Ethers & Sulfides

Ethers

- M⁺ usually stronger than corresponding alcohol; may be weak/absent
- α -cleavage of an alkyl radical
- Inductive cleavage
- Rearrangement with loss of CHR=CHR'

Aryl Ethers

- M⁺ strong
- C-O cleavage β to aromatic ring with subsequent loss of CO
- · Cleavage adjacent to aryl ring also possible

Sulfides

- M⁺ usually stronger than corresponding ether
- cleavage pattern similar to ethers

Ethers

fragmentation patterns

 α -cleavage

$$\begin{bmatrix} R - CH_2 - O - R' \end{bmatrix}^{++} \longrightarrow R^{+} + \bigvee_{H}^{H} = O_{\oplus}^{H'}$$

inductive cleavage

$$\begin{bmatrix} \mathsf{R}-\mathsf{CH}_2-\mathsf{O}-\mathsf{R}' \end{bmatrix}^{+} \longrightarrow \qquad \overset{\oplus}{\mathsf{R}-\mathsf{CH}_2} + \overset{\bullet}{\mathsf{O}-\mathsf{R}'}$$

rearrangement

Ethers

ethyl propyl ether

Ethers

di-sec-butyl ether

Ethers

2-ethyl-2-methyl-1,3-dioxolane

M⁺ absent

Aryl Ethers

<u>anisole</u>

Aryl Ethers

fragmentation of aryl ethers

Sulfides

Amines

Aliphatic Amines

- M⁺ will be an odd number for monoamine; may be weak/absent
- M-1 common
- α -cleavage of an alkyl radical is predominate fragmentation mode largest group lost preferentially
- McLafferty rearrangement / loss of NH₃ (M-17) are not common

Cyclic Amines

- M⁺ usually strong
- M-1 common
- fragmentation complex, varies with ring size

Aromatic Amines

- M⁺ usually strong
- M-1 common
- · loss of HCN is common in anilines

Amines

fragmentation patterns

α-cleavage

loss of H radical

ring formation

Amines

ethylamine

Amines

diethylamine

Amines

triethylamine

Amines

N-ethylpropylamine

Cyclic Amines

piperidine

Aromatic Amines

<u>aniline</u>

Carbonyl Compounds

Common	Frag	mentation	Modes

$$\begin{bmatrix} 0 \\ R \\ G \end{bmatrix}^{++} \longrightarrow R^{+}C \equiv 0^{+} + G^{+}$$

$$\begin{bmatrix} 0 \\ R \\ \end{bmatrix}^{+} \longrightarrow R^{+} + G - C \equiv 0^{\textcircled{3}}$$

β-cleavage

McLafferty rearrangement

Carbonyl Compounds

Aldehydes

- M⁺ usually observed; may be weak in aliphatic aldehydes
- M-1 common (α-cleavage)
- α-cleavage is predominant fragmentation mode; often diagnostic (m/z = 29) especially in aromatic aldehydes (M-1; M-29)
- β -cleavage results in M-41 fragment; greater if α -substitution
- McLafferty rearrangement in appropriately substituted systems (m/z = 44 or higher)

Ketones

- M⁺ generally strong
- α -cleavage is the primary mode of fragmentation
- + β -cleavage less common, but sometimes observed
- McLafferty rearrangement possible on both sides of carbonyl if chains sufficiently long
- Cyclic ketones show complex fragmentation patterns
- Aromatic ketones primarily lose R[•] upon α -cleavage, followed by loss of CO

Aliphatic Aldehydes

<u>pentanal</u>

Aldehydes

2-ethylbutanal

Ο

MW = 100

н

Aromatic Aldehydes

benzaldehyde

Aliphatic Ketones

2-hexanone

0

Mass Spectrometry: Fragmentation

Ketones

Mass Spectrometry: Fragmentation Image: Cyclic Ketones Cyclic Ketones Image: Mw

Cyclic Ketones

cyclohexanone

m/z = 42

Carboxylic Acids, Esters & Amides

Carboxylic Acids

- M⁺ weak in aliphatic acids; stronger in aromatic acids
- Most important α -cleavage involves loss of OH radical (M-17)
- α -cleavage with loss of alkyl radical less common; somewhat diagnostic (m/z = 45)
- McLafferty rearrangement in appropriately substituted systems (m/z = 60 or higher)
- Dehydration can occur in o-alkyl benzoic acids (M-18)

Esters

- M⁺ weak in most cases; aromatic esters give a stronger parent ion
- Loss of alkoxy radical more important of the α -cleavage reactions
- Loss of an alkyl radical by α -cleavage occurs mostly in methyl esters (m/z = 59)
- McLafferty rearrangements are possible on both alkyl and alkoxy sides
- Benzyloxy esters and o-alkyl benzoates fragment to lose ketene and alcohol, respectively

Amides

- M⁺ usually observed; Follow the Nitrogen Rule (odd # of N, odd MW)
- α -cleavage affords a specific ion for primary amides (m/z = 44?
- McLafferty rearrangement observed when γ-hydrogens are present

butyric acid

weak M⁺

0

MW = 88

ЭΗ

Esters

methyl butyrate

Esters

butyl butyrate

Esters

McLafferty rearrangement

McLafferty + 1

(not observed)

Esters

benzyl acetate

Esters

fragmentation patterns

Benzyl ester rearrangement

can fragment further

Loss of alcohol

Amides

butyramide

Amides

Aryl Amides

N-methylbenzamimde

Nitriles

Nitriles

- M⁺ may be weak/absent; strong M+ in aromatic nitriles; follow nitrogen rule
- Fragment readily to give M-1
- Loss of HC≡N fequently obsterved (M-27); aromatic nitriles also show loss of •CN (M-26)
- McLafferty rearrangement in nitriles of appropriate length (m/z = 41)

Nitriles

fragmentation patterns

Loss of HCN

McLafferty rearrangement

Nitriles

Nitro Compounds & Halides

Nitro Compounds

- M⁺ almost never observed unless aromatic; follow nitrogen rule
- Principle degradation is loss of NO⁺ (m/z = 30) and loss of NO₂⁺ (m/z = 46)
- Aromatic nitro compounds show additional fragmentation patterns

Halides

- M⁺ often weak; stronger in aromatic halides
- chloro and bromo compounds show strong M+2 peaks

CI – M : M+2	3 : 1
Br – M : M+2	1:1

- principle fragmentation is loss of halogen
- Loss of HX also common
- α -cleavage sometimes observed

Nitro Compounds

fragmentation patterns

1-nitropropane

Nitro Compounds

<u>nitrobenzene</u>

Organic Halides

Loss of Halide

$$\begin{bmatrix} R-X \end{bmatrix}^{*+} \longrightarrow R^{\oplus} + X^{*}$$
$$I > Br >> CI > F$$

Loss of HX

 α -cleavage

Loss of δ Chain

Alkyl Halides

1-chloropropane

Alkyl Halides

2-chloropropane

Alkyl Halides

2-chloroheptane

Alkyl Halides

2-bromopropane

Br

m/z

m/z

Alkyl Halides

bromobenzene

What Can the MS Tell You?

Evaluation of UnknownCompounds by Mass Spectr

- 1. Get an overview of the spectrum. Is it simple? Complex? Are there groups of peaks?
- 2. Identify and evaluate the molecular ion.
 - Is M+ strong or weak?
 - Are their significant peaks due to isotopes (e.g. M+1, M+2, etc.)?
 - Is the molecular ion an odd number (Apply the Nitrogen Rule)?
 - Is there an M-1 Peak?
 - If a molecular formular is not provided, check tables or on-line calculators to determine possible formulas
- 3. Evaluate the major fragments
 - What mass is lost from M+ to give these peaks?
 - What ions could give these peaks?
 - If available, use IR data to identify functionality, and consider known fragmentation patterns of these groups.
 - Consider the loss of small neutral molecules (e.g. H₂O, HOR, H₂C=CH₂, HC=CH, HX, CO₂, etc.)
 - Consider possible diagnostic peaks (e.g. m/z = 29, 30, 31, 39, 41, 44, 91, 45, 59, etc.)
- 4. Use fragmentation information to piece together possible structure

Commonly Lost Fragments

Pavia Appendix 11

Commonly lost fragments			
Fragment lost	Peak obtained	Fragment lost	Peak obtained
.сн³	M ² -15	· OCH3	M [‡] - 31
•он	M ⁺ -17	·CI	M ⁺ - 35
· CN	M ⁺ -26	CH3C=O	M 🕇 - 43
H ₂ C=CH ₂	M ⁺ -28	·OCH ₂ CH ₃	M‡ - 45
·CH2CH3	M ⁺ -29	<u>с</u> ,	M‡ - 91
Common stable ions			
m/z values		Ion	
<i>m</i> /z = 43		CH₃—ċ≡o	
<i>m</i> /z = 91		ССн₂ (
$m/z = M^{\ddagger} - 1$		R—CH R-	—c≡o

Common Fragment Peaks

Pavia Appendix 12

Peak	Fragment lost	Interpretation
M–1	H.	aldehydes, 3° alcohols, cyclic amines
M–2	Multiple H •	2° alcohols
M–3	Multiple H •	1° alcohols
M–15	CH3.	methyl groups
M–17	нο.	alcohols, phenols, carboxylic acids
M–18	H ₂ O	alcohols
M–26	HC≡CH	
M–27	•HC=CH ₂	
M–28	$CH_2 = CH_2^-$	cyclic alkanes, alkenes
		CH ₃ CH ₂ CH ₂ C(=O)X [McLafferty rearr.]

Reporting Mass Spec Data

Low Resolution Mass Spec

Sample Temperature: 180 °C RESERVOIR, 75 eV

Mass Spectrometry

Mass Spectrometry

Reporting Mass Spec Data

High Resolution Mass Spec

Mass Spectrum List Report

Analysis Info	
Analysis Name	LS-III-156_pos_000001.d
Method	XMASS_Method
Sample Name:	LS-III-156 pos
	LS-III-156 pos: in 1:1 THF:MeOH w/ NaCl.

Acquisition Date	7/22/2011 10:54:16 AM
Operator	FTMS_USER
Instrument	apex-Qe

Acquisition Parameter

Sample: LS-III-156 Exact Mass of (C12H18O4)Na+ = 249.109730u Observed Mass = 249.109452u Difference = -1.1 ppm

Mass Spectrometry

Reporting Mass Spec Data

High Resolution Mass Spec

