
Mars Target Encyclopedia:
Rock and Soil Composition Extracted from the Literature
Kiri L. Wagstaff1, Raymond Francis1, Thamme Gowda1,2∗, You Lu1,

Ellen Riloff3, Karanjeet Singh1∗, and Nina L. Lanza4

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, {firstname.lastname}@jpl.nasa.gov
2Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292, tg@isi.edu

3School of Computing, University of Utah, Salt Lake City, UT 84112, riloff@cs.utah.edu
4Los Alamos National Laboratory, Los Alamos, NM 87545, nlanza@lanl.gov

Abstract
We have constructed an information extraction system called
the Mars Target Encyclopedia that takes in planetary science
publications and extracts scientific knowledge about target
compositions. The extracted knowledge is stored in a search-
able database that can greatly accelerate the ability of scien-
tists to compare new discoveries with what is already known.
To date, we have applied this system to ∼6000 documents
and achieved 41–56% precision in the extracted information.

Introduction
Scientists everywhere are overwhelmed by the stream of
new information that is published by their disciplines’ con-
ferences, workshops, and journals. It is increasingly difficult
to come up to speed in a new area and to stay current with the
latest discoveries. In planetary exploration, new discoveries
can occur each time new data is transmitted. For example,
our rovers on Mars have sent back compositional data for
thousands of individual targets (e.g., rocks, soils), and some
of those observations have transformed our understanding of
past environments on the planet (Grotzinger et al. 2014).

To interpret new observations correctly, it is necessary to
be able to compare them with what is already known. For ex-
ample, if we observe high manganese content at a particular
location, we want to know whether it is consistent with pre-
vious observations or it indicates an anomalous new discov-
ery. However, no central database exists in which planetary
scientists can quickly make that determination.

We have created a system called the Mars Target Encyclo-
pedia (MTE) that uses information extraction methods to an-
alyze planetary science publications and identify stated com-
positional relationships between Mars surface targets and el-
ements or minerals. The extracted information is stored in a
searchable database that allows users to ask questions such
as “Which targets contain hematite?” or “What is known
about target Dillinger?” It also enables entirely new kinds of
information visualization, such as a map display of all loca-
tions where the Mars rover Curiosity has detected hematite.
Ultimately, the MTE may serve as a resource to inform de-
cisions about the next steps in Mars exploration.

∗This work was done when the authors were at the Jet Propul-
sion Laboratory.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we describe the MTE system and its compo-
nent technologies, the empirical performance of the system
on labeled data, and results from a large-scale evaluation on
∼6000 documents. The MTE is currently being integrated
into a public website called the PDS (Planetary Data Sys-
tem) Analyst’s Notebook for Mars scientists and the public
to access. The automated pipeline can be used to ingest and
analyze new publications as they become available.

Related Work
A variety of text analysis methods exist for extracting in-
formation from text. Some methods focus on extracting
meta-data such as the document title, authors, and publica-
tion venue or analyzing and linking citations between pa-
pers (Ronzano and Saggion 2016). However, understanding
the content of a scientific publication requires a deeper anal-
ysis. Information extraction (IE) of this nature is generally
broken into two steps: (1) named entity recognition or con-
cept extraction, to identify references to people, locations,
concepts, etc., and (2) relation extraction, to identify rela-
tionships between pairs of entities (Mooney and Bunescu
2005). Many of the recent advances in IE have been moti-
vated by problems from the biomedical research world, such
as the desire to identify protein-protein interactions (Tikk et
al. 2010; Bui, Katrenko, and Sloot 2011) or chemical-protein
and chemical-disease relations (Krallinger et al. 2017). Tsut-
sui, Ding, and Meng (2016) used topic modeling and open
IE, which does not require the prior identification of entities,
to build a knowledge database about Alzheimer’s disease.

To date, little such work has been done in the domain of
planetary science. The closest existing work is the geology-
based GeoDeepDive project, which performs text data min-
ing on scientific publications about (Earth) rock formations
and stratigraphy (Zhang et al. 2013). By applying and ex-
tending information extraction methods to planetary sci-
ence publications, we have the opportunity to benefit an en-
tirely new population of scientists, researchers, and inter-
ested members of the public.

Machine Learning for Information Extraction
The Mars Target Encyclopedia (MTE) is an information ex-
traction system that takes in scientific publications in PDF
format and extracts knowledge that is useful to scientists



Entities
Find 

Elements, 
Minerals, 
Targets

Relations 
Classify pairs 
of Target + 

(Element or Mineral)

MTE 
Database

Automated	information	extraction User	queries	
via	web

SEDIMENTOLOGY AND STRATIGRAPHY OF THE PAHRUMP HILLS OUTCROP, LOWER MOUNT 
SHARP, GALE CRATER, MARS.  K. M. Stack1, J. P. Grotzinger2, S. Gupta3, L. C. Kah4, K. W. Lewis,5 M. J. 
McBride6, M. E. Minitti7, D. M. Rubin8, J. Schieber9, D. Y. Sumner10, L. M. Thompson11, J. Van Beek6, A. R. 
Vasavada1, R. A. Yingst7. 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 
Pasadena, CA 91109 (kathryn.m.stack@jpl.nasa.gov), 2California Institute of Technology, Pasadena, CA, 3Imperial 
College, London, UK, 4University of Tennessee, Knoxville, TN, 5Johns Hopkins University, Baltimore, MD, 6Malin 
Space Science Systems, San Diego, CA, 7Planetary Science Institute, Tucson, AZ, 8UC Santa Cruz, Santa Cruz, CA, 
9Indiana University, Bloomington, IN, 10UC Davis, Davis, CA, 11University of New Brunswick, Fredericton, NB, 
Canada. 

 
 
Introduction:  In September 2014, the Mars Sci-

ence Laboratory Curiosity rover arrived at the 
Pahrump Hills outcrop after an 8 km traverse from 
Yellowknife Bay. Geologic mapping of high-
resolution orbital images from the HiRISE camera 
suggests that the Pahrump Hills outcrop is Curiosity’s 
first encounter with the Murray formation, the informal 
designation for strata recognized as lower Mount Sharp 
(Figure 1). This study presents an overview of the Cu-
riosity rover team’s investigation of Pahrump Hills and 
provides the stratigraphic context and depositional 
interpretation for sedimentary facies and diagenetic 
textures observed at this outcrop.  

 
Figure 1. Location of the Pahrump Hills outcrop (yellow star) shown 
in HiRISE and on a HiRISE digital terrain model (inset).   
 

The Curiosity Rover Team’s Investigation at 
Pahrump Hills: After completing sample acquisition 
and analysis at the Confidence Hills drill site at the 
base of Pahrump Hills [1], Curiosity began the first of 
two traverses up the ~12 m thick Pahrump Hills sec-
tion (Figure 2). During the first traverse, only the re-
mote science instruments (ChemCam, Mastcam, and 
MARDI) were used to quickly and efficiently charac-
terize the section [2-4]. Several outcrops were then 
examined during a second traverse using Curiosity’s 
dust removal tool (DRT) and contact science instru-
ments (MAHLI and APXS) [5,6]. Using observations 
acquired during the two traverses from the Mastcam, 
MARDI, and MAHLI cameras localized to HiRISE 

DTM and Navcam stereo mesh data, a stratigraphic 
column was constructed for Pahrump Hills using ele-
vations, lithologic, and sedimentary properties (Figure 
3). 

 
Figure 2. Main outcrops visited by the Curiosity rover at the 
Pahrump Hills outcrop displayed on a Mastcam mosaic produced by 
MSSS. White dots = end of drive or mid-drive stops visited during 
traverse 1 only, red dots = outcrops examined during traverse 2, blue 
dot = Confidence Hill drill location.  
 

Sedimentary Facies at Pahrump Hills:  Five 
main sedimentary facies were observed at Pahrump 
Hills (Figure 3): 

Recessively-weathering Massive Mud-
stone/Siltstone.  The most prevalent facies observed 
throughout the Pahrump Hills section is a slope-
forming, very fine-grained rock that appears massive 
in Mastcam and MARDI images. Individual in-situ 
grains are not resolvable in MAHLI images of brushed 
exposures, which suggests that the grain size of this 
facies is less than ~50 µm, or 2.5x the maximum 
MAHLI resolution achieved at a 3.9 cm working dis-
tance. Accordingly, this facies is likely composed of 
clay (<4 µm) to silt-sized (<30-60 µm) particles, but in 
unknown proportions.  

Recessively-weathering Parallel Laminated Mud-
stone/Siltstone. Interbedded within the massive mud-
stone/siltstone facies are very fine-grained intervals 
exhibiting mm-scale, parallel laminae. Individual lam-
inae are laterally continuous and traceable on the dec-
imeter to meter scale. In the vicinity of Shoemaker, 
Alexander Hills, and Chinle, the laminae are distinctly 
rhythmic in appearance. Inclined parallel laminae are 
observed near Pink Cliffs and Alexander Hills, alt-
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Introduction: Geochemical data for both rocks and 

soils from Gale Crater, and Gusev Crater, are compared 

here with data from the Gamma Ray Spectrometer 

(GRS) experiment on the Mars Odyssey Spacecraft [1, 

2]. Both Gale and Gusev craters are located near the di-

chotomy boundary between the Noachian Highlands 

and the younger volcanics and transitional units to the 

north (Fig. 1). Element ratios in these samples may pro-

vide a link between the regional provinces analyzed by 

GRS and the materials at the two landing sites. The lith-

ophile data may lead to a better understanding of the 

origin and evolution of the martian crust in this region 

of Mars, while the volatile element components SO3, Cl, 

and water provide information on volcanic aerosols, 

weathering processes and potentially recent climate [3]. 

Fig. 1 – Portion of the Mars Global Geologic map with 

arrows showing Gale (West) and Gusev (East) craters on the 

dichotomy boundary.  See Fig. 2 for scale and reference. 

 
Geochemical components and normalization: 

Comparing the chemistry of Gale and Gusev samples 

with other martian data must take into account the dif-

ferent geochemical components in the samples. The 

most important distinction is between the lithophile el-

ements including Al, Si, Fe, Mn, Ca, Na, Mg, etc. that 

represents the rock component, and  the volatile ele-

ments including H, C, Cl, S, that represent later external 

input to the soils and rocks. Normalization to SiO2, pro-

vides a way to correct the lithophile elements for varia-

ble amounts of the mobile element component, mainly 

sulfur, chlorine and water. 

 

 

Fig. 2 – Areas with distinctive GRS signatures based on 5 

x 5 degree binned data.  

Fig. 3 – CaO/SiO2 vs. FeO/SiO2 data for areas near Gale 

and Gusev Craters (Fig. 2) with distinctive GRS signatures. 

 
Regional trends from GRS: The GRS composi-

tions reflect the integrated abundances to a depth of ~ 

0.5 m, but the instrument is not collimated, and ~ 50% 

of the received gamma rays come from an area ten de-

grees in diameter on the surface below the instrument 

[4]. Thus most of the signal from each 5 degree binned 

data used in this study comes from outside the nominal 

area represented by the data. Because Gale and Gusev 

craters are only ~ 3 degrees in diameter, there is no way 

to get their unique GRS signatures. Therefore, because 

the two landing sites are on the dichotomy boundary, 

Example of GRS 10 degree “pixel” 
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Introduction: The Mars Science Laboratory 

(MSL) rover, Curiosity, landed on Mars in August 

2012 with the goal of assessing the past or present 

habitability of an environment in Gale Crater. To 

assess the habitability of these modern and ancient 

environments, MSL carries a suite of instruments 

capable of exploring preserved geologic features that 

may represent habitable environments. This instrument 

suite contains several science camera systems which 

have been used to gain a better understanding of the 

depositional environments in Gale Crater. Recently, 

fluvial and lacustrine deposits 
on Mars have been 

identified as past habitable environments [1]. Part of 

this identific
ation includes characterizing the 

distrib
ution of grain sizes in sedimentary deposits, 

which informs the interpretation of the depositional 

environment. It 
is im

portant to explore the limitations 

on grain size resolution with these cameras, as it 

directly affects the accurate measurement of grains and 

interpretation of depositional environments. This stu
dy 

determines the accuracy at which grains in terrestrial 

sedimentary rocks can be identified and measured 

under variable sun angles, and compares results to
 the 

resolution capability of the ChemCam remote micro-

imager (RMI). Compared to the RMI camera, the 

remote cameras (Mast Camera and Navigation 

Camera) that are also used for grain analysis on the 

rover have a lower resolution. Previous studies have 

demonstrated that the RMI camera is a
 useful tool to 

remotely characterize sedimentary deposits [
2]. 

!

 

Fig. 1. Laboratory DSLR image of a coarse sandstone. 

Data Collection Methods: Six samples from the 

Abo Formation were collected in New Mexico, USA. 

The Abo Formation is comprised of fluvial mudstones, 

sandstones, and conglomerates deposited in a low-

gradient alluvial plain in the Permian [3]. Using a high 

resolution digital single-lens reflex (DSLR) camera 

(Nikon D3200 and a Nikkor 18-55 mm lens), im
ages 

were acquired of each sample with simulated sun 

angles of 30º, 45º, and 60º. Grain size and area were 

measured using ImageJ software [4]. The area and 

length (longest visible axis) of each grain in a selected 

500 mm2  area were measured and recorded. Grain 

sizes were binned according to the Wentworth scale [5] 

(pebble=4-64 mm, granule=2-4 mm, very coarse 

sand=1-2 mm, coarse sand=0.5-1 mm, medium 

sand=0.25-0.5 mm, fine sand=0.625-0.25 mm, very 

fine sand=0.0625-0.625 mm, silt 
=0.0039-0.0625 mm). 

Accurate grain measurement can be difficult for very 

small grain sizes. Pixelation can blur grain edges and 

grains smaller than the pixel size are not resolvable [6]. 

Additionally, two dimensional grain analysis is
 known 

to overestimate particle size in small grains (35 - 140 

µm/pixel; [7]). T
o reduce possible error in grain size 

measurements, we required measured grains in the 

study be composed of at least 5 pixels (as in [8]). 

!

 

Fig. 2. Testbed RMI image of a coarse sandstone. 

To simulate RMI imaging capabilitie
s, tw

o samples 

(Figs 1, 3) were imaged by the RMI testbed imager, an 

identical copy of the RMI on Mars, at the Institute for 

Research in Astrophysics and Planetology in Toulouse, 

France (Figs. 2, 4). The grains in these black and white 

images were measured for area and length, and 

compared to the DSLR color images. The RMI is u
sed 
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Pre-
process

Figure 1: Mars Target Encyclopedia processing pipeline.

studying the planet Mars. We focus on the extraction of
information about targets (e.g., rocks, soils) identified by
the ChemCam instrument on the Curiosity rover. ChemCam
uses a laser spectrometer to obtain compositional spectra
from up to seven meters away from a given target. The re-
sulting spectra can be analyzed to identify individual ele-
ments within the target (Maurice and 70 others 2012). As
of sol 1159 of the Curiosity rover’s mission, ChemCam had
observed more than 1100 distinct targets. New discoveries
about these targets are published in a variety of planetary
science conference and journal venues.

The MTE is composed of four modules: preprocessing,
named entity recognition (NER), relation extraction (RE),
and database updates (see Figure 1).

Document Preprocessing
To prepare the documents for information extraction, the
MTE first extracts the text content from each PDF docu-
ment. We use the Apache Tika parser (Mattmann and Zitting
2011) to convert the source PDF files into UTF-8 format text
to preserve accented characters and mathematical symbols.
Next, the MTE creates a copy of the text content in which
the References section is omitted. We defined a regular ex-
pression to identify the References section. This step helps
the NER module avoid spurious detections in the titles or
author names of cited publications.

Named Entity Recognition
The named entities of greatest relevance for the MTE are
elements (e.g., “iron,” “Mg”), minerals (e.g., “plagioclase,”
“hematite”), and ChemCam targets. The periodic table pro-
vides a comprehensive list of elements, and we employed a
list of 5228 minerals provided by the International Miner-
alogical Association (the May 2017 release1).

Identifying Mars surface targets is more challenging, as
they follow no standard naming convention. Further, tar-
get names are fundamentally ambiguous as they are bor-
rowed from Earth locations or people. A sampling of the
names hints at the challenge of accurately detecting them:
“Dunkirk”, “Ithaca”, “Jake”, “Old woman”, “Pistol”. We
have a starting list of target names2 that was published by
the ChemCam science team, but it is not fully curated, and

1http://nrmima.nrm.se/imalist.htm
2http://pds-geosciences.wustl.edu/msl/

msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/
document/msl_ccam_obs.csv

we have found it to be incomplete with respect to the liter-
ature. In addition, we found that authors continually invent
new spelling variants and abbreviations for target names that
require more than a simple list lookup.

To address the challenge of recognizing all three en-
tity classes reliably, we employed a machine learning ap-
proach. We trained a custom Named Entity Recognizer us-
ing the Stanford CoreNLP NER system (Finkel, Grenager,
and Manning 2005). This system trains a Conditional Ran-
dom Field sequence model to assign class labels to entities
within new documents. We provided manually labeled doc-
uments with examples of the Element, Mineral, and Target
classes to train our custom model. We also employed the
“gazette” capability to provide lists of known terms. This is
particularly valuable for large semantic classes (like Min-
eral or Target) in which terms exist that might never appear
in the training corpus. The gazettes that we used include the
periodic table (Elements), the IMA list (Minerals), and the
ChemCam observation table (Targets) as mentioned above.

Relation Extraction
Once the entities are identified within the text, the MTE an-
alyzes them to determine which ones have a compositional
relationship (i.e., textual evidence that a given Target con-
tains a given Element or Mineral). We trained a relation
classifier using the jSRE (Giuliano, Lavelli, and Romano
2006) relation extraction tool. It uses an SVM classifier to
predict whether a relationship exists for two entities, using
only shallow parsing. jSRE provides SVM kernels that op-
erate on local context, global (sentence-wide) context, or a
combination of both. In applying this method to biomedical
publications, the authors found that most of the performance
came from the global kernel features.

MTE Database
For each document, the MTE database stores document
meta-data (e.g., title, author, publication venue), the prepro-
cessed text content, and the extracted entities and relations.
To provide full traceability, it also stores the parsed sentence
from which the relation was extracted and a link to the orig-
inal PDF. Users can immediately see the source context and
decide whether they would like to access the full document
for more information.

To support fast retrieval of documents that contain entities
or relations specified in a given search query, we constructed
inverted indices for the entities and relations using Apache
Solr3. Apache Solr is an open source search platform pow-
ered by Apache Lucene that provides near real-time search
and document retrieval.

Experimental Results
We developed and evaluated the MTE using a collec-
tion of scientific papers that were published over three
years of the Lunar and Planetary Science Conference
(LPSC). These papers are publicly accessible from the
LPSC websites (e.g., https://www.hou.usra.edu/
meetings/lpsc2014/).

3http://lucene.apache.org/solr/



Table 1: Manual annotations for LPSC documents.
2015 2016 Total

Annotation (62 docs) (55 docs) (117 docs)
Element 1195 1029 2224
Mineral 748 708 1456
Target 566 347 913
Contains 434 262 696
Total 2943 2346 5289

Figure 2: Excerpt from document lpsc16-1155 showing
compositional annotations created with the brat web annota-
tion tool.

Corpus
Our corpus consists of two-page extended LPSC abstracts
in PDF format. We selected 62 documents from LPSC 2015
and 55 documents from LPSC 2016 that mentioned “Chem-
Cam”, and used the brat annotation tool (Stenetorp et al.
2012) to manually label entities within these documents
(see Table 1). This data set contains thousands of annota-
tions, which are available here: https://doi.org/10.
5281/zenodo.1048419. We estimate that it took an av-
erage of 30 minutes to annotate each document, or a total of
more than 58 hours of labor for the full corpus.

The annotated relationships ranged from simple (e.g., a
pattern such as “X contains Y” within a sentence) to com-
plex (e.g., relationships that crossed sentence boundaries or
involved pronouns like “it” and other anaphora). Figure 2
shows an excerpt from one document that contains sev-
eral statements about the composition of the target Big Sky.
The vocabulary used to indicate a compositional relationship
varies, and the final relationship crosses a sentence bound-
aries.

Named Entity Recognition Results
The Named Entity Recognizer operates on individual words
or tokens. We used the 2015 documents for training and di-
vided the 2016 documents into validation (n = 20) and test-
ing (n = 35) sets. As shown in Table 2, the baseline ap-
proach of employing the known lists of elements, minerals,
and targets achieved an F1 score of 0.76. Training a basic
NER classifier using the CoreNLP system yielded an im-

Table 2: Named entity recognition performance on LPSC
2016 test documents. The best result for each metric is
shown in bold.

Prec. Recall F1
Baseline: Lists only 0.831 0.699 0.760
CoreNLP NER trained on:
LPSC 2015 0.948 0.700 0.805
LPSC 2015 + gazettes 0.945 0.777 0.853

proved F1 score of 0.805. Virtually all of the improvement
came from increased precision (from 0.83 to 0.95). Recall
was highest (0.84) for the Element class, as expected; it was
0.73 for Minerals and only 0.28 for Targets. The Target class
is the most difficult one to recognize due to the lack of a
naming convention and ambiguous names. In addition, the
Target class grows much faster than the set of known ele-
ments or minerals, so there will always be new targets in
future documents that never appeared in the training set.

However, we were able to improve NER recall as well by
including the gazettes as described above. These term lists
augment the manually labeled documents and provide rel-
evant domain knowledge. With the gazettes, the F1 score
increased to 0.853 by boosting recall to 0.777. Recall for the
Target class, in particular, more than doubled, to 0.67.

Relation Extraction Results
The decision about whether or not a relation exists is made
for a given pair of entities. Processing all possible pairs of
entities in a document would be infeasible (and likely un-
necessary). For simplicity, we adopted the strategy used in
previous work (Giuliano, Lavelli, and Romano 2006) of gen-
erating all pairs of entities that occur within a single sen-
tence. We used CoreNLP’s sentence splitter to divide the
corpus into sentences and the NER model trained above to
identify entities. For each (Target, Element) or (Target, Min-
eral) pair, we generated a jSRE example that encoded the
sentence content. If the pair of entities was connected by a
relation in the manual annotations, we gave the example a
positive label; otherwise, we gave it a negative label.

To simulate how the system would be used in practice, we
trained and validated the relation classifier using text from
LPSC 2015 and tested it on LPSC 2016. We used the first
42 LPSC 2015 documents for training and the remaining 20
for validation. The number and distribution of the resulting
jSRE examples (relationships) are given in Table 3.

Table 3: Number and distribution of relationships between
Targets and Elements or Minerals. The number in parenthe-
ses is the percentage of positive relationships.

Element Mineral Merged
Train 279 (38%) 150 (41%) 429 (39%)
Validation 93 (27%) 70 (69%) 163 (45%)
Test 111 (37%) 62 (50%) 173 (42%)



Table 4: Relation extraction performance on LPSC 2016
(test) documents. The best result for each metric is shown
in bold.

Precision Recall F1
Elements (n = 111)

Baseline: All-yes 0.369 1.000 0.539
jSRE-Elements 0.531 0.415 0.466

Minerals (n = 62)
Baseline: All-yes 0.500 1.000 0.667
jSRE-Minerals 0.679 0.613 0.644

Merged (n = 173)
Baseline: All-yes 0.416 1.000 0.588
jSRE-Indiv. 0.598 0.447 0.511
jSRE-Merged 0.640 0.444 0.525

We trained three different relation classifiers: one on
Target-Element relations only; one on Target-Mineral rela-
tions only; and one on the merged set. We were curious as to
how a specialized model that was trained on less data would
compare to a more generic model trained on more data. For
each model, we performed a grid search over the jSRE pa-
rameters by trying each of the SVM kernels (LC, GC, SL)
and window sizes within the set { 1, 2, 5, 10, 15, 20 }. We
selected the model parameters that led to the highest perfor-
mance on the validation set in terms of precision. We found
that the max-precision model did not employ the same pa-
rameters across the three models. jSRE-Elements and jSRE-
Merged used an LC kernel with a window of 5, while jSRE-
Minerals used an SL kernel with a window of 5. Notably, the
GC kernel that the original authors found to be most power-
ful for the biomedical domain did not perform well in this
corpus.

We found that the individual models (“jSRE-Elements”
and “jSRE-Minerals”) achieved much higher precision than
a baseline approach that always predicted that a relationship
was present (“All-yes”) (see Table 4). While this baseline
always achieves a recall of 1.00 and therefore appears supe-
rior in terms of F-measure, this application domain values
precision much more than recall. Content included in the
MTE must be of the highest reliability, even if this means it
is not comprehensive. We also found that the merged model
(“jSRE-Merged”) out-performed the baseline and the indi-
vidual models when they were applied to the full (Merged)
data set (“jSRE-Indiv.”).

Large-scale Evaluation
We collected all LPSC documents that were published in
2014, 2015, and 2016, omitting the training documents from
LPSC 2015, and ingested them into the MTE (n = 5897).

It would be infeasible to ask humans to manually label
all 5897 documents to evaluate our results, so instead we
performed a manual review of only the extracted relations.
This allows us to measure precision, but not recall. However,
as noted above, precision is far more important than recall
in this domain, as it captures the true utility of the extracted
information when used in practice.

Table 5: Manual review of 817 relations extracted from 5897
documents.

LPSC14 LPSC15 LPSC16 Total
Correct 55% 57% 29% 41%
Partial 9% 15% 14% 13%
Irrelevant 19% 6% 9% 11%
Wrong 11% 21% 2% 8%
Unsure 6% 0% 47% 28%

The manual review results are shown in Table 5. Our man-
ual reviewer examined each extracted relation and its source
sentence to judge the relation as Correct, Partial (e.g., only
one word of a multi-word Target name was extracted), Ir-
relevant (an appropriate extraction from the sentence, but
the content was not about Mars), Wrong, or Unsure (the re-
viewer could not determine whether the relation was cor-
rect).

Overall, the fraction of Correct relations was 41%. Perfor-
mance on the 2016 documents was significantly lower than
for the preceding years. Since the system was trained on doc-
uments from 2015, it is likely that targets mentioned in 2015
would encompass those discovered in 2014 and 2015, while
the documents from 2016 contain many newly discovered
targets and therefore present a more difficult generalization
task. Many of the Partial relations occurred due to limited
support for extracting multi-word entities. This is an area
for future improvement.

The Irrelevant relations are in some ways quite interest-
ing; there are several relations that express the composition
of meteorites that happen to have the same names as (real)
Mars targets. The system correctly interpreted the source
sentences, but the information does not (strictly) belong in
the MTE. For example, the system inferred that “Gibeon”
contains “chromite” from this sentence: “Gibeon was found
in several studies to have both chromite and daubrelite inclu-
sions.” Gibeon is the name of a Mars target and of a mete-
orite. Disambiguating the two requires more context than a
single sentence. Most of the Unsure relations came from ta-
bles whose formatting was lost in the conversion from PDF
to text. A useful future direction might be to omit table con-
tent or to capture its structure in some way, e.g., by using
the Tabula tool4. If we omit these unparseable sections, we
obtain 56% Correct relations, 18% Partial, 15% Irrelevant,
and 11% Wrong.

Deployment of the MTE
We created a simple web interface to allow users to query the
MTE for information about targets, elements, or minerals.
This interface is currently only available inside JPL, but we
are in the process of integrating it with a public PDS website
as discussed below.

The MTE enables scientists to ask new questions that pre-
viously could not be answered. For example, Figure 3 shows
the results of a query on “hematite.” Nine targets that con-

4https://github.com/tabulapdf/tabula



Figure 3: MTE search results for “hematite.” Nine results
(individual Mars targets) are returned, and a map displays
the location of each hit, in red.

tain hematite were returned. The user can click on any target
to see the extracted information and sentence excerpts that
support the conclusion about the presence of hematite. Be-
low is a map of the Curiosity rover’s traverse on Mars, with
the locations of the matching targets marked in red. One can
immediately see whether hematite is localized or has been
identified throughout the mission.

Limitations
The MTE is not comprehensive. There may be composi-
tional information that was never written up in a scientific
publication and therefore would not be included in the MTE.
Instead, the MTE extracts and indexes only the information
that was judged by scientists to be worthy of publication to
the scientific community. The MTE leverages and mirrors
this selection bias, and its holdings (like the source publi-
cations) contain only the most valuable and salient informa-
tion. This incompleteness is important to convey to the user
so that they interpret results correctly.

On the technical side, there are two important limitations
to the MTE content. First, the current MTE cannot generate
overlapping annotations. For example, the phrase “calcium
sulfate” was manually labeled as “calcium” (Element), “sul-
fate” (Mineral), and “calcium sulfate” (Mineral). However,
the MTE’s NER model only classifies individual tokens, so
it misses the “calcium sulfate” phrase.

Second, the relation extraction module only generates
candidate relation pairs within a sentence. In this corpus,
32% of the manually annotated relations cross sentence
boundaries. Therefore, the current system cannot yet retrieve
those relations. One way to access sentence-crossing rela-
tions would be to expand the number of candidate entity
pairs to include all pairs within a paragraph. We plan to eval-
uate that strategy in future work.

Conclusions and Next Steps
This work lies at the intersection of information extraction,
machine learning, and planetary science. The MTE uses cur-
rent IE technology to provide the first database of Mars tar-
get compositional knowledge as expressed in the scientific
literature. The pipeline is fully automated, and we can em-
ploy web crawlers to seek out new (publicly accessible) pa-
pers as they are published. We also plan to enable users to
submit their own publications for analysis and augmentation
of the database.

We are in the process of integrating the MTE’s content
into the MSL Analyst’s Notebook, an interactive web re-
source for mission scientists and the interested public (Stein
and Arvidson 2013). The Analyst’s Notebook allows users
to browse mission plans, targets discovered, data collected,
and summaries of each mission day on Mars. The MTE con-
tent will enable the Analyst’s Notebook to also connect tar-
gets to publications.

The MTE currently contains information about Chem-
Cam targets that was extracted from three years of papers
published at the Lunar and Planetary Science Conference. A
next logical step is to expand the MTE to encompass targets
identified by other instruments on the Curiosity (MSL) rover
and other missions such as the Mars Exploration Rovers
(Spirit and Opportunity). In addition, we plan to extend the
MTE to be able to ingest journal papers that have been pub-
lished by MSL science team members and the broader com-
munity. This information will carry more weight because it
comes from peer-reviewed sources; users will be able to re-
strict their searches to journal papers only, or to obtain all
possible results.

The automatic extraction of knowledge from scientific
publications can benefit many other areas of scientific in-
quiry. In addition to biology and medicine, there are op-
portunities at the intersection between fields such as plane-
tary science and astronomy. For example, there are currently
3,550 confirmed exoplanets (planets outside our solar sys-
tem) as of November 2, 2017 (NASA 2017). Hundreds of
new planet candidates are announced each year in new pub-
lications. Desirable properties to extract and store for each
planet include its radius, temperature, period, distance from
its host star, and more. Compositional relationships exist for



elements present in the host star and for constituents in exo-
planet atmospheres, with implications for the possible pres-
ence of life on other planets. In general, extracting informa-
tion and relationships into a central, searchable database can
help inform new hypotheses and direct future science inves-
tigations.
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