

Marshall Space Flight Center Space Shuttle Knowledge Sharing Forum

Solid Rocket Booster Lesson on Unintended Consequences

January 27, 2011

David Wood

Agenda

- SRB Full Flight Video
- Overview of Booster Evolution
- Lesson on Unintended Consequences
 - External Tank Attach (ETA) Ring Material Issue
 - Gas Generator Injector Stem O-ring X-ray Test
 - Evolution of Holddown Post (HDP) System
 - Evolution of Fuel Isolation Valve (FIV)
 - SRB Camera Systems
 - ...And Wait, There's Still More!
 - Evolution of Marshall Sprayable Ablative (MSA) to Marshall Convergent Coating (MCC)
 - Implementation of Command Receiver Decoder (CRD)
 - Frustum Linear Shaped Charge (LSC) Rotation
 - Integrated Electronics Assembly (IEA) Power Bus Isolation Supply (PBIS) Module Design Enhancement
 - Path to SRB Phase II Fuel Pumps

SRB Flight Video

Overview Of Booster Evolution

Main Parachute Ripstop (STS-33, 11-22-89)

 Alternate Forward Skirt Aft Clevis Seal (STS-46, 7-31-92)

Thrust Vector Control (TVC)
 Hydraulic Accumulator
 (STS-4, 6-27-82)

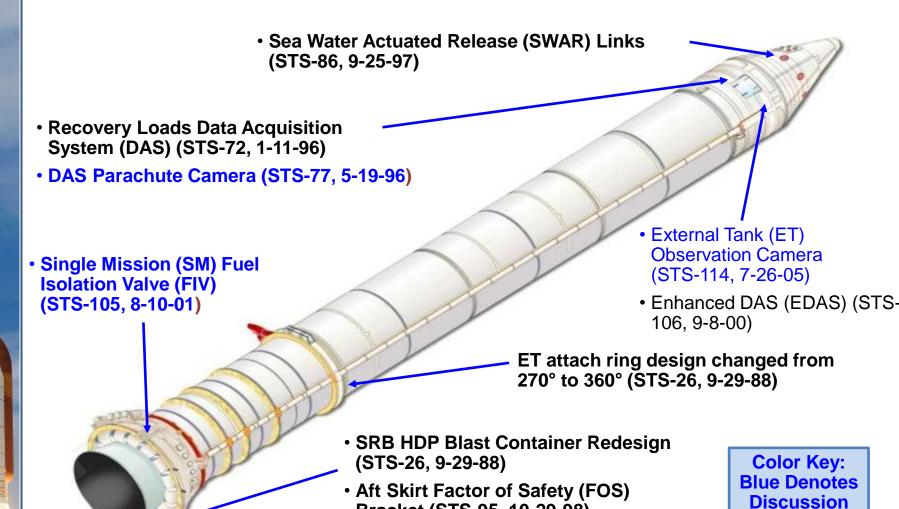
 Metal Bellows Accumulator (STS-27, 12-2-88) • 16 mm Parachute Camera (STS-51A, 11-8-84)

 MSA-2 Acreage Thermal Protection System (TPS) (STS-29, 3-13-89)

 SRB Radar Beacon Tracking System (STS-34, 10-18-89)

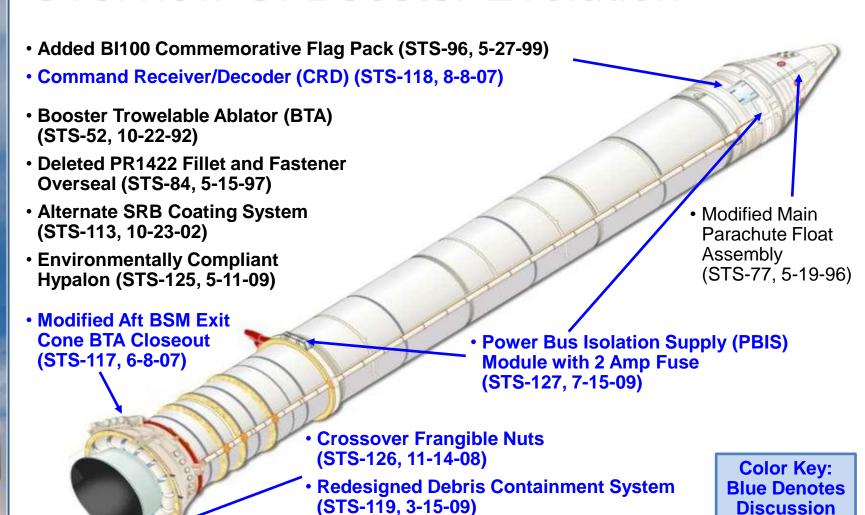
• Eliminated Tubing from TVC System (STS-71, 6-27-95)

MCC-1 Acreage TPS (STS-79, 9-16-96)


Color Key: Blue Denotes Discussion

Note: RH SRB Shown

Overview Of Booster Evolution



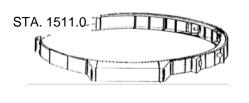
Bracket (STS-95, 10-29-98)

Note: RH SRB Shown

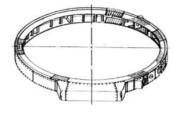
Overview Of Booster Evolution

Phase II Fuel Pump (STS-133, 11-1-10)

Note: RH SRB Shown



Topic

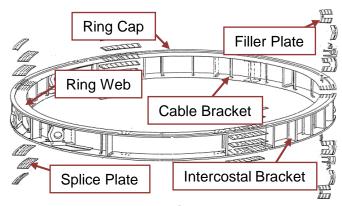

 External Tank Attach (ETA) ring material issue

Story

- Initial 4130 steel ETA ring spanned 270°
- Redesigned ETA ring to 360° for STS-26
 - Modified existing hardware
 - Eliminated negative margins of safety during thrust build-up

270° ETA Ring

360° ETA Ring


ETA Ring Location

ETA Ring Buildup

360° ETA Ring Components

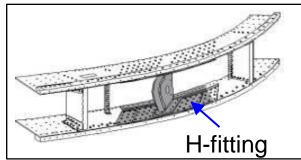
Story (cont.)

 MSFC found suspect strength properties during early 2003 testing for ETA ring fracture properties

 Historically used generic properties for all alloy steels

es	Tensile Strength (ksi)			
	Yield	Ultimate		
Test *	130-189	152-202		
Requirement	163	180		
* Performed on ETA Ring S/N 13				

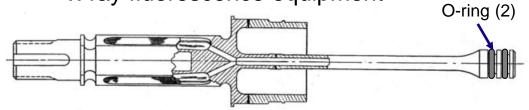
- Design load case analysis using worst case material properties resulted in minimum Factor Of Safety (FOS) of 1.25
 - Violated FOS requirement of 1.4
 - Analysis completed day before STS-107 launch
 - STS-107 flight specific loads analysis supported FOS of 1.3
- SRB presented issue and waiver rationale at STS-107 ET Tanking Meeting 1-16-03
 - Tanking meeting not Mission Management Team (MMT) meeting
 - Waiver CR S091496 approved
 - STS-107 ETA rings performed successfully as expected

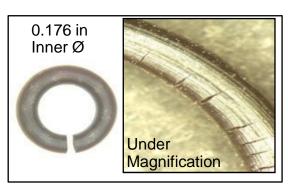


Outcome

- Extensive testing and evaluation performed to certify 1.4 FOS requirement for STS-114 and STS-126
- Procured 4340 steel ETA rings for STS-115
 - New components manufactured under fracture critical and critical process control requirements
 - Web plates, splice plates, filler plates, ring caps, intercostal brackets, and cable brackets
 - Only Inconel 718 H-fittings common
- Lessons Learned
- Significant safety concerns require discussion at appropriate level to ensure full awareness of associated risks
- Reason for safety margins

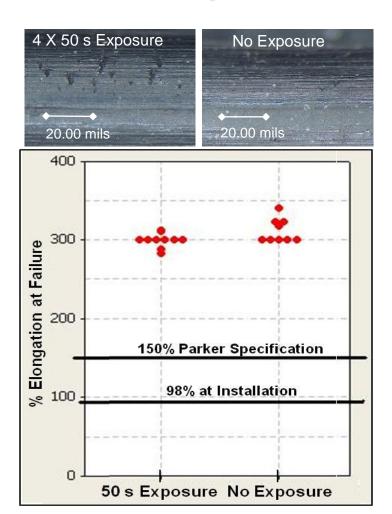
ETA Ring Hardness Testing




Ring Segment

- Topic
 - Gas Generator (GG) injector stem o-ring x-ray test
 - Story
 - 100% x-ray fluorescence implemented for all o-rings in 1998
 - Vendor self imposed to verify Ethylene Propylene Rubber (EPR)
 - Too small for material identification coding
 - Many handling opportunities
 - Equipment replaced at vendor on 2-19-09 (more powerful)
 - Reported o-ring failed during installation onto GG stem 5-1-09
 - O-ring brittle and cracked
 - Found degradation due to new x-ray fluorescence equipment

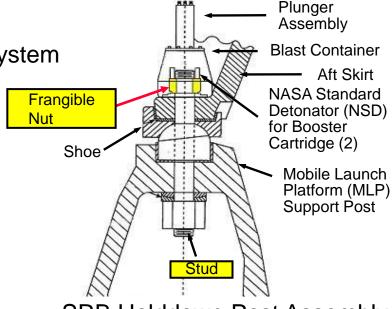
Failed GG Stem O-ring



Gas Generator Injector Stem with O-Ring

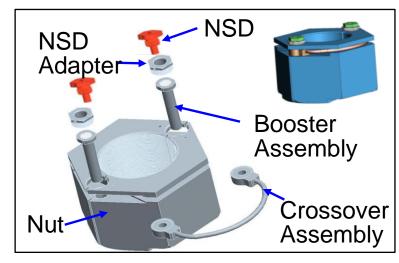
Outcome

- New equipment programmed to prevent o-ring degradation
 - Testing demonstrated proper material identification without unacceptable degradation
 - Analysis indicates new process exposure less than from original equipment
- All suspect o-rings scrapped
- Replacements tested with new equipment and settings
- Lessons Learned
- Verification required to ensure good intentions do not result in unintended consequences



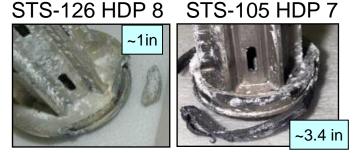
New X-ray Settings Evaluation

- Topic
 - Evolution of Holddown Post (HDP) System
- Story
 - 25 aft skirt stud hang-ups at launch randomly occurred on
 23 Shuttle launches over program
 - Experienced two stud hang-ups on one aft skirt on STS-2 and STS-92
 - Efforts to understand and minimize stud hang-ups performed numerous times in course of program
 - Most recently NASA Engineering Safety Council (NESC) tasked to determine root cause during post Columbia return to flight efforts
 - Tests and computer model showed obtaining close to zero skew significantly reduces probability of stud hang-ups
 - Skew: time delta between booster cartridge detonations

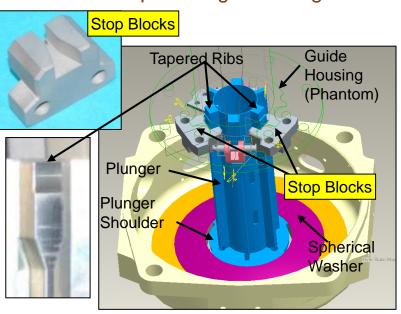

SRB Holddown Post Assembly

- Story (cont.)
 - SRB redesigned frangible nut to incorporate pyrotechnic crossover assembly for STS-126
 - Qualification included significant test program with nine flight like configurations
 - During crossover's first flight video showed HDP 3 spring and plunger extended during liftoff
 - Within Debris Containment System (DCS)
 - Only portion of spring found post launch
 - No evidence of HDP 3 stud hang-up
 - Similar failure on STS-56 HDP 5
 - Plunger and spring remained attached to stud

New Frangible Nut Design



STS-126 Launch Video



- Story (cont.)
 - Investigation found nut halves damaged plunger shoulder
 - Historical assessment revealed frequent plunger shoulder damage and missing material
 - Outcome
 - Modified DCS prior to next flight
 - Added retention feature to limit plunger travel if shoulder fails
 - Lessons Learned
 - Review postflight and PRACA records prior to changes to identify any adverse trends
 - Follow through with corrective actions

Example Plunger Damage

Modified DCS Configuration

Topic

Evolution of Fuel Isolation Valve (FIV)

Story

- Initial FIV design multi-mission
 - Isolates fuel from Auxiliary Power Unit (APU) in normal deenergized position
 - Fuel allowed to pass via poppet assembly
- Prior to STS-53 (12-2-92)
 uninstalled FIV failed Acceptance
 Test Procedure (ATP) at vendor
 - Valve failed Dielectric Withstanding Voltage (DWV)
 - Subsequent teardown found fluid in electrical cavity

Multi-mission FIV

Story (cont.)

 Found intergranular attack of popp and bellows capsule

Provided hydrazine leakage path

Root cause identified through M&P evaluation and testing

	Plur	iger _		
oppet	ector	•		
Actuator Assem	bly	\Diamond		
	Coil		ø	
oundaries		embly		Inlet
t treat used		Popp	et AM355	

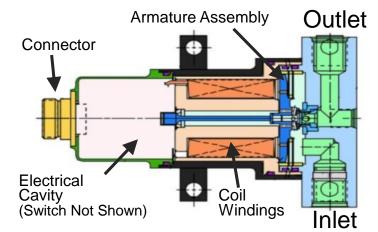
Bellows Capsule AM350

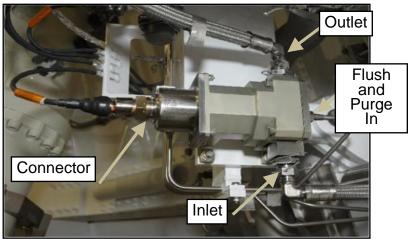
Multi-mission FIV

Outlet

Root Cause	Notes
Sensitized material susceptible to attack by long term exposure to postflight processing fluids	• Sens from • Hydr for d • Turce

- ensitized grain bounda om post weld heat treat
- ydroxyacetic acid used r decontamination
- arco used for cleaning
- Incorporated additional leak test and Built-in Test Equipment (BITE) resistance tests at T-24 and T-9 hr to verify FIV integrity for flight
- Endcap test port added for FIV leak check




Outcome

- Ultimately implemented single mission FIV on STS-105 (8-10-01)
 - Magnetically actuated switch
 - Non-flexing weldment separation of fluid and electrical cavities
 - Maintained key multi-mission FIV requirements
 - Envelope and interfaces
 - Power, transient suppression, and dual position switch feedback

Lessons Learned

 Full life cycle, including processing, needs consideration during design

Single Mission FIV

- Topic
 - Role of SRB Photography and Imagery
 - Story
 - Photographic coverage of SRB descent and parachute deployment important at beginning of Shuttle Program

- Provided by ship and aircraft
 - Redstone/Vandenberg ships and Starcast/Castglance aircraft
- Discontinued after STS-35 (12-2-90)
- STS-51A (11-8-84) first installed
 16 mm camera into forward skirt dome
 to capture parachute deployment
 - Implemented permanently STS-36 (2-28-90)
 - Upgraded to Data Acquisition System (DAS) with video camera STS-72 (1-11-96)
 - Included recording accelerometers data

- Story (cont.)
 - Postflight photographs of off-nominal items taken since STS-26 (9-29-88)
 - Used for comparisons to build-up and previous missions photographs
 - Minimal photographic requirements established and controlled by engineering (10REQ-0033)
 - Additional photography during recovery from on-board observer initiated after STS-26 (9-29-88)
 - Enhancements throughout follow-on missions including
 - Both stills and video and improved equipment
 - Detailed guidelines and recommendations
 - Underwater observations during dives

- Story (cont.)
 - Second camera installed in forward skirt on STS-95 (10-29-98) to observe ET foam popcorning from intertank
 - Utilized for five flights
 - Permanently implemented on STS-114 (7-26-05)
 - STS-121 implemented two additional standard SRB cameras to evaluate ascent debris conditions
 - Forward skirt aft looking and ETA ring forward looking cameras
 - Refinements incorporated to improve camera settings and modify field of view

Outcome

- Learned capability of hardware
- Expanded understanding of environments and associated variability from flight to flight
- Allows flight specific evaluations to assess time of occurrence and debris hazards
- Ultimately supports taking advantage of fact SRB recovered to improve designs and processing
- Lessons Learned
- Picture = thousand words
- Some Criticality 3 systems are really important

Parachute Failure

Hardwater impact

Dive Operations

Hypalon Off Gassing

BTA from Aft BSM Hits Orbiter

- It Doesn't End There...
 - Evolution of Marshall Sprayable Ablative (MSA) to Marshall Convergent Coating (MCC)
 - Implementation of Command Receiver Decoder (CRD)
 - Frustum Linear Shaped Charge (LSC) Rotation
 - Integrated Electronics Assembly (IEA) Power Bus Isolation Supply (PBIS) Module Design Enhancement
 - Path to SRB Phase II Fuel Pumps

