## MARS Tasks | Grade 5

Page $\quad$ Name of MARS Task

| $*$ | Number Story Time | 2003 | NO | Math Strand |
| :---: | :--- | :--- | :--- | :--- |
| Notes |  |  |  |  |
| $*$ | Raspberry Cake | 2003 | NP, NO | Halti-step money problem, write a problem |
| $*$ | Buttons | 2003 | PFA | Describe extend pattern, generalize |
| $*$ | Winter Sports | 2003 | DA, PFA, NO | Use 2 tables, interpret, make calc. |
| $*$ | Juan's Shapes | 2003 | GM | Find perimeter, area, draw shapes |
|  |  |  |  |  |
| $*$ | Boats | 2004 | NO | Find cost of renting boats for diff times |
| $*$ | How Many Cubes? | 2004 | GM, NO | Volume of boxes, measurement of box |
| $*$ | Fruits and Vegetables | 2004 | NO, GM | Find weight of fruit/veg., explain |
| $*$ | Playing Games | 2004 | GM, NP | Shapes, numbers, expressions, reason |
| $*$ | Fractions | 2004 | NO, NP | Shade fractional parts of shapes/squares |
|  |  |  |  |  |
| 2 | Factor Bingo | 2005 | NO | Use factors to cover board, explain win |
| 5 | Bead Necklaces | 2005 | PFA | Extend pattern, determine \# needed |
| 9 | Wintry Showers | 2005 | DA | Describe data, measures of center |
| 13 | Cut Shapes | 2005 | GM | Name shape made from cut, folded paper |
| 17 | Fractions | 2005 | NP | Place fractions on number line, justify |


| $\mathbf{2 0}$ | Overview of 2006 Tasks |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 21 | Family Party | 2006 | NP | Use fractions, percentages to desc group |
| 23 | Hexagons in a Row | 2006 | PFA | Extend geom pattern, work backwards |
| 26 | Fig Pudding | 2006 | DA | Correct, identify errors in data, $\wedge$ recipe |
| 29 | Pepe's Party | 2006 | NO | Use $\mathrm{x} /$ to find best value, cost |
| 32 | Rabbit Playpen | 2006 | GM | Perimeter, area, find dimensions of rect |


| $\mathbf{3 5}$ | Overview of 2007 Tasks |  |  |  |
| ---: | :--- | :--- | :--- | :--- |
| 36 | Candies | 2007 | NO | Fractions, ratios in context, work backwards |
| 38 | Joyce's Rug | 2007 | PFA | Extend, identify pattern, work backwards |
| 41 | Cindy's Cat | 2007 | NP | Rational numbers, fractions, decimals, \% |
| 44 | Granny's Balloon Trip | 2007 | DA | Table of time \& height, graph trip |
| 47 | Shape Hunting | 2007 | GM | Identify 3-d shapes from attributes |


| $\mathbf{5 0}$ | Overview of 2008 Tasks |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 51 | Shopping Bags | 2008 | GM | Weight in ounces-->pounds |
| 53 | Breakfast Time | 2008 | NO | Cost of group eating at café, x / |
| 55 | Fruity Fractions | 2008 | NP | Change improper fractions to whole \# |
| 57 | Pea Soup | 2008 | PFA | Expand recipe, compare slopes on graph |
| 60 | Bar Charts | 2008 | DA | Interpret, construct bar graphs, mode |


| $\mathbf{6 3}$ | Overview of 2009 Tasks |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 64 | Lifespan of an Umbrella | 2009 | DA | Calculate mean, median, mode, range |
| 66 | Halves | 2009 | GM | Compare areas of two shapes |
| 69 | Drip, Drip, Drip | 2009 | PFA | Analyze patterns, plot points, extend |
| 72 | Filing Cabinets | 2009 | NP | Use fractions, decimals, \% in context |
| 75 | Decimals | 2009 | NP | Order decimals, compare values |

$\mathrm{NP}=$ Number Properties
$\mathrm{NO}=$ Number Operations
PFA=Patterns Functions Algebra GM=Geometry \& Measurement DA=Data Analysis

* Tasks from 2003 and 2004 are not included in this packet due to copyright restrictions. However, if you click on the name of the task, you can access it via the Noyce Foundation website. Tasks from 2005 to 2009 are available here with permission from the Mathematics Assessment Resource Service (MARS).

| Student <br> Task | Use the factors of three two-digit numbers to cover game boards. <br> Determine the winner of the game and explain how the game was won. |
| :--- | :--- |
| Core Idea | Understand the meanings of operations and how they relate to each <br> other, make reasonable estimates, and compute fluently. <br> - |
| Number <br> Operations <br> - |  |
|  | Develop fluency in multiplying and dividing whole numbers <br> multiplication and division and use these combinations to <br> mentally compute related problems |
| - $\quad$ Communicate mathematical thinking clearly and coherently |  |

## Factor Bingo

This problem gives you the chance to:

- show you understand factors and know multiplication facts

Glenda and Holly are playing Factor Bingo.

Here is Glenda's game mat:

| 2 | 28 | 36 | 4 |
| :---: | :---: | :---: | :---: |
| 12 | 18 | 5 | 10 |
| 9 | 14 | 6 | 8 |
| 3 | 20 | 7 | 40 |

Here is Holly's game mat:

| 1 | 40 | 20 | 14 |
| :--- | :--- | :--- | :--- |
| 2 | 15 | 18 | 6 |
| 5 | 7 | 11 | 3 |
| 13 | 4 | 8 | 9 |

## The Rules

When the teacher calls out a number, each player can cover all the factors of that number. For example, when the number 8 is called out, each player can cover 8 and 1 and 2 and 4.

The winner is the first person who covers all the numbers on her mat.

1. The first number that the teacher calls out is 36 .

Draw circles around all the numbers that Glenda and Holly can cover.
2. The second number that the teacher calls out is 28 .

Draw squares around all the numbers that Glenda and Holly can cover.
3. The next number that the teacher calls out is 40 .

Draw triangles around all the numbers that Glenda and Holly can cover.
4. Who wins the game?

Explain why she wins.
$\qquad$
$\qquad$

| Factor Bingo | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - do time calculations in a practical context <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section <br> points |
| 1. Check the student grids against the correct grids shown below. <br> Mark each symbol that is missing or extra with an appropriate symbol (circle, square or triangle). <br> Only the first required symbol must be there. <br> All circles correct. <br> Partial credit <br> One circle error. | 2 <br> (1) | 2 |
| 2. All squares correct. Partial credit One square error. | (1) | 2 |
| 3. <br> All triangles correct. <br> Partial credit One triangle error. | (1) | 2 |
| 4. Gives correct answer: Glenda <br> Explains or shows that on Glenda's board all the numbers are covered or on Holly's board 15, 11, and 13 are not covered (because they are not factors of 36,28 , or 40 ) | 1 <br> 1 ft . | 2 |
| Total Points |  | 8 |



Grade Five - 2005

| Student <br> Task | Extend a sequence of bead patterns and explain the quantitative <br> relationships in the sequence. Determine the number of triangular <br> iterations when given the total number of round beads. |
| :--- | :--- |
| Core Idea | Understand patterns and use mathematical models such as algebraic <br> symbols and graphs to represent and understand quantitative <br> relationships. <br> - |
| Patterns, |  |

Grade Five - 2005

## Bead Necklaces

This problem gives you the chance to:

- work with a sequence of bead patterns
- make a rule

Sandy is making necklaces with colored beads.
She makes them into triangular patterns like this:

1 triangle

2 triangles

3 triangles

1. In the space below, draw the pattern with 4 triangles.
2. Fill in the table showing the number of round and long beads needed to make 2,3 and 4 triangles.

| Number of <br> triangles | Long <br> beads | Round <br> beads |
| :---: | :---: | :---: |
| 1 | 3 | 3 |
| 2 | 6 |  |
| 3 |  |  |
| 4 |  |  |

Grade Five - 2005
3. How many long beads does Sandy need to make 10 triangles? long beads
Explain how you figured it out.
$\qquad$
$\qquad$
4. How many round beads does Sandy need to make 10 triangles?
$\qquad$ round beads
Explain how you figured it out.
$\qquad$
$\qquad$
5. Sandy uses 41 round beads to make some triangles.

How many triangles did she make?
Show your work.

Grade Five - 2005


Grade Five - 2005

| Student <br> Task | Describe the data, and measures of center, that were recorded for the <br> wintry shower days in five cities. |
| :--- | :--- |
| Core Idea | Display, analyze, compare and interpret different data sets. <br> - Interpret data to answer questions about a situation |
| $\mathbf{5}$ | - Use measures of center (mean and median) and understand what |
| Data | each does or does not indicate about the data set |
| Analysis | Communicate mathematical thinking clearly and coherently |

Grade Five - 2005

## Wintry Showers

This problem gives you the chance to:

- describe data and use measures of center


During the 3 months of winter (about 90 days) wintry showers were recorded in the following cities on these numbers of days.

| City | \# days of wintry showers |
| :--- | :---: |
| Atlanta | 30 |
| Los Angeles | 20 |
| Chicago | 45 |
| New York | 32 |
| Houston | 28 |

1. Which city has wintry showers on about half the days in winter?
2. Which three cities have wintry showers on about a third of the winter days?
$\qquad$

Explain how you figured this out.
$\qquad$
$\qquad$
3. What is the mean number of days of wintry showers for these 5 cities?

Show how you figured this out.
4. Which city has the median number of days of wintry showers?

Show your work.

| Wintry Showers | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - describe data and use measures of center <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: Chicago | 1 | 1 |
| 2. Gives correct answers: Atlanta, New York, Houston <br> Accept: 32, 30, 28 <br> Gives a correct explanation such as: <br> In all there are about 90 days of winter. 30 is exactly one third of 90. 32 and 28 are approximately 30 . | $1 \times 3$ $1$ | 4 |
| 3. Gives correct answer: 31 <br> Shows work such as: $\begin{aligned} & 30+20+45+32+28=155 \\ & \text { and } 155 \div 5 \end{aligned}$ |  | 2 |
| 4. Gives correct answer: Atlanta and/or 30 Shows work such as: $20 \quad 28 \quad 30 \quad 32 \quad 45$ | 1 <br> 1 | 2 |
| Total Points |  | 9 |

Grade Five - 2005

| Student <br> Task | Name the geometric shape that is made from cut folded paper. <br> Determine how to fold and cut paper to result in a given cut shape. |
| :--- | :--- |
| Core Idea <br> 4 | Analyze characteristics and properties of two-dimensional <br> geometric shapes and understand their attributes. <br> Geometry and <br> Measurement |
|  | Identify, compare, and analyze attributes of two-dimensional <br> shapes |
| Understand line symmetry and predict the results of cutting on |  |
| folded paper |  |

## Cut Shapes

This problem gives you the chance to:

- recognize and name 2-D shapes
- interpret different representations of shapes

Tom folds a piece of paper in half then in half again.
He cuts off the folded corner with one straight cut.


Tom unfolds the shape he cuts off the corner.

1. a. Draw Tom's shape.

b. What is the name of Tom's shape?
$\qquad$

Here is another shape that Tom cut out from the corner of a piece of paper folded twice.

2. a. Draw the fold lines on this shape.
b. Show how the corner of the folded paper is cut to make this shape.



Grade Five - 2005

| Student <br> Task | Position fractions along a number line and justify their placements. |
| :--- | :--- |
| Core Idea | Understand numbers, ways of representing numbers, relationships <br> among numbers, and number systems. <br> - |
| $\mathbf{1}$Use models, benchmarks, and equivalent forms to judge the size <br> of fractions <br> Properties | Understand the place-value structure of the number system <br> including being able to represent and compare fractions <br> - Communicate mathematical thinking clearly and coherently |

Grade Five - 2005

## Fractions

This problem gives you the chance to:

- show the position of fractions on a number line
- compare the sizes of fractions

Here is a number line.


1. Mark the position of the two fractions $\frac{2}{3}$ and $\frac{2}{5}$ on the number line.
2. Explain how you decided where to place $\frac{2}{3}$ and $\frac{2}{5}$ on the number line.
$\qquad$
$\qquad$
$\qquad$
3. Which of the two fractions, $\frac{2}{3}$ or $\frac{2}{5}$, is nearer to $\frac{1}{2}$ ? $\qquad$
Explain how you figured it out.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Fractions | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - show the position of fractions on a number line <br> - compare the sizes of fractions <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Fractions correctly marked on the number line: <br> $2 / 5$ to the left of $1 / 2$ <br> $2 / 3$ to the right of $1 / 2$ | 1 | 2 |
| 2. Gives correct explanation such as: $2 / 5$ is less than $1 / 2$ and $2 / 3$ is more than $1 / 2$ Accept explanations based on diagrams. | 1 | 1 |
| 3. Gives correct answer: $\mathbf{2 / 5}$ dependent on some correct explanation/work <br> Shows work such as: $\begin{aligned} & 2 / 3=20 / 30 \\ & 2 / 5=12 / 30 \\ & 1 / 2=15 / 30 \end{aligned}$ <br> so $2 / 5$ is nearer to $1 / 2$ <br> or <br> Accept diagrams showing the line divided into 5 equal parts, and three equal parts, with $2 / 3$ and $2 / 5$ correctly marked. <br> Partial credit <br> Correct reasoning with arithmetical errors. | 1 <br> 2 <br> 2 <br> (1) | 3 |
| Total Points |  | 6 |

Grade Five - 2005

| Core Idea | Task |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| Number Properties | Family Party |  |  |  |
| This task asks students to use common fractions and percentages to describe groups of <br> relatives attending a party. <br> describe it as a fraction of the whole. Given a common percentage, students could <br> identify which groups of data represented the given amount. |  |  |  |  |
| Patterns, Functions, and <br> Algebra | Hexagons in a Row |  |  |  |
| This task asks students to find and extend a geometric pattern and make predictions. <br> Successful students identify how a pattern is growing and use that information to <br> describe, draw, and extend the pattern. Students should also be able to work <br> backwards from a total in the pattern to finding its location in the pattern. |  |  |  |  |
| Data Analysis |  |  |  | Fig Pudding |
| This task asks students to analyze data in frequency and graphical form, work with <br> metric units, make mathematical comparisons about important features of the data and <br> use a ratio to make conversions in a recipe. Successful students read and interpret <br> graphs with scales of 25. Students were able to make comparisons of the data using <br> multiplication and subtraction. Some successful students were able to think about <br> increasing a recipe 1 1/2 times. |  |  |  |  |
| Number Operations | Pepe's Party |  |  |  |
| This task asks students to use a variety of operations to find the cost of items for a <br> party, including reasoning about remainders in a familiar setting, and making <br> comparisons of different options to find the best price. Successful students could use <br> multiplication and division in context to reason about the number of packages needed <br> to get a total and find the cost of the packages. Students were also able to make <br> comparisons to find the best option for buying hats. |  |  |  |  |
| Geometry and <br> Measurement | Rabbit Playpen |  |  |  |
| This task asks students to find the dimensions and areas of rectangles representing <br> rabbit playpens. Use proportional reasoning and rates to find the number of rabbits <br> that can fit in a playpen. Successful students could find different dimensions for <br> rectangles with the same total perimeter. Students were able to calculate the area of a <br> rectangle and identify the shape with the largest area. Students were able to use <br> proportional reasoning to find the number of rabbits that would fit in a given area. |  |  |  |  |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

## Family Party

This problem gives you the chance to:

- work with commonly used fractions and percentages in a real context

Andrea invites some of her relatives to a party.
She invites: 12 cousins
6 aunts
4 brothers
2 sisters

1. What fraction of her party guests are cousins?


Show how you figured this out.
2. What fraction of her guests are aunts and sisters? $\qquad$
Show how you figured this out.
3. Which group of relatives makes up $25 \%$ of her guests? $\qquad$
Show how you figured this out.
4. Which three groups of relatives make up $75 \%$ of her guests?
$\qquad$

Explain how you figured this out.
$\qquad$
$\qquad$

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

| Family Party | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - work with commonly used fractions and percentages in a real context <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: half or $\mathbf{1 / 2}$ or $12 / 24$ or 0.5 or $50 \%$ <br> Shows work such as: $12+6+4+2=24 \quad 12 \text { is half of } 24$ | $1$ | 2 |
| 2. Gives correct answer: $\mathbf{1 / 3}$ or equivalent <br> Shows work such as: $6 / 24+2 / 24=8 / 24=1 / 3$ | 1 | 2 |
| 3. Gives correct answer: aunts accept sisters and brothers <br> Shows work such as: $6 / 24=1 / 4=25 \% \quad(2+4=6)$ | 1 | 2 |
| 4. Gives correct answer: cousins, brothers and sisters <br> Gives correct explanation such as: <br> This makes a total of 18 . $18 / 24=3 / 4=0.75=75 \%$ | 1 | 2 |
| Total Points |  | 8 |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

## Hexagons in a Row

This problem gives you the chance to:

- find a pattern in a sequence of diagrams
- use the pattern to make a prediction

Joe uses toothpicks to make hexagons in a row.


2 hexagons
11 toothpicks



4 hexagons

Joe begins to make a table to show his results.

| Number of hexagons in a row | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Number of toothpicks | 6 | 11 |  |  |

1. Fill in the empty spaces in Joe's table of results.

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@noycefdn.org.
2. How many toothpicks does Joe need to make 5 hexagons?

Explain how you figured it out.
$\qquad$
$\qquad$
3. How many toothpicks does Joe need to make 12 hexagons?

Explain how you figured it out.
$\qquad$
$\qquad$
$\qquad$
4. Joe has 76 toothpicks.

How many hexagons in a row can he make?
Explain how you figured it out.
$\qquad$
$\qquad$
$\qquad$

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@noycefdn.org.

| Hexagons in a Row | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - find a pattern in a sequence of diagrams <br> - use the pattern to make a prediction <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answers: $\mathbf{1 6}$ and $\mathbf{2 1}$ | 1 | 1 |
| 2. Gives correct answer: 26 <br> Gives correct explanation such as: I added on 5: accept diagrams | $1$ | 2 |
| 3. Gives correct answer: 61 <br> Gives correct explanation such as: <br> The first hexagon needs 6 toothpicks; each extra needs 5 . $6+11 \times 5=$ <br> Accept diagrams or adding on. |  | 2 |
| 4. Gives correct answer: $\mathbf{1 5}$ <br> Gives correct explanation such as: <br> The first hexagon needs 6 toothpicks; each extra needs 5 . $76-1=75, \quad 75 \div 5=15$ <br> Accept diagrams | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 3 |
| Total Points |  | 8 |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

## Fig Pudding

This problem gives you the chance to:

- work with metric units
- use ratio to convert a recipe

Dora and Jack have found a recipe for spiced fig pudding in an Australian cookbook. This is a recipe for 6 people.

| 225 grams dates | 75 grams raisins |
| :--- | :---: |
| 175 grams figs | 50 grams ginger |
| 175 grams breadcrumbs | 100 grams shortening |
| 50 grams flour |  |



Dora and Jack draw a bar graph to show the amounts of the ingredients.


1. One of the bars is not correct.

Which one is not correct?
What mistake has been made?
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.
2. Dora and Jack write some information about the ingredients.

- The heaviest of the ingredients are the dates.
- There is twice as much shortening as flour in the recipe.
- There are 50 grams more figs than ginger.

Underline the sentence that is not correct.
Explain how the information is not correct.
$\qquad$
$\qquad$

Look at the list of ingredients. Write two sentences of your own comparing the amounts of ingredients.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
3. This recipe is for 6 people. How many grams of shortening are needed to make a pudding for 9 people?
$\qquad$
Explain how you figured this out.
$\qquad$
$\qquad$

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

| Fig Pudding | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - work with metric units <br> - use ratio to convert a recipe <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: raisins and explains that it should be 75 grams, not 175 grams | 1 | 1 |
| 2. Underlines 'There are 50 grams more figs than ginger.' and <br> Gives a correct explanation such as: It should be 125 grams more figs than ginger. <br> Writes statements such as: <br> There is the same amount of figs as breadcrumbs. <br> There is three times the amount of raisins as dates. | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 3 |
| 3. Gives correct answer: $\mathbf{1 5 0}$ grams <br> Gives correct explanation such as: 100 grams is for 6 people, so 9 people would need half as much again. | 1 | 2 |
| Total Points |  | 6 |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@novcefdn.org.

## Pepe's Party

This problem gives you the chance to:

- use numbers and prices in a real situation

Pepe is having a party.
There will be 20 people at the party.
Here is the price list for things Pepe needs.

Party supplies!
Plastic Knife, fork, and spoonset 30中
Package of 10 paper plates $\$ 2.75$
Package of 5 paper cups $\$ 1.50$

1. Complete the table to show the prices for 20 plastic knives, 20 forks, and 20 spoons, 20 paper plates and 20 paper cups.

|  | Number of <br> packages | Price |
| :--- | :--- | :--- |
| Plastic knife, fork, and spoon set |  | $\$$ |
| Paper plates |  | $\$$ |
| Paper cups |  | $\$$ |

Show your calculations.

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.
2. Pepe also wants to buy 20 party hats.

A package of 8 hats costs $\$ 1.50$. The shop will not split a package.
The price of 1 hat is $30 ¢$.
What is the cheapest price for 20 hats?
\$ $\qquad$

Explain how you figured it out.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

| Pepe's Party | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - use numbers and prices in a real situation <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer for knives, forks and spoons: $\$ \mathbf{6}$ <br> Shows work such as: $20 \times 30$ <br> Gives correct answer for plates: $\mathbf{\$ 5 . 5 0}$ <br> Shows work such as: $2 \times 2.75$ <br> Gives correct answer for cups: $\$ 6$ <br> Shows work such as: $4 \times 1.50$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | 6 |
| 2. Gives correct answer: $\$ \mathbf{4 . 2 0}$ <br> Gives correct explanation such as: <br> Price of $20 \times 1$ hats is $20 \times 30 ¢=\$ 6$ <br> Price of 3 packs of 8 hats is $3 \times \$ 1.50=\$ 4.50$ <br> Cheapest price is $(2 \times 8+4)$ hats. <br> Price of $(2 \times 8+4)$ hats is $2 \times \$ 1.50+4 \times 30 \phi=\$ 4.20$ | 1 <br> 1 <br> 1 <br> 1 | 4 |
| Total Points |  | 10 |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@noycefdn.org.

## Rabbit Playpen

This problem gives you the chance to:

- find dimensions and areas of rectangles

Patsy is making a playpen for rabbits in her backyard.
The fence around the playpen will be 20 feet long.
Patsy draws diagrams showing how the fence could be arranged to make five different rectangular playpens for her rabbits.


Playpen A is 9 feet long and 1 foot wide. It has an area of 9 square feet. Playpen B is 8 feet long and 2 feet wide. It has an area of 16 square feet.

1. Find the measurements of the other three playpens.

Playpen C is $\qquad$ feet long and $\qquad$ feet wide.

Playpen D is $\qquad$ feet long and $\qquad$ feet wide.

Playpen E is $\qquad$ feet long and $\qquad$ feet wide.
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.
2. The bigger the area of the playpen, the more rabbits it will hold.

Find the areas of playpens C, D and E.
Playpen C $\qquad$ square feet
Show your calculations.

Playpen D
Show your calculations.
$\qquad$ square feet

Playpen E $\qquad$ square feet
Show your calculations.
3. Patsy wants as many rabbits as possible to romp around in her playpen. The Rabbit Center has advised Patsy that she needs an area of at least 5 square feet for each rabbit.

How many rabbits can Patsy place in the playpen with the biggest area?

Explain how you figured it out.
$\qquad$
$\qquad$

|  |  | $\mathbf{8}$ |
| :--- | :---: | :---: |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@novcefdn.org.

| Rabbit Playpen | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - find dimensions and areas of rectangles <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answers: <br> Playpen C: $\mathbf{7}$ feet long and $\mathbf{3}$ feet wide <br> Playpen D: $\mathbf{6}$ feet long and $\mathbf{4}$ feet wide <br> Playpen E: $\mathbf{5}$ feet long and $\mathbf{5}$ feet wide | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | 3 |
| 2. Gives correct answer: Playpen C, $\mathbf{2 1}$ square feet <br> Gives correct answer: Playpen D, $\mathbf{2 4}$ square feet <br> Gives correct answer: Playpen E, $\mathbf{2 5}$ square feet <br> Deduct one point if calculations not shown | 1 ft <br> 1 ft <br> 1 ft | 3 |
| 3. Gives correct answer: $\mathbf{5}$ rabbits <br> Gives correct explanation such as: I divided the area of Playpen E by 5. | 1 ft 1 | 2 |
| Total Points |  | 8 |

Fifth Grade - 2006
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation: info@ noycefdn.org.

| Core Idea | Task |  |  |
| :--- | :--- | :---: | :---: |
| Number Operations | Candies |  |  |
| This task asks students to use pictures and diagrams to think about fractions and ratios <br> in the context of sharing candies. Successful students can work backwards from a <br> total to find the amount of each part of the ratio. Students are also asked to extend a <br> ratio to a larger quantity. |  |  |  |
| Patterns, Functions, and <br> Algebra | Joyce's Rug |  |  |
| This task asks students to find and extend a geometric pattern and to make <br> predictions. Students are asked to identify how the pattern is growing and use that <br> information to describe, draw, and extend the pattern. Successful students should also <br> be able to work backwards from a total in the pattern to find its location in the pattern. |  |  |  |
| Rational Numbers | Cindy's Cat |  |  |
| This task asks students to add and subtract fractions with unlike denominators. <br> Students may use common denominators, decimals, or percents to help them think <br> about the relationships. The problems involve multiple steps to find the answers. <br> Successful students could also convert a fraction to find out the number of times <br> something would happen out of 100. |  |  |  |
| Data Analysis | Granny's Balloon Trip |  |  |
| This task asks students to use a table of time and height above ground to make a line <br> graph of granny's trip. Students used the graph to read and interpret information <br> needed to ask answer questions about the trip: e.g. how high was the balloon at 5:50 <br> pm. Students needed to think about a vertical scale going up in increments of 50 <br> yards. Successful students were able to read and interpret the horizontal scale <br> increasing in 30-minute intervals. |  |  |  |
| Geometry | Shape Hunting |  |  |
| This task asks students to identify 3-dimensional shapes from a list of attributes. <br> Students were asked to give attribute clues to help someone identify a 3-dimensional <br> shapes when given a picture of the shape. Students were asked to think about the <br> number of faces, shape of the faces, number of vertices, and number of edges. <br> Successful students could also give clues about a 3-dimensional shape given the <br> name. |  |  |  |
|  |  |  |  |

[^0]
## Candies

This problem gives you the chance to:

- work with fractions and ratios

1. This is Amy's box of candies.

She has already eaten 6 of them.


What fraction of the candies has Amy eaten? $\qquad$
2. Valerie shares some of the 12 candies from this box. She gives Cindy 1 candy for every 3 candies she eats herself.


How many candies does she give to Cindy?
Show how you figured this out.
3. In a packet of mixed candies there are 2 fruit centers for every 3 caramel centers. There are 30 candies in the packet.

How many caramel centers are there?
Show how you figured this out.
4. Anthony makes candies.

First, he mixes 1 cup of cream with 2 cups of chocolate.
In all, he uses 9 cups of these two ingredients.
How many cups of chocolate does he use in this candy recipe? $\qquad$
Explain how you figured this out.
$\qquad$
$\qquad$

\begin{tabular}{|c|c|c|}
\hline Task 1: Candies \& \multicolumn{2}{|l|}{Rubric} \\
\hline \begin{tabular}{l}
The core elements of performance required by this task are: \\
- work with fractions and ratios \\
Based on these, credit for specific aspects of performance should be assigned as follows
\end{tabular} \& points \& section points \\
\hline 1. Gives correct answer: \(\mathbf{2 / 3}\) or \(\mathbf{6 / 9}\) \& 1 \& 1 \\
\hline \begin{tabular}{l}
2. Gives correct answer: \(\mathbf{3}\) \\
Shows work such as: \(1+3=4 \quad 12 \div 4=\) Accept diagrams.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& 2 \\
\hline \begin{tabular}{l}
3 Gives correct answer: 18 \\
Shows work such as: \(2+3=5\)
\[
30 \div 5=6 \quad 6 \times 3=
\] \\
Accept diagrams.
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 1
\end{aligned}
\] \& 3 \\
\hline \begin{tabular}{l}
4. Gives correct answer: 6 \\
Gives a correct explanation such as: Anthony mixes a ratio of one cup of cream to two cups of chocolate. The ratio stays the same for different amounts. So I wrote the numbers in a chart like this \\
1 to \(2=\) a total of 3 \\
2 to \(4=\) a total of 6 \\
3 to \(6=\) a total of 9 \\
Accept diagrams.
\end{tabular} \& 1

1 \& 2 <br>
\hline Total Points \& \& 8 <br>
\hline
\end{tabular}

## Joyce's Rugs

This problem gives you the chance to:

- describe and extend patterns

Joyce makes patterned rugs. This is one of her designs.

The design has 2 stripes and 2 circles.


Rug \#1
She makes the rugs in different lengths.


It has 3 stripes and 4 circles.


Rug \#3.
It has 4 stripes and 6 circles.

Draw a sketch of Rug \#4.
2. Here is a table that helps Joyce to work out her rug length designs.

| Rug \# | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of stripes | 2 | 3 | 4 |  |  |
| Number of circles | 2 | 4 | 6 |  |  |

Complete the table to show how many stripes and circles there are on Rug \#4 and Rug \#5.
3. How many circles are there on Rug \#11?

## Explain how you figured it out.

4. A rug has 24 stripes. How many circles does it have?

Tell how you figured it out.

| Task 2: Joyce's Rugs | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - describe and extend patterns <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | sectio n points |
| 1. Draws correct diagram for the Rug \#4. | 1 | 1 |
| 2. Gives correct answers for Rugs \#4 and \#5 | $1$ | 2 |
| 3. Gives correct answer: 22 <br> Gives a correct explanation or draws diagrams to show that each rug has twice as many circles as its rug number. | 1 <br> 1 | 2 |
| 4. Gives correct answer: 46 <br> Explanations such as: <br> The pattern number will be 23 because there is one more stripe than the pattern number. <br> Each pattern number has twice that number of circles. So $23 \times 2=46$. | $1$ | 3 |
| Total Points |  | 8 |

## Cindy's Cats

This problem gives you the chance to:

- solve fraction problems in a practical context

Cindy has 3 cats: Sammy, Tommy and Suzi.


1. Cindy feeds them on Cat Crunchies.

Each day Sammy eats $\frac{1}{2}$ of the box, Tommy eats $\frac{1}{8}$ of the box and Suzi eats $\frac{1}{4}$ of the box.

What fraction of a whole box do the cats eat, in all, each day? $\qquad$
Show how you figured this out.
2. Tommy and Suzi spend much of each day sleeping.

Tommy sleeps for $\frac{3}{5}$ of the day and Suzi sleeps for $\frac{7}{10}$ of the day.
Which of the two cats sleeps for longer?
How much longer does it sleep each day?
Show how you figured this out.
3. Cindy's cats often share a carton of cat milk.

Sammy always drinks $\frac{1}{3}$ of the carton, Tommy always drinks $\frac{5}{12}$ of the carton, and Suzi always drinks $\frac{1}{6}$ of the carton.
What fraction of the carton of cat milk is left over?
Show how you figured it out.
4. Cindy's cats love to jump in and out of their cat door.

Yesterday the cat door was used 100 times by her cats.


Sammy used it for $\frac{1}{4}$ of the times and Tommy used it for $\frac{3}{10}$ of the times.
How many times did Suzi use the cat door?
Explain how you figured it out.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Task 3: Cindy's Cats | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - solve fraction problems in a practical context <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: 7/8 <br> Show work such as: $\quad 1 / 2+1 / 4+1 / 8=4 / 8+2 / 8+1 / 8=7 / 8$ | $1$ | 2 |
| 2. Gives correct answer: Suzi by $\mathbf{1 / 1 0}$ of a day. Accept $10 \%$ or $2^{4} /{ }_{10}$ hours <br> Shows correct work such as: $3 / 5=6 / 10$ and so $7 / 10-6 / 10=1 / 10$ <br> Accept work in percents. |  | 2 |
| 3. Gives correct answer: $\mathbf{1 / 1 2}$ <br> Shows correct work such as: $1 / 3+5 / 12+1 / 6=4 / 12+5 / 12+2 / 12=11 / 12$ $12 / 12-11 / 12=1 / 12$ <br> Partial credit <br> Gives answer 11/12 and shows correct work. | 1 <br> 1 <br> (1) | 2 |
| 4. Gives correct answer: 45 times <br> Gives correct explanations such as: <br> $1 / 4=25 / 100$ and $3 / 10=30 / 100 \quad$ So $25+30=55$ <br> Therefore Sammy and Tommy used it 55 times. $100-55=45$ This means Suzi used it 45 times. <br> Partial credit <br> Gives answer such as $9 / 20,18 / 40$, or $45 \%$ and shows correct work. | 1 <br> 1 <br> (1) | 2 |
| Total Points |  | 8 |

## Granny's Balloon Trip

This problem gives you the chance to:

- represent data using tables and graphs

On her eightieth birthday, Sarah's granny went for a trip in a hot air balloon.

This table shows the schedule of the trip.


| Time | $2: 30$ | $3: 00$ | $3: 30$ | $4: 00$ | $4: 30$ | $5: 00$ | $5: 30$ | $6: 00$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height above <br> the ground in <br> yards | 0 | 150 | 250 | 350 | 500 | 250 | 100 | 0 |

1. Finish labeling the axes and draw a line graph to show the balloon trip.

2. For about how long did the balloon stay above 250 yards?
3. At about what time do you think the balloon rose to 400 yards?

Explain how you figured this out.
$\qquad$
$\qquad$
$\qquad$
4. At about what height do you think the balloon was at 5:50?

Explain how you figured this out.
$\qquad$
$\qquad$
$\qquad$

| Task 4: Granny's Balloon Trip | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - represent data using tables and graphs <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Completes both axes correctly <br> Completes the line graph correctly <br> Partial credit. <br> One point for a partly correct graph such as: Correct points marked but line not drawn. or Line drawn but one or two incorrect points marked. | 1 <br> 2 ft <br> (1) | 3 |
| 2. Gives correct answer: One and a half hours | 1 ft | 1 |
| 3. Gives correct answer: accept 4:05 through 4:15 <br> Gives a correct explanation such as: If you follow the line for 400 yards on the vertical axis and look down the horizontal axis it is about half way between 4:00. and 4:30. | 1 ft 1ft | 2 |
| 4. Gives correct answer: accept 5 through 35 yards above the ground <br> Gives a correct explanation such as: <br> It was less than 50 yards and more than 0 yards | 1ft <br> 1ft | 2 |
| Total Points |  | 8 |

## Shape Hunting

This problem gives you the chance to:

- identify and describe solid shapes

Detective Sherlock Shapehunter tracks down solid shapes using clues provided by eyewitnesses.

Here are some eyewitness reports. Which shapes do they describe?

1. This shape has 6 square faces.

It does not roll.


It is a regular prism.
It has 8 vertices and 12 edges.
This shape is a $\qquad$ .
2. This shape has one curved surface that meets at a point. Its base is one flat circular surface.

This shape is a $\qquad$ .
3. This shape has one curved surface.

It has 2 flat ends that are congruent circles.

This shape is a $\qquad$ .
4. An eyewitness saw this shape.

Write three clues that describe it.

$\qquad$
$\qquad$
$\qquad$
$\qquad$

The name of this shape is $\qquad$ .
5. Write three clues that would help Detective Sherlock Shapehunter to track down a pyramid on a square base.
6. Detective Sherlock Shapehunter says that a sphere is different from all other solid shapes. Write two clues that describe how it is different from other shapes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Task 5: Shape Hunting | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - identify and describe solid shapes <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: cube | 1 | 1 |
| 2. Gives correct answer: cone | 1 | 1 |
| 3. Gives correct answer: cylinder | 1 | 1 |
| 4. Writes three correct clues such as: It has 6 vertices. It has 9 edges. <br> It has 5 faces. <br> 3 faces are rectangular. 2 faces are triangular. <br> Gives a correct name: Triangular prism <br> All four items correct. <br> Partial credit <br> 1 point for 2 or 3 correct items | $2$ <br> (1) | 2 |
| 5. Writes three correct clues such as: It has 5 faces. Four faces are congruent triangles. It has 5 vertices. It has 8 edges. It doesn't roll <br> Partial credit <br> 1 point for 2 correct clues. | 2 <br> (1) | 2 |
| 6. Writes two correct clues such as: It has no flat surfaces. It has no edges. It has no vertices. It rolls in all directions. | 1 | 1 |
| Total Points |  | 8 |


| Core Idea | Task | Score |
| :--- | :--- | :--- |
| Measurement | Shopping Bags |  |
| This task asks students to work with pounds and ounces to find weight of items in a <br> shopping bag. Successful students knew how to convert ounces to pounds and could <br> decide which items to put into the shopping bag so that it wouldn't break. |  |  |
| Number Operations | Breakfast Time |  |
| This task asks students to calculate costs for groups of people eating at a café and find <br> change. Given the size of the bill, successful students could use multiplication or <br> division with decimals to find the number of people served. |  |  |
| Rational Numbers | Fruity Fractions |  |
| This task asks students to use equivalence to change improper fractions to whole <br> numbers. Successful students could create improper fractions to match whole number <br> values. |  |  |
| Algebra | Pea Soup |  |
| This task gives students a chance to use proportional reasoning to think about <br> expanding a recipe. Students need to be able to find the amount of the ingredients for <br> different numbers of peoples, record the information in a table, and graph the data <br> from the table. Successful students could explain how to read the graph, and they <br> could compare the slopes of two lines on the graph. |  |  |
| Data | Bar Charts |  |
| This task asks students to interpret and construct bar charts. Students needed to think <br> about how to make all the bars total to a given number. Then students needed to <br> change one bar on the graph to keep the mode the same. Successful students were <br> able to reason about combining information on the graph to calculate number of total <br> children given the number of families and the children per family. |  |  |

Grade 5-2008
Copyright ©2008 by Noyce Foundation All rights reserved.

## Shopping Bags

This problem gives you the chance to:

- work with standard units in the customary system

The supermarket's shopping bags can only carry 6 lbs of goods. Here is Yusef's shopping list.

| Item | Weight |
| :---: | :---: |
| laundry detergent | 2 lbs 10 oz |
| oranges | 2lbs 11oz |
| toothpaste | 5 z |
| pineapple | 3 lbs 6 oz |
| liquid soap | 1 lb 1 zz |
| book | 7 z |
| paper tissues | 8 z . |



$$
16 o z=1 l b
$$

Yusef has two shopping bags.
He has already put his laundry detergent in one bag and his oranges in the other. 1. Show what other items Yusef can put in the bags so that the bags don't break.

2. What is the weight of the items in Bag \#1? $\qquad$
Show how you figured this out.
3. What is the weight of the items in Bag \#2?

Show how you figured this out.

Grade 5 - 2008
Copyright ©2008 by Mathematics Assessment Resource Service All rights reserved.

| Shopping Bags | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - work with standard units in the customary system. <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: Bag \#1 pineapple <br> Gives correct answer: Bag \#2 toothpaste, liquid soap, book, paper tissues | $1$ | 2 |
| 2. Gives correct answer: $\mathbf{6} \mathbf{l b s}$ or 96 oz <br> Shows correct work for items in their bag, such as: $2 \mathrm{lbs} 10 \mathrm{oz}+3 \mathrm{lbs} 6 \mathrm{oz}$. | 1 ft <br> 1ft | 2 |
| 3. Gives correct answer: $\mathbf{5} \mathbf{l b s}$ or 80 oz <br> Shows correct work for items in their bag, such as: $2 \mathrm{lb} 11 \mathrm{oz}+5 \mathrm{oz}+1 \mathrm{lb} 1 \mathrm{oz}+7 \mathrm{oz}+8 \mathrm{oz}$ | 1ft <br> 1ft | 2 |
| Total Points |  | 6 |


| Item | Weight | Ounces |
| :---: | :---: | :---: |
| laundry detergent | 2 bss 10 oz | 42 oz |
| oranges | 2 lbs 11 oz | 43 oz |
| toothpaste | 5 z | 5 oz |
| pineapple | 3 lbs 6 oz | 54 oz |
| liquid soap | 1 lb 1 l | 17 oz |
| book | 7 oz | 7 oz |
| paper tissues | 8 z . | 8 oz |

Grade 5 - 2008
Copyright ©2008 by Mathematics Assessment Resource Service All rights reserved.

## Breakfast Time

This problem gives you the chance to:

- calculate costs and charges for a group

1. Linda had breakfast in a café.

It cost $\$ 12.40$. She paid with a $\$ 20$ bill.
How much change did Linda get? \$ $\qquad$
Show how you figured it out.
2.


A group of nine people had the basic continental breakfast.
How much did they pay in all?
\$ $\qquad$
Show your work.
3. A different group of people had the basic continental breakfast.

They paid $\$ 32$ in all.
How many people were in the group?
Show how you figured it out.

Grade 5 - 2008
Copyright ©2008 by Mathematics Assessment Resource Service All rights reserved.

| Breakfast Time | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - calculate costs and charges for a group <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: $\$ 7.60$ <br> Shows work such as: $20.00-12.40$ | $1$ | 2 |
| 2. Gives correct answer: $\$ \mathbf{5 7 . 6 0}$ <br> Shows work such as: $6.40 \times 9$ | 1 | 2 |
| 3. Gives correct answer: $\mathbf{5}$ <br> Shows work such as: $32 \div 6.40$ or repeated subtraction | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 2 |
| Total Points |  | 6 |

Grade 5 - 2008
Copyright ©2008 by Mathematics Assessment Resource Service All rights reserved.

## Fruity Fractions

This problem gives you the chance to:

- use equivalence to write fractions in simplest form

1. Change these improper fractions into whole numbers.
a.

| $\frac{1}{1}$ | $\frac{20}{5}$ | $\frac{18}{9}$ | $\frac{25}{5}$ |
| :---: | :---: | :---: | :---: |



Then use the code to find the mystery fruit.

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}$ | $\mathbf{A}$ | $\mathbf{L}$ | $\mathbf{E}$ | $\mathbf{R}$ | $\mathbf{U}$ | $\mathbf{M}$ | $\mathbf{G}$ | $\mathbf{S}$ |

Write your answers in the boxes.

| Whole <br> number |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Letter |  |  |  |  |
|  |  |  |  |  |

The name of the fruit is $\qquad$ .
b.

| $\frac{100}{100}$ | $\frac{24}{8}$ | $\frac{36}{6}$ | $\frac{14}{2}$ |
| :---: | :---: | :---: | :---: |

Write your answers in the boxes.


The name of the fruit is $\qquad$ .
2. Now it is your turn to make a fraction puzzle to which the answer is GRAPES. Use the same code. Write improper fractions in the grid to make the fruit.

| G | R | A | P | E | S |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |



Grade 5-2008
Copyright ©2008 by Mathematics Assessment Resource Service All rights reserved.

## Pea Soup

This problem gives you the chance to:

- use proportional reasoning

This is a recipe for Pea Soup.

1. Carla makes pea soup for 6 people.

## Pea Soup

For 2 people
1 cup of peas
2 cups of milk
1 onion
Seasoning
a. How many cups of peas does she need? $\qquad$
b. How many cups of milk does she need? $\qquad$
2. The graph on the opposite page shows how many cups of peas Carla needs to make the soup for different numbers of people.
a. Explain how to use the graph to find how many cups of peas Carla needs for 10 people.
b. Complete this table to show the numbers of cups of milk Carla needs for different numbers of people.

| Number of <br> people | 0 | 2 | 4 | 6 | 8 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> cups of milk | 0 | 2 |  |  |  |  |

c. Mark the points in the table on the graph and join the points with a straight line.

Grade 5-2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.
d. What is the difference between your line and the 'Number of cups of peas' line?
e. Explain why the line for the number of onions Carla needs is the same as the line for the number of cups of peas.


10

Grade 5 - 2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.


Grade 5-2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.

## Bar Charts

This problem gives you the chance to:

- interpret and construct bar charts


Number of children per family


Here is a bar chart about the number of children in families.
The bar to show ' 2 children per family' is missing.

1. Draw the missing bar so that the total number of families is 50 . Show how you figured it out.
2. Draw the missing bar so that the mode of the number of children per family is 1 .

Explain why there are several different possible answers.
$\qquad$
$\qquad$
$\qquad$

Grade 5 - 2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.

3. Draw the missing bar so that the total number of children is 104 .

Show how you figured it out.

Grade 5 - 2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.

| Bar Charts | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - interpret and construct bar charts <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Shows correct answer: Bar of height $\mathbf{1 8}$ units <br> Shows work such as: $\begin{aligned} & 4+12+10+6=32 \\ & 50-32=18 \end{aligned}$ <br> Partial credit <br> For 1 error | 2 <br> (1) | 3 |
| 2. Shows correct answer: Bar of height < $\mathbf{1 2}$ units <br> Gives correct explanation such as: <br> Because the bar can be any height less than 12 families. | $1$ | 2 |
| 3.. Gives correct answer: Bar of height 19 units <br> Shows correct work such as: $\begin{aligned} & 0 \times 4+1 \times 12+3 \times 10+4 \times 6=66 \\ & 104-66=38 \\ & 38 \div 2 \end{aligned}$ <br> Partial credit <br> For 1 error | 1 <br> 2 <br> (1) | 3 |
| Total Points |  | 8 |

Grade 5 - 2008
Copyright © 2008 by Mathematics Assessment Resource Service All rights reserved.

## Balanced Assessment Test -Fifth Grade 2009

| Core Idea | Task | Score |
| :--- | :--- | :--- |
| Data | Lifespan of an Umbrella |  |
| This task asks students to work with data about umbrellas and calculate mean, <br> median, mode and range. Successful students could explain their thinking and show <br> their work. |  |  |
| Geometry/Measurement | Halves |  |
| This task asks students to compare areas of two shapes and determine if the areas are <br> equal. Successful students could quantify the areas of shapes including triangles or <br> make logical arguments about matching parts. |  |  |
| Algebra | Drip, Drip, Drip |  |
| This task asks students to represent and analyze patterns using tables and graphs. <br> Successful students could plot points on a graph; extend the table or the graph to find <br> out if a bucket to catch dripping water would overflow. |  |  |
| Number Properties | Filing Cabinets |  |
| This task gives students a chance to use fractions, decimals and percents using the <br> filing cabinet for a model. Successful students could find 2/3 or 5/6 of the filing <br> cabinet and reason about the number of 12 drawers to be covered with stickers. |  |  |
| Number Properties | Decimals |  |
| This task asks students to an understanding of decimal numbers. Students are asked <br> to order decimal numbers with different place values and compare decimal values. <br> Successful students could explain how to compare decimals and decide the smallest <br> value. |  |  |

Grade Five
Copyright © 2009 by Noyce Foundation
All rights reserved.

## The Lifespan of an Umbrella

This problem gives you the chance to:

- use measures of center and understand what each indicates about a data set.

Umbrellas don't seem to last long.
They blow inside out in the wind and the metal spokes break.
Sometimes the material rips and often they just get lost.
Megan's family each bought a new umbrella.
This table shows how many months each umbrella lasted.


| Name | Megan | Carl | Mom | Dad | Granny | Grandpa | Jill | Fred | Jo |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Months | 12 | 15 | 30 | 19 | 26 | 6 | 12 | 23 | 46 |

1. What is the median of this set of data? $\qquad$ months Show how you figured it out.
2. What is the mode of the life spans of these umbrellas? $\qquad$ months Explain how you know.
3. What is the range of the life spans of these umbrellas. $\qquad$ months
4. Megan read this statement on an internet site of random facts.
"The mean lifespan of an umbrella is about 23 months."
She said that the mean lifespan of her family's umbrellas was greater than this.
Was she correct?
Show how you figured this out.

## 2009 Rubrics Grade 5

| The Lifespan of an Umbrella | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - use measures of centre and understand what each indicates about a data set. <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| Gives correct answer: 19 <br> 1. Shows work such as: $6,12,12,15,19,23,26,30,46$ <br> Accept: "I picked the number in the middle." |  | 2 |
| 2. Gives correct answer: 12 <br> Gives correct explanation such as: The mode of a set of data is the number that occurs the most frequently. | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 2 |
| 3. Gives correct answer: 6-46 Accept 40 | 1 | 1 |
| 4. Gives correct answer: No <br> and shows work such as: <br> $12+15+30+19+26+6+12+23+46=189$ and 189 divided by $9=21$ <br> Partial credit <br> For partially correct work | 2 <br> (1) | 2 |
| Total Points |  | 7 |

Grade Five
Copyright © 2009 by Mathematics Assessment
Resource Service. All rights reserved.

## Halves

This problem gives you the chance to:

- show understanding of area

Here is a shape made from three big squares.


1. A straight line cuts the shape. Explain why the area shaded is equal to the area that is not shaded.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Grade Five
Halves
Copyright © 2009 by Mathematics Assessment
Resource Service. All rights reserved.
2. Here are three more diagrams of the shape made from three big squares.

Figure out if the shaded part is less than half, exactly half or more than half.
a.


Less than half
Exactly half
More than half
b.


Less than half Exactly half

More than half
c.


Less than half
Exactly half
More than half

Halves

| Halves | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - show understanding of area <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives complete explanation that <br> Uses unit measures to show equal areas such as 24 square units or 1.5 large squares. <br> Or <br> Matches or moves congruent shapes to compose equal areas. <br> Partial credit <br> Uses unit measures to justify equal areas but does not state size of the areas. | 4 <br> (2) | 4 |
| 2.a. Gives correct answer: Exactly half <br> b Gives correct answer: More than half <br> c. Gives correct answer: Less than half | $1$ | 3 |
| Total Points |  | 7 |

Grade Five
Copyright © 2009 by Mathematics Assessment
Resource Service. All rights reserved.

## Drip, Drip, Drip

This problem gives you the chance to:

- represent and analyze patterns using tables and graphs

Ms. Simms, the $5^{\text {th }}$ Grade teacher noticed the classroom roof had a leak.

Today at $9 \mathrm{a} . \mathrm{m}$. she put a measuring bucket under the drip.

The water from the leak dripped steadily.
At 11 a.m. there were 3 liters of water in the bucket.


1. At this rate how many liters of water were in the bucket at 1 p.m.?
$\qquad$ liters

| Time in hours | 9 a.m. | 11 a.m. | 1 p.m. | 3 p.m |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Liters of water | 0 | 3 |  |  |  |  |

2. How many liters of water were in the bucket at 3 p.m.?
$\qquad$ liters
3. On the grid on the opposite page, plot the four points written in the table.

Draw a line joining your four points to show the amount of water in the bucket.
4. Use your graph to find how much water was in the bucket at 12 noon.
$\qquad$ liters

5. At about what time were there 8 liters of water in the bucket?
6. The bucket holds 20 liters of water.

The school janitor comes to deal with the classroom at 6 p.m.

Will the bucket have overflowed by then?
Explain how you figured this out.
$\qquad$
$\qquad$
$\qquad$

| Drip, Drip, Drip | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - to represent and analyse patterns using tables and graphs <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answer: $\mathbf{6}$ liters | 1 | 1 |
| 2. Gives correct answer: 9 liters | 1 | 1 |
| Plots all four points correctly and draws line. <br> 3. Partial credit <br> 1 error | 2 ft <br> (1) | 2 |
| 4. Gives correct answer: $\mathbf{4}^{1 / 2}$ liters (accept more than 4 and less than 5) | 1 | 1 |
| 5. Gives correct answer: 2:20 p.m. (accept values more than 2:00 and less than 3:00) | 1 | 1 |
| 6. Gives correct answer: No <br> and gives explanation such as: Uses the graph to show that at 6 p.m. the amount of water in the bucket is about 13 and a half liters | 2 | 2 |
| Total Points |  | 8 |

[^1]
## Filing Cabinets

This problem gives you the chance to:

- use fractions, decimals and percents in a real situation


Moorwood Elementary School keeps student records in drawers in a big filing cabinet like this.


This filing cabinet takes up too much space, so the school clerical assistant is putting the data onto a computer.

As she completes each drawer she puts a smiley sticker onto the drawer.

1. What fraction of the cabinet has she completed? $\qquad$

Write this as a decimal. $\qquad$

2. Draw a smiley face on the drawers to show what the cabinet might look like when she has completed half of the records.


Write this as a percent. $\qquad$
3. How many more drawers will she now need to complete before she has done $2 / 3$ of the work?
Explain how you figured this out.
4. When she has completed $5 / 6$ of her work, how many drawers will she have left to do?
Show how you figured this out.

Rubric

| The core elements of performance required by this task are: - use fractions, decimals and percents in a real situation. <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| :---: | :---: | :---: |
| 1. Gives correct answer: $\mathbf{1 / 4}$ or $\mathbf{3 / 1 2}$ <br> Gives correct answer: 0.25 | 1 | 2 |
| 2. Draws a smiley face on 6 of the drawers. <br> Gives correct answer: 50\% | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 2 |
| 3. Gives correct answer: 2 <br> Gives correct explanation such as: two thirds is the same as eight twelfths. She already has completed $1 / 2$ which was $6 / 12.6$ from 8 is 2 <br> Special case: 1 and explains that $2 / 3$ is 8 drawers, so more than $1 / 2$ ( 6 drawers) and less than $2 / 3$ is 1 more drawer ( 7 drawers). <br> Special case: 5 and finds that $2 / 3$ is $8,8-3$ (drawers that are done) is 5 . <br> Partial credit <br> Partially correct explanation. | 1 ft <br> 2 ft <br> 3 <br> 3 <br> (1) | 3 |
| 4. Gives correct answer: 2 <br> Shows correct work such as: $5 / 6$ of $12=10 \quad 12-10=2$ Accept diagrams. | $1$ | 2 |
| Total Points |  | 9 |

Grade Five
Copyright © 2009 by Mathematics Assessment
Resource Service. All rights reserved.

## Decimals

This problem gives you the chance to:

- show understanding of decimal numbers

1. Write each of this set of numbers in the correct box. The box on the left is for numbers smaller than 5.5. The box on the right is for numbers bigger than 5.5 .

## $\begin{array}{llllll}5.7 & 5.35 & 5.025 & 5.9 & 5.24 & 5.473\end{array}$

The first one has been done for you.

Numbers smaller than 5.5


Numbers bigger than 5.5

2. Which number is nearest to 5.5 ?

Explain how you figured this out.
$\qquad$
$\qquad$
3. Write down a number of your own that is bigger than 5.24 and smaller than 5.35 .
4. Write the numbers in order from smallest to largest.

Explain how you decided which was the smallest number.
$\qquad$

| Decimals | Rubric |  |
| :---: | :---: | :---: |
| The core elements of performance required by this task are: <br> - show understanding of decimal numbers <br> Based on these, credit for specific aspects of performance should be assigned as follows | points | section points |
| 1. Gives correct answers: <br> In the left hand box: $\mathbf{5 . 3 5} \quad \mathbf{5 . 0 2 5} \quad \mathbf{5 . 2 4} \quad \mathbf{5 . 4 7 3}$ <br> In the right hand box: (5.7), 5.9 <br> Partial credit <br> Lose one point for each number incorrectly placed | 3 <br> (2) <br> (1) | 3 |
| 2. Gives correct answer: $\mathbf{5 . 4 7 3}$ <br> Gives a correct explanation such as: It rounds to 5.5 and no other number does. | 1 | 2 |
| 3. Gives correct answer: any number larger than 5.24 and less than 5.35 | 1 | 1 |
| 4. Gives correct answer: $\mathbf{5 . 0 2 5} \quad \mathbf{5 . 2 4} \quad \mathbf{5 . 3 5} \quad \mathbf{5 . 4 7 3} \mathbf{5 . 7} \mathbf{5 . 9}$ <br> Partial credit <br> One error or <br> First and last correct. <br> Gives a correct explanation such as: <br> I looked at the first number after the decimal point and choose zero because it was smallest. | 2 <br> (1) | 3 |
| Total Points |  | 9 |

[^2]
[^0]:    $5^{\text {th }}$ grade - 2007
    Copyright © 2007 by Noyce Foundation
    Resource Service. All rights reserved.

[^1]:    Grade Five
    Copyright © 2009 by Mathematics Assessment
    Resource Service. All rights reserved.

[^2]:    Grade Five
    Copyright © 2009 by Mathematics Assessment
    Resource Service. All rights reserved.

