Development of a Log Scanner Best Practice Guideline

Industru - Research - Innovation

Overview

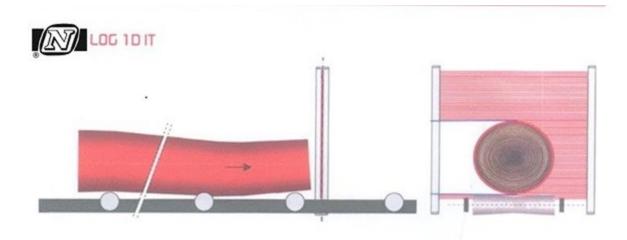
- Objectives
- Background
- Description of study
- Results
- Conclusions/Recommendations

Objectives

- Determine who uses log scanners in Australia, what types of log scanners are used and how they are being used
- Determine the level of precision used for log scanner measurements and checks and calibrations, and the methods and frequency used to perform the checks and calibrations
- Propose a framework for an Australian log scanner best practice guideline

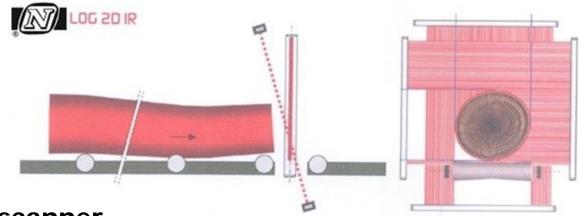
Background

- Log scanner
 - types
 - uses
 - accuracy
 - calibration


Types of log scanner

- Optical scanners
 - 1D
 - 2D
 - 3D
- X-ray scanners

1D log scanners


www.nukor.co.za

Shadow scanner

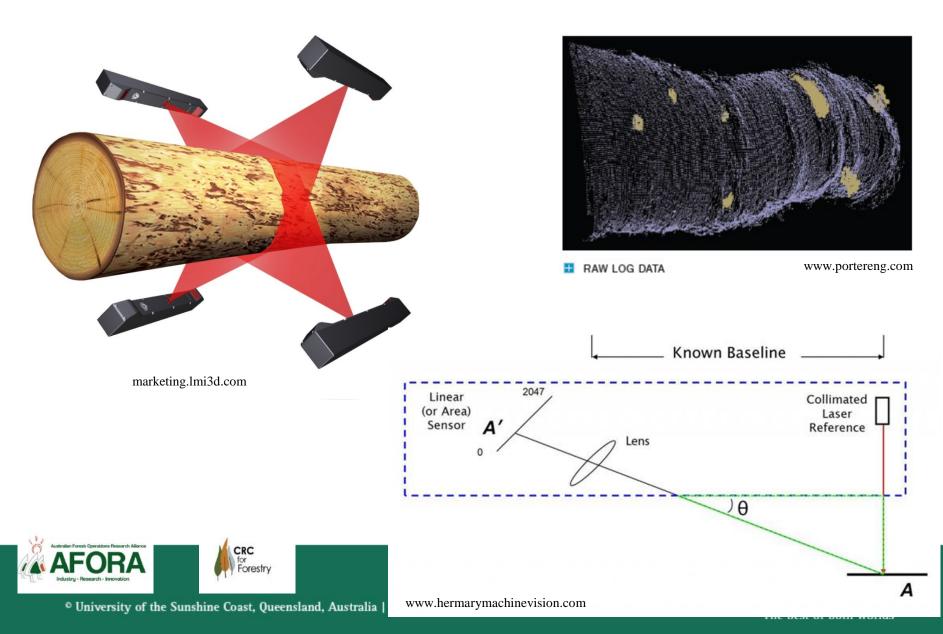
2D log scanners

www.nukor.co.za

University of the Sunshine Coast

The best of both worlds

Shadow scanner


2D laser scanner

© University of the Sunshine Coast, Queensland, Australia | CRICOS

for Forestry

3D laser log scanners

X-ray log scanners

- X ray scanner
 - detect internal log features such as knots, decay, heartwood and foreign objects

Other log scanners

- Multispectral scanner external defect detection
- Microwave scanner internal features
- Acoustic scanner log stiffness

Uses of log scanners

- Determine cutting pattern to maximise value (or volume) recovery
- Determine log grade
- Sorting logs into size classes
- Volume/price determination

Log scanner accuracy - 1

Theoretical accuracy of 3D log scanner measurements is ± 1 -2 mm for diameter and ± 10 -20 mm for length.

Measurement of diameter of 825 debarked Picea abies logs

Scanner type	Standard Error (mm)
1D	6
2D	3
3D	1

Cause of the differences was stem ovality

Gjerdrum, P. (2011) Softwood sawlog scaling accuracy before and after barking. In: Campean, M., Ispas, M. & Gurau, L. (eds.): Proceedings of the International Conference, Transilvania University of Brasov, Romania 03-05 November. "Wood Science and Engineering in the Third Millennium" 8:579-586.

Log scanner accuracy - 2

Trial of 62 logs comparing manual and 3D scanner measurements

Measurement	Range	Maximum difference (cm)
Length	94% were within ±5 cm	8
Diameter	98% were within ±2 cm	3

Australian Foresti Operations Research Allence AFORA Industry - Research - Emocration

Dyson, P. (2013) Log scanning trials: progress by Measurement Canada and the Canadian Standards Association (CSA) Technical Committee on Scaling on using scanners for scaling. Presented at the Timber Measurement Society Meeting, Bellingham Washington 10-12 April, 2013.

ersity of the

Sunshine Coast

The best of both worlds

Calibration

- How are scanners calibrated?
 - Regular object, usually a pipe
 - Generally plastic but can be metal
- Why not use logs?
 - Difficult to compare manual and scanner measurements, particularly of diameter

Study description

- Methodology
- Target groups
- Organisations contacted
- Conducting the survey

Study methodology

- Online survey
 - Ease of setup
 - Anonymous
 - Participants could start and stop survey
- Questions determined in consultation with an Industry steering committee

Target groups

- Two groups were targeted:
 - Sawmills and veneer plants with a capacity greater than 25,000 m³/year
 - Forest growers who were likely to have customers using log scanners.

List of mill owners contacted

Organisation	Location	
AKD Softwoods	Colac	
Australian Sustainable Hardwoods	Heyfield	
AusWest Timbers	Bairnsdale	
Carter Holt Harvey	Caboolture	
Carter Holt Harvey	Morwell	
Carter Holt Harvey	Mt. Gambier	
Carter Holt Harvey	Myrtleford	
Carter Holt Harvey	Tumut	
Carter Holt Harvey	Yarram	
D&R Henderson	Benalla	
Dongwha Timbers	Bombala	
Highland Pine Products	Oberon	
Hyne Frame	Tuan	
Hyne Frame	Tumbarumba	
Mareeba Softwoods	Mareeba	
Neville Smith Forest Products	Southwood	
NF McDonnell	Mt. Gambier	
SA Pine Pty Ltd	Kuitpo	
Superior Wood	Imbil	
Ta Ann	Southwood	
Timber Marshalling Services	Yeppoon	
Timberlink	Bell Bay	
Timberlink	Tarpeena	
Wespine	Dardanup	
Whitehead TS	Mt. Gambier	

[®] University of the Sunshine Coast, gateristand, Austrana J effects Florider no. 01555

University of the Sunshine Coast

List of forest growers contacted

Organisation

Forest Products Commission, WA

Forestry Corporation NSW

Forestry Tasmania

ForestrySA/One Forty One

Green Triangle Forest Products

Hancock Queensland Plantations

Hancocks Victorian Plantations

Timberlands Pacific

VicForests

[©] University of the Sunshine Co

Conducting survey

- Potential participants selected using:
 - AFORA/Steering committee contacts
 - LinkedIn/Company website information
- Emails/LinkedIn messages sent briefly explaining the purpose of the survey and with a link to the survey
- Participants given 2 weeks with a reminder near the end of that time

Study results

- Proportion of mills with a log scanner
- Types of scanner being used
- How were the scanners being used

Number of respondents

Target group	Responses	Percentage response
Sawmills and veneer mills	13 full, 1 partial	52% (56% incl. the partial response)
Forest growers	6 full, 1 partial	67% (78% incl. the partial response)

Log Scanner Numbers

Scanner type	Number of scanners
2D	3
3D	5
2D & 3D	1
2D & 3D & X-ray	2
Total	11

- Most responding mills use a log scanner (3 did not).
- No mills reported having a 1D scanner
- The majority of scanners reported were 3D scanners

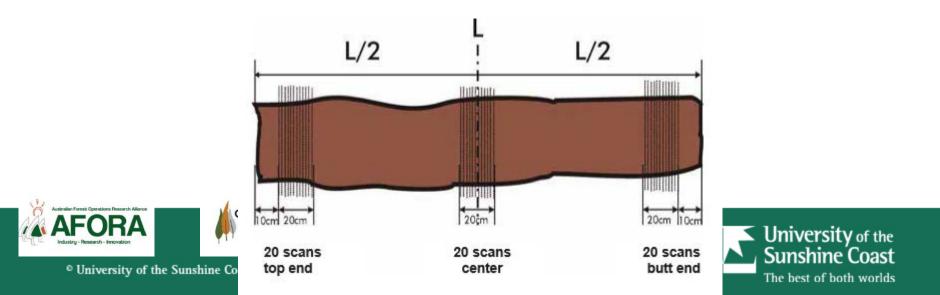
Uses of Log Scanners

- Determine log value
 - 5 scanners, all 3D scanners
- Log quality (3D scanners)
 - Sweep (all), taper (several), ovality (one)
- Contractor payments

Log scanner accuracy

Trial at the Wespine sawmill of 15 radiata pine logs comparing manual and 3D scanner measurements

Measurement	Range	Maximum difference (cm)
Length	70% were within ±3 cm	10
Diameter	80% were within ±1 cm	1.8


- A previous trial found up to 9 cm difference in manual length measurements between sides of radiata pine logs
- Manual diameter measurements were taken with a d-tape

Volume estimation

- "Real" volume vs modelled volume (Hubers, Smalians, Newtons)
- Measured length vs. length class
- Diameter where measured?

Calibration/measurement precision

Level of	Number of survey respondents			
precision	Measurement		Calibration	
	Length	Diameter	Length	Diameter
0.1 mm	-	3	-	3
mm	4	5	2	5
cm	6	1	7	2
Other	<2% variation over 3 test logs	 5 mm <2% variation over 10 test logs 	 25 mm <0.25% variation 	<0.25% variation

No consistency in frequency of check measurements and calibrations

Other issues

- How to price logs if the scanner fails?
 - Weighbridge + weight to volume conversion
- Tracking logs from delivery to scanner
 - to facilitate grower payments
- Reconciling log scanner measurements
 - Against harvester or logyard measurements

Conclusions

- Majority of respondents used a log scanner
- Majority of scanners used were 3D, closely followed by 2D
- Less than half of the respondents used their log scanner to value logs and in all cases 3D scanners were used
- For companies using their scanner measurements for log payments there was a range of responses about:
 - What log measurements were made
 - How volume was calculated
 - How log quality was assessed
- Check measurements and calibrations varied between companies in terms of:
 - How they were performed
 - How frequently they occurred
 - Acceptable precision levels

Log Scanner best practice guideline

- Minimum levels of precision for length, diameter and volume accuracy?
- What instruments should be used to conduct the accuracy/precision testing? E.g. steel or fibreglass tape, diameter tape, callipers or steel ruler.
- What dimensions and construction material should be used for test objects?
- What are the measurement check and calibration procedures?
- How frequently should measurement checks and calibrations occur?
- What fallback procedures would be put in place if the log scanner was not working?
- What data is to be supplied about scanner calibration/verification results to forest growers?

Acknowledgements

We acknowledge the:

- assistance and guidance of the Project Steering Committee (Islay Robertson HQPlantations, Phil Lloyd Timberlink Australia, Shane Robertson Hyne Timber, Darrell Clark Timberlands Pacific).
- survey respondents.
- financial support from FWPA and the assistance of Wespine Industries P/L.

Thank-you

Dr Martin Strandgard Senior Research Fellow AFORA - University of the Sunshine Coast mnstra@unimelb.edu.au Ph. (03) 9035 6872 & 0418526574

wizdist.com

