Mars Mission Specialist: Payload Design Challenge Teacher Handbook

This handbook contains resources to help teachers implement the design activities described in the following article:

Burton, Bill, et al., "Mars Mission Specialist." *Science and Children*, vol. 55, no. 7, March 2018.

<u>Contents</u>

Teacher Tips	3
Creating Class Tinkercad Accounts	4
Design Thinking Resources	5
Empathy, Trade-Offs, and Food Choices Literacy Lesson	6
Tinkercad Design reminders	8
Making and Using the Sizing Cylinder	10
Making Material Containment Holes	13
Adding the Screweye Hole	16
Planning and Evaluation Sheet	18
Mars Mission Debrief Discussion Questions	20
Materials Reference Sheet	21

Teacher Tips

<u>General</u>

- The containers of small materials will likely spill at some point. It's helpful to have a cleanup plan.
- Print times will vary based on number of payloads, 3D printer type, number of 3D printers available and other variables. Plan ahead for extended printing times and possible clogs or printer errors.
- Before beginning to use Tinkercad, students will need to have individual accounts set up (see next page).
- Consider introducing Tinkercad with a beginner design project so students can become familiar with the design platform.

Design and Printing

- Avoid printing payloads using the printer's "fill" setting. To avoid payloads that are too heavy, use draft or a partial fill setting instead.
- Different 3D printers may print payloads differently.
- Print sample payloads and check their masses before printing students projects.
- PLA plastic is more dense that ABS plastic. This will impact final payload mass.
- Some designs with "overhang" design elements may need "support structures" when printing. 3D printers without this printing feature should avoid printing payloads with "overhang" elements.
- Printed payloads may need to be cleaned of small plastic threads. Tools such as wax carver instruments, dental cleaning tools and/or electric drills work well to remove these.
- Have a few 'example' payloads on hand just in case any student designs are flawed.

Sourcing Materials

Pitsco

www.pitsco.com

- Mars Mission Specialist: Payload Design Challenge classroom sets
- Rocketry Sets
- Estes Bulk Rocket Engines

Nasco

www.enasco.com

- Estes Bulk Rocket Engines
- Plastic Forensic Jars

For a la carte materials: Amazon: <u>www.amazon.com</u> Perler: <u>www.perler.com</u> General Craft Stores

Creating Class Tinkercad Accounts

- Create your own Tinkercad Account
- Click on the **Teach** tab at the top
- On the Teach page, click **Create A New Code**. This is the code students will use to become approved by the teacher.
- Students will then create their own account. Consider using a school login name or prescribed identifier for login names. Common names may have to use middle names as well, i.e. jsmith123 may need to be jrsmith123 or jimmysmith123
- If students are under 13, a parent/adult email will be required to create the account.
- Consider requiring students to use school assigned passwords or a common class password
- Once students have created their account they will have the ability to "Get Approved Now" by adding the class code into the box. Students will then be automatically added to the Moderate Kids section on the teacher profile.

Human-Centered Design Thinking Resources

K12 Lab Network

- K12 Lab Network at the d.school
- K12 Lab Network Curriculum Wiki
- K12 Lab Network Resource Guide

Teaching Innovation/Innovative Thinking

- Where Innovation Comes From
- Get More Innovative by Rethinking the Way You Think
- Why Do People Think You Can't Teach CREATIVITY?
- Learning to Think Outside the Box
- An article about teaching innovation through design and making

Developing Confidence, Creativity, Resilience

- Students Can Learn From Their Mistakes If We Let Them
- The Gift That Keeps On Giving: Sparking Student Curiosity
- How to Build Creative Confidence in Kids
- Learning by Doing ... and Grappling
- What Teachers Learn by Taking Risks

Design Thinking in Education

- Design Thinking in Education: Empathy, Challenge, Discovery, and Sharing
- Design Thinking, Making, and Learning From the Heart
- RED Lab at Stanford Research in Education + Design
- Design Thinking Research

Empathy, Trade-Offs, and Mars Colony Food Choices

Part I: What are trade-offs? How can we use empathy to maximize quality of life?

Students gather with a notebook or paper/clipboard.

If you were in charge of choosing all the food for yourself this weekend, what would you pick? Jot down four food items.

Now imagine you're choosing food for your entire family for this weekend, what would you pick? Draw a line and jot down four food items. What did you consider when designing this menu? How does this change your food choices from when you were just thinking about yourself? [Students consider nutrition, what each family member likes/dislikes, variety, etc.]

What if you invite your friend over and she's gluten free (or vegetarian, allergic to nuts, etc.)? What changes would you make? Jot down a new list of four foods.

Ask students to reflect on this exercise. Why didn't they stick with the original four items? What makes the second or third menu better? Are you still happy with the menu? (Maybe not as happy as you were at first, but you're still satisfied with the selection)

This conversation should lead into a discussion of the following terms (on a chart).

Define vocabulary:

- Empathy understanding how other people feel
- Trade-off sacrificing one option for another option that is better in some way
- Compromise an agreement that is reached when each side gives up something
- Quality of Life health, comfort, and happiness for a group of people
- Nutrition food that is necessary for human growth and health
- Sacrifice to give up something to achieve a goal

Part II: Consider the project question – What food choices will you make when designing the journey to Mars?

What are the pros and cons of each food source (plants, insects, chickens)? [Make a T-chart on the board.]

What trade-offs will you need to make? What are the quality of life considerations? How can you think about this topic from many different people's perspectives?

Part III: Writing

Students write a persuasive paragraph about the choices they made. They can use vague terms ("some insects and some chickens," "mostly plants, but a few chickens"). They give at least three supporting reasons for why their combination of food sources is ideal and takes into account many different factors.

	Recruit	Officer	Commander
	Still working to meet expectations	Met expectations for third grade writing	Went above expectations
Paragraph Structure	The paragraph is not focused on food sources for the Mars colonists.	The paragraph is focused on the food sources for the Mars colonists.	The paragraph is focused on the food sources for the Mars colonists.
	OR The paragraph does not have three	There are three supporting reasons for the food selections.	There are three supporting reasons, and you wrote 2-3 sentences to explain each reason.
	reasons for the food selections.	There is a closing sentence.	There is a closing sentence that is worded differently than the topic sentence.
Supporting Facts	You did not include any facts to support your food choices or the information was not accurate.	You included a few (1-3) accurate and realistic facts to support your food choices.	You included many (4 or more) accurate and realistic facts to support your food choices.
Empathy and Trade- Offs	The food selections do not reflect the needs and preferences of Mars colonists.	The food selections reflect the needs and preferences of Mars colonists.	The food selections reflect the needs and preferences of Mars colonists. You explained why a different combination of food sources would not be ideal for the colonists.
Grammar, Spelling, and Punctuation	 There are many mistakes in: Spelling Complete sentences Apostrophes Capitalization 	 There are some mistakes in: Spelling Complete sentences Apostrophes Capitalization 	 There are very few mistakes in: Spelling Complete sentences Apostrophes Capitalization

Food Sources for the Mars Colony

Tinkercad Design Reminders

Bury shapes together	
For fine adjustments, change the snap grid to a smaller number	Snap Grid 0.25 A
Group your shapes to make a new shape	
Change your view to inspect new shapes from every angle (DO EVERY TIME)	Change View FROM Date Home View Shape View Com In Zoom Out
If you make a mistake, undo it right away	

Change the Colors Or Make a Hole	Shape Preset Swatches Multicolar Multicolar Transparent
Rename the project	Example Project
Make sure the design is on the workplane Not above or below	Yes No

Making and Using the **Sizing Cylinder**

Purpose: The Sizing Cylinder is the first step in the Tinkercad portion of the Payload Design Challenge. The Sizing Cylinder serves as a student tool during the design process that does NOT become part of the final design. Essentially, the Sizing Cylinder is a digital representation of a rocket body tube. Student payload designs should fit within the Sizing Cylinder. If any portion of the student design protrudes from the Sizing Cylinder, the final 3D printed payload may not fit in the rocket. When not in use, the Sizing Cylinder can be set off to the side of the Tinkercad workplane.

Making and Using the **Sizing Cylinder**

Making Payload Material Containment Holes

Purpose: The Material Containment Holes are internal chambers designed to contain the simulated food sources and their support materials. Although these holes don't have specific design parameters, the guide below offers one suggested method. Younger students may need explicit instruction and directions while older or more advanced students may be challenged to design their own containment holes.

Making Payload Material Containment Holes

Making Payload Screweye Hole

Purpose: The Screweye Hole is the final addition to the payload design. After having experience designing in Tinkercad during the Payload Design Challenge, the Screweye Hole is a simple process for students. Although the height of this hole can be more than the example, the base measurement of 2mm x 2mm should be exact. This hole will be where the threads of the screweye screw into the printed plastic. The parachute is attached to the screweye. Improperly sized Screweye Holes may result in a weak attachment between parachute and payload.

Making Payload Screweye Hole

	Planned or Estimated	Actual	Is Actual	Less, Equa	l or More?
Number of Plant Units			Less	Equal	More
Number of Insect Units			Less	Equal	More
Number of Chicken Units			Less	Equal	More
Total Number of Crop Units			Less	Equal	More
Mass of Empty Payload			Less	Equal	More
Mass of Payload Contents			Less	Equal	More
Mass of Full Payload			Less	Equal	More

Payload Contents Planning and Evaluation

Describe any differences between your plans and your final product:

Does my design:	Yes	No
Meet the size requirements?		
Fit within the Testing Cylinder?		
Touch the Workplane?		
Include a Screw Eye Hole?		
Include an identifiable feature?		
Avoid overhangs?		

Pre-Launch Evaluation

Does my payload:	Yes	No
Fit into the rocket?		
Meet the mass requirements?		
Hold all the payload contents?		
Attach to the parachute?		
Seal properly?		

Mars Mission Debrief Discussion Questions

- What are some of the aspects that you liked about the Payload Design Challenge?
- Can anyone name a challenge or a setback that you had to overcome?
- Were there any ideas that you shared with someone else or that someone shared with you?
- What was the highest number of food units included in a payload? And the lowest?
- How did empathy play a role in your design process?
- Can anyone share an example of an accomplishment someone else made or a something they liked about someone else's project?
- If you were to do this project again, what would you do differently? Or what would you keep the same?

Materials Reference Sheet

Plant Seed Units	Insect Units	Chicken Units
Color: Green	Color: Orange	Color: Yellow
Material: Plastic	Material: Plastic	Material: Plastic
Mass: .06g	Mass: .06g	Mass: .06g
Size: 5x5mm	Size: 5x5mm	Size: 5x5mm

Water Units	Food/Nutrient	Oxygen Units	Technology/Building
	Units		Units
Color: Copper	Color: White	Color: Red	Color: Grey
Material: Metal	Material: Plastic	Material: Plastic	Material: Plastic
Mass: .34g	Mass: .20g	Mass: .12g	Mass: .06g
Size: 4.5mm	Size: 6mm	Size: 6mm	Size: 5x5mm

Materials Reference Sheet

	Needs per Food Unit Type			
Food Type	Water .34g each	Food/Nutrient .20g each	Oxygen .12g each	Tech/Building .06g each
Plant	3	1	0	3
Insect	1	2	2	1
Chicken	4	5	4	4

**For every Plant Unit taken to Mars, one Oxygen Unit may be eliminated.

**For every Plant Unit taken to Mars, one Food Unit may be eliminated from Insect Unit needs.

	Payload Constraints (full)		
Parameter	Standard Payload wi		
	Payload	Nosecone	
Mass	28g	35g	
Height	100mm	120mm	
Diameter	24mm		
Feature 1	Screw Eye Hole		
Feature 2	Identifying Feature		

24.00

Sizing Cylinder

100.00

24.00

Sizing Block

