

Mars Network: An Orbital Relay Infrastructure for Mars Exploration

Chad Edwards

chad.edwards@jpl.nasa.gov

September 17, 2003 DESCANSO

Outline

- Mars exploration overview drivers on telecommunications
- Program strategies
 - Improved deep space communications
 - An evolving relay network
 - Science orbiters
 - Dedicated telesats
 - Electra proximity link payload
 - Communications protocols and standards
 - Radio-based in situ navigation
- Case studies
 - '03/'04 UHF relay operations
 - '09 Mars Science Loboratory
- Summary

DESCANSO Seminar

Program Drivers on Telecommunications Infrastructure

Increased Science Data Return for MSL-Class Landers

Enabling Energy-efficient Relay for Scout-class Missions

Robust Capture of Critical Event Tracking and Telemetry

Public Engagement - Creating a Virtual Presence at Mars

Precision in situ Navigation and Positioning

DESCANSO Seminar

Improved Direct-to-Earth (DTE) Communications

ĩ

• Increased X-band EIRP

- Larger aperture
 - Large deployable antennas could offer additional improvement
- Higher power
- Limited spectrum allocation constrains BW utilization to 4 MHz
- Transition to Ka-band
 - ~4x performance improvement over X-band
 - Increased spectral allocation allows higher symbol rates
 - Key enablers:
 - DSN 34m BWG subnet capability
 - 35 W Ka-band TWTA
- Increased DSN aperture
 - 70m offers ~4x improvement over 34m (currently X-band only)
 - DSN Large Array could offer significant improvement beyond 70m performance

Longer-term Transition to Optical

- Further performance increase relative to RF due to highly collimated transmit beam
- 2009 Mars Telesat Orbiter will include technology demo of 10 Mbps downlink from Mars @ 2.67 AU

Range=2.67 AU, X-band, 34m DSN 125 -1 kbps 10 kbps 100 kbps 1 Mbps 100 MRO: - 3.0 m HGA 75 - 100 W TWTA - 450 kbps MGS: MER: - 1.5 m HGA - 28 cm HGA

Mars-to-Earth Deep Space Link

Antenna Diameter (m)

• Mass, power constraints typically limit lander DTE capability to well below orbital DTE capability - one of the primary rationales for relay comm!

Planned Program Telecom Infrastructure

DESCANSO Seminar

Mars Network

Mars Network Evolution: Mars Global Surveyor

- Launched in 1996
- Low altitude science orbiter

Mars Balloon Relay UHF radio

- Return-link only (no command link)
- Unreliable bitstream communications
- Limited data rates (8, 128 kbps)
- Fixed frequency operation
- Relay data flow through Mars
 Orbiter Camera
 - Malin Space Science Systems

Mars Network Evolution: Mars Odyssey

- Launched in 2001
- Low altitude science orbiter
- CE505 UHF Transceiver
 - First implementation of CCSDS Proximity-1 Link protocol
 - Hailing procedure & link directives
 - Forward and return link (TLM & CMD); fixed frequencies
 - Framed data, ARQ
 retransmission for reliable data
 transfer
 - Add'l data rates: 8, 32, 128, and 256 kbps
- Open-loop sampling (1 bit/sample)

Mars Network

Mars Network Evolution: Mars Express (ESA)

- Launched in 2003
- Highly elliptical orbit (258 x 11,560 km, 7.5 hr period)
 - Irregular coverage
 - Long proximity link communications slant range
 - Low data volume return
- Will deploy Beagle 2 lander prior to Mars orbit insertion
- CCSDS Prox-1 compliant relay radio
 - Built by QinetiQ
 - Interoperable with Odyssey, MER
- Nominal mission lifetime through Apr'08

Mars Network Evolution: Mars Reconnaissance Orbiter

- Launch in 2005
- Low altitude science orbiter
- Electra UHF Transceiver
 - Standardized CCSDS Prox-1 Protocol
 - Add'l data rates (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 kbps)
 - Tunable frequency (390-450 MHz)
 - 2 dB coding improvement
 - Improved open-loop sampling (8 bits/sample)
 - Flight-reprogrammable s/w radio
 - USO for precision timing/nav
- High-performance DTE link
 - X-band prime; Ka-band demo
- Initial use of CCSDS File Delivery Protocol (CFDP) for end-to-end data accountability

Mars Network Evolution: Mars Telecommunciations Orbiter

• High-altitude telesat orbit (4450 km)

 Increased contact time (~4 hrs/sol at all latitudes; greatly improved coverage of critical events)

• Electra UHF/X Transceiver

- Addition of X-band (8.4 GHz) receive capability for very high-rate directional links
- 12 dBi steered UHF antenna; 50 cm steered X-band MGA

• **RF and Optical** *in situ* tracking/nav

- High-performance DTE link
 - X/Ka-band prime
 - Optical comm demo
- File-based relay ops
- Immediate payoff for MSL, w/ feed-forward capabilities for next decade exploration

6.7 iŋ

Electra Proximity Link Payload

575 in

- Standardized proximity link radio for Mars
 - Reprogrammable software radio architecture
 - First flight on 2005 Mars Reconnaissance Orbiter
 - Subsequent flight on 2009 Mars Telesat and all future Mars orbiters

Specifications:

•CCSDS Proximity-1 Protocol (Reliable and Expedited Link Layer Protocols) •Software radio architecture:

- Sparc V.7 rad-hard payload controller
- •Xilinx XQVR 1000 rad-tolerant flight-reprogrammable FPGA

•Mass: 5.0 kg

Mars Network

- •Full-duplex/Half-duplex operations modes
- •Transmit Power: 5W Full-duplex, 7W Half-duplex
- •Noise Figure: 4.9 dB Full-duplex, 3.9 dB Half-duplex
- •Radiation Total Dose: 20 Krad 100 mil Al
- •DC Power: 71 W (Full-duplex)
- •Frequency Bands: 390-405 MHz; 435-450 MHz
- •Suppressed and Residual Carrier Modes
- •Symbol Rates: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 ksps
- •Demodulation: Within 2.0 dB of theory at all rates
- •Coding: K=7, 1/2 convolutional, [255,239] RS, [204,188] RS
- •Interfaces: 1553B for Monitor & Control; LVDS for High-Speed Data
- •Option to add X-band (8.4 GHz) downconverter slice
- •Radio Metrics: Carrier phase/Doppler observables w/ 60 ns time tag accuracy
- •In-flight self-test capability

DIPLEXER DIPLEXER S55min 7.9 in				
	HDO RX Filter	Diplexer		
	Filtering and Switching Unit			
	Receiver	Modulator		
	Baseband Processor			

Power Supply

es: 1, 2, n: With 7, 1/2 co 1553B fc

DESCANSO Seminar

Power Amplifier

Electra UHF Transceiver

Receiver/ Modulator

BPM Daughter Board

030917

cde-14

Power Supply Module

Future Proximity Link Developments

• Addition of X-band slice for MTO

- Enables high-rate X-band directional link from surface to orbit
 - Addition of QPSK and increase in symbol rate to enable up to 8 Mbps data rate (uncoded)

• Electra Lite

- Tailoring of orbiter design (targeted descopes) to achieve lower mass/volume/power more appropriate for lander payload
 - Current baseline for MSL

Adaptive Data Rates

- MTP-funded effort to develop and demonstrate adaptive data rate profiling during pass
 - Allows link operation near capacity of actual (not predicted) communications channel increased performance and increased robustness
- Increased proximity link antenna gain for MTO
 - MTP-funded effort to develop 12-15 dBic steered UHF antenna for MTO
 - Compensates for longer slant ranges in high-altitude Telesat orbit

1 arameter	Liecha	Liecira-Liie
Mass	5.0 kg	2.1-2.9 kg
Volume	5080 cc	2120-2940 cc
Power	71.0 W	55-58 W

Electra Electra Lite

Communications Protocols

- CCSDS Proximity-1 Space Link Protocol
 - Provides international standards for the physical and data link layers for Mars proximity communications
 - First implemented on Mars Odyssey followed by Beagle2, Mars Express, MER A/B; will be used by MRO, Phoenix, MTO, and MSL
 - Key for achieving interoperability among multiple Mars landers and orbiters

CCSDS File Delivery Protocol (CFDP)

- Provides reliable and complete end-to-end file delivery
- Addresses unique aspects of deep space communications
 - Long RTLT
 - Intermittent connectivity
 - High BER links
 - Multi-hop store-and-forward relays
 - Custody transfer to minimize onboard storage rqmts
- Full documentation at http://www.ccsds.org

In Situ Navigation Using Proximity Link Radio Metrics

Precision Approach Navigation

- X-band Doppler on HGA link between approach s/c and orbiter
- Capability: < 1 km B-plane error @ E-1 day

Orbiting Sample Canister Tracking

- 1-way or 2-way Doppler tracking on UHF link
- Open-loop recording for weak signals
- Capability: <100 km 1-way
 <100 m 2-way

Surface Positioning

- 1-way or 2-way Doppler/range tracking on UHF link
- Capability: <10 m position uncertainty within 1-3 sols

Mars Networ

Case Study: '03/'04 UHF Relay Ops Mars **Express** MGS Mars Network Odyssey MER Data Return: DTE: 70 Mb/sol ODY: 50 Mb/sol Beagle Data Return: MGS: 40 Mb/sol DTE: n/a **MEO: Demo** MGS: n/a Direct-To-Earth (DTE) assumes 70m; 4x less for 34m; ODY: 10 Mb/sol Higher DTE return (~120 Mb/sol) at start of surface ops; MEO: 10 Mb/sol Lower DTE return (~10 Mb/sol) at end of 90-sol surface ops **MER-B** Beagle 2 MER-A

DESCANSO Seminar

Case Study: '03/'04 UHF Relay Ops (cont'd)

- Critical Event Communications for MER Entry/Descent/Landing
 - X-band MFSK tones ("semaphores") on DTE link
 - ~1 bps effective data rate
 - UHF telemetry to MGS after lander separates from backshell
 - 8 kbps engineering telemetry

Case Study: '03/'04 UHF Relay Ops (cont'd)

• Transceiver idiosyncrasies

 Lack of reprogrammability prevents correction of firmware bugs even some found pre-launch

• Large multipath effects

- Wide-beamwidth, long-wavelength UHF links

Relay coordination process

- Multi-agency interaction to identify/resolve RFI scenarios

Contingency planning

 Need prompt visibility into link performance and end-to-end data flow, as well as rapid turn-around relay plan updates, particularly during first few sols of surface ops

• Orbiter-driven operations concept

Need to examine potential advantages of alternative lander-driven relay ops concept

Case Study: 2009 Mars Science Laboratory

NASA

Deep Space Network Ka-band X-band 34 m 34 m 500 kbps AU 8 hrs/sol 14 Gb/sol Ś ŝ Т X-band Ka-band Т 10 kbps 100w, 3m 35 W, 3m ᡟ 2 hrs/sol 0.07 Gb/sol Mars Reconnaissance Orbiter 12 dBic 50 cm UHF Omni 128 kbps Т 4 hrs/sol 2 Gb/sol 1000 km 512 kbps 8 min/sol 8.2 Mbps, QPSK 0.25 Gb/sol 2 hrs/sol 60 Gb/sol UHF X-band 15 W, 1 m 13W, Omni **Mars Science** Laboratory (O)**DESCANSO** Seminar

Case Study: 2009 Mars Science Laboratory (cont'd)

Summary

- Mars exploration is significantly enhanced and in some cases enabled by establishing an orbital telecommunications infrastructure
 - Increased data return and contact time
 - Robust critical event coverage
 - Energy-efficient relay
 - In situ navigation
 - Key strategies
 - Improved DTE performance
 - Relay capability on every Mars science orbiter
 - Dedicated Telesat to provide breakthrough capability
 - Reprogrammable "network node" Electra
 - Standardized comm protocols for interoperability and reliable endto-end file transfer between Mars and Earth

Backup

Critical Event Communications

• Higher-altitude telesat orbit provides much greater coverage for critical events (e.g., EDL) than low-altitude science orbiters

Instantaneous Footprint Total Coverage (w/out Plane Change)

DESCANSO Seminar

EEIS and Operability Issues

