Mass Balancein Non-Reactive System Multi unit system

## LEARNING OBJECTIVES

By the end of this topic, you should be able to:

- Performed material balance for system for multiple unit.


## BYPASS AND RECYCLE

## Bypass Stream

- Similar to a recycle, but a fraction of a stream is diverted around a process unit, rather than being returned to it.
- Calculation approach is identical.



## Recycle, Bypass, and Purge Calculations

A recycle stream is a term denoting a process stream that returns material from downstream of a process unit back to the process unit.

A bypass stream is the one that skips one or more stages of the process and goes directly to another down stream stage.

A purge stream is a stream bled off to remove an accumulation of inert or unwanted material that might otherwise build up in the recycle stream.


1. About the entire process
2. About the junction point at which the fresh feed is combined with the recycle stream
3. About the process only
4. About the function point at which the gross product is separated into recycle and net product

## BYPASS AND RECYCLE

## Recycle

- It is seldom cost effective to waste reactant fed that does not react to product. More often, this material is separated (recovered), and recycled (returned to its point of origin for reuse).



## Reasons to recycle

- recover catalyst
- typically most expensive chemical constituent
- dilute a process stream
- reduce slurry concentration
- control a process variable
- control heat produced by highly exothermic reaction
- circulation of a working fluid
- refrigerant


## BYPASS AND RECYCLE

| Note: |
| :--- |
| At splitting |
| points, the |
| components |
| mass |
| fractions |
| remain the |
| same. The |
| ONLY |
| difference is |
| the mass |
| flow rate. |



## Example : Recycle without Chemical Reaction

A distillation column separates $10,000 \mathrm{~kg} / \mathrm{hr}$ of a $50 \%$ benzene- $50 \%$ toluene mixture. The product $D^{-}$ recovered from the condenser at the top of the column contains $95 \%$ benzene, and the bottom W from the column contains $96 \%$ toluene. The vapor stream V entering the condenser from the top of the column is $8000 \mathrm{~kg} / \mathrm{hr}$. A portion of the product from the condenser is returned to the column as reflux, and the rest is withdraw for use elsewhere. Assume that the compositions of the streams at the top of the column (V), the product withdrawn (D), and the reflux ( R ) are identical because the V stream is condensed completely. Find the ratio of the amount refluxed R to the product withdrawn (D).

Basis : 1 hr (equal $F=10,000 \mathrm{~kg}$ )
Overall Material Balances:
Total material

$$
\begin{array}{r}
F=D+W \\
10,000=D+W
\end{array}
$$

Component (benzene)

$$
\begin{gathered}
F \omega_{F}=D \omega_{D}+W \omega_{W} \\
10,000(0.50)=D(0.95)+W(0.04)
\end{gathered}
$$

Solving for $W$ and $D$

$$
\begin{aligned}
& \mathrm{W}=4950 \mathrm{~kg} / \mathrm{hr} \\
& \mathrm{D}=5050 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Balance around the condenser
Total material:

$$
\begin{gathered}
V=R+D \\
8,000=R+5,050 \\
R=2,950 \mathrm{~kg} / \mathrm{hr} \\
R / D=2950 / 5050=0.58
\end{gathered}
$$

## Example : Recycle without chemical reaction

The manufacture of such products as penicillin, tefracycline, vitamins, and other fine organic compounds, usually requires separating the suspended solids from their mother liquor by centrifuging, and then drying the wet cake. What is the $\mathrm{lb} / \mathrm{hr}$ of the recycle stream R ?

This is a steady-state problem without reaction and with recycle.


Basis: $1 \mathrm{hr}(\mathrm{F}=98 \mathrm{lb})$
Overall mass balances


Solving for $P$ and $W$
$\mathrm{P}=20.4 \mathrm{lb} \quad \mathrm{W}=98-20.4=77.6 \mathrm{lb}$


Total balance on filter

$$
\begin{aligned}
& C=R+P \\
& C=R+20.4
\end{aligned}
$$

Component V balance on filter

$$
\begin{aligned}
& C \omega_{C}=R \omega_{R}+P \omega_{P} \\
& 0.6 C=0.286 R+0.96(20.4)
\end{aligned}
$$

Solving for R


## Example: Bypass Calculations

In the feedstock preparation section of a plant manufacturing natural gasoline, isopentane is removed from butane-free gasoline. Assume for purposes of simplification that the process and components are as shown in figure. What fraction of the butane-free gasoline is passed through the isopentane tower? The process is in the steady state and no reaction occurs.


Basis: 100 kg feed
Overall balance
Total material balance: In $=$ Out

$$
\begin{equation*}
100=S+P \tag{a}
\end{equation*}
$$

Component balance $\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}\right)$

$$
\begin{equation*}
100(0.8)=\mathrm{S}(0)+\mathrm{P}(0.9) \tag{b}
\end{equation*}
$$

We get, $\mathrm{P}=88.9 \mathrm{~kg}$ and $\mathrm{S}=11.1 \mathrm{~kg}$
Balance around isopentane tower
Total material balance: $x=11.1+y$
Component balance ( $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$ )

$$
\begin{equation*}
x(0.8)=y(1) \tag{c}
\end{equation*}
$$

We get, $x=55.5 \mathrm{~kg}, \mathrm{y}=44.4 \mathrm{~kg}$, therefore the fraction of butane free gas passed through isopentane tower is $55.5 / 100=0.55$


Another approach is to make a balance at mixing points 1 and 2

## Balance around mixing point 2

Total material balance: $(100-x)+y=88.9$
Component balance $\left(\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}\right)$ : $(100-\mathrm{x}) 0.2=88.9^{*} 0.1$

We get, $x=55.5 \mathrm{~kg}$


## EXAMPLE

Fresh orange juice contains $12.0 \mathrm{wt} \%$ solids and the balance water, and concentrated orange juice contains 42.0 wt\% solids. Initially a single evaporation process was used for the concentration, but volatile constituents of the juice escaped with the water, leaving the concentrate with a flat taste. The current process overcomes the problem by bypassing the evaporator with a fraction of fresh juice. The juice that leaves the evaporator is concentrated to $58 \mathrm{wt} \%$ solids, and the evaporator product stream is mixed with the bypassed fresh juice to achieve the desired final concentration.
Draw and label the flowchart. Perform the degrees of freedom analyses. Calculate the amount of product ( $42 \%$ concentrate) produced per 100 kg fresh juice fed to the process and the fraction of the feed that bypasses the evaporator.


## EXAMPLE

## Step 1. Draw and label the flowchart.



## EXAMPLE

Step 2. Choose a basis of calculation: Given 100 kg fresh juice. Step 3. Perform the DoF analysis.


## EXAMPLE

Step 3. Perform the DoF analysis (Continuation).


## Balances

Degrees of Freedom
Overall : $100=m_{1}+m_{2}$
$S:(0.12)(100)=0.12 m_{1}+0.12 m_{2}$
$\mathrm{W}:(0.88)(100)=0.88 m_{1}+0.88 m_{2}$

## EXAMPLE

Step 3. Perform the DoF analysis (Continuation).


## Balances

Degrees of Freedom


## EXAMPLE

Step 3. Perform the DoF analysis (Continuation).


## Balances

Overall : $m_{4}+m_{2}=m_{5}$

$$
\begin{aligned}
& \mathrm{S}: 0.12 m_{2}+0.58 m_{4}=0.42 m_{5} \\
& \mathrm{~W}: 0.88 m_{2}=0.42 m_{4}+0.58 m_{5}
\end{aligned}
$$

Degrees of Freedom
3 Unks. ( $m_{2}, m_{4}$,

$$
\left.m_{5}\right)-2 \text { IE's }
$$

1 DoF

## EXAMPLE

Step 4. Do the algebra. Solve the balance equations.
Calculate the amount of product ( $42 \%$ concentrate) produced per 100 kg fresh juice fed to the process and the fraction of the feed that bypasses the evaporator.

Let's start with the Overall Process because DoF = o
Recall the material balances for overall process
Overall: $100=m_{\imath}+m_{\text {б }}$

$$
\begin{aligned}
& \mathrm{S}:(0.12)(100)=0.42 m_{5} \\
& \mathrm{~W}:(0.88)(100)=m_{3}+0.58 m_{5}
\end{aligned}
$$



From (2) : $m_{5}=28.6 \mathrm{~kg}$ Amount of product !
From (1) : $\quad m_{3}=71.4 \mathrm{~kg}$

## EXAMPLE

Step 4. Do the algebra. Solve the balance equations (Continuation). Include the new values that we have obtained.


## DoF (updated)

2 unknowns ( $m_{2}, m_{4}$ )

- 2 IE's
o DoF


## Balances

Overall : $m_{4}+m_{2}=m_{5}$

$$
\mathrm{S}: 0.12 m_{2}+0.58 m_{4}=0.42 m_{5}
$$

Known $m_{5}=28.60 \mathrm{~kg}$ Solve for $m_{4}=18.70 \mathrm{~kg}$

$$
m_{5}=9.95 \mathrm{~kg}
$$

$$
\mathrm{W}: 0.88 m_{2}=0.42 m_{4}+0.58 m_{5}
$$

## EXAMPLE

Step 4. Do the algebra. Calculate the amount of product (42\% concentrate) produced per 100 kg fresh juice fed to the process and the fraction of the feed that bypasses the evaporator (Continuation).


The bypass fraction $=\frac{m_{2}}{100}=\frac{9.95}{100}$

$$
=0.0995
$$

## EXAMPLE

A liquid mixture containing 30.0 mole\% benzene (B), $25.0 \%$ toluene ( $T$ ) and the balance xylene $(X)$ is fed to a distillation column. The bottoms product containing 98.0 mole\% $X$ and no $B$, and $96.0 \%$ of the $X$ in the feed is recovered in this stream. The overhead product is fed to a second column. The overhead product from the second column contains $97.0 \%$ of the B in the feed to this column. The composition of this stream is 94.0 mole\% of $B$ and the balance $T$.
(a) Draw and label flowchart. Do the degree-of-freedom analysis to prove that for an assumed basis of calculation, molar flow rate and compositions of all process streams can be calculated from the given information.
(b) Calculate: (i) the percentage of the benzene in the process feed (the feed to the first column) that emerges in the overhead product from the second column and (ii) the percentage of toluene in the process feed that emerges in the bottom product from the second column.


## EXAMPLE

(a) Draw and label flowchart. Do the degree-of-freedom analysis to prove that for an assumed basis of calculation, molar flowrate and compositions of all process streams can be calculated from the given information.


## EXAMPLE


assumed lculated

## DoF Column 1

4 unknowns

- 3 Independent eq ${ }^{\text {n }}$
- 1 Recovery of X o DoF

DoF Column 2
4 unknowns

- 3 Independent eq ${ }^{\text {n }}$
- 1 Recovery of X o DoF

Column 1 96\% X Recovery:

$$
0.960(0.450)(100)=0.980 \dot{n}_{3(1)}
$$

Total mole balance:

$$
\begin{equation*}
100=\dot{n}_{2}+\dot{n}_{3} \tag{3}
\end{equation*}
$$

B Balance: $\quad 0.300(100)=x_{B 2} \dot{n}_{2}$
T Balance: $\quad 0.250(100)=x_{T 2} \dot{n}_{2}+0.020 \dot{n}_{3}$

## Column 2

97\% B Recovery: $\quad 0.970 x_{B 2} \dot{n}_{2}=0.940 \dot{n}_{4}$
Total mole balance: $\dot{n}_{2}=\dot{n}_{4}+\dot{n}_{5}$
B Balance: $\quad x_{B 2} \dot{n}_{2}=0.940 \dot{n}_{4}+x_{B 5} \dot{n}_{5}$
T Balance: $\quad x_{T 2} \dot{n}_{2}=0.060 \dot{n}_{4}+x_{T 5} \dot{n}_{5}$

## EXAMPLE

(b) Calculate:
(i) the percentage of the benzene in the process feed (the feed to the first column) that emerges in the overhead product from the second column and
(ii) the percentage of toluene in the process feed that emerges in the bottom product from the second column.

Solving all the balances and obtain these results:

$$
\begin{array}{lc}
\dot{n}_{3}=44.1 \mathrm{~mol} / \mathrm{h} & \dot{n}_{4}=30.95 \mathrm{~mol} / \mathrm{h} \\
\dot{n}_{2}=55.9 \mathrm{~mol} / \mathrm{h} & \dot{n}_{5}=24.96 \mathrm{~mol} / \mathrm{h} \\
x_{B 2}=0.536 \mathrm{molB} / \mathrm{h} & x_{B 5}=0.036 \mathrm{molB} / \mathrm{h} \\
x_{T 2}=0.431 \mathrm{molT} / \mathrm{h} & x_{T 5}=0.892 \mathrm{molT} / \mathrm{h}
\end{array}
$$

## EXAMPLE

(b) Calculate:
(i) the percentage of the benzene in the process feed (the feed to the first column) that emerges in the overhead product from the second column and
(ii) the percentage of toluene in the process feed that emerges in the bottom product from the second column.

$$
\dot{n}_{4}=30.95 \mathrm{~mol} / \mathrm{h}
$$

Overall Benzene Recovery: $\frac{0.940(30.95)}{0.300(100)} \times 100 \%=97 \%$
Overall Toluene Recovery: $\frac{0.892(24.96)}{0.250(100)} \times 100 \%=89 \%$

$$
\dot{n}_{5}=24.96 \mathrm{~mol} / \mathrm{h}
$$

$x_{T 5}=0.892 \mathrm{molT} / \mathrm{h}$


## Two-Unit Process Example

- Degree-of-freedom analysis
* overall system: 2 unknowns - 2 balances $=0\left(\right.$ find $m_{3}, x_{3}$ )
* mixer: 4 unknowns -2 balances $=2$
* Unit 1: 2 unknowns -2 balances $=0\left(\right.$ find $\left.m_{1}, x_{1}\right)$
* mixer: 2 unknowns -2 balances $=0\left(\right.$ find $\left.\mathrm{m}_{2}, \mathrm{x}_{2}\right)$



## Extraction-Distillation Process



## Class work

## Extraction-Distillation Process



## Balances on an Air Conditioner

$\square$ process cools and dehumidifies feed air.
$\square$ unknowns: $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}$ (requested by problem).
$\square$ degree-of-freedom analysis critical to solution.


## Balances on an Air Conditioner

## $\square$ Overall system

$\% n_{\text {df }}=2$ variables $\left(n_{1}, n_{3}\right)-2$ balances $=0$


## Balances on an Air Conditioner

$\square$ Mixer
$* \mathrm{n}_{\mathrm{df}}=2$ variables $\left(\mathrm{n}_{2}, \mathrm{n}_{5}\right)-2$ balances $=0$


## Balances on an Air Conditioner

## - Cooler

$* \mathrm{n}_{\mathrm{df}}=2$ variables $\left(\mathrm{n}_{2}, \mathrm{n}_{4}\right)-2$ balances $=0$


## Balances on an Air Conditioner

## $\square$ Splitter

$\% \mathrm{n}_{\mathrm{df}}=2$ variables $\left(\mathrm{n}_{4}, \mathrm{n}_{5}\right)-2$ balances $=0$
only 1 independent balance can be written on the splitter because the streams entering/leaving have the same composition.


## Balances on an Air Conditioner

$\square$ Overall: $n_{d f}=2$ variables $\left(n_{1}, n_{3}\right)-2$ balances $=0$

- Mixer: $n_{d f}=2$ variables $\left(n_{2}, n_{5}\right)-2$ balances $=0$
- Cooler: $n_{d f}=2$ variables $\left(n_{2}, n_{4}\right)-2$ balances $=0$
- Splitter: $\mathrm{n}_{\mathrm{df}}=2$ variables $\left(\mathrm{n}_{4}, \mathrm{n}_{5}\right)-2$ balances $=0$



## Balances on an Air Conditioner

- overall dry air balance
$\square$ overall mole balance

$$
\begin{aligned}
& (0.960) n_{1}=(0.983)(100) \Rightarrow n_{1}=102.4 \mathrm{~mol} \\
& n_{1}=n_{3}+(100) \Rightarrow n_{3}=2.4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { condensed }
\end{aligned}
$$



## Balances on an Air Conditioner

- overall mole balance
- water balance

$$
\begin{aligned}
& n_{1}+n_{5}=n_{2} \\
& (0.04) n_{1}+(0.017) n_{5}=(0.023) n_{2} \\
& n_{2}=392.5 \mathrm{~mol} ; n_{5}=290 \mathrm{~mol}
\end{aligned}
$$



## Evaporative Crystallization Process

## Calculate:

* rate of evaporation
* rate of production of crystalline $\mathrm{K}_{2} \mathrm{CrO}_{4}$
* feed rates to evaporator and crystallizer
* recycle ratio (mass or recycle/mass of fresh feed)



## Evaporative Crystallization Process

## - Overall system:

- $\mathrm{n}_{\mathrm{df}}=3$ unknowns $\left(\mathrm{m}_{2}, \mathrm{~m}_{4}, \mathrm{~m}_{5}\right)-2$ balances $-1 \mathrm{spec}=0$
- specification: $m_{4}$ is $95 \%$ of total filter cake mass

$$
\dot{\mathrm{m}}_{4}=0.95\left(\dot{\mathrm{~m}}_{4}+\dot{\mathrm{m}}_{5}\right)
$$



## Evaporative Crystallization Process

## Feed/recycle mixer:

O $\mathrm{n}_{\mathrm{df}}=3$ unknowns $\left(m_{6}, m_{1}, x_{1}\right)-2$ balances $=1$

- underspecified

$$
\dot{\mathrm{m}}_{4}=0.95\left(\dot{\mathrm{~m}}_{4}+\dot{\mathrm{m}}_{5}\right)
$$



## Evaporative Crystallization Process

## - Evaporator:

- $\mathrm{n}_{\mathrm{df}}=3$ unknowns $\left(\mathrm{m}_{3}, \mathrm{~m}_{1}, \mathrm{x}_{1}\right)-2$ balances $=1$
- underspecified



## Evaporative Crystallization Process

## - Crystallizer:

$\mathrm{n}_{\mathrm{df}}=2$ unknowns $\left(\mathrm{m}_{3}, \mathrm{~m}_{6}\right)-2$ balances $=0$

- solvable
- Once $m_{3}, m_{6}$ are known, mixer or evaporator balances can be solved.



## Evaporative Crystallization Process

- Overall system:
- $\mathrm{K}_{2} \mathrm{CrO}_{4}$ balance
- water balance
- total mass balance
- specification


## solve simultaneously for $\mathrm{m}_{4}$ and $\mathrm{m}_{5}$

$(0.333)(4500) \frac{\mathrm{kgK}}{\mathrm{h}}=\dot{\mathrm{m}}_{4}+(0.364) \dot{\mathrm{m}}_{5}$ $(0.667)(4500) \frac{\mathrm{kgK}}{\mathrm{h}}=\dot{\mathrm{m}}_{2}+(0.636) \dot{\mathrm{m}}_{5}$
$4500 \frac{\mathrm{~kg}}{\mathrm{~h}}=\dot{\mathrm{m}}_{2}+\dot{\mathrm{m}}_{4}+\dot{\mathrm{m}}_{5}$
$\dot{\mathrm{m}}_{4}=0.95\left(\dot{\mathrm{~m}}_{4}+\dot{\mathrm{m}}_{5}\right)$


## Evaporative Crystallization Process

- Overall system:


## $\mathrm{K}_{2} \mathrm{CrO}_{4}$ balance

water balancetotal mass balance
specification
solve for $m_{2}$ with knowns $m_{4}$ and $m_{5}$

$$
\begin{aligned}
& (0.333)(4500) \frac{k_{g} \mathrm{~K}}{\mathrm{~h}}=\dot{m}_{4}+(0.364) \dot{m}_{5} \\
& (0.667)(4500) \frac{k_{g} \mathrm{~K}}{\mathrm{~h}}=\dot{m}_{2}+(0.636) \dot{m}_{5} \\
& 4500 \frac{k g_{g}}{\mathrm{~h}}=\dot{m}_{2}+\dot{m}_{4}+\dot{m}_{5} \\
& \dot{m}_{4}=0.95\left(\dot{m}_{4}+\dot{m}_{5}\right)
\end{aligned}
$$

$$
\dot{n} \dot{\mathrm{~m}}_{2}=2950 \frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{~h}}
$$



Filtrate (recycle)
$\dot{m}_{6}(\mathrm{~kg} / \mathrm{h})$

### 0.364 kg K/kg

0.636 kg W/kg
$\dot{m}_{5}=77.5 \frac{\mathrm{~kg} \text { solution }}{\mathrm{h}}$
$0.364 \mathrm{kgK} / \mathrm{kg}$ solu
$0.636 \mathrm{~kg} \mathrm{~W} / \mathrm{kgsolu}$

## Evaporative Crystallization Process

- Overall system:


## only 3 equations are independent

- $\mathrm{K}_{2} \mathrm{CrO}_{4}$ balance
- water balance
- total mass balance
specification



## Evaporative Crystallization Process

- Crystallizer:
- total mass balance
- water balance
solve simultaneously for $\mathrm{m}_{3}$ and $\mathrm{m}_{6}$

$$
\dot{\mathrm{m}}_{3}=\dot{\mathrm{m}}_{4}+\dot{\mathrm{m}}_{5}+\dot{\mathrm{m}}_{6}
$$

$$
\begin{gathered}
\dot{\mathrm{m}}_{3}=(1470+77.5) \frac{\mathrm{kg}}{\mathrm{~h}}+\dot{\mathrm{m}}_{6} \\
(0.506) \dot{\mathrm{m}}_{3}=(0.636) \dot{\mathrm{m}}_{5}+(0.636) \dot{\mathrm{m}}_{6}
\end{gathered}
$$

$$
\dot{\mathrm{m}}_{3}=97.4 \frac{\mathrm{~kg}}{\mathrm{~h}}+1.257 \dot{\mathrm{~m}}_{6}
$$

$$
\dot{\mathrm{m}}_{2}=2950 \frac{\mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~h}}
$$



## Evaporative Crystallization Process

- feed/recycle mixer:
- total mass balance

$$
4500 \frac{\mathrm{~kg}}{\mathrm{~h}}+\dot{\mathrm{m}}_{6}=\dot{\mathrm{m}}_{1} \Rightarrow \dot{\mathrm{~m}}_{1}=10150 \frac{\mathrm{~kg}}{\mathrm{~h}}
$$

- water or $\mathrm{K}_{2} \mathrm{CRO}_{4}$ balance could be used tp find $\mathrm{x}_{1}$ if desired



## Evaporative Crystallization Process

- If recycle is not used,
crystal production is $622 \mathrm{~kg} / \mathrm{h}$ vs $1470 \mathrm{~kg} / \mathrm{h}$ (w/ recycle)
- discarded filtrate $\left(\mathrm{m}_{4}\right)$ is $2380 \mathrm{~kg} / \mathrm{h}$, representing $866 \mathrm{~kg} / \mathrm{h}$ of potassium chromate
- What are cost consequences of using recycle vs not?



## Assignment:

Sea water with the below data is entering 10 units evaporators. Roughly each unit, equally amount of water is vaporized then condensed and combined to obtain a fresh water. determine the fractional yield of fresh water from process ( $\mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ recovered $/ \mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ in process feed) and the weight percentage of salt in the solution leaving fourth stage.


