
First Edition

Building Python Programs

Stuart Reges
University of Washington

Marty Stepp
Stanford University

Allison Obourn
University of Arizona

330 Hudson Street, NY, NY 10013

A01_REGE5983_01_SE_FM.indd 1 7/12/18 9:50 PM

Senior Vice President Courseware Portfolio
Management: Marcia Horton
Vice President, Portfolio Management: Engineering,
Computer Science & Global Editions: Julian Partridge
Executive Portfolio Manager: Matt Goldstein
Portfolio Management Assistant: Meghan Jacoby
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Managing Producer: Scott Disanno
Content Producer: Amanda Brands
Project Manager: Rose Kernan, RPK Editorial Services

Manufacturing Buyer, Higher Ed, Lake Side
Communications, Inc. (LSC): Maura Zaldivar-Garcia
Cover Design: Pearson CSC
R&P Manager: Ben Ferrini
Inventory Manager: Bruce Boundy
Cover Art: Matt Walford/Cultura/Getty Images
Full Service Vendor: Pearson CSC
Full-Service Project Management: Pearson CSC/Rose
Kernan
Composition: Pearson CSC
Printer/Binder: LSC Communications, Inc

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the devel-
opment, research, and testing of the theories and programs to determine their effectiveness. The authors and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation contained in
this book. The authors and publisher shall not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2019 Pearson Education, Inc., Hoboken, New Jersey 07030. All rights reserved. Printed in the United States of
America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any pro-
hibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within
the Pearson Education Global Rights & Permissions department, please visit www.pearsonhighed.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or pro-
motion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education,
Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Reges, Stuart, author. | Stepp, Martin, author. | Obourn, Allison,
 author.
Title: Building Python programs / Stuart Reges, University of Washington,
 Marty Stepp, Stanford University, Allison Obourn, University of Arizona.
Description: First edition. | New York, NY : Pearson, [2019] | Includes index.
Identifiers: LCCN 2018028848| ISBN 9780135205983 | ISBN 0135205980
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 R445 2019 | DDC 005.13/3—dc23
LC record available at https://lccn.loc.gov/2018028848
1 18

ISBN 10:   0-13-520598-0
ISBN 13: 978-0-13-520598-3

A01_REGE5983_01_SE_FM.indd 2 7/12/18 9:50 PM

iii

Preface

The Python programming language has become enormously popular in recent years.
Many people are impressed with how quickly you can learn Python’s simple and intui-
tive syntax and that has led many users to create popular libraries. Python was designed
by Guido van Rossum who has been affectionaly dubbed “Benevolent Dictator For Life
(BDFL)” by the Python community. He has said that he chose the name Python because
he was “in a slightly irreverent mood” and that he is “a big fan of Monty Python’s
Flying Circus” (a British comedy show). Who wouldn’t want to learn a programming
language named after a group of comedians?

Our new Building Python Programs text is designed for use in a first course in com-
puter science. We have class-tested it with hundreds of undergraduates at the University
of Arizona, most of whom were not computer science majors. This textbook is based
on our previous text, Building Java Programs, now in its fourth edition. The Java text
has proven effective in our class testing with thousands of students including our own
at the University of Washington since 2007.

Introductory computer science courses have a long history at many universities
of being “killer” courses with high failure rates. But as Douglas Adams says in The
Hitchhiker’s Guide to the Galaxy, “Don’t panic.” Students can master this material if
they can learn it gradually.

Python has many attributes that make it an appealing language for a first computer
science course. It has a simple and concise yet powerful syntax that makes it pleasant
to learn and great for writing many common programs. A student can write their first
Python program with only a single line of code, as opposed to several lines in most other
languages such as Java or C++. Python includes a built-in interpreter and read-evaluate-
print loop (REPL) for quickly running and testing code, encouraging students to test and
explore the language. Python also offers a rich set of libraries that students can use for
graphics, animation, math, scientific computing, games, and much more. This text has
been built from the start for Python 3, the most modern version of the language as of this
writing, and it embraces the modern features and idioms of that version of the language.

Our teaching materials are based on a “back to basics” approach that focuses on
procedural programming and program decomposition. This is also called the “objects
later” approach, as opposed to the “objects early” approach taught in some schools. We
know from years of experience that a broad range of scientists, engineers, and others
can learn how to program in a procedural manner. Once we have built a solid founda-
tion of procedural techniques, we turn to object-oriented programming. By the end of
the text, students will have learned about both styles of programming.

A01_REGE5983_01_SE_FM.indd 3 7/12/18 9:50 PM

iv	 Preface ﻿

The following are the key features of our approach and materials:

•	 Focus on problem solving. Many textbooks focus on language details when
they introduce new constructs. We focus instead on problem solving. What new
problems can be solved with each construct? What pitfalls are novices likely
to encounter along the way? What are the most common ways to use a new
construct?

•	 Emphasis on algorithmic thinking. Our procedural approach allows us to empha-
size algorithmic problem solving: breaking a large problem into smaller prob-
lems, using pseudocode to refine an algorithm, and grappling with the challenge
of expressing a large program algorithmically.

•	 Thorough discussion of topics. The authors have found that many introductory
texts rapidly cover new syntax and concepts and then quickly race on to the next
topic. We feel that the students who crack open their textbook are exactly the sort
that want more thorough and careful explanation and discussion of tricky topics.
In this text we favor longer explanations, with more verbiage, figures, and code
examples than in many other texts.

•	 Layered approach. Programming involves many concepts that are difficult to
learn all at once. Teaching a novice to code is like trying to build a house of cards;
each new card has to be placed carefully. If the process is rushed and you try to
place too many cards at once, the entire structure collapses. We teach new con-
cepts gradually, layer by layer, allowing students to expand their understanding at
a manageable pace.

•	 Emphasis on good coding style. We show code that uses proper and consistent
programming style and design. All complete programs shown in the text are thor-
oughly commented and properly decomposed. Throughout the text we discuss
common idioms, good and bad style choices, and how to choose elegant and appro-
priate ways to decompose and solve each new category of problem.

•	 Carefully chosen language subset. Rather than a “kitchen sink” approach that
tries to show the student every language construct and feature, we instead go out
of our way to explain and use a core subset of the Python language that we feel is
most well suited to solving introductory level problems.

•	 Case studies. We end most chapters with a significant case study that shows
students how to develop a complex program in stages and how to test it as it
is being developed. This structure allows us to demonstrate each new pro-
gramming construct in a rich context that cannot be achieved with short code
examples.

A01_REGE5983_01_SE_FM.indd 4 7/12/18 9:50 PM

Preface ﻿� v

Layers and Dependencies

Many introductory computer science texts are language-oriented, but the early chapters
of our approach are layered. For example, Python has many control structures (including
loops and if/else statements), and many texts include all of these control structures in
a single chapter. While that might make sense to someone who already knows how to
program, it can be overwhelming for a novice who is learning how to program. We find
that it is much more effective to spread these control structures into different chapters
so that students learn one structure at a time rather than trying to learn them all at once.

The following table shows how the layered approach works in the first seven chapters:

Layers in Chapters 1–7

Chapter Control Flow Data Techniques Input/Output

1 functions string literals decomposition print

2 definite loops

(for loops)

expressions/

variables,

integers, real

numbers

local variables, global

constants, pseudocode

3 parameters,

return

using objects decomposition with

param/return

console input,

graphics

4 conditionals

(if/else)

strings pre/postconditions,

raising exceptions

5 indefinite

loops (while

loops)

Boolean logic assertions, robust

programs

6 file objects line-based processing,

line-based processing

file I/O

7 lists traversals files as lists

Chapters 1–5 are designed to be worked through in order, with greater flexibility of
study then beginning in Chapter 6. Chapter 6 (File I/O) may be skipped, although the
case study in Chapter 7 (Lists) involves reading from a file, a topic that is covered in
Chapter 6.

The following figure represents a dependency chart for the book. A strong depen-
dency is drawn as a solid arrow; we recommend not covering chapters outside of their
strong dependency order. A weak dependency is drawn as a dashed arrow. Weak depen-
dencies are ones where the later chapter briefly mentions a topic from the earlier chap-
ter, but the chapter can still be read and explored without having covered the earlier
chapter if necessary.

A01_REGE5983_01_SE_FM.indd 5 7/12/18 9:50 PM

vi	 Preface ﻿

Here are more detailed explanations of the weak dependencies between chapters:

•	 A few examples from Chapter 7 on lists, and from Chapter 8 on dictionaries and
sets, read data from files. File input/output is covered in Chapter 6. But overall file-
reading is not required in order to discuss lists or other collections, so Chapter 6
can be skipped if desired.

•	 A few examples from Chapter 11 on classes and objects mention the concept of
reference semantics, which is introduced in Chapter 7 on lists. But the concept of
references is re-explained in Chapter 11, so classes can be covered early before
lists if desired.

•	 Some of the recursive functions in Chapter 9 process lists, and one recursive
function recursively reverses the lines of a file. So Chapter 9 weakly depends on
Chapter 7. But almost every recursive function written in Chapter 9 can be written
and understood using only the Chapter 1–5 core material.

As you can see from the diagram, Chapter 7 on Lists is perhaps the most important
chapter after the first five, and its material is used by many other chapters. A common
chapter order swap would be to cover Chapters 1–5, then do Chapter 7 on Lists, then
go back to Chapter 6 on Files with the extra knowledge of lists to help you.

Supplements

Answers to all self-check problems appear on our web site and are accessible to anyone:
http://www.buildingpythonprograms.com/

Chapter dependency chart

Chapters 1–5
Fundamentals

Chapter 6
File I/O

Chapter 7
Lists

Chapter 8
Dictionary/Set

Chapter 11
Classes/Objects

Chapter 12
Functional Prog.

Chapter 10
Search/Shot

Chapter 9
Recursion

A01_REGE5983_01_SE_FM.indd 6 7/12/18 9:50 PM

Preface ﻿� vii

In addition, our web site also has the following additional resources available for
students:

•	 Online-only supplemental content

•	 Source code and data files for all case studies and other complete program
examples.

•	 The DrawingPanel class used in Chapter 3.

•	 Links to web-based programming practice tools.

Instructors can access the following resources from our web site:

•	 PowerPoint slides suitable for lectures.

•	 Solutions to exercises and programming projects, along with homework specifica-
tion documents for many projects.

•	 Sample Exams and solution keys.

To access instructor resources, contact us at authors@buildingpythonprograms.com.
For other questions related to resources, contact the authors and/or your Pearson
representative.

MyLab Programming

MyLab Programming helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyLab Programming improves the programming competence of beginning students,
who often struggle with the basic concepts and paradigms of popular high-level
programming languages. A self-study and homework tool, the MyLab Programming
course consists of hundreds of small practice exercises organized around the structure
of this textbook. For students, the system automatically detects errors in the logic
and syntax of their code submissions and offers targeted hints that enable students to
figure out what went wrong—and why. For instructors, a comprehensive gradebook
tracks correct and incorrect answers and stores the code inputted by students for
review.

MyLab Programming is offered to users of this book in partnership with Turing’s
Craft, the makers of the CodeLab interactive programming exercise system. For a
full demonstration, to see feedback from instructors and students, or to get started
using MyLab Programming in your course, visit: http://www.pearson.com/mylab/
programming.

A01_REGE5983_01_SE_FM.indd 7 7/12/18 9:50 PM

viii	 Preface ﻿

Acknowledgments

We would also like to thank the staff at Pearson who helped produce the book. Rose
Kernan managed the project and was our primary point of contact during book produc-
tion. Rose did a phenomenal job; she was diligent, responsive, and helpful at every step
of the process. Amanda Brands was our content producer, and she also provided excel-
lent support along the way. Thank you to Martha McMaster for proofreading the text,
and thanks to Shelly Gerger-Knechtl for copy editing and indexing. We thank Yvonne
Vannatta, our marketing manager, and Meghan Jacoby, our editorial assistant. We also
want to thank the team of artists and compositors from Pearson’s partner institutions
who helped produce the chapters of this text.

We would like to thank our lead editor at Pearson, Matt Goldstein. Over a decade
ago Matt believed in our work and partnered with us to create the original Building
Java Programs on which this text is based. Matt has been a stalwart supporter and is
always a pleasure to work with.

Last but not least, the authors would like to thank the CSC 110 students at the
University of Arizona who class-tested our chapters in rough draft form. Students
provided helpful suggestions for improving the content and also submitted corrections
for typos and errors in drafts of chapters.

Stuart Reges, University of Washington
Marty Stepp, Stanford University

Allison Obourn, University of Arizona

A01_REGE5983_01_SE_FM.indd 8 7/12/18 9:50 PM

ix

MyLab Programming

Through the power of practice and immediate personalized feedback, MyLab Programming™
helps students master programming fundamentals and build computational thinking skills.

PROGRAMMING PRACTICE
With MyLab Programming, your students will gain first-hand programming experience in an inter-
active online environment.

IMMEDIATE, PERSONALIZED FEEDBACK
MyLab Programming automatically detects errors in the logic and syntax of their code submission
and offers trageted hints that enables students to figure out what went wrong and why.

GRADUATED COMPLEXITY
MyLab Programming breaks down pro-
gramming concepts into short, under-
standable sequences of exercises. Within
each sequence the level and sophistica-
tion of the exercises increase gradually
but steadily.

DYNAMIC ROSTER
Students’ submissions are stored in a
roster that indicates whether the sub-
mission is correct, how many attempts
were made, and the actual code sub-
missions from each attempt.

PEARSON eTEXT
The Pearson eText gives students access to their textbook anytime, anywhere

STEP-BY-STEP VIDEONOTE TUTORIALS
These step-by-step video tutorials enhance the programming concepts presented in select
Pearson textbooks.
For more information and titles available with MyLab Programming, please visit www.pearson.
com/mylab/programming

Copyright © 2018 Pearson Education, Inc. or its affiliate(s). All rights reserved. HELO88173 · 11/15

A01_REGE5983_01_SE_FM.indd 9 7/12/18 9:50 PM

A01_REGE5983_01_SE_FM.indd 10 7/12/18 9:50 PM

xi

Brief Contents

Chapter 1	 Introduction to Python Programming 	 1

Chapter 2	 Data and Definite Loops 	 57

Chapter 3	 Parameters and Graphics 	 132

Chapter 4	 Conditional Execution 	 219

Chapter 5	 Program Logic and Indefinite Loops 	 295

Chapter 6	 File Processing 	 364

Chapter 7	 Lists 	 418

Chapter 8	 Dictionaries and Sets 	 517

Chapter 9	 Recursion 	 563

Chapter 10	 Searching and Sorting 	 636

Chapter 11	 Classes and Objects 	 686

Chapter 12	 Functional Programming 	 738

Appendix A	 Python Summary 	 785

A01_REGE5983_01_SE_FM.indd 11 7/12/18 9:50 PM

A01_REGE5983_01_SE_FM.indd 12 7/12/18 9:50 PM

xiii

Contents

Chapter 1 Introduction to Python Programming 	 1

	 1.1	 Basic Computing Concepts 	 2
Why Programming? 	 2
Hardware and Software 	 3
The Digital Realm 	 4
The Process of Programming 	 6
Why Python? 	 7
The Python Programming Environment 	 8

	 1.2	 And Now: Python 	 10
Printing Output 	 14
String Literals (Strings) 	 15
Escape Sequences 	 16
Printing a Complex Figure 	 18
Comments, Whitespace, and Readability 	 19

	 1.3	 Program Errors 	 22
Syntax Errors 	 23
Logic Errors (Bugs) 	 25

	 1.4	 Procedural Decomposition 	 26
Functions 	 27
Flow of Control 	 31
Identifiers and Keywords 	 34
Functions That Call Other Functions 	 36
An Example Runtime Error 	 38

	 1.5	 Case Study: Drawing Figures 	 40
Structured Version 	 41
Final Version without Redundancy 	 42
Analysis of Flow of Execution 	 44

Chapter 2 Data and Definite Loops 	 57

	 2.1	 Basic Data Concepts 	 58
Types 	 58
Expressions 	 59
Literals 	 62

A01_REGE5983_01_SE_FM.indd 13 7/12/18 9:50 PM

xiv	 Contents ﻿

Arithmetic Operators 	 62
Precedence 	 66
Mixing and Converting Types 	 69

	 2.2	 Variables 	 70
A Program with Variables 	 74
Increment/Decrement Operators 	 79
Printing Multiple Values 	 80

	 2.3	 The for Loop 	 83
Using a Loop Variable 	 87
Details about Ranges 	 90
String Multiplication and Printing Partial Lines 	 94
Nested for Loops 	 98

	 2.4	 Managing Complexity 	 101
Scope 	 101
Pseudocode 	 103
Constants 	 108

	 2.5	 Case Study: Hourglass Figure 	 111
Problem Decomposition and Pseudocode 	 112
Initial Structured Version 	 114
Adding a Constant 	 115

Chapter 3 Parameters and Graphics 	 132

	 3.1	 Parameters 	 133
The Mechanics of Parameters 	 139
Limitations of Parameters 	 141
Multiple Parameters 	 145
Parameters versus Constants 	 148
Optional Parameters 	 149

	 3.2	 Returning Values 	 151
The math Module 	 153
The random Module 	 156
Defining Functions That Return Values 	 160
Returning Multiple Values 	 165

	 3.3	 Interactive Programs 	 167
Sample Interactive Program 	 170

	 3.4	 Graphics 	 172
Introduction to DrawingPanel 	 173
Drawing Lines and Shapes 	 176
Colors 	 179
Drawing with Loops 	 183
Text and Fonts 	 186

A01_REGE5983_01_SE_FM.indd 14 7/12/18 9:50 PM

Contents ﻿� xv

Images 	 188
Procedural Decomposition with Graphics 	 189

	 3.5	 Case Study: Projectile Trajectory 	 191
Unstructured Solution 	 195
Structured Solution 	 196
Graphical Version 	 199

Chapter 4 Conditional Execution 	 219

	 4.1	 if/else Statements 	 220
Relational Operators 	 222
Nested if/else Statements 	 225
Factoring if/else Statements 	 231
Testing Multiple Conditions 	 232

	 4.2	 Cumulative Algorithms 	 233
Cumulative Sum 	 233
Min/Max Loops 	 236
Cumulative Sum with if 	 239
Roundoff Errors 	 242

	 4.3	 Functions with Conditional Execution 	 245
Preconditions and Postconditions 	 245
Raising Exceptions 	 246
Revisiting Return Values 	 250
Reasoning about Paths 	 253

	 4.4	 Strings 	 255
String Methods 	 257
Accessing Characters by Index 	 260
Converting between Letters and Numbers 	 264
Cumulative Text Algorithms 	 267

	 4.5	 Case Study: Basal Metabolic Rate 	 269
One-Person Unstructured Solution 	 270
Two-Person Unstructured Solution 	 273
Two-Person Structured Solution 	 275
Procedural Design Heuristics 	 280

Chapter 5 Program Logic and Indefinite Loops 	 295

	 5.1	 The while Loop 	 296
A Loop to Find the Smallest Divisor 	 298
Loop Priming 	 300

A01_REGE5983_01_SE_FM.indd 15 7/12/18 9:50 PM

xvi	 Contents ﻿

	 5.2	 Fencepost Algorithms 	 303
Fencepost with if 	 306
Sentinel Loops 	 308
Sentinel with Min/Max 	 310

	 5.3	 Boolean Logic 	 312
Logical Operators 	 315
Boolean Variables and Flags 	 318
Predicate Functions 	 320
Boolean Zen 	 322
Short-Circuited Evaluation 	 325

	 5.4	 Robust Programs 	 329
The try/except Statement 	 330
Handling User Errors 	 333

	 5.5	 Assertions and Program Logic 	 335
Reasoning about Assertions 	 337
A Detailed Assertions Example 	 339

	 5.6	 Case Study: Number Guessing Game 	 343
Initial Version without Hinting 	 344
Randomized Version with Hinting 	 346
Final Robust Version 	 348

Chapter 6 File Processing 	 364

	 6.1	 File-Reading Basics 	 365
Data and Files 	 365
Reading a File in Python 	 369
Line-Based File Processing 	 372
Structure of Files and Consuming Input 	 373
Prompting for a File 	 378

	 6.2	 Token-Based Processing 	 381
Numeric Input 	 383
Handling Invalid Input 	 385
Mixing Lines and Tokens 	 386
Handling Varying Numbers of Tokens 	 388
Complex Input Files 	 392

	 6.3	 Advanced File Processing 	 394
Multi-Line Input Records 	 395
File Output 	 397
Reading Data from the Web 	 400

	 6.4	 Case Study: ZIP Code Lookup 	 403

A01_REGE5983_01_SE_FM.indd 16 7/12/18 9:50 PM

Contents ﻿� xvii

Chapter 7 Lists 	 418

	 7.1	 List Basics 	 419
Creating Lists 	 420
Accessing List Elements 	 423
Traversing a List 	 429
A Complete List Program 	 430
Random Access 	 434
List Methods 	 435

	 7.2	 List-Traversal Algorithms 	 443
Lists as Parameters 	 443
Searching a List 	 445
Replacing and Removing Values 	 449
Reversing a List 	 450
Shifting Values in a List 	 456
Nested Loop Algorithms 	 462
List Comprehensions 	 463

	 7.3	 Reference Semantics 	 464
Values and References 	 465
Modifying a List Parameter 	 468
The Value None 	 470
Mutability 	 472
Tuples 	 476

	 7.4	 Multidimensional Lists 	 482
Rectangular Lists 	 483
Jagged Lists 	 485
Lists of Pixels 	 491

	 7.5	 Case Study: Benford’s Law 	 495
Tallying Values 	 497
Completing the Program 	 501

Chapter 8 Dictionaries and Sets 	 517

	 8.1	 Dictionary Basics 	 518
Creating a Dictionary 	 521
Dictionary Operations 	 524
Looping Over a Dictionary 	 527
Dictionary Ordering 	 528

	 8.2	 Advanced Dictionary Usage 	 531
Dictionary for Tallying 	 531

A01_REGE5983_01_SE_FM.indd 17 7/12/18 9:50 PM

xviii	 Contents ﻿

Nested Collections 	 536
Dictionary Comprehensions 	 541

	 8.3	 Sets 	 543
Set Basics 	 543
Set Operations 	 547
Set Efficiency 	 549
Set Example: Lottery 	 552

Chapter 9 Recursion 	 563

	 9.1	 Thinking Recursively 	 564
A Nonprogramming Example 	 564
Iteration to Recursion 	 567
Structure of Recursive Solutions 	 570
Reversing a File 	 573
The Recursive Call Stack 	 575

	 9.2	 Recursive Functions and Data 	 581
Integer Exponentiation 	 581
Greatest Common Divisor 	 584
Directory Crawler 	 590

	 9.3	 Recursive Graphics 	 594
Cantor Set 	 594
Sierpinski Triangle 	 597

	 9.4	 Recursive Backtracking 	 601
Traveling North/East 	 601
Eight Queens Puzzle 	 607
Stopping after One Solution 	 615

	 9.5	 Case Study: Prefix Evaluator 	 618
Infix, Prefix, and Postfix Notation 	 618
Evaluating Prefix Expressions 	 619
Complete Program 	 623

Chapter 10 Searching and Sorting 	 636

	 10.1	 Searching and Sorting Libraries 	 637
Binary Search 	 638
Sorting 	 644
Shuffling 	 645

	 10.2	 Program Complexity 	 646
Empirical Analysis 	 649
Complexity Classes 	 656

A01_REGE5983_01_SE_FM.indd 18 7/12/18 9:50 PM

Contents ﻿� xix

	 10.3	 Implementing Searching and Sorting Algorithms 	 657
Sequential Search 	 658
Binary Search 	 659
Recursive Binary Search 	 662
Selection Sort 	 664

	 10.4	 Case Study: Implementing Merge Sort 	 667
Splitting and Merging lists 	 668
Recursive Merge Sort 	 671
Runtime Performance 	 674
Hybrid Approach 	 677

Chapter 11 Classes and Objects 	 686

	 11.1	 Object-Oriented Programming 	 687
Classes and Objects 	 688
Date Objects 	 690

	 11.2	 Object State and Behavior 	 690
Data Attributes 	 691
Initializers 	 694
Methods 	 698
Accessors and Mutators 	 702
Making Objects Printable 	 705
Object Equality and Ordering 	 707

	 11.3	 Encapsulation 	 710
Motivation for Encapsulation 	 711
Private Attributes and Properties 	 711
Class Invariants 	 717

	 11.4	 Case Study: Designing a Stock Class 	 721
Object-Oriented Design Heuristics 	 723
Stock Attributes and Method Headers 	 725
Stock Method and Property Implementation 	 727

Chapter 12 Functional Programming 	 738

	 12.1	 Functional Programming Concepts 	 739
Side Effects 	 740
First-Class Functions 	 742
Higher-Order Functions 	 744
Lambda Expressions 	 746

	 12.2	 Functional Operations on Collections 	 749
Using Map 	 751
Using Filter 	 752

A01_REGE5983_01_SE_FM.indd 19 7/12/18 9:50 PM

xx	 Contents ﻿

Using Reduce 	 754
List Comprehensions 	 758

	 12.3	 Function Closures 	 760
Generator Functions 	 763
Lazy Evaluation 	 767
Iterable Objects 	 769
Generator Expressions 	 770

	 12.4	 Case Study: Perfect Numbers 	 772
Computing Sums 	 772
The Fifth Perfect Number 	 777
Leveraging Concurrency 	 778

Appendix A	 Python Summary 	 785

Index		 798

A01_REGE5983_01_SE_FM.indd 20 7/12/18 9:50 PM

