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Preface

The Python programming language has become enormously popular in recent years. 
Many people are impressed with how quickly you can learn Python’s simple and intui-
tive syntax and that has led many users to create popular libraries. Python was designed 
by Guido van Rossum who has been affectionaly dubbed “Benevolent Dictator For Life 
(BDFL)” by the Python community.  He has said that he chose the name Python because 
he was “in a slightly irreverent mood” and that he is “a big fan of Monty Python’s 
Flying Circus” (a British comedy show). Who wouldn’t want to learn a programming 
language named after a group of comedians?

Our new Building Python Programs text is designed for use in a first course in com-
puter science. We have class-tested it with hundreds of undergraduates at the University 
of Arizona, most of whom were not computer science majors. This textbook is based 
on our previous text, Building Java Programs, now in its fourth edition. The Java text 
has proven effective in our class testing with thousands of students including our own 
at the University of Washington since 2007.

Introductory computer science courses have a long history at many universities 
of being “killer” courses with high failure rates. But as Douglas Adams says in The 
Hitchhiker’s Guide to the Galaxy, “Don’t panic.” Students can master this material if 
they can learn it gradually.

Python has many attributes that make it an appealing language for a first computer 
science course. It has a simple and concise yet powerful syntax that makes it pleasant 
to learn and great for writing many common programs. A student can write their first 
Python program with only a single line of code, as opposed to several lines in most other 
languages such as Java or C++. Python includes a built-in interpreter and read-evaluate-
print loop (REPL) for quickly running and testing code, encouraging students to test and 
explore the language. Python also offers a rich set of libraries that students can use for 
graphics, animation, math, scientific computing, games, and much more. This text has 
been built from the start for Python 3, the most modern version of the language as of this 
writing, and it embraces the modern features and idioms of that version of the language.

Our teaching materials are based on a “back to basics” approach that focuses on 
procedural programming and program decomposition. This is also called the “objects 
later” approach, as opposed to the “objects early” approach taught in some schools. We 
know from years of experience that a broad range of scientists, engineers, and others 
can learn how to program in a procedural manner. Once we have built a solid founda-
tion of procedural techniques, we turn to object-oriented programming. By the end of 
the text, students will have learned about both styles of programming.
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The following are the key features of our approach and materials:

•	 Focus on problem solving. Many textbooks focus on language details when 
they introduce new constructs. We focus instead on problem solving. What new 
problems can be solved with each construct? What pitfalls are novices likely 
to encounter along the way? What are the most common ways to use a new 
construct?

•	 Emphasis on algorithmic thinking. Our procedural approach allows us to empha-
size algorithmic problem solving: breaking a large problem into smaller prob-
lems, using pseudocode to refine an algorithm, and grappling with the challenge 
of expressing a large program algorithmically.

•	 Thorough discussion of topics. The authors have found that many introductory 
texts rapidly cover new syntax and concepts and then quickly race on to the next 
topic. We feel that the students who crack open their textbook are exactly the sort 
that want more thorough and careful explanation and discussion of tricky topics. 
In this text we favor longer explanations, with more verbiage, figures, and code 
examples than in many other texts.

•	 Layered approach. Programming involves many concepts that are difficult to 
learn all at once. Teaching a novice to code is like trying to build a house of cards; 
each new card has to be placed carefully. If the process is rushed and you try to 
place too many cards at once, the entire structure collapses. We teach new con-
cepts gradually, layer by layer, allowing students to expand their understanding at 
a manageable pace.

•	 Emphasis on good coding style. We show code that uses proper and consistent 
programming style and design. All complete programs shown in the text are thor-
oughly commented and properly decomposed. Throughout the text we discuss 
common idioms, good and bad style choices, and how to choose elegant and appro-
priate ways to decompose and solve each new category of problem.

•	 Carefully chosen language subset. Rather than a “kitchen sink” approach that 
tries to show the student every language construct and feature, we instead go out 
of our way to explain and use a core subset of the Python language that we feel is 
most well suited to solving introductory level problems.

•	 Case studies. We end most chapters with a significant case study that shows 
students how to develop a complex program in stages and how to test it as it 
is being developed. This structure allows us to demonstrate each new pro-
gramming construct in a rich context that cannot be achieved with short code 
examples.
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Layers and Dependencies

Many introductory computer science texts are language-oriented, but the early chapters 
of our approach are layered. For example, Python has many control structures (including 
loops and if/else statements), and many texts include all of these control structures in 
a single chapter. While that might make sense to someone who already knows how to 
program, it can be overwhelming for a novice who is learning how to program. We find 
that it is much more effective to spread these control structures into different chapters 
so that students learn one structure at a time rather than trying to learn them all at once.

The following table shows how the layered approach works in the first seven chapters:

Layers in Chapters 1–7

Chapter Control Flow Data Techniques Input/Output

1 functions string literals decomposition print

2 definite loops 

(for loops)

expressions/

variables, 

integers, real 

numbers

local variables, global 

constants, pseudocode

3 parameters, 

return

using objects decomposition with 

param/return

console input, 

graphics

4 conditionals 

(if/else)

strings pre/postconditions, 

raising exceptions

5 indefinite 

loops (while 

loops)

Boolean logic assertions, robust 

programs

6 file objects line-based processing, 

line-based processing

file I/O

7 lists traversals files as lists

Chapters 1–5 are designed to be worked through in order, with greater flexibility of 
study then beginning in Chapter 6. Chapter 6 (File I/O) may be skipped, although the 
case study in Chapter 7 (Lists) involves reading from a file, a topic that is covered in 
Chapter 6.

The following figure represents a dependency chart for the book. A strong depen-
dency is drawn as a solid arrow; we recommend not covering chapters outside of their 
strong dependency order. A weak dependency is drawn as a dashed arrow. Weak depen-
dencies are ones where the later chapter briefly mentions a topic from the earlier chap-
ter, but the chapter can still be read and explored without having covered the earlier 
chapter if necessary.

A01_REGE5983_01_SE_FM.indd   5 7/12/18   9:50 PM



vi	 Preface ﻿

Here are more detailed explanations of the weak dependencies between chapters:

•	 A few examples from Chapter 7 on lists, and from Chapter 8 on dictionaries and 
sets, read data from files. File input/output is covered in Chapter 6. But overall file-
reading is not required in order to discuss lists or other collections, so Chapter 6 
can be skipped if desired.

•	 A few examples from Chapter 11 on classes and objects mention the concept of 
reference semantics, which is introduced in Chapter 7 on lists. But the concept of 
references is re-explained in Chapter 11, so classes can be covered early before 
lists if desired.

•	 Some of the recursive functions in Chapter 9 process lists, and one recursive 
function recursively reverses the lines of a file. So Chapter 9 weakly depends on 
Chapter 7. But almost every recursive function written in Chapter 9 can be written 
and understood using only the Chapter 1–5 core material.

As you can see from the diagram, Chapter 7 on Lists is perhaps the most important 
chapter after the first five, and its material is used by many other chapters. A common 
chapter order swap would be to cover Chapters 1–5, then do Chapter 7 on Lists, then 
go back to Chapter 6 on Files with the extra knowledge of lists to help you.

Supplements

Answers to all self-check problems appear on our web site and are accessible to anyone:
http://www.buildingpythonprograms.com/

Chapter dependency chart

Chapters 1–5
Fundamentals

Chapter 6
File I/O

Chapter 7
Lists

Chapter 8
Dictionary/Set

Chapter 11
Classes/Objects

Chapter 12
Functional Prog.

Chapter 10
Search/Shot

Chapter 9
Recursion
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In addition, our web site also has the following additional resources available for 
students:

•	 Online-only supplemental content

•	 Source code and data files for all case studies and other complete program 
examples.

•	 The DrawingPanel class used in Chapter 3.

•	 Links to web-based programming practice tools.

Instructors can access the following resources from our web site:

•	 PowerPoint slides suitable for lectures.

•	 Solutions to exercises and programming projects, along with homework specifica-
tion documents for many projects.

•	 Sample Exams and solution keys.

To access instructor resources, contact us at authors@buildingpythonprograms.com. 
For other questions related to resources, contact the authors and/or your Pearson 
representative.

MyLab Programming

MyLab Programming helps students fully grasp the logic, semantics, and syntax of 
programming. Through practice exercises and immediate, personalized feedback, 
MyLab Programming improves the programming competence of beginning students, 
who often struggle with the basic concepts and paradigms of popular high-level 
programming languages. A self-study and homework tool, the MyLab Programming 
course consists of hundreds of small practice exercises organized around the structure 
of this textbook. For students, the system automatically detects errors in the logic 
and syntax of their code submissions and offers targeted hints that enable students to 
figure out what went wrong—and why. For instructors, a comprehensive gradebook 
tracks correct and incorrect answers and stores the code inputted by students for 
review.

MyLab Programming is offered to users of this book in partnership with Turing’s 
Craft, the makers of the CodeLab interactive programming exercise system. For a 
full demonstration, to see feedback from instructors and students, or to get started 
using MyLab Programming in your course, visit: http://www.pearson.com/mylab/
programming.
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MyLab Programming

Through the power of  practice and immediate personalized feedback, MyLab Programming™ 
helps students master programming fundamentals and build computational thinking skills.

PROGRAMMING PRACTICE
With MyLab Programming, your students will gain first-hand programming experience in an inter-
active online environment.

IMMEDIATE, PERSONALIZED FEEDBACK
MyLab Programming automatically detects errors in the logic and syntax of  their code submission 
and offers trageted hints that enables students to figure out what went wrong and why.

GRADUATED COMPLEXITY
MyLab Programming breaks down pro-
gramming concepts into short, under-
standable sequences of exercises. Within 
each sequence the level and sophistica-
tion of the exercises increase gradually 
but steadily.

DYNAMIC ROSTER
Students’ submissions are stored in a 
roster that indicates whether the sub-
mission is correct, how many attempts 
were made, and the actual code sub-
missions from each attempt.

PEARSON eTEXT
The Pearson eText gives students access to their textbook anytime, anywhere

STEP-BY-STEP VIDEONOTE TUTORIALS
These step-by-step video tutorials enhance the programming concepts presented in select 
Pearson textbooks.
For more information and titles available with MyLab Programming, please visit www.pearson.
com/mylab/programming

Copyright © 2018 Pearson Education, Inc. or its affiliate(s). All rights reserved. HELO88173 · 11/15
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