

Document

Report and User Manual

Design and Implementation of a
Mars Mission Analysis Software

Author

Horia Ghionoiu Martínez

Supervisor

Dr. Miquel Sureda

Degree

MSc Aeronautical Engineering

Semester:

2020-2021 Spring
M

A
ST

ER
 F

IN
A

L
TH

ES
IS

i

Aknowledgements
To my mum, and my big brother, two of my most appreciated pillars.

ii

Abstract
This project covers the entire design, construction, and release of a software artifact written in
Python, which features a graphical user interface, and a MATLAB astrodynamics core. The software
is to be used on mission design tasks, mainly focused on sustained human interplanetary mission
design.

iii

Contents

AKNOWLEDGEMENTS .. I

ABSTRACT ... II

CONTENTS ... III

FIGURES .. V

TABLES ... VI

ABBREVIATIONS .. VII

INTRODUCTION .. 1
AIM ... 1
SCOPE .. 1
JUSTIFICATION ... 1
CONTEXT .. 2
STATE OF THE ART .. 3
PROJECT MANAGEMENT .. 7

Task Analysis ... 7
WBS Diagram .. 7
WBS Dictionary ... 7
Gantt Diagram .. 8

SOFTWARE ENGINEERING ... 10
ANALYSIS .. 10

Requirements .. 10
Use Cases .. 12

DESIGN .. 18
Class Diagram ... 19
Graphical User Interface ... 20

IMPLEMENTATION .. 25
Architecture .. 25
Code .. 26
Used Technologies... 26
Hardware and Software Resources ... 26

TESTING ... 26

BUDGET .. 29

CONCLUSIONS ... 30

REFERENCES .. 31

USER GUIDE .. 32
INTRODUCTION .. 32
TARGET AUDIENCE .. 32
SOFTWARE DESCRIPTION ... 32
INSTALLING THE SOFTWARE .. 32

Getting The Code .. 33
Configuring the IDE (PyCharm) ... 36
Other Configurations .. 39
Test The Installation .. 40

USING THE SOFTWARE .. 42
Graphical User Interface ... 42

Main Window .. 42
PCP Table .. 43
S/C List .. 44
Buttons ... 44

iv

Mission Tab ... 44
S/C Tab .. 45
Actions Tab ... 46
PCP Manager Tab ... 47
S/C Info ... 48
Status bar .. 48
Keyboard Shortcuts ... 48

Canvas Window ... 49
S/C Info ... 50
Trajectories Filter .. 51
Active Trips.. 51

Edit filters Window .. 51
Select S/C and Trip .. 54
Filter by Dates ... 54
Filter by Time of Flight .. 56
Filter by Energy... 56
Auto Trajectory Selection.. 57
Active Filters View... 57
Keyboard Shortcuts ... 58

PCP Manager Window .. 58
Generate PCP Tab .. 59
Convert PCP Tab ... 60
Working PCP Tab .. 61

View PCP Window ... 61
Generate PCP Window .. 62

TUTORIALS .. 62

ANNEXES .. 63
DOWNLOAD CODE FROM GITHUB (ZIP FILE) .. 63

v

Figures
FIGURE 1. LEFT, INPUT WINDOW OF PCP_PLANET2PLANET.M. RIGHT, INTERACTIVE PORKCHOP PLOT GENERATED BY ASTROLIB’S

PCP_VIEWER.M. .. 3
FIGURE 2. WBS DIAGRAM. .. 7
FIGURE 3. GANTT DIAGRAM ... 9
FIGURE 4. USE CASE DIAGRAM - APP. .. 12
FIGURE 5. USE CASE DIAGRAM – START APP. ... 13
FIGURE 6. USE CASE DIAGRAM – MANAGE WORKING PCP... 14
FIGURE 7. USE CASE DIAGRAM – MODIFY S/C. .. 16
FIGURE 8. USE CASE DIAGRAM – INSPECT S/C. .. 17
FIGURE 9. CLASS DIAGRAM – APP. ... 19
FIGURE 10. UI PROTOTYPE - MAIN WINDOW. ... 21
FIGURE 11. UI PROTOTYPE - PCP MANAGER WINDOW. .. 22
FIGURE 12. UI PROTOTYPE - PCP FILTER WINDOW... 23
FIGURE 13. UI PROTOTYPE - S/C VIEWER (CANVAS) WINDOW. .. 24
FIGURE 14. GET THE CODE FROM VERSION CONTROL (GITHUB). ... 34
FIGURE 15. REPOSITORY URL CONFIGURATION. ... 34
FIGURE 16. CODE HAS BEEN CLONED INTO YOUR COMPUTER, NOW YOU HAVE A LOCAL WORKCOPY. 35
FIGURE 17. PYCHARM OVERVIEW WITH THE CODE DOWNLOADED. ... 35
FIGURE 18. PYCHARM PYTHON INTERPRETER SETTINGS. LOCATED AT THE BOTTOM RIGHT AREA. .. 36
FIGURE 19. ADDING A PYTHON 3.7 INTERPRETER, INTO A NEW VIRTUALENV.. 37
FIGURE 20. INSTALL NEW PYTHON PACKAGES, INTO THE CREATED VIRTUALENV. .. 37
FIGURE 21. INSTALLING PYSIDE2 PACKAGE. DO THE SAME FOR PANDAS, AND SCIPY PACKAGES. .. 38
FIGURE 22. INSTALL MATLABENGINEFORPYTHON PACKAGE. BE SURE THAT (YOUR VIRTUALENV PYTHON NAME) APPEARS AT THE

LEFT SIDE OF EACH TERMINAL LINES, WHICH INDICATES THAT YOUR ARE OPERATING WITH OUR NEW INSTALLED VIRTUALENV.
IF IT DOESN’T APPEARS, CLOSE AND OPEN THE TERMINAL AGAIN. ... 38

FIGURE 23. MATLABENGINEFORPYTHON PACKAGE INSTALLED... 39
FIGURE 24. CONFIGURING THE PATHS. .. 39
FIGURE 25. RUNNING THE APP. ... 40
FIGURE 26. APP WELCOME SPLASH IMAGE. THE MATLAB ENGINE TAKES A WHILE TO LOAD. ... 41
FIGURE 27. SONET MARS MISSION PLANNER MAIN WINDOW. ... 41
FIGURE 28. MAIN WINDOW GENERAL VIEW. .. 42
FIGURE 29. USING THE PCP TABLE. ... 43
FIGURE 30. PCP TABLE NAVIGATION, INSPECTING EARTH-MARS & MARS-EARTH TRANSITS FOR A ONE-WAY S/C. THE BOTTOM

IMAGE IS THE FIRST ONE, BUT WITH A TOO RESTRICTIVE FILTER APPLIED, RESULTING IN ZERO AVAILABLE TRAJECTORIES....... 44
FIGURE 31. MAIN WINDOW MISSION TAB. ... 45
FIGURE 32. MAIN WINDOW S/C TAB. .. 46
FIGURE 33. MAIN WINDOW ACTIONS TAB. ... 47
FIGURE 34. MAIN WINDOW PCP MANAGER TAB. .. 48
FIGURE 35. CANVAS WINDOW GENERAL VIEW. ... 50
FIGURE 36. EDIT FILTERS WINDOW OVERVIEW. ... 53
FIGURE 37. EDIT FILTERS WINDOW, SELECT S/C AND TRIP COMBOS. .. 54
FIGURE 38. EDIT FILTERS WINDOW, DATE - SIMPLEDATE FILTER. .. 55
FIGURE 39. EDIT FILTERS WINDOW, DATE - COMPLEXDATE FILTER. ... 55
FIGURE 40. EDIT FILTERS WINDOW, TIME OF FLIGHT FILTER... 56
FIGURE 41. EDIT FILTERS WINDOW, ENERGY FILTER. .. 57
FIGURE 42. EDIT FILTERS WINDOW, AUTO TRAJECTORY SELECTION FILTER. .. 57
FIGURE 43. EDIT FILTERS WINDOW, FILTERS TABLE. .. 58
FIGURE 44. PCP MANAGER WINDOW, OVERVIEW. .. 59
FIGURE 45. PCP MANAGER WINDOW, GENERATE PCP TAB. .. 60
FIGURE 46. PCP MANAGER WINDOW, CONVERT PCP TAB. ... 61
FIGURE 47. VIEW PCP WINDOW. ... 62
FIGURE 49. GET THE CODE DIRECTLY INTO A ZIP FILE, FROM GITHUB. ... 63
FIGURE 50. CREATE A PYCHARM PROJECT FROM THE DOWNLOADED CODE. ... 63

vi

Tables
TABLE 1. WBS DICTIONARY. .. 7
TABLE 2. FUNCTIONAL REQUIREMENTS. .. 11
TABLE 3. NON-FUNCTIONAL REQUIREMENTS. ... 11
TABLE 4. BUDGET ... 29
TABLE 5. MAIN WINDOW KEYBOARD SHORTCUTS. ... 48
TABLE 6. EDIT FILTERS WINDOW KEYBOARD SHORTCUTS. .. 58

vii

Abbreviations
API – Application Programming Interface
App – Application
DRA – Design Reference Architecture (NASA)
E-M – Earth-Mars
GMAT – General Mission Analysis Tool
GUI – Graphical User Interface
IDE – Integrated Development Environment
LOpp – Launch Opportunity
M-E – Mars-Earth
MAnE – Mission Analysis Environment
N/A – Not Applicable
OOP – Object Oriented Programming
OS – Operative System
PCP – Pork Chop Plot (a plot with interplanetary trajectories)
PM – Project Management
S/C – Spacecraft
SONet – Sustainable Offworld Network
TOF – Time Of Flight
UI – User Interface
UML – Unified Modeling Language
WBS – Work Breakdown Structure
Widget – GUI element/object

1

Introduction

Aim
This project is aimed at design and implementation of a desktop cross-platform application, which
at this point is called SONetMarsAPP. SONetMarsAPP helps trajectory designers and mission
planners build an overall launch and flight sequence for human Mars reference missions.

Scope
The project will be done once the main work on SONetMarsAPP is finished. First of all, a series of
meetings are held with the primary stakeholders (the project tutor), to agree the requirements,
scope, and dates for the project.

Following, the Project Scope Statement is presented:
The main assumptions are:

· The project will be done by 0.5 software engineers. This means that I will work part time on
the project.

· The project will be done by a novice software engineer.

Some constrains are identified:
· Part time work implies extended delivery times.
· Simultaneous full time work and studies during project development could lead to delays.

It remains out of scope:
· Provide an executable for the app.
· Draw the mission sequence.1

The project scope, and related project management activities, are further described in the Project
Management section, for example:

· Task Analysis, or activities identification.
· A graphical description of the deliverables (WBS Diagram).
· A detailed description of the deliverables (WBS Dictionary).
· Project timeline (Gantt Diagram).
· Cost estimation (found in Budget section).

Justification
This final master thesis project has the aim of helping in the SONet project2, which consists of a set
of academics and public/private entities dedicated to the development of human settlements on
other worlds, especially the Moon and Mars. The SONet initiative is part of a global movement,
whose objective is to provide the humanity with the capacity of exploring new worlds. Pursuing that
objective would allow to develop a number of technologies which could improve the wellbeing on
Earth.

1 In the sense seen on NASA DRA 5.0 [6].
2 https://sonet-hub.com/

https://sonet-hub.com/

2

Examples of this could be the development of new crop techniques in extreme conditions, recycling
and reuse of resources, effects of microgravity on the human body and other health treatments,
development in material science, among others.

My contribution to this effort has to do with de development of a desktop application which can be
used in the preliminary design phases of a manned Mars mission towards a future human
settlement offworld. Thus helping the designer or mission planner in the task of planning the
sequence of launches, landings and transits between Earth and Mars.

The developed application could serve as a foundation stone for further, more-complex applications
with the above-mentioned aim. It has the advantage of being programmed in a powerful OOP
language as Python and furthermore being open-source licensed.

The intended user of the application has knowledge of astrodynamics and mission planning.

Context

The context, or starting point of this project is the idea to match or adapt an existing project to a
new set of requirements. The existing project is a doctoral thesis [1], whose one of the deliverables
is a MATLAB code, which performs astrodynamic computations. The new set of requirements
respond to the interest of the SONet group, whose main stakeholder on my side was prof. Miquel
Sureda, on developing a computer code, which helps in the preliminary mission planning and
design, especially for human interplanetary missions to Mars.

The mentioned MATLAB code, here named AstroLib toolbox [1], is one of the main inputs to this
project. Only a small part of AstroLib toolbox was ceded, which consist on two main functions, and
41 auxiliar functions, which are their dependencies. These two main functions are:

· PCP_Planet2Planet.m, which displays a window to choose the simulation parameters (.
Figure 1, left), solves the Lambert’s problem, and finally generates the Porkchop data in
MATLAB matrix files (.mat), for later plotting the Porkchop plots (PCP).

· PCP_Viewer.m which displays the Porkchop plot in an interactive window, read from the
previously generated PCP data .mat files. Figure 1 (right) shows a general view of the
PCP_Viewer window.

As commented, a relevant part of the initial efforts of this project, were to understand, extend, and
modify the functionality offered by AstroLib’s toolbox.

3

Figure 1. Left, input window of PCP_Planet2Planet.m. Right, interactive Porkchop plot generated by
AstroLib’s PCP_Viewer.m.

Also, there have been reviewed concepts of astrodynamics learnt during the previous carreer years,
covering topics sucha as the two-body problem, orbital maneuvers, interplanetary trajectories,
among others. The reference book for this review, has been [2].

Finally, the chosen programming language for developing the application is Python, as it is a highly
popular choice for multi-purpose software, with lots of libraries available, and abundand literature
where to find solutions to the problems arisen. This decision was one of the main challenges of the
project, as involves starting from zero using a new language, with all that that entails.

State of the Art

Since ancient times, humans have been dreaming to explore other worlds [3], [4]. More recently in
the 20th century, there have been different proposals to travel to Mars from the Earth.

Wernher von Braun was the first person to make a detailed technical study of a sustainable human
Mars mission in the early fifties [5]. More recently, NASA developed the Mars Design Reference
Mission series, the first one published in 1990, and the last one (5.0) in 2009 [6]. In these series,
different mission architectures are investigated, on a early and conceptual manner, to draw the
overall strategy of human sustained presence on Mars.

4

(Top) Mahoma riding its horse ‘El-Borak’, conducted by Gabriel archangel, went through the
celestial sphere [3]. (Bottom) NASA’s Artemis Program Moon surface mission recreation [7].

Traditionally, the major actors in the space exploration were the space agencies of the richest
countries in the world, namely; NASA, ESA, or Roscosmos, although nowadays there are also
commercial partners entering in the game, see SpaceX or BlueOrigins. All of them have plans to
develop sustainable human presecence in other worlds, although some of them with greater budget
than others. It is clear that to conquer other worlds, one has first to develop the expertise, and
mature the technologies in the near-Earth space. One of these initiatives is the NASA’s Artemis
Program [7]. In its phases I-II, with a requested budget of 27971.1 M$, they plan to deliver a
sustained human presence in the near-Moon region, the known as the Gateway, which will serve
for the phases III and subsequent, and will allow later sustained human presence in the Moon. Once
this technologies are proven, the next step would be to jump to the deep space, and plan a sustained
human mission to. [7], [6].

In the early phases of space mission design, the designers have to perform a variety of tasks,
examples are; identifying mission opportunities, defining performance requirements, determining
launch and space vehicle sizes, support subsystem analysis, and perform a wide-ranging sensitivity
analyses and trade off studies. It is from the results of such studies that candidate missions are
selected for funding. [8]

5

Figure 2. NASA's GMAT tool example mission and user interface. [9]

To conduct such studies, some software aided solutions are required. Examples of such softwares
are NASA’s General Mission Analysis Tool (GMAT) [9], NASA’s Mission Analysis Low-Thrust Optimizer
(MALTO) [10], or SpaceFlightSolution’s Mission Analysis Environment (MAnE). A general list of
NASA’s used software design tools can be found on [11]. Also, a list of NASA’s open source projects
can be found on [12].

GMAT software is an example of mission-approved, and space tested open-source tool for space
mission design and navigation, it has been used by NASA to plan, design and operate space missions
for decades, last 2020a version features interoperabilty with another mission design tools, like
Copernicus [13] or JPL’s MONTE [14].

MAnE software is an example of mission-approved and space tested commercial tool for mission
design [15]. It is considered among the most advanced commercial software products available for
preliminary heliocentric mission analysis purposes. It can simulate and optimize missions with both
low and high-thrust electric, chemical and nuclear propulsion models. It also interfaces with DE430
planetary ephemeris file and the comprehensive Dastcom5 ephemeris files, to provide a wide
database of planets, comets and asteroids to which interact with. Also features an application that
automates the appending of previously developed trajectory segments to form an extended
mission. All these functionalities are integrated within a smooth and intuitive graphical user
interface.

6

Figure 3. Spaceflightsolutions MAnE software user interface example. [15]

As an example of mission design for sustained human presence in Mars, a series of NASA papers
are published to help mission designers and planners to conduct their studies. MAnE software has
been used to conduct such studies in references [16] and [17], for example for drawing the Porkchop
Plots and to perform sensibility studies of the relevant parameters under analysis.

Although the missions described within this project are based on the NASA’s Design Reference
Architecture [6] proposed Mars Surface Reference Missions, it is not known which software has
been used to design them. In Figure 4, a sequence of Mars Long-Stay mission is plotted with an
unknown software.

Figure 4. NASA's DRA 5.0 Long-Stay Mission Sequence example.

More closely related to this project development, the (here called) AstroLib package is an
astrodynamics MATLAB code which can compute interplanetary trajectories and plot them (Figure
1). Part of AstroLib’s code has been ceded by its author [1] to develop this project.

7

Project Management

Task Analysis
One of the first tasks regarding the project consists of identifying the activities that have to be
performed to reach the marked goals, as well as the planification of how and when they have to be
performed, in order to fulfill the planned calendar and to be within the assigned budget.

To do so, the project deliverables and work packages are hierarchically presented by using the WBS
technique, through its graphical (WBS Diagram) and table representations (WBS Dictionary). Also,
the project timeline is shown by assigning a time window to each activity present in the WBS (Gantt
Diagram).

WBS Diagram

Figure 5. WBS Diagram.

WBS Dictionary
The WBS diagram above presented (Figure 5), is detailed in the WBS dictionary shown in Table 1.

Table 1. WBS Dictionary.

Level WBS code WBS name WBS description

1 1,1 Project Start Activities related to the start of the project.

2 1,1,1 Kickoff Meetings Initial meetings with the stakeholders.

2 1,1,2 Python Learning Transversal activity, held throughout the project.

2 1,1,3 AstroLib Analysis Transversal activity, needed to understand and
extend the initial functionality of the MATLAB
package AstroLib.

1 1,2 Software Analysis SW analysis phase.

8

2 1,2,1 Requirements Functional and non-functional requirements
gathering.

2 1,2,2 Use Case Diagram Application functionality representation through
UML Use Case diagrams.

2 1,2,3 Use Case Narrative Use Case diagrams description through Use Case
Narratives.

1 1,3 Software Design SW design phase.

2 1,3,1 Class Diagram Class structure design and class diagram
generation.

2 1,3,2 Graphical User Interface GUI design.

3 1,3,2,1 UI Prototypes Prototyping the UI.

3 1,3,2,2 Storyboard Prototyping the different UI screens and the
user interaction.

3 1,3,2,3 Style Defining the app’s syle.

1 1,4 Software Implementation SW implementation phase.

2 1,4,1 Architecture Define the app’s architecture.

2 1,4,2 Coding Codification.

2 1,4,3 Bugs correction Bugs identification and correction.

1 1,5 Software Testing SW validation phase.

2 1,5,1 Test Cases Design Design the Test Cases.

2 1,5,2 Test Cases Run Execute the Test Cases and gather the results.

2 1,5,3 Bugs correction Bugs identification and correction.

1 1,6 Project Closing Activities related to the closing of the project.

2 1,6,1 Write Report Report confection.

2 1,6,2 Write User Manual User Manual confection.

2 1,6,3 Project Defence Presentation preparation and defence.

1 1,7 Project Management PM related activities.

2 1,7,1 Task Analysis Tasks identification.

2 1,7,2 Scope Statement Project scope definition.

2 1,7,3 WBS WBS diagram and dictionary generation.

2 1,7,4 Cost Estimate Estimation of the costs.

2 1,7,5 Scheduling Project Timeline, including Gantt diagram.

Gantt Diagram
Once the activities are established, we proceed to the temporal estimation of each one of them.
The result of such planification is a Gantt Diagram. Each bar represents a planned activity, and its
lenght, the duration, in days. See Figure 6.

9

Figure 6. Gantt Diagram

10

Software Engineering
Once the aim and scope of this project are presented, we proceed to describe the process that has
been followed in the design and implementation of the application, by using software engineering
schemes.

Software engineering means writing quality software with the budget and time constraints. This is
explained qualitatively in the so-called devil's square of Sneed. Designing software comprehends
several stages:

Analysis
Consists on the realisation of an assessment on the specific tasks that the program has to perform
as well as how they perform it or what response should they have for certain user inputs. This
assessment is done by means of:

· Requirements specification.
· Use Cases.

Design
It consists of determining the structure of the building blocks which conform the application. This
phase is important because it sets up the path which will be followed in the implementation, that
is, writing of the code. It consists of:

· Class Diagram.
· UI Design.

Implementation
Entails the transformation of the structural design and qualitative steps into real machine-
executable code that is going to turn into something functional. This process is described by means
of:

· Architecture.
· Used Technologies.

Testing
During the implementation phase, and after it, several tests are performed with the aim of assuring
that tha application fulfills the requirements set at the beggining of the project. The main technique
is the black box testing, which consists of testing wether the output under certain conditions is the
desired. This tests are periodically run during the implementation and when one of them fails, a
debugging phase has to be started.

Analysis

Requirements
In this phase the foundation stones of the program are defined. They have to be clear and concise.
Not only that, it should be also specified, what the software must not do. There are several types of
requirements, here we classify them into functional and non-functional ones.

User Roles
There are no special roles intended (admin user, normal user, etc.). The only rol is a generic user.

Functional Requirements
Those regarding things that the user can see and interact with. They are shown in Table 2 and
Table 3.

11

Table 2. Functional requirements.

Requirement ID Description

REQ_FUN_1 The user shall be able to predefine a mission, and load it automatically
when starting the app, without the need of starting from zero each time.

REQ_FUN_2 The user should be able to generate new PCP trajectories.

REQ_FUN_3 The user should be able to limit the maximum delta-v (total) for new
generated PCP trajectories.

REQ_FUN_4 The user should be able to change the app’s working PCP trajectories
database.

REQ_FUN_5 The user should be able to change a s/c state by modifying the filter
applied to the PCP trajectories (e.g. max delta-v, departure dates, among
others).

REQ_FUN_6 The user should be able to insert a filter which automatically choses a
transit , based on a rule, regarding the maximum or minimum value of a
given parameter (e.g. max delta-v total).

REQ_FUN_7 The user should be able to change a s/c state by modifying the transit
selected, either selecting a trajectory or unselecting it. (from the PCP
table).

REQ_FUN_8 The user should be able to change a s/c state by selecting a transit directly
through the PCP plot.

REQ_FUN_9 The user should be able to inspect the trajectories available for a s/c and
transit by inspecting a table.

REQ_FUN_10 The user should be able to inspect the trajectories available for a s/c and
transit by inspecting a PCP plot.

REQ_FUN_11 The user should be able to inspect the full state of a s/c into a separate
window.

REQ_FUN_12 The user should be able to save the working session, to load it for later
uses.

REQ_FUN_13 The user should be able add/remove s/c.

REQ_FUN_14 Start the app (with no predefined mission).

Non-Functional Requirements
Non-functional requirements describe the criteria that can be used to judge the operation of the
software.

Table 3. Non-functional requirements.

Requirement ID Description

REQ_NFUN_1 The device running the app should be a desktop computer.

REQ_NFUN_2 The device running the app should be running Window, MacOS, or Linux
OS.

REQ_NFUN_3 The system running the app should have installed Python.

REQ_NFUN_4 The system running the app should have installed Matlab.

REQ_NFUN_5 The Python version running the app should be compatible with the Matlab
version installed.

REQ_NFUN_6 The following Python packages should be installed in the Python instance:
Pandas, Scipy, PySide2.

12

Use Cases
Following, the system’s behaviour is described, from the user point of view. The used technique are
the Use Case diagrams. Each Use Case diagram has an associated Narrative, which describes the
context where it is developed.

The Use Case diagram for the entire system (the app) is presented (Figure 7), six main Use Cases are
identified, which cover the Requirements defined above.

· Start App (Figure 8) [REQ_FUN_1, REQ_FUN_13, REQ_FUN_14]
· Manage Working PCP (Figure 9) [REQ_FUN_2, REQ_FUN_3, REQ_FUN_4]
· Add S/C [REQ_FUN_13]
· Remove S/C [REQ_FUN_13]
· Modify S/C (Figure 10) [REQ_FUN_5, REQ_FUN_6, REQ_FUN_7, REQ_FUN_8]
· Inspect S/C (Figure 11) [REQ_FUN_9, REQ_FUN_10, REQ_FUN_11]

Observing the application Use Case diagram shown in Figure 7, one can get the general idea of the
its functionality. This is, the app starts, then the user can manage the PCP trajectories, create new
ones, and set the one desired as the application trajectories database. Now, the user can proceed
creating (or removing) s/c, modify them, and inspecting their current state.

Figure 7. Use Case diagram - App.

13

Use Case - Start App

Figure 8. Use Case diagram – Start App.

Narrative – Start App
Actor: The user.
Preconditions: N/A.
Objectives: Start the app.
Main path:

· The app starts.
· The splash screen is displayed, while the Matlab core is loading.
· The app main window is shown.

Alternative path:
· If activated by the user, a predefined mission is built.
· S/C are automatically created.
· S/C are automatically modified.
· The app main window is shown, together with the Canvas window.
· The Canvas window shows the s/c state when user selects it.

14

Use Case - Manage Working PCP

Figure 9. Use Case diagram – Manage Working PCP.

Narrative - Manage Working PCP
Actor: The user.
Preconditions: The app has started.
Objectives: Manage the PCP database, creating new PCPs and set the working one for the app.
Main path:

· The user access this function through a button which invokes a separate window.
· The predefined PCP will be shown.

Alternative path 1:
· The user wants to generate a new PCP matrix file.
· The user access this function through a button which invokes a separate window.
· The user configures the parameters through the window, and once she’s done, click OK.
· The AstroLib Matlab application is called with the set parameters, and it calculates the PCP.
· The PCP matrix file (.mat) is output for later use.

Alternative path 2:
· The user wants to convert PCP matrix file to a PCP tabular file.
· The user access this function through a button which invokes a separate window.

15

· The user can optionally set a limit delta-v (total) through the window, and once she’s done,
click OK.

· The Python SciPy package is called to read the incoming mat file, the app process it, and
then calls to the Python Pandas package to write it in tabular form.

· The PCP tabular file (.pkl) is output for later use.

Alternative path 3:
· The user wants to change the PCP working file for the app.
· The user access this function through a button which invokes a separate window.
· The user chooses the PCP tabular file to be used.
· The loaded file is analysed and set as working PCP file.

Use Case - Add S/C
There is no detailed Use Case diagram for the Add S/C Use Case.

Narrative - Add S/C
Actor: The user.
Preconditions: The app has started.
Objectives: Add a new s/c.
Main path:

· The user writes a name.
· The user selects the payload type.
· The user selects the type of transit (one-way or two-way).
· The user clicks a button and the s/c is added to the database.

Alternative path:
· If the s/c name is already on the database.
· A message is shown in the status bar and no action is performed.

Use Case - Remove S/C
There is no detailed Use Case diagram for the Remove S/C Use Case.

Narrative - Remove S/C
Actor: The user.
Preconditions: The app has started.
Objectives: Remove a s/c.
Main path:

· The user selects a s/c and clicks a button to remove it.

Alternative path:
· If the user doesn’t select a s/c and just clicks the remove button.
· The last added s/c is removed.
· If no s/c left, a message is shown in the status bar, and no action is performed.

16

Use Case - Modify S/C

Figure 10. Use Case diagram – Modify S/C.

Narrative - Modify S/C
Actor: The user.
Preconditions: There is at least a s/c.
Objectives: Modifiy its state.
Main path 1 (Modify Filter):

· The user wants to edit the s/c filter.
· Selects a s/c and clicks a button to open a separate window, where to edit the filter.
· Accepts the window, which is closed.
· If the user had selected a s/c before the window has opened, this s/c is updated with the

new filter and its new state is shown in the main window, or canvas window, if opened.
· If the user had chosen the option, a transit is automatically selected for the current s/c and

the information is updated in the main window, or canvas window, if opened.

Alternative path 1:
· If the user cancels the window, it is closed and no action is performed.

Main path 2 (Inspect PCP Table):
· The user wants to modify a s/c transit.
· She selects a trajectory manually from the PCP table and clicks a button.

17

· The trajectory is added as chosen transit for the current selected s/c.

Alternative path 2:
· The user could also remove an already selected transit, by clicking another button.

Main path 3 (Inspect PCP Plot):
· The user wants to modify a s/c transit, by directly viewing the PCP plot and selecting a point

from it.
· She selects a trajectory manually from the PCP plot and closes the window.
· The trajectory is added as chosen transit for the current selected s/c.

Alternative path 3:
· The user closes the PCP plot with no trajectory selected, no action would be performed.

Main path 4 (Set Current Working PCP):
· The user changes the working PCP.
· All the current selected transits should be reset (removed).
· All the s/c with transits selected, loses them.

Use Case - Inspect S/C

Figure 11. Use Case diagram – Inspect S/C.

18

Narrative - Inspect S/C
Actor: The user.
Preconditions: There is at least a s/c.
Objectives: Inspect its state.
Main path:

· The user can inspect the current state of a s/c by inspecting the PCP table in the main
window.

Alternative path:
· The user can also inspect graphicall the current available trajectories by inspecting the s/c

PCP plot.
· Click the button which invokes the PCP plot.
· This, calls to AstroLib, which is in charge of plotting the PCP in a separate window.
· The user can close the window when done.

Alternative path:
· The user can see a full s/c state resume into a separate window, the canvas window.
· Click a button to open the canvas window.
· When opened, if the user selects a s/c in the main window, the canvas window shows its

current state, which is the s/c info, its filter, and its current selected transits.

Design
Once the app’s requirements, and also its behavior have been defined, we can proceed to the design
phase. The goal within this section is to create the basic system structure, which will be
implemented in the Implementation/Coding phase. The main tasks in this section are two:

· Class Diagram design: a UML diagram where all the classes to be implemented are
represented. Some level of detail is added by showing also the relations between them, and
their most relevant attributes and methods.

· Graphical User Interface design: covering the design of the graphical elements which the
user will interact with, including screens, style, among othes.

19

Class Diagram

Figure 12. Class diagram – App.

Following, the classes are described. The classes which represent a window are the following:

· SonetMainWindowQt: the main window, from where the rest of windows are invoked. It is
responsible of the main app’s logic, including starting the app, creating/removing s/c, and
calling and managing the other windows.

· SonetPCPManagerQt: window in charge of managing the different .mat, .pkl trajectories
files, their generation, conversion, and setting of the current working ones.

· SonetPCPFilterQt: window in charge of managing the filter object of each s/c and transit.
· SonetCanvasQt: window in charge of displaying full s/c state.

Furthermore, there are two additional blocks, which are coming from the MATLAB code from
AstroLib’s package [1]. These will also generate two additional windows. One of this windows is the
PCP generation window, called by SonetPCPManagerQt, which generates the matrix .mat files. The
second one is the PCP Viewer window, called from the main window, which is in charge of plotting
the PCP trajectories, and enables the user to select one from the plot.

20

Also, there are two classes, which are created to implement the app business logic, these are:
· SonetSpacecraft: the central object used in the app. It’s a simplified model of a spacecraft

(s/c), and contains one or two transits (E-M or E-M+M-E3), and one or two filters.
· SonetTrajectoryFilter: The filters, which live within the SonetSpacecraft objects. It contains

a set of conditions to limit the trajectories candidates for a given s/c.

Last, there are three classes, which represent two tables and a list, used in SonetMainWindowQt
and SonetPCPFilterQt windows. This classes are derived from Qt’s QAbstractTableModel and
QAbstractListModel classes, respectively.

· TableModel: used in the main window to store the trajectories in table format.
· ListModel: used in the main window to show the list of s/c.
· SonetAppliedFiltersTableModel: used in SonetPCPFilterQt to show the filter in table

format.

The used libraries are:
· Qt for Python (PySide2), for the GUI.
· Pandas, for tabular data handling.
· SciPy, for mat files handling in Python.
· Matlab Engine for Python, for calling Matlab functions from Python.

Graphical User Interface
UI Prototypes
The UI prototypes are design phase artifacts, which are going to be used to implement the user
interface. A UI prototype is a draft which shows which type of graphical elements (widgets) the user
is going to interact with on the different app’s screens, along with their organization and location
within the UI.

The UI prototypes have been designed according to the needs stated in the Analysis section.
Furthermore, in the Class Diagram section, it has been stated that there will be four different Python
classes, which will implement four separate windows or GUIs. One window will be the main one,
and the other will raise from this mother window. Following are each window’s prototypes.

UI Prototype – Main Window
The main window is the app’s welcome window and the main working area. It consists of:

· Two table widgets, where the PCP is shown in table format. Both tables are stacked in a
unique widget, and the user will change between them by clicking on the corresponding
tab. Each table represents the trajectory possibilities for an Earth-Mars transit, and vice
versa.

· A list widget, where the current existing s/c are listed. The user clicks on the desired s/c,
and the rest of widgets, from this and other windows, update showing information related
to it.

· A buttons area, where all the buttons and associated widgets are placed. The widgets of
this area will be grouped according to their function.

· A status area, where some relevant information for the current selected s/c is to be
displayed.

· A status bar area, where eventual messages appear, to inform the user when needed.

The UI prototype for the main window is shown in Figure 13.

3 See abbreviations section.

21

Figure 13. UI Prototype - Main Window.

UI Prototype – PCP Manager Window
The PCP Manager window will raise from the main window. Its main functionality is to manage the
trajectories PCP database used while working with the app. It is structured in three areas, according
to its intended functionality.

The top group box (a group box is a widget containing other widgets) will host a button to launch
the AstroLib’s matlab function which invokes a separate window and generates the PCP matrix files.

The center group box will host widgets to load PCP matrix files, and to display information for them.
Buttons and line edit widgets (a text field) are used load and see the files paths, respectively. A tree
widget is proposed to display the loaded files information. Once loaded, the user will hit another
button to proceed to their conversion to PCP tabular form.

The bottom group box will have a similar structure as the center one. As its main functionality is to
load the PCP tabular forms which are used during the app execution. Buttons, line edits, and a tree
view are used also here.

The UI prototype for the PCP Manager window is shown in Figure 14.

22

Figure 14. UI Prototype - PCP Manager Window.

UI Prototype – PCP Filter Window
The PCP Filter window will raise from the main window. Its main functionality is to edit the
trajectories filter object which lives inside each s/c (SonetTrajectoryFilter class seen in Class
Diagram). It is structured in three areas, according to its intended functionality.

On the top, two buttons horizontally aligned, which will serve to select a s/c and one transit (Earth-
Mars/Mars-Earth), among the available ones.

On the middle, a group of collapsable (stacked) tabs, each of one will have one of the available filters
to add to the s/c + transit selection. Each one of this tabs, will consist in combo boxes, for multi-
selection options, and spin boxes, for numerical input. A spin box, is a text filed, specialized for
numerical input.

23

At the bottom, the filters table. A table with the current filters applied for the selected s/c + transit
selection.

Also, there will be an undetermined number of buttons, conveniently placed, to add functionality,
like adding/removing filters, reseting the filter fields, etc.

The UI prototype for the PCP Filter window is shown in Figure 15.

Figure 15. UI Prototype - PCP Filter Window.

UI Prototype – S/C Info Window (also called Canvas Window)
The S/C Info or Canvas window will raise from the main window. Its main functionality is to display
a full state overview of the currently selected s/c. It is structured in three tree view areas.

On the top, the S/C Info tree view area where the selected s/c name and type is shown (e.g. s/c
ATLAS, type Human). Also, if you see a start (*) next to the type name (e.g. Human*), it means that
this s/c has both Earth-Mars, and Mars-Earth transits. If not, it means that it has only Earth-Mars
transit. Also, the dependencies (s/c on which this s/c depends on) and dependents (s/c which
depend on this s/c) are displayed here, in a tree view manner too. You can see the following symbols
next to a dependency/dependent s/c:

24

· (>>) Relation of the selected s/c E-M4 transit with the dependency/dependent s/c E-M
transit.

· (><) Relation of the selected s/c E-M transit with the dependency/dependent s/c M-E
transit.

· (<>) Relation of the selected s/c M-E transit with the dependency/dependent s/c E-M
transit.

· (<<) Relation of the selected s/c M-E transit with the dependency/dependent s/c M-E
transit.

In the middle, the Trajectories Filter tree view area, a very similar view as the filters table seen at
the bottom of the PCP Filter window, but this one will only display the activated filters (the ones
with 1 in the first column), and both transits E-M and M-E are shown in the same tree view.

On the bottom, the Active Trips tree view area, the same structure, but here, the current selected
transits are show, if any.

The UI prototype for the PCP S/C Info window is shown in Figure 16.

Figure 16. UI Prototype - S/C Viewer (Canvas) Window.

4 E-M means Earth-Mars. M-E, Mars-Earth.

25

Storyboard
A storyboard is a sequence of screens shown with the objective of telling a story, which narrates the
sequence of events the user will encounter while using the app. By posing this narrative, the
implementation process is facilitated, as the app’s interaction with the user remains clear, from a
grahpical user interface viewpoint.

Although the storyboard is a software design activity prior to the software implementation, for this
project, the storyboard technique has been somehow adapted, and placed into the app’s User
Manual, attached to this deliverable.

Style
As the language used to develop the app (Python) and the API used to generate the UI (Qt – PySide2)
are both cross platform, it has been decided to leave the app’s style the default one for each
operative system, resulting in an elegant, non-temporal, easy to maintain UI. See the User Manual,
for the actual style of the app, executed on MacOS systems.

Optionally, it will be prototyped (but not finally delivered) the possibility to customize the app’s
style, by using the Python package qrainbowstyle.

Implementation

Architecture
As shown in Class Diagram section, the app follows a sort of monolithic architecture, where the
components are highly coupled, in this case, to the main window, from which all other windows are
born.

Monolithic architectures cover a variety of use cases, and are, generally considered, a good starting
point for small applications, with one or few developers. This becomes specially true when the
programmer is novice, and has no prior experience with the programming language, nor
implementing architectural patterns.

Although monolithic architecture suffers from scalability and maintainability, one must accept that
things won’t be perfect and design it anyway. It is left for future app’s developers to evolve to a
more modular architecture, as could be a layered or microservice patterns.

Also, as the GUI is built on Qt API, which uses a Model-View-Controller (MVC) architectural pattern,
it can be also considered that the app features a MVC pattern, in some of its components.

However, by following an OOP philosophy, some good practices have been achieved during coding
phase. Examples of this practices are; the single responsibility principle, encapsulation, favor
composition over inheritance, avoid code duplication, open/closed principle, on both method and
class levels. The reference in this regard has been [18].

Finally, the designed solution consists in; four classes each one representing a different GUI window,
two classes representing the s/c and trajectories filter concepts, and three additional classes
reimplemented from Qt API, to enable custom table/list views behaviour. The trajectories database,
is stored in tabular form in pickle binary files (.pkl) and stored in memory during app execution. This
is one of the reasons the app becomes slow with larger database files (+1M trajectories).

26

Code
The implementation phase is by large the funniest and largest one. The code has 3700 lines, written
in Python. The version control system used during the code development is Git, and all the code
history is available at https://github.com/horiaghionoiu/sonet_tfm_horia.

Used Technologies
· Python: cross-platform, highly readable and OOP programming language.
· MATLAB: cross-platform, highly readable, matricial computations oriented (also with OOP

capabilities) programming language.
· Qt API for Python (PySide2): cross-platform GUI API.
· Qt Designer for UI Design (ui XML files): tool from Qt used to build the UI files (.ui) XML files.
· pyside2-uic: tool from Qt used for converting .ui files to .py files, which are loaded and used

during app’s execution.
·

Hardware and Software Resources
At this stage of the project/app development, both developer and user roles would need the same
software and hardware environment:
Software:

· Windows, MacOS, Linux OS.
· PyCharm IDE for Python development.

Hardware:
· Any modern workstation. For this project, a MacBook Air 15’’ (Early 2015) has been used.

Testing
The objective of this section is to perform a battery of tests which cover the most common fail cases
identified during development. This effectively increases the the quality of the softwar. This tests
are based on the functional requirements defined in the Requirements section.

Although a prototype of automated GUI testing has been built (based on Squish suite), all the
following tests are performed manually, and passed or failed by visual inspection of the engineer.

Furthermore, during the implementation phase, special care has been taken to avoid the user to
input wrong data to the application. One example would be in the Edit Filters window, the developer
will find a number of methods which activate and deactivate the window widgets, based on user
interaction, which directs the user to only input correct data to the application.

Test 1 App initialization [REQ_FUN_14]

Preconditions The development environment described in the User Manual.

Action Start app.

Verification Point The main window should be displayed, and no warnings nor errors shown
in the console.

Result PASS

Test 2 App initialization with a predefined mission [REQ_FUN_1]

Preconditions The development environment described in the User Manual.

Action Start app, defining a mission in SonetUtils.build_example_mission method

https://github.com/horiaghionoiu/sonet_tfm_horia

27

Verification Point The main window should be displayed, and no warnings nor errors shown
in the console. The predefined mission should be correctly loaded.

Result PASS

Test 3 Generate new PCP matrix files, limiting the delta-v (total) [REQ_FUN_2,
REQ_FUN_3]

Preconditions App is started.

Action Launch PCP Manager window. Go to Generate PCP tab. Generate a PCP
matrix file.

Verification Point Inspect the generated file with MATLAB.

Result PASS

Test 4 Change the app’s working PCP files [REQ_FUN_4].

Preconditions App is started. Have already a PCP matrix file generated.

Action Launch PCP Manager window. Go to Working PCP tab. Set the working PCP
tabular files. Accept the window.

Verification Point Inspect the resulting trajectories available.

Result PASS

Test 5 Apply filters to a s/c [REQ_FUN_5]

Preconditions App is started. At least a s/c has been created.

Action Launch Edit Filters window. Work with it applying different filters. Accept
the window.

Verification Point Inspect the resulting trajectories left for the s/c.

Result PASS

Test 6 Apply automatic trajectory filter [REQ_FUN_6]

Preconditions App is started. At least a s/c has been created.

Action Launch Edit Filters window. Apply an auto trajectory selection filter. Accept
the window.

Verification Point Inspect the resulting trajectories left for the s/c. A proper trajectory is to
be selected, depending on the applied filter.

Result PASS

Test 7 Select and unselect trajectories for a s/c, from the PCP table in the main
window [REQ_FUN_7, REQ_FUN_9]

Preconditions App is started. At least a s/c has been created.

Action Click the select and unselect buttons from the main window for a given s/c.

Verification Point Inspect the results, in the main window, the label and progress bar are
updated. In the canvas window, the bottom tree view are updated.

Result PASS

Test 8 Select a trajectory for a s/c, from the PCP plot viewer. [REQ_FUN_8,
REQ_FUN_10]

Preconditions App is started. At least a s/c has been created.

Action Launch PCP Viewer window. Click a point on the PCP. Close the window.

Verification Point Inspect the results, in the main window, the label and progress bar are
updated. In the canvas window, the bottom tree view are updated.

Result PASS

28

Test 9 Inspect the full state of a s/c in the Canvas window [REQ_FUN_11]

Preconditions App is started. At least two s/c have been created. The s/c has filters
applied, with dependency and dependents conditions. The s/c has transits
selected.

Action Launch Canvas window. Click on the s/c in the main window.

Verification Point Inspect the Canvas window.

Result PASS

Test 10 Save the current working session [REQ_FUN_12]

Preconditions Have a full working session, with several s/c with filters applied, and
transits selected.

Action Save the session throught the button in the main window.

Verification Point Failed, the button isn’t implemented.

Result FAIL

Test N Add and remove s/c [REQ_FUN_13]

Preconditions App is started.

Action Add and remove s/c using the convenient buttons in the main window.

Verification Point Inspect the s/c list area in the main window.

Result PASS

29

Budget

The activites defined within Task Analysis section, which form part of the project WBS are taken into
account to compute the project estimated costs. Table 4 summarizes the project overall cost, which
is estimated to be around 50500€. Three roles have been defined to compute the rate/hour price.
A student salary, for tasks related to programming, but which involve learning basic things which a
professional developer would know. A programmer salary, for the tasks related to programing. A
software engineer salary, for tasks related to software engineering roles, which could be related to
project management, software architecture design, and also programming itself.

Table 4. Budget

Traveling Rent Misc Budget

WBS code WBS name Rate €/hour Effort hours Cost € Amount Cost per unitCost - -- --- ----

1,1 Project Start - 7846,32 1 4000 4000 100 3500 50533,36

1,1,1 Kickoff Meetings 25,11 136

1,1,2 Python Learning 7 480

1,1,3 AstroLib Analysis 16,74 64

1,2 Software Analysis - 1406,16

1,2,1 Requirements 25,11 24

1,2,2 Use Case Diagram 25,11 16

1,2,3 Use Case Narrative 25,11 16

1,3 Software Design - 1740,96

1,3,1 Class Diagram 25,11 32

1,3,2 Graphical User Interface - -

1,3,2,1 UI Prototypes 16,74 32

1,3,2,2 Storyboard 16,74 16

1,3,2,3 Style 16,74 8

1,4 Software Implementation - - 12990,24

1,4,1 Architecture 25,11 16

1,4,2 Coding 16,74 472

1,4,3 Bugs correction 16,74 280

1,5 Software Testing - - 4285,44

1,5,1 Test Cases Design 16,74 16

1,5,2 Test Cases Run 16,74 120

1,5,3 Bugs correction 16,74 120

1,6 Project Closing - - 3615,84

1,6,1 Write Report 25,11 72

1,6,2 Write User Manual 16,74 48

1,6,3 Project Defence 25,11 40

1,7 Project Management - 11048,4

1,7,1 Task Analysis 25,11 88

1,7,2 Scope Statement 25,11 88

1,7,3 WBS 25,11 88

1,7,4 Cost Estimate 25,11 88

1,7,5 Scheduling 25,11 88

Sum Cost 42933,36

Student Salary 7

Programmer Salary 16,74

Software Engineer Salary 25,11

Labour Materials

30

Conclusions

This project covered the entire design, construction, and release of a software artifact written in
Python, which features a graphical user interface, and a MATLAB astrodynamics core. The software
is now ready to be used on preliminary interplanetary Mars mission design tasks, and the codebase
of over 3700 lines is available to be further extended in the future. My focus was the development
of an intuitive, comprehensive, proven and documented tool that others with appropriate training
and experience could use productively with confidence, we will see in the future if that goal was
achieved.

I feel very happy of submitting this project. In it, I have spent (invested) nine years of my life. Now,
I officially finish my formal learning process in the university, and I begin a larger one in the life, this
one with no written exams, but full of challenges, wins and losses, friends, enemies, lessons learned,
and a large etcetera.

31

References

[1] D. d. l. T. Sangrà, Optimization of Interplanetary Trajectories with Gravity Assist, Barcelona,
2020.

[2] C. D. Brown, Spacecraft Mission Design 2nd Edition..

[3] A. Ribera, La astronáutica, Barcelona: Plaza & Janes editores, 1973.

[4] NASA, «Why do we Explore?,» [En línea]. Available: https://www.nasa.gov/feature/the-
human-desire-for-exploration-leads-to-discovery.

[5] W. V. Braun, The Mars Project, Illinois: University of Illinois Press, 1953.

[6] NASA, Human Exploration of Mars Design Reference Architecture, 2009.

[7] NASA, «NASA’s Lunar Exploration Program Overview,» 2020.

[8] E. A. Stephen Kemble, «Interplanetary Mission Analysis».

[9] NASA, «GMAT - General Mission Analysis Tool,» [En línea]. Available:
https://sourceforge.net/projects/gmat/.

[10] NASA, «MALTO - Mission Analysis Low-Thrust Optimizer,» [En línea]. Available:
https://software.nasa.gov/software/NPO-43625-1.

[11] NASA, «NASA Space Mission Design Tools,» [En línea]. Available:
https://www.nasa.gov/smallsat-institute/space-mission-design-tools.

[12] NASA, «NASA Open-Source Projects,» [En línea]. Available: https://code.nasa.gov/.

[13] NASA, «Copernicus Trajectory Design and Optimization System,» [En línea]. Available:
https://www.nasa.gov/centers/johnson/copernicus/index.html.

[14] NASA-JPL, «MONTE - Mission Analysis, Operations, and Navigation Toolkit Environment,» [En
línea]. Available: https://montepy.jpl.nasa.gov/.

[15] spaceflightsolutions, «MANE Software,» [En línea]. Available: spaceflightsolutions.com.

[16] L. K. L.E. George, Interplanetary Mission Design Handbook: Earth-to-Mars Mission
Opportunities and Mars-to-Earth Return Opportunities 2009–2024, NASA, 2009.

[17] R. D. F. a. M. L. M. Laura M. Burke, Interplanetary Mission Design Handbook: Earth-to-Mars
Mission Opportunities 2026 to 2045, Cleveland, Ohio: Glenn Research Center, 2010.

[18] A. Shvets, Dive Into Design Patterns.

32

User Guide

Introduction
This user manual aims at describing the functionality of the program SONet Mars Mission Flight
Sequence Planner, from now on SONetMarsAPP. It covers the installation of the program, the
description of its GUI and briefly introduces tutorials to the user..

Target audience
It is assumed that the user has a certain knowledge of astrodynamics and space mission planning.
In the same way, some basic computer skills are also needed, which include the installation of the
Python IDE and its libraries and executing scripts.

Software Description
The main purpose of the application is to help on planning the sequence of launches,
arrival/landings and transit of spacecrafts in Mars-Earth interplanetary missions, specially those
aimed at establishing long-term human settlements in Mars. In this regard, it allows the user a faster
accomplishment of the preliminary design of the missions in comparison with other traditionally
manual methods.

The application is capable of computing the interplanetary trajectories between the Earth and Mars,
which are represented in the so-called Porkchop Plots (PCP). It allows also to save these diagrams
and work with them.

The user can work on the PCPs, creating missions which are composed of several spacecrafts and
applying specific requirements to each one of them, thus setting up a preliminary
scheme/map/diagram of the interplanetary transits. This could be later used to propose more
complex setups, or also the application functionality could be extended, as its source code is
published.

The generation and visualization of the PCPs is done by third-party library called AstroLib, which
was developed in MATLAB and kindly handed by the Dr. D. de la Torre Sangrà [1]. This application is
built around the mentioned library, thus adding a new functionality to it.

Installing The Software
The application is designed to be executed on desktop systems which run on Windows, MacOS, or
Linux OS5. For generating this User Manual , the application ran on Apple MacBook Air 15” (early
2015 version).

In order to run this application, a development environment based on Python, MATLAB and
PyCharm is needed. The author generated a script for automatizing this process, so that the user
only has to run an executable. This process served as a proof-of-concept and unfortunately is not
detailed in the report nor provided the file itself.

Following, the development environment installation process is detailed.

5 It hasn’t been tested on Linux OS.

33

MATLAB
It is necessary to have the MATLAB environment installed6, as the application has functions of it
embodied, which are called. A MATLAB license is needed for the correct function. It would be
possible to just compile the MATLAB code and call the binary executables from Python and not
having the need of the license. This user manual does not cover the MATLAB installation and
configuration, as this topic is generic and widely covered in the Mathworks documentation7.

Python
To run the application, it is necessary to have installed the Python programming language in its 3.78
version.

PyCharm
It is highly recommended having installed an Integrated Developmend Environment (IDE) from
which the application can be run. PyCharm is recommented9. The installation of it is not covered as
it is also generic10. The configuration is treated in hereafter

· At this stage, it’s assumed you’ve successfully installed MATLAB, Python, and PyCharm in
your workstation.

Getting The Code
The code is open source and it’s available online11, you can get it from GitHub12. Following, is
explained how to get it by cloning the online repository into your computer. An alternative
procedure found in the annex, in order to to get the code (Download Code From GitHub (zip file)).

· Step 1 Open PyCharm. You see the Welcome window. Click Get from Version Control. See
Figure 17.

· Step 2 Select Repository URL> Git. Fill the fields as in Figure 18, and click Clone.
· Step 3 After a while, you should see the code available in PyCharm. However click File >

Close Project, to go to the Welcome window again. See Figure 20. Now, click on the project.
· Step 4 Now, you should finally see (Figure 20) PyCharm, with the code to the left, and at the

bottom right corner, a Python interpreter automatically configured (you should see Python
3.7, although in the figure is 3.9 seen).

· Step 5 Congratulations! You have cloned the Git repository from GitHub (online) to your
local computer. Now, your code is synched with the one in the master branch of the official
code repository13

6 It has been tested that MATLAB R2020a version has an acceptable behaviour.
7 https://es.mathworks.com/help/install/install-products.html
8 Available on https://www.python.org/downloads/release/python-370/. It’s also possible to run the app with
other Python versions (3.x), but they hadn’t been tested.
9 Gratis en su versión Community. Versión Professional gratis para estudiantes y empleados de la UPC. Durante
el desarrollo de este proyecto, se ha usado la versión Community y Professional, 2020.x.
10 https://www.jetbrains.com/es-es/pycharm/download/.
11 It is protected by no licence, but if you use it, it would be nice to name the author, me .
12 https://github.com/horiaghionoiu/sonet_tfm_horia.
13 Check https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control to learn more about Git
Control Versioning System.

https://es.mathworks.com/help/install/install-products.html
https://www.python.org/downloads/release/python-370/
https://www.jetbrains.com/es-es/pycharm/download/
https://github.com/horiaghionoiu/sonet_tfm_horia
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

34

Figure 17. Get the code from Version Control (GitHub).

Figure 18. Repository URL configuration.

35

Figure 19. Code has been cloned into your computer, now you have a local workcopy.

Figure 20. PyCharm overview with the code downloaded.

36

Configuring the IDE (PyCharm)
Now, we will add the required Python packages. To do so, we will first create a Virtual environment
(Virtualenv), which is a sort of isolated container, were all installed Python packages live, and they
are only available for this PyCharm project14.

· Step 1 Creating the Virtualenv.
Add interpreter (yellow arrow in Figure 21). Configure it as seen in Figure 22. OK.

· Step 2 Installing the Packages.
Interpreter Settings (green arrow in Figure 21). Install new packages by clicking on the +
cross on the bottom window area (Figure 23). Look for PySide2, pandas, and scipy packages,
and install them (Figure 24). Be advised! PyCharm will identify packages dependencies and
will end up installing more packages than the ones asked for, don’t care about this, all is
fine.

· Step 3 Installing MATLAB for Python (separate package, not from PyCharm).
To install the MATLAB package for Python (named matlabengineforpython) we will proceed
differently, as it is recommended in the official Mathworks documentation15. This process
is graphically explained in Figure 25. Open a terminal within PyCharm (marked as step 0 in
Figure 25), check that (<Virtualenv name>) is between parentheses at the left hand side
(step 1 in yellow), and execute the two commands marked in pink squares in steps 2 and 3.
Once the process is done, you should see matlabengineforpython successfully installed
within the Interpreter settings, as displayed in Figure 26.

· Step 4 Congratulations! You have just installed the environment needed to develop (or just
run) the application.

Figure 21. PyCharm Python interpreter settings. Located at the bottom right area.

14 This is specially useful when playing around with various projects in the same computer, as it avoids mixing
configurations from one project to another, keeping the workcopy clean and safe of incidents.
15 https://es.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html.

https://es.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

37

Figure 22. Adding a Python 3.7 interpreter, into a new Virtualenv.

Figure 23. Install new Python packages, into the created Virtualenv.

38

Figure 24. Installing PySide2 package. Do the same for pandas, and scipy packages.

Figure 25. Install matlabengineforpython package. Be sure that (your Virtualenv Python name)
appears at the left side of each terminal lines, which indicates that your are operating with our new
installed Virtualenv. If it doesn’t appears, close and open the Terminal again.

39

Figure 26. matlabengineforpython package installed.

Other Configurations
Configuring the paths
The application needs a path to your workcopy to be set. See Figure 27, the SONET_DIR variable
should be set according to your local path to your workcopy, where all the Python code lives.

Figure 27. Configuring the paths.

40

Test The Installation
Congratulations! You have successfully installed the application, and now you can proceed to run it
and design missions to Mars! If you experienced problems during the installation, just post a
message on the GitHub repository associated to this application development16, I will revise it and
help you as soon as I can.

Finally, to run the app, just proceed with the step shown in Figure 28. The app will hopefully initialize
(Figure 29) and finally, you should see its main window, as shown in Figure 30.

Figure 28. Running the app.

16 https://github.com/horiaghionoiu/sonet_tfm_horia.

https://github.com/horiaghionoiu/sonet_tfm_horia

41

Figure 29. App welcome splash image. The MATLAB engine takes a while to load.

Figure 30. SONet Mars Mission Planner main window.

42

Using The Software

Graphical User Interface
In this section, the app’s Graphical User Interface, GUI from now on, is described. This description
is from a user viewpoint, for technical details about its design and implementation, check out the
Software Engineering section.

The app can be understood by reviewing the four windows it’s composed of, named; (1) Main
Window, (2) Canvas Window, (3) Edit filters Window, and (4) PCP Manager Window.

Main Window
It is the first window that is shown when running the app. It can be considered the Mother window,
from which other windows are generated. It’s the only window from where the s/c can be created
or removed. Figure 31 shows a general view of the main window. It can be divided into five
differentiated sections:

· PCP Table (green) Current trajectories available for the selected s/c.
· S/C List (blue) Current s/c list.
· Buttons (yellow) Buttons which do different actions.
· S/C Info (red) Information for the selected s/c.
· Status bar (cyan) Eventual information when performing some actions.

Figure 31. Main window general view.

43

PCP Table
It’s surrounded by the green rectangle in Figure 31. It consists of two table views, one for Earth-
Mars transits, and a second one for Mars-Earth ones. You can change between the Earth-Mars /
Mars-Earth table by clicking on the top tabs named accordingly.
The way the PCP Table is meant to be used is (see Figure 32) first selecting a s/c from the S/C List
and then inspect its current available trajectories displayed in the PCP Table area. Consider that
each time you click on a s/c, its trajectories are calculated, for large databases (1M+ trajectories),
this may take a while17. You can see that row 4 has been selected, now you can mark this trajectory
as the one selected for the current selected s/c (seen in Actions Tab).

Figure 32. Using the PCP Table.

Depending on the state of the selected s/c you can see different things in the PCP Table. Figure 33
resumes the three possible states. From top to bottom:

· You see some available trajectories.
· You see no table. The selected s/c has no Mars-Earth transit (e.g. just goes and stays in

Mars)18.
· You see zero available trajectories (e.g. you applied a too restrictive filter to the selected s/c

transit).

17 The app example used while writing this User Manual was using a database of approx 12k trajectories, and
the user experience had no delay. For larger databases you may experience some delay when clicking on a
s/c.
18 You’ll never see a Earth-Mars transit with no table, as it has not considered in the app logic a s/c which

launches from other planet than Earth .

44

Figure 33. PCP Table navigation, inspecting Earth-Mars & Mars-Earth transits for a one-way s/c. The
bottom image is the first one, but with a too restrictive filter applied, resulting in zero available
trajectories.

S/C List
It’s surrounded by the blue rectangle in Figure 31. It consists of a list view. Its main function is to
display a list of all the s/c. The s/c you create will appear in the list, and the ones you remove (seen
in S/C Tab) will disappear. Also, when you select a s/c in the list, the rest of the app will update
showing information for this s/c19.

Buttons
It’s surrounded by the yellow rectangle in Figure 31. It’s the area where all the main window’s
buttons live, grouped under four tabs, which are explained following.

Mission Tab
As seen in Figure 34, there are three buttons. ‘View mission’ button executes the Canvas Window.
The other two buttons are supposed to save/load a mission, but their functionality isn’t
implemented yet. See Testing section, where a requirement is failed due to this.

19 If you are working with a large trajectories database (close and more than 1M trajectories), after clicking
on a s/c the app may stay irresponsive for a seconds, while calculating the trajectories to be displayed.

45

Figure 34. Main window Mission Tab.

S/C Tab
This tab serves for creating/removing s/c. As seen in Figure 35, there are four widgets, arranged in
three lines.

· A text box, where you write the name of the s/c.
· Two combos, where you specify if you want to create a Cargo/Crewed s/c and a One

way/Two way s/c. Any combination is possible.
· Two buttons, to add a new s/c, and another, to remove the current selected s/c in the S/C

List. If no s/c is selected, the last added is removed. If no s/c are left, then a message is
shown in the Status bar.

46

Figure 35. Main window S/C Tab.

You should understand the following about the s/c objects, which are the central objects of the
app.

· S/C are objects which may be of type cargo/crewed, attending to the payload they carry on.

· S/C may also be one-way/two-way, depending on whether they have one (Earth-Mars) or
two transits (Earth-Mars & Mars-Earth).

· Each s/c has a filter for each transit it has (one, or maximum two).

· This filter contains the conditions to apply to the trajectories database to get the filtered
trajectories.

· If the user chooses a trajectory among the available ones, this trajectory is stored for the
current selected s/c and transit.

· A s/c is fully defined when it has all its trajectories chosen.

· A mission is considered fully defined, when all the s/c are fully defined. The app job is done
when the mission is fully defined.

· Unfortunately, you can’t save the job done, this functionality is left for future works, see
Testing section.

Actions Tab
This tab accommodates buttons for change the state of a given s/c.

· Edit s/c filter Executes the Edit filters Window.

47

· View s/c trajectories Executes the View PCP Window.
· Select/Unselect trajectory Chooses/Discards the current selected trajectory for the

current selected transit, for the current selected s/c. If you try to choose a trajectory, and
no trajectory is selected in the PCP Table, nothing happens. If you try to discard a trajectory,
and the s/c has no trajectory chosen, a message is displayed in the status bar. If you try to
choose/discard a trajectory, and no s/c is selected in the S/C List, a message is shown in the
status bar.

Figure 36. Main window Actions Tab.

PCP Manager Tab
As seen in Figure 37, there is only one button, named ‘PCP Manager’. This button executes the PCP
Manager Window.

48

Figure 37. Main window PCP Manager Tab.

S/C Info
It’s surrounded by the red rectangle in Figure 31. It displays information of the current selected s/c.
In the first row, you see a label with the count of the number of filtered trajectories. If you see
something like ‘300 rows filtered out of 11171’, it means that you are currently applying a filter,
which only leaves visible 300 rows, out of 11171 which has the database for the selected transit.
In the second and third rows, you will see a label and a progress bar, which tell you whether you
have chosen all the trajectories for the selected s/c.

Status bar
It’s surrounded by the cyan rectangle in Figure 31. It eventually displays messages to the user,
depending on which action she’s trying to perform, giving additional and (hopefully) useful
information.

Keyboard Shortcuts
To improve the user experience while working with the app, some buttons have associated a
keyboard shortcut.

Table 5. Main window keyboard shortcuts.
Button Keyboard shortcut

Add s/c A, Enter, Return
Remove s/c R, Backspace, Delete
Edit s/c filter E
Select trajectory U

49

Unselect trajectory D

However, It’s a bit tricky to make use of them, If you see that the don’t work, try to left click over a
generic area of the main window (e.g. the centre of nowhere), and then do the keyboard shortcut.

Canvas Window
This window’s main purpose is to display an overview of a given s/c state. At any time, it will update
with the information of the selected s/c within the S/C List.
Figure 38 shows a general view of the canvas window. It can be divided into three differentiated
sections:

· S/C Info(red) Display of s/c name, type, and its relations with other s/c.
· Trajectories Filter (orange) Display of the active filters of the s/c.
· Active Trips (blue) Display the chosen trajectories of the s/c.

50

Figure 38. Canvas window general view.

S/C Info
It’s surrounded by the red rectangle in Figure 38. The s/c info is arranged in a tree structure. The
example from Figure 38 means that the selected s/c is named ATLAS, and it’s a CREWED spacecraft.
The star (*) next to the s/c name means that it has two transits, one Earth-Mars and another Mars-
Earth. This is consistent with the other information seen in the canvas window or other windows.

51

· If you suspect at any moment that the information displayed isn’t correct, click again on the
desired s/c within the S/C List to force an update. If the information is still incorrect, report
a bug in the GitHub project20.

Following, there are two sections which display dependents/dependencies information for the
selected s/c. The example from Figure 38 means:

· Dependencies ATLAS’s Mars-Earth (represented <) transit depends on ARMICHE’s Earth-
Mars (represented >) transit. This dependency information is represented in an own
compacted notation as (<>). This information is consistent with the one shown in other
places (e.g. below, within the Trajectories Filter area).

· Dependents Same philosophy. ATLAS Earth-Mars (represented >) transit has a dependent,
which is ARRUFO’s Mars-Earth (represented <) transit.

Trajectories Filter
It’s surrounded by the orange rectangle in Figure 38. The Trajectories Filter information is arranged
in a tree structure. The example from Figure 38 means that the s/c ATLAS has two transits. The
Earth-Mars transit has no active filters (it may have a filter, but it would be deactivated, see Edit
filters Window). The Mars-Earth transit has an active filter, which tells you that ATLAS departs from
Mars (this is, transit <) after s/c ARMICHE’s Earth-Mars (>) landing. This is why in the above S/C info
tree, the symbol (<>) is shown in the Dependencies section.

Active Trips
It’s surrounded by the blue rectangle in Figure 38. The Active Trips information is arranged in a tree
structure. The example from Figure 38 means that the s/c ATLAS has an Earth-Mars transit defined,
but no a Mars-Earth one. To fully define the s/c, the user is pending to choose a Mars-Earth transit.
In the example, the Earth-Mars transit of the ATLAS s/c departs Earth on December 2024, and lands
on Mars on November 2025, resulting in a time of flight of 325 days, and a total orbit energy of
dvt=14.83 km/s.

Edit filters Window
This window’s main purpose is to display and edit the filter of a given s/c and transit. The window
is modal, which mean you cannot manipulate other windows while this one is opened.

When clicking OK, the following happens:

· Each s/c and transit are analysed.
· If the filter has been modified within the window, the new filter is saved in the s/c object.

If the s/c and transit had a trajectory chosen, this will be lost.
· If its filter has been unmodified, no action is performed.

When clicking Cancel, the window is closed, and nothing happens, which mean any modification is
lost.

Clicking Reset will return all the window widgets to their default state, losing any user modification.
Clicking Add will add the current activated filters from the tab area to the filters table, if any.
Clicking Delete will delete the current selected filter in the filters table, if any.
Clicking Delete all will remove all the available filters in the filters table.

20 https://github.com/horiaghionoiu/sonet_tfm_horia.

https://github.com/horiaghionoiu/sonet_tfm_horia

52

Figure 39 shows a general view of the filter editor window. It can be divided into three differentiated
sections:

· Select S/C and Trip (red)
· Add a filter (green)

· Filter by Dates
· Filter by Time of Flight
· Filter by Energy
· Auto Trajectory Selection

· Active Filters View (blue)

The window workflow is from top to bottom. See Select S/C and Trip.

53

Figure 39. Edit filters window overview.

54

Select S/C and Trip
As seen in Figure 40, select a s/c from the top left combo, then, one of its available transits from the
top right combo. Once this is done, the filter table for this s/c and transit is displayed at the bottom
Active Filters View. At any time, you need to have a s/c and a transit selected, to be able to operate
with the window.

Figure 40. Edit filters window, select s/c and trip combos.

Filter by Dates
This section serves for adding filters related with the launch/landing dates of the s/c. There are two
types of dates filter:

· SimpleDate Seen in Figure 41. To add a filter of the type ‘S/C X departs/arrives Earth/Mars
Before/After/On Y date.

· ComplexDate Seen in Figure 42. To add a filter of the type ‘S/C X departs/arrives Earth/Mars
At least/At most/At the same time S/C Y transit Earth-Mars/Mars-Earth launching/landing
date. Adding a ComplexDate filter effectively establishes a relation between S/C X and S/C
Y. This relation is a dependency for S/C X, and a dependent for S/C Y. For example, in Figure
42, the s/c Mars-Earth transit launching has been related with the same s/c Earth-Mars
landing. This is an example of imposing that a s/c has to return from Mars only after it has
arrived to Mars, which is logic but must be established manually.

· Check Active Filters View section to understand what happen when you relate a s/c with a
second one, and this second s/c has no current trajectory chosen.

55

Figure 41. Edit filters window, Date - SimpleDate filter.

Figure 42. Edit filters window, Date - ComplexDate filter.

56

Note: The above figure is wrong, I should set the top right combo to Mars-Earth, and the top fourth
combo from the top should write Mars, and the second combo from the bottom should write Earth-
Mars.

Filter by Time of Flight
This section serves for adding filters related time of flight. Just set the maximum/minimum TOF for
the s/c and transit, as seen in Figure 43.

Figure 43. Edit filters window, time of flight filter.

Filter by Energy
This section serves for adding filters related to what I called ‘Energy’ parameters. These are:

· dvt Delta Velocity Total. Total impulse (km/s) consumed in the trajectory.
· dvd Delta Velocity Departure. Departure impulse (km/s) consumed in the trajectory.
· dva Delta Velocity Arrival. Arrival impulse (km/s) consumed in the trajectory.
· c3d Departure dvd squared (km2/s2). It represents the kinetic energy consumed for the

departure.
· c3a Arrival dva squared (km2/s2). It represents the kinetic energy consumed for the arrival.
· Theta The total trajectory angle, which tells you if it’s a type I (<180º) or II (>180º).

Just set the maximum/minimum value for the chosen parameter, and for a given s/c and transit, as
seen in Figure 43.

57

Figure 44. Edit filters window, energy filter.

Auto Trajectory Selection
This section serves for adding filters which will automatically choose a given trajectory, among the
ones available. Just select Min/Max and a parameter, as seen in Figure 45. The available parameters
are:

· Departure date, Arrival date.
· dvt, dvd, dva.
· c3d, c3a.
· theta.

Figure 45. Edit filters window, auto trajectory selection filter.

Active Filters View
The above window elements described serve for manipulating the filter (which is a table as seen in
Figure 46) of a given s/c and transit.

Observing Figure 46 (and recalling for Figure 39) one is supposed to add filters, which will appear
activated in the Filter table below. You can change a filter status, between 1/0, to
activate/deactivate it. When you are done, accept the window, or cancel it if you want to discard
the changes.

It’s worth to note that when one adds a ComplexDate filter and accepts the window, this filter will
be tried to be applied. If it cannot be applied21 it will be automatically deactivated. Once you resolve

21 Example: ‘s/c X depends on s/c Y Earth-Mars transit, but s/c has no chosen Earth-Mars transit, so no relation
can be established between s/c X and s/c Y.

58

the dependency, you can get back to the edit filters window, and activate the filter. This is the reason
why you can apply a filter and end up not seeing it when accepting the edit filters window.

Figure 46. Edit filters window, filters table.

Keyboard Shortcuts
To improve the user experience while working with the app, some buttons have associated a
keyboard shortcut.

Table 6. Edit filters window keyboard shortcuts.
Button Keyboard shortcut

Add a filter Enter, Return
Accept window W
Cancel window Q, Escape

However, It’s a bit tricky to make use of them, If you see that the don’t work, try to left click over a
generic area of the window (e.g. the centre of nowhere), and then do the keyboard shortcut.

PCP Manager Window
This window’s main purpose is to manage the trajectories database available for working with the
app. The window is modal, which mean you cannot manipulate other windows while this one is
opened.

By default, you have preconfigured trajectories for Earth-Mars and Mars-Earth transits, but you can
change them manipulating the Working PCP Tab. Figure 47 shows a general view of the window. It
features three tabs, which are:

· Generate PCP Tab.
· Convert PCP Tab.
· Working PCP Tab.

The intended use of the first two tabs is sporadic, as you will use them the generate PCP databases.
Once you have generated enough PCP, you won’t use them, instead, you will use the third tab,
Working PCP Tab, to change between already generated PCPs.

59

Figure 47. PCP manager window, overview.

Generate PCP Tab
This section, seen in Figure 48 contains the button ‘MATLAB PCP generator’, which effectively calls
to a AstroLib’s function in MATLAB, which generates the right hand side window. See Generate PCP
Window section for more information.

60

Figure 48. PCP manager window, generate PCP tab.

Convert PCP Tab
This section takes the .mat files generated in Generate PCP Tab section and converts them to Python
Pickle (.pkl) files. What we are really doing is converting matrix like data (.mat) to tabular like data
(.pkl), because it’s easier to filter data when it’s in tabular form. The app works with the .pkl files,
which are set in Working PCP Tab.

As seen in Figure 49, you can select a .mat file (e.g. for the Earth-Mars transit), then set a limit dvt.
This will discard all those trajectories above that dvt value, in this case 20 km/s. Finally click ‘Convert
PCP to table format’ to generate the .pkl file.

61

Figure 49. PCP manager window, convert PCP tab.

Working PCP Tab
Seen in Figure 47, left hand-side. You select the .pkl files to be used as the PCP data for the current
app session. When changing the working PCP and accepting the window, the chosen trajectories for
all the s/c will be lost, if any, as the PCP data they’re based on has changed.

View PCP Window
Calls to AstroLib (MATLAB) for the current selected s/c and transit (e.g. ATLAS – Earth/Mars seen in
Figure 36), and displays the PCP (e.g. the 11171 trajectories seen in Figure 36). See Figure 50.

You can close the window, which performs no action, or you can select a trajectory (left click in the
graph on the left) from the PCP, which will be plotted at the right-hand side.

Once you select the first trajectory, if you close the window, the last selected one will be taken and
chosen as the trajectory for the selected s/c and transit. This will effectively change the s/c state,
and the associated widgets will update accordingly.

62

Figure 50. View PCP Window.

Generate PCP Window
This modal popup window can be seen in the right-hand side of Figure 48, it asks to the user for the
following parameters:

· Departure Planet: Generally, Earth/Mars.
· Arrival Planet: Generally, Earth/Mars.
· Departure year: first year considered for generating the PCP.
· Synodic periods: the last departure year is the Departure year + Synodic periods.
· TOF years: maximum time of flight considered.
· Manoeuvre: left in blank, not used in the app.
· Multi-revs: left to zero, not used in the app.
· Long-Period: left to zero, not used in the app.
· Matrix size: WARNING! This parameter highly influences the resultant .mat file size. If too

large, it may be difficult to operate with the app. It means the resultant PCP file matrix size,
which is measured as the departure dates vs time of flight, 1000x1000 in the Figure 48
example.

· Output folder: recommended to leave the default one.

When clicking OK, it generates a binary .mat file, which contains the PCP data, according to the
parameters set in the previous popup window. This .mat file can be read by Convert PCP Tab and be
converted to Pickle (.pkl) Python files, which are finally used by the app to store the trajectories
database.

Tutorials
Tutorials on how to use the application capabilities are being uploaded at the project site on
https://github.com/horiaghionoiu/sonet_tfm_horia.

https://github.com/horiaghionoiu/sonet_tfm_horia

63

Annexes

Download Code From GitHub (zip file)
It’s also possible to directly download the code in a compressed (.zip) file to your computer, and the
add the project in PyCharm, as seen in next figures.
Using this option (instead of the control version one) you won’t be able to update the application
with new features developed and pushed to the GitHub repository.

Figure 51. Get the Code directly into a zip file, from GitHub.

And then go to PyCharm and open it by selecting the folder where you extracted the zip file.

Figure 52. Create a PyCharm project from the downloaded code.

	Aknowledgements
	Abstract
	Contents
	Figures
	Tables
	Abbreviations
	Introduction
	Aim
	Scope
	Justification
	Context
	State of the Art
	Project Management
	Task Analysis
	WBS Diagram
	WBS Dictionary
	Gantt Diagram

	Software Engineering
	Analysis
	Requirements
	Use Cases

	Design
	Class Diagram
	Graphical User Interface

	Implementation
	Architecture
	Code
	Used Technologies
	Hardware and Software Resources

	Testing

	Budget
	Conclusions
	References
	User Guide
	Introduction
	Target audience
	Software Description
	Installing The Software
	Getting The Code
	Configuring the IDE (PyCharm)
	Other Configurations
	Test The Installation

	Using The Software
	Graphical User Interface
	Main Window
	PCP Table
	S/C List
	Buttons
	Mission Tab
	S/C Tab
	Actions Tab
	PCP Manager Tab
	S/C Info
	Status bar
	Keyboard Shortcuts

	Canvas Window
	S/C Info
	Trajectories Filter
	Active Trips

	Edit filters Window
	Select S/C and Trip
	Filter by Dates
	Filter by Time of Flight
	Filter by Energy
	Auto Trajectory Selection
	Active Filters View
	Keyboard Shortcuts

	PCP Manager Window
	Generate PCP Tab
	Convert PCP Tab
	Working PCP Tab

	View PCP Window
	Generate PCP Window

	Tutorials

	Annexes
	Download Code From GitHub (zip file)

