
First Edition

Building Python Programs

Stuart Reges
University of Washington

Marty Stepp
Stanford University

Allison Obourn
University of Arizona

330 Hudson Street, NY, NY 10013

A01_REGE5983_01_SE_FM.indd   1 7/12/18   9:50 PM



Senior Vice President Courseware Portfolio 
Management: Marcia Horton
Vice President, Portfolio Management: Engineering, 
Computer Science & Global Editions: Julian Partridge
Executive Portfolio Manager: Matt Goldstein
Portfolio Management Assistant: Meghan Jacoby
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Managing Producer: Scott Disanno
Content Producer: Amanda Brands
Project Manager: Rose Kernan, RPK Editorial Services

Manufacturing Buyer, Higher Ed, Lake Side 
Communications, Inc. (LSC): Maura Zaldivar-Garcia
Cover Design: Pearson CSC
R&P Manager: Ben Ferrini
Inventory Manager: Bruce Boundy
Cover Art: Matt Walford/Cultura/Getty Images
Full Service Vendor: Pearson CSC
Full-Service Project Management: Pearson CSC/Rose 
Kernan
Composition: Pearson CSC
Printer/Binder: LSC Communications, Inc

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the devel-
opment, research, and testing of the theories and programs to determine their effectiveness. The authors and publisher 
make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation contained in 
this book. The authors and publisher shall not be liable in any event for incidental or consequential damages in connection 
with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2019 Pearson Education, Inc., Hoboken, New Jersey 07030. All rights reserved. Printed in the United States of 
America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any pro-
hibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within 
the Pearson Education Global Rights & Permissions department, please visit www.pearsonhighed.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where 
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been 
printed in initial caps or all caps.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their 
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or 
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or pro-
motion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, 
Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Reges, Stuart, author. | Stepp, Martin, author. | Obourn, Allison,
   author.
Title: Building Python programs / Stuart Reges, University of Washington,
   Marty Stepp, Stanford University, Allison Obourn, University of Arizona.
Description: First edition. | New York, NY : Pearson, [2019] | Includes index.
Identifiers: LCCN 2018028848| ISBN 9780135205983 | ISBN 0135205980
Subjects:  LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 R445 2019 | DDC 005.13/3—dc23
LC record available at https://lccn.loc.gov/2018028848
1 18

ISBN 10:         0-13-520598-0
ISBN 13: 978-0-13-520598-3

A01_REGE5983_01_SE_FM.indd   2 7/12/18   9:50 PM



iii

Preface

The Python programming language has become enormously popular in recent years. 
Many people are impressed with how quickly you can learn Python’s simple and intui-
tive syntax and that has led many users to create popular libraries. Python was designed 
by Guido van Rossum who has been affectionaly dubbed “Benevolent Dictator For Life 
(BDFL)” by the Python community.  He has said that he chose the name Python because 
he was “in a slightly irreverent mood” and that he is “a big fan of Monty Python’s 
Flying Circus” (a British comedy show). Who wouldn’t want to learn a programming 
language named after a group of comedians?

Our new Building Python Programs text is designed for use in a first course in com-
puter science. We have class-tested it with hundreds of undergraduates at the University 
of Arizona, most of whom were not computer science majors. This textbook is based 
on our previous text, Building Java Programs, now in its fourth edition. The Java text 
has proven effective in our class testing with thousands of students including our own 
at the University of Washington since 2007.

Introductory computer science courses have a long history at many universities 
of being “killer” courses with high failure rates. But as Douglas Adams says in The 
Hitchhiker’s Guide to the Galaxy, “Don’t panic.” Students can master this material if 
they can learn it gradually.

Python has many attributes that make it an appealing language for a first computer 
science course. It has a simple and concise yet powerful syntax that makes it pleasant 
to learn and great for writing many common programs. A student can write their first 
Python program with only a single line of code, as opposed to several lines in most other 
languages such as Java or C++. Python includes a built-in interpreter and read- evaluate-
print loop (REPL) for quickly running and testing code, encouraging students to test and 
explore the language. Python also offers a rich set of libraries that students can use for 
graphics, animation, math, scientific computing, games, and much more. This text has 
been built from the start for Python 3, the most modern version of the language as of this 
writing, and it embraces the modern features and idioms of that version of the language.

Our teaching materials are based on a “back to basics” approach that focuses on 
procedural programming and program decomposition. This is also called the “objects 
later” approach, as opposed to the “objects early” approach taught in some schools. We 
know from years of experience that a broad range of scientists, engineers, and others 
can learn how to program in a procedural manner. Once we have built a solid founda-
tion of procedural techniques, we turn to object-oriented programming. By the end of 
the text, students will have learned about both styles of programming.

A01_REGE5983_01_SE_FM.indd   3 7/12/18   9:50 PM



iv Preface  

The following are the key features of our approach and materials:

• Focus on problem solving. Many textbooks focus on language details when 
they introduce new constructs. We focus instead on problem solving. What new 
problems can be solved with each construct? What pitfalls are novices likely 
to encounter along the way? What are the most common ways to use a new 
construct?

• Emphasis on algorithmic thinking. Our procedural approach allows us to empha-
size algorithmic problem solving: breaking a large problem into smaller prob-
lems, using pseudocode to refine an algorithm, and grappling with the challenge 
of expressing a large program algorithmically.

• Thorough discussion of topics. The authors have found that many introductory 
texts rapidly cover new syntax and concepts and then quickly race on to the next 
topic. We feel that the students who crack open their textbook are exactly the sort 
that want more thorough and careful explanation and discussion of tricky topics. 
In this text we favor longer explanations, with more verbiage, figures, and code 
examples than in many other texts.

• Layered approach. Programming involves many concepts that are difficult to 
learn all at once. Teaching a novice to code is like trying to build a house of cards; 
each new card has to be placed carefully. If the process is rushed and you try to 
place too many cards at once, the entire structure collapses. We teach new con-
cepts gradually, layer by layer, allowing students to expand their understanding at 
a manageable pace.

• Emphasis on good coding style. We show code that uses proper and consistent 
programming style and design. All complete programs shown in the text are thor-
oughly commented and properly decomposed. Throughout the text we discuss 
common idioms, good and bad style choices, and how to choose elegant and appro-
priate ways to decompose and solve each new category of problem.

• Carefully chosen language subset. Rather than a “kitchen sink” approach that 
tries to show the student every language construct and feature, we instead go out 
of our way to explain and use a core subset of the Python language that we feel is 
most well suited to solving introductory level problems.

• Case studies. We end most chapters with a significant case study that shows 
students how to develop a complex program in stages and how to test it as it 
is being developed. This structure allows us to demonstrate each new pro-
gramming construct in a rich context that cannot be achieved with short code 
examples.

A01_REGE5983_01_SE_FM.indd   4 7/12/18   9:50 PM



Preface   v

Layers and Dependencies

Many introductory computer science texts are language-oriented, but the early chapters 
of our approach are layered. For example, Python has many control structures (including 
loops and if/else statements), and many texts include all of these control structures in 
a single chapter. While that might make sense to someone who already knows how to 
program, it can be overwhelming for a novice who is learning how to program. We find 
that it is much more effective to spread these control structures into different chapters 
so that students learn one structure at a time rather than trying to learn them all at once.

The following table shows how the layered approach works in the first seven chapters:

Layers in Chapters 1–7

Chapter Control Flow Data Techniques Input/Output

1 functions string literals decomposition print

2 definite loops 

(for loops)

expressions/

variables, 

integers, real 

numbers

local variables, global 

constants, pseudocode

3 parameters, 

return

using objects decomposition with 

param/return

console input, 

graphics

4 conditionals 

(if/else)

strings pre/postconditions, 

raising exceptions

5 indefinite 

loops (while 

loops)

Boolean logic assertions, robust 

programs

6 file objects line-based processing, 

line-based processing

file I/O

7 lists traversals files as lists

Chapters 1–5 are designed to be worked through in order, with greater flexibility of 
study then beginning in Chapter 6. Chapter 6 (File I/O) may be skipped, although the 
case study in Chapter 7 (Lists) involves reading from a file, a topic that is covered in 
Chapter 6.

The following figure represents a dependency chart for the book. A strong depen-
dency is drawn as a solid arrow; we recommend not covering chapters outside of their 
strong dependency order. A weak dependency is drawn as a dashed arrow. Weak depen-
dencies are ones where the later chapter briefly mentions a topic from the earlier chap-
ter, but the chapter can still be read and explored without having covered the earlier 
chapter if necessary.

A01_REGE5983_01_SE_FM.indd   5 7/12/18   9:50 PM



vi Preface  

Here are more detailed explanations of the weak dependencies between chapters:

• A few examples from Chapter 7 on lists, and from Chapter 8 on dictionaries and 
sets, read data from files. File input/output is covered in Chapter 6. But overall file-
reading is not required in order to discuss lists or other collections, so Chapter 6 
can be skipped if desired.

• A few examples from Chapter 11 on classes and objects mention the concept of 
reference semantics, which is introduced in Chapter 7 on lists. But the concept of 
references is re-explained in Chapter 11, so classes can be covered early before 
lists if desired.

• Some of the recursive functions in Chapter 9 process lists, and one recursive 
function recursively reverses the lines of a file. So Chapter 9 weakly depends on 
Chapter 7. But almost every recursive function written in Chapter 9 can be written 
and understood using only the Chapter 1–5 core material.

As you can see from the diagram, Chapter 7 on Lists is perhaps the most important 
chapter after the first five, and its material is used by many other chapters. A common 
chapter order swap would be to cover Chapters 1–5, then do Chapter 7 on Lists, then 
go back to Chapter 6 on Files with the extra knowledge of lists to help you.

Supplements

Answers to all self-check problems appear on our web site and are accessible to anyone:
http://www.buildingpythonprograms.com/

Chapter dependency chart

Chapters 1–5
Fundamentals

Chapter 6
File I/O

Chapter 7
Lists

Chapter 8
Dictionary/Set

Chapter 11
Classes/Objects

Chapter 12
Functional Prog.

Chapter 10
Search/Shot

Chapter 9
Recursion

A01_REGE5983_01_SE_FM.indd   6 7/12/18   9:50 PM



Preface   vii

In addition, our web site also has the following additional resources available for 
students:

• Online-only supplemental content

• Source code and data files for all case studies and other complete program 
examples.

• The DrawingPanel class used in Chapter 3.

• Links to web-based programming practice tools.

Instructors can access the following resources from our web site:

• PowerPoint slides suitable for lectures.

• Solutions to exercises and programming projects, along with homework specifica-
tion documents for many projects.

• Sample Exams and solution keys.

To access instructor resources, contact us at authors@buildingpythonprograms.com. 
For other questions related to resources, contact the authors and/or your Pearson 
representative.

MyLab Programming

MyLab Programming helps students fully grasp the logic, semantics, and syntax of 
programming. Through practice exercises and immediate, personalized feedback, 
MyLab Programming improves the programming competence of beginning students, 
who often struggle with the basic concepts and paradigms of popular high-level 
programming languages. A self-study and homework tool, the MyLab Programming 
course consists of hundreds of small practice exercises organized around the structure 
of this textbook. For students, the system automatically detects errors in the logic 
and syntax of their code submissions and offers targeted hints that enable students to 
figure out what went wrong—and why. For instructors, a comprehensive gradebook 
tracks correct and incorrect answers and stores the code inputted by students for 
review.

MyLab Programming is offered to users of this book in partnership with Turing’s 
Craft, the makers of the CodeLab interactive programming exercise system. For a 
full demonstration, to see feedback from instructors and students, or to get started 
using MyLab Programming in your course, visit: http://www.pearson.com/mylab/
programming.

A01_REGE5983_01_SE_FM.indd   7 7/12/18   9:50 PM



viii Preface  

Acknowledgments

We would also like to thank the staff at Pearson who helped produce the book. Rose 
Kernan managed the project and was our primary point of contact during book produc-
tion. Rose did a phenomenal job; she was diligent, responsive, and helpful at every step 
of the process. Amanda Brands was our content producer, and she also provided excel-
lent support along the way. Thank you to Martha McMaster for proofreading the text, 
and thanks to Shelly Gerger-Knechtl for copy editing and indexing. We thank Yvonne 
Vannatta, our marketing manager, and Meghan Jacoby, our editorial assistant. We also 
want to thank the team of artists and compositors from Pearson’s partner institutions 
who helped produce the chapters of this text.

We would like to thank our lead editor at Pearson, Matt Goldstein. Over a decade 
ago Matt believed in our work and partnered with us to create the original Building 
Java Programs on which this text is based. Matt has been a stalwart supporter and is 
always a pleasure to work with.

Last but not least, the authors would like to thank the CSC 110 students at the 
University of Arizona who class-tested our chapters in rough draft form. Students 
 provided helpful suggestions for improving the content and also submitted corrections 
for typos and errors in drafts of chapters.

Stuart Reges, University of Washington
Marty Stepp, Stanford University

Allison Obourn, University of Arizona

A01_REGE5983_01_SE_FM.indd   8 7/12/18   9:50 PM



ix

MyLab Programming

Through the power of  practice and immediate personalized feedback, MyLab Programming™ 
helps students master programming fundamentals and build computational thinking skills.

PROGRAMMING PRACTICE
With MyLab Programming, your students will gain first-hand programming experience in an inter-
active online environment.

IMMEDIATE, PERSONALIZED FEEDBACK
MyLab Programming automatically detects errors in the logic and syntax of  their code submission 
and offers trageted hints that enables students to figure out what went wrong and why.

GRADUATED COMPLEXITY
MyLab Programming breaks down pro-
gramming concepts into short, under-
standable sequences of exercises. Within 
each sequence the level and sophistica-
tion of the exercises increase gradually 
but steadily.

DYNAMIC ROSTER
Students’ submissions are stored in a 
roster that indicates whether the sub-
mission is correct, how many attempts 
were made, and the actual code sub-
missions from each attempt.

PEARSON eTEXT
The Pearson eText gives students access to their textbook anytime, anywhere

STEP-BY-STEP VIDEONOTE TUTORIALS
These step-by-step video tutorials enhance the programming concepts presented in select 
Pearson textbooks.
For more information and titles available with MyLab Programming, please visit www.pearson.
com/mylab/programming

Copyright © 2018 Pearson Education, Inc. or its affiliate(s). All rights reserved. HELO88173 · 11/15

A01_REGE5983_01_SE_FM.indd   9 7/12/18   9:50 PM



A01_REGE5983_01_SE_FM.indd   10 7/12/18   9:50 PM



xi

Brief Contents

Chapter 1 Introduction to Python Programming  1

Chapter 2 Data and Definite Loops  57

Chapter 3 Parameters and Graphics  132

Chapter 4 Conditional Execution  219

Chapter 5 Program Logic and Indefinite Loops  295

Chapter 6 File Processing  364

Chapter 7 Lists  418

Chapter 8 Dictionaries and Sets  517

Chapter 9 Recursion  563

Chapter 10 Searching and Sorting  636

Chapter 11 Classes and Objects  686

Chapter 12 Functional Programming  738

Appendix A Python Summary  785

A01_REGE5983_01_SE_FM.indd   11 7/12/18   9:50 PM



A01_REGE5983_01_SE_FM.indd   12 7/12/18   9:50 PM



xiii

Contents

Chapter 1 Introduction to Python Programming  1

 1.1 Basic Computing Concepts  2
Why Programming?  2
Hardware and Software  3
The Digital Realm  4
The Process of Programming  6
Why Python?  7
The Python Programming Environment  8

 1.2 And Now: Python  10
Printing Output  14
String Literals (Strings)  15
Escape Sequences  16
Printing a Complex Figure  18
Comments, Whitespace, and Readability  19

 1.3 Program Errors  22
Syntax Errors  23
Logic Errors (Bugs)  25

 1.4 Procedural Decomposition  26
Functions  27
Flow of Control  31
Identifiers and Keywords  34
Functions That Call Other Functions  36
An Example Runtime Error  38

 1.5 Case Study: Drawing Figures  40
Structured Version  41
Final Version without Redundancy  42
Analysis of Flow of Execution  44

Chapter 2 Data and Definite Loops  57

 2.1 Basic Data Concepts  58
Types  58
Expressions  59
Literals  62

A01_REGE5983_01_SE_FM.indd   13 7/12/18   9:50 PM



xiv Contents  

Arithmetic Operators  62
Precedence  66
Mixing and Converting Types  69

 2.2 Variables  70
A Program with Variables  74
Increment/Decrement Operators  79
Printing Multiple Values  80

 2.3 The for Loop  83
Using a Loop Variable  87
Details about Ranges  90
String Multiplication and Printing Partial Lines  94
Nested for Loops  98

 2.4 Managing Complexity  101
Scope  101
Pseudocode  103
Constants  108

 2.5 Case Study: Hourglass Figure  111
Problem Decomposition and Pseudocode  112
Initial Structured Version  114
Adding a Constant  115

Chapter 3 Parameters and Graphics  132

 3.1 Parameters  133
The Mechanics of Parameters  139
Limitations of Parameters  141
Multiple Parameters  145
Parameters versus Constants  148
Optional Parameters  149

 3.2 Returning Values  151
The math Module  153
The random Module  156
Defining Functions That Return Values  160
Returning Multiple Values  165

 3.3 Interactive Programs  167
Sample Interactive Program  170

 3.4 Graphics  172
Introduction to DrawingPanel  173
Drawing Lines and Shapes  176
Colors  179
Drawing with Loops  183
Text and Fonts  186

A01_REGE5983_01_SE_FM.indd   14 7/12/18   9:50 PM



Contents   xv

Images  188
Procedural Decomposition with Graphics  189

 3.5 Case Study: Projectile Trajectory  191
Unstructured Solution  195
Structured Solution  196
Graphical Version  199

Chapter 4 Conditional Execution  219

 4.1 if/else Statements  220
Relational Operators  222
Nested if/else Statements  225
Factoring if/else Statements  231
Testing Multiple Conditions  232

 4.2 Cumulative Algorithms  233
Cumulative Sum  233
Min/Max Loops  236
Cumulative Sum with if  239
Roundoff Errors  242

 4.3 Functions with Conditional Execution  245
Preconditions and Postconditions  245
Raising Exceptions  246
Revisiting Return Values  250
Reasoning about Paths  253

 4.4 Strings  255
String Methods  257
Accessing Characters by Index  260
Converting between Letters and Numbers  264
Cumulative Text Algorithms  267

 4.5 Case Study: Basal Metabolic Rate  269
One-Person Unstructured Solution  270
Two-Person Unstructured Solution  273
Two-Person Structured Solution  275
Procedural Design Heuristics  280

Chapter 5 Program Logic and Indefinite Loops  295

 5.1 The while Loop  296
A Loop to Find the Smallest Divisor  298
Loop Priming  300

A01_REGE5983_01_SE_FM.indd   15 7/12/18   9:50 PM



xvi Contents  

 5.2 Fencepost Algorithms  303
Fencepost with if  306
Sentinel Loops  308
Sentinel with Min/Max  310

 5.3 Boolean Logic  312
Logical Operators  315
Boolean Variables and Flags  318
Predicate Functions  320
Boolean Zen  322
Short-Circuited Evaluation  325

 5.4 Robust Programs  329
The try/except Statement  330
Handling User Errors  333

 5.5 Assertions and Program Logic  335
Reasoning about Assertions  337
A Detailed Assertions Example  339

 5.6 Case Study: Number Guessing Game  343
Initial Version without Hinting  344
Randomized Version with Hinting  346
Final Robust Version  348

Chapter 6 File Processing  364

 6.1 File-Reading Basics  365
Data and Files  365
Reading a File in Python  369
Line-Based File Processing  372
Structure of Files and Consuming Input  373
Prompting for a File  378

 6.2 Token-Based Processing  381
Numeric Input  383
Handling Invalid Input  385
Mixing Lines and Tokens  386
Handling Varying Numbers of Tokens  388
Complex Input Files  392

 6.3 Advanced File Processing  394
Multi-Line Input Records  395
File Output  397
Reading Data from the Web  400

 6.4 Case Study: ZIP Code Lookup  403

A01_REGE5983_01_SE_FM.indd   16 7/12/18   9:50 PM



Contents   xvii

Chapter 7 Lists  418

 7.1 List Basics  419
Creating Lists  420
Accessing List Elements  423
Traversing a List  429
A Complete List Program  430
Random Access  434
List Methods  435

 7.2 List-Traversal Algorithms  443
Lists as Parameters  443
Searching a List  445
Replacing and Removing Values  449
Reversing a List  450
Shifting Values in a List  456
Nested Loop Algorithms  462
List Comprehensions  463

 7.3 Reference Semantics  464
Values and References  465
Modifying a List Parameter  468
The Value None  470
Mutability  472
Tuples  476

 7.4 Multidimensional Lists  482
Rectangular Lists  483
Jagged Lists  485
Lists of Pixels  491

 7.5 Case Study: Benford’s Law  495
Tallying Values  497
Completing the Program  501

Chapter 8 Dictionaries and Sets  517

 8.1 Dictionary Basics  518
Creating a Dictionary  521
Dictionary Operations  524
Looping Over a Dictionary  527
Dictionary Ordering  528

 8.2 Advanced Dictionary Usage  531
Dictionary for Tallying  531

A01_REGE5983_01_SE_FM.indd   17 7/12/18   9:50 PM



xviii Contents  

Nested Collections  536
Dictionary Comprehensions  541

 8.3 Sets  543
Set Basics  543
Set Operations  547
Set Efficiency  549
Set Example: Lottery  552

Chapter 9 Recursion  563

 9.1 Thinking Recursively  564
A Nonprogramming Example  564
Iteration to Recursion  567
Structure of Recursive Solutions  570
Reversing a File  573
The Recursive Call Stack  575

 9.2 Recursive Functions and Data  581
Integer Exponentiation  581
Greatest Common Divisor  584
Directory Crawler  590

 9.3 Recursive Graphics  594
Cantor Set  594
Sierpinski Triangle  597

 9.4 Recursive Backtracking  601
Traveling North/East  601
Eight Queens Puzzle  607
Stopping after One Solution  615

 9.5 Case Study: Prefix Evaluator  618
Infix, Prefix, and Postfix Notation  618
Evaluating Prefix Expressions  619
Complete Program  623

Chapter 10 Searching and Sorting  636

 10.1 Searching and Sorting Libraries  637
Binary Search  638
Sorting  644
Shuffling  645

 10.2 Program Complexity  646
Empirical Analysis  649
Complexity Classes  656

A01_REGE5983_01_SE_FM.indd   18 7/12/18   9:50 PM



Contents   xix

 10.3 Implementing Searching and Sorting Algorithms  657
Sequential Search  658
Binary Search  659
Recursive Binary Search  662
Selection Sort  664

 10.4 Case Study: Implementing Merge Sort  667
Splitting and Merging lists  668
Recursive Merge Sort  671
Runtime Performance  674
Hybrid Approach  677

Chapter 11 Classes and Objects  686

 11.1 Object-Oriented Programming  687
Classes and Objects  688
Date Objects  690

 11.2 Object State and Behavior  690
Data Attributes  691
Initializers  694
Methods  698
Accessors and Mutators  702
Making Objects Printable  705
Object Equality and Ordering  707

 11.3 Encapsulation  710
Motivation for Encapsulation  711
Private Attributes and Properties  711
Class Invariants  717

 11.4 Case Study: Designing a Stock Class  721
Object-Oriented Design Heuristics  723
Stock Attributes and Method Headers  725
Stock Method and Property Implementation  727

Chapter 12 Functional Programming  738

 12.1 Functional Programming Concepts  739
Side Effects  740
First-Class Functions  742
Higher-Order Functions  744
Lambda Expressions  746

 12.2 Functional Operations on Collections  749
Using Map  751
Using Filter  752

A01_REGE5983_01_SE_FM.indd   19 7/12/18   9:50 PM



xx Contents  

Using Reduce  754
List Comprehensions  758

 12.3 Function Closures  760
Generator Functions  763
Lazy Evaluation  767
Iterable Objects  769
Generator Expressions  770

 12.4 Case Study: Perfect Numbers  772
Computing Sums  772
The Fifth Perfect Number  777
Leveraging Concurrency  778

Appendix A Python Summary  785

Index  798

A01_REGE5983_01_SE_FM.indd   20 7/12/18   9:50 PM


