ is a maximizer
of v, then v = J∞ = J and (f∗, f∗, . . .) is an optimal stationary policy.

Proof. First we get v = T n
f∗v ≤ T n

f∗0 + T n
◦ δ from which we conclude for

n → ∞ that v ≤ Jf∗ . On the other hand, since by Theorem 2.3.7 and
Banach’s fixed point theorem J ≤ limn→∞ T n0 = v, we obtain altogether

J∞ ≤ J ≤ v ≤ Jf∗ ≤ J∞. 	


Next we state the main result for contracting Markov Decision Models.

Theorem 7.3.5 (Structure Theorem). Let b be a bounding function
and βαb < 1. If there exists a closed subset IM ⊂ IBb and a set Δ ⊂ F
such that

(i) 0 ∈ IM ,
(ii) T : IM → IM ,
(iii) for all v ∈ IM there exists a maximizer f ∈ Δ of v,

then it holds:

a) J∞ ∈ IM , J∞ = T J∞ and J∞ = J (Value Iteration).
b) J∞ is the unique fixed point of T in IM .
c) J∞ is the smallest r-superharmonic function v ∈ IM , i.e. J∞ is the

smallest function v ∈ IM with v ≥ T v.
d) Let g ∈ IM . Then

‖J∞ − T ng‖b ≤
(
βαb

)n

1 − βαb
‖T g − g‖b.

e) There exists a maximizer f ∈ Δ of J∞, and every maximizer f∗ of J∞
defines an optimal stationary policy (f∗, f∗, . . .).

Proof. By Banach’s fixed point theorem (Theorem A.3.5) there exists a func-
tion v ∈ IM with v = T v and v = limn→∞ T n0. Thus all assumptions of
Theorem 7.1.8 are satisfied. Parts b) and d) follow directly from Banach’s
fixed point theorem. For c) note that if v ∈ IM is a solution of v ≥ T v, then
by iteration we obtain v ≥ T nv → J∞ for n→ ∞, and v ≥ J∞ follows. 	


As in Section 7.2 we can impose continuity and compactness conditions which
imply assumptions (i)–(iii) of Theorem 7.3.5. Here it is assumed that E and
A are Borel spaces and D is a Borel subset of E ×A.
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Theorem 7.3.6. Let b be a continuous bounding function and βαb < 1.
If the following assumptions are satisfied

(i) D(x) is compact for all x ∈ E and x �→ D(x) is continuous,
(ii) (x, a) �→

∫
v(x′)Q(dx′|x, a) is continuous for all continuous v ∈ IBb,

(iii) (x, a) �→ r(x, a) is continuous,

then it holds:

a) J∞ is continuous, J∞ ∈ IBb and J∞ = J (Value Iteration).
b) J∞ is the unique continuous fixed point of T in IBb.
c) ∅ �= LsD∗

n(x) ⊂ D∗
∞(x) for all x ∈ E (Policy Iteration).

d) There exists an f∗ ∈ F with f∗(x) ∈ LsD∗
n(x) for all x ∈ E, and the

stationary policy (f∗, f∗, . . .) is optimal.

Proof. Theorem 2.4.10 implies that (i)–(iii) of Theorem 7.3.5 are satisfied
with the set IM := {v ∈ IBb | v is continuous}. It remains to show that IM is
closed. Suppose that (vn) ⊂ IM with limn→∞ ‖vn − v‖b = 0. By definition of
‖·‖b it follows that vn

b converges uniformly to v
b . Thus, since vn

b are continuous
by assumption, the limit v

b
is continuous which implies that IM is closed. The

policy iteration follows as in Theorem 7.2.1. 	


7.4 Positive Markov Decision Models

Now we suppose that an infinite horizon Markov Decision Model is given
where the negative parts of the reward functions converge. This is in con-
trast to Section 7.1 where the positive parts are considered. Throughout this
section we make use of the following assumptions:

Integrability Assumption (A):

ε(x) := sup
π

IE
π
x

[ ∞∑

k=0

βkr−
(
Xk, fk(Xk)

)
]

<∞, x ∈ E.

Convergence Assumption (C−): For x ∈ E

lim
n→∞ sup

π
IE
π
x

[ ∞∑

k=n

βkr−
(
Xk, fk(Xk)

)
]

= 0.

Such a Markov Decision Model is called (generalized) positive. Obviously in
the case r ≥ 0 we have ε(x) ≡ 0 and (C−) is satisfied. Note that (C−) is not
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symmetric to (C) since we have a maximization problem in both cases. In
particular J∞(x) = ∞ is possible for some x ∈ E.

If we define the operator T◦ as in Section 7.1, then

sup
π

IE
π
x

[ ∞∑

k=n

βkr−
(
Xk, fk(Xk)

)
]

= βn sup
π

IE
π
x [ε(Xn)] = T n

◦ ε(x).

Hence the Convergence Assumption (C−) can also be expressed as

lim
n→∞ T n

◦ ε(x) = 0 for x ∈ E.

Analogously to Lemma 7.1.4 we obtain now that the value functions are
weakly increasing.

Lemma 7.4.1. For n,m ∈ N0 with n ≥ m it holds that

a) Jnπ ≥ Jmπ − T m
◦ ε.

b) Jn ≥ Jm − T m◦ ε.

This monotonicity of (Jnπ) and (Jn) implies that

J∞π = lim
n→∞ Jnπ for all π ∈ F∞

and
J(x) := lim

n→∞ Jn(x), x ∈ E

exist. Note that J∞π ≥ −ε. Again as in Section 7.1 we obtain the following
lemma by monotone convergence.

Lemma 7.4.2. Assume (C−) and let f ∈ F . Then it holds:

a) lim
n→∞LJn(x, a) = LJ(x, a), (x, a) ∈ D.

b) lim
n→∞ TfJn(x) = TfJ(x), x ∈ E.

c) Jf = TfJf .

Theorem 7.4.3. Let (C−) be satisfied. Then it holds:

a) J∞ = T J∞ and J∞ = J (Value Iteration).
b) J∞ is the smallest r-superharmonic function v with v ≥ −ε, i.e. J∞ is

the smallest function v with v ≥ T v and v ≥ −ε.

Proof. a) We first prove that J = T J . Fix x ∈ E and define for n ∈ N the
functions vn : D(x) → R ∪ {+∞} by
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vn(a) := LJn−1(x, a).

It is not difficult to show that for all n ≥ m

vn(a) ≥ vm(a) − T m
◦ ε(x).

Theorem A.1.6 then implies

J(x) = lim
n→∞ Jn(x) = lim

n→∞ T Jn−1(x) = lim
n→∞ sup

a∈D(x)
LJn−1(x, a)

= sup
a∈D(x)

lim
n→∞LJn−1(x, a) = sup

a∈D(x)

LJ(x, a) = T J(x).

Note that we do not assume (SA) here, hence it is not clear why
Jn = T Jn−1 holds. But this follows from general results of Markov Deci-
sion Process theory, see Remark 2.3.14.
Next we show that J = J∞. From the monotonicity it follows J∞ ≥ J∞π ≥
Jmπ − T m

◦ ε for all π ∈ F∞ and therefore J∞ ≥ limn→∞ Jn = J . On the
other hand, we have Jnπ ≤ Jn for all n, hence J∞π ≤ J and J∞ ≤ J .
Thus, J∞ = J .

b) From part a) we know that J∞ is a solution of J∞ ≥ T J∞ and J∞ ≥ −ε.
Let v be an arbitrary r-superharmonic function with v ≥ −ε. Then we
obtain for n ∈ N that v ≥ T nv ≥ T n0 − T n

◦ ε and for n → ∞ we get
v ≥ J∞.

	


The next example shows that for positive Markov Decision Models a maxi-
mizer of J∞ defines not necessarily an optimal stationary policy (cf. Theorem
7.1.8).

Example 7.4.4. We consider the following infinite horizon Markov Decision
Model: Suppose that the state space is E := N0 and the action space is
A := {1, 2}. Further let D(x) := A. The transition probabilities are given by

q(0|0, a) := 1
q(x + 1|x, 1) := 1

q(0|x, 2) := 1 for x ∈ N.

All other probabilities are zero (see Figure 7.2). The discount factor is β := 1
and the one-stage reward function is given by

r(x, 1) := 0, r(x, 2) := 1 − 1
x+ 1

, x ∈ N0.

Assumption (C−) is satisfied since the reward is non-negative. Moreover when
we look directly at the problem, it is straightforward to show that J∞(0) = 0
and J∞(x) = 1 for x ∈ N. Since
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0 1 2

action a=1

action a=2

3 x
r(1,2)= _

2
1 r(2,2)= _

3
2 r(x,2)=1_

x+1
1

Fig. 7.2 Transition diagram.

J(x) = max
{
J(x+ 1), 1 − 1

x+ 1

}
, x ∈ N

it is easy to see that f ≡ 1 is a maximizer of J∞, but Jf ≡ 0, i.e. f∞ is not
optimal. If the decision rule f is such that f(x) = 1 for x = 0, 1, . . . , x0 − 1
and f(x0) = 2 for some x0 ∈ N, then Jf (x0) = 1 − 1

x0+1 . Therefore, an
optimal stationary policy does not exist for this example. �

For positive Markov Decision Models we obtain the following optimality cri-
terion which is different to the criterion in Section 7.1 (see Theorem 7.1.8
and Remark 7.1.9 c)).

Theorem 7.4.5. Assume (C−) and let f ∈ F . The following statements
are equivalent:

(i) f∞ is optimal.
(ii) Jf is an r-superharmonic function.
(iii) Jf is a fixed point of T , i.e. Jf = T Jf .

Proof. (i) ⇒ (iii): If f∞ is optimal then we have Jf = J∞, and thus by
Theorem 7.4.3 we obtain Jf = T Jf .

(iii) ⇒ (ii): This follows by definition.
(ii) ⇒ (i): If Jf is an r-superharmonic function then Theorem 7.4.3 implies

that Jf ≥ J∞, i.e. f∞ is optimal. 	


7.5 Computational Aspects

From Theorem 7.1.8 we know that the value and an optimal policy of the infi-
nite horizon Markov Decision Model can be obtained as limits from the finite
horizon problem. This so-called value iteration already yields a first com-
putational method to obtain a solution for the infinite horizon optimization
problem. Other methods are discussed in this section.
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7.5.1 Howard’s Policy Improvement Algorithm

We next formulate Howard’s policy improvement algorithm which is another
tool to compute the value function and an optimal policy. It works well in
Markov Decision Models with finite state and action spaces.

Theorem 7.5.1. Let (C) be satisfied. For a decision rule f ∈ F denote

D(x, f) := {a ∈ D(x) | LJf (x, a) > Jf (x)}, x ∈ E.

Then it holds:

a) If for some measurable E0 ⊂ E we define a decision rule h by

h(x) ∈ D(x, f) for x ∈ E0,

h(x) = f(x) for x /∈ E0,

then Jh ≥ Jf and Jh(x) > Jf (x) for x ∈ E0. In this case the decision
rule h is called an improvement of f .

b) If D(x, f) = ∅ for all x ∈ E, Jf ≥ 0 and T : IB → IB then Jf = J∞,
i.e. the stationary policy (f, f, . . .) ∈ F∞ is optimal.

c) Let b be a bounding function, βαb < 1 (i.e. the Markov Decision Model
is contracting) and T : IBb → IBb. If D(x, f) = ∅ for all x ∈ E, then
Jf = J∞.

Proof. a) From the definition of h we obtain

ThJf (x) > Jf (x)

if x ∈ E0 and ThJf (x) = Jf (x) if x /∈ E0. Thus by induction

Jf ≤ ThJf ≤ T n
h Jf ≤ T n

h 0 + T n
◦ δ

where the first inequality is strict if we plug in x ∈ E0. Letting n → ∞ it
follows by Assumption (C) that Jf ≤ Jh and in particular Jf (x) < Jh(x)
for x ∈ E0.

b) The condition D(x, f) = ∅ for all x ∈ E implies T Jf ≤ Jf . Since we
always have T Jf ≥ TfJf = Jf we obtain T Jf = Jf . Since 0 ≤ Jf and
T : IB → IB it follows that

Jn ≤ T n0 ≤ T nJf = Jf

for n ∈ N. Taking n→ ∞ yields J ≤ Jf and thus we obtain

J∞ ≤ J ≤ Jf ≤ J∞
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which implies the result.
c) As in b) we get T Jf = Jf . From Banach’s fixed point theorem we know

that T has a unique fixed point v ∈ IBb and v = limn→∞ T n0. Since
J∞ ≤ J ≤ v = Jf ≤ J∞ the statement follows as in b). 	


Remark 7.5.2. a) If F is finite (in particular if the state and action spaces
are finite) then an optimal stationary policy can be obtained in a finite
number of steps (see the algorithm below).

b) Obviously it holds that f ∈ F defines an optimal stationary policy
(f, f, . . .) if and only if f cannot be improved by the algorithm.

Howard’s Policy Improvement Algorithm.

1. Choose f0 ∈ F arbitrary and set k = 0.
2. Compute Jfk

as the largest solution v ∈ IB of the equation v = Tfk
v.

3. Compute fk+1 as a maximizer of Jfk
(where we set fk+1(x) = fk(x) if

possible). If fk+1 = fk and if Jfk
≥ 0 or the model is contracting then

Jfk
= J and (fk, fk, . . .) is optimal. Else set k := k+1 and go to step 2.

Corollary 7.5.3. Let the assumptions of Theorem 7.5.1 be satisfied. In case
the algorithm does not stop, it generates a sequence of decision rules (fk)
with Jfk

≥ Jfk−1 . If either Jfk
≥ 0 for some k or the Markov Decision Model

is contracting then it holds

lim
k→∞

Jfk
= J∞.

Proof. The proof follows along the same lines as the proof of Theorem 7.5.1
b), c). Let J̄ := limk→∞ Jfk

then J̄ ≤ J∞. From the definition of the sequence
of decision rules (fk) it follows that

Jfk+1 ≥ T Jfk
≥ Jfk

.

Hence J̄ = T J̄ . If Jfk
≥ 0 for some k, then J̄ ≥ 0 and

J̄ = T nJ̄ ≥ T n0 → J, for n→ ∞,

i.e. J̄ = J = J∞. If the Markov Decision Model is contracting, then T has a
unique fixed point and J̄ = J∞. 	


Example 7.5.4 (Howard’s Toymaker). We revisit Example 2.5.5 to compute
the optimal infinite horizon value function with Howard’s policy improvement
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algorithm. Recall that β ∈ (0, 1). Before we start with the recursion note that
for arbitrary v : E → R with Δv := v(1) − v(2) it holds that

Lv(x, a) = r(x, a) + βq(1|x, a)Δv + βv(2)

and thus we obtain for x ∈ E:

Lv(x, 1) − Lv(x, 2) = 2 − 0.3βΔv.

Hence optimal stationary policies are either f∞
1 with f1 ≡ 1 or f∞2 with

f2 ≡ 2.
Let us start with f := f1 and set k = 0. The first step is to compute Jf which
can be done by solving v = Tfv. This gives two equations:

v(x) = r(x, f(x)) + β
∑

y∈E
q(y|x, f(x))v(y), x ∈ {1, 2}.

The solution is given by

Jf =
3

(1 − β)(10 − β)

(
20 − 17β
13β − 10

)

.

Now we compute a maximizer of Jf :

LJf (x, 1) − LJf (x, 2) = 2 − 0.3βΔJf = 2 − 27β
10 − β

.

Thus, f := f1 is a maximizer of Jf if and only if LJf (x, 1) − LJf(x, 2) ≥ 0,
which is the case if and only if β ≤ 20

29
.

Thus we obtain altogether: If β ≤ 20
29

, then f∞1 is an optimal stationary policy
and the value function is given by

J∞ = Jf1 =
3

(1 − β)(10 − β)

(
20 − 17β
13β − 10

)

.

If β > 20
29 , then f∞

2 is an optimal stationary policy and the value function is
given by

J∞ = Jf2 =
2

(1 − β)(10 − β)

(
20 − 11β
34β − 25

)

.

�

7.5.2 Linear Programming

Markov Decision Problems can also be solved by linear programming. We re-
strict here to the contracting case. The key idea is to use the characterization
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of the value function as the smallest r-superharmonic function (see Theorem
7.3.5) and to express these properties as a linear programming problem. In
order to explain the technique we consider a contracting Markov Decision
Model with a bounding function b : E → R+ satisfying

(i) b(x) ≥ 1 for all x ∈ E.
(ii)

∫
b(x)p(dx) <∞ where p is the initial distribution of X0.

In the previous chapters we have assumed that p is concentrated on a certain
state. We are now interested in computing so-called p-optimal policies by
linear programming. A (Markov) policy π = (fn) ∈ F∞ is called p-optimal if
it maximizes the functional

π �→ Jπ :=
∫
J∞π(x)p(dx).

The value Jπ is well-defined and finite, since by assumption

|Jπ| ≤
cr

1 − βαb

∫
b(x)p(dx) <∞.

In what follows, let IM be a closed linear subspace of IBb and we assume that
b ∈ IM . Then we can formulate the following pair of linear programs:

(P )

⎧
⎪⎪⎨

⎪⎪⎩

∫
vdp→ min

v(x) − β
∫
v(x′)Q(dx′|x, a) ≥ r(x, a), (x, a) ∈ D

v ∈ IM.

Note that the constraints in (P ) are equivalent to v ≥ T v. For the dual
program let Mb := {μ measure on D |

∫
bdμ <∞} and define

(D)

⎧
⎪⎪⎨

⎪⎪⎩

∫
rdμ → max

∫ (
v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μ(d(x, a)) =

∫
vdp, v ∈ IM

μ ∈ Mb.

Important measures in Mb are constructed as follows. For a policy π ∈ F∞

define the measure μπ on D by

μπ(B) := IE
π
p

[ ∞∑

k=0

βk1B(Xk, Ak)

]

=
∞∑

k=0

βk IP
π
p

(
(Xk, Ak) ∈ B

)

for a measurable subset B of D. Then we obtain μπ ∈ Mb, since
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μπ(D) ≤
∞∑

k=0

βk IE
π
p

[
b(Xk)

]
=

∫
b(x)μπ(d(x, a)) ≤

∫
bdp

1 − βαb
<∞.

Note that we have used b ≥ 1 for the first inequality. The measure μπ is a
(discounted) occupation measure. Later in Theorem 7.5.6 it will be shown
that μπ is indeed admissible for (D).

Remark 7.5.5. Problem (D) is not the dual program in the classical sense
of linear programming. In general, we have to use finite additive set func-
tions instead of the restricted set Mb (cf. Heilmann (1979)). For solving a
contracting Markov Decision Problem however, the proposed program (D) is
sufficient. ♦

In what follows we denote by

ZP :=
{
v ∈ IM | v(x) − Lv(x, a) ≥ 0 for all (x, a) ∈ D

}

ZD :=
{
μ ∈ Mb |

∫ (
v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μ(d(x, a))

=
∫
vdp for all v ∈ IM

}

the feasible sets of the programs (P ) and (D), and by val(P ) and val(D) the
minimal and maximal value respectively.

Theorem 7.5.6 (Weak Duality). The feasible sets ZP and ZD are non-
empty and it holds: −∞ < val(D) ≤ val(P ) <∞.

Proof. a) Define
v(x) :=

cr
1 − βαb

b(x).

Then v ∈ IM and we obtain

Lv(x, a) ≤ crb(x) +
βαb

1 − βαb
crb(x) = v(x).

Thus, it follows

v(x) − Lv(x, a) ≥ 0

and v ∈ ZP .
b) We will show that the occupation measures μπ satisfy the constraint in

(D). For v ∈ IM we obtain
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∫ (
v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μπ(d(x, a))

=
∞∑

k=0

βk
(

IE
π
p [v(Xk)] − β IE

π
p

[∫
v(x′)Q(dx′|Xk, Ak)

] )

=
∞∑

k=0

βk
(

IE
π
p [v(Xk)] − β IE

π
p [v(Xk+1)]

)

=
∫
v(x)p(dx)

which implies that μπ ∈ ZD. Now let v ∈ ZP and μ ∈ ZD. Then
∫
vdp =

∫ (
v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μ(d(x, a))

≥
∫
r(x, a)μ(d(x, a)) =

∫
rdμ

which implies the last statement of the theorem. 	


A direct consequence of complementary slackness in linear programming is
the following result.

Theorem 7.5.7. Let v ∈ ZP and μ ∈ ZD. Then the following statements
are equivalent:

(i) v and μ are optimal and val(P ) = val(D).
(ii) v(x) = Lv(x, a) for μ-almost all (x, a) ∈ D.

Proof. First note that if v ∈ ZP then (ii) is equivalent to
∫ (

v(x) − Lv(x, a)
)
μ(d(x, a)) = 0,

since v(x) − Lv(x, a) is non-negative.

(i) ⇒ (ii): By assumption we have
∫
vdp =

∫
rdμ. Since μ ∈ ZD we obtain

∫ (
v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μ(d(x, a)) =

∫
vdp =

∫
rdμ.

This equation is equivalent to
∫ (

v(x) − Lv(x, a)
)
μ(d(x, a)) = 0,

and the first part is shown.
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(ii) ⇒ (i) Similar to the first part, the equation
∫ (

v(x) − Lv(x, a)
)
μ(d(x, a)) = 0

can be written as
∫ (

v(x) − β

∫
v(x′)Q(dx′|x, a)

)
μ(d(x, a)) =

∫
rdμ.

Moreover, since μ ∈ ZD we obtain that the left-hand side equals
∫
vdp.

Thus we have
∫
vdp =

∫
rdμ, and the statement follows from Theorem

7.5.6. 	


The next theorem indeed shows that the linear programs (P ) and (D) help
to find an optimal solution of the infinite horizon Markov Decision Problem.
More precisely, the values of both linear programs coincide and yield the
maximal value of the Markov Decision Problem.

Theorem 7.5.8 (Strong duality). Suppose the assumptions of Theorem
7.3.5 are satisfied for the closed subspace IM ⊂ IBb. Then the following state-
ments hold:

a) (P ) has an optimal solution v∗ ∈ IM , v∗ = J∞ and

val(P ) =
∫
J∞(x)p(dx) = val(D).

b) (D) has an optimal solution μ∗ ∈ Mb and there exists an f∗ ∈ F such
that

val(D) =
∫
rdμ∗ =

∫
Jf∗(x)p(dx).

In particular, the stationary policy (f∗, f∗, . . .) is p-optimal.

Proof. a) By Theorem 7.3.5 the function J∞ is the unique fixed point of T
in IM and thus by definition of (P ) we have J∞ ∈ ZP . Let v ∈ ZP be
arbitrary. Then v ≥ T v and by iterating the operator T we obtain

v ≥ T nv → J∞, for n→ ∞

i.e. v ≥ J∞ and
∫
vdp ≥

∫
J∞dp. Hence J∞ is an optimal solution of (P ).

b) By Theorem 7.3.5 there exists a maximizer f∗ ∈ Δ of J∞. Let μ∗ := μf∗

be the measure on D which is induced by the stationary policy (f∗, f∗, . . .)
(see the proof of Theorem 7.5.6). Then μ∗ ∈ ZD, and since J∞ ∈ ZP (see
part a)) and J∞(x) = LJ∞(x, f∗(x)), x ∈ E we obtain by Theorem 7.5.7

∫
J∞dp =

∫
rdμ∗ = val(D).
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Moreover, we know from Theorem 7.3.5 that J∞ = Jf∗ . 	


In what follows we consider the special case where the state and the action
spaces are finite. Recall that we write in this case q(y|x, a) := Q({y}|x, a).
Here the linear programs reduce to

(P )

⎧
⎪⎪⎨

⎪⎪⎩

∑
x∈E v(x)p(x) → min

v(x) − β
∑
y q(y|x, a)v(y) ≥ r(x, a), (x, a) ∈ D,

v(x) ∈ R, x ∈ E.

(D)

⎧
⎪⎪⎨

⎪⎪⎩

∑
(x,a)∈D r(x, a)μ(x, a) → max

∑
(x,a)

(
δxy − βq(y|x, a)

)
μ(x, a) = p(y), y ∈ E,

μ(x, a) ≥ 0, (x, a) ∈ D.

We use for (P ) the set IM of all functions v : E → R and it is sufficient for
(D) to require the equation for the functions vy(x) = δxy, x ∈ E. Note that
in this case (D) is indeed the dual program of (P ) in the usual sense. In the
finite case we get the following (somewhat stronger) result.

Theorem 7.5.9. Let E and A be finite and p(x) > 0 for all x ∈ E. Then
the following statements hold:

a) (P ) has an optimal solution v∗ and v∗ = J∞.
b) (D) has an optimal solution μ∗. Let μ∗ be an optimal vertex. Then for

all x ∈ E, there exists a unique ax ∈ D(x) such that μ∗(x, ax) > 0 and
the stationary policy (f∗, f∗, . . .) with f∗(x) := ax, x ∈ E, is optimal.

Proof. The existence of optimal solutions v∗ = J∞ ∈ ZP and μ∗ ∈ ZD follows
from Theorem 7.5.8. In particular, μ∗ ∈ ZD satisfies

∑

(x,a)∈D

(
δxy − βq(y|x, a)

)
μ∗(x, a) = p(y)

which is equivalent to
∑

a∈D(y)

μ∗(y, a) − β
∑

(x,a)∈D
q(y|x, a)μ∗(x, a) = p(y).

Since p(x) > 0 for all x ∈ E we must have
∑

a∈D(x) μ
∗(x, a) > 0, i.e. for

all x there exists at least one a ∈ D(x) such that μ∗(x, a) > 0. If μ∗ is a
vertex then there can be only |E| positive entries in the vector μ∗(x, a) which
implies that a∗x with μ∗(x, a∗x) > 0 is unique. Now define f∗(x) := a∗x. From
Theorem 7.5.7 it follows that
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v∗(x) = Lv(x, a∗x) = Lv(x, f∗(x)), x ∈ E

which means that v∗ = Tf∗v∗. On the other hand we know that v∗ = T v∗
which implies T v∗ = Tf∗v∗. Thus, f∗ is a maximizer of v∗, and the stationary
policy (f∗, f∗, . . .) is optimal. 	


Example 7.5.10 (Howard’s Toymaker). We revisit Example 2.5.5 to compute
an optimal policy with the dual program. The dual program (D) has the
following form

(D)

⎧
⎪⎪⎨

⎪⎪⎩

−6x11 − 4x12 + 3x21 + 5x22 → min
(1 − 0.5β)x11 + (1 − 0.8β)x12 − 0.4βx21 − 0.7βx22 = 1

−0.5βx11 − 0.2βx12 + (1 − 0.6β)x21 + (1 − 0.3β)x22 = 1
x11, x21, x12, x22 ≥ 0.

Using the well-known Simplex algorithm it follows that (x∗11, 0, x
∗
21, 0) is an

optimal vertex if β < 20
29

with

x∗11 =
10 − 2β

(1 − β)(10 − β)

x∗21 =
(10

(1 − β)(10 − β)
.

From Theorem 7.5.9 we conclude that f∗ ≡ 1 determines the (unique) optimal
stationary policy. In case β > 20

29 then the vertex (0, x∗12, 0, x
∗
22) is optimal

with

x∗12 =
10 + 4β

(1 − β)(10 − β)

x∗22 =
10 − 6β

(1 − β)(10 − β)
.

and thus f∗ ≡ 2 determines the (unique) optimal stationary policy. In
case β = 20

29 the dual linear program has four optimal vertices, namely
(x∗11, 0, x

∗
21, 0), (0, x∗12, x

∗
21, 0), (x∗11, 0, 0, x

∗
22), (0, x∗12, 0, x

∗
22) and thus all sta-

tionary policies are optimal. �

7.5.3 State Space Discretization

If the state space E is not discrete, then numerical results can only be ob-
tained when the state space is approximated by a discrete grid and the value
iteration is executed on the grid only. The value function in between has to be
obtained by interpolation. In this section we consider a contracting Markov
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Decision Problem with Borel spaces E and A, D a Borel subset of E×A and
with a bounding function b : E → R+ satisfying

(i) b(x) ≥ 1 for all x ∈ E.
(ii) b is uniformly continuous on E.
(iii) The Structure Assumption (SA) is satisfied for the set

IMc := {v ∈ IBb | v is uniformly continuous on E}.

We assume now that the state space is approximated by a grid G ⊂ E and
define the grid operator TG on IMc by

TGv(x) :=

⎧
⎨

⎩

T v(x), for x ∈ G∑
k λkT v(xk), for x /∈ G, x =

∑
k λkxk,

and xk ∈ G, λk ≥ 0,
∑
k λk = 1.

TG coincides with T on G and TG is a linear interpolation elsewhere. It is
easy to see that TG : IMc → IMc. Moreover, we define a different bounding
function bG : E → R+ by

bG(x) :=

⎧
⎨

⎩

b(x), for x ∈ G∑
k λkb(xk), for x /∈ G, x =

∑
k λkxk,

and xk ∈ G, λk ≥ 0,
∑
k λk = 1.

Note that bG is again a bounding function for our Markov Decision Model,
thus for v ∈ IMc we may define:

‖v‖G := sup
x∈E

|v(x)|
bG(x)

.

If the mesh size h of the grid is small enough, the operator TG is again a
contraction.

Proposition 7.5.11. The module αG is bounded by

αG ≤ αbm(h),

where m(h) → 1 if the mesh size h tends to zero.

Proof. Let us define m̃(h) := ‖b− bG‖ = supx∈E |b(x)− bG(x)|. Our assump-
tion implies that m̃(h) → 0 if the mesh size tends to zero. By definition we
obtain
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αG := sup
(x,a)

∫
bG(y)Q(dy|x, a)

bG(x)

≤ sup
(x,a)

∫
b(y)Q(dy|x, a) + m̃(h)

b(x) − m̃(h)

= sup
(x,a)

∫
b(y)Q(dy|x, a)

b(x)
b(x)

b(x) − m̃(h)
+ sup

x

m̃(h)
b(x) − m̃(h)

≤ αb
1

1 − m̃(h)
+

m̃(h)
1 − m̃(h)

If we define

m(h) =
αb + m̃(h)
αb(1 − m̃(h))

,

then m(h) → 1 for h→ 0 and the statement follows. 	


The next theorem states that our value function J∞ can be approximated
arbitrarily well by the iterates of the grid operator.

Theorem 7.5.12. Suppose that βαG < 1. Then it holds for g ∈ IMc

‖J∞ − T n
G g‖G ≤ 1

1 − βαG

(
(βαG)n‖TGg − g‖G + ‖J∞ − TGJ∞‖G

)
,

where ‖J∞ − TGJ∞‖G → 0 if the mesh size h tends to zero.

Proof. Since βαG < 1 the TG-operator is contracting and has a unique fixed
point which we denote by JG, i.e. JG = TGJG. An application of the triangle
inequality yields

‖J∞ − T n
G g‖G ≤ ‖J∞ − JG‖G + ‖JG − T n

G g‖G

for all n ∈ N. By Banach’s fixed point theorem we obtain

‖JG − T n
G g‖G ≤ (βαG)n

1 − βαG
‖TGg − g‖G.

Moreover, again by applying the triangle inequality we obtain

‖J∞ − JG‖G ≤ ‖J∞ − TGJ∞‖G + ‖TGJ∞ − TGJG‖G
≤ ‖J∞ − TGJ∞‖G + βcG‖J∞ − JG‖G.

Solving this for ‖J∞−JG‖G yields the desired result. Note that by definition
of the TG-operator, TGJ∞(x) = J∞(x) for x ∈ G . Since J∞ is uniformly
continuous, we obtain ‖J∞ − TGJ∞‖G → 0 for h→ 0. 	
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7.6 Applications and Examples

In this section we look at some simple applications to highlight the results of
the preceding sections. More applications can be found in Chapter 9.

7.6.1 Markov Decision Models with Random Horizon

Sometimes Markov Decision Models with infinite horizon appear in a nat-
ural way. For example when the time horizon is random and not bounded.
There may be situations where we do not know the horizon of the problem
in advance. For example, there may occur events (like bankruptcy of certain
companies) which lead to a termination of the project and these events occur
only with a certain probability. In this case it is reasonable to model the
horizon by a random variable τ : Ω → N.
Now suppose a stationary Markov Decision Model (E,A,D,Q, r, g, β) is given
(see Section 2.5). We assume that the random horizon τ is independent of
the state process (Xn). For a fixed policy π ∈ F∞ let

V τπ (x) := IE
π
x

[
τ−1∑

k=0

βkr
(
Xk, fk(Xk)

)
+ βτg(Xτ )

]

. (7.3)

The stochastic optimization problem is then given by

V τ (x) := sup
π∈F∞

V τπ (x), x ∈ E.

To simplify our analysis we assume that τ is geometrically distributed, i.e.

IP(τ = n) = (1 − p)pn−1, n ∈ N and p ∈ (0, 1).

In this case we claim that the given problem with random horizon is equiva-
lent to an ordinary discounted Markov Decision Model with infinite horizon
and with a modified reward function and a modified discount factor. To
show this let us define the following infinite horizon Markov Decision Model
(E,A,D,Q, r̃, β̃) where

• r̃(x, a) := r(x, a) + β(1 − p)
∫
g(x′)Q(dx′|x, a), (x, a) ∈ D,

• β̃ := βp.

We assume that assumptions (A) and (C) are satisfied. For a fixed policy
π = (f0, f1, . . .) ∈ F∞ it holds

J∞π(x) = V τπ (x)

and thus J∞(x) = V τ (x) for x ∈ E. This is true since
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J∞π(x) = IE
π
x

[ ∞∑

k=0

(βp)k
(
r
(
Xk, fk(Xk)

)
+ β(1 − p)g(Xk+1)

)
]

= IE
π
x

[ ∞∑

k=0

1[τ>k]β
kr

(
Xk, fk(Xk)

)
+

∞∑

k=1

1[τ=k]β
kg(Xk)

]

= IE
π
x

[
τ−1∑

k=0

βkr
(
Xk, fk(Xk)

)
+ βτg(Xτ )

]

= V τπ (x)

where we use the independence of τ from the state process (Xn) in the second
equation. In case the distribution of τ is arbitrary, it is possible to proceed
in the same way by using the time dependent discount factors β0 := 1 and

βn :=
β IP(τ > n)
IP(τ ≥ n)

, n ∈ N

instead of β̃.

7.6.2 A Cash Balance Problem with Infinite Horizon

In this section we reconsider the cash balance problem of Section 2.6.2, but
now as an infinite horizon optimization problem. Recall the data of the cash
balance problem:

• E := R where x ∈ E denotes the cash level,
• A := R where a ∈ A denotes the new cash level after transfer,
• D(x) := A,
• Z := R where z ∈ Z denotes the cash change.
• T (x, a, z) := a− z,
• QZ(·|x, a) := the distribution of the stochastic cash change Zn+1 (inde-

pendent of (x, a)),
• r(x, a) := −c(a− x) − L(a),
• β ∈ (0, 1).

It is assumed (see Section 2.6.2) that c(z) := cuz
+ + cdz

− with cu, cd > 0
and L : R → R+, L(0) = 0, x �→ L(x) is convex and lim|x|→∞

L(x)
|x| = ∞.

Moreover we suppose that Z := Z1 and IEZ < ∞. Note that assumptions
(A) and (C) are fulfilled since r ≤ 0.
We treat this problem as a cost minimization problem, i.e. J∞ in the next
theorem is the minimal cost function over an infinite horizon, and we obtain
the following result.
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Theorem 7.6.1. For the cash balance problem with infinite horizon it holds:

a) There exist critical levels S− and S+ such that

J∞(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(S− − x)cu + L(S−) + β IE J∞(S− − Z) if x < S−

L(x) + β IE J∞(x − Z) if S− ≤ x ≤ S+

(x− S+)cd + L(S+) + β IE J∞(S+ − Z) if x > S+.

J∞ is convex and J∞ = J = limn→∞ Jn.
b) The stationary policy (f∗, f∗, . . .) is optimal with

f∗(x) :=

⎧
⎨

⎩

S− if x < S−,
x if S− ≤ x ≤ S+,
S+ if x > S+,

(7.4)

where S− and S+ are accumulation points of the sequences (Sn−) and
(Sn+) given in Theorem 2.6.2.

Proof. a) We prove this part with the help of Theorem 7.1.8. Conditions
(i)–(iii) of (SA) have already been shown in Section 2.6.2 with

IM := {v : E → R+ | v is convex and v(x) ≤ c(−x) + d for some d ∈ R+}.

Indeed it is now crucial to see that IM can be chosen as

IM := {v : E → R+ | v is convex and v(x) ≤ c(−x) + d0}

with fixed d0 = β IE c(Z)
1−β since for v ∈ IM with v(x) ≤ c(−x) + d0 we get

T v(x) = c(−x) + β IE v(−Z)
≤ c(−x) + β IE c(Z) + βd0 = c(−x) + d0.

So it remains to show condition (iv) of (SA). J ∈ IM is obvious. To show
that J = T J some work is required. Indeed it is crucial to see that the
set of admissible actions can be restricted to a certain compact interval
(cf. Remark 2.4.4). The arguments are as follows. Define

Ã :=
{
a ∈ R | − c̄|a| + L(a) ≤ d0

}

where c̄ := max{cu, cd}. Note that this set is a compact interval due to
our assumptions on L and 0 ∈ Ã. We claim now: If a /∈ Ã then for v ∈ IM
it holds

c(−x) + β IE v(−Z) ≤ c(a− x) + L(a) + β IE v(a− Z).
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This means that when we consider the optimization problem T v, action
a = 0 is better than any action outside Ã. The proof of the claim is as
follows: First note that c(−x) ≤ c(a− x) + c̄|a| for all x, a ∈ R and that
a /∈ Ã implies

−c̄|a| + L(a) > d0 = β IE c(Z) + d0β.

This yields

c(−x) + β IE v(−Z) ≤ c(a− x) + c̄|a| + βd0 + β IE c(Z)
≤ c(a− x) + L(a)
≤ c(a− x) + L(a) + β IE v(a− Z),

and thus we can get T v(x) = infa∈Ã{c(a− x) +L(a) + β IE v(a−Z)} for
v ∈ IM . Theorem A.1.5 then implies that J = T J and Theorem 7.1.8
finally yields the statement.

b) This part follows from the policy iteration in Theorem 7.2.1 d). Note that
by a) we know that D(x) can be replaced by the compact set Ã, thus
conditions (i)–(iii) in Theorem 7.2.1 are certainly satisfied. Moreover, Sn−
and Sn+ ∈ Ã for all n ∈ N. Since Ã is compact the sequences (Sn−) and
(Sn+) have accumulation points in Ã, and any such accumulation point
can be chosen for an optimal decision rule. 	


7.6.3 Casino Games

Imagine a player who enters the casino and always plays the same game. The
probability of winning one game is p ∈ (0, 1) and the games are independent.
The player starts with an initial capital x ∈ N and can bet any non-negative
integral amount less than or equal to the current fortune. When the player
wins, she obtains twice her stake otherwise it is lost. The aim is to maximize
the probability that the player reaches the amount B ∈ N before she goes
bankrupt.
The formulation as a (substochastic) stationary Markov Decision Model is
as follows. Since we want to maximize the probability of a certain event, we
define the one-stage reward as an indicator of this event. When the game
ends, i.e. if the player has lost everything or has reached a fortune of B, we
have to make sure that the process ends and no further reward is obtained.
Note that it cannot be optimal to bet more than B − x. We define

• E := {0, 1, . . . , B} where x ∈ E denotes the current fortune,
• A := N0 where a ∈ A denotes the amount the player bets,
• D(x) :=

{
0, 1, . . . ,min{x,B − x}

}
,
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• q(x + a|x, a) := p and q(x − a|x, a) := 1 − p for 0 < x < B and on the
boundary q(x|0, a) = q(x|B, a) := 0 for all x ∈ E,

• r(x, a) := 0 for x �= B and r(B, a) := 1, a ∈ D(x),
• β := 1.

If we choose an arbitrary policy π = (f0, f1, . . .) ∈ F∞ it holds

J∞π(x) = IE
π
x

[ ∞∑

k=0

r
(
Xk, fk(Xk)

)]
= IE

π
x

[ ∞∑

k=0

1[Xk=B]

]

= IP
π
x

(
Xn = B for some n ∈ N0

)
, x ∈ E

which is indeed the quantity we want to maximize. Obviously this is a positive
Markov Decision Model with finite state and action spaces. Thus condition
(C−) is fulfilled and ε(x) ≡ 0.
Let us first consider the special policy where the player bets only one Euro
per game. This policy is called timid strategy. Formally this stationary policy
is defined by (f∗, f∗, . . .) with

f∗(x) := 1, for x > 0 and f∗(0) = 0.

The value function Jf∗(x) of this policy can be computed by solving the fixed
point equation Jf∗ = Tf∗Jf∗ , which gives the difference equation

Jf∗(x) = pJf∗(x + 1) + (1 − p)Jf∗(x − 1), x = 1, . . . , B − 1

with boundary conditions Jf∗(0) = 0 and Jf∗(B) = 1. The solution is given
by

Jf∗(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1−
(

1−p
p

)x

1−
(

1−p
p

)B , p �= 1
2

x
B , p = 1

2 .

It can be conjectured that if the game is favourable (i.e. p ≥ 1
2), then the

player can be patient and make use of the strong law of large numbers which
implies that in the long run she will win. We obtain the following theorem.

Theorem 7.6.2. If p ≥ 1
2 , the timid strategy is optimal, i.e. it maximizes

the probability that the player will reach B before going bankrupt.

Proof. According to Theorem 7.4.5 it suffices to show that Jf∗ ≥ T Jf∗ , i.e.

Jf∗(x) ≥ pJf∗(x+a)+(1−p)Jf∗(x−a), 0 < x < B, 0 ≤ a ≤ min{x,B−x}.

Let us first consider the case p = 1
2 . Here we have Jf∗(x) = x

B and the
inequality is fulfilled. Now suppose p > 1

2 . Inserting the expression for Jf∗(x)
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from above and rearranging terms, the inequality is equivalent to

1 ≤ p
[(1 − p

p

)a +
( p

1 − p

)a−1
]
, a ∈ D(x).

For a ∈ {0, 1} this is obviously true. By inspecting the derivative, we see that

h(y) =
(1 − p

p

)y +
( p

1 − p

)y−1

is increasing in y for y ≥ 1 if p > 1
2
. Thus, the statement follows. 	


Let us next consider the special strategy where the player bets all the time
her complete fortune or the part which is necessary to reach B. This strategy
is called bold strategy. Formally it is defined by (f∗∗, f∗∗, . . .) with

f∗∗(x) := min{x,B − x}, for x ≥ 0.

The value function Jf∗∗(x) of this strategy can be computed by solving the
fixed point equation Jf∗∗ = Tf∗∗Jf∗∗ which gives the difference equation

Jf∗∗(x) = pJf∗∗(2x), x < B − x

Jf∗∗(x) = p+ (1 − p)Jf∗∗(2x−B), x ≥ B − x

with boundary conditions Jf∗∗(0) = 0 and Jf∗∗(B) = 1. If the game is non-
favourable (i.e. p ≤ 1

2
), then the player has to try to reach B as fast as

possible. We obtain the following theorem.

Theorem 7.6.3. If p ≤ 1
2
, the bold strategy is optimal. i.e. it maximizes

the probability that the player will reach B before going bankrupt.

Proof. Let us denote Wn(x) := Jnf∗∗(x), which is the probability that B is
reached before 0 until the n-th game under the bold strategy with initial
capital x. It follows from the reward iteration (Theorem 2.5.3) that for n ∈ N

and fortunes 0 < x < B:

Wn(x) = Tf∗∗Wn−1(x) =
{
pWn−1(2x), x ≤ B − x
p+ (1 − p)Wn−1(2x−B), x > B − x

and Wn(0) = 0,Wn(B) = 1. Moreover, we define W0 ≡ 0. We claim now that
for all n ∈ N0 and x ∈ E, a ∈ D(x)

Wn+1(x) ≥ pWn(x+ a) + (1 − p)Wn(x− a). (7.5)

Since Jf∗∗(x) = limn→∞Wn(x) the statement follows from Theorem 7.4.5 as
in the proof of Theorem 7.6.2.
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We show (7.5) by induction. The case n = 0 is clear. Now suppose the
statement holds for n ∈ N. For the case n + 1 we have to distinguish the
following cases

Case 1: x+ a ≤ B
2
: Here we obtain with the reward iteration

Wn+1(x) − pWn(x + a) − (1 − p)Wn(x− a)

= p
[
Wn(2x) − pWn−1(2x+ 2a) − (1 − p)Wn−1(2x− 2a)

]
,

which is non-negative by the induction hypothesis.
Case 2: x ≤ B

2 ≤ x+ a: Here we obtain with the reward iteration

Wn+1(x) − pWn(x+ a) − (1 − p)Wn(x − a)

= p
[
Wn(2x) − p− (1 − p)Wn−1(2x+ 2a−B) − (1 − p)Wn−1(2x− 2a)

]

= (1 − p)
[
pWn−1(4x−B) − pWn−1(2x+ 2a−B) − pWn−1(2x− 2a)

]

= (1 − p)
[
Wn(2x− B

2
) − pWn−1(2x+ 2a−B) − pWn−1(2x− 2a)

]

=: H(x, a)

where we have used that 2x ≥ x + a ≥ B
2 for the second equation and

2x− B
2 ≤ B

2 for the last equation. Now since p ≤ 1
2 we have

H(x, a) ≥ (1−p)
[
Wn(2x−

B

2
)−pWn−1(2x+2a−B)−(1−p)Wn−1(2x−2a)

]

which is non-negative when we use the induction hypothesis with
x̂ := 2x− B

2
and â := 2a− B

2
. If a < B

4
we choose the inequality

H(x, a) ≥ (1−p)
[
Wn(2x−

B

2
)−(1−p)Wn−1(2x+2a−B)−pWn−1(2x−2a)

]

which is non-negative when we use the induction hypothesis with
x̂ := 2x− B

2 and â := B
2 − 2a.

Case 3: x− a ≤ B
2
≤ x: Follows analogously to the second case.

Case 4: B
2
≤ x− a: Follows analogously to the first case. 	


If the game is fair (i.e. p = 1
2
), we know already from Theorem 7.6.2 and

Theorem 7.6.3 that both the timid and the bold strategy are optimal. Indeed,
in this case the wealth process is a martingale and every reasonable strategy
yields the same probability to reach the amount B.

Theorem 7.6.4. If p = 1
2 , then the maximal probability that the player

will reach B before going bankrupt is given by J∞(x) = x
B , x ∈ E, and

every stationary strategy (f, f, . . .) with f(x) > 0 for x > 0 is optimal.
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Proof. From Theorem 7.6.2 we know already that the maximal value is given
by J∞(x) = x

B
. Now suppose (f, f, . . .) is an arbitrary stationary strategy

with f(x) > 0 for x > 0. We obviously have

IP
f
x

(
Xn = B for some n ∈ N0

)
+ IP

f
x

(
Xn = 0 for some n ∈ N0

)
= 1.

Now since p = 1
2 , we have due to symmetry arguments that

IP
f
x

(
Xn = 0 for some n ∈ N0

)
= IP

f
B−x

(
Xn = B for some n ∈ N0

)

i.e. the probability of reaching 0 before B when we start in x is the same as
the probability of reaching B before 0 when we start in B−x. Hence we have

Jf (x) = IP
f
x

(
Xn = B for some n ∈ N0

)

= 1 − IP
f
x

(
Xn = 0 for some n ∈ N0

)
= 1 − Jf (B − x).

On the other hand, we know that Jf (x) ≤ J(x) = x
B which implies that

Jf (x) = x
B

for x ∈ E, and (f, f, . . .) is optimal. 	


7.6.4 Bandit Problems with Infinite Horizon

Let us now reconsider the bandit problem of Section 5.5. For definitions and
notations see Section 5.5. Here we investigate an infinite horizon bandit with
β < 1 and assume that both success probabilities are unknown. In the infinite
horizon case we get some more structural results about the optimal policy. In
particular it can be shown that the optimal policy is a so-called Index-policy.
For the model data we refer to Section 5.5.
First observe that since r is bounded (i.e. we can choose b ≡ 1) and β < 1
we have a contracting Markov Decision Model. Moreover, the assumptions
of Theorem 7.3.5 are satisfied with IM = IBb and we obtain that the value
function J∞ of the infinite horizon Markov Decision Model is the unique
solution of

J∞(x) = max
{
p1(x) + βQ1J∞(x), p2(x) + βQ2J∞(x)

}
, x ∈ N

2
0 × N

2
0

and a maximizer f∗ of J∞ defines an optimal stationary policy (f∗, f∗, . . .).

Before we state the main result we have to do some preliminary work. A very
helpful tool for the solution of the infinite horizon bandit are the so-called
K-stopping problems. In a K-stopping problem only one arm of the bandit
is considered and the decision maker can decide whether she pulls the arm
and continues the game or whether she takes the reward K and quits. The
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maximal expected reward J(m,n;K) of the K-stopping problem is then the
unique solution of

v(m,n) = max
{
K, p(m,n) + β(Pv)(m,n)

}
, (m,n) ∈ N

2
0

where p(m,n) and Pv have been defined in Section 5.5. Obviously it holds
that J(·;K) ≥ K and if K is very large it will be optimal to quit the game,
thus J(m,n;K) = K for large K.

Definition 7.6.5. For (m,n) ∈ N
2
0 we define the function

I(m,n) := min{K ∈ R | J(m,n;K) = K}

which is called Gittins-index.

An explicit representation of the index I(m,n) is as follows.

Theorem 7.6.6. Let i0 = (m0, n0) ∈ N
2
0 be fixed, r(m,n) := p(m,n) and

(Xk) be the state process of the K-stopping problem. Then

I(m0, n0) =
IEi0

[ ∑τ∗−1
k=0 βkr(Xk)

]

(1 − β) IEi0

[ ∑τ∗−1
k=0 βk

] = sup
τ≥1

IEi0

[ ∑τ−1
k=0 β

kr(Xk)
]

(1 − β) IEi0

[ ∑τ−1
k=0 β

k
]

where τ∗ := inf{n ∈ N | I(Xn) ≤ I(i0)} and the supremum is taken over all
stopping times τ .

Proof. It holds for i = (m,n) (cf. Section 10.2) that

J(m,n;K) = sup
τ≥1

IEi

[ τ−1∑

k=0

βkr(Xk) +Kβτ
]
.

From the indifference property (see Corollary 7.6.8) we obtain

I(m0, n0) ≥
IEi0

[ ∑τ−1
k=0 β

kr(Xk)
]

(1 − β) IEi0

[ ∑τ−1
k=0 β

k
]

for all stopping times τ ≥ 1. For τ∗ defined above the equality holds. 	


The value function J(·;K) of the K-stopping problem has a number of im-
portant properties which we collect in the next proposition.
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Proposition 7.6.7. Let (m,n) ∈ N
2
0 be fixed. Then it holds:

a) K �→ J(m,n;K) is increasing, continuous and convex.
b) K �→ J(m,n;K) −K is decreasing.
c) The value function of the K-stopping problem can be written as

J(m,n;K) =
{

K, K ≥ I(m,n)
p(m,n) + β(PJ)(m,n;K), K < I(m,n).

In particular, it holds: K ≤ J(m,n;K) ≤ max{K, I(m,n)}.
d) K �→ J(m,n;K) is almost everywhere differentiable, the right- and left-

hand side derivatives exist in each point and

0 ≤ ∂

∂K
J(m,n;K) ≤ 1, K �→ ∂

∂K
J(m,n;K) is increasing.

Proof. The properties in part a) and b) follow by induction from the value
iteration. For part c) note that by definition of the index J(m,n, I(m,n)) =
I(m,n). Now if K ≥ I(m,n), then we conclude from part b) that it holds
J(m,n;K)−K ≤ 0 which implies J(m,n;K) = K. If K < I(m,n) we obtain
J(m,n;K) > K hence

J(m,n;K) = p(m,n) + β(PJ)(m,n;K) < I(m,n) = J
(
m,n; I(m,n)

)
.

The last part follows from a), b) using properties of convex functions. 	


Corollary 7.6.8. The Gittins-indices have the following properties:

a) The optimal stopping set for the K-stopping problem is given by

{(m,n) ∈ N
2
0 | J(m,n;K) = K} = {(m,n) ∈ N

2
0 | I(m,n) ≤ K}.

b) The so-called indifference property holds, i.e.

I(m,n) = J
(
m,n; I(m,n)

)
= p(m,n) + β(PJ)

(
m,n; I(m,n)

)
.

c) The indices are bounded by

p(m,n)
1 − β

≤ I(m,n) ≤ 1
1 − β

.

d) If the success probability p is known then

I(m,n) =
p

1 − β
(independent of (m,n)).
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Let us now consider the problem where we have three possible actions: either
pull arm 1, pull arm 2 or quit the game and receive the reward K. For K = 0
this problem obviously reduces to our initial bandit problem. We denote the
value function of this problem by J̃(x;K) for x ∈ N

2
0 ×N

2
0 and obtain that it

solves

J̃(x;K) = max
{
K, max

a∈A
{
pa(x) + β(QaJ̃)(x;K)

}}
, x ∈ N

2
0 × N

2
0.

The value function J̃(x;K) has similar properties as J(m,n;K).

Proposition 7.6.9. Let x ∈ N
2
0 × N

2
0 be fixed. Then it holds:

a) K �→ J̃(x;K) is increasing, continuous and convex.
b) K �→ J̃(x;K) −K is decreasing.
c) Let I(x) := max{I(m1, n1), I(m2, n2)} for x = (m1, n1,m2, n2) and let
a∗ ∈ {1, 2} be the number of the arm where the maximum is attained.
Then

J̃(x;K) =
{

K, K ≥ I(x)
pa∗(x) + β(Qa∗ J̃)(x;K), K < I(x) = I(ma∗ , na∗).

Proof. The statements in a) and b) follow from the value iteration. We have
to show the statement in part c). The derivative of J̃(x; y) with respect to y
exists and it holds (for a proof see Tsitsiklis (1986))

∂

∂y
J̃(x; y) =

∂

∂y
J(m1, n1; y) ·

∂

∂y
J(m2, n2; y).

By integration we obtain for K ≤ K0:

J̃(x;K) = J̃(x;K0) −
∫ K0

K

∂

∂y
J(m1, n1; y) ·

∂

∂y
J(m2, n2; y)dy.

For K0 ≥ 1
1−β it holds J̃(x;K0) = K0. Thus, we define the function

W (x;K) := K0 −
∫ K0

K

∂

∂y
J(m1, n1; y) ·

∂

∂y
J(m2, n2; y)dy, x ∈ E,K ≤ K0.

By partial integration we obtain with the notation Pa(x; y) := ∂
∂yJ(mb, nb; y)

for b �= a

W (x;K) = K0 − Pa(x; y)J(ma, na; y)
∣
∣
∣
K0

K
+

∫ K0

K

J(ma, na; y)dPa(x; y).

According to Proposition 7.6.7 Pa(x; y) has the following properties:



234 7 Theory of Infinite Horizon Markov Decision Processes

• 0 ≤ Pa(x; y) ≤ 1,
• x �→ Pa(x; y) is increasing in x,
• Pa(x; y) = 1 for y ≥ I(x).

For K0 → ∞ we obtain

W (x;K) = Pa(x;K)J(ma, na;K) +
∫ ∞

K

J(ma, na; y)dPa(x; y).

Let us introduce the following functions

Δa(x;K) := W (x;K) − pa(x) − β(QaW )(x;K)
δ(m,n;K) := J(m,n;K) − p(m,n) − β(PJ)(m,n;K).

It can be shown that they are related as follows:

Δa(x;K) = δ(ma, na;K)Pa(x;K) +
∫ ∞

K

δ(ma, na; y)dPa(x; y).

From Proposition 7.6.7 we conclude that δ(ma, na;K) ≥ 0 and that for
K < I(ma, na) it holds δ(ma, na;K) = 0. From these relations we obtain

K ≥ I(x) ⇒ W (x;K) = K

K < I(ma∗ , na∗) = I(x) ⇒ W (x;K) = pa∗(x) + β(Qa∗W )(x;K).

Further Δa(x;K) ≥ 0 and W (x;K) ≥ K and

K ≥ I(ma∗ , na∗) = I(x) ⇒ K ≥ max
a∈A

{pa(x) + β(QaW )(x;K)}

K < I(ma∗ , na∗) = I(x) ⇒ K ≤ pa∗(x) + β(Qa∗W )(x;K).

From these conclusions we derive

W (x;K) = max
{
K, max

a∈A
{pa(x) + β(QaW )(x;K)}

}
, x ∈ N

2
0 × N

2
0, (7.6)

i.e. W (x;K) is a fixed point of (7.6). Since the fixed point is unique we get
W (x;K) = J̃(x;K) which implies the statements. 	


The main result of this section is the optimality of the Gittins-index policy.

Theorem 7.6.10. The stationary Index-policy (f∗, f∗, . . .) is optimal for
the infinite horizon bandit problem where for x = (m1, n1,m2, n2)

f∗(x) :=
{

2 if I(m2, n2) ≥ I(m1, n1)
1 if I(m2, n2) < I(m1, n1).
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Remarkable about this policy is that we can compute for each arm separately
its own index (which depends only on the model data of this arm) and choose
the arm with the higher index. This is of interest for the computation of
the optimal solution since the dimension of the state space for the separate
problems is reduced dramatically.

Proof. From Proposition 7.6.9 c) it follows directly that a maximizer f∗
K of

J̃(x;K) is given by

f∗
K(x) =

⎧
⎨

⎩

stop if I(x) ≤ K
2 if I(m2, n2) = I(x) > K
1 if I(m1, n1) = I(x) > K.

Letting K → 0 the statement follows. 	


Using the partial order relation

(m,n) ≤ (m′, n′) :⇐⇒ m ≤ m′, n ≥ n′

it follows that x �→ J̃(x;K) is increasing. From the definition of the index we
can thus conclude that the index is increasing, i.e.

(m,n) ≤ (m′, n′) =⇒ I(m,n) ≤ I(m′, n′).

This now implies that the stationary Index-policy (f∗, f∗, . . .) has the stay-
on-a-winner property, i.e.

(m1, n1) ≤ (m′
1, n

′
1) and f∗(m1, n1,m2, n2) = 1 ⇒ f∗(m′

1, n
′
1,m2, n2) = 1.

Of course the analogous statement holds for the second arm. For correspond-
ing finite horizon results see Theorem 5.5.1. Finally we can characterize the
Gittins-indices as the unique fixed point of certain equations. These proper-
ties are very useful for numerical computations.

Proposition 7.6.11. Let i0 := (m0, n0) ∈ N
2
0 be fixed and define

J0(m,n) := J(m,n; I(i0)) for (m,n) ∈ N
2
0. Then J0 is the unique solution of

v(m,n) = max{p(i0) + β(Pv)(i0), p(m,n) + β(Pv)(m,n)}, (m,n) ∈ N
2
0

and it holds: I(m0, n0) = J0(m0, n0).

Proof. We know already that

J0(m,n) = J(m,n; I(i0)) = max{I(i0); p(m,n) + β(PJ)(m,n; I(i0))}
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and I(i0) = p(i0)+β(PJ)(i0; I(i0)). Hence J0 is a fixed point of the preceding
equation. Since β < 1 uniqueness follows from Banach’s fixed point theorem
(see Theorem A.3.5). 	


7.7 Exercises

Exercise 7.7.1 (Blackwell Optimality). Suppose a Markov Decision
Model with finite state and action spaces and β < 1 is given. In order to
stress the dependence of the value function on β we write Jβ∞.

a) Show that for fixed x ∈ E the function β �→ Jβ∞(x) is continuous and

Jβ∞(x) = max
f∈F

Pf,x(β)
P (β)

where Pf,x(β) and P (β) are polynomials in β.
b) Denote Mβ := {f ∈ F |f∞ is optimal for β}. Show that the function
β �→ Mβ is piecewise constant, i.e. there exists a k ∈ N0 and constants
β0 := 0 < β1 < . . . < βk < 1 =: βk+1 such that β �→ Mβ is constant on
the intervals (βm, βm+1).

c) Show that there exists a β0 < 1 and a stationary policy π∗ = (f, f, . . .)
such that π∗ is optimal for all β ∈ (β0, 1). Such a policy is called
Blackwell-optimal.

Exercise 7.7.2 (Coin Game). In a game of chance you can decide in every
round how many of maximal 10 fair coins you would like to toss. The aim
is to get (at least) four times head (the ‘head’-tosses are summed up) with
minimal cost. If you decide to toss a coins in one round you have to pay a+1
Euro.

a) Formulate this problem as a Markov Decision Model.
b) Show that (SA) can be satisfied.
c) Show that the minimal expected cost J(x) when still x ∈ {0, 1, 2, 3, 4}

‘head’-tosses are needed satisfies: J(0) = 0 and for x > 0

J(x) = min
1≤a≤10

{
(2a − 1)−1

[
(1 + a)2a +

x−1∑

y=1

(
a

x− y

)

J(y)
]}
.

d) Determine an optimal stationary strategy.
e) Is the game favourable when you receive 11 Euros after completing the

task?

Exercise 7.7.3 (Controlled Queue). Suppose x ∈ N0 customers wait in
front of a queue. A server can be activated at cost d ≥ 0. When the server is
active, the customer at the head of the queue will be served with probability
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p ∈ (0, 1] until the next time slot. Each waiting customer produces a cost
c > 0 in every time slot. The costs are discounted by a factor β < 1. What
is the optimal service policy that minimizes the expected discounted cost of
the system over an infinite horizon? The data of the Markov Decision Model
is given by:

• E = N0,
• A = {0, 1},
• D = E ×A,
• q(y|0, ·) = δ0y, q(y|x, 0) = δxy, q(y|x, 1) = pδx−1,y + (1 − p)δxy,

for x ∈ N, y ∈ N0 (see Figure 7.3),
• r(x, a) = −cx− dδ1a,
• β < 1.

a=0

a=1

0 1 2 x-1 x

p p

1-p 1-p

p

1-p 1-p

Fig. 7.3 Transition diagram.

Let f ≡ 1 and g ≡ 0. Show that

a) d
p
≤ βc

1−β implies f∞ is optimal.
b) d

p
≥ βc

1−β implies g∞ is optimal.

Hint: Compare TfTgv and TgTfv, v ∈ IB and show in part a) by induction
TfJn ≥ TgJn and in part b) TgJn ≥ TfJn. This is a so-called interchange
argument

Exercise 7.7.4 (Moving Particle). A particle is moving randomly on the
set {0, 1, . . . ,M} where the states 0 and M are absorbing. If Yn is the place
where the particle is at time n, we assume that (Yn) is a Markov chain and
for 0 < i < M :

IP(Yn+1 = i+ 1 | Yn = i) = p

IP(Yn+1 = i− 1 | Yn = i) = 1 − p

where p ∈ (0, 1). Now you are allowed to move the particle. You have initially
a ‘fuel reserve’ of T ∈ N and can decide at each time point to use the amount
t ∈ N0 of your reserve to move the particle t units to the right. The aim is to
maximize the probability that the particle gets to the state M .

a) Set this up as a Markov Decision Model.



238 7 Theory of Infinite Horizon Markov Decision Processes

b) Show that every reasonable policy is optimal. (We call a policy reasonable
when it moves the particle to M if there is enough fuel and if in state 0 at
least one fuel unit is used to escape the trap.)

Exercise 7.7.5. Suppose we have a positive Markov Decision Model and
(C−) is satisfied. Let f be a maximizer of J∞. We know already that the
stationary policy (f, f, . . .) is not necessarily optimal. Show that (f, f, . . .) is
optimal if and only if limn→∞ IE

f
x[J∞(Xn)] = 0.

Exercise 7.7.6. Let an infinite horizon Markov Decision Model be given
which satisfies (C) and (SA) and let f, g ∈ F be two decision rules. Show
that Jh(x) ≥ max{Jf (x), Jg(x)} if h ∈ F is defined by

a) h(x) :=
{
f(x), if Jf (x) ≥ Jg(x)
g(x), if Jf (x) < Jg(x),

x ∈ E.

b) h(x) is a maximum point on D(x) of the function

a �→ r(x, a) + β

∫
max{Jf (x′), Jg(x′)}Q(dx′|x, a).

(This exercise is taken from Ross (1983).)

Exercise 7.7.7 (Howard’s Policy Improvement). Consider Example
7.4.4. This is a positive Markov Decision Model and Howard’s policy im-
provement does not work here in general. Find out what happens if you start
the algorithm with f0 ≡ 0.

Exercise 7.7.8 (Howard’s Policy Improvement). Consider the following
Markov Decision Model:

• S = {1, 2},
• A = {1, 2},
• D(x) = A for all x,
• transition probabilities are given in Figure 7.4,
• r(1, 1) = r(2, ·) = 0, r(1, 2) = 1,
• β = 1.

1 2

action a=1

action a=2

action ae{1,2}

Fig. 7.4 Transition diagram.
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a) Show that (C) is satisfied.
b) Let f ≡ 1 and g ≡ 2. Compute Jf and Jg.
c) Start Howard’s policy improvement with f0 = f and show that it is

important to choose fk(x) = fk−1(x) if possible.

Exercise 7.7.9 (Howard’s Policy Improvement). Suppose a Markov De-
cision Model with finite state and action spaces and β < 1 is given. We sup-
pose that |E| = n, hence T : R

n → R
n. Define F (x) := T x− x for x ∈ R

n.

a) Suppose f is the unique maximizer of J . Show that

∂F (x)
∂x

= βqf − I

where qf =
(
q(y|x, f(x))

)
∈ R

n×n and I is the n-dimensional identity
matrix.

b) Suppose Howard’s policy improvement algorithm yields a unique maxi-
mizer throughout. Show that the algorithm computes the same sequence
Jfk

as the Newton method for solving F (x) = 0 with initial point
x0 := Jf0 .

Exercise 7.7.10. Consider the following Markov Decision Model:

• S = {1, 2},
• A = {1, 2},
• D(x) = A for all x,
• transition probabilities are given in Figure 7.5,
• r(1, 1) = 2, r(1, 2) = 1

2
, r(2, 1) = 1, r(2, 2) = 3,

• β = 0.9.

1 2

action a=1

0,75

0,25

0,25

0,75

1 2

action a=2

0,25

0,75

0,75

0,25

Fig. 7.5 Transition diagram.

Compute an optimal stationary policy by using

a) Howard’s policy improvement algorithm
b) Linear programming.
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Exercise 7.7.11 (K-Stopping Problem). Let us consider a K-stopping
problem with bounded reward function and β < 1. The value function satis-
fies:

J(x;K) = max
{
K, r(x) + β

∫
Q(dy|x)J(y;K)

}
.

a) Show that K �→ J(x;K) is increasing and convex for fixed x.
b) Show that K �→ J(x;K) −K is decreasing for fixed x.
c) Let τ ∗ be the optimal stopping time, i.e. the first time one chooses K and

quits. Show that
∂

∂K
J(x;K) = IEx β

τ∗
.

Exercise 7.7.12 (K-Stopping Problem). Let us consider a K-stopping
problem with β < 1. Now we assume that the reward is a random variable
and its density q(·|θ) depends on an unknown parameter θ (the Bernoulli
bandit is a special case). It is also assumed that q(z|θ) is MTP2. The value
function satisfies:

J(ρ;K) = max
{
K,

∫ ∫ (
z + βJ

(
Φ(ρ, z);K

))
q(z|θ)dzρ(dθ)

}
.

Show:

a) It is optimal to stop if K ≥ I(ρ) where I(ρ) := min
{
K|J(ρ;K) = K}.

b) ρ ≤lr ρ′ implies I(ρ) ≤ I(ρ′).

7.8 Remarks and References

In this chapter we consider infinite horizon Markov Decision Models with
Borel state and action spaces and unbounded reward functions under weak
convergence conditions. The weak assumptions on the reward functions were
introduced by Hinderer (1971). We use the Structure Assumption (SA) and
solve the infinite horizon Markov Decision Model as the limit of finite-stage
models. In particular, the policy and value iteration techniques are valid.
This approach goes back to Schäl (1975). A general framework for deriving
structural results of optimal policies and the value function is also provided
in Schäl (1990) and Puterman (1994).
We note that there exists an interesting martingale characterization of opti-
mal policies. A policy is optimal if and only if it is value conserving (or thrifty)
and value equalizing (see Sudderth (1971) and Rieder (1976)). Thrifty poli-
cies are maximizers of the value function. Under (C) every policy is value
equalizing, but this is not true under (C−).

Section 7.5: The value iteration suffers from the curse of dimensionality.
There are a lot of different ways to speed up this procedure, to approxi-
mate it or to exclude suboptimal policies in advance. Accelerated Jacobi and
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Gauss-Seidel procedures as well as parallelization of the value iteration are
discussed e.g. in Kushner and Dupuis (2001) and Bertsekas (2001). Tests of
suboptimality and turnpike theorems can be found in Hernández-Lerma and
Lasserre (1999) and Puterman (1994). Large Markov Decison Problems can
be solved by neuro-dynamic programming or reinforcement learning. The idea
here is essentially to step forward in time and use iterative algorithms to ap-
proximate the value function (e.g. by simulation). For these methods see e.g.
Bertsekas and Tsitsiklis (1996), Sutton and Barto (1998), Van Roy (2002),
Chang et al. (2007) and Powell (2007). The policy improvement technique for
Markov Decision Processes with finite state and action spaces was introduced
by Howard (1960). There is a strong relationship to the linear programming
approach, see Derman (1970), Kallenberg (1983), Filar and Vrieze (1997)
and Altman (1999). The linear programming formulation for solving Markov
Decision Processes with Borel state and action spaces is based on Heilmann
(1979) and also discussed in Klein-Haneveld (1986), Piunovskiy (1997) and
Hernández-Lerma and Lasserre (1996). For a recent survey on this topic see
Hernández-Lerma and Lasserre (2002).

Section 7.6: Optimization problems with a random horizon are considered
e.g. in Ross (1970, 1983), Puterman (1994) and Iida and Mori (1996). For
remarks and references concerning the cash balance problem see the end of
Chapter 2. The classical casino games which have been presented here, were
extensively studied for the first time in Dubins and Savage (1965). Recently,
the problem was investigated under the presence of inflation. Surprisingly
Chen et al. (2004) found that the bold strategy is not necessarily optimal
for subfair casino games with inflation. For a recent positive result see Chen
et al. (2005).
The Bernoulli bandit with infinite horizon is a special case of the multiproject
bandit. In a multiproject bandit problem m projects are available which are
all in some states. One project has to be selected to work on or one chooses
to retire. The project which is selected then changes its state whereas the
other projects remain unchanged. Gittins (1979) was the first to show that
multiproject bandits can be solved by considering single projects and that
the optimal policy is an index-policy, see also Berry and Fristedt (1985), Git-
tins (1989). The method of proof we have used here is due to Whittle (1980).
For an extension to open bandit processes see Friis et al. (1993). Alternative
proofs can be found in Weber (1992), Varaiya et al. (1985) and Kaspi and
Mandelbaum (1998). Bertsimas and Niño Mora (1996) used a significantly
different proof via an achievable region approach, see also Bäuerle and Stid-
ham (2001) for applications in fluid networks. Computational results for the
indices of the multi-armed bandit are given in Katehakis and Veinott (1987).
Further extensions are restless bandits where the other projects can change
their state too (see e.g. Whittle (1988), Weber and Weiss (1990), Glaze-
brook et al. (2002)), bandits with availability constraints (see Dayanik et al.
(2008)) and bandits in continuous-time (see e.g. Karatzas (1984), El Karoui
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and Karatzas (1994)). Bandit models with applications in finance are e.g.
treated in Bank and Föllmer (2003).



Chapter 8

Piecewise Deterministic Markov
Decision Processes

In this chapter we deal with optimization problems where the state process
is a Piecewise Deterministic Markov Process. These processes evolve through
random jumps at random time points while the behavior between jumps is
governed by an ordinary differential equation. They form a general and impor-
tant class of non-diffusions. It is known that every strong Markov process with
continuous paths of bounded variation is necessarily deterministic. We assume
that both the jump behavior as well as the drift behavior between jumps can
be controlled. Hence this leads to a control problem in continuous-time which
can be tackled for example via the Hamilton-Jacobi-Bellman equation. How-
ever, since the evolution between jumps is deterministic these problems can
also be reduced to a discrete-time Markov Decision Process where however
the action space is now a function space. We can treat these problems with
the methods we have established in the previous chapters. More precisely we
will restrict the presentation to problems with infinite horizon, thus we will
use the results of Chapter 7. We show that under some continuity and com-
pactness conditions the value function of the Piecewise Deterministic Markov
Decision Process is a fixed point of the Bellman equation (Theorem 8.2.6) and
the computational methods of Chapter 7 apply. In Section 8.3 the important
special class of continuous-time Markov Decision Chains is investigated, in
particular for problems with finite time horizon.

8.1 Piecewise Deterministic Markov Decision Models

First we introduce the ingredients of a Piecewise Deterministic Markov De-
cision Model where we restrict to a stationary model with infinite horizon.

Definition 8.1.1. A Piecewise Deterministic Markov Decision Model con-
sists of the data (E,U , μ, λ,Q, r, β) with the following meaning:

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 8,
c© Springer-Verlag Berlin Heidelberg 2011
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• E is the state space. We assume that E is a Borel subset of R
d. The

elements (states) are denoted by x ∈ E.
• U is the control action space and is assumed to be a Borel subset of a

Polish space. Let

A := {α : R+ → U measurable } (8.1)

be the set of control functions. We write αt = α(t). We will not restrict
the set of control actions available at state x.

• The stochastic evolution is given by a marked point process (Tn, Zn),
where (Tn) is the increasing sequence of jump time points of a Poisson
process with rate λ > 0 and the marks (Zn) are the post jump states.
We set T0 := 0. Between the jump times Tn and Tn+1 the process is
described by a deterministic flow. More precisely, let μ(x, u) ∈ R

d be the
deterministic drift between the jumps if the state is x ∈ E and control
action u ∈ U is taken. We assume that for all α ∈ A there exists a unique
solution φαt (x) ∈ E of the following initial value problem:

dxt = μ(xt, αt)dt, x0 = x ∈ E.

Then φαt (x) is the state of the piecewise deterministic process at time
Tn+ t < Tn+1 if Zn = x. It is assumed that φαt (x) is measurable in (x, α)
(see below for a definition of a σ-algebra in A) and continuous in t.

• Q is a stochastic kernel from E×U to E which describes the distribution
of the jump goals, i.e. Q(B|x, u) is the probability that the process jumps
in the set B given the state x ∈ E immediately before the jump and the
control action u ∈ U at the jump time.

• r : E × U → R is a measurable function, where r(x, u) gives the reward
rate in state x if control action u is taken.

• β ≥ 0 is the discount rate.

At time Tn the evolution of the process up to time Tn+1 is known to the
decision maker who can therefore fix the control action α(t) for Tn+t ≤ Tn+1

by some α ∈ A. This leads to the idea of treating the continuous-time control
problem as a discrete-time Markov Decision Process where one now looks on
α as the action at time Tn. But then the action space is a function space!
It is known that A becomes a Borel space if A is endowed with the coarsest
σ-algebra such that

α �→
∫ ∞

0

e−tw
(
t, αt

)
dt

is measurable for all bounded and measurable functions w : R+×U → R (see
e.g. Yushkevich (1980)). Then f : E → A is measurable if and only if there
exists a measurable function f̃ : R+ × E → U such that

f(x)(t) = f̃(t, x) for t ∈ R+, x ∈ E.
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In the sequel we will not distinguish between f and f̃ .
A Markov policy (or piecewise open loop policy) π = (πt) is defined by a
sequence of measurable functions fn : E → A such that

πt = fn(Zn)(t− Tn) for t ∈ (Tn, Tn+1].

In the sequel we restrict to Markov policies and write π = (πt) = (fn) and

φπt−Tn
(Zn) := φ

fn(Zn)
t−Tn

(Zn) for t ∈ [Tn, Tn+1).

Remark 8.1.2. The process (πt) is predictable (cf. Definition B.2.9). The most
general form of a predictable control process (πt) is given by

πt = fn(T0, Z0, . . . , Tn, Zn, t− Tn) for t ∈ (Tn, Tn+1]

for measurable functions (fn). Due to the Markovian structure of the state
process, this larger class of policies does not increase the value of the control
problem (see Section 2.2). ♦

The piecewise deterministic process (Xt) is given by

Xt = φπt−Tn
(Zn) for t ∈ [Tn, Tn+1).

Note that Zn = XTn .
Given a policy π and an initial state x ∈ E there is a probability space
(Ω,F , IPπx) on which the random variables Tn and Zn are defined such that
X0 = Z0 = x and for all Borel sets B ⊂ E

IP
π
x

(
Tn+1 − Tn ≤ t, Zn+1 ∈ B | T0, Z0, . . . , Tn, Zn

)

= λ

∫ t

0

e−λsQ
(
B|XTn+s, πTn+s

)
ds

= λ

∫ t

0

e−λsQ
(
B|φπs (Zn), fn(Zn)(s)

)
ds.

We impose now the following

Integrability Assumption (A):

sup
π

IE
π
x

[∫ ∞

0

e−βtr+(Xt, πt)dt
]

<∞, x ∈ E.

Then the expected discounted total reward is well-defined for all π by

Vπ(x) := IE
π
x

[∫ ∞

0

e−βtr(Xt, πt)dt
]

, x ∈ E. (8.2)
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Moreover, the value function of the Piecewise Deterministic Markov Decision
Model is given by

V∞(x) := sup
π
Vπ(x), x ∈ E, (8.3)

where the supremum is taken over all Markov policies.

Remark 8.1.3. We restrict the presentation here to the problem of maximiz-
ing the expected discounted reward. This is usually done for Piecewise De-
terministic Markov Processes. However, the theory also allows to include
instantaneous rewards at the jump time points, i.e. to look at the objective

IE
π
x

[∫ ∞

0

e−βtr(Xt, πt)dt
]

+ IE
π
x

[ ∞∑

k=1

e−βTk r̄(XTk
, πTk

)

]

where the measurable function r̄ : E × U → R gives the reward for each
jump. Moreover, it is of interest (in particular in finance applications) to
consider optimization problems with a finite time horizon, i.e. to maximize
the objective

π �→ IE
π
x

[∫ T

0

r(Xt, πt)dt+ g(XT )

]

where g : E → R is the measurable terminal reward function. For a treatment
of these problems see Bäuerle and Rieder (2010) and Sections 9.3 and 9.4. ♦

The optimization problem (8.3) is a continuous-time control problem. How-
ever, we can show that the value function V∞(x) can be obtained by a
discrete-time Markov Decision Problem. This point of view implies a num-
ber of interesting results. The first one is that under some conditions the
value function is a fixed point of the Bellman equation. Differentiability or
continuity of the value function is not needed in contrast to the classical
continuous-time stochastic control approach. Second, the existence of an op-
timal policy is rather easy to prove. Moreover, several different computational
approaches arise. Value iteration or Howard’s policy improvement algorithm
can be used to solve the continuous-time problem.

Remark 8.1.4. In order to outline the approach via discrete-time Markov De-
cision Processes we have chosen a fairly simple model. The Piecewise Deter-
ministic Markov Decision Model can be extended in various ways.

• It is possible to extend the constant jump intensity to a state and action
dependent intensity λ(x, u) (see e.g. Davis (1993)).

• As in Section 4.4 we can consider a regime switching model, i.e. the pa-
rameters are allowed to vary randomly. Suppose (It) is a continuous-time
Markov chain with finite state space. We may assume that the jump time
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points (Tn) are generated by a Cox-process (Nt) with (stochastic) intensity
λ(It). Of course, in this case the discrete-time Markov Decision Process is
more complicated.

• We may assume that the Markov chain (It) is ‘hidden’ and cannot be ob-
served by the controller. Using the methods of Chapter 5, it is again pos-
sible to solve this problem as a discrete-time Partially Observable Markov
Decision Process (see also Rieder and Winter (2009)). ♦

8.2 Solution via a Discrete-Time Markov Decision
Process

We introduce here a discrete-time Markov Decision Process which is equiva-
lent to the control problem of the previous section. The idea is to look at the
time points (Tn) and choose actions α ∈ A at time Tn, since the evolution of
the state process between jumps is deterministic.
Now suppose a Piecewise Deterministic Markov Decision Model is given as de-
scribed in the previous section. Let us define the following stationary infinite-
stage Markov Decision Model (E,A,D,Q′, r′).

• E is the state space. A state x describes the state of the process directly
after a jump.

• A is given by (8.1). Recall that the function space A is a Borel space.
• D := E ×A.
• For all Borel sets B ⊂ E, x ∈ E and α ∈ A, the stochastic kernel Q′ is

given by

Q′(B|x, α
)

:= λ

∫ ∞

0

e−(λ+β)tQ
(
B|φαt (x), αt

)
dt. (8.4)

This is obviously a substochastic transition law. In order to make it
stochastic, we may add an artificial cemetery state Δ /∈ E to the state
space and define

Q′({Δ}|x, α
)

:= 1 − λ

β + λ
, Q′({Δ}|Δ,α

)
:= 1.

• The reward function r′ is defined by

r′(x, α) :=
∫ ∞

0

e−(β+λ)tr
(
φαt (x), αt

)
dt, (8.5)

r′(x,Δ) := 0.

• The discrete-time discount factor is given by β′ = 1.
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In what follows we treat the Markov Decision Process as a substochastic
problem and skip the state Δ (see e.g. the discussion in Example 2.3.13). For
this discrete-time Markov Decision Model we define for a policy (fn):

J∞(fn)(x) = IE
(fn)
x

[ ∞∑

n=0

r′
(
Z ′
n, fn(Z

′
n)

)
]

J∞(x) = sup
(fn)

J∞(fn)(x), x ∈ E

where (Z ′
n) is the corresponding state process of the Markov Decision Process

up to absorption in Δ. Note that Z ′
n = Zn as long as the process is not

absorbed (cp. Exercise 8.4.2).

Theorem 8.2.1. For a Markov policy π = (fn) we have

Vπ(x) = J∞(fn)(x), x ∈ E.

Moreover, it holds: V = J∞.

Proof. Let Hn := (T0, Z0, . . . , Tn, Zn). Then we obtain with Theorem B.1.1:

Vπ(x) =
∞∑

n=0

IE
π
x

[∫ Tn+1

Tn

e−βtr(Xt, πt)dt

]

=
∞∑

n=0

IE
π
x

[

e−βTn IE
π
x

[∫ Tn+1

Tn

e−β(t−Tn)r(Xt, πt)dt
∣
∣
∣Hn

]]

=
∞∑

n=0

IE
π
x

[
e−βTnr′

(
Zn, fn(Zn)

)]

=
∞∑

n=0

IE
π
x

[
n∏

k=1

e−β(Tk−Tk−1)r′
(
Zn, fn(Zn)

)
]

=
∞∑

n=0

IE
(fn)
x

[
r′

(
Z ′
n, fn(Z

′
n)

)]
= J∞(fn)(x)

since the transition kernel of (Z ′
n) is given by (8.4) and r′ by (8.5). The

statement V = J∞ follows directly from the definition. 	


Remark 8.2.2. There is another equivalent discrete-time Markov Decision
Model with a state and action dependent discount factor β(x, α, x′) where
β(x, α, x′) is defined by

β(Zn, αn, Zn+1) := IE
π
x

[
e−β(Tn+1−Tn)

∣
∣
∣Zn, Zn+1

]
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with αn = fn(Zn) (see Forwick et al. (2004)). If φαt (x) = x then we have
β(Zn, αn, Zn+1) = λ

β+λ
. ♦

Theorem 8.2.1 implies that V∞(x) can also be seen as the value function
of the discrete-time Markov Decision Model. Note that the integrability as-
sumption for the Piecewise Deterministic Markov Decision Process implies
the integrability assumption for the discrete-time Markov Decision Model.
The maximal reward operator T is given by

(T v)(x) = sup
α∈A

{∫ ∞

0

e−(β+λ)t
[
r
(
φαt (x), αt

)
+ λ

∫
v(z)Q

(
dz|φαt (x), αt

)]
dt

}

.

From now on we assume that U is compact. In order to prove the existence
of optimal controls we need certain continuity and compactness assumptions.
To achieve this, we have to enlarge the action space and we introduce

R := {α : R+ → IP(U) measurable} , (8.6)

the set of relaxed controls where IP(U) is the set of all probability measures
on U equipped with the σ-algebra of the Borel sets, i.e. αt can be seen as a
randomized action. The problem is to define a topology on A which allows
for a compact action space and a continuous target function – two competing
aims. The set A of deterministic controls is a measurable subset of R in
the sense that for α ∈ A the measures αt are one-point measures on U . A
suitable topology on R is given by the so-called Young topology. The definition
and important properties of this topology are summarized in the following
remark. It can be shown that the set A of deterministic controls is dense in
R with respect to the Young topology. This means that a relaxed control
can be approximated by a deterministic control and given some continuity
properties of the value function, this carries over to the values of the controls.
This statement is also known as the Chattering Theorem (see e.g. Kushner
and Dupuis (2001), Section 4).

Remark 8.2.3 (Young Topology). The Young topology on R is the coarsest
topology such that all mappings of the form

R � α �→
∫ ∞

0

∫

U
w(t, u)αt(du)dt

are continuous for all functions w : [0,∞] × U → R which are continuous in
the second argument and measurable in the first argument and satisfy

∫ ∞

0

max
u∈U

|w(t, u)|dt <∞.

We denote this class by Car(R+ × U), the class of so-called strong Cara-
théodory functions. With respect to the Young topology R is a separable
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metric and compact Borel space. In order to have well-defined integrals the
following characterizations of measurability are important:

(i) A function α : R+ → IP(U) is measurable if and only if

t �→
∫

U
v(u)αt(du)

is measurable for all bounded and continuous v : U → R+.
(ii) A function f : E → R is measurable if and only if

x �→
∫

R+

∫

U
w(s, u)f(s, x; du)ds

is measurable for all w ∈ Car(R+ × U).

Moreover, the following characterization of convergence in R is crucial for
our applications. Suppose (αn) ⊂ R and α ∈ R. Then limn→∞ αn = α if and
only if

lim
n→∞

∫ ∞

0

∫

U
w(t, u)αnt (du)dt =

∫ ∞

0

∫

U
w(t, u)αt(du)dt

for all w ∈ Car(R+ × U). ♦

Now we have to extend the domain of functions already defined on A. In
particular we define for α ∈ R

dφαt (x) =
∫
μ
(
φαt (x), u

)
αt(du)dt, φα0 (x) = x, (8.7)

r′(x, α) =
∫ ∞

0

e−(β+λ)t

∫
r
(
φαt (x), u

)
αt(du)dt,

Q′(B|x, α) = λ

∫ ∞

0

e−(β+λ)t

∫
Q

(
B|φαt (x), u

)
αt(du)dt

where we again assume that a unique solution of (8.7) exists (according to
the Theorem of Carathéodory this is the case if e.g. μ(x, u) is Lipschitz-
continuous in x uniformly in u). If α ∈ A then the definitions of φαt , r′ and Q′

coincide with those we have used so far. In case α is a relaxed control there
is no physical interpretation of the model. The operator T has the following
form:

(T v)(x) = sup
α∈R

{∫ ∞

0

e−(β+λ)t

∫ [
r
(
φαt (x), u

)

+ λ

∫
v(z)Q

(
dz|φαt (x), u

)]
αt(du)dt

}
.
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In the Markov Decision Model with relaxed controls the decision maker can
thus do at least as well as in the case without relaxed controls. When we
denote by Jrel∞ the corresponding value function we obtain

Jrel∞ (x) ≥ J∞(x) = V∞(x), x ∈ E.

We will show that these value functions are equal under some conditions (cp.
Theorem 8.2.7). Next we introduce the notion of an upper bounding function
for the given Piecewise Deterministic Markov Decision Model.

Definition 8.2.4. A measurable function b : E → R+ is called an upper
bounding function for the Piecewise Deterministic Markov Decision Model, if
there exist constants cr, cQ, cφ ∈ R+ such that

(i) r+(x, u) ≤ crb(x) for all (x, u) ∈ E × U .
(ii)

∫
b(z)Q(dz|x, u) ≤ cQb(x) for all (x, u) ∈ E × U .

(iii) λ
∫ ∞
0
e−(λ+β)tb

(
φαt (x)

)
dt ≤ cφb(x) for all x ∈ E,α ∈ R.

If r is bounded from above then b ≡ 1 is an upper bounding function and
cQ = 1, cφ = λ

β+λ
. From properties (ii) and (iii) it follows

∫
b(z)Q′(dz|x, α) ≤ λcQ

∫ ∞

0

e−(λ+β)tb
(
φαt (x)

)
dt ≤ cQcφb(x).

Thus if b is an upper bounding function for the Piecewise Deterministic
Markov Model, then b is also an upper bounding function for the discrete-time
Markov Decision Model (with and without relaxed controls) and

αb ≤ cQcφ.

The Integrability Assumption (A) and the Convergence Assumption (C) are
satisfied for the discrete-time Markov Decision Process (with and without
relaxed controls) if b is an upper bounding function and αb < 1. Throughout
this section we make use of the following

Continuity and Compactness Assumptions:

(i) U is compact,
(ii) (t, x, α) �→ φαt (x) is continuous on R+ × E ×R,
(iii) (x, α) �→

∫ ∞
0
e−(λ+β)tb

(
φαt (x)

)
dt is continuous on E ×R,

(iv) (x, u) �→
∫
v(z)Q(dz|x, u) is upper semicontinuous for all upper semi-

continuous v ∈ IB+
b ,

(v) (x, u) �→ r(x, u) is upper semicontinuous.

Lemma 8.2.5. Let b be a continuous upper bounding function and let (ii)
and (iii) of the continuity assumptions be satisfied. Let w : E × U → R be
upper semicontinuous with w(x, u) ≤ cwb(x) for some cw > 0. Then
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(x, α) �→
∫ ∞

0

e−(β+λ)t
(∫

w
(
φαt (x), u)αt(du)

)
dt

is upper semicontinuous on E ×R.

Proof. First we prove that the function

W (x, α) :=
∫ ∞

0

e−(β+λ)t
( ∫

w
(
φαt (x), u

)
αt(du)

)
dt

is bounded and continuous if w is bounded and continuous. Boundedness is
obvious. Now suppose (xn, αn) → (x, α). Let φnt := φα

n

t (xn) and φt := φαt (x).
We consider

|W (xn, αn) −W (x, α)|

=
∣
∣
∣

∫ ∞

0

e−(β+λ)t
(∫

U
w

(
φnt , u

)
αnt (du) −

∫

U
w

(
φt, u

)
αt(du)

)
dt

∣
∣
∣

≤
∫ ∞

0

e−(β+λ)t

∫

U
|w

(
φnt , u

)
− w

(
φt, u

)
|αnt (du)dt+

+
∣
∣
∣

∫ ∞

0

e−(β+λ)t
(∫

U
w

(
φt, u

)
αnt (du) −

∫

U
w

(
φt, u

)
αt(du)

)
dt

∣
∣
∣.

The first term on the right-hand side can be further bounded by
∫ ∞

0

e−(β+λ)t sup
u∈U

|w
(
φnt , u

)
− w

(
φt, u

)
|dt

which converges to zero for n → ∞ due to dominated convergence and
the continuity of φ and w. The second term converges to zero in view of
the definition of convergence w.r.t. the Young topology and the fact that
w is continuous. Now let w be upper semicontinuous with w ≤ cwb. Then
wb(x, u) := w(x, u) − cwb(x) ≤ 0 and is upper semicontinuous. According to
Lemma A.1.3 b), there exists a sequence (wbn) of bounded and continuous
functions with (wbn) ↓ wb. From the first part of the proof we know that

Wn(x, α) :=
∫ ∞

0

e−(β+λ)t
(∫

wbn
(
φαt (x), u

)
αt(du)

)

is bounded and continuous and decreases for n→ ∞ against

W (x, α) − cw

∫ ∞

0

e−(β+λ)tb
(
φαt (x)

)
dt

which is thus an upper semicontinuous function. In view of (iii) the function
W is upper semicontinuous. 	
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From Theorem 7.2.1 we directly obtain the main results for the control prob-
lem (with relaxed controls). Let us introduce the set

IMusc := {v ∈ IB+
b | v is upper semicontinuous }.

Theorem 8.2.6. Suppose the Piecewise Deterministic Markov Decision
Process has a continuous upper bounding function b with αb < 1 and the
continuity and compactness assumptions are satisfied. Then it holds:

a) Jrel∞ ∈ IMusc and Jrel∞ = T Jrel∞ .
b) There exists an optimal relaxed Markov policy π∗ = (π∗

t ) such that

π∗t = f(Zn)(t− Tn), t ∈ (Tn, Tn+1]

for a decision rule f : E → R.

Proof. Recall from Remark 8.2.3 that R is compact. Then it follows from
Lemma 8.2.5 that

(x, α) �→ r′(x, α)

is upper semicontinuous and for v ∈ IMusc

(x, α) �→
∫
v(z)Q′(dz|x, α)

is upper semicontinuous. Hence the statement follows from Theorem 7.2.1. 	


Note that the optimal π∗
t takes values in IP(U). In applications the existence

of optimal nonrelaxed controls is more interesting. Here we are able to prove
the following result.

Theorem 8.2.7. Suppose the Piecewise Deterministic Markov Decision Pro-
cess has a continuous upper bounding function b with αb < 1 and the conti-
nuity and compactness assumptions are satisfied. If φαt (x) is independent of
α (uncontrolled flow) or if U is convex, μ(x, u) is linear in u and

u �→ r(x, u) + λ

∫
Jrel∞ (z)Q(dz|x, u)

is concave on U , then there exists an optimal nonrelaxed Markov policy
π∗ = (π∗

t ) such that

π∗t = f(Zn)(t− Tn), t ∈ (Tn, Tn+1]

for a decision rule f : E → A. Note that π∗
t takes values in U and that

V∞ = J∞ = Jrel∞ . In particular, V∞ is a fixed point of T .
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Proof. For v ∈ IMusc define

w(x, u) := r(x, u) + λ

∫
v(z)Q(dz|x, u), x ∈ E, u ∈ U .

Then
(Lv)(x, α) =

∫
e−(β+λ)t

∫
w

(
φαt (x), u

)
αt(du)dt

and
(T v)(x) = sup

α∈R
(Lv)(x, α).

a) Let φαt (x) be independent of α (uncontrolled flow). There exists a measur-
able function f̃ : E → U such that

w
(
x, f̃(x)

)
= sup
u∈U

w(x, u), x ∈ E.

Define f(x)(t) := f̃
(
φt(x)

)
for t ≥ 0. Then f : E → A is measurable and

it is easily shown (by a pointwise maximization) that for α ∈ R

(Lv)(x, α) ≤
∫
e−(β+λ)tw

(
φt(x), f(x)(t)

)
dt

= (Lv)
(
x, f(x)

)
, x ∈ E.

Hence the statement follows as in the proof of Theorem 8.2.6.
b) Let u �→ w(x, u) be concave on U . There exists a measurable function
frel : E → R such that (see Theorem A.2.4)

sup
α∈R

(Lv)(x, α) = (Lv)
(
x, f rel(x)

)
, x ∈ E.

Define f(x) :=
∫
U uf

rel(x)(du) for x ∈ E. Then f(x) ∈ A since U is
convex, and f : E → A is measurable. Moreover, since μ(x, u) is linear in
u we obtain φαt = φᾱt where ᾱt =

∫
uαt(du). From the concavity of w(x, ·)

we conclude

(Lv)(x, α) ≤
∫
e−(β+λ)tw

(
φᾱt (x), ᾱt

)
dt = (Lv)(x, ᾱ)

and hence
sup
α∈R

(Lv)(x, α) = (Lv)
(
x, f(x)

)
, x ∈ E.

For v = Jrel∞ the (nonrelaxed) control function f is a maximizer of Jrel∞ ,
hence optimal and V∞(x) = Jrel∞ (x) (see Theorem 7.1.7). 	


Sufficient conditions for the concavity assumption can be formulated by using
the results of Section 2.4 (in particular Proposition 2.4.18). Often it is easier
to check the concavity of
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u �→ r(x, u) + λ

∫
v(z)Q(dz|x, u)

for all functions v in some function class which contains Jrel∞ (cf. the applica-
tions in Sections 9.3 and 9.4). The fixed point equation is called the Bellman
equation. It is related to the Hamilton–Jacobi–Bellman equation in stochastic
control which can be seen as a local form of the Bellman equation.

The Hamilton-Jacobi-Bellman equation

We will briefly outline the classical verification technique. We assume that
the Piecewise Deterministic Markov Decision Process has a bounding function
b, i.e. there exists an upper bounding function b with r replaced by |r|. Note
that the generator of the controlled state process is given by

Av(x, u) := μ(x, u)vx + λ

∫ (
v(y) − v(x)

)
Q(dy|x, u)

for a continuously differentiable v : E → R and x ∈ E, u ∈ U . The Hamilton-
Jacobi-Bellman equation (HJB equation) for problem (8.3) has the form:

sup
u∈U

{Av(x, u) + r(x, u)} = βv(x), x ∈ E. (8.8)

We call a decision rule f∗ : E → U a maximizer of the HJB equation when
f∗(x) is a maximum point of

u �→ Av(x, u) + r(x, u), u ∈ U .

A decision rule f : E → U is called a feedback control function when f defines
a state process xt = φft (x) between two jumps as a solution of

dxt = μ
(
xt, f(xt)

)
dt, x0 = x. (8.9)

We obtain the following result.

Theorem 8.2.8 (Verification Theorem). Let a Piecewise Deterministic
Markov Decision Process be given with a bounding function b, αb < 1 and
IE
π
x [e

−βtb(Xt)] → 0 for t→ ∞ for all π, x. Suppose that v ∈ C1(E)∩ IBb is a
solution of the HJB equation and that f∗ is a maximizer of the HJB equation
and defines a state process (X∗

t ). Then v = V∞ and π∗
t := f∗(X∗

t−) is an
optimal Markov policy (in feedback form).

Proof. Let π = (πt) be an arbitrary predictable control process. We denote
by Ñπ the corresponding compensated counting measure, i.e.
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Ñπ(t, B) :=
∞∑

n=0

1[Tn≤t]1[Zn∈B] − λ

∫ t

0

Q(B|Xs, πs)ds.

The Itô formula for jump processes implies for v ∈ C1(E) ∩ IBb that

e−βtv(Xt) = v(x) +
∫ t

0

e−βs
(
Av(Xs, πs) − βv(Xs)

)
ds

+
∫ t

0

e−βs
∫

(v(y) − v(Xs−))Ñπ(ds, dy).

Since

IE
π
x

[ ∞∑

n=1

e−βTn|v(XTn) − v(XTn−)|
]

≤
∞∑

n=1

IE
π
x

[
e−βTnb(Zn)

]
+

∞∑

n=1

IE
π
x

[
e−βTn−1b(φπTn−Tn−1

(Zn−1))
]

≤
∞∑

n=1

αnb b(x) +
∞∑

n=1

cφα
n−1
b b(x) <∞,

the second integral is a martingale. Thus taking the conditional expectation
IE
π
x and using the fact that v satisfies the HJB equation yields:

IE
π
x

[
e−βtv(Xt)

]
= v(x) + IE

π
x

[ ∫ t

0

e−βs
(
Av(Xs, πs) − βv(Xs)

)
ds

]

≤ v(x) − IE
π
x

[ ∫ t

0

e−βsr(Xs, πs)ds
]
.

Taking t→ ∞ this implies by our transversality assumption that

v(x) ≥ IE
π
x

[ ∫ ∞

0

e−βsr(Xs, πs)ds
]

for arbitrary π. Inserting π∗ yields equality and the statement is shown. 	


8.3 Continuous-Time Markov Decision Chains

Continuous-time Markov Decision Chains with a countable state space E
are an important special case of Piecewise Deterministic Markov Decision
Processes. For a recent book on this topic see Guo and Hernández-Lerma
(2009).
Instead of giving transition probabilities, continuous-time Markov Chains are
often described by transition rates which are assumed to be controllable here,
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i.e. qxy(u), u ∈ U . In what follows we assume that the rates qxy(u) ∈ R are
conservative, i.e. ∑

y∈E
qxy(u) = 0, x ∈ E, u ∈ U

and bounded, i.e. λ ≥ −qxx(u) for all x ∈ E, u ∈ U . A continuous-time Markov
Decision Processes (Xt) with such transition rates can be constructed from
a Poisson process (Nt) with intensity λ and a discrete-time Markov Decision
Process (Zn) with transition probabilities

Q({y}|x, u) :=
{

1
λqxy(u), y �= x
1 + 1

λqxx(u), y = x.

It holds that Xt = ZNt . This representation is called a uniformized Markov
Decision Chain. In this case we have φαt (x) = x, i.e. the flow between two
jumps is independent of α. This implies that we can restrict to control func-
tions α which are constant, i.e. αt ≡ u. The discrete-time Markov Decision
Model of the last section has the form (E,U , Q′, r′) with

• Q′({y}|x, u
)

:= λ
β+λQ

(
{y}|x, u

)
,

• r′(x, u) := 1
β+λ

r(x, u).

The maximal reward operator T is given by

(T v)(x) =
1

β + λ
sup
u∈U

{
r(x, u) +

∑

y∈E
qxy(u)v(y)

}
+

λ

β + λ
v(x).

The next result follows now directly from Theorem 8.2.6 and Theorem 8.2.7.
Note that E is countable. Moreover, we have here

αb ≤
λ

β + λ
cQ.

Theorem 8.3.1. Suppose the continuous-time Markov Decision Chain has
an upper bounding function b with αb < 1 and the following continuity and
compactness assumptions are satisfied:

(i) U is compact,
(ii) u �→ qxy(u) is continuous for all x, y ∈ E,
(iii) u �→

∑
y∈E b(y)qxy(u) is continuous for all x ∈ E,

(iv) u �→ r(x, u) is upper semicontinuous for all x ∈ E.

Then it holds:

a) V∞ ∈ IB+
b and V∞ is a fixed point of T , i.e.

βV∞(x) = sup
u∈U

{
r(x, u) +

∑

y∈E
qxy(u)V∞(y)

}
, x ∈ E. (8.10)
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b) There exists an optimal Markov policy π∗ = (π∗
t ) such that

π∗
t = f∗(Xt−), t ≥ 0

for a decision rule f∗ : E → U , where f∗(x) is a maximum point of

u �→ r(x, u) +
∑

y∈E
qxy(u)V∞(y), u ∈ U .

Note that the fixed point equation (8.10) coincides with the Hamilton-Jacobi-
Bellman equation.

Problems with Finite Time Horizon

Continuous-time Markov Decision Chains with finite time horizon T are more
interesting, in particular as far as applications in finance and insurance are
concerned. Since the time horizon is finite we have to consider also the jumps
times Tn besides the marks (post-jump states) Zn. The function space A is
here defined by

A := {α : [0, T ] → U measurable }. (8.11)

Hence, a Markov policy (or piecewise open loop policy) π = (πt) is defined
by a sequence of measurable functions fn : [0, T ]× E → A such that

πt = fn(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1].

Since we consider here control problems with a finite time period [0, T ] we
have a measurable terminal reward g : E → R. We impose now the following

Integrability Assumption (A):

sup
π

IE
π
x

[∫ T

0

r+(Xs, πs)ds+ g+(XT )

]

<∞, x ∈ E.

Then the expected total reward when we start at time t in state x is well-
defined for all π by

Vπ(t, x) := IE
π
tx

[∫ T

t

r(Xs, πs)ds+ g(XT )

]

, x ∈ E, t ∈ [0, T ]

where IE
π
tx denotes the conditional expectation given that Xt = x. The value

function of the continuous-time Markov Decision Chain is given by

V (t, x) := sup
π
Vπ(t, x), x ∈ E, t ∈ [0, T ] (8.12)
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where the supremum is taken over all Markov policies. It holds that
Vπ(T, x) = g(x) = V (T, x).
Using a similar embedding procedure as in Section 8.2 the value function
V (t, x) can be obtained by the following discrete-time infinite-stage Markov
Decision Model (E′, A,Q′, r′):

• E′ = [0, T ]× E is the state space. A state (t, x) describes the time point
of a jump and the state of the process directly after the jump.

• A is given by (8.11). Recall that the function space A is a Borel space.
• For all Borel sets B ⊂ [0, T ], y ∈ E and (t, x) ∈ E′, α ∈ A, the stochastic

kernel Q′ is given by

Q′(B × {y}|t, x, α
)

:= λ

∫ T−t

0

e−λs1B(t+ s)Q
(
{y}|x, αs

)
ds. (8.13)

This is obviously a substochastic transition law. In order to make it
stochastic, we may add a cemetery state Δ /∈ E′ to the state space and
define

Q′({Δ}|t, x, α
)

:= e−λ(T−t), Q′({Δ}|Δ,α
)

:= 1.

• The reward function r′ : E′ ×A→ R is defined by

r′(t, x, α) :=
∫ T−t

0

e−λsr
(
x, αs

)
ds+ e−λ(T−t)g(x), (8.14)

r′(x,Δ) := 0.

In what follows we treat the problem as a substochastic problem and skip
the state Δ. For this discrete-time Markov Decision Model we define for a
policy π = (fn):

J∞(fn)(t, x) = IE
(fn)
tx

[ ∞∑

n=0

r′
(
T ′
n, Z

′
n, fn(T

′
n, Z

′
n)

)
]

J∞(t, x) = sup
(fn)

J∞(fn)(t, x), (t, x) ∈ E′

where (T ′
n, Z

′
n) is the corresponding state process of the Markov Decision

Process up to absorption in Δ. Note that (T ′
n, Z

′
n) = (Tn, Zn) as long as

Tn ≤ T .

Theorem 8.3.2. For a Markov policy π = (fn) we have

Vπ(t, x) = J∞(fn)(t, x), (t, x) ∈ E′.

Moreover, it holds: V = J∞.
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Proof. Let Hn := (T0, Z0, . . . , Tn, Zn) and Tn ≤ T . We consider only the time
point t = 0. Arbitrary time points can be treated similarly by adjusting the
notation. We obtain:

Vπ(0, x) = IE
π
x

[ ∞∑

n=0

( ∫ Tn+1∧T

Tn∧T
r(Xs, πs)ds+ 1[Tn≤T<Tn+1]g(XT )

)
]

=
∞∑

n=0

IE
π
x

[

IE
π
x

[∫ Tn+1∧T

Tn

r(Xs, πs)ds
∣
∣
∣Hn

]]

+
∞∑

n=0

IE
π
x

[
IE
π
x

[
1[Tn≤T<Tn+1]g(XT )|Hn

]]

=
∞∑

n=0

IE
(fn)
0x

[
r′

(
T ′
n, Z

′
n, fn(T

′
n, Z

′
n)

)]
= J∞(fn)(0, x)

since the transition kernel of (T ′
n, Z

′
n) is given by (8.13) and r′ by (8.14). 	


The maximal reward operator T for the discrete-time model is given by

(T v)(t, x) = sup
α∈A

{
e−λ(T−t)g(x)

+
∫ T−t

0

e−λs
[
r
(
x, αs

)
+ λ

∑

y∈E
v(t+ s, y)Q

(
{y}|x, αs

)]
ds

}

= e−λ(T−t)g(x)

+
∫ T−t

0

e−λs sup
u∈U

[
r(x, u) + λ

∑

y∈E
v(t+ s, y)Q

(
{y}|x, u

)]
ds.

The last equality follows by pointwise maximization. If b : E → R+ is an
upper bounding function for the continuous-time Markov Decision Chain, i.e.
there exist cr, cg, cQ ∈ R+ such that

(i) r+(x, u) ≤ crb(x) for all (x, u) ∈ E × U ,
(ii) g+(x) ≤ cgb(x) for all x ∈ E,
(iii)

∑
y∈E b(y)Q({y}|x, u) ≤ cQb(x) for all (x, u) ∈ E × U ,

then it is easily shown that

b(t, x) = eγ(T−t)b(x), for γ ≥ 0

is an upper bounding function for the discrete-time model and

αb ≤ cQ
λ

λ+ γ

(
1 − e−(λ+γ)T

)
.

Hence we always have αb < 1 for γ large.
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Theorem 8.3.3. Suppose the continuous-time Markov Decision Chain
has an upper bounding function b and the continuity and compactness
assumptions (i)–(iv) of Theorem 8.3.1 are satisfied. Then there exists an
optimal Markov policy π∗ = (π∗t ) such that

π∗
t = f∗(t,Xt−), t ∈ [0, T ]

for a decision rule f∗ : E′ → U , where f∗(t, x) is a maximum point of

u �→ r(x, u) +
∑

y∈E
qxy(u)V (t, y), u ∈ U .

Moreover, V (t, x) is a fixed point of the operator T in IB+
b , i.e.

V (t, x) = e−λ(T−t)g(x)

+
∫ T−t

0

e−λs sup
u∈U

[
r(x, u) + λ

∑

y∈E
V (t+ s, y)Q

(
{y}|x, u

)]
ds.

Proof. The proof is similar to the proof of Theorem 8.2.7 a). For v ∈ IB+
b

define

w(t, x, u) := r(x, u) + λ
∑

y∈E
v(t, y)Q({y}|x, u), x ∈ E, u ∈ U .

Then there exists a measurable function f∗ : E′ → U such that (see Theorem
A.2.4)

w
(
t, x, f∗(t, x)

)
= sup
u∈U

w(t, x, u), (t, x) ∈ E′.

Define f(t, x)(s) := f∗(t + s, x) for s ≥ 0. Then f : E′ → A is measurable
and by pointwise maximization

sup
α∈A

(Lv)(t, x, α) = e−λ(T−t)g(x) +
∫ T−t

0

e−λsw
(
t+ s, x, f(t, x)(s)

)
ds

= (Lv)
(
t, x, f(t, x)

)
.

For v = V the decision rule f is a maximizer of V . Then the policy π∗ = (π∗
t )

is optimal, where for t ∈ (Tn, Tn+1]

π∗
t := f(Tn, Zn)(t− Tn) = f∗(t, Zn) = f∗(t,Xt−)

(see also the Verification Theorem 7.1.7). 	
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Remark 8.3.4. If there exists a bounding function, then V (t, x) is the unique
fixed point of T in IBb. In this case, T is a contraction. Moreover, V (t, x) is
continuous in t for all x ∈ E. ♦

Remark 8.3.5. The Hamilton-Jacobi-Bellman equation for the continuous-
time Markov Decision Chain with finite horizon T has the form

g(x) = V (T, x)

0 = Vt(t, x) + sup
u∈U

{
r(x, u) +

∑

y∈E
V (t, y)qxy(u)

}

where Vt denotes the derivative w.r.t. time. A verification theorem can be
formulated as in the last section (see Theorem 8.2.8). ♦

8.4 Exercises

Exercise 8.4.1 (Relaxed Controls). Consider the controlled Piecewise
Deterministic Markov process which is given by: E = R, U = {−1,+1}
and μ(x, u) = u, Q(B|x, u) = δx(B), i.e. jumps cannot be controlled and are
only ‘virtual’ jumps. For a relaxed control π = (fn) we have

φπt (x) = x+
∫ t

0

∫

U
ufn(s, x)(du)ds, t ∈ [Tn, Tn+1).

The aim is to minimize

IEx

[∫ ∞

0

e−βtX2
t dt

]

.

a) Let x0 = 0. Compute an optimal relaxed control.
b) Show that there does not exist an optimal nonrelaxed control.

Exercise 8.4.2 (Killing at Rate β). Another way of looking at the re-
formulation as a discrete-time problem in Theorem 8.2.1 is to interpret the
discount factor as a killing rate. This enables us to write a modified problem
without discount factor which is then straightforward to describe as a Markov
Decision Problem. In order to explain this let U be a random variable inde-
pendent of the state process (Xt) which is uniformly distributed over [0, 1].
Let

τ := inf
{
t > 0 | e−βt ≤ U

}

and define the killed process (X ′
t) by
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X ′
t =

{
Xt, t < τ
Δ, t ≥ τ.

If we set r(Δ, ·) = 0, show that

IE
π
x

[∫ ∞

0

e−βtr(Xt, πt)dt
]

= IE
π
x

[∫ ∞

0

r(X ′
t, πt)dt

]

=
∞∑

n=0

IE
(fn)
x

[
r′

(
Z ′
n, fn(Z

′
n)

)]
.

Exercise 8.4.3. Suppose a controlled Piecewise Deterministic Markov Pro-
cess as in Section 8.1 is given where the aim is now to maximize

Vπ(t, x) := IE
π
tx

[∫ T

t

r(Xs, πs)ds+ g(XT )

]

, x ∈ E, (8.15)

the expected reward over a finite time horizon. Find an equivalent discrete-
time Markov Decision Model to solve this problem.

Exercise 8.4.4. Formulate a Markov Decision Model which is equivalent to
the optimization problem in (8.3) with a state and action dependent discount
factor less than 1 as indicated in Remark 8.2.2.

Exercise 8.4.5. Consider the financial market introduced in Section 3.2 and
solve the problem of maximizing the expected utility of terminal wealth
IE
π
x U(XT ), where U(x) = −e−γx, x ∈ R and γ > 0 and U(x) = log x, x > 0.

Exercise 8.4.6 (μc-rule). Consider a queueing system with two queues and
one server. Customers arrive at queue i according to a Poisson process with
rate λi and need exponential service times with rates μi, i = 1, 2. After
each departure of a customer, the server has to be assigned to the queues,
where the capacity of the server can be divided, i.e. if we assign the fraction
a ∈ [0, 1] to queue 1, then the first customer in this queue is served with rate
μ1a and the first customer in queue 2 is served with rate μ2(1−a) (see Figure
8.1). Customers produce linear holding cost at rate ci, i = 1, 2. The aim is to
minimize the expected discounted holding cost over an infinite time horizon.

Fig. 8.1 Queueing system of Exercise 8.4.6.
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a) Formulate this queueing problem as a continuous-time Markov Decision
Chain.

b) Suppose the discount factor is β > 0 and let λ = λ1 + λ2 + μ1 + μ2 be the
uniformization rate. Show that the Bellman equation has the form

(λ+ β)v(x1, x2) = c1x1 + c2x2 + λ1v(x1 + 1, x2) + λ2v(x1, x2 + 1)
+ min

{
μ1v

(
(x1 − 1)+, x2

)
+ μ2v(x1, x2);

μ2v
(
x1, (x2 − 1)+

)
+ μ1v(x1, x2)

}
, x1, x2 ∈ N0.

c) Assume that μ1c1 ≥ μ2c2. Consider the embedded discrete-time Markov
Decision Process with a finite horizon N . Show by induction that the
stationary policy π∗ = (f∗, . . . , f∗) with

f∗(x1, x2) = 1[x1>0]

is optimal. This means that queue 1 with the greater μ1c1 has priority
over queue 2 and will always be served as long as a customer is waiting
there. This decision rule is called the μc-rule.

d) Use part c) to prove that the μc-rule is optimal for the infinite horizon
problem.

8.5 Remarks and References

A first systematic study of controlled Piecewise Deterministic Markov Pro-
cesses is done in Hordijk and van der Duyn Schouten (1984, 1985). The idea
of reducing the control problems of this type to a discrete-time Markov De-
cision Problem is due to Yushkevich (1980). For a recent paper on this topic
see Almudevar (2001). In Yushkevich (1987, 1989) optimality conditions are
given in a weak form based on a continuous-time approach. Davis introduced
the name Piecewise Deterministic Markov Process (see e.g. Davis (1984)) and
summarizes the state of the art in his book Davis (1993). Schäl (1998) and
Forwick et al. (2004) extend the existing results to unbounded reward prob-
lems. They impose certain assumptions on the drift which imply (using a
time transformation) the existence of nonrelaxed controls. Relaxed controls
are known from deterministic control theory and allow to define a topology
on the action space (Young topology) which simplifies the task to have a
compact action space and continuous target functions at the same time. It
is well known that concavity conditions imply the existence of nonrelaxed
controls (see e.g. Dempster and Ye (1992), Bäuerle (2001)).
There has been a renewed interest into these models recently, in particular
as far as applications in finance, insurance and queueing are concerned (for
references see Chapter 9).
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Continuous-time Markov Decision processes are investigated in Guo and
Hernández-Lerma (2009). They also consider problems with unbounded re-
ward and transition rates.
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Chapter 9

Optimization Problems in Finance
and Insurance

We will now apply the theory of infinite horizon Markov Decision Models
to solve some optimization problems in finance. In Section 9.1 we consider
a consumption and investment problem with random horizon which leads to
a contracting Markov Decision Model with infinite horizon as explained in
Section 7.6.1. Explicit solutions in the case of a power utility are given. In
Section 9.2 a classical dividend pay-out problem for an insurance company
is investigated. In this example the state and action space are both discrete
which implies that all functions on E×A are continuous and we can work with
Theorem 7.2.1. Here the Markov Decision Model is not contracting. The main
part of this section is to show that there exists an optimal stationary policy
which is a so-called band-policy. In special cases this band-policy reduces to
a barrier-policy, i.e. it is optimal to pay out all the money which is above
a certain threshold. In Section 9.3 we consider a utility maximization prob-
lem in a financial market where the stock prices are Piecewise Deterministic
Markov Processes. This optimization problem is contracting and our results
from Chapters 7 and 8 allow a characterization of the value function and
some computational approaches which complement the classical stochastic
control approach via the Hamilton-Jacobi-Bellman equation. Some numeri-
cal results are also given. In Section 9.4 we study the liquidation of a large
amount of shares in so-called dark pools. This is a continuous-time Markov
Decision Chain with finite time horizon (see Section 8.3). Using the discrete-
time solution approach we are able to derive some interesting properties of
the optimal liquidation policy.

9.1 Consumption-Investment Problems with Random
Horizon

In this section we reconsider the consumption and investment problem of
Section 4.3. However, this time we assume that the investment horizon of the

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 9,
c© Springer-Verlag Berlin Heidelberg 2011
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agent is random (cf. Section 7.6.1). This is reasonable since there may be a
drastic change of the agent’s plan in the future with some probability. For
example the agent may need all her money because she was disabled due to
an accident.
A financial market with d risky asset and one riskless bond (with interest
rate in = 0) is given as introduced in Section 4.2. Recall that Fn := FS

n .
Here we assume that R1, R2, . . . are independent and identically distributed
random vectors and that the following Assumption (FM) holds:

Assumption (FM):

(i) There are no arbitrage opportunities.
(ii) IE ‖R1‖ <∞.

The first assumption means that there is no arbitrage opportunity for any
finite horizon. The random horizon is here described by a geometrically dis-
tributed random variable τ with parameter p ∈ (0, 1), i.e.

IP(τ = n) = (1 − p)pn−1, n ∈ N.

It is assumed that the random horizon τ is independent of (Fn). The aim is
to maximize the expected discounted utility from consumption and invest-
ment until time τ . The initial wealth is given by x > 0. In what follows
suppose that Uc, Up : E → R+ are two continuous utility functions with
domUc = domUp := [0,∞) which are used to evaluate the consumption and
the terminal wealth. The wealth process (Xn) evolves as follows

Xn+1 = Xn − cn + φn ·Rn+1,

where (c, φ) = (cn, φn) is a consumption-investment strategy i.e. φn and cn
are (Fn)-adapted and 0 ≤ cn ≤ Xn, for all n ∈ N. The optimization problem
is then given by

⎧
⎪⎪⎨

⎪⎪⎩

IEx

[∑τ−1
n=0 β

nUc(cn) + βτUp(Xc,φ
τ )

]
→ max

(c, φ) is a consumption-investment strategy and
Xc,φ
τ ∈ dom Up IP -a.s.

(9.1)

According to Section 7.6.1 we can formulate this optimization problem with
random horizon as a stationary Markov Decision Model with infinite horizon:

• E := [0,∞) where x ∈ E denotes the wealth,
• A := R+ ×R

d where a ∈ R
d is the amount of money invested in the risky

assets and c ∈ R+ the amount which is consumed,
• D(x) is given by

D(x) := {(c, a) ∈ A | 0 ≤ c ≤ x and x− c+ a ·R1 ≥ 0 IP -a.s.} ,
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• Z := [−1,∞)d where z ∈ Z denotes the relative risk,
• T (x, c, a, z) := x− c+ a · z,
• QZ(·|x, c, a) := distribution of Rn+1 (independent of (x, c, a)),
• r(x, c, a) := Uc(c) + β(1 − p) IE[Up(T (x, c, a, R1))],
• β̃ := βp with β ∈ (0, 1].

The value J∞(x) is then the maximal value of (9.1) and an optimal policy
for the Markov Decision Models defines an optimal consumption-investment
strategy.
Next define Ã := {α ∈ R

d | 1 +α ·R1 ≥ 0 IP -a.s.}. The optimization problem

v0 := sup
α∈Ã

IE(1 + α ·R1)

has a finite value v0 since Ã is bounded in view of (FM). It is not difficult
to show that b(x) := 1 + x is a bounding function for the stationary Markov
Decision Model, and we obtain

αb := sup
(x,c,a)

1 + x− c+ a · IER1

1 + x

= sup
x∈E,α∈Ã

1 + x+ xα · IER1

1 + x
= sup

x∈E
1 + xv0
1 + x

= max{1, v0}.

If β̃αb < 1 then the Markov Decision Model is contracting. The operator T
is given by

T v(x) = sup
(c,a)∈D(x)

{
r(x, c, a) + βp IE v

(
x− c+ a · R1

)}
, x ∈ E

for v ∈ IBb. We obtain:

Theorem 9.1.1. For the consumption-investment problem with random hori-
zon and βpαb < 1 it holds:

a) J∞ is increasing, concave and continuous.
b) J∞ = limn→∞ Jn and J∞ is the unique fixed point of T in IBb.
c) There exists a maximizer f ∗ of J∞, and the stationary strategy (f∗, f∗, . . .)

is optimal for the consumption-investment problem with random horizon.
d) The policy iteration holds.

Proof. We show that the assumptions of Theorem 7.3.5 are satisfied with

IM := {v ∈ IBb | v is non-negative, increasing, concave and continuous}.

This in turn implies our statements. That 0 ∈ IM is obvious and the fact
that T : IM → IM as well as the existence of maximizers of v ∈ IM have been
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shown in Theorem 4.3.1. Since the bounding function is continuous, the set
IM is a closed subspace of IBb. Theorem 7.3.6 implies d). �	

Example 9.1.2 (Power Utility). We consider now a financial market with one
bond and one stock and choose both utility functions as power utility func-
tions, i.e. Uc(x) = 1

γ
xγ = Up(x) with 0 < γ < 1. It is assumed that βpαb < 1.

Then we get T : IM → IM with

IM := {v ∈ IBb | v(x) = dxγ for d > 0}.

This follows as in Section 4.3. Hence we obtain

lim
n→∞ Jn(x) = J∞(x) = d∞xγ

for some d∞ > 0. Let us now compute d∞ and the optimal strategy. As in
Section 4.3 we consider the problem

⎧
⎨

⎩

IE
(
1 + α · R1

)γ → max

α ∈ Ã
(9.2)

and denote the value of this problem by v∞. By induction we obtain
Jn(x) = dnx

γ and the sequence (dn) satisfies the recursion

dδn+1 = γ−δ +
(β(1 − p)v∞

γ
+ βpv∞dn

)δ

with δ := (1−γ)−1 and d0 = 0. Theorem 9.1.1 implies that d∞ = limn→∞ dn
and d∞ is the unique solution d of the following equation

dδ = γ−δ +
(β(1 − p)v∞

γ
+ βpv∞d

)δ
.

Then a maximizer f∗ of J∞ can be computed explicitly. Since

T J∞(x) = xγ · sup
0≤ζ≤1

{ 1
γ
ζγ + (1 − ζ)γ(β(1 − p)v∞

1
γ

+ βpv∞d∞)
}
,

the optimal investment and consumption decisions separate. The amount
invested in the assets is given by a∗(x) = α∗ · (x − c∗(x)) where α∗ is the
optimal solution of the problem (9.2), and the optimal consumption c∗(x) is
given by (cf. proof of Theorem 4.3.6)

c∗(x) :=
x

1 + (β(1 − p)v∞ + βpγv∞d∞)δ
.

Hence the strategy (f∗, f∗, . . .) with f∗(x) := (a∗(x), c∗(x)) is optimal. Note
that c∗(x) is the limit of the optimal consumptions cn(x) at time n
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c∗n(x) =
x

1 + (β(1 − p)v∞ + βpγv∞dn)δ
.

Thus (f∗, f∗, . . .) is also obtained by policy iteration. �

Example 9.1.3 (Power Utility without Consumption). Here we consider the
same financial market as in Example 9.1.2, but now we maximize the expected
discounted power utility of the terminal wealth at the random time point τ
i.e. Uc(x) ≡ 0, Up(x) = 1

γ x
γ with 0 < γ < 1. There is no consumption. It is

assumed that βpαb < 1. As in the previous example we consider the set

IM := {v ∈ IBb | v(x) = dxγ for d > 0}

and obtain: J∞(x) = d∞xγ for some d∞ > 0. In this case we can identify d∞
as the unique solution d of the equation

d =
β(1 − p)v∞

γ
+ βpv∞d.

This equation can be solved and we obtain

d∞ =
β(1 − p)v∞
γ(1 − βpv∞)

.

Note that βpv∞ < 1, since v∞ ≤ αb and βpαb < 1. The stationary strategy
(f∗, f∗, . . .) with f∗(x) = α∗x is optimal, where α∗ is the optimal solution
of (9.2). Thus when we compare Examples 9.1.2 and 9.1.3, we see that the
optimal relative asset allocation is independent from the consumption. �

9.2 A Dividend Problem in Risk Theory

The dividend pay-out problem is a classical problem in risk theory. There are
many different variants of it in discrete and continuous time. Here we consider
a completely discrete setting which has the advantage that the structure of
the optimal policy can be identified.

Problem and Model Formulation

Imagine we have an insurance company which earns some premia on the one
hand but has to pay out possible claims on the other hand. We denote by
Zn the difference between premia and claim sizes in the n-th time interval
and assume that Z1, Z2, . . . are independent and identically distributed with
distribution (qk, k ∈ Z), i.e. IP(Zn = k) = qk for k ∈ Z. At the beginning of
each time interval the insurer can decide upon paying a dividend. Of course
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this can only be done if the risk reserve at that time point is positive. Once
the risk reserve becomes negative (this happens when the claims are larger
than the reserve plus premia in that time interval) we say that the company is
ruined and has to stop its business. The aim now is to maximize the expected
discounted dividend pay out until ruin. In the economic literature this value
is sometimes interpreted as the value of the company.
We formulate this problem as a stationary Markov Decision Problem with
infinite horizon. The state space is E := Z where x ∈ E is the current risk
reserve. At the beginning of each period we have to decide upon a possi-
ble dividend pay out a ∈ A := N0. Of course we have the restriction that
a ∈ D(x) := {0, 1, . . . , x} when x ≥ 0 and we set D(x) := {0} if x < 0. If we
denote by z the risk reserve change, then the transition function is given by

T (x, a, z) :=
{
x− a+ z if x ≥ 0

x, if x < 0. (9.3)

The dividend pay-out is rewarded by r(x, a) := a and the discount factor
is β ∈ (0, 1). We summarize the data of the stationary Markov Decision
Problem as follows:

• E := Z where x ∈ E denotes the risk reserve,
• A := N0 where a ∈ A is the dividend pay-out,
• D(x) := {0, 1, . . . , x}, x ≥ 0, and D(x) := {0}, x < 0,
• Z := Z where z ∈ Z denotes the change of the risk reserve in (9.3),
• T (x, a, z) is given in (9.3),
• QZ({k}|x, a) := qk (independent of (x, a)),
• r(x, a) := a, a ∈ D(x),
• β ∈ (0, 1).

When we define the ruin time by

τ := inf{n ∈ N0 | Xn < 0}

then for a policy π = (f0, f1, . . .) ∈ F∞ we obtain

J∞π(x) = IE
π
x

[
τ−1∑

k=0

βkfk(Xk)

]

.

Obviously J∞π(x) = 0 if x < 0. In order to have a well-defined and non-trivial
model we assume that for Z := Z1

IP(Z < 0) > 0 and IEZ+ <∞.

Remark 9.2.1. Suppose we allow that A = R+ and D(x) = [0, x] in the above
setting, i.e. we allow for an arbitrary, not necessarily integer dividend pay
out. In this case we would also have E = R. However, it is not difficult
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to see (cf. Schmidli (2008), Lemma 1.9) that for initial risk reserve x ∈ N0

and an arbitrary policy π ∈ F∞ we can define a policy π′ ∈ F∞ by setting
f ′0(x) := x− �x− f0(x)� and f ′n(x) := �x� − �x− fn(x)� for n ≥ 1 such that
J∞π ≤ J∞π′ . Thus, we can restrict to the integer setting. ♦

Next we show that the Convergence Assumption (C) is satisfied for our infi-
nite horizon Markov Decision Model.

Lemma 9.2.2. a) The function b(x) := 1 + x, x ≥ 0 and b(x) := 0, x < 0 is
a bounding function with

T n
◦ b ≤ βn

(
b+ n IEZ+

)
, n ∈ N.

b) For x ≥ 0 we obtain

δ(x) ≤ x+
β IEZ+

1 − β
,

and hence δ ∈ IBb.

Proof. a) It is obvious that r is bounded by b and we get for x ≥ 0

∫
b(x′)Q(dx′|x, a) = 1 +

∞∑

k=a−x
(x− a+ k)qk ≤ 1 + x+ IEZ+ (9.4)

which implies that b is a bounding function (the statement for x < 0 is
obvious). The second statement can by shown by induction on n. Note
that the statement for n = 1 is obtained by (9.4).

b) Now we consider the same problem with Q replaced by Q̃ where q̃k := qk
for k > 0 and

q̃0 :=
0∑

k=−∞
qk,

i.e. Q̃ is concentrated on N0. Since Q ≤st Q̃, all conditions of Theorem
2.4.14 are satisfied and it follows with Theorem 2.4.23 that

Jn(x) ≤ J̃n(x), x ∈ E.

Since the Markov Decision Model is positive we obtain by taking limits

δ(x) = J∞(x) ≤ J̃∞(x).

For the problem with Q̃ the stationary policy (f, f, . . .) with f(x) = x+,
is optimal. Therefore,

J̃(x) = J̃f (x) = x+ β IEZ+ + β2
IEZ+ + . . . = x+

β IEZ+

1 − β
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which implies b). �	

In view of Lemma 9.2.2 the Integrability Assumption (A) and the Conver-
gence Assumption (C) are satisfied since T n

◦ b→ 0 for n→ ∞, and IM := IBb
fulfills (SA). Moreover, Theorem 7.1.8 yields that limn→∞ Jn = J∞ and

J∞(x) = T J∞(x) = max
a∈{0,1,...,x}

{

a+ β
∞∑

k=a−x
J∞(x− a+ k)qk

}

, x ≥ 0.

Obviously, J∞(x) = 0 for x < 0. Further, every maximizer of J∞ (which
obviously exists) defines an optimal stationary policy (f∗, f∗, . . .). In what
follows, let f∗ be the largest maximizer of J∞. It will be convenient to define

G(x) := β

∞∑

k=−x
J∞(x+ k)qk, x ≥ 0.

Thus we can write

J∞(x) = max
a∈{0,1,...,x}

{
a+G(x− a)

}
, (9.5)

J∞(x) = f∗(x) +G
(
x− f∗(x)

)
, x ≥ 0. (9.6)

The following theorem summarizes some basic properties of the value function
J∞ and the optimal policy (f∗, f∗, . . .). Let q+ := IP(Z ≥ 0).

Theorem 9.2.3. a) It holds for x ≥ 0 that

x+
β IEZ+

1 − βq+
≤ J∞(x) ≤ x+

β IEZ+

1 − β
.

b) The value function J∞(x) is increasing and

J∞(x) − J∞(y) ≥ x− y, x ≥ y ≥ 0.

c) It holds for x ≥ 0 that f∗(x− f∗(x)
)

= 0 and

J∞(x) − f∗(x) = J∞
(
x− f∗(x)

)
.

Proof. a) Since J∞(x) = δ(x), Lemma 9.2.2 implies the upper bound. For
the lower bound consider the stationary policy f∞ with f(x) := x+. Then

Jf (x) = x+ β IEZ+ + β2q+ IEZ+ + . . . = x+
β IEZ+

1 − βq+
≤ J∞(x).



9.2 A Dividend Problem in Risk Theory 275

b) Theorem 2.4.14 directly implies that Jn(x) is increasing for all n ∈ N

and hence also J∞(x). Using the optimality equation (9.5) we obtain for
0 ≤ y < x

J∞(x) = max
a∈{0,1,...,x}

{
a+G(x− a)

}

= max
{
G(x), . . . , x− y − 1 +G(y + 1), x− y + J∞(y)}

≥ x− y + J∞(y).

c) It follows from (9.5) that J∞
(
x − f∗(x)

)
≥ G

(
x − f∗(x)

)
which together

with (9.6) implies

J∞(x) − f∗(x) ≤ J∞
(
x− f∗(x)

)
≤ J∞(x) − f∗(x).

The last inequality is obtained from part b) for y := x− f∗(x) ≥ 0. Thus,
we have shown the stated equation for J∞. This equation implies now with
(9.6) that

J∞
(
x− f∗(x)

)
= 0 +G

(
x− f∗(x)

)
.

Comparing it with (9.5) gives f∗
(
x − f∗(x)

)
= 0. Note that in state

x− f∗(x) the action a = 0 is the unique maximum point of (9.5). �	

From Theorem 9.2.3 a) we immediately obtain the following corollary

Corollary 9.2.4. a) If IP(Z ≤ 0) = 1, then J∞(x) = x+ and f∗(x) = x+.
b) If IP(Z ≥ 0) = 1, then J∞(x) = x+ β IEZ

1−β for x ≥ 0 and f∗(x) = x+.

Both statements have an easy explanation. If the random variables Zn are
all non-positive with probability one, the company is certainly not profitable
and the best we can do is pay-out all the money in the beginning and stop
business. If the risk reserve changes Zn cannot be negative, then there is no
risk of getting ruined and due to discounting it is optimal to pay-out the
money as fast as possible.

Structure of the Optimal Policy

In this subsection we show that the optimal stationary policy (f∗, f∗, . . .) is
a so-called band-policy.

Definition 9.2.5. a) A stationary policy f∞ is called a band-policy, if there
exist numbers n ∈ N0 and c0, . . . cn, d1, . . . dn ∈ N0 such that dk−ck−1 ≥ 2
for k = 1, . . . , n and 0 ≤ c0 < d1 ≤ c1 < d2 ≤ . . . < dn ≤ cn and

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ c0
x− ck, if ck < x < dk+1

0, if dk ≤ x ≤ ck
x− cn, if x > cn.
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b) Suppose f∞ is a band-policy. The sets {ck−1, . . . , dk} are called waves and
dk − ck−1 is the length of wave k.

Fig. 9.1 Example of a band-policy.

A stationary policy f∞ is called a barrier-policy if there exists a number
c ∈ N0 such that

f(x) =
{

0, if x ≤ c
x− c, if x > c.

Examples of a band-policy and a barrier-policy can be found in Figures 9.1
and 9.2.

Fig. 9.2 Example of a barrier-policy.

A barrier-policy is a special band-policy with cn = c0 = c. In order to identify
the structure of the optimal policy we need some preliminary results.

Proposition 9.2.6. Let ξ := sup{x ∈ N0 | f∗(x) = 0}. Then ξ <∞ and

f∗(x) = x− ξ for all x ≥ ξ.
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Proof. For x ≥ 0 with f∗(x) = 0 we obtain from Theorem 9.2.3

J∞(x) = G(x) = β
∞∑

k=−x
qkJ∞(x+ k) ≤ β

∞∑

k=−x
qk

(
x+ k +

β IEZ+

1 − β

)

≤ βx+ β IEZ+ +
β2

IEZ+

1 − β
= βx+

β IEZ+

1 − β

and

J∞(x) ≥ x+
β IEZ+

1 − βq+
.

Hence it holds

x ≤ β2
IEZ+(1 − q+)

(1 − β)2(1 − βq+)
,

and ξ is finite. Moreover, f∗(ξ) = 0.
Now let x ≥ ξ. From Theorem 9.2.3 we know that f∗(x− f∗(x)

)
= 0 which

implies by the definition of ξ that f∗(x) ≥ x− ξ. Since x− f∗(x) ≤ ξ ≤ x it
is admissible to pay out the dividend f∗(x)− (x− ξ) in state ξ and we obtain
by (9.6)

J∞(ξ) ≥ f∗(x) − (x− ξ) +G
(
x− f∗(x)

)

= J∞(x) − (x − ξ) ≥ J∞(ξ).

Thus, we obtain 0 = f∗(ξ) ≥ f∗(x)−(x−ξ). Together with the first inequality,
we obtain f∗(x) = x− ξ which concludes the proof. �	

Remark 9.2.7. For x ≥ 0 it holds IP
f∗
x (τ < ∞) = 1, i.e. under the optimal

stationary policy (f∗, f∗, . . .) ruin occurs almost surely. The proof of this
statement is as follows. From Proposition 9.2.6 we know that the risk reserve
after dividend payment is always less than or equal to ξ. The probability that
there is a sequence of length ξ + 1 of negative incomes is positive:

IP
f∗
x (Z1 < 0, . . . , Zξ+1 < 0) = (1 − q+)ξ+1 > 0.

But this will lead to ruin and the probability is one that such a sequence
occurs. ♦

Proposition 9.2.8. Let x0 ≥ 0. If f∗(x0) = a0 and f∗(x0 + 1) > 0, then
f∗(x0 + 1) = a0 + 1.

Proof. Since f∗ is the largest maximizer of J∞ it holds that

J∞(x0) = a0 +G(x0 − a0)
{
≥ a+G(x0 − a) for a = 0, . . . , a0

> a+G(x0 − a) for a = a0 + 1, . . . , x0.
(9.7)
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Moreover we get

J∞(x0 + 1) = max
0≤a≤x0+1

{a+G(x0 + 1 − a)}

= max
{
G(x0 + 1) , max

0≤a≤x0
{a+ 1 +G(x0 − a)}

}
.

The assumption f∗(x0 + 1) > 0 implies

G(x0 + 1) ≤ max
0≤a≤x0

{a+ 1 +G(x0 − a)}. (9.8)

From equation (9.7) we conclude

a+ 1 +G(x0 − a) ≤ a0 + 1 +G(x0 − a0) for a = 0, . . . , a0

a+ 1 +G(x0 − a) < a0 + 1 +G(x0 − a0) for a = a0 + 1, . . . , x0

and by shifting the index

a+G(x0 + 1 − a) ≤ a0 + 1 +G(x0 − a0) for a = 0, . . . , a0 + 1 (9.9)
a+G(x0 + 1 − a) < a0 + 1 +G(x0 − a0) for a = a0 + 2, . . . , x0 + 1.

Note that the first inequality (9.9) also holds for a = 0 since by (9.7) and
(9.8):

G(x0 + 1) ≤ 1 + max
0≤a≤x0

{a+G(x0 − a)} = 1 + a0 +G(x0 − a0).

Now the last inequalities together with (9.6) imply f∗(x0 +1) = a0 +1, since
f∗ is the largest maximizer. �	

Theorem 9.2.9. The stationary policy (f∗, f∗, . . .) is optimal and a band-
policy.

Proof. By Proposition 9.2.6 we have f∗(x) = x − ξ for all x ≥ ξ. For x < ξ
we have to distinguish different cases. If f∗(x) = 0 for all x = 0, . . . , ξ, then
f∗ is a barrier-policy. If there exists an x0 < ξ such that f∗(x) = 0 for
x = 0, . . . , x0 − 1 and f∗(x0) > 0, then by Proposition 9.2.8 f∗(x0) = 1. If
further f∗(x0 +m) > 0 for m = 1, . . . , ξ − x0 − 1 then by induction

f∗(x0 +m) = f∗(x0 +m− 1) + 1 = . . . = f∗(x0) +m = m+ 1.

If f∗(x0 + 1) = 0 we either have f∗(x) = 0 for x = x0 + 1, . . . , ξ or there
exists an x1 with x0 < x1 < ξ and f∗(x1) > 0. Now we proceed in the same
way as with x0. After a finite number of steps we reach ξ. In any case the
constructed policy is a band-policy. �	
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Theorem 9.2.10. a) If IP(Z ≥ −z0) = 1 for some z0 ∈ N, then the length of
the waves of f∗ is bounded by z0, i.e.

ck+1 − dk ≤ z0.

b) If IP(Z ≥ −1) = 1 then the stationary policy (f∗, f∗, . . .) is a barrier-policy.

Proof. a) Suppose that f∞ is a band-policy with parameters

0 ≤ c0 < d1 ≤ c1 < d2 ≤ . . . < dn ≤ cn

and suppose there exists a k0 ≤ n − 1 such that dk0+1 − ck0 > z0. We
consider now a history-dependent policy σ = (g0, g1, . . .) which is defined
as follows

gn(x0, . . . , xn) :=

{
0 if f(xk + 1) = 0 for all k ≤ n

f(xn) otherwise.

After some cumbersome calculations it is possible to show that

Jf (dk0+1) < Jσ(dk0+1 − 1) + 1.

Since Jσ ≤ J∞ we obtain

Jf (dk0+1) < J∞(dk0+1 − 1) + 1

which in view of Theorem 9.2.3 b) implies that f∞ cannot be optimal.
Hence the length of the waves of the optimal band-policy (f∗, f∗, . . .) is
bounded by z0.

b) Since the length of a wave is by definition at least 2 we obtain with part a)
that no wave can exist. Hence the optimal band-policy is a barrier-policy.

�	

Remark 9.2.11. The problem where Z ∈ {−1, 1} was considered by de Finetti
(1957). The value function in this case is given by

J∞(x) = x+
βp

1 − βp
, x ≥ 0

where p := IP(Z = 1) ∈ (0, 1). From Theorem 9.2.10 we conclude that a
barrier-policy is optimal in this case. ♦
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9.3 Terminal Wealth Problems in a Pure Jump Market

In this section we will reconsider the financial market of Section 3.2. We
investigate a portfolio problem in this market which leads to a controlled
Piecewise Deterministic Process. Using the results of Chapter 8 it is possible
to solve the arising optimization problem by means of a discrete-time Markov
Decision Model with infinite horizon.
In what follows we will consider the classical problem of maximizing the
expected utility of terminal wealth at time T in the continuous-time jump
market of Section 3.2. Recall that the price processes are for t ∈ [0, T ] defined
as follows:

• The price process (S0
t ) of the riskless bond is given by

S0
t := eρt,

where ρ ≥ 0 denotes the continuous interest rate.
• The price processes (Skt ) of the risky assets k = 1, . . . , d are given by

dSkt = Skt−
(
μkdt+ dCkt

)

where μk ∈ R and (Ckt ) is the k-th component of the multivariate com-
pound Poisson process Ct :=

∑Nt

n=1 Yn (see Section 3.2). The initial prices
Sk0 are assumed to be strictly positive.

By (Ft) we denote the filtration which is generated by (St) where
St := (S1

t , . . . , S
k
t ). Then it holds Ft = FC

t . Recall that the support of the
distribution of Yn is given by (−1,∞)d. This implies that the stock prices
stay positive. Only those portfolio strategies are admissible which guarantee
that the wealth process is almost surely positive. As a consequence, in models
with jumps short-sellings are often prohibited, and we will also assume this in
our analysis. The amount of money at := (a1

t , . . . , a
d
t ) invested in the stocks

when the current wealth is Xt, has to satisfy

at ≥ 0 and at · e ≤ Xt.

In this situation the wealth process will always stay positive and it obviously
makes no difference whether a portfolio is given in terms of amounts which
are invested in the assets or in terms of fractions. In what follows we will
mainly focus on fractions, i.e. we define

πkt :=
akt
Xt

.

Thus, the set of admissible fractions of wealth which can be invested in the
stocks is given by



9.3 Terminal Wealth Problems in a Pure Jump Market 281

U :=
{
u ∈ R

d | u ≥ 0, u · e ≤ 1
}
.

Note that this set is compact. A portfolio strategy is given by an (Ft)-
predictable stochastic process π = (πt) with values in U where πt :=
(π1
t , . . . , π

d
t ) gives the fractions of wealth invested in the stocks at time t.

The quantity 1− πt · e is the fraction invested in the bond. The dynamics of
the wealth process is then given by

dXt = Xt−
((
ρ+ πt · (μ− ρe)

)
dt+ πtdCt

)
, (9.10)

see also equation (3.7).
The aim of the investor is now to maximize her expected utility of terminal
wealth (at time T ). Thus, we denote by U : [0,∞) → R+ a strictly increasing
and strictly concave utility function and define for a portfolio strategy π =
(πt) and (t, x) ∈ E := [0, T ]× R+

Vπ(t, x) := IE
π
tx[U(XT )],

the expected utility of terminal wealth when Xt = x. The maximal expected
utility is given by

V (t, x) := sup
π
Vπ(t, x). (9.11)

Obviously it holds
Vπ(T, x) = U(x) = V (T, x).

Throughout this section we assume that IE ‖Yn‖ <∞. Note that there exists
no arbitrage strategy in the class of admissible portfolio strategies.
Since (9.11) is a Piecewise Deterministic Markov Decision Problem we can
use the results of Chapter 8. However, this time we have a problem with finite
time horizon which implies that the time component will enter the state space.
We will first reduce the problem to a discrete-time Markov Decision Process.
Thus, let us define

A := {α : [0, T ] → U measurable} . (9.12)

For α ∈ A the movement of the wealth between jumps is then given by

φαt (x) = x exp
(∫ t

0

(
ρ+ αs · (μ− ρe)

)
ds

)

, t ≥ 0 (9.13)

since by (9.10) the drift has the form μ(x, u) := x
(
ρ + u · (μ − ρe)

)
. The

function φαt (x) gives the wealth t time units after the last jump, when the
state directly after the jump was x. In what follows denote by (Tn) the jump
time points of the wealth (stocks) and let (Zn) be the post-jump wealths. As
in Chapter 8 a Markov portfolio strategy π = (πt) is defined by a sequence of
measurable functions (fn) with fn : E → A such that
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πt = fn(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn+1].

We write π = (πt) = (fn) and it holds

Xt = φπt−Tn
(Zn) := φ

fn(Tn,Zn)
t−Tn

(Zn) for t ∈ [Tn, Tn+1).

Note that Zn = XTn . Given a strategy π and an initial wealth x > 0 there is
a probability space (Ω,F , IPπx) on which the random variables Tn and Zn are
defined such that X0 = Z0 = x and for all Borel sets C ⊂ (0,∞)

IP
π
x

(
Tn+1 − Tn ≤ t, Zn+1 ∈ C | T0, Z0, . . . , Tn, Zn

)

= λ

∫ t

0

e−λs
[ ∫

1C
(
φπs (Zn)

(
1 + fn(Tn, Zn)(s) · y

))
QY (dy)

]
ds.

We introduce now the following infinite horizon discrete-time Markov De-
cision Model in the same spirit as in Section 8.2. Since the time horizon is
finite, the state now contains a time component.

• The state space E = [0, T ]× R+ is endowed with the Borel σ-algebra. A
state (t, x) ∈ E gives the jump time point t and the wealth x of the process
directly after the jump. The state process of the Markov Decision Model
is denoted by (T ′

n, Z
′
n). It coincides with the embedded process (Tn, Zn)

as long as Tn ≤ T . Since we are only interested in the state process up
to time T , we fix some external state Δ /∈ E (cemetery state) and set
(T ′
n, Z

′
n) := Δ whenever Tn > T .

• The action space is given by A defined in (9.12). Recall that A is a Borel
space.

• For (t, x) ∈ E, α ∈ A and a Borel set B ⊂ E the transition probability
Q is given by

Q
(
B|t, x, α

)
:=λ

∫ T−t

0

e−λs
[ ∫

1B
(
t+ s, φαs (x)

(
1 +αs · y

))
QY (dy)

]
ds

Q
(
{Δ}|t, x, α) := e−λ(T−t) = 1 −Q(E|t, x, α)

Q
(
{Δ}|Δ,α) := 1.

• The one-stage reward function is for (t, x) ∈ E and α ∈ A defined by

r
(
t, x, α

)
:= e−λ(T−t)U

(
φαT−t(x)

)
,

r
(
Δ,α

)
:= 0.

Note that the reward function is non-negative and unbounded. A policy (fn)
for the discrete-time model consists of a sequence of decision rules fn which
are measurable mappings fn : E ∪ {Δ} → A (where we set f(Δ) := α0 ∈ A,
α0 arbitrary) and we denote by F the set of all decision rules. The expected
reward of a policy (fn) is given by
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J∞(fn)(t, x) := IE
(fn)
tx

[ ∞∑

k=0

r
(
T ′
k, Z

′
k, fk(T

′
k, Z

′
k)

)
]

, (t, x) ∈ E

and we define the value function of the discrete-time Markov Decision Model
by

J∞(t, x) := sup
(fn)∈F∞

J∞(fn)(t, x), (t, x) ∈ E.

The continuous-time optimization problem with finite horizon T can be solved
by the infinite-stage Markov Decision Model above (cp. Chapter 8).

Theorem 9.3.1. a) For a Markov portfolio strategy π = (πt) = (fn) we have

Vπ(t, x) = J∞(fn)(t, x), (t, x) ∈ E.

b) It holds: V = J∞.

Proof. a) For a Markov portfolio strategy π = (πt) = (fn) we have

Xt = φπt−Tk
(Zk) for t ∈ [Tk, Tk+1),

and (Tk, Zk) = (T ′
k, Z

′
k) as long as Tk ≤ T . The sequence (fn) defines a

policy for the discrete-time Markov Decision Model. We consider here only
the time point t = 0. Arbitrary time points t can be treated analogously.
Using monotone convergence we obtain

Vπ(0, x) = IE
π
x [U(XT )] = IE

π
x

[ ∞∑

k=0

1[Tk≤T<Tk+1]U(XT )

]

=
∞∑

k=0

IE
π
x

[
IE
π
x

[
1[Tk≤T<Tk+1]U

(
φπT−Tk

(Zk)
) ∣

∣
∣ Tk ≤ T, Zk

]]

= IE
(fn)
0x

[ ∞∑

k=0

r
(
T ′
k, Z

′
k, fk(T

′
k, Z

′
k)

)
]

= J∞(fn)(0, x)

since

IE
π
x

[
1[Tk≤T<Tk+1]U

(
φπT−Tk

(Zk)
) ∣

∣
∣ Tk ≤ T, Zk

]
= r

(
T ′
k, Z

′
k, fk(T

′
k, Z

′
k)

)

and the transition kernel is given by

IP
(fn)
0x

(
(T ′
k+1, Z

′
k+1) ∈ B

∣
∣
∣ T ′

k, Z
′
k

)
= Q

(
B

∣
∣
∣ T ′

k, Z
′
k, fk(T

′
k, Z

′
k)

)

for all Borel sets B ⊂ E.
b) For any (history-dependent) policy π there exists a sequence (fn) of mea-

surable functions fn : En+1 → A with πt = fn(T0, Z0, . . . , Tn, Zn)(t− Tn)
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for t ∈ (Tn, Tn+1]. Due to the Markovian structure of the state process,
we obtain (see Bertsekas and Shreve (1978), p.216)

V (t, x) = sup
π Markov

Vπ(t, x) = J∞(t, x), (t, x) ∈ E

where the last equation follows from part a).
�	

Hence we have reduced the continuous-time terminal wealth problem to a
discrete-time Markov Decision Model which will be solved with the theory
developed in Chapter 7. In the following we write μ̄ := max{μ1, . . . , μd, ρ}
and ȳ := max{IE Y1, . . . IEYd, 0} for the maximal appreciation rate of the
stocks and for the maximal expected relative jump height, respectively.

Proposition 9.3.2. a) The function b(t, x) := eγ(T−t)(1 + x) is a bounding
function for the discrete-time Markov Decision Model for all γ ≥ 0.

b) We obtain

αb ≤
λ(1 + ȳ)
γ + λ− μ̄

(
1 − e−T (γ+λ−μ̄)

)
=: αγ . (9.14)

In particular for γ large enough, we have αγ < 1 and the discrete-time
model is contracting.

Proof. Since U is compact there exists a c0 > 0 such that

αs · (μ− ρe) ≤ c0, for all α ∈ A, s ≥ 0.

Moreover the concave utility function U can be bounded from above by an
affine-linear function c1(1 + x) for some c1 > 0. Thus, we obtain

0 ≤ r
(
t, x, α

)
= e−λ(T−t)U

(
φαT−t(x)

)
≤ e−λ(T−t)U

(
xeT (ρ+c0)

)

≤ e−λ(T−t)c1
(
1 + xeT (ρ+c0)

)
≤ crb(t, x)

for cr large enough. Moreover, we have

αb = sup
(t,x,α)∈D

∫
b(s, y)Q(ds, dy|t, x, α)

b(t, x)

= sup
(t,x,α)∈D

λ
∫ T−t
0

e−λs+γ(T−s−t)
(
1 + φαs (x)

(
1 + αs ·

∫
y ν(dy)

))
ds

eγ(T−t)(1 + x)
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≤ sup
(t,x)∈E

λ
∫ T−t
0

e−s(λ+γ)
(
1 + xeμ̄s(1 + ȳ)

)
ds

1 + x

=
λ(1 + ȳ)
γ + λ− μ̄

(
1 − e−T (γ+λ−μ̄)

)
= αγ .

This implies that b is a bounding function. Also part b) is shown. �	

The operator T of the Markov Decision Model has the form

(T v)(t, x) = sup
α∈A

{
e−λ(T−t)U

(
φαT−t(x)

)
(9.15)

+ λ

∫ T−t

0

e−λs
[ ∫

v
(
t+ s, φαs (x)

(
1 + αs · y

))
QY (dy)

]
ds

}
.

Proposition 9.3.2 implies that T : IBb → IBb is contracting with module
αb ≤ αγ < 1 if γ is large enough which we assume from now on. Later
we will see that the value function V (t, x) is the unique fixed point of T
in a certain subset of IBb. As in Chapter 8 we define for relaxed controls
α ∈ R :=

{
α : [0, T ] → IP(U) measurable

}

ᾱs :=
∫

U
uαs(du), s ∈ [0, T ].

Note that ᾱ ∈ A since U is convex, and φαt (x) = φᾱt (x) since the drift μ(x, u)
is linear in u. Moreover, we obtain r(t, x, α) = r(t, x, ᾱ). The transition kernel
Q of the Markov Decision Model is extended for α ∈ R by

∫
v(s, y)Q

(
ds, dy | t, x, α

)

= λ

∫ T−t

0

e−λs
∫ [ ∫

v
(
t+ s, φαs (x)

(
1 + u · y

))
αs(du)

]
QY (dy)ds

for all v ∈ IBb. Finally, we consider the set

IMcv := {v ∈ IBb | v is continuous, v(t, x) is concave and increasing inx
and decreasing in t, v ≥ U}.

Proposition 9.3.3. The sets IMcv and Δ := {f : E → A measurable} satisfy
the assumptions of Theorem 7.3.5.

Proof. First we remark that for v ∈ IMcv we have

sup
α∈R

Lv(t, x, α) = sup
α∈A

Lv(t, x, α), (t, x) ∈ E. (9.16)
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This follows since Jensen’s inequality implies

Lv(t, x, α) ≤ Lv(t, x, ᾱ), α ∈ R.

We have to check the conditions (i)–(iii) of Theorem 7.3.5. It is clear that
U ∈ IMcv. Here we can choose U instead of v = 0 since the Markov Decision
Model is contracting. If v ∈ IMcv then T v ≥ U and T v(t, x) is increasing in
x and decreasing in t. This can be seen from the definition of T .
Let us prove that x �→ T v(t, x) is concave. So far we have worked with
portfolios in terms of fractions of invested wealth. Since our model guarantees
that the wealth process never falls to zero (given x > 0) we can equivalently
work with invested amounts at. More precisely, the fraction α ∈ A gives the
same wealth as the amount at := αtφ

α
t (x). Under a = (at), the deterministic

evolution between jumps is given by

φat (x) := eρt
(

x+
∫ t

0

e−ρsas · (μ− ρe)ds
)

.

The advantage is now that (x, a) �→ φat (x) is linear. We show first that
(x, a) �→ Lv(t, x, a) is concave. The concavity of x �→ T v(t, x) then follows
as in Theorem 2.4.19. Fix t ∈ [0, T ], wealths x1, x2 > 0, controls a1, a2 and
κ ∈ (0, 1). Let x̂ := κx1 + (1 − κ)x2 and â := κa1 + (1 − κ)a2. Note that â is
again admissible and that

φâs(x̂) = κφa1
s (x1) + (1 − κ)φa2

s (x2).

Then we obtain

Lv(t, x̂, â) = e−λ(T−t)U
(
φâT−t(x̂)

)

+λ
∫ T−t

0

e−λs
∫
v
(
t+ s, φâs(x̂) + âs · y

)
QY (dy)ds

≥ κ Lv(t, x1, a1) + (1 − κ) Lv(t, x2, a2)

which is the desired statement.
Next we use Proposition 2.4.8 and Proposition 9.3.2 to show that T v is
continuous for v ∈ IMcv. For this task we use relaxed controls and the repre-
sentation of T by (9.16). Due to Remark 8.2.3 we know that R is compact
with respect to the Young topology. It remains to show that the functions

E ×R � (t, x, α) �→ r(t, x, α) (9.17)

E ×R � (t, x, α) �→
∫
v(s, y)Q(ds, dy|t, x, α) (9.18)

are both continuous for all v ∈ IMcv. First we show that the function

(t, x, α) �→ φαt (x)
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is continuous. To this end, let (tn, xn) ⊂ E and (αn) ⊂ R be sequences with
(tn, xn) → (t, x) ∈ E and αn → α ∈ R. Since

φαt (x) = xeρt exp
(∫ t

0

∫

U
u · (μ− ρe)αs(du)ds

)

and the exponential function is continuous, it suffices to show the continuity
of the integral expression. To ease notation we define

μns :=
∫

U
u · (μ− ρe)αns (du) and μs :=

∫

U
u · (μ− ρe)αs(du).

Thus we look at
∣
∣
∣
∣

∫ tn

0

μns ds−
∫ t

0

μsds

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ tn

0

μns ds−
∫ t

0

μns ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ t

0

μns ds−
∫ t

0

μsds

∣
∣
∣
∣ .

Since u �→ w(s, u) := u · (μ − ρe) for 0 ≤ s ≤ t and u �→ w(s, u) = 0 for
t ≤ s ≤ T are continuous, it follows from Remark 8.2.3 that the second term
tends to 0 for n→ ∞. Obviously, the first term is bounded by ĉ|t− tn| which
also tends to 0 and the continuity of (t, x, α) �→ φαt (x) is shown.
Since U is continuous it follows from the continuity of φαt (x) that the function
(9.17) is continuous.
The continuity of the function in (9.18) follows from the following auxiliary
result which can be shown similarly as Lemma 8.2.5:
Let w : E × U → R+ be continuous with w(t, x, u) ≤ cwb(t, x) for some
cw ≥ 0. Then

(t, x, α) �→
∫ T−t

0

e−λs
∫ [ ∫

w
(
t+ s, φαs (x)(1 + u · y), u

)
αs(du)

]
QY (dy)ds

is continuous on E ×R. Note that b(t, x) is continuous.
Altogether, we have shown condition (ii). Condition (iii) follows from Theo-
rem 2.4.6. Last but not least IMcv is a closed subset of IBb. �	

The main results for the terminal wealth problem are summarized in the next
theorem.

Theorem 9.3.4. a) The value function V (t, x) of the terminal wealth prob-
lem satisfies

V = J∞ = J ∈ IMcv

where J := limn→∞ T nU .
b) V (t, x) is the unique fixed point of T in IMcv.
c) It holds for g ∈ IMcv that

‖V − T ng‖b ≤
αnb

1 − αb
‖T g − g‖b.
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d) There exists an optimal Markov portfolio strategy π∗ = (π∗
t ) such that

π∗t = f∗(Tn, Zn)(t− Tn), t ∈ (Tn, Tn+1],

for a decision rule f∗ : E → A.
e) The policy iteration holds.
f) Howard’s policy improvement algorithm holds.

Proof. Part a)–d) follow from Proposition 9.3.3 and Theorem 7.3.5. Part e)
is deduced from Theorem 7.3.6 and the last statement follows from Theorem
7.5.1. �	

The optimal portfolio strategy π∗ is predictable and characterized by one
decision rule f∗. Between two jumps π∗

t depends on the last jump time point
Tn, XTn and t−Tn. For solving the terminal wealth problem we can use value
iteration, policy iteration or Howard’s policy improvement algorithm. More
computational aspects are discussed in the following section.

Computational Aspects

Now we want to solve the fixed point equation in some special cases or ap-
proximately. To this end, let us introduce the following notation for v ∈ IBb

�v(t, x, u) := λ

∫
v
(
t, x(1 + u · y)

)
QY (dy), (t, x) ∈ E, u ∈ U .

Then we can write the fixed point equation V = T V (or Bellman equation)
for (t, x) ∈ E in the following form:

V (t, x) = sup
α∈A

{
e−λ(T−t)U(φαT−t(x)) +

∫ T−t

0

e−λs�V (t+ s, φαs (x), αs)ds
}
.

This is a deterministic control problem which can be solved explicitly for
special utility functions.

Example 9.3.5 (Power Utility). Let U(x) := xβ with 0 < β < 1. In this case
we obtain the explicit solution:

V (t, x) = xβeδ(T−t), (t, x) ∈ E

π∗
t ≡ u∗, t ∈ [0, T ]

where u∗ is the maximum point of

u �→ βu · (μ− ρe) + λ

∫
(1 + u · y)βQY (dy)
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on U and δ := βρ− λ+ βu∗ · (μ− ρe) + λ
∫

(1 + u∗ · y)βQY (dy). �

Uncontrolled Drift
Let us assume that ρ = μi for all i = 1, . . . , d which means that the deter-
ministic drift of all assets is equal to the drift of the bond (or μ(x, u) = xρ).
In this case we obtain φαt (x) = xeρt, and the fixed point equation reduces to:

V (t, x) = e−λ(T−t)U(xeρ(T−t)) +
∫ T−t

0

e−λs sup
u∈U

{
�V (t+ s, xeρs, u)

}
ds.

Note that there exists an f∗ ∈ F such that

f∗(t, x)(s) := argmaxu∈U
{
�V (t+ s, xeρs, u)

}
, (t, x) ∈ E.

The stationary policy (f∗, f∗, . . .) defines an optimal portfolio strategy (see
Theorem 9.3.4 d)). In this case the value iteration is rather easy to execute
as the maximization problem boils down to a pointwise maximization.

Moreover, it is not difficult to obtain necessary and sufficient conditions for
the policy invest all the money in the bond to be optimal. Denote this decision
rule by f∗ ≡ 0. The corresponding value function is then

Jf∗(t, x) = U(xeρ(T−t)).

We try a policy improvement for this strategy.

T Jf∗(t, x) = e−λ(T−t)U(xeρ(T−t))

+λ
∫ T−t

0

e−λs sup
u∈U

{ ∫
U

(
xeρ(T−t−s)(1 + u · y)

)
QY (dy)ds

}
.

The maximizer is again f∗ if and only if for all time points s ∈ [0, T − t] it
holds that

sup
u∈U

IEU
(
xeρ(T−t−s)(1 + u · Y )

)
≤ U

(
xeρ(T−t−s)

)
.

This condition can be interpreted as a one-step-look-ahead rule. We com-
pare the utility of investing all the money in the bond after the next jump
with what we get under an arbitrary policy. Due to the concavity of U this
condition is always fulfilled if IE Y ≤ 0, i.e. if the stocks are on average not
better than the bond, there is no incentive to invest in the stock for a risk
averse investor. Assuming moreover that the utility function is differentiable
we obtain:

Theorem 9.3.6. If U is continuously differentiable and U ′(x + u · Y )Y is
integrable for all x > 0 and ‖u‖ small, then ‘invest all the money in the bond’
is optimal if and only if IE Y ≤ 0.
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Proof. Since the mapping

u �→ IEU
(
xeρ(T−t−s)(1 + u · Y )

)
=: g(u)

is concave, u ≡ 0 is a maximum point if and only if g′(0) ≤ 0. Differentiating
g (the condition in the proposition is such that differentiation and integration
can be interchanged) and noting that U ′ ≥ 0, it follows that g′(0) ≤ 0 if and
only if IE Y ≤ 0. �	

Approximation of the Utility Function

Another possibility to approximate the value function is as follows. Suppose
that instead of the utility function U we take Ũ which is somehow close to
U and the terminal wealth problem with Ũ is simpler to solve. Then one
would expect that also the corresponding value function and optimal policy
are close to each other. In order to formalize this idea let U (n) be a utility
function and define

T (n)v(t, x) := sup
α∈R

{
e−λ(T−t)U (n)

(
φαT−t(x)

)
+

∫
v(s, y)Q(ds, dy|t, x, α)

}
,

where we replace U by U (n) in T for n ∈ N. L(n) is defined in an obvious
way. Moreover, denote by V (n) the corresponding value function and by

A∗
n(t, x) := {α ∈ R | T (n)V (n)(t, x) = L(n)V (n)(t, x, α)}

A∗(t, x) := {α ∈ R | T V (t, x) = LV (t, x, α)}

the set of maximum points of the operator T (n) and T respectively. Then we
are able to state the following approximation result.

Theorem 9.3.7. a) If U and Ũ are two utility functions with corresponding
value functions V and Ṽ , then

‖V − Ṽ ‖b ≤ ‖U − Ũ‖b
eTμ̄

1 − αb
.

b) Let
(
U (n)

)
be a sequence of utility functions with limn→∞ ‖U (n)−U‖b = 0.

Then it holds

∅ �= LsA∗
n(t, x) ⊂ A∗(t, x) for all (t, x) ∈ E,

i.e. in particular, the limit f∗ of a sequence (f∗n) with f∗n(t, x) ∈ A∗
n(t, x)

for all (t, x) ∈ E defines an optimal stationary policy for the given model
(with utility function U).

Proof. For part a) we obtain with Theorem 9.3.4



9.3 Terminal Wealth Problems in a Pure Jump Market 291

‖V − Ṽ ‖b = ‖T V − T̃ Ṽ ‖b

≤ ‖U − Ũ‖b sup
(t,x,α)∈D

e−λ(T−t) b(t, φ
α
T−t(x))

b(t, x)
+ αb‖V − Ṽ ‖b

≤ ‖U − Ũ‖beμ̄T + αb‖V − Ṽ ‖b.

Solving this for ‖V − Ṽ ‖b yields the stated result.
Part b) is shown with the help of Theorem A.1.5. The functions vn ap-
pearing in this lemma are now vn(α) := L(n)V (n)(t, x, α) for a fixed state
(t, x) ∈ E and α ∈ R. Since R is compact with respect to the Young topol-
ogy, and following the considerations in the proof of Proposition 9.3.3, the
mapping α �→ L(n)V (n)(t, x, α) is upper semicontinuous. It remains to show
that (vn) is weakly decreasing. Since limn→∞ ‖U (n)−U‖b = 0 by assumption
and limn→∞ ‖V (n) − V ‖b = 0 by part a), there exists a sequence (δn) ⊂ R

with limn→∞ δn = 0 such that for all n ≥ m and (t, x) ∈ E

U (n)(x) ≤ δmb(t, x) + U (m)(x)
V (n)(t, x) ≤ δmb(t, x) + V (m)(t, x).

Using these inequalities we obtain

vn(α) = L(n)V (n)(t, x, α)

≤ L(m)V (m)(t, x, α) + δm

(
b
(
t, φαT−t(x)

)
+ T◦b(t, x)

)

= vm(α) + δmc(t, x)

for some c(t, x) <∞. Thus the statement follows from Theorem A.1.5. �	

Numerical Examples

Here we present some numerical examples for the results of the preceding
sections and compare the value iteration on a grid (cf. Section 7.5.3) with the
so-called approximating Markov chain method. In the approximating Markov
chain approach the state process is approximated by a discrete-time Markov
chain (see Section 4.10).
Though our results hold for general utility functions we have chosen a power
utility U(x) = 1

βx
β with β = 0.5, since this allows us to compare the nu-

merical value with the true value function (cp. Example 9.3.5). We take one
stock, i.e. d = 1 and μ = ρ = 0. The density of the relative jump distribution
is given by

0.5e−y1[y≥0] + 0.5 · 1[−1<y<0].

The time horizon is one year, i.e. T = 1. A straightforward implementation of
the approximating Markov chain approach with grid size h > 0 for the time
interval [0, T ] yields for N := T

h , ṼN (x) := U(x) and for n = N − 1, . . . , 0 the
recursion
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Ṽn(x) := sup
u∈U

{

e−λhṼn+1(x) + (1 − e−λh)
∫
Ṽn+1

(
x(1 + yu)

)
ν(dy)

}

.

Then Ṽ0(x) is an approximation for V (0, x). Figure 9.3 shows Ṽ0 (lower dotted
line) and the result of one step of value iteration with the grid operator (upper
dotted line) J1 = TGJ0 for t = 0 and for λ ∈ {40, 70}, where we have started
with J0 = U . The upper solid line shows the true value function V (0, x),
the lower solid line the utility function U . For both values of λ and both
algorithms we have chosen the mesh size h = 0.01. It is remarkable that one
iteration step already yields such a good result! Obviously in both cases, the
implementation of the grid operator outperforms the approximating Markov
chain method using the same grid size. A key reason is that the approximating
Markov chain approach is a crude approximation of the time integral which
appears in the T operator. Moreover, a small mesh size h leads for small λ to
a large probability e−λh of staying in the state which in turn leads to weak
contraction and slow convergence (see Fleming and Soner (1993) p. 374 for
a discussion). This problem is circumvented in our approach.
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Fig. 9.3 Functions V, U and J1, Ṽ0 for λ = 40 (left) and λ = 70 (right).

Let us now start Howard’s policy improvement algorithm with the decision
rule f∗ ≡ 0, invest all the money in the bond. The corresponding value func-
tion is given by
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Jf∗(t, x) = U(xeρ(T−t)) = U(x).

In order to compute the first improvement we have to do exactly the same
step as for the one-step value iteration above. The first improvement is given
by f∗ :≡ 27/40. It is easily verified that this stationary policy (f∗, f∗, . . .)
defines an optimal portfolio strategy.

9.4 Trade Execution in Illiquid Markets

Suppose we have an agent who wants to sell a large amount of shares during
a given time interval. Placing a large order in an order book will certainly
lead to a price impact. Moreover in traditional markets, other participants
may examine the order book and see the intention of the agent and then may
try to trade against her. As a consequence it is recently possible to trade in
dark pools where there is no order book and orders are matched electronically.
This reduces the risk of adverse price manipulations but on the other hand
may lead to lower liquidity since there is no market-maker.
We will set up a simple mathematical model to describe this situation. Sup-
pose that the agent has initially x0 ∈ N shares and is able to sell them in
blocks only at the jump time points of a Poisson process to account for illi-
quidity. The execution horizon is T . All shares which have not been sold until
time T will be placed at a traditional market and the order will be executed
at once. The cost of selling a shares is given by C(a) where C : N0 → R+

is strictly increasing and strictly convex and satisfies C(0) = 0. Note that
strictly convex means that

C(x) − C(x − 1) < C(x + 1) − C(x), x ∈ N. (9.19)

The cost function C can be interpreted as a market depth function. Obviously
this implies that it is better to sell small blocks, however if there are no trading
epochs arriving anymore this will yield a large amount of shares which have
to be liquidated at time T .
Let us now formalize this optimization problem: Suppose N = (Nt) is a
Poisson process with fixed intensity λ > 0. Denote by 0 = T0 < T1 < T2 <
. . . the jump time points of the Poisson process and by (Ft) the filtration
generated by N . A control process π = (πt) has to be (Ft)-predictable where
πt are the number of shares the agent would like to sell at time t, i.e. U = N0.
The order is only executed if t is also a jump time point of the Poisson process
(which is not known to the agent at the time point of decision). The state
process X = (Xt) represents the number of shares which still have to be sold.
Thus, if (πt) is a control process we obtain

Xt = x0 −
∫ t

0

πsdNs
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where πt ≤ Xt has to be satisfied for all t ∈ [0, T ]. A control process with this
property is called admissible. The problem is now to minimize the function

Vπ(t, x) := IE
π
tx

[∫ T

t

C(πs)dNs + C(XT )

]

,

i.e. to find

V (t, x) := inf
π
Vπ(t, x), (t, x) ∈ [0, T ]× N0 =: E

where the infimum is taken over all admissible policies.
Obviously this is a controlled Piecewise Deterministic Markov Decision prob-
lem with finite time horizon, where here φαt (x) = x, i.e. the flow is uncon-
trolled. We will solve it by a discrete-time Markov Decision Problem along
the lines of the last section. Let us denote by

A := {α : [0, T ] → N0 measurable } (9.20)

and by D(x) := {α ∈ A | αt ≤ x for all t ∈ [0, T ]}. As in the last section
we consider Markov strategies π = (πt) which are given by a sequence of
measurable functions (fn) with fn : E → A such that

πt = fn(Tn, Zn)(t− Tn) for t ∈ (Tn, Tn−1]

where Zn = XTn denotes the post-jump state (number of shares which still
have to be sold). We obtain for a Markov strategy π = (πt) = (fn) that

Vπ(t, x) = IE
π
tx

[∫ T

t

C(πs)dNs + C(XT )

]

= IE
π
tx

[ ∞∑

k=1

1[Tk<T ]C(πTk
) + 1[Tk−1≤T<Tk ]C(XTk−1)

]

=
∞∑

k=1

IE
π
tx

[
c
(
Tk, XTk

, fk(Tk, XTk
)
)]
,

with

c(t, x, α) :=
∫ T−t

0

λe−λsC(αs)ds+ e−λ(T−t)C(x). (9.21)

Thus the optimization problem can be seen as a continuous-time Markov
Decision Chain with finite time horizon (see Section 8.3) and with state
space N0, action space A defined in (9.20), the set D(x) of admissible actions,
the reward rate r(x, u) = −λC(u), terminal reward function g(x) = −C(x)
and transition kernel Q({y}|x, u) = 1 if y = x − u. Theorem 8.3.2 implies
that V (t, x) is also the value function of a discrete-time Markov Decision
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Model. Moreover, the optimal policy for this discrete-time model determines
an optimal control process for the trade execution problem.

Proposition 9.4.1. The function b(t, x) := C(x) is a bounding function for
the discrete-time model and αb ≤ 1−e−λT < 1, i.e. the discrete-time Markov
Decision Model is contracting.

Proof. First for (t, x, α) ∈ D we obtain since αs ≤ x that

|c
(
t, x, α

)
| ≤

∫ T−t

0

λe−λsC(x)ds+ e−λ(T−t)C(x) = C(x).

Moreover, we have

αb = sup
(t,x,α)∈D

∫
b(s, y)Q(ds, dy|t, x, α)

b(t, x)

= sup
(t,x,α)∈D

∫ T−t
0

λe−λsC(x − αs)ds
C(x)

≤ 1 − e−λT < 1.

�	

Properties of the value function V which can immediately be seen are

V (t, x) ≤ C(x), V (T, x) = C(x) and V (t, 0) = 0.

Now the dynamic programming operator T reads for v ∈ IBb:

(T v)(t, x) = inf
α∈D(x)

⎧
⎨

⎩

T−t∫

0

λe−λs
(
C(αs)+ v(t+ s, x−αs)

)
ds+ e−λ(T−t)C(x)

⎫
⎬

⎭

=
∫ T−t

0

λe−λs min
u∈{0,...,x}

(
C(u)+ v(t+ s, x−u)

)
ds+ e−λ(T−t)C(x).

Let us denote by

f∗(t, x) = argminu∈{0,...,x}
(
C(u) + v(t, x− u)

)
, (t, x) ∈ E (9.22)

the smallest minimizer of the right-hand side. Define

IMcx :=
{
v ∈ IBb | v(t, x) ≤ C(x), v(t, 0) = 0, v is convex in x,

v is continuous and increasing in t, x
}
.

Then we obtain the following statements for the trade execution problem:
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Theorem 9.4.2. a) The value function V (t, x) is the unique fixed point
of T in IMcx.

b) There exists an optimal Markov strategy π∗ = (π∗
t ) such that

π∗
t = f∗(t,Xt−) and f∗ satisfies f∗(t, x) ≤ f∗(t, x + 1) ≤ f∗(t, x) + 1,

and (Xt) is the corresponding number of share process.

Proof. We show that T : IM cx → IM cx and that for v ∈ IM cx, the minimizer
f∗ as defined in (9.22) has the properties f∗(t, x) ≤ f∗(t, x+1) ≤ f∗(t, x)+1.
Let v ∈ IMcx. Since v(t, 0) = 0 we obtain T v ≤ C. That T v(t, 0) = 0 is
obvious. The continuity of (t, x) �→ T v(t, x) follows immediately from the
definition of T . We next prove that T v is increasing in x, i.e. T v(t, x) ≤
T v(t, x + 1), x ∈ N. This can be seen since

C(a) + v(t+ s, x− a) ≤ C(a) + v(t+ s, x+ 1 − a), for a = 0, . . . , x
C(x) + v(t+ s, 0) ≤ C(x + 1) + v(t+ s, 0).

Next we show that T v is increasing in t. In what follows we write

G(t, x) := min
a∈{0,...,x}

(
C(a) + v(t, x − a)

)
.

Let t ≥ t′ and consider

T v(t, x) − T v(t′, x) =
∫ T−t

0

λe−λs
(
G(t+ s, x) −G(t′ + s, x)

)
ds

+
∫ T−t′

T−t
λe−λs

(
C(x) −G(t′ + s, x)

)
ds.

Let a∗ = f∗(t+ s, x) then we obtain

G(t+s, x)−G(t′+s, x) ≥ C(a∗)+v(t+s, x−a∗)−C(a∗)−v(t′+s, x−a∗) ≥ 0

and we obviously have

C(x) −G(t′ + s, x) ≥ C(x) − C(x) − v(t′ + s, 0) = 0

which implies that T v is increasing in t.
Next we show that f∗(t, x + 1) ≤ f∗(t, x) + 1. If f∗(t, x) = x the statement
is clear, so suppose a∗ := f∗(t, x) ≤ x − 1. Now suppose there exists an
a > a∗ + 1 with

C(a) + v(t, x + 1 − a) < C(a∗ + 1) + v(t, x+ 1 − (a∗ + 1)).

This implies
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C(a− 1) − C(a∗) < C(a) − C(a∗ + 1) < v(t, x− a∗) − v(t, x+ 1 − a)

and hence

C(a− 1) + v(t, x− (a− 1)) < C(a∗) + v(t, x− a∗)

which contradicts the definition of a∗.
The remaining two statements T v(t, y+1)−T v(t, y) ≥ T v(t, y)−T v(t, y−1)
and f∗(t, y + 1) ≥ f∗(t, y) for y ∈ N are simultaneously shown by induction
on y. For y = 1 we have

T v(t, 2) − T v(t, 1) ≥ T v(t, 1) − T v(t, 0)

and f∗(t, 2) = 1 = f∗(t, 1). Suppose the statement is true for y = 1, . . . , x−1.
Let a∗ = f∗(t, x) ≥ 1. Suppose there exists an 0 < a < a∗ (an easy argument
gives us that a = 0 cannot be optimal) with

C(a) + v(t, x + 1 − a) ≤ C(a∗) + v(t, x+ 1 − a∗).

This implies that

C(a∗) − C(a) ≥ v(t, x+ 1 − a) − v(t, x+ 1 − a∗) ≥ v(t, x − a) − v(t, x− a∗)

where the last inequality follows from the induction hypothesis. Hence we
conclude that

C(a∗) + v(t, x− a∗) ≥ C(a) + v(t, x− a)

which is a contradiction to the definition of a∗ and we obtain f∗(t, x + 1) ≥
f∗(t, x). Now we have to show that T v(t, x + 1) − T v(t, x) ≥ T v(t, x) −
T v(t, x − 1). Due to the convexity of C the statement is true when

G(t, x + 1) −G(t, x) ≥ G(t, x) −G(t, x − 1).

Let us denote f∗(t, x) =: a∗ > 0 and b∗ = f∗(t, x−1). Then b∗ ≤ a∗ ≤ b∗+1,
i.e. b∗ ≥ a∗ − 1. We discern the following cases:
Case 1: f∗(t, x+ 1) = a∗.
Thus we have

G(t, x) −G(t, x− 1) ≤ v(t, x − b∗) − v(t, x− 1 − b∗)
≤ v(t, x + 1 − a∗) − v(t, x − a∗) = G(t, x+ 1) −G(t, x).

Case 2: f∗(t, x+ 1) = a∗ + 1.
Here we have

G(t, x) −G(t, x− 1) ≤ v(t, x − b∗) − v(t, x− 1 − b∗)
≤ v(t, x − a∗) − v(t, x − a∗ − 1) ≤ G(t, x+ 1) −G(t, x).
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Part a) follows from Theorem 7.3.5 since IMcx is a closed subset of IBb. For
part b) note that for v = V , the control function f : E → A defined by

f(t, x)(s) := f∗(t+ s, x) for s ≥ 0

is a minimizer of V . Then by Theorem 7.3.5 the control process π∗ = (π∗
t ) is

optimal where for t ∈ (Tn, Tn+1]

π∗
t = f(Tn, Zn)(t− Tn) = f∗(t, Zn) = f∗(t,Xt−).

Altogether the statements are proven. �	

Remark 9.4.3. In Bayraktar and Ludkovski (2011) it is also shown that
f∗(t, x) is increasing in t and jumps only by size one, i.e. there are thresholds
0 < t1(x) < t2(x) < . . . < tx(x) such that if we have x ∈ N shares, we try to
sell k between time tk−1(x) and tk(x). ♦

9.5 Remarks and References

Section 9.2: The dividend payout problem was first considered in the case
Z ∈ {−1, 1} by de Finetti (1957) and Shubik and Thompson (1959). Miya-
sawa (1962) proved the existence of optimal band-policies under the assump-
tion that the profit Z takes only a finite number of negative values. In this
paper also a detailed proof of Theorem 9.2.10 can be found. The general case
has been investigated in an informal way by Gerber (1969). Reinhard (1981)
treats this problem with regime-switching. The distribution of Z depends
here on an external Markov chain which represents the economic environ-
ment. Even in this case the optimality of a band-policy can be shown where
now the parameters depend on the environment process. Waldmann (1988)
treats (among others) the dividend payout problem under the constraint of
an acceptable minimal expected lifetime. However, in this paper only barrier-
policies are considered.
Other popular models in insurance consider the reinsurance and/or invest-
ment policies: Schäl (2004) studies reinsurance and investment policies and
maximizes the expected exponential utility of the terminal surplus or min-
imizes the ruin probability. Schäl (2005) controls the probability of ruin
by investment in a discrete-time financial market. For other applications
of Markov Decision Process techniques in insurance see Venezia and Levy
(1983), Martin-Löf (1994) and Schmidli (2008). Ruin problems can be found
in Asmussen and Albrecher (2010).

Section 9.3: This section is essentially based on Bäuerle and Rieder (2009).
For applications of controlled Piecewise Deterministic Markov Processes in
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insurance see in particular Schäl (1998) and the monograph Schmidli (2008).
Kirch and Runggaldier (2005) used the discrete-time approach to solve a
hedging problem in a continuous-time jump market. Their model is one with
uncontrolled drift. Applications in queueing can be found in Bäuerle (2001)
and Rieder and Winter (2009). The latter reference studied the optimal con-
trol of Markov jump processes with partial information and applications to
a parallel queueing model. Portfolio problems with partial information and a
piecewise deterministic process are investigated in Bäuerle and Rieder (2007).
Jouini and Napp (2004) considered approximations of the utility function in
a Black-Scholes-Merton market.

Section 9.4: The trade execution model is based on Bayraktar and Lud-
kovski (2011). In this paper also some extensions like order constraints, regime
switching and partial observation are treated. Applications of continuous-
time Markov Decision Chains in insurance can be found e.g. in Steffensen
(2006) and Kraft and Steffensen (2008).
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Part IV

Stopping Problems
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Chapter 10

Theory of Optimal Stopping Problems

A very important subclass of the Markov Decision Problems considered so
far are optimal stopping problems. There, a Markov process (Xn)n∈N is given
which cannot be influenced by the decision maker. However, this process has
to be stopped at some time point n and a reward gn(Xn) is then obtained.
Thus, the only decision at each time point is whether the process should be
continued or stopped. Once it is stopped, no further decision is necessary.
Sometimes costs have to be paid or an additional reward is obtained as long
as the process is not stopped. Of course the aim is to find a stopping time
such that the expected stopping reward is maximized.
In Section 10.1 we will first consider the simpler case of stopping problems
with a finite horizon. We assume that the decision maker has to stop at the
latest at time N . The problem is introduced using stopping times and it is
then shown how it can be formulated as a Markov Decision Problem. Due
to the simple action space it will turn out that the structure assumption in
this case is always satisfied with the set of all measurable mappings and we
immediately get a solution algorithm. In Section 10.2 we consider stopping
problems with infinite horizon. They are much more delicate than the finite
horizon case. We will treat them as limit cases of finite horizon Markov Deci-
sion Problems. In this case it is hard to identify optimal policies. Moreover,
the optimal policy obtained by the Markov Decision Problem may lead to
stopping times which are not admissible. However, in many applications we
encounter the so-called monotone case which is considerably easier to solve
and which is explained in the corresponding subsection. Finally in Section
10.3 some applications are given.

10.1 Stopping Problems with Finite Horizon

In this section we consider non-stationary stopping problems with finite hori-
zon N . Note that we always have to stop, i.e. if we have not stopped before

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 10,
c© Springer-Verlag Berlin Heidelberg 2011
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time N we must stop at time N . We assume that the state process is given by
a (non-stationary) Markov process (Xn) on a general state space E endowed
with a σ-algebra E and by a sequence of transition kernels (QXn ). As long as
the process is not stopped, a measurable reward cn(Xn) is obtained which
depends on the stage n. If the process is stopped at time n, a measurable
reward gn(Xn) is received. We make no assumption on the sign of cn and gn
so they may likewise stand for reward or cost. As in any decision problem we
next have to define the information with respect to which the stopping time
is chosen. We assume here that the decision may only depend on the obser-
vation of the process (Xn). Thus, we denote by (Fn) the filtration generated
by the process (Xn), i.e. Fn := σ(X0, . . . , Xn).

Definition 10.1.1. A random time τ : Ω → N0 ∪ {∞} is an (Fn)-stopping
time if for all n ∈ N0

{τ ≤ n} ∈ Fn.

This condition means that upon observing the process (Xn) until time n
we can decide whether or not τ has already occurred. In discrete time the
condition is equivalent to {τ = n} ∈ Fn for all n ∈ N0. Since the filtration
will always be generated by (Xn) in our applications, we will not mention it
explicitly. Thus, if we choose a stopping time τ with IPx(τ ≤ N) = 1 for all
x ∈ E, we obtain the reward

Rτ :=
τ−1∑

k=0

ck(Xk) + gτ (Xτ ).

In order to have a well-defined problem we need the following general as-
sumption (cp. with (AN ) of Chapter 2):

Assumption (BN): For x ∈ E

sup
n≤τ≤N

IEnx

[
τ−1∑

k=n

c+k (Xk) + g+
τ (Xτ )

]

<∞, 0 ≤ n ≤ N.

When we write IEnx (or IEx short for IE0x), the expectation is taken with
respect to the probability measure induced by the Markov process (Xn) given
Xn = x. The problem is to find the value

V ∗
N (x) := sup

τ≤N
IEx [Rτ ] (10.1)

where the supremum is taken over all stopping times τ with IPx(τ ≤ N) = 1
for all x ∈ E. A stopping time τ∗ ≤ N is optimal if for all x ∈ E

V ∗
N (x) = IEx [Rτ∗ ] .
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Note that if we have a problem where it is admissible not to stop at all,
then this problem can be embedded into our framework by choosing a time
horizon of N + 1 and setting gN+1 := 0.

We will now formulate the stopping problem as a (non-stationary) Markov
Decision Model. Obviously the state space is E and the action space A con-
sists only of two elements which represent the actions ‘continue’ and ‘stop’.
Since no decision has to be made after stopping, the problem is an absorbing
Markov Decision Model: The decision process enters a ‘cemetery’ state after
stopping (see Example 2.3.13). Following Example 2.3.13 we will not list the
cemetery state explicitly but instead will consider the following substochastic
Markov Decision Model:

• E is the state space of the (uncontrolled) Markov process,
• A := {0, 1} where a = 0 means continue and a = 1 means stop,
• Dn(x) := A for all x ∈ E,
• Qn(B|x, 0) := QXn (B|x) and Qn(B|x, 1) ≡ 0 for x ∈ E and B ∈ E, i.e. the

transition law in the case of continuation cannot be controlled,
• rn(x, 1) := gn(x) and rn(x, 0) := cn(x) for x ∈ E,
• gN is the terminal reward function.

Following the theory of Chapter 2 – given all relevant assumptions are sat-
isfied – the value functions of this Markov Decision Model can be computed
recursively (cf. Theorem 2.3.8). In order to establish the connection to the
stopping problem defined in (10.1), the following relation between stopping
times and policies in the Markov Decision Model is crucial:
Suppose that π = (f0, . . . , fN−1) is an arbitrary policy for the Markov Deci-
sion Model and define

τπ := inf{n ∈ N0 | fn(Xn) = 1} ∧N.

The random time τπ is an (Fn)-stopping time because

{τπ = n} = {f0(X0) = 0, . . . , fn−1(Xn−1) = 0, fn(Xn) = 1} ∈ Fn.

By construction it is bounded by N . τπ is a so-called Markov stopping time
since π = (fn) is Markovian.
On the other hand suppose that τ is an (Fn)-stopping time. Then by defi-
nition there exists for all n ∈ N0 a measurable function fn : En+1 → {0, 1}
such that

1[τ=n] = fn(X0, X1, . . . , Xn).

Thus, τ can be represented by a history-dependent policy π = (f0, . . . , fN−1).
In particular it holds that

V0π(x) = IEx

[
τπ−1∑

k=0

ck(Xk) + gτπ(Xτπ)

]

= IEx[Rτπ ] = IEx[Rτ ].



306 10 Theory of Optimal Stopping Problems

From Theorem 2.2.3 we know already that in Markov Decision Models the
optimal policy can be found among the Markov policies. Hence we can con-
clude here that the optimal stopping time, if it exists, can be found among the
Markov stopping times. Thus it follows that V0 := supπ V0π (the value of the
Markov Decision model) is the same as V ∗

N (the value of the stopping prob-
lem) and that an optimal policy π∗ – if it exists – defines an optimal stopping
time. Moreover, this discussion reveals that Assumption (BN ) is equivalent
to the Integrability Assumption (AN ) for the corresponding Markov Decision
Model. Altogether we have shown the following theorem.

Theorem 10.1.2. It holds that

a) V0(x) = V ∗
N (x) for all x ∈ E.

b) Suppose π∗ = (f∗
0 , . . . , f

∗
N−1) is an optimal policy for the Markov Decision

Problem and define the stopping time

τ∗ := inf{n ∈ N0 | f∗n(Xn) = 1} ∧N,

then τ∗ is optimal for the stopping problem (10.1).

Analogously it can be shown that Vn is the maximal expected reward for the
stopping problem over the time period [n,N ], i.e.

Vn(x) = sup
n≤τ≤N

IEnx

[ τ−1∑

k=n

ck(Xk) + gτ (Xτ )
]

where the supremum is taken over all stopping times τ which satisfy
IPx(n ≤ τ ≤ N) = 1 for all x ∈ E. In view of assumption (BN ) we have
Vn(x) < ∞. The theory of finite horizon Markov Decision Models now im-
plies the next theorem.

Theorem 10.1.3. Suppose a stopping problem with finite horizon N is
given. Then it holds:

a) VN = gN and Vn = TnVn+1 for n = N − 1, . . . , 0 where

Tnv(x) = max
{
gn(x), cn(x) +

∫
v(x′)QXn (dx′|x)

}
, x ∈ E.

b) Let f∗
n(x) := 1 if Vn(x) = gn(x) and f∗

n(x) := 0 otherwise. Then
(f∗0 , f∗

1 , . . . , f
∗
N−1) is an optimal policy and the stopping time

τ∗ := min{n ∈ N0 | Vn(Xn) = gn(Xn)}

is optimal for the stopping problem (10.1).
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Proof. Part a) follows from our main Theorem 2.3.8 when we can show that
the Structure Assumption (SAN ) is satisfied. However since the action space
A consists of two elements only we obtain that (SAN ) is satisfied with

IMn :=
{
v : E → R

∣
∣
∣ v(x) ≤ sup

n≤τ≤N
IEnx

[ τ−1∑

k=n

c+k (Xk) + g+
τ (Xτ )

]
, x ∈ E

}

and Δn = F being the set of all possible decision rules.
Part b) follows again from Theorem 2.3.8 and Theorem 10.1.2 since f∗

n is a
maximizer of Vn+1. Note that VN = gN and thus IPx(τ∗ ≤ N) = 1 for all
x ∈ E. 	


Remark 10.1.4 (Snell Envelope). If we define for n = 0, . . . , N the random
variables

Zn := Vn(Xn),

then ZN = gN (XN ) and

Zn = Vn(Xn) = max
{
gn(Xn), cn(Xn) +

∫
Vn+1(x′)QXn (dx′|Xn)

}

= max
{
gn(Xn), cn(Xn) + IE

[
Zn+1 | Fn

]}
.

The process (Zn) is called the Snell envelope. It is the smallest cn-super-
martingale which dominates the process (gn(Xn)), i.e. it is the smallest pro-
cess which satisfies

Zn ≥ cn(Xn) + IE
[
Zn+1 | Fn

]

Zn ≥ gn(Xn).

The value Z0 = V0(X0) = V ∗
N (X0) is the value of the stopping problem and

the random time τ∗ := inf{n ∈ N0 | Zn = gn(Xn)} is an optimal stopping
time. ♦

If the stopping problem is stationary, i.e. (Xn) is a stationary Markov pro-
cess with transition kernel QX , the stopping reward is gn := βng and the
intermediate reward is cn := βnc for a discount factor β ∈ (0, 1], then the re-
cursive computation simplifies (cf. Section 2.5). Thus, we would like to solve
the problem

JN (x) := sup
τ≤N

IEx

[
τ−1∑

k=0

βkc(Xk) + βτg(Xτ )

]

, x ∈ E

where the supremum is taken over all stopping times τ with
IPx(τ ≤ N) = 1 for all x ∈ E. As before, this problem can also be
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formulated as a Markov Decision Problem (along the lines of the non-
stationary case).

Theorem 10.1.5. Suppose a stationary stopping problem with finite hori-
zon N is given. Then it holds:

a) J0 = g and Jn = T Jn−1 for n = 1, . . . , N where

T v(x) = max
{
g(x), c(x) + β

∫
v(x′)QX(dx′|x)

}
, x ∈ E.

b) g ≤ Jn ≤ Jn+1 for all n ∈ N0.
c) Define dn(x) := g(x)− c(x)−β

∫
Jn−1(x′)QX(dx′|x) for n = 1, . . . , N .

Then we obtain the following recursion:

dn+1(x) = d1(x) − β

∫
d−n (x′)QX(dx′|x).

d) Let S∗
n := {x ∈ E | Jn(x) = g(x)} and define f∗

n := 1S∗
n
. Then S∗

0 = E,
S∗
n = {x ∈ E | dn(x) ≥ 0} and S∗

n+1 ⊂ S∗
n. The policy (f∗N , . . . , f

∗
1 ) is

optimal and τ∗ := min
{
n ∈ {0, 1, . . . , N} |Xn ∈ S∗

N−n
}

is an optimal
stopping time.

The inclusion S∗
n+1 ⊂ S∗

n means that the tendency to stop is non-decreasing
as time goes by.

Remark 10.1.6 (Threshold or Control Limit Policy). If E is a completely
ordered space and x → dn(x) is non-decreasing, then either S∗

n = ∅, S∗
n = E

or there exists a state x∗n ∈ E such that

f∗
n(x) =

{
1 if x ≥ x∗n
0 if x < x∗n.

Note that x∗n := inf{x ∈ E | dn(x) ≥ 0}. If this is satisfied for all n then such
a policy is called threshold policy or control limit policy. ♦

Proof. a) Follows from Theorem 2.5.4 (stationary case) as in the non-statio-
nary case.

b) Since by part a) Jn is the maximum of g and some other function, the
statement Jn ≥ g is obvious. Since g = J0 ≤ J1 and due to the fact
that the maximal reward operator is order preserving (Lemma 2.3.3 c)) it
follows that Jn ≤ Jn+1.

c) First note that

d1(x) = g(x) − c(x) − β

∫
g(x′)QX(dx′|x).
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By part a) and the definition of dn we have

Jn(x) = g(x) + d−n (x). (10.2)

Thus, we obtain

dn+1(x) = g(x) − c(x) − β

∫
Jn(x′)QX(dx′|x)

= g(x) − c(x) − β

∫
g(x′)QX(dx′|x) − β

∫
d−n (x′)QX(dx′|x)

and the statement follows.
d) This part follows again from Theorem 2.5.4 and the monotonicity result

in part b). 	


10.2 Stopping Problems with Unbounded Horizon

Suppose a stationary stopping problem as in Section 10.1 is given. The reward
under an unbounded stopping time τ is given by

Rτ :=
τ−1∑

k=0

βkc(Xk) + βτg(Xτ ) for τ <∞.

We do not define a reward for τ = ∞ since we will restrict to stopping times
with IPx(τ < ∞) = 1 for all x ∈ E, i.e. we have to stop with probability one
in finite time. Throughout, we make the following general assumption:

Assumption (B): For all x ∈ E it holds:

sup
τ<∞

IEx

[
τ−1∑

k=0

βkc+(Xk) + βτg+(Xτ )

]

<∞ and

lim inf
n→∞ IEx[Rτ∧n] ≥ Ex[Rτ ] for all τ <∞.

The task is to find the value of the stopping problem

V ∗
∞(x) := sup

τ<∞
IEx [Rτ ] (10.3)

where the supremum is taken over all stopping times τ with IPx(τ <∞) = 1
for all x ∈ E. Obviously, Assumption (B) implies that V ∗∞(x) < ∞ for all
x ∈ E. A stopping time τ∗ is optimal if IPx(τ∗ <∞) = 1 for all x ∈ E and

V ∗
∞(x) = IEx [Rτ∗ ] .
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Remark 10.2.1. a) It follows from Fatou’s Lemma that Assumption (B) is
equivalent to: For all x ∈ E it holds

sup
τ<∞

IEx

[
τ−1∑

k=0

βkc+(Xk) + βτg+(Xτ )

]

<∞ and

lim
n→∞ IEx[Rτ∧n] = Ex[Rτ ] for all τ <∞.

b) A sufficient condition for the second assumption in (B) is that

lim inf
n→∞ IEx[Rn1[τ>n]] ≥ 0 for all τ <∞.

This condition in turn is satisfied if

lim sup
n→∞

IEx[R−
n 1[τ>n]] = 0 for all τ <∞.

Hence the second part of (B) certainly holds if c ≥ 0 and g ≥ 0. Condition
(B) holds in particular when (Rn) is bounded. ♦

Solution via Finite Horizon Stopping Problems

We will solve problem (10.3) with the help of Markov Decision Theory as
developed in Chapter 7. Here we consider the unbounded horizon model as
a limit of finite horizon stopping problems. As in the previous subsection we
have for n ∈ N, a policy π = (f0, f1, . . .) and x ∈ E

Jnπ(x) = IEx

[
Rτπ∧n

]
and Jn(x) = sup

π
Jnπ(x).

The limit of (Jn) for n → ∞ exists, since the sequence is increasing by
Theorem 10.1.5 b). We denote

J(x) := lim
n→∞Jn(x), x ∈ E.

Moreover, we define for π = (f0, f1, . . .)

Gπ(x) := lim inf
n→∞ Jnπ(x) and G(x) := sup

π
Gπ(x), x ∈ E.

We obtain the following main result which states that the functions V ∗∞, J
and G which have been introduced before are indeed equal. Note that (B) is
our standing assumption.
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Theorem 10.2.2. Suppose a stopping problem with unbounded horizon is
given. Then it holds:

a) V ∗∞(x) = G(x) = J(x) for all x ∈ E.
b) J = T J , i.e. J(x) = max

{
g(x), c(x) + β

∫
J(x′)QX(dx′|x)

}
, x ∈ E.

c) J is the smallest c-superharmonic function which majorizes g, i.e. J is
the smallest function such that for all x ∈ E

J(x) ≥ c(x) + β

∫
J(x′)QX(dx′|x) and J(x) ≥ g(x).

Proof. a) From the discussion in the previous subsection we know already
that for all stopping times τ with IPx(τ <∞) = 1 there exists a (possibly
history dependent) policy πτ such that for all n and x ∈ E:

Jnπτ (x) = IEx[Rτ∧n].

Thus, by the second part of Assumption (B) we have

Gπτ (x) = lim inf
n→∞ Jnπτ (x) ≥ IEx[Rτ ].

This in turn implies
G(x) ≥ IEx[Rτ ].

Thus we obtain
G(x) ≥ sup

τ<∞
IEx[Rτ ] = V ∗

∞(x).

On the other hand, we obtain from Theorem 10.1.5 b) that

J(x) = sup
n

sup
π Markov

Jnπ(x) = sup
n

sup
π
Jnπ(x) = sup

π
sup
n
Jnπ(x)

and hence for a (possibly history dependent) policy π

Gπ(x) = lim inf
n→∞ Jnπ(x) ≤ sup

n
Jnπ(x) ≤ J(x).

Altogether we have shown that

V ∗
∞(x) ≤ G(x) ≤ J(x), x ∈ E.

Finally we get

Jn(x) = sup
τ≤n

IEx[Rτ ] ≤ sup
τ<∞

IEx[Rτ ] = V ∗
∞(x)

which implies J(x) ≤ V ∗
∞(x) and part a) is shown.
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b) This part follows from the monotonicity of (Jn) and Theorem A.1.6.
c) By part b) J is obviously c-superharmonic and majorizes g. Now let v be

another c-superharmonic function which majorizes g. Then v ≥ T v which
yields by iteration v ≥ T nv ≥ T ng = Jn for all n ∈ N. Taking the limit
n→ ∞ implies v ≥ J . 	


The last theorem characterizes the value function V ∗
∞. The next step is to

identify optimal stopping times. It seems to be reasonable that optimal stop-
ping times are Markov and stationary, and we want to identify them using
the Markov Decision Model. Thus, we are interested in stationary policies
(f, f, . . .) ∈ F∞ and induced stopping times

τf := inf{n ∈ N0 | f(Xn) = 1}.

Again note that τf might take the value ∞ with positive probability and thus
may not be admissible for the given stopping problem. Recall the definition

Gf = lim inf
n→∞ Jnf = lim inf

n→∞ T n
f g ≤ J

for f ∈ F and the definition of dn and S∗
n n ∈ N in Theorem 10.1.5. The

following theorem gives conditions under which the maximizer of J defines
an optimal stopping rule.

Theorem 10.2.3. Suppose a stopping problem with unbounded horizon is
given. Then it holds:

a) The limit d := limn→∞ dn exists. Define S∗ := {x ∈ E |d(x) ≥ 0}, then
S∗ = ∩nS∗

n = {x ∈ E | J(x) = g(x)} and f∗ := 1S∗ is a maximizer of
J .

b) If Gf∗ ≥ T Gf∗ and IPx(τf∗ <∞) = 1 for all x ∈ E, then

τ∗ := inf{n ∈ N0 |Xn ∈ S∗}

is an optimal stopping time and Gf∗(x) = IEx[Rτ∗ ] = V ∗
∞(x), x ∈ E.

Proof. a) The existence of the limit d(x) follows from the monotone conver-
gence theorem. Note that J(x) = g(x)+d−(x) by (10.2) which implies the
remaining statements.

b) Since IPx(τf∗ < ∞) = 1 for all x ∈ E it follows from Assumption (B) and
Fatou’s Lemma (see Remark 10.2.1) that

Gf∗(x) = lim
n→∞Jnf∗(x) = IEx

[
Rτ∗

]
≤ V ∗

∞(x), x ∈ E.
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On the other hand since by assumption Gf∗ is a c-superharmonic function
which majorizes g it follows from Theorem 10.2.2 that Gf∗(x) ≥ J(x) =
V ∗
∞(x) for all x ∈ E. Hence all statements are shown. 	


Remark 10.2.4. It follows from Assumption (B) and Fatou’s Lemma that

Gπ(x) = lim
n→∞Jnπ(x) = IEx[Rτπ ], x ∈ E

when IPx(τπ <∞) = 1 for all x ∈ E. If in addition π = (f, f, . . .) is stationary,
we derive Gf = TfGf from dominated convergence. ♦

The following example shows that even though the reward is bounded and
the stopping problem is well-defined, the maximizer of J may not define
an optimal stopping rule, i.e. further conditions like in Theorem 10.2.3 are
necessary.

Example 10.2.5. Let us consider the following Markov Decision Model (cf.
Example 7.4.4): Suppose that the state space is E := N and the action space
is A := {0, 1} where a = 0 means ‘continue’ and a = 1 means ‘stop’. Let
D(x) := A. The transition probabilities of the uncontrolled Markov process
are given by

qX(x+ 1|x) = 1, x ∈ N.

For the reward function we assume that c ≡ 0 and g(x) = 1− 1
x+1

for x ∈ N.
The discount factor is assumed to be one. Since c ≡ 0 and g is bounded,
Assumption (B) is certainly satisfied. It is not difficult to see that the value
function of this stopping problem is given by V ∗

∞(x) = 1 for x ∈ N. From
Theorem 10.2.3 a) it follows that

S∗ =
{
x ∈ N

∣
∣
∣ V ∗

∞(x) = g(x)
}

= ∅

and f∗(x) ≡ 0 is a maximizer of V ∗∞. The stationary policy (f∗, f∗, . . .)
corresponds to the stopping time τf∗ = ∞, i.e. we never stop. But such a
stopping time is not admissible for the stopping problem. In this example no
optimal stopping rule exists. �

This example shows that it is not enough to determine a maximizer of J .
This maximizer also has to satisfy some extra conditions. The situation can
be compared with the case of positive Markov Decision Models in Section
7.4.
Since J is characterized as the smallest c-superharmonic function which ma-
jorizes g, the condition Gf∗ ≥ T Gf∗ is equivalent to Gf∗ = J . The next
corollary gives some sufficient conditions which imply that Gf∗ = J or
IPx(τf∗ <∞) = 1 for all x ∈ E.
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Corollary 10.2.6. Suppose a stopping problem with unbounded horizon is
given and f∗ is a maximizer of J . Then it holds:

a) If the corresponding Markov Decision Problem has a bounding function b
with βαb < 1, then Gf∗ = J. Moreover, if IPx(τf∗ < ∞) = 1 for all x ∈ E
then τf∗ is an optimal stopping time.

b) If supx∈E c(x) < 0, β = 1 and Gf∗ = J , then IPx(τf∗ < ∞) = 1 for all
x ∈ E and τf∗ is an optimal stopping time.

c) If J − g is bounded from above and IPx(τf∗ < ∞) = 1 for all x ∈ E, then
τf∗ is an optimal stopping time and Gf∗ = J.

Proof. a) Since f∗ is a maximizer of J we obtain Tf∗J = T J = J and

J(x) = T n
f∗g(x) + βn IEx

[
(J − g)(Xn)1[τf∗>n]

]

≤ T n
f∗g(x) + (βαb)n‖J − g‖bb(x).

Taking the limit n→ ∞ we obtain

J(x) ≤ lim inf
n→∞ T n

f∗g(x) + 0 = Gf∗(x) ≤ G(x).

Since by Theorem 10.2.2 G(x) = J(x) we obtain the statement with The-
orem 10.2.3 b).

b) Suppose that IPx(τf∗ = ∞) > 0 for some x ∈ E. Then

Gf∗(x) = lim inf
n→∞ IEx

[
Rτf∗∧n

]
= −∞.

Since Gf∗(x) = J(x) ≥ g(x) > −∞, this is a contradiction and the state-
ment follows again from Theorem 10.2.3.

c) By assumption there exists a constant d > 0 such that J(x)− g(x) ≤ d for
all x ∈ E. From part a) we know that

J(x) = T n
f∗g(x) + βn IEx

[
(J − g)(Xn)1[τf∗>n]

]

≤ T n
f∗g(x) + d IPx(τf∗ > n).

Since by assumption limn→∞ IPx(τf∗ > n) = 0 we obtain the statement as
in part a). 	


The Monotone Case

Let us consider the following special class of stopping problems which is
known as the monotone case. Here the optimal stopping time can often be
identified explicitly.
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Theorem 10.2.7. Suppose a stopping problem is given. Let

S0 :=
{
x ∈ E

∣
∣
∣ g(x) ≥ c(x) + β

∫
g(x′)QX(dx′|x)

}

be closed, i.e. QX(S0|x) = 1 for all x ∈ S0. Then it holds:

a) The decision rule f∗ = 1S0 is a maximizer of Jn, n ∈ N and also of J .
b) Define τ∗ := inf{n ∈ N0 | Xn ∈ S0}. Then τ∗ ∧ N is optimal for the
N -stage stopping problem. If IPx(τ∗ <∞) = 1 for all x ∈ E, then τ∗ is
optimal for the unbounded stopping problem.

The decision rule defined in the last theorem is called the One-Step-Look-
Ahead Rule: It compares the reward which is obtained when we stop imme-
diately with the reward when we stop one step ahead.

Proof. a) We show by induction on n ∈ N that

Jn(x) =
{
g(x) , x ∈ S0,
c(x) + β

∫
Jn−1(x′)QX(dx′|x) , x /∈ S0.

For n = 1 the statement follows directly from the value iteration (Theorem
10.1.3 part a)). Now suppose it is true for k = 1, 2, . . . , n:
For x /∈ S0 we obtain

g(x) < c(x) + β

∫
g(x′)QX(dx′|x) ≤ c(x) + β

∫
Jn(x′)QX(dx′|x).

Hence Jn+1(x) = c(x) + β
∫
Jn(x′)QX(dx′|x).

If x ∈ S0 we obtain since S0 is closed and Jn(x) = g(x):

g(x) ≥ c(x) + β

∫
g(x′)QX(dx′|x)

= c(x) + β

∫
g(x′)1S0(x

′)QX(dx′|x) + β

∫
g(x′)1Sc

0
(x′)QX (dx′|x)

= c(x) + β

∫
Jn(x′)QX(dx′|x).

Thus, Jn+1(x) = g(x) for x ∈ S0. In particular we have S∗
n = S0 for all

n ∈ N and S∗ = S0. Hence f∗ = 1S0 is a maximizer of Jn and also of J .
b) The optimality of τ∗ ∧N follows from part a). Theorem 10.2.3 implies the

last statement, since T n
f∗g = Jn and hence limn→∞ T n

f∗g = Gf∗ = J . 	


Corollary 10.2.8. Suppose E is a completely ordered space. Assume that we
are in the monotone case, i.e. the assumptions of Theorem 10.2.7 are satisfied
and that
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(i) x → g(x) is increasing,
(ii) x → c(x) is decreasing,
(iii) x →

∫
g(x′)QX(dx′|x) is decreasing.

Let τ∗ be defined as in Theorem 10.2.7. If IPx(τ∗ < ∞) = 1 for all x ∈ E,
then the optimal stopping time is of threshold type.

Proof. From Theorem 10.2.7 it remains to show that the mapping

x → g(x) − c(x) − β

∫
g(x′)QX(dx′|x)

is increasing. But this follows directly from our assumptions. 	


10.3 Applications and Examples

In this section we consider a number of typical applications. Among them,
stopping of a sequence of independent and identically distributed random
variables, the quiz show problem, the secretary problem and some Bayesian
stopping problems.

10.3.1 A House Selling Problem

Imagine a person who wants to sell her house. At the beginning of each week
she receives an offer which is randomly distributed over the interval [m,M ]
with 0 < m < M . The offers are independent and identically distributed with
distribution Q. The house seller has to decide immediately whether to accept
or reject this offer. If she rejects, the offer is lost and she has maintenance
cost of c > 0. After N weeks the house has to be sold. Which offer should
she accept in order to maximize her expected reward?
This is a stationary stopping problem with the following data.

• E := [m,M ] where x denotes the current offer,
• A := {0, 1} where a = 0 means reject the offer and a = 1 means accept.
• QX(·|x) := Q(·) distribution of an offer (independent of x),
• c(x) ≡ −c and g(x) := x,
• β ∈ (0, 1].

Since the state space is compact, the stopping reward function g is bounded.
Together with the fact that c ≤ 0, Assumption (BN ) is satisfied. We can
use Theorem 10.1.3 to solve this problem. We have the following recursion:
J0(x) = x and for n = 1, . . . , N
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Jn(x) = max
{
x,−c+ β

∫
Jn−1(x′)Q(dx′)

}
, x ∈ E.

Let us define c∗n := −c+β
∫
Jn−1(x′)Q(dx′) which is independent of x. Thus,

the optimal stopping set is given by

S∗
n = {x ∈ E | x ≥ c∗n}.

The thresholds x∗n := c∗n can be computed recursively.

A different version of this problem is obtained when we use a utility function
U to evaluate the reward, i.e. we stop the process (Xn) with Xn = U(Yn−nc)
where Yn is the random variable which gives the offer at time n and the Yn
are independent and identically distributed. Obviously the problem can be
solved as an non-stationary stopping problem.

Now suppose the house seller has no fixed date by which the house has to be
sold, i.e. we have a stopping problem with unbounded horizon. In this case
we assume β ∈ (0, 1). Then Assumption (B) is satisfied.

Theorem 10.3.1. In the unbounded horizon house selling problem it is op-
timal to accept the first offer which exceeds the threshold x∗, where x∗ is the
maximum point of the function

x →
−c Q

(
[m,x)

)
+

∫ ∞
x x′Q(dx′)

1 − βQ
(
[m,x)

)

on the interval E = [m,M ] and x∗ < M .

Proof. According to Theorem 10.2.2 we obtain

J(x) = max
{
x,−c+ β IE J(X)

}
, x ∈ E.

Since the expression x∗ := −c + β IE J(X) is independent of x, a maximizer
of J is given by f∗ = 1S∗ with S∗ := {x ∈ E | x ≥ x∗} and if we define

τ∗ = inf{n ∈ N0 |Xn ≥ x∗}

then obviously τ∗ has a geometric distribution and IPx(τ∗ < ∞) = 1 for all
x ∈ E. Moreover, since c > 0 and Q has bounded support we obtain that
J−g is bounded from above. Thus it follows with Corollary 10.2.6 a) that it is
optimal to accept the first offer which exceeds x∗. Moreover, it is possible to
compute the corresponding maximal expected reward explicitly: Let f := 1S
with S = {x ∈ S|x ≥ x0} be a threshold policy with threshold x0 < M . Since
IPx(τf <∞) = 1 for all x we obtain Gf = TfGf and conclude:
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IEGf (X) =
∫ x0

m

Gf (x)Q(dx) +
∫ M

x0

Gf (x)Q(dx)

=
∫ x0

m

(
− c+ β

∫
Gf (y)Q(dy)

)
Q(dx) +

∫ M

x0

xQ(dx)

= Q
(
[m,x0)

)(
− c+ β IEGf (X)

)
+

∫ M

x0

xQ(dx).

Hence the expected reward is given by

IEGf (X) =
−c Q

(
[m,x0)

)
+

∫M
x0
xQ(dx)

1 − β Q
(
[m,x0)

) .

Maximizing the expression on the right-hand side over x0 ∈ [m,M ] yields
the optimal threshold x∗ and also the maximal expected reward of the house
selling problem. Moreover it follows that x∗ < M . 	


10.3.2 Quiz Show

A contestant in a quiz show has to answer questions. For each correct answer
she wins one Euro and she has the option of either leaving with her accumu-
lated fortune or continuing with the next question. However, with a wrong
answer she forfeits her complete fortune and has to quit the show. When
should she stop in order to maximize her expected reward?
We suppose that the contestant answers each question independently with
probability p ∈ (0, 1) correctly. Thus, the problem is stationary and has an
unbounded horizon. Besides the contestant’s own decision to stop, there is
an external event (wrong answer) which leads to an absorbing state. Thus,
the state space is N0 ∪ {∞} where xn ∈ N0 denotes the current fortune of
the contestant and xn = ∞ indicates that she has answered incorrectly. The
transition probabilities are given by

qX(x+ 1|x) = p, qX(∞|x) = 1 − p, x ∈ N0

and qX(∞|∞) = 1. The reward is g(x) = x if x ∈ N0 and g(∞) = 0. There
is no intermediate reward or cost, i.e. c ≡ 0 and there is no discounting. We
summarize the data of the stopping problem:

• E := N0 ∪ {∞} where x ∈ N0 denotes the current fortune and x = ∞
indicates that she has answered incorrectly,

• A := {0, 1} where a = 0 means continue and a = 1 means quit the game,
• qX(x+ 1|x) := p, qX(∞|x) := 1 − p for x ∈ N0 and qX(∞|∞) := 1,
• c ≡ 0 and g(x) := x for x ∈ N0, g(∞) := 0,
• β := 1.



10.3 Applications and Examples 319

Assumption (B) is satisfied which can be seen as follows. First note that
g ≥ 0, thus the second part of (B) is satisfied (see Remark 10.2.1). Suppose
that τ̂ is the stopping time which gives the first time the contestant answers
incorrectly. Then τ̂ has a geometric distribution and

sup
τ<∞

IEx[Rτ ] ≤ x+ IE[τ̂ ] = x+
1

1 − p
<∞, x ∈ N0.

Moreover, the conditions of Theorem 10.2.7 are fulfilled, i.e. we are in the
monotone case: It is easy to see that the set

S0 :=
{
x ∈ E

∣
∣
∣ g(x) ≥

∑

y

qX(y|x)g(y)
}

=
{
x ∈ N0 ∪ {∞}

∣
∣
∣ x ≥ x∗

}
with x∗ =

⌈ p

1 − p

⌉

is closed (by �x� we denote the smallest integer greater than or equal to x).
Moreover, when we define

τ∗ := inf{n ∈ N0 |Xn ∈ S0}

then IPx(τ∗ < ∞) = 1 for all x ∈ E. Indeed, it even holds for all x ∈ E that
IPx

(
τ∗ ≤ x∗

)
= 1.

Thus if the contestant starts with zero fortune, it is optimal for her to stop
after x∗ questions if she comes so far and her maximal expected reward is
given by V ∗

∞(0) = x∗px
∗
.

10.3.3 The Secretary Problem

The secretary problem is a classical stopping problem which can be found in
many textbooks. However in most books the problem is solved by martingale
methods. Here we use the solution technique of Markov Decision Models:
Imagine an executive who has to hire a new secretary. She has selected N > 2
applicants and interviews them one at a time. After an interview she directly
has to decide whether to accept or reject that particular candidate (no recall
is possible). The order in which the candidates appear is completely random.
However we suppose that after each interview the executive is able to rank
the candidate compared with her predecessors but of course no comparison
with the remaining candidates can be made. The objective of the executive
is to find a stopping time such that she maximizes the probability that the
best candidate is chosen.
In what follows we denote by Zn the absolute rank of candidate number n. We
assume that N is the best rank and 1 the poorest and that (Z1, . . . , ZN) has
a uniform distribution over all permutations of the set {1, 2, . . . , N}. In order
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to formulate the problem as a Markov Decision Model we need a Markov
process which has to be stopped: It is not difficult to see that it can only
be optimal to accept candidate number n > 1 if her relative rank so far is
maximal (in this case we say that the candidate is leading), because if the
relative rank is not maximal we can be sure that the candidate is not the best
one and it is better to wait for the next one. Thus, we consider the process
(Xn) with state space E := {1, 2, . . . , N,N + 1} and the interpretation:

Xn is the time point at which for the (n+ 1)-th time a candidate is leading.

More formally we have X0 = 1 and set XN := N + 1. Let us denote by Rn
the relative rank of candidate n, i.e. Rn ∈ {1, . . . , n}. Then we define for
n = 1, . . . , N − 1

Xn = inf
{
k > Xn−1 |Rk = k

}

where inf ∅ := N + 1. If for example N = 10 and the candidates appear
according to the rank permutation (3, 2, 1, 7, 6, 9, 10, 4, 8, 5) we have

X0 = 1, X1 = 4, X2 = 6, X3 = 7, X4 = 11 = X5 = . . . = X10.

For an illustration see Figure 10.1.

Fig. 10.1 Absolute ranks and the process (Xn) for the example.

It can now be shown that (Xn) is a Markov chain with transition probabilities
(the calculation is indeed quite cumbersome; we refer to Schäl (1990) Section
1.3 or Suhov and Kelbert (2008) Section 1.11 for details):
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qX(y|x) =
x

y(y − 1)
, 1 ≤ x < y ≤ N, x, y ∈ E,

qX(N + 1|x) =
x

N
, 1 ≤ x ≤ N, (10.4)

qX(N + 1|N + 1) = 1.

All other probabilities are zero. Obviously N + 1 is an absorbing state of the
Markov chain. The aim is to maximize the probability that the best candidate
is chosen. For a fixed stopping time τ on {0, 1, . . . , N − 1} this probability is
given by

IP

(
ZXτ = N

)
= IP

(
Xτ ≤ N,Xτ+1 = N + 1

)

=
N−1∑

t=0

N∑

y=1

IP
(
Xt = y, τ = t

)
IP

(
Xt+1 = N + 1|Xt = y, τ = t

)

=
N−1∑

t=0

N∑

y=1

IP
(
Xt = y, τ = t

)
qX (N + 1|y) = IE g(Xτ )

where g(N + 1) := 0 and g(x) := x
N for x = 1, . . . , N . Thus, we have to solve

the problem
sup

τ≤N−1
IE g(Xτ ).

We summarize the data of the stopping problem:

• E := {1, 2, . . . , N,N + 1} where x denotes the time point a candidate is
leading,

• A = {0, 1} where a = 0 means reject the candidate and a = 1 means
accept the candidate,

• qX is given by equation (10.4),
• c(x) ≡ 0 and g(N + 1) := 0, g(x) := x

N for x = 1, . . . , N ,
• β := 1.

Since the problem is bounded, (BN ) is satisfied. Though the problem is sta-
tionary we choose the non-stationary formulation because at every time point
only a subset of the states are relevant. In particular, Xn takes only values
in the set {n+ 1, . . . , N + 1} with positive probability for n ∈ {1, 2, . . . , N}.
Thus, we obtain with Theorem 10.1.3 the recursion (note that we disregard
the state N + 1 since it is absorbing, cf. Example 2.3.13):

VN−1(x) =
x

N
,

Vn(x) = max
{ x

N
,

N∑

y=x+1

x

y(y − 1)
Vn+1(y)

}
, x = 1, . . . , N.
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Note that V0(1) is the maximal probability for choosing the best candidate.
This problem can now be solved explicitly. For this instance, define the func-
tion

h(x) :=
1
x

+
1

x+ 1
+ . . .+

1
N − 1

, x = 1, . . . , N − 1.

It is not difficult to show that the function h is decreasing and satisfies the
inequality h(1) > 1 > h(N − 1). Denote by

k∗ := inf
{
k ∈ {1, . . . , N − 2} | h(k) > 1 ≥ h(k + 1)

}
. (10.5)

Proposition 10.3.2. We claim now that for n = 0, . . . , N − 1:

Vn(x) =

⎧
⎪⎨

⎪⎩

1, x = N
x
N , x = k∗ + 1, . . . , N − 1
k∗
N
h(k∗), x = n, . . . , k∗.

Proof. We prove the proposition by induction. For n = N − 1 we obtain
obviously the assertion. Now suppose the statement is true for n+1. We will
show that it is also true for n. Let x ∈ {n + 1, . . . , N} be fixed. Then we
obtain:

Vn(x) = max
{ x

N
,

N∑

y=x+1

x

y(y − 1)
Vn+1(y)

}

=
x

N
max

{
1,

N∑

y=x+1

N

y(y − 1)
Vn+1(y)

}
.

Now if x ≥ k∗ + 1 this yields due to the induction hypothesis:

Vn(x) =
x

N
max

{
1,

N∑

y=x+1

N

y(y − 1)
y

N

}
=

x

N
max

{
1, h(x)} =

x

N
.

In case x < k∗ + 1 we obtain

Vn(x) =
x

N
max

{
1,

N∑

y=k∗+1

1
(y − 1)

+
k∗∑

y=x+1

k∗

y(y − 1)
h(k∗)

}

=
x

N
max

{
1, h(k∗) +

k∗∑

y=x+1

k∗

y(y − 1)
h(k∗)

}
.

Now note that
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h(k∗)k∗
( 1
k∗

+
k∗∑

y=x+1

1
y(y − 1)

)
= h(k∗)k∗

1
x
> 1

which implies the statement. 	


Proposition 10.3.2 now directly implies the solution of the secretary problem:

Theorem 10.3.3. The optimal stopping time for the secretary problem is
as follows: make interviews with the first k∗ candidates and reject them all
(where k∗ is given by equation (10.5)). Afterwards, take the first candidate
who is better than her predecessors. The probability for choosing the best
candidate is then given by k∗

N
h(k∗).

Note that k∗ = k∗(N) depends on N . It holds that

lim
N→∞

k∗(N)
N

=
1
e
.

Thus, if the number of candidates is large, approximately the first 37% will
be rejected and the next one is accepted who is better than her predecessors.

10.3.4 A Bayesian Stopping Problem

In this section we consider the general problem of stopping a sequence of
independent and identically distributed random variables. A special case has
been solved in Section 10.3.1 (house selling problem). But this time we as-
sume that the distribution of the random variables (offers) Q(·|θ) depends on
an unknown parameter θ ∈ Θ ⊂ R. It is assumed that Q(·|θ) has a density
q(z|θ). Thus, we have to use the theory of Bayesian Markov Decision Models
developed in Section 5.4 to solve the problem. In what follows we formulate
the problem by a filtered Markov Decision Model and derive some general
statements. We restrict to the N -stage problem and use a substochastic for-
mulation. The data is given as follows (for the definition of Φ̂ and μ̂ we refer
the reader to Section 5.4):

• E := R × I where a state (x, i) gives the current offer x and the relevant
information i about the unknown parameter,

• A := {0, 1} where a = 0 means continue and a = 1 means stop the process,
• Z := R where z denotes the offer,
• T̂

(
(x, i), a, z

)
:=

(
z, Φ̂(i, z)

)
is the transition function,

• Q̂Z(·|x, i, a) :=
∫
Q(·|θ)μ̂(dθ|i) (independent of (x, a))

• Q0 is the prior distribution of ϑ,
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• c(x, i) ≡ −c and g(x, i) := x,
• β := 1.

In order to satisfy Assumption (BN ) we suppose that

sup
θ∈Θ

∫
zQ(dz|θ) <∞.

It follows immediately from Theorem 10.1.5 that the n-stage value functions
satisfy the recursion

J0(x, i) = x

Jn(x, i) = max
{
x, −c+

∫ ∫
Jn−1

(
z, Φ̂(i, z)

)
Q(dz|θ)μ̂(dθ|i)

}

= max{x, cn(i)},

where

cn(i) := −c+
∫ ∫

Jn−1

(
z, Φ̂(i, z)

)
Q(dz|θ)μ̂(dθ|i), i ∈ I.

Thus, the optimal stopping sets are determined by

S∗
n :=

{
(x, i) ∈ E

∣
∣
∣ x ≥ cn(i)

}

and the policy (f∗
N , . . . , f

∗
1 ) with f∗

n := 1S∗
n

is optimal for the N -stage
Bayesian stopping problem. Theorem 10.1.5 implies immediately that
c1(i) ≤ . . . ≤ cN (i) for all i ∈ I. The optimal policy can be interpreted
as a state-dependent threshold policy. Under some assumption it is possible
to prove the monotonicity of the threshold levels in the information state.
For this instance we use the same order relation on I as in Section 5.4:

i ≤ i′ :⇔ μ̂(·|i) ≤lr μ̂(·|i′)

where ≤lr is the likelihood ratio order. Then we consider the following relation
on E := R × I

(x, i) ≤ (x′, i′) :⇔ x ≤ x′ and i ≤ i′

and conclude the next result.

Theorem 10.3.4. If the density q(z|θ) is MTP2 in z and θ, then the func-
tions (x, i) → Jn(x, i) and i → cn(i) are increasing for all n.

Proof. The monotonicity of Jn(x, i) follows directly from Theorem 5.4.10.
Moreover in the proof of Theorem 5.4.10 we have shown that



10.3 Applications and Examples 325

i →
∫ ∫

v
(
z, Φ̂(i, z)

)
q(z|θ)dzμ̂(dθ|i)

is increasing for all increasing v : E → R for which the integral exists. Now
the statement follows from the definition of cn. 	


Example 10.3.5. In this example we consider the special case c = 0 and ex-
ponentially distributed random variables (offers)

q(z|θ) =
1
θ
e−

1
θ z, z ≥ 0, θ ∈ Θ := (0,∞).

Then tn(x0, a0, z1, x1, . . . , an−1, zn, xn) =
(∑n

ν=1 zν , n
)

is a sufficient statis-
tic (cf. Example 5.4.4). Thus, we have I := R+×N0 and denote i = (s, n) ∈ I.
Moreover, Φ̂((s, n), z) = (s + z, n+ 1). It can be shown that the conditional
distribution of ϑ has the form

μ̂
(
dθ|s, n

)
∝

(1
θ

)n
e−

s
θQ0(dθ)

if the information (s, n) is given (cf. Example 5.4.4). With this representation
it is not difficult to verify that (cf. Example B.3.8)

i = (s, n) ≤ i′ = (s′, n′) ⇔ s ≤ s′ and n ≥ n′.

Further, the family of densities q(z|θ) is MTP2 in z ≥ 0 and θ ≥ 0, thus the
last theorem applies.
If we assume now a special prior distribution of ϑ then we can solve the
problem quite explicitly. We assume that the prior distribution Q0 is a so-
called Inverse Gamma distribution, i.e. the density is given by

Q0(dθ) =
ba

Γ (a)

(1
θ

)a+1

e−
b
θ dθ, θ > 0

where a > 1 and b > 0 are fixed. The name relates to the fact that 1
ϑ has a

Gamma distribution with parameters a and b. Then the distribution Q̂Z is
given by

Q̂Z
(
dz|s, n

)
=

∫
Q(dz|θ)μ̂

(
dθ|s, n

)
= (n+ a)

(s+ b)n+a

(z + s+ b)n+a+1
dz.

Hence Q̂Z is a special Second Order Beta distribution which is for z > 0 in
general given by

Be(α, β, γ)(dz) =
Γ (α+ β)
Γ (α)Γ (β)

zα−1 γβ

(γ + z)α+β
dz
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where we denote Γ (α) = (α − 1)! for α ∈ N. Hence we can also write
Q̂Z

(
· |s, n

)
= Be(1, a+ n, s+ b). The expectation is given by

∫
zQ̂Z

(
dz|s, n

)
=

s+ b

a+ n− 1
.

Note that it is reasonable to start in the information state i = (0, 0). Then
in particular at stage k we can only have information states i = (s, k) and it
suffices to consider the value function JN−k(x, (s, k)). Thus only the values
cN−k(s, k) are interesting.

Theorem 10.3.6. a) The functions cN−k separate in the variables. More
precisely:

cN−k(s, k) = (b + s)ĉN−k, k = 0, . . . , N − 1

and the ĉk satisfy the following recursion:

ĉ1 =
1

N + a− 2
,

ĉN−k+1 =
1

k + a− 2

[
(k + a− 1)ĉN−k +

(
(1 − ĉN−k)+

)k+a−1
]
.

Moreover, the ĉk are increasing in k and we can define

n∗ = n∗(N) := max
{
k ∈ {1, . . . , N} | ĉN−k+1 ≥ 1

}

where max ∅ := 0.
b) The ĉk are decreasing in the time horizon N and n∗ is increasing in N .
c) The optimal policy (f∗

N , . . . , f
∗
1 ) satisfies f∗

N−k ≡ 0 for k = 0, . . . , n∗ − 1.
d) The maximal expected reward of the Bayesian stopping problem is given

by JN (0, (0, 0)) = bĉN .

Proof. a) We show the separation and the recursion by induction. First we
obtain

c1(s,N − 1) = −c+
∫ ∫

zQ(dz|θ)μ̂
(
dθ|(s,N − 1)

)

=
∫
zQ̂Z

(
dz|(s,N − 1)

)
=

s+ b

N + a− 2
= (b + s)ĉ1.

By definition we obtain for k = N − 1, . . . , 1
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cN−k+1(s, k − 1) =
∫

max
{
z, cN−k(s+ z, k)

}
Q̂Z

(
dz|(s, k − 1)

)

=
∫

max
{
z, (b+ s+ z)ĉN−k

}
Q̂Z

(
dz|(s, k − 1)

)

=
∫ ∞

0

(k + a− 1)
(s+ b)k+a−1

(z + s+ b)k+a
max

{
z, (b+ s+ z)ĉN−k

}
dz

=
∫ ∞

0

(k + a− 1)(s+ b)k+a

(z + s+ b)k+a
max

{ z

b+ s
,
(
1 +

z

b+ s

)
ĉN−k

}
dz.

Now we change the variable z̃ := z
b+s to obtain

cN−k+1(s, k − 1) = (s+ b)
∫ ∞

0

k + a− 1
(1 + z̃)k+a

max
{
z̃, (1 + z̃)ĉN−k

}
dz̃

= (s+ b)
∫ ∞

0

max
{
z̃, (1 + z̃)ĉN−k

}
Be(1, k+ a− 1, 1)(dz̃)

= (s+ b)ĉN−k+1. (10.6)

In order to evaluate the integral we distinguish between the following two
cases.

Case 1: ĉN−k ≥ 1: Here it follows that z̃ ≤ (1 + z̃)ĉN−k is true for all
z̃ ≥ 0 and we obtain

ĉN−k+1 = ĉN−k
∫ ∞

0

(1 + z̃)Be(1, k + a− 1, 1)(dz̃)

= ĉN−k
k + a− 1
k + a− 2

.

Case 2: ĉN−k < 1: Let us denote dk := ĉN−k

1−ĉN−k
. Here we obtain.

ĉN−k+1 = ĉN−k
∫ dk

0

(1 + z̃)Be(1, k + a− 1, 1)(dz̃)

+
∫ ∞

dk

z̃Be(1, k + a− 1, 1)(dz̃)

= ĉN−k
k + a− 1
k + a− 2

+
1

k + a− 2
(1 − ĉN−k)k+a−1

=
1

k + a− 2
[
(k + a− 1)ĉN−k + (1 − ĉN−k)k+a−1

]
.

Hence the recursion is shown.

The fact that ĉk ≤ ĉk+1 follows directly from the preceding representation.
b) Suppose that N ≤ N ′. We have to show that ĉk,N ≥ ĉk,N ′ . For k = 1

the statement is equivalent to c1(s,N − 1) ≥ c1(s,N ′ − 1) for all s ≥ 0.
Now by Theorem 10.3.4 we know that c1(i) is increasing in i which implies
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the result when we take into account the specific order relation on I. For
k = 2, . . . , N the statement follows by induction from (10.6). The fact that
n∗ is increasing in N follows directly from its definition.

c) By definition of Φ̂ it is only possible to have s ≥ x. Moreover, it holds for
i = (s, k) ∈ I

f∗N−k(x, (s, k)) = 0 if and only if x < cN−k(s, k) = (b + s)ĉN−k.

Since ĉN ≥ . . . ≥ ĉN−n+1∗ ≥ 1 and b > 0 the statement holds.
d) From a) we get that JN−k(x, (s, k)) = max{x, (b + s)ĉN−k} and hence
JN (0, (0, 0)) = bĉN . 	


Fig. 10.2 Values of ĉN−k+1 for k = 1, . . . , 20.

In Figure 10.2 we see the values of ĉk in the case N = 20 and for the param-
eters a = 2, b = 1. Theorem 10.3.6 c) implies that there is always a training
sample of size n∗ where every offer is rejected. In Table 10.1 some values for
n∗(N) are listed for different time horizons N .

N 5 10 20 50 100 1000

n∗(N) 1 2 2 3 4 6

Table 10.1 Training sample n∗(N).
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10.4 Exercises

Exercise 10.4.1 (Dice Game). You are allowed to throw a dice N times.
After each throw you can decide to obtain the number of pips in Euro and
quit the game or continue.

a) What is the optimal stopping time?
b) What is your maximal expected reward?
c) Would you play the game if N = 3 and you have to pay 4.50 Euro to enter

the game?

Exercise 10.4.2 (Moving Particle). A particle moves on the set
E := {0, 1, . . . ,M} like a symmetric random walk with absorbing barriers,
i.e q(x + 1|x) = q(x − 1|x) = 1

2
for 0 < x < M and q(0|0) = q(M |M) = 1.

When you stop the particle at place x you receive the reward g(x) ≥ 0.

a) Show that (B) is satisfied for this stopping problem.
b) Show that J is the smallest concave function v with v ≥ g.
c) If S∗ := {x ∈ E | J(x) = g(x)} show that τ∗ := inf{n ∈ N0 | Xn ∈ S∗} is

an optimal stopping time.
d) Compute J and S∗ for the values M = 7, g(0) = 0, g(1) = 4, g(2) = 2,
g(3) = 1, g(4) = 2, g(5) = 5, g(6) = 7, g(7) = 0.

Exercise 10.4.3 (Urn Game). An urn contains initially w0 white balls and
b0 black balls. Balls are selected at random without replacement. For each
selected white ball the player receives one Euro and for each selected black
ball the player loses one Euro. When should the player quit the game in order
to maximize her expected reward?

a) Set this up as a stopping problem and write down the optimality equation
to solve the problem.

b) Suppose that a state is given by (w, b) where w and b are the number
of white and black balls which are still in the urn and suppose that it is
optimal to continue in this state. Prove or give a counterexample to the
following claims:

(i) it is optimal to play in state (w + 1, b),
(ii) it is optimal to play in state (w − 1, b),
(iii) it is optimal to play in state (w, b+ 1),
(iv) it is optimal to play in state (w, b− 1).

(This problem is taken from Ross (1983).)

Exercise 10.4.4 (Dice Game). A player is allowed to throw a dice arbi-
trarily often. The numbers are added and the player receives the sum in
Euro as gain. However, when the player throws a ‘one’ the game ends and
she receives nothing.

a) What is the optimal stopping time?
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b) What is the maximal expected reward?

Exercise 10.4.5 (Burglar’s Problem – Not for Imitation). A burglar
loots some house each day. The daily gains are independent and identi-
cally distributed on R+. However with a certain probability 1 − p ∈ (0, 1)
she will be caught and loses her fortune. She uses an exponential utility
U(x) := 1 − e−αx, α > 0 to evaluate her fortune.

a) When should she stop?
b) What is her maximal expected reward?

Exercise 10.4.6 (Stopping Problem with Recall). Consider the house
selling problem of Section 10.3.1. Now suppose that offers are not lost but
a recall is possible. Show that the monotone case is on hand, i.e. Theorem
10.2.7 can be applied. What does the optimal stopping time look like?

Exercise 10.4.7 (Stock Selling). Suppose you own one stock which you
would like to sell before time N . Let us assume the financial market of Chap-
ter 3 with independent but not necessarily identically distributed relative
price changes R̃1, R̃2, . . .. The price is evaluated by a power utility function
U(x) = xγ , γ ∈ (0, 1). What is the optimal selling time? Show that IE R̃γn is
an important quantity here.

10.5 Remarks and References

Most textbooks on optimal stopping problems use a martingale approach.
Classical textbooks on optimal stopping problems are Chow et al. (1971)
and Shiryaev (2008). The Markov Decision Process theory for non-stationary
stopping problems can be found in Rieder (1975b). Optimal stopping prob-
lems have various applications. A prominent one is the sequential proba-
bility ratio test, introduced by Wald (see Exercise 5.6.4). Because of its
importance some authors name the recursive equation in Theorem 10.1.3 the
Wald-Bellman equation. A recent textbook which contains optimal stopping
problems in discrete and continuous time is Peskir and Shiryaev (2006).
The examples which we have chosen here are quite classical and can be found
in many textbooks. The Markov Decision Process formulation of the secre-
tary problem also appears in Schäl (1990). Moreover, many extensions of the
examples can be found in the literature. For example, an extension of the
quiz show and burglar problem is given in Haigh and Roters (2000). Ex-
tensions of the secretary problem are in Freeman (1983) and Bearden and
Murphy (2007). The house selling problem with a utility function is consid-
ered in Müller (2000). Partially observable stopping problems are considered
in Monahan (1980, 1982a) and Nakai (1983, 1985). The Bayesian stopping
problem treated in Section 10.3.4 is a modification of Tamaki (1984).



Chapter 11

Stopping Problems in Finance

Typical stopping problems in finance involve the pricing of American options.
It can be shown by using no-arbitrage arguments that the price of an Amer-
ican option is the value of an optimal stopping problem under a risk neutral
probability measure and the optimal stopping time is the optimal exercise
time of the option. In order to have a complete financial market without
arbitrage we restrict the first section on pricing American options to the bi-
nomial model. An algorithm is presented for pricing American options and
the American put option is investigated in detail. In particular also perpetual
American put options are studied. In Section 11.2 so-called credit granting
problems are considered. Here the decision maker has to decide whether or
not a credit is extended. In this context, a Bayesian Model is also presented.

11.1 Pricing of American Options

A classical application of optimal stopping problems in finance are American
options: In order to find the fair price of an American option and its optimal
exercise time, we have to solve an optimal stopping problem with finite hori-
zon N . In contrast to a European option, the buyer of an American option
can choose to exercise any time up to and including the expiration time N .
In what follows we will consider the binomial model as underlying financial
market (see Section 3.1) with the assumption d < 1+ i < u which implies no
arbitrage opportunities and the existence of a unique equivalent martingale
measure Q. This measure Q is used for pricing and is also called risk neutral
probability measure. Under Q, the probability for an up movement of the
stock is given by

q =
1 + i− d

u − d
. (11.1)

We will first consider general American options with finite expiration date
and concentrate on the case of path-independent options.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 11,
c© Springer-Verlag Berlin Heidelberg 2011
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American Options

We concentrate our analysis on path-independent American options, i.e. the
process (Xn) which has to be stopped is given by the stock price processXn =
Sn itself. A path-independent American option yields the payoff h(Sn) if it is
exercised at time n, i.e. the payoff function depends only on the current stock
price and not on its path. The expiration date is assumed to be N . However,
the option may never be exercised in which case the payoff is zero. Thus, it
is easy to see that it cannot be optimal to exercise when h(Sn) < 0 and we
can equivalently choose h+(Sn) as a payoff. Let us denote β := (1 + i)−1.
The price of this option at time zero is then computed as

sup
τ≤N

IE
Q

x

[
βτh+(Sτ )

]

where the supremum is taken over all stopping times τ with IP(τ ≤ N) = 1.
S0 = x is the stock price at time zero and the expectation is taken with
respect to the risk neutral measure Q. For example in the case of a European
put option with strike price K, the payoff function h is given by h(x) = K−x.
This stopping problem can be formulated as a stationary Markov Decision
Problem (see Section 10.1). The data of the stopping problem is thus:

• E := R+, where x denotes the current stock price,
• A := {0, 1} where a = 0 means continue and a = 1 means exercise,
• QX(B|x) = qδxu(B) + (1 − q)δxd(B), x ∈ E for Borel sets B where q is

given by (11.1),
• g(x) := h+(x) and c(x) ≡ 0,
• β := (1 + i)−1 ∈ (0, 1] is the discount factor.

Note that when S0 is the initial stock price, then at time n in the binomial
model the only possible stock prices are given by

{S0u
kdn−k | k = 0, . . . , n}.

However, it is sometimes convenient to choose a continuous state space. As-
sumption (BN ) is satisfied since

sup
n≤τ≤N

IE
Q

nx

[
τ−1∑

k=n

βkc+(Xk) + βτh+(Xτ )

]

≤ IE
Q

nx

[
N∑

k=n

h+(Xk)

]

<∞

because Xk can only take a finite number of possible values with positive
probability for all k = 1, . . . , N . Moreover, the following value iteration holds
for this problem (cf. Theorem 10.1.5).
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Algorithm for pricing American options.
Suppose the payoff function is given by h.

1. Set n := 0 and define for x ∈ {S0d
kuN−k | 0 ≤ k ≤ N}:

J0(x) := h+(x).

Set f∗0 (x) := 1 if h(x) ≥ 0 and f∗0 (x) := 0 if h(x) < 0.
2. Set n := n+ 1 and compute for all x ∈ {S0d

kuN−n−k | 0 ≤ k ≤ N − n}

Jn(x) = max
{
h+(x), β

(
qJn−1(xu) + (1 − q)Jn−1(xd)

)}
.

Set f∗
n(x) := 1 if Jn(x) = h+(x) and zero else.

3. If n = N , then the value function JN (S0) is computed and an optimal
policy π∗ is given by π∗ = (f∗

N , . . . , f
∗
1 , f

∗
0 ). Otherwise, go to step 2.

The price of the American option at time n is given by πn(Sn) := JN−n(Sn)
and an optimal exercise time for the time period [n,N ] is

τ∗n := inf{k ∈ {n, . . . , N} | f∗
N−k(Sk) = 1}.

Note that if we set inf ∅ := N + 1, then τ∗n = N + 1 means that the option
is never exercised. The following iteration is equivalent and yields the same
value.

J0(x) := h+(x)

Jn(x) = max
{
h(x), β

(
qJn−1(xu) + (1 − q)Jn−1(xd)

)}
.

From a numerical point of view it is important that at every time point n
only a subset of the stock prices in E can be attained and it is of course
reasonable to compute the value function only for those prices. This is done
in the algorithm. The immediate payoff h(x) which is obtained when we
exercise the option is called the intrinsic value of the option.

Example 11.1.1 (American Call Option). Let us consider the special case of
an American call option with strike price K. The payoff when exercised is
given by h(x) = x−K. It is well known that an optimal exercise strategy is
to wait until the expiration date N and then exercise the option if the stock
price is greater than K. Thus, the price is the same as for a European call
option where the choice whether or not to exercise is only given at time N .
Let us prove this statement in the framework of Markov Decision Models:
We state that for n = 0, 1, . . . , N − 1 and x ∈ E:

h+(x) ≤ β
(
qJn(xu) + (1 − q)Jn(xd)

)
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which then implies that f∗1 (x) = . . . = f∗N (x) = 0 is an optimal exercise
strategy, i.e. we do not exercise until time N . The inequality is true since

β
(
qJn(xu) + (1 − q)Jn(xd)

)
≥ β

(
qJ0(xu) + (1 − q)J0(xd)

)

≥ qJ0

(
βxu

)
+ (1 − q)J0

(
βxd

)

≥ J0

(
qβxu + (1 − q)βxd

)

= J0(x) ≥ h+(x)

where we use the convexity of J0 and the martingale property of the dis-
counted stock price under Q. �

Hedging strategy for an American option
Suppose we have an American option with payoff h and have computed the
prices πn according to the previous algorithm. The hedging strategy for this
option is given as follows. Define for n = 0, . . . , N − 1:

an :=
πn+1

(
uSn

)
−πn+1

(
dSn

)

u − d

cn := πn(Sn) − β
(
qπn+1

(
uSn

)
+ (1 − q)πn+1

(
dSn

))
.

As before, an is the amount of money invested in the stock at time n and
cn is the amount which is consumed at time n. Note that it follows from the
algorithm that cn ≥ 0. We consider now the (self-financing) strategy (cn, an)
with initial wealth π0(S0). We obtain the following evolution of the wealth
process (Wn) under the consumption and investment strategy (cn, an) :

W0 = π0(S0)

Wn+1 = an
Sn+1

Sn
+ (1 + i)

(
Wn − cn − an

)
.

We claim now that for all n = 0, . . . , N :

Wn = πn(Sn). (11.2)

The proof is as follows: For n = 0 the statement follows from the definition.
Now suppose it is true for n. We obtain for R̃n+1 := Sn+1

Sn
:

Wn+1 = anR̃n+1 + (1 + i)
(
Wn − cn − an

)

= anR̃n+1 + (1 + i)
(
β
(
qπn+1

(
uSn

)
+ (1 − q)πn+1

(
dSn

))
− an

)
.

Inserting the definition for an into this expression and also the definition of
q we obtain
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Wn+1 = πn+1

(
uSn

)(
q +

R̃n+1 − 1 − i

u − d

)

+πn+1

(
dSn

)(
1 − q − R̃n+1 − 1 − i

u − d

)

= πn+1

(
uSn

)( R̃n+1 − d

u − d

)
+ πn+1

(
dSn

)(u − R̃n+1

u − d

)
.

Now we discern the two cases:
Case 1: R̃n+1 = u: In this case we obtain

Wn+1 = πn+1

(
uSn

)
.

Case 2: R̃n+1 = d: In this case we obtain

Wn+1 = πn+1

(
dSn

)
.

Thus, in both cases we have Wn+1 = πn+1

(
Sn+1

)
and the statement (11.2)

is shown.
Since Wn = πn(Sn) ≥ h+(Sn) this portfolio strategy hedges a short position
in the American option and may further allow a consumption. However, this
consumption is only positive if the option buyer does not exercise in an
optimal way.

Path-dependent American options
Sometimes the payoff of an option depends on the history of the stock price
evolution. For example in a Look-back option typically the maximum or the
minimum of the stock price process plays a role: The payoff of a Look-back
call with strike price K when exercised at time n is given by

max
1≤k≤n

(Sk −K) = max
1≤k≤n

Sk −K.

More generally, the payoff at time n is given by a function hn(S0, . . . , Sn)
and the task is to find

sup
τ≤N

IE
Q

x

[
βτh+

τ (S0, . . . , Sτ )
]

where the supremum is taken over all stopping times with IPx(τ ≤ N) = 1. In
order to solve this stopping problem as a Markov Decision problem it is in gen-
eral necessary to define the stock price history as the current state, i.e. a state
at time n would be given by (s0, . . . , sn) ∈ R

n
+. The pricing algorithm has then

to be modified accordingly. However, sometimes partial information about
the stock price history is sufficient. For example in the previous example of
the Look-back call it is sufficient to take Xn = (Mn, Sn) as the state process,
where Mn = max1≤k≤n Sk, since Xn+1 =

(
max{Mn, SnRn+1}, SnRn+1

)
and

thus (Xn) is a Markov chain.
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American Put Options

In this section we consider the American put option in greater detail. In
particular we establish some price properties and have a look at the so-called
perpetual American put option.
Recall the pricing algorithm for an American put option with strike price K.

J0(x) = (K − x)+,

Jn(x) = max
{
(K − x)+, β

(
qJn−1(xu) + (1 − q)Jn−1(xd)

)}

where πn(x) = JN−n(x) is the price of the American put option at time n
when the stock price is x at that time. Also recall that the equation

Jn(x) = max
{
K − x, β

(
qJn−1(xu) + (1 − q)Jn−1(xd)

)}

is equivalent. The price of an American put option has the following proper-
ties.

Proposition 11.1.2. The price πn(x) := JN−n(x) of an American put op-
tion has the following properties:

a) x �→ πn(x) is continuous.
b) x �→ πn(x) + x is increasing.
c) πn(x) is decreasing in n for all x ∈ E.
d) There exist real numbers K =: x∗N ≥ x∗N−1 ≥ . . . ≥ x∗0 ≥ 0 such that

the optimal exercise time

τ∗ := inf{n ∈ {0, . . . , N} | Xn ≤ x∗n}

is of threshold type.

Proof. a) The statement follows easily by induction. Note that the maximum
of continuous functions is continuous.

b) We prove the statement by induction. For J0 = πN the statement is
obvious. Now suppose it is true for Jn−1. We will then show the property
for n. To this end note that by definition of q we have βqu+β(1− q)d = 1
and thus:

Jn(x) + x = max
{
K, β

(
q(Jn−1(xu) + xu) + (1 − q)(Jn−1(xd) + xd)

)}
.

Now obviously the right-hand side is increasing in x by the induction
hypothesis and the statement follows.

c) This follows from the general Theorem 10.1.5 b).
d) The existence of x∗n follows from the monotonicity and continuity of Jn

(cf. also Remark 10.1.6). More precisely we can define
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x∗n := inf
{
x ∈ E |β

(
q(πn+1(xu)+xu)+ (1− q)(πn+1(xd)+xd)

)
≥ K

}
.

Note that x∗N−1 ≤ K since

βq(J0(Ku) +Ku) + β(1 − q)(J0(Kd) +Kd) ≥ K.

The fact that the x∗n are decreasing follows from part c).

�

Proposition 11.1.2 implies in particular that the price of the put option is in-
creasing in the expiration date and that it is optimal to exercise if the stock
falls below a certain threshold which depends on the time to maturity and
which is increasing when we approach the expiration date.

Next we consider perpetual American put options. The prefix ‘perpetual’
refers to the fact that the put has no expiration date, i.e. our stopping problem
has an unbounded horizon. Options like this are not traded but serve as an
approximation for large horizons which appear for example when the Black-
Scholes-Merton model is approximated. The price of a perpetual American
put option at time zero is given by

P (x) := sup
τ≤∞

IE
Q

x

[
βτ (K − Sτ )

]

where the stopping reward for τ = ∞ is equal to zero.

Theorem 11.1.3. a) The value P (x) of the perpetual American put option
with strike K and initial stock price x > 0 is given by
J(x) = limn→∞ Jn(x).

b) P is a solution of the equation

P (x) = max
{
(K − x)+, β

(
qP (xu) + (1 − q)P (xd)

)}
=: T P (x)

and 0 ≤ P (x) ≤ K for x ∈ E.
c) P is the smallest superharmonic function which majorizes (K − x)+, i.e.
P is the smallest solution of

P (x) ≥ (K − x)+, P (x) ≥ β
(
qP (xu) + (1 − q)P (xd)

)
, x ∈ E.

d) Let E∗ := {x ∈ E | P (x) = (K − x)+} and f∗(x) = 1E∗(x). Moreover, let
Jf∗ := limn→∞ T n

f∗0. If Jf∗ ≥ T Jf∗ then P (x) = Jf∗(x) for x ∈ E and

τ∗ := inf{n ∈ N0 |Xn ∈ E∗}

is an optimal exercise time.
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e) There exists a constant x∗ ∈ [0,K] such that

E∗ = {x ∈ E | x ≤ x∗}

i.e. it is optimal to exercise the perpetual put option the first time the stock
falls below x∗.

Proof. a) Analogously to the proof of Theorem 10.1.2 it is possible to show
that

P (x) = sup
τ≤∞

IE
Q

x

[
βτ (K − Sτ )+

]
= J∞(x)

where J∞ is the value function of the infinite-stage positive Markov Deci-
sion Model which is defined by the operator T . From Theorem 7.4.3 part
a) it follows with h(x) = K − x that

J∞ = lim
n→∞T n0 = lim

n→∞ T n−1h+ = lim
n→∞Jn = J.

b) This follows from part a) and Theorem 7.4.3 a). Since 0 ≤ Jn(x) ≤ K, the
same inequality holds for P (x).

c) Again from Theorem 7.4.3 part b) we know that P is the smallest solution
of v ≥ T v which is equivalent to the statement.

d) Since P is the smallest solution of v ≥ T v we obtain by our assumption
that Jf∗ ≥ P = J . Since we always have Jf∗ ≤ J∞ = J we obtain
Jf∗ = J∞ = P , i.e. (f∗, f∗, . . .) is an optimal policy which is equivalent to
saying that τ∗ is an optimal exercise time.

e) Since x �→ Jn(x) + x is increasing by Proposition 11.1.2, we obtain by
taking the limit n→ ∞ that x �→ P (x) + x is increasing and

P (x) + x = max
{
K, β

(
q(P (xu) + xu) + (1 − q)(P (xd) + xd)

)}
.

Thus we have E∗ = {x ∈ E | x ≤ x∗} where

x∗ := inf
{
x ∈ E | β

(
q(P (xu) + xu) + (1 − q)(P (xd) + xd)

)
≥ K

}
,

and the statement is shown. 
�

Remark 11.1.4. If the discount factor β = (1 + i)−1 is less than one, then
P = J∞ = J = Jf∗ . In this case P (x) is the unique bounded solution of
P = T P . Moreover, the exercise time τ∗ is optimal, but note that τ∗ is not
finite in general. ♦
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Example 11.1.5. Let us consider a perpetual American put option with the
following specific data: i = 0.25,u = 2,d = 1

2
. Thus we obtain

β = (1 + i)−1 =
4
5
, q =

1
2

and we are in the discounted case. The fixed point equation in this example

Fig. 11.1 Value and exercise region of a perpetual American option.

is
P (x) = max

{
K − x,

2
5
(
P (2x) + P (

1
2
x)

)}
.

It is possible to verify that

P (x) =

{
K − x , for x ≤ K

2

K2

4x
, for x > K

2

is the unique bounded solution of the fixed point equation (see Figure 11.1).
Moreover, it is optimal to exercise when the stock falls below x∗ = K

2
. In this

special case the stock price process is given by

Sn = S02Zn , n ∈ N

where Zn =
∑n

j=1 Yj and Q(Yj = 1) = Q(Yj = −1) = 1
2
, i.e. (Zn) is a

symmetric random walk. Now

Sn ≤ x∗ ⇔ Zn <
log x∗ − logS0

log 2
.

Since the symmetric random walk is recurrent this will happen with proba-
bility one. Hence the exercise time
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τ∗ = inf{n ∈ N0 | Sn ≤ x∗}

satisfies IPx(τ∗ <∞) = 1 for all x ∈ E.
�

11.2 Credit Granting

Imagine a bank which has to decide whether or not a credit should be granted.
We suppose that the bank at time n has some information xn about the bor-
rower (which could be the rating class if the borrower is rated). This rating-
class changes according to a Markov process (Xn) reflecting the changes in
the solvency of the borrower. If the credit is extended a reward is obtained
which depends on xn. This reward can be seen as an expected payoff, antici-
pating the repayment behaviour of the borrower. If the credit is not extended,
i.e. the process is stopped, the contract ends. The maximal duration of the
contract is N . This is a stationary stopping problem with bounded horizon.
The data of the problem is given as follows:

• E := R where x denotes the information about the borrower (rating class),
• A := {0, 1} where a = 0 means extend the credit and a = 1 means cancel

the contract,
• QX is the transition kernel of the information process (Xn),
• c(x) is arbitrary and g(x) ≡ 0,
• β ∈ (0, 1].

We suppose that an upper bounding function b exists for the correspond-
ing Markov Decision Model, hence Assumption (BN ) is satisfied. Obviously
Theorem 10.1.5 can be applied and we obtain the following recursion for the
maximal expected discounted rewards.

J0 ≡ 0

Jn(x) = max
{
0, c(x) + β

∫
Jn−1(y)QX(dy|x)

}
, x ∈ E.

To obtain some more structure we make the following assumptions:

(i) x �→ c(x) is increasing,
(ii) QX is stochastically monotone (for a definition see Section B.3).

With these assumptions we obtain the following structural results.

Theorem 11.2.1. For the credit granting model it holds:

a) Jn(x) is increasing in x and n.
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b) There exist thresholds x∗N ≤ . . . ≤ x∗1 such that the set of states in which
the credit is cancelled is given by S∗

n := {x ∈ E | x < x∗n}. The optimal
credit policy (f∗

N , . . . , f
∗
1 ) is defined by f∗

n := 1S∗
n
.

Proof. a) That Jn(x) is increasing in x follows easily from Theorem 2.4.14.
Note that by assumption x �→

∫
v(x′)QX(dx′|x) is increasing for all in-

creasing v ∈ IB+
b . The monotonicity in n is implied by the general Theorem

10.1.5.
b) The existence of thresholds x∗n follows since by part a) and our assumptions

x �→ c(x) + β

∫
Jn−1(x′)QX(dx′|x)

is increasing (cf. Remark 10.1.6). The thresholds can be defined by

x∗n := inf
{
x ∈ E | c(x) + β

∫
Jn−1(x′)QX(dx′|x) ≥ 0

}

where inf ∅ = ∞. The fact that n �→ x∗n is decreasing is again obtained
from part a). 
�

Let us now consider the following Bayesian version of the problem: Suppose
the borrower is not rated and the bank does not know the repayment prob-
ability p. It only has some prior information (distribution) μ0 and receives
a signal (either positive or negative) every period about the solvency of the
borrower. Following the Bayesian approach in Section 5.4, the posterior dis-
tribution of the repayment probability after n signals has the form

μ̂(dp|s, n) ∝ ps(1 − p)n−sμ0(dp)

if s ≤ n positive signals have been received (cf. Example 5.4.4). Thus, the
expected repayment probability at that time is given by

q(s, n) :=
∫
ps+1(1 − p)n−sμ0(dp)∫
ps(1 − p)n−sμ0(dp)

, s ≤ n.

The one-stage reward when the credit is granted is defined by

c(s, n) := K1q(s, n) +K0

(
1 − q(s, n)

)
(11.3)

where K1 > 0 is the reward which is obtained if the borrower pays and
K0 < 0 the loss when she does not pay. Thus, we have a Markov Decision
Model as in Section 5.4 with the following data:

• E = {(s, n) ∈ N
2
0 | s ≤ n} where (s, n) denotes number of positive signals

and total number of signals received,
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• A := {0, 1} where a = 0 means extend the credit and a = 1 means cancel
the contract,

• qX
(
(s+ 1, n+ 1)|(s, n)

)
:= q(s, n) and qX

(
(s, n+ 1)|(s, n)

)
:= 1− q(s, n)

are the transition probabilities of the information process,
• c(s, n) is given as in (11.3) and g ≡ 0,
• β ∈ (0, 1].

Obviously, Assumption (BN ) is satisfied and the value iteration is given by

J0 ≡ 0

Jk(s, n) = max
{
0, c(s, n) + βq(s, n)Jk−1(s+ 1, n+ 1)

+β(1 − q(s, n))Jk−1(s, n+ 1)
}
, (s, n) ∈ E.

Again we can show the same properties of the value function and the optimal
stopping time. But this time we have to introduce a relation on the state
space first. We consider the following order relation on E

(s, n) ≤ (s′, n′) :⇔ s ≤ s′ and n− s ≥ n′ − s′.

This means that an information state is larger if the number of positive
signals is larger and the number of negative signals is smaller. In what follows
a function v : E → R is called increasing if (s, n) ≤ (s′, n′) implies v(s, n) ≤
v(s′, n′).
Note that it is reasonable to start in the state (s, n) = (0, 0). Then at stage
k we can only have states (s, k) ∈ E and it suffices to consider the value
function JN−k(s, k).

Theorem 11.2.2. For the Bayesian credit granting model it holds:

a) Jk(s, n) is increasing in (s, n) and increasing in k.
b) There exist thresholds t∗N ≤ . . . ≤ t∗1 such that the set of states in which

the credit is cancelled is given by S∗
k := {(s,N − k) ∈ E | s < t∗k}. The

optimal credit policy (f∗
N , . . . , f

∗
1 ) is defined by f∗k := 1S∗

k
.

Proof. a) We can mimic the proof of the previous theorem. That Jk is in-
creasing in k follows from the general stopping theory. For the other
statement we have to show that

• (s, n) �→ c(s, n) = (K1 −K0)q(s, n) +K0 is increasing,
• qX is stochastically monotone.

Since K1−K0 ≥ 0, it is sufficient to show that (s, n) �→ q(s, n) is increas-
ing. But looking at the definition of q(s, n) it is possible to see after some
calculation that for 0 ≤ s ≤ n
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q(s, n+ 1) ≤ q(s, n) ≤ q(s+ 1, n+ 1)

which implies the first statement. The stochastic monotonicity of qX is
indeed simpler. According to Definition B.3.13 and Theorem B.3.3 we
have to show that if (s, n) ≤ (s′, n′) then (s+ 1, n+ 1) ≤ (s′ + 1, n′ + 1)
and q(s, n) ≤ q(s′, n′). The first one is easy and the second one has just
been shown. Finally Theorem 2.4.14 again implies the result.

b) The statement follows from part a) when we define

t∗k := min
{
s ∈ {0, 1, . . . , N − k} | c̄k(s,N − k) ≥ 0

}

where min ∅ := N − k + 1 and

c̄k(s, n) := c(s, n) + βq(s, n)Jk−1(s+ 1, n+ 1)
+β(1 − q(s, n))Jk−1(s, n+ 1).

Then c̄k(s,N − k) ≤ c̄k+1(s,N − k) ≤ c̄k+1(s,N − k − 1) and hence
t∗k+1 ≤ t∗k. 
�

11.3 Remarks and References

The pricing algorithm in Section 11.1 for American options is very useful to
get a numerical computation scheme. In Ben-Ameur et al. (2002) it has been
used to price special Bermudan-American options with an Asian feature. In
Ben-Ameur et al. (2007) the price of embedded call and put options in bonds
are computed by a Markov Decision Problem. An application to installment
options can be found in Ben-Ameur et al. (2006). Allaart and Monticino
(2008) consider optimal buy and sell rules, i.e. multiple stopping problems.
For more numerical aspects concerning the pricing algorithm for American
options see Glasserman (2004), Section 8.
A discussion of the perpetual American option can be found in Shreve
(2004a). Example 11.1.5 is worked out in Shreve (2004a), Section 5.4.
In Rogers (2002) a dual approach for pricing American options has been
proposed. It is shown that the stopping problem is ‘dual’ to a problem where
one has to minimize over a class of martingales. This dual problem provides
in particular bounds on the prices.
The credit granting problem has been investigated by various authors. Wald-
mann (1998) treats the problem also with regime-switching and shows that
the optimal credit policy is of threshold type.
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Appendix A

Tools from Analysis

A.1 Semicontinuous Functions

In order to prove existence of optimal policies, upper semicontinuous func-
tions are important. For the following definition and properties we suppose
that M is a metric space. We use the notation R̄ = R ∪ {−∞,∞}.

Definition A.1.1. A function v : M → R̄ is called upper semicontinuous if
for all sequences (xn) ⊂M with limn→∞ xn = x ∈M it holds

lim sup
n→∞

v(xn) ≤ v(x).

A function v : M → R̄ is called lower semicontinuous if −v is upper semi-
continuous.

A typical upper semicontinuous function is shown in Figure A.1.

Fig. A.1 Graph of an upper semicontinuous function.
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Theorem A.1.2. Let M be compact. If v : M → R̄ is upper semicontinuous
then the function v attains its supremum.

Proof. Let v be upper semicontinuous and denote α := supx∈M v(x) ∈ R̄.
There exists a sequence (xn) ⊂M with limn→∞ v(xn) = α. Since M is com-
pact there exists a converging subsequence (xnk

) of (xn) with limk→∞ xnk
=

b ∈M . Thus, we obtain

α = lim
n→∞ v(xn) = lim

k→∞
v(xnk

) = lim sup
k→∞

v(xnk
) ≤ v(b).

Hence b is a maximum point of v. �	

If v : M → R̄ is upper semicontinuous and v(x) <∞ for all x ∈M , then v is
bounded on every compact subset of M and attains its finite supremum. The
next lemma summarizes some properties of semicontinuous functions (see e.g.
Bertsekas and Shreve (1978), Puterman (1994)). Note that semicontinuous
functions are also Baire functions and part a) is also called Baire’s theorem
on semicontinuous functions.

Lemma A.1.3. Let v : M → R̄ be a function.

a) v is upper semicontinuous if and only if {x ∈M | v(x) ≥ α} is closed for
all α ∈ R.
v is upper semicontinuous if and only if {x ∈ M | v(x) < α} is open for
all α ∈ R.

b) v is upper semicontinuous and bounded from above if and only if there
exists a sequence (vn) of bounded and continuous functions such that
vn ↓ v.

c) Let vi : M → R̄ be upper semicontinuous for all i ∈ I (I arbitrary), then
infi∈I vi is upper semicontinuous.

d) If v is upper semicontinuous and M ′ is a metric space and w : M ′ →M
is continuous then v ◦ w is upper semicontinuous.

e) v is continuous if and only if v is upper and lower semicontinuous.

In what follows we assume that b : M → R+ is a measurable function and
IB+
b := {v ∈M(E) | v+(x) ≤ cb(x) for some c ∈ R+}.

Lemma A.1.4. Let (vn) and (δn) be sequences of functions with vn : M → R

and δn : M → R+. Suppose that limn→∞ δn(x) = 0 for all x ∈M and

vn(x) ≤ vm(x) + δm(x), x ∈M,n ≥ m

i.e. (vn) is weakly decreasing. Then it holds:

a) The limit limn→∞ vn =: v exists.
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b) If vn ∈ IB+
b for all n ∈ N and δ0 ∈ IB+

b , then v ∈ IB+
b .

c) If vn and δn are upper semicontinuous for all n ∈ N, then v is upper
semicontinuous.

Proof. a) The assumptions imply that

lim sup
n→∞

vn(x) ≤ vm(x) + δm(x), x ∈M

for all m ∈ N. Since limm→∞ δm(x) = 0 we thus obtain

lim sup
n→∞

vn(x) ≤ lim inf
m→∞ vm(x)

and the limit exists.
b) Since v ≤ v0 + δ0 ∈ IB+

b we conclude v ∈ IB+
b .

c) The assumptions imply that v ≤ vm + δm for all m ∈ N. Thus, we obtain
for a sequence (xn) ⊂M with xn → x ∈M that for all m ∈ N

lim sup
n→∞

v(xn) ≤ lim sup
n→∞

(
vm(xn) + δm(xn)

)
≤ vm(x) + δm(x).

Taking the limit m→ ∞ we obtain

lim sup
n→∞

v(xn) ≤ v(x)

and thus v is upper semicontinuous. �	

Now let (An) be a set sequence with An ⊂M . Then we define by

LsAn := {a ∈M | a is an accumulation point of a sequence (an) with
an ∈ An for all n ∈ N}

the so-called upper limit of the set sequence (An). The following theorem
shows that under some continuity and compactness assumptions it is possible
to interchange the limit and the supremum for a sequence of functions.

Theorem A.1.5. Let M be compact and let (vn) be a sequence of upper
semicontinuous functions vn : M → R. Moreover, there exists a sequence
(δn) ⊂ R+ with limn→∞ δn = 0 and

vn(a) ≤ vm(a) + δm, a ∈M,n ≥ m.

Then the limit v∞ := lim vn exists and v∞ is upper semicontinuous.

a) Let An := {a ∈M | vn(a) = supx∈M vn(x)} for n ∈ N and n = ∞. Then

∅ �= LsAn ⊂ A∞.
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b) It holds:
lim
n→∞ sup

a∈M
vn(a) = sup

a∈M
lim
n→∞ vn(a) = sup

a∈M
v∞(a).

Proof. The first statements follow directly from Lemma A.1.4.
Since vn is upper semicontinuous, we have An �= ∅ and supa∈M vn(a) < ∞
for n ∈ N + {∞}. Obviously the assumption implies

sup
a∈M

vn(a) ≤ sup
a∈M

vm(a) + δm

for all n ≥ m. Hence limn→∞ supa∈M vn(a) exists. Since M is compact we
have by definition that LsAn �= ∅. Now let a0 ∈ LsAn, i.e. a0 is an accu-
mulation point of a sequence (an) with vn(an) = supa∈M vn(a) for all n. Let
us restrict to a subsequence (ank

) such that limk→∞ ank
= a0. For m ∈ N it

holds

lim
n→∞ sup

a∈M
vn(a) = lim

k→∞
sup
a∈M

vnk
(a) = lim

k→∞
vnk

(ank
)

≤ lim sup
k→∞

(vm(ank
) + δm) ≤ vm(a0) + δm.

Since by assumption v∞ ≤ vn + δn, n ∈ N we further obtain together with
the preceding inequality

sup
a∈M

v∞(a) ≤ lim
n→∞ sup

a∈M
vn(a) ≤ lim

m→∞ (vm(a0) + δm)

= v∞(a0) ≤ sup
a∈M

v∞(a).

This implies now that a0 ∈ A∞ and that

sup
a∈M

v∞(a) = lim
n→∞ sup

a∈M
vn(a).

Thus, the statements in a) and b) follow. �	

The interchange of supremum and limit is easier when the sequence of func-
tions (vn) is weakly increasing.

Theorem A.1.6. Let (vn) be a sequence of functions vn : M → R and
(δn) ⊂ R+ with limn→∞ δn = 0 such that

vn(a) ≥ vm(a) − δm, a ∈M,n ≥ m.

Then the limit v∞ := lim vn exists and

lim
n→∞ sup

a∈M
vn(a) = sup

a∈M
lim
n→∞ vn(a) = sup

a∈M
v∞(a).
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Proof. The existence of the limit follows similarly as in Lemma A.1.4. The
inequality vn(a) ≥ vm(a) − δm implies for all a ∈ IM :

lim
n→∞ vn(a) ≥ vm(a) − δm.

Taking the supremum over all a ∈M and letting n→ ∞ yields

sup
a∈M

lim
n→∞ vn(a) ≥ lim

n→∞ sup
a∈M

vn(a).

On the other hand we have for all n ∈ N

sup
a∈M

vn(a) ≥ vn(a), a ∈M.

Taking the limit n→ ∞ and then the supremum over all a ∈M yields

lim
n→∞ sup

a∈M
vn(a) ≥ sup

a∈M
lim
n→∞ vn(a)

which implies the result. �	

A.2 Set-Valued Mappings and a Selection Theorem

Here we suppose that E and A are Borel spaces. A set-valued mapping (also
known as a multifunction or correspondence) D(·) from E to A is a function
such that D(x) is a non-empty subset of A for all x ∈ E. Here we consider
only compact-valued mappings x �→ D(x), i.e. D(x) is compact for x ∈ E.
In the sequel let D := {(x, a) ∈ E ×A | a ∈ D(x)} be the graph of D(·).

Definition A.2.1. a) The set-valued mapping x �→ D(x) is called upper
semicontinuous if it has the following property for all x ∈ E: If xn → x
and an ∈ D(xn) for all n ∈ N, then (an) has an accumulation point in
D(x).

b) The set-valued mapping x �→ D(x) is called lower semicontinuous if it has
the following property for all x ∈ E: If xn → x, then each point in D(x) is
an accumulation point of a sequence of points an ∈ D(xn) for all n ∈ N.

c) The set-valued mapping x �→ D(x) is called continuous if it is upper and
lower semicontinuous.

Note that the definition of upper semicontinuity is slightly more restrictive
than other definitions appearing in the literature (cp. Hinderer (1970), p.113).
The next lemma provides some characterizations and examples for continuous
or semicontinuous set-valued mappings.
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Lemma A.2.2. a) The set-valued mapping x �→ D(x) is upper semicontinu-
ous if and only if each sequence (xn, an) ⊂ D such that (xn) converges in
E, has an accumulation point in D. Then it follows:

D is compact ⇒ x �→ D(x) is upper semicontinuous ⇒ D is closed.

b) If A is compact, then x �→ D(x) is upper semicontinuous if and only if D
is closed.

c) If A is compact and D(x) = A for all x, then x �→ D(x) is continuous.
d) If A = R and D(x) = [d(x), d̄(x)], then x �→ D(x) is upper semicontinuous

(continuous) if d : E → R is lower semicontinuous (continuous) and d̄ :
E → R is upper semicontinuous (continuous).

The following selection theorem of Kuratowski and Ryll-Nardzewski (1965) is
basic for the existence of maximizers. For more selection theorems see Brown
and Purves (1973), Himmelberg et al. (1976) and Rieder (1978).

Theorem A.2.3 (Selection Theorem). Let x �→ D(x) be a compact-
valued mapping such that D := {(x, a) ∈ E × A | a ∈ D(x)} is a Borel
subset of E × A. Then there exists a Borel measurable selector f for D, i.e.
there exists a Borel measurable function f : E → A such that f(x) ∈ D(x)
for all x ∈ E.

From Theorem A.2.3 the existence of measurable maximizers can be derived.

Theorem A.2.4. Let x �→ D(x) be a compact-valued mapping such that
D := {(x, a) ∈ E ×A | a ∈ D(x)} is a Borel subset of E ×A. Let w : D → R

be Borel measurable. Then there exists a Borel measurable maximizer f of w,
i.e. there exists a Borel measurable function f : E → A such that f(x) ∈ D(x)
for all x ∈ E and

w
(
x, f(x)

)
= sup
a∈D(x)

w(x, a) =: v(x), x ∈ E.

Moreover, v(x) is Borel measurable.

A.3 Miscellaneous

Supermodular functions are useful when monotonicity properties of maximiz-
ers are studied. They appear under different names in the literature. Some-
times they are called L-superadditive or functions with increasing differences.
In what follows we denote for two vectors x, y ∈ R

d
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x ∧ y := (min{x1, y1}, . . . ,min{xd, yd}),
x ∨ y := (max{x1, y1}, . . . ,max{xd, yd}).

Definition A.3.1. A function f : R
d → R is called supermodular if

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y), x, y ∈ R
d.

A function f is called submodular if −f is supermodular. Note that f is
supermodular if and only if all functions (xi, xj) → f(x) are supermodular
for i �= j. Thus, an alternative characterization of supermodular functions is
given as follows: f is supermodular if and only if

Δε
iΔ

δ
jf(x) ≥ 0, x ∈ R

d

for all i, j = 1, . . . , d and ε, δ > 0 where Δε
i f(x) = f(x+εei)−f(x) is the dif-

ference operator. Supermodular functions have the following useful properties
(see e.g. Müller and Stoyan (2002) Theorem 3.9.3 or Bäuerle (1997)).

Lemma A.3.2. a) If f is twice continuously differentiable, then f is super-
modular if and only if for all 1 ≤ i, j ≤ n

∂2

∂xi∂xj
f(x) ≥ 0, x ∈ R

d.

b) If g1, . . . , gd : R → R are increasing and f is supermodular, then
f ◦ (g1, . . . , gd) is supermodular.

c) If f, g are supermodular and a, b ≥ 0, then af + bg is supermodular.
d) If f, g : R

d → R+ are increasing and supermodular, then f ·g is increasing
and supermodular.

Next we introduce the concept of MTP2 functions which is crucial when
dependence properties of random vectors are discussed (for details see e.g.
Müller and Stoyan (2002)).

Definition A.3.3. A function f : R
d → R+ is called MTP2 (multivariate

total positivity of order 2) if

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y), x, y ∈ R
d.

We obtain the following properties:

Lemma A.3.4. a) A function f : R
d → R+ is MTP2 if and only if log f is

supermodular.
b) If f, g : R

d → R+ are MTP2, then also the product fg is MTP2.
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If f is a Lebesgue density of a random vectorX = (X1, . . . , Xd), then f being
MTP2 implies a strong positive dependence between the random variables.
In particular MTP2 implies dependence concepts like conditional increasing,
association and positive orthant dependence.

Finally we state Banach’s fixed point theorem here since it will be important
in the analysis of infinite horizon Markov Decision Models (see Section 7.3).

Theorem A.3.5 (Banach’s Fixed Point Theorem). Let M be a complete
metric space with metric d(x, y) and T an operator which satisfies

(i) T : M →M .
(ii) There exists a number β ∈ (0, 1) such that d(T v, T w) ≤ βd(v, w) for all

v, w ∈M .

Then it holds:

a) T has a unique fixed point v∗ in M , i.e. v∗ = T v∗.
b) limn→∞ T nv = v∗ for all v ∈M .
c) For v ∈M we obtain

d(v∗, T nv) ≤ βn

1 − β
d(T v, v), n ∈ N.

In our applications M is a closed subset of

IBb := {v ∈ IM(E)|‖v‖b <∞}

with metric d(v, w) := ‖v − w‖b for v, w ∈ M and T is the maximal reward
operator.



Appendix B

Tools from Probability

B.1 Probability Theory

In what follows we suppose that all random variables are defined on a com-
plete probability space (Ω,F , IP). The following classical results about the
interchange of expectation and limit can be found in every textbook on prob-
ability theory (see e.g. Billingsley (1995), Bauer (1996), Shiryaev (1996)).

• (Monotone Convergence) Suppose (Xn) is a sequence of random vari-
ables such that Xn ↑ X , Xn ≥ Y IP-a.s. for all n and the random variable
Y satisfies IE Y > −∞. Then

lim
n→∞ IEXn = IEX.

• (Dominated Convergence) Suppose (Xn) is a sequence of random
variables such that Xn → X , |Xn| ≤ Y IP-a.s. for all n and the random
variable Y satisfies IE Y <∞. Then

lim
n→∞ IEXn = IEX.

• (Fatou’s Lemma) Suppose (Xn) is a sequence of random variables such
that Xn ≤ Y IP-a.s. for all n and the random variable Y satisfies IEY <∞.
Then

lim sup
n→∞

IEXn ≤ IE(lim sup
n→∞

Xn).

For the infinite horizon Markov Decision Models we need the following result
(see Hinderer (1970) Theorem A.3).

Theorem B.1.1. Suppose (Xn) is a sequence of random variables with
IE[

∑∞
k=1X

+
k ] <∞ or IE[

∑∞
k=1X

−
k ] <∞. Then

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 13,
c© Springer-Verlag Berlin Heidelberg 2011
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lim
n→∞ IE

[ n∑

k=1

Xk

]
= IE

[ ∞∑

k=1

Xk

]
=

∞∑

k=1

IEXk.

The concept of weak convergence is needed when continuous-time processes
have to be approximated by interpolations of discrete-time processes.

Definition B.1.2. Suppose that X,X1, X2, . . . are random variables with
values in a separable metric space M . Then (Xn) converges weakly against
X if and only if

lim
n→∞ IE f(Xn) = IE f(X)

for all continuous and bounded functions f : M → R.

B.2 Stochastic Processes

In what follows we summarize definitions and facts from discrete-time Markov
processes and martingales. For details on Markov processes we refer the reader
to Meyn and Tweedie (2009) and for more information on continuous-time
processes and predictability see e.g. Protter (2005).

Definition B.2.1. A family of random variables (Xn)n∈N0 on a probability
space (Ω,F , IP) with values in a measurable space (E,E) is called a stochastic
process (in discrete time).

Definition B.2.2. Let (Ω,F , IP) be a probability space.

a) A sequence of σ-algebras (Fn) is called a filtration if F0 ⊂ Fn ⊂ Fn+1 ⊂ F .

b) A stochastic process (Xn) on (Ω,F , IP) is called (Fn)-adapted if Xn is
Fn-measurable for all n.

If Fn = FX
n := σ(X0, . . . , Xn), i.e. Fn is the smallest σ-algebra such that the

random variables X0, . . . , Xn are measurable with respect to Fn, then (Fn) is
called the natural filtration of (Xn). In this case (Xn) is trivially adapted to
(Fn). Moreover, if a random variable Y is FX

n -measurable then there exists
a measurable function h : En+1 → R such that Y = h(X0, . . . , Xn) IP-a.s.

Recall the following definition from Chapter 2.

Definition B.2.3. A mapping Q : E × E → [0, 1] with the two properties

(i) B �→ Q(B|x) is a probability measure for all x ∈ E,
(ii) x �→ Q(B|x) is measurable for all B ∈ E,
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is called a stochastic (transition) kernel.

The second property implies that whenever v : E × E → R is measurable,
then

x �→
∫
v(x, x′)Q(dx′|x)

is again measurable whenever the integral exists.

Definition B.2.4. A stochastic process (Xn) is called a (discrete-time)
Markov process, if there exists a sequence of stochastic kernels (Qn) such
that

IP(Xn+1 ∈ B|FX
n ) = IP(Xn+1 ∈ B|Xn) = Qn(B|Xn).

If (Qn) does not depend on n the process is called a stationary (or homo-
geneous) Markov process. The first equality is called the Markov property.

A stochastic process (Xn) is a Markov process if and only if there exist
independent random variables Z1, Z2, . . . with values in a measurable space
(Z,Z) and measurable functions Tn : E × Z → E, n = 0, 1, 2, . . . such that
X0 is given and

Xn+1 = Tn(Xn, Zn+1), n = 0, 1, 2, . . . .

If the state space E of the stationary Markov process (Xn) is finite or count-
able, the transition kernel is represented by a stochastic matrix
P = (pij)i,j∈E , i.e. pij ≥ 0 and

∑
j pij = 1 for all i ∈ E and it holds

IP(Xn+1 = j|Xn = i) = pij .

In this case we also call (Xn) a Markov chain.

Proposition B.2.5 (Theorem of Ionescu-Tulcea). Let ν be a probability
measure on E and (Qn) a sequence of stochastic kernels. Then there exists a
unique probability measure IPν on E∞ such that

IPν(B0 × . . .×BN ×E × . . .) =

∫

B0

. . .

∫

BN

QN−1(dxN |xN−1) . . . Q0(dx1|x0)ν(dx0)

for every measurable rectangle set B0 × . . .×BN ∈ EN+1.

Definition B.2.6. A stochastic process (Xn) which is (Fn)-adapted and sat-
isfies IE |Xn| <∞ for all n is called an (Fn)-martingale if

IE[Xn+1|Fn] = Xn for all n ∈ N.
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The process (Xn) is called an (Fn)-supermartingale if

IE[Xn+1|Fn] ≤ Xn for all n ∈ N.

The process (Xn) is called an (Fn)-submartingale if

IE[Xn+1|Fn] ≥ Xn for all n ∈ N.

Note that the condition IE[Xn+1|Fn] = Xn for all n is equivalent to
IE[Xm|Fn] = Xn, for all n < m. Often the filtration is not explicitly men-
tioned in which case we assume that it is the natural filtration of the process.

Definition B.2.7. a) A continuous-time stochastic process (Nt)t≥0 with val-
ues in N0 and N0 = 0 is called a homogeneous Poisson process with inten-
sity λ > 0 if it has independent increments and for 0 ≤ s < t the increment
Nt −Ns is Poisson-distributed with parameter λ(t− s).

b) A continuous-time stochastic process (Ct)t≥0 with values in R
d and C0 = 0

is called a compound Poisson process if it is given by

Ct :=
Nt∑

k=1

Yk,

where (Nt) is a Poisson process and Y1, Y2, . . . is a sequence of independent
and identically distributed random vectors with values in R

d which is
independent of (Nt).

Definition B.2.8. A continuous-time stochastic process (Wt)t≥0 with values
in R and W0 = 0 is called a Wiener process or Brownian motion, if it has
almost surely continuous paths, independent increments and for 0 ≤ s < t
we have Wt −Ws ∼ N (0, t− s).

Definition B.2.9. Denote by P the σ-algebra in [0, T ]×Ω generated by all
adapted processes with left-continuous paths. A function X : [0, T ]×Ω → R

d

which is measurable with respect to P is called a predictable process. For
example any left-continuous process is predictable. ♦

B.3 Stochastic Orders

Stochastic orders are partial orders on a set of distributions. Here we consider
the set of all distributions of real-valued random variables. The multivariate
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case is more delicate since there are different reasonable extensions of the
univariate case. Stochastic orders are a valuable tool for obtaining bounds
on performance measures or for deriving sensitivity results. General books
on stochastic orders are Müller and Stoyan (2002) and Shaked and Shan-
thikumar (2007). The focus of the latter one is on applications. A particular
view towards dependence issues can be found in Szekli (1995) and Nelsen
(2006). In Kaas et al. (1998) one can find applications concerning the or-
dering of actuarial risks. Monotonicity properties of stochastic systems have
been discussed extensively in Müller and Stoyan (2002), Chapters 5 and 6.

Definition B.3.1. A binary relation � on an arbitrary set S is called a
preorder if

(i) x � x for all x ∈ S (Reflexivity),
(ii) if x � y and y � z, then x � z (Transitivity).

If � is also antisymmetric, i.e. if x � y and y � x imply x = y, then � is
called a (partial) order. (S,�) is called completely ordered if for any x, y ∈ S
either x � y or y � x.

The Usual Stochastic Order

Definition B.3.2. The random variable X is called smaller than the ran-
dom variable Y with respect to the stochastic order (written X ≤st Y ), if
IP(X ≤ t) ≥ IP(Y ≤ t) for all t ∈ R.

In particular in the economic literature this order is often called first order
stochastic dominance and the symbol ≤FSD is used. Note that X ≤st Y
implies IP(X > t) ≤ IP(Y > t) for all t ∈ R, i.e. Y takes larger values
with larger probability. Since it follows from the definition that the order
relation depends only on the distribution of X and Y it is common to write
PX ≤st PY also.
Useful characterizations of the stochastic order are given in the next theorem.

Theorem B.3.3. Let X and Y be two random variables. The following state-
ments are equivalent:

(i) X ≤st Y .
(ii) For all increasing f : R → R, it holds that IE f(X) ≤ IE f(Y ), whenever

the expectations exist.
(iii) There exists a probability space (Ω,F , IP) and random variables X̂, Ŷ on

it such that X d= X̂, Y
d= Ŷ and X̂(ω) ≤ Ŷ (ω) for all ω ∈ Ω.
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Obviously X ≤st Y implies IEX ≤ IE Y . Besides this, the stochastic order
has a number of important properties. We mention only some of them. For
examples see the next section.

Lemma B.3.4. a) The stochastic order is closed under convolution, i.e. if
X1 and X2 are independent random variables as well as Y1 and Y2 and
Xi ≤st Yi for i = 1, 2, then

X1 +X2 ≤st Y1 + Y2.

b) The stochastic order is closed under mixtures, i.e. if X,Y and Z are
random variables with IP(X ≤ t | Z = z) ≥ IP(Y ≤ t | Z = z) for all t ∈ R

and IP-almost all z then X ≤st Y .
c) The stochastic order is closed with respect to weak convergence, i.e. if
Xn ≤st Yn for all n and (Xn) converges weakly against X, (Yn) converges
weakly to Y , then X ≤st Y .

Likelihood Ratio Order

The likelihood ratio order is stronger than the stochastic order and important
for comparison results in Bayesian models. Often it is easier to verify than
the stochastic order.

Definition B.3.5. The random variableX is called smaller than the random
variable Y with respect to the likelihood ratio order (written X ≤lr Y ), if X
and Y have densities fX and fY with respect to some dominating measure
such that for all s ≤ t:

fX(t)fY (s) ≤ fX(s)fY (t).

Note that the definition is valid for continuous as well as discrete random
variables or mixtures of both. In the multivariate case there are different
possibilities to define a likelihood ratio order.

Theorem B.3.6. If X and Y are random variables with X ≤lr Y , then also
X ≤st Y .

The following characterization is important for the understanding of the like-
lihood ratio order and particularly useful in Bayesian settings:

Theorem B.3.7. Let X and Y be two random variables. The following state-
ments are equivalent:

(i) X ≤lr Y .



B.3 Stochastic Orders 361

(ii) For all events A with IP(X ∈ A) > 0 and IP(Y ∈ A) > 0 we have

IP(X ≤ t | X ∈ A) ≥ IP(Y ≤ t | Y ∈ A), t ∈ R.

Example B.3.8. a) The discrete density of the Poisson distribution Poi(λ) for
λ > 0 is given by

p(k) = e−λ
λk

k!
, k ∈ N0.

It holds: Poi(λ) ≤lr Poi(μ) if and only if λ ≤ μ.
b) The discrete density of the Binomial distribution B(n, p) is for n ∈ N,
p ∈ (0, 1) given by

p(k) =
(
n

k

)

pk(1 − p)n−k, k = 0, . . . , n.

It holds: B(n, p) ≤lr B(m, q) if n ≤ m and p ≤ q.
c) The density of the Exponential distribution Exp(λ) for λ > 0 is given by

f(x) = λe−λx1[x≥0].

It holds: Exp(λ) ≤lr Exp(μ) if and only if λ ≥ μ.
d) The density of the Beta distribution Be(α, β) for α, β > 0 is given by

f(x) ∝ xα−1(1 − x)β−11[0≤x≤1].

It holds: Be(α, β) ≤lr Be(γ, δ) if and only if α ≤ γ and β ≥ δ. �

Convex Orders

Convex orders compare the variability of random variables (instead of the
size as done by the stochastic and likelihood ratio order). Remember that a
function f : R → R is called convex if for all α ∈ (0, 1) and for all x, x′ ∈ R:

f(αx+ (1 − α)x′) ≤ αf(x) + (1 − α)f(x′).

f is called concave if −f is convex.

Definition B.3.9. Let X and Y be random variables with finite mean.

a) X is called smaller than Y with respect to the convex order (written
X ≤cx Y ), if IE f(X) ≤ IE f(Y ) for all convex functions f for which the
expectations exist.

b) X is called smaller than Y with respect to the increasing convex order
(written X ≤icx Y ), if IE f(X) ≤ IE f(Y ) for all increasing, convex func-
tions f for which the expectations exist.
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c) X is called smaller than Y with respect to the increasing concave or-
der (written X ≤icv Y ), if IE f(X) ≤ IE f(Y ) for all increasing, concave
functions f for which the expectations exist.

The ≤icv order is often called second order stochastic dominance in the eco-
nomic literature and the symbol ≤SSD is used, whereas the ≤icx order is
known as the stop-loss order ≤sl in the actuarial sciences. Moreover, it is not
difficult to see that X ≤icx Y is equivalent to −Y ≤icv −X , thus in what fol-
lows we restrict statements to the ≤icx case. Moreover, it follows immediately
from the definition that X ≤st Y implies X ≤icx Y .

Theorem B.3.10. Let X and Y be two random variables. The following
statements are equivalent:

(i) X ≤cx Y .
(ii) X ≤icx Y and IEX = IEY .
(iii) There exists a probability space (Ω,F , IP) and random variables X̂, Ŷ

on it with X
d= X̂, Y

d= Ŷ such that IE[Ŷ | X̂ ] = X̂ IP-a.s. and that
IP(Ŷ ≤ t | X̂ = x) ≥ IP(Ŷ ≤ t | X̂ = x′) for all t ∈ R and x < x′.

Theorem B.3.11. Let X and Y be two random variables. The following
statements are equivalent:

(i) X ≤icx Y .
(ii) IE(X − t)+ ≤ IE(Y − t)+ for all t ∈ R.
(iii) There exists a probability space (Ω,F , IP) and random variables X̂, Ŷ

on it with X
d= X̂, Y

d= Ŷ such that IE[Ŷ | X̂] ≥ X̂ a.s. and that
IP(Ŷ ≤ t | X̂ = x) ≥ IP(Ŷ ≤ t | X̂ = x′) for all t ∈ R and x < x′.

Since ≤lr implies ≤icx all examples of the previous section can also be used
for the increasing convex order. Another interesting example is:

Example B.3.12. The density of the Normal distribution N (μ, σ2) for
μ ∈ R, σ > 0 is given by

f(x) =
1

σ
√

2π
exp

(
− (x− μ)2

2σ2

)
, x ∈ R.

We have N (μ, σ2) ≤cx N (ν, τ2) if and only if μ = ν and τ ≥ σ. �

Stochastic Monotonicity of Markov Processes

Suppose (Xn) is a stationary Markov process with state space E ⊂ R
d and

stochastic transition kernel Q(B|x).
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Definition B.3.13. The stochastic kernel Q is said to be stochastically
monotone if for all increasing v : E → R the function

x �→
∫
v(x′)Q(dx′|x)

is increasing whenever the integral exists. If Q defines a Markov process (Xn)
then we also say that (Xn) is stochastically monotone.

From the definition of the stochastic order it follows immediately that the
kernel Q is stochastically monotone if and only if x ≤ x′, x, x′ ∈ E implies
Q(·|x) ≤st Q(·|x′). If the state space E = {1, . . . ,m} is finite and the tran-
sition probabilities are given by P = (pij) then the Markov chain (Xn) is
stochastically monotone if and only if for all i, j ∈ E with i ≤ j

m∑

ν=k

piν ≤
m∑

ν=k

pjν , k ∈ E.

If we denote by α ∈ R
m the initial distribution, then αPn is the distribution

of the Markov chain at time n ∈ N and (Xn) is stochastically monotone if
for any initial distributions α and α′, α ≤st α′ implies αPn ≤st α′Pn for all
n ∈ N.

Example B.3.14. Suppose (Xn) is a discrete birth-and-death process with
state space E = {0, 1, . . . ,m}, i.e. pi,i+1 = p for i = 0, . . . ,m − 1, pi,i−1 = q
for i = 1, . . . ,m, p0,0 = 1− p, pmm = 1− q for p+ q = 1 and p ∈ (0, 1). Then
it is not difficult to verify that this Markov chain is stochastically monotone
by using the preceding criterion. �
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Appendix C

Tools from Mathematical Finance

C.1 No Arbitrage Pricing Theory

In this section we summarize some facts from the fundamental no arbitrage
pricing theory and shed some light on the role of martingales in option pricing.
For details see Föllmer and Schied (2004) Chapter 5. In what follows suppose
a filtered probability space (Ω,F , (Fn), IP) is given where F0 := {∅, Ω}. On
this space there exist d + 1 assets and the price at time n = 0, 1, . . . , N of
asset k is modelled by a random variable Skn (see Section 3.1 for a detailed
description of the financial market). Asset S0 is a riskless bond which is used
as a numeraire.

Definition C.1.1. a) A probability measure Q on (Ω,F) is called equivalent
to IP if Q and IP have the same null sets.

b) A probability measure Q on (Ω,FN ) is called a martingale measure if the
discounted stock price process (S

k
n

S0
n
) is an (Fn)-martingale under Q for all

k = 1, . . . , d.

The following characterization of no arbitrage is crucial.

Theorem C.1.2. The financial market is free of arbitrage if and only if there
exists an equivalent martingale measure.

Definition C.1.3. a) A contingent claim is a non-negative, FN -measurable
random variable H .

b) A contingent claim is said to be attainable if there exists a self-financing
portfolio strategy φ which replicates the payoff H , i.e.

H = Xφ
N , IP -a.s.

N. Bäuerle and U. Rieder, Markov Decision Processes with Applications
to Finance, Universitext, DOI 10.1007/978-3-642-18324-9 14,
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The portfolio strategy φ is called a replicating strategy or hedging strategy.

c) The financial market is called complete if every contingent claim is attain-
able.

Theorem C.1.4. Suppose the financial market admits no arbitrage oppor-
tunities. Then the market is complete if and only if there exists a unique
equivalent martingale measure.

Definition C.1.5. Suppose there are no arbitrage opportunities and H is
an attainable contingent claim. Its price π(H) is then defined as the initial
amount which is necessary to replicate it, i.e. if φ is a hedging strategy then

π(H) := φ0
0 + φ0 · e.

Theorem C.1.6. Suppose there are no arbitrage opportunities and Q is an
equivalent martingale measure. Then the price of an attainable contingent
claim H can be computed by

π(H) = IEQ

[
H

S0
N

]

.

If the contingent claim H is not attainable, then an interval of arbitrage-free
prices can be computed by

(
inf

Q∈Q
EQ

[
H

S0
N

]

, sup
Q∈Q

EQ

[
H

S0
N

])

where Q is the set of all equivalent martingale measures.

Example C.1.7 (Binomial or Cox-Ross-Rubinstein Model). If the parameters
in the binomial model satisfy

d < 1 + i < u

then the market admits no arbitrage opportunities (see Example 3.1.7) and
is also complete. If we denote the sample space in this model by

Ω :=
{
(ω1, . . . , ωN ) | ωi ∈ {d,u}

}

and R̃n(ω) = ωn then the unique equivalent martingale measure Q is deter-
mined by
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Q(R̃n = u) = q =
1 + i− d

u− d

and the fact that the random relative price changes R̃1, . . . , R̃N are indepen-
dent under Q. �

C.2 Risk Measures

In what follows suppose that we have a probability space (Ω,F , IP) and we
denote by L1(Ω,F , IP) the (equivalence classes of) integrable random vari-
ables. A random variable X ∈ L1(Ω,F , IP) is interpreted as a risk with the
convention that positive values are rewards and negative values are losses. A
risk measure ρ maps a risk X on a real number with the interpretation that
ρ(X) is the amount of money which is necessary to make the risk accept-
able. A theoretical foundation of the theory of risk measures can be found in
Föllmer and Schied (2004) and Pflug and Römisch (2007). The latter book
also contains a number of applications.

Definition C.2.1. A function ρ : L1(Ω,F , IP) → R is called a risk measure.
Let X1, X2 ∈ L1(Ω,F , IP).

a) ρ is called monotone if

X1 ≤ X2 =⇒ ρ(X1) ≥ ρ(X2).

b) ρ is called cash invariant, if for all c ∈ R

ρ(X + c) = ρ(X) − c.

c) ρ is called (positive) homogeneous, if for all λ ≥ 0

ρ(λX) = λρ(X).

d) ρ is called subadditive if

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Properties a)–d) are reasonable properties for a risk measure. If all are sat-
isfied, the risk measure is called coherent. Note that subadditivity rewards
diversification and that coherence implies ρ(0) = 0 and ρ(X + ρ(X)) = 0. A
risk measure ρ is called convex if it is monotone, cash invariant and satisfies
ρ
(
λX + (1 − λ)Y

)
≤ λρ(X) + (1 − λ)ρ(Y ) for all X,Y ∈ L1 and λ ∈ (0, 1).

Example C.2.2. a) Value-at-Risk: For X ∈ L1(Ω,F , IP) the Value-at-Risk
of X at level γ ∈ (0, 1) is defined by
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V aRγ(X) := inf{x ∈ R | IP(x+X < 0) ≤ 1 − γ}.

The Value-at-Risk is the smallest γ-quantile of −X . For applications γ has
to be large, e.g. γ = 0.995 in the regulatory framework Solvency II. Note
that Value-at-Risk is monotone, cash invariant and homogeneous, but in
general not subadditive. Hence V aR is not coherent. The Value-at-Risk is
increasing in γ.

b) Average-Value-at-Risk: For X ∈ L1(Ω,F , IP) the Average-Value-at-
Risk of X at level γ ∈ (0, 1) is given by

AV aRγ(X) =
1

1 − γ

∫ 1

γ

V aRu(X)du.

AV aRγ(X) is continuous and strictly increasing in γ. It holds that
limγ→0AV aRγ(X) = − IEX and limγ→1AV aRγ(X) tends to the worst
outcome. Moreover, it holds that

AV aRγ(X) ≥ V aRγ(X), γ ∈ (0, 1)

and AV aRγ(X) is coherent. It is important to note that the Average-
Value-at-Risk can be computed as the solution of the following optimiza-
tion problem:

AV aRγ(X) = inf
b∈R

{

b+
1

1 − γ
IE[(X + b)−]

}

. (C.1)

The minimum is attained at b∗ = V aRγ(X). �



References

Abrams, R. A. and Karmarkar, U. S. (1980) Optimal multiperiod
investment-consumption policies. Econometrica 48, 333–353.

Albright, S. C. (1979) Structural results for partially observable Markov
decision processes. Oper. Res. 27, 1041–1053.

Allaart, P. and Monticino, M. (2008) Optimal buy/sell rules for corre-
lated random walks. J. Appl. Probab. 45, 33–44.

Almudevar, A. (2001) A dynamic programming algorithm for the opti-
mal control of piecewise deterministic Markov processes. SIAM J. Control
Optim. 40, 525–539.

Altman, E. (1999) Constrained Markov decision processes. Chapman &
Hall/CRC, Boca Raton, FL.

Altman, E. and Stidham, Jr., S. (1995) Optimality of monotonic policies
for two-action Markovian decision processes, with applications to control
of queues with delayed information. Queueing Systems Theory Appl. 21,
267–291.

Asmussen, S. and Albrecher, H. (2010) Ruin probabilities. World Scien-
tific Publishing, River Edge, NJ.

Awanou, G. (2007) Shortfall risk minimization in a discrete regime switching
model. Decis. Econ. Finance 30, 71–78.

Bain, A. and Crisan, D. (2009) Fundamentals of stochastic filtering.
Springer, New York.

Bank, P. and Föllmer, H. (2003) American options, multi-armed ban-
dits, and optimal consumption plans: a unifying view. In Paris-Princeton
Lectures on Mathematical Finance, 2002, 1–42. Springer, Berlin.

Barone, L. (2006) Bruno de Finetti, The problem of full-risk insurance.
Journal of Investment Management 4, 19–43.

Bauer, H. (1996) Probability theory. Walter de Gruyter, Berlin.
Bauer, H. (2004) Fluid approximation for controlled stochastic networks

with delayed dynamics. Ph.D. thesis, Universität Ulm.
Bauer, H. and Rieder, U. (2005) Stochastic control problems with delay.

Math. Methods Oper. Res. 62, 411–427.
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Bäuerle, N. and Rieder, U. (2007) Portfolio optimization with jumps and
unobservable intensity process. Math. Finance 17, 205–224.
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Index

achievable region approach, 241

applications
K-stopping model, 230

bandit problem, 166, 230

burglar problem, 330

cash balance, 46, 224

consumption, 15, 17, 21, 25

consumption-investment, 93

with random horizon, 268
with regime switching, 100

credit granting, 340

dividend problem, 271

dynamic mean risk, 124

dynamic mean-variance, 117

with partial observation, 184

house selling, 316
Howard’s toymaker, 42, 53, 213, 220

index-tracking, 132

indifference pricing, 134

linear quadratic control, 50, 53, 120, 133,
186

machine replacement, 55

optimal stopping, 304

monotone case, 314

quiz show, 318
secretary problem, 319

smoothing problem, 50

terminal wealth, 79

with jump market, 280

with partial observation, 176

with transaction cost, 106

trade execution, 293
with random horizon, 223

approximating Markov chain approach,
140, 291

consistency condition, 141

arbitrage opportunity, 63, 65

Assumption
(BN ), 304

(B), 309
Continuity and compactness, 251
Convergence (C), 195

Convergence (C-), 208
Integrability (AN ), 17, 29, 39

Integrability (A), 195, 208, 245, 258
Structure (SAN ), 23, 40

Structure (SA), 199

backward induction algorithm, 24
Bayes operator, 151
Bayesian model, 155

Bellman equation, 22, 41, 159, 200, 255,
288

binomial model, 60, 65, 86, 90, 114, 125,
178, 183, 331, 366

Black-Scholes-Merton model, 60, 69, 70, 87
Borel space, 14, 29

Brownian motion, see Wiener process

capital market line, see efficient frontier
cemetery subset, 26

certainty equivalence principle, 183
certainty equivalent, 71
complementary slackness, 217

complete financial market, 366
conjugate class, 172

consistency condition, 69
contingent claim, 134, 365

attainable, 365
control

feedback, 255
piecewise open loop, 245

relaxed, 16, 249
correspondence, see set-valued mapping

385
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Cox-Ross-Rubinstein model, see binomial
model

decision rule, 16, 150

history-dependent, 18

One-Step-Look-Ahead, 315

discounting

random, 43

distribution

Beta, 167, 170, 172, 361

binomial, 161, 172, 361

exponential, 161, 361

Gamma, 161

inverse Gamma, 325

normal, 362

Poisson, 361

second order Beta, 325

disturbances, 15

Donsker’s invariance principle, 70

dual program, 215

efficient frontier, 124, 132

filter

equation, 151

Kalman, 155

martingale property, 160

filtration, 356

natural, 356

forward induction algorithm, 41

function

MTP2, 164, 325, 353

c-superharmonic, 311

r-subharmonic, 200

r-superharmonic, 207, 209, 211

additive set, 216

bounding, 205

cost-to-go, 28

L-superadditive, see supermodular

Lagrange, 119, 126

semianalytic, 34

semicontinuous, 29, 201, 203, 347

strong Carathéodory, 249

superharmonic, 337

supermodular, 35, 352

upper bounding, 28, 40, 195, 251

game

card, 44

casino, 226

Gauss-Seidel procedure, 241

Gittins index, 231

grid operator, 221

Hamilton-Jacobi-Bellman equation, 243,
255

hidden Markov model, 149, 153
history, 18

observable, 149, 154

Howard’s policy improvement, 212, 238

indifference property, 232
interchange argument, 237

linear program, 215

Markov chain, 357

Markov Decision Chain
continuous-time, 256

Markov Decision Model

absorbing, 26
Bayesian, 155, 159
binary, 55
comparison of, 38

concave, 34
continuous, 32, 208
contracting, 205

convex, 34
discounted, 205
filtered, 157

finite horizon, 14
infinite horizon, 194
information-based, 162

measurable, 33
monotone, 34
negative, 196, 203

non-stationary, 14
partially observable, 148
Piecewise Deterministic, 243
positive, 208, 338

semicontinuous, 29, 201, 203
stationary, 39
substochastic, 26, 226, 305

terminating, 56
Markov Decision Process, 17, 194

partially observable, 149

Markov process, 357
birth-and-death, 363
piecewise deterministic, 66, 243, 280

stationary, 357
stochastic monotonicity of, 105, 363
uniformized, 257

Markov property, 17, 357
martingale, 82, 118, 126, 132, 357

c-supermartingale, 307
submartingale, 358

supermartingale, 358
martingale measure, 365
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equivalent, 65, 137, 366

minimal entropy, 137, 140
martingale method, 142
maximal reward operator, 19, 40
maximizer, 21

bang-bang, 37
continuous, 32
monotone, 35

Merton ratio, 87, 93

Merton-line, 85
multifunction, see set-valued mapping
multinomial model, 60

neuro-dynamic programming, 241
Newton method, 239
norm

weighted supremum, 28

occupation measure, 216
optimality equation, see Bellman equation
option

American, 331
American call, 333
American put, 336
intrinsic value, 333

path dependent, 335
perpetual, 337

Poisson process, 244, 358

compound, 66, 280, 358
policy

N-stage, 16, 150

band, 275
barrier, 276
Blackwell optimal, 236
Gittins-index, 234

history-dependent, 18, 305
Markov, 18, 245
myopic, 84, 170
optimal, 18

p-optimal, 215
randomized, 16
stationary, 198
threshold, 308

policy iteration, 201, 203, 208
Polish space, 14
portfolio, see trading strategy

price of risk, 124
principle of dynamic programming, 25
prospect theory, 74

reinforcement learning, 241
relative risk process, 63
reward iteration, 20, 40, 199

Riccati equation, 54

risk aversion, 70
Arrow-Pratt, 72, 181
constant absolute CARA, 72

hyperbolic absolute HARA, 72
risk measure, 367

Average-Value-at-Risk, 125, 368

Value-at-Risk, 367

saddle point, 119
separation principle, 147

sequential ratio test, 172
set

completely monotone, 35

set-valued mapping, 351
Snell envelope, 307
stay-on-a-winner property, 168, 170

stochastic order
concave, 38
convex, 38, 361

increasing concave, 104, 362
increasing convex, 361

likelihood ratio, 164, 324, 360
usual, 38, 359

stochastic process, 356

predictable, 67, 358
stopping problem

Bayesian, 323

bounded horizon, 303
monotone case, 314
unbounded horizon, 309

stopping rule, 170
stopping time, 304

Markovian, 305
optimal, 304, 309

strategy

N-stage, 16
bold, 228
hedging, 334, 366

replicating, 366
self-financing, 62, 67
timid, 227

trading, 61, 67
suboptimality test, 241
sufficient statistic, 160

sequential, 162
system function, 15

Theorem

Banach’s fixed point, 207, 354
chattering, 249
Ionescu-Tulcea, 17, 150, 357

selection, 30, 352
strong duality, 218
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structure, 23, 41, 200, 207
turnpike, 42, 241
two-fund, 124
verification, 22, 199, 207
weak duality, 216

training sample, 328
transition function, 15
transition kernel, 357

upper limit of a set sequence, 201, 349
utility function, 70

homogeneous of degree, 107
von Neumann-Morgenstern representa-

tion, 70

value function, 18

limit, 197

value iteration, 200, 201, 203, 208, 209

Wald-Bellman equation, 330

weak convergence, 70

weakly decreasing, 348

weakly increasing, 350

Wiener process, 140, 358

Young topology, 249

zero-utility premium principle, 134
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