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ABSTRACT 

Development of enhanced geothermal 
systems (EGS) will require creation of a 
reservoir of sufficient volume to enable 
commercial-scale heat transfer from the 
reservoir rocks to the working fluid. A key 
assumption associated with reservoir 
creation/stimulation is that sufficient rock 
volumes can be hydraulically fractured via 
both tensile and shear failure, and more 
importantly by reactivation of naturally 
existing fractures (by shearing), to create the 
reservoir. The advancement of EGS greatly 
depends on our understanding of the 
dynamics of the intimately coupled rock-
fracture-fluid-heat system and our ability to 
reliably predict how reservoirs behave under 
stimulation and production.  
  
In order to advance our understanding of 
how reservoirs behave under these 
conditions, we are developing a physics-
based rock deformation and fracture 
propagation simulator by coupling a discrete 
element model (DEM) for fracturing with a 
continuum multiphase flow and heat 
transport model. In this approach, the 
continuum flow and heat transport equations 
are solved on an underlying finite element 
mesh with evolving porosity and 
permeability for each element that depends 

on the local structure of the discrete element 
network.  
 
This paper describes the first phase of 
development of the simulator, detailing the 
development of a parallel, fully coupled, 
implicit, multiscale geothermal-
geomechanical simulation code. The initial 
code development is being conducted 
considering only single-phase (water 
saturated) flow coupled with continuum heat 
transport and rock mechanics models. DEM 
and fracture propagating capabilities will be 
added in the next phase of the code 
development. 

INTRODUCTION 

Reliable reservoir performance predictions 
of enhanced geothermal reservoir systems 
require accurate and robust modeling for the 
coupled thermal-hydrological-mechanical 
processes. Conventionally, these types of 
problems are solved using operator splitting 
methods, usually by coupling a subsurface 
flow and heat transport simulator with a 
solid mechanics simulator via input files. 
One example of such an approach is 
presented by Rutquist et al. (2002), where a 
widely used flow and heat transport 
simulator TOUGH2 (Pruess et al., 1999) is 
coupled to the commercial rock mechanics 
simulator FLAC (Itasca Consulting Group 



Inc, 1997) via input files. During each time 
step, TOUGH2 and FLAC run sequentially 
with the output from one code as input to the 
other one. Iterations between the codes 
during each step might be necessary if there 
is a strong dependence among processes. 
However, such operator splitting approaches 
are applicable only to “loosely coupled” 
problems and usually converge very slowly 
if at all. For most enhanced geothermal 
systems, fluid flow, heat transport, and rock 
deformation are typically strongly 
nonlinearly coupled. 
 
An alternative is to solve the system of 
nonlinear partial differential equations that 
govern fluid flow, heat transport, and solid 
mechanics simultaneously using a fully 
coupled solution procedure. This procedure 
solves for all solution variables (fluid 
pressure, temperature and rock displacement 
fields) simultaneously, which leads to one 
large nonlinear algebraic system that is 
solved using a strongly convergent nonlinear 
solver. Developments over the past 10 years 
in the area of physics-based conditioning, 
strongly convergent nonlinear solvers (such 
as Jacobian Free Newton methods) and 
efficient linear solvers, such as GMRES, 
make such an approach competitive (Knoll 
and Keyes, 2004). 
 
The overall goal of the project is to develop 
a parallel physics-based, fully coupled, 
multiscale modeling tool for predicting the 
dynamics of fracture stimulation, fluid flow, 
rock deformation, and heat transport in a 
single integrated code (i.e., it will eliminate 
the need for multiple simulations codes to 
model this tightly coupled process) named 
FALCON (Fracturing And Liquid 
CONvection). The code is developed upon a 
parallel computational framework developed 
at Idaho National Laboratory (INL) for 
solving coupled systems of nonlinear 
equations (Gaston et al., 2009), known as 
MOOSE (Multiphysics Object Oriented 
Simulation Environment), which was 

originally developed for modeling 
multiphysics problems often encountered in 
nuclear reactor fuel performance analysis. 
This computational framework allows for 
rapid development of multi-dimensional, 
parallel, implicit, fully coupled, nonlinear 
simulation capabilities and employs a 
modular, pluggable architecture that greatly 
simplifies the process of adding new 
physical phenomena and coupling of 
different physics. 
 
As a first step in the development of the 
code, governing equations for single-phase 
flow and transport of heat are being coupled 
with linear elastic equations. The basic 
architecture of the code allow convenient 
coupling of different processes and 
incorporation of new physics , such as stress 
dependent permeability-porosity, phase 
change, implicit fracturing and so on 
without the added difficulty. The following 
sections present the governing equations 
used to describe coupled fluid flow, heat 
transport, and rock mechanics; briefly 
describe numerical methods, focusing on the 
Jacobian Free Newton Krylov nonlinear 
solver; and present a number of simulation 
results for problems of different level of 
complexities, followed by discussions and 
concluding remarks. 

MATHEMATICAL MODELS AND 
GOVERNING EQUATIONS 

Mathematical models describing geothermal 
systems and geomechanics can be found in 
the literature. This section will only briefly 
summarize the derivations described in 
detail in the literature for geothermal 
systems (e.g., Faust and Mercer 1979a,b; 
Brownell, et al., 1977) and geomechanics 
(see Jaeger at al, 2007). Here, we will focus 
our discussion on the unique aspects of 
coupling the governing equations for fully 
coupled implicit solutions. 
 



The following subsections briefly present 
conservation equations for the mass, 
momentum, and energy. 

Fluid Mass Balance 
The mass balance for the fluid may be 
written as: 
 

 (1) 
 

where ∇ is the vector differential operator. 
uw is the flux vector, while ρw is the density 
of the fluid, respectively. φ is the porosity of 
the reservoir. 

Fluid Momentum Balance 
We assume that Darcy’s Law is valid. Thus 
the momentum balance for the fluid is 
described as: 
 

 (2) 
 
where k is the intrinsic permeability of the 
reservoir, µw is the viscosity of the fluid, g is 

the acceleration due to gravity, and ∇z is a 
vector of components (0,0,1) when gravity is 
taken to be aligned in the negative vertical 
direction. 

Energy Balance 
The energy balance in the system can be 
described as follows: 
 

 (3) 
 
for the fluid phase and 
 

 (4) 

 
for the reservoir rock matrix, where h is the 
specific enthalpy, λc is the heat conduction 
vector, and λd is the dispersion vector. 
Accented terms represent sources and/or 
sinks in Eqns. 3 and 4. 

Constitutive Relations 
For our simplified single-phase system 
(water is the model fluid in this paper), 
constitutive relations are being used to 
describe the fluid density and viscosity 
dependence on the temperature.  
 
The density dependence on temperature is 
described by Graf (2009) 
 

 (5) 
 
where T is the temperature in degrees 
Celsius. 
 
Fluid viscosity is represented by the 
following set of equations, also presented by 
Graf (2009) 
 
 

 
 

 (6) 
 



THREE DIMENSIONAL EQUATIONS 

Combining Eqns. 1 and 2 yields the 
following for single-phase flow of water in a 
deformable, compressible geologic medium. 
 

 
 (7) 
In keeping with our objective of developing 
a simplified first version of the simulation 
code, the Broussinesq Approximation (Garg 
and Kassoy, 1981) and thermal equilibrium 
assumption between fluid and rock were 
used when combining Eqn. 7 with Eqn. 3, to 
arrive at the following to describe the 
transport of heat in the system. 

 
 (8) 
where cw and cr are the specific heat 
capacities of the water and rock phases, 
respectively, and Km is the medium average 
thermal conductivity. 
 
Geomechanics of the system is described as 
follows (Jaeger et al, 2007) 
 

 (9) 
 

where u is the displacement vector; α is the 

biot effective stress coefficient and β is the 
thermal expansion coefficient. Eq. (9) 
provides stress equilibrium for a coupled 
hydro-thermal-mechanical problem.  

NUMERICAL METHODOLOGY 

MOOSE 
FALCON has been developed using the 
MOOSE library (Gaston et al., 2009). This 
framework provides a strong numerical 
foundation for rapid development of multi-

dimensional, parallel, implicit, fully coupled, 
nonlinear simulation capabilities. MOOSE is 
based on a finite element discretization 
strategy and utilizes state of the art 
preconditioned Jacobian-Free Newton-
Krylov solution methods. 
 
Among the many capabilities MOOSE 
provides, FALCON makes direct use of the 
following: 

• Flexible, modular systems for 
defining physics, material properties, 
boundary conditions, etc. 

• Physics based preconditioning. 
• Unstructured grid with many element 

types. 
• Hybrid parallelism (threading and 

MPI) that scales. 
• Error estimation. 
• Adaptive mesh refinement/ 

coarsening. 
• Ability to read and write numerous 

solution formats for pre- and post-
analysis. 

 
MOOSE itself is based on libMesh a finite 
element library developed at the University 
of Texas in Austin.  (Kirk et al., 2006) 
 

Finite Element Discretization 
MOOSE utilizes a Galerkin finite element 
based solution method.  Finite element 
schemes are a subset of the method of 
weighted residuals in which a particular 
function space is chosen to represent both 
the function to solve for and the function to 
weight against.  The input that must be 
supplied for this method is what’s known as 
the “weak form” of partial differential 
equations.  Weak forms are generated by 
multiplying a PDE by a weighting function 
(also called a “test function” that we denote 
φi) and then integrating over the domain.  
Further manipulation is often necessary to 
reduce the order of derivatives present in the 
problem, allowing more flexibility in the 



choice of function space used to represent 
the solution and the test function. 
 
Taking the flow equation defined above 
(Eqn. 7), multiplying by φi, integrating over 
the domain (denoted by “(,)”), applying the 
Gauss divergence theorem to reduce the 
derivative order of the equation (generating 
a boundary integral denoted by “<,>”) and 
setting the it equal to zero the following 
weak form is found: 
 

 
 (10) 
 
Applying a similar process to Eqns. 8, 9 we 
can find the weak forms:   
 

 
 (11) 
 
 
 

  
 (12) 

where u, v and w are component variables of  
the displacement vector. 

Jacobian-Free Newton-Krylov 
The previous section developed a set of 
discretized, coupled, nonlinear weak form 
equations. FALCON, through MOOSE, 
utilizes a Newton solution method for this 
system of equations that endeavors to solve 
for: 
 

 (13) 
 
where F() represents the residual and U is 
the full solution vector U ={P, 
T, u, v, w}T . Note that this is a fully-coupled 
scheme, simultaneously reducing the non-
linear residual for all solution variables. 
Application of Newton’s method to the 
discretized form of the equations naturally 
leads to a linear algebraic system to solve 
for each Newton iteration: 
 

 (14) 

where k denotes the iteration number, δU is 
the Newton update to solve for and J is the 
Jacobian matrix: 
 

 (15) 
 



i.e., the partial derivative of each residual (i) 
with respect to each solution variable (j). 
 
After Eq. 14 has been solved for δUk, U is 
then updated by: 
 

 (16) 
 
The new iterate (Uk+1) is then used in Eq. 14 
and the process starts over again until F(Uk+1) 
is within a specified tolerance of zero.  
Typically a tolerance such as 10-8 is 
sufficient. 
 
The solution of the linear system in Eq. 14 is, 
in this work, found using a Krylov method 
(such as GMRES). This forms a Newton-
Krylov method, where the inner linear 
systems are approximately solved (within a 
tolerance) using a Krylov method. Efficient 
solution of linear systems using Krylov 
methods demands the development of an 
effective preconditioner, which we will 
describe in the following section. 
 
Often it is the case that the Jacobian matrix 
(Eq. 15) is expensive to form, requires a 
large amount of memory to store and is 
difficult to find (due to the need to calculate 
analytic derivatives). In part because of 
these concerns, the present work utilizes the 
Jacobian-Free-Newton-Krylov (JFNK) 
method (Brown and Saad, 1990; Knoll and 
Keyes, 2004). JFNK alleviates the need to 
form Jacobian (Eq. 15) by recognizing that 
Krylov methods work through the repeated 
application of Jacobian-vector products and 
never utilize the Jacobian by itself. The 
action of the Jacobian in a Krylov method 
can be approximated using the finite 
difference form: 
 

 (17) 

where h is a perturbation parameter and v is 
provided by the Krylov method. Several 
methods exist for computing h, but in 

general, it is chosen to avoid problems with 
machine precision. 

Preconditioning 
Utilizing Eq. 17, Eq. 14 can now be solved 
without the need to develop both the 
mathematical expressions for the true 
Jacobian or fill the Jacobian matrix; the 
former saving development effort and the 
latter execution time. However, execution 
speedup is not guaranteed. The 
computational burden has now shifted from 
Jacobian formation to residual computation. 
In a Krylov solver, Eq. 17 must be evaluated 
during each linear iteration. If a large 
number of linear iterations are necessary to 
solve Eq. 14 this burden might overshadow 
Jacobian formation and inversion. To 
combat this, preconditioning must be 
applied. 
 
Preconditioning attempts to lower the 
condition number of a linear system, making 
it more amiable to solution using iterative 
methods such as a Krylov method. In the 
present work right preconditioning is 
employed, augmenting Eqs. 14 and 17: 
 

 (18) 
 

 (19) 
 
where P represents a preconditioning matrix. 
Note that if P = J then the system reduces to 
IδUk = −F(Uk) and is trivial to solve. 
Unfortunately, this still requires finding P−1 = 
J−1, thus nothing has been gained. The idea is 
to find P ≈ J such that P −1 is computationally 
advantageous to find while still significantly 
improving the conditioning of the system. 
 
One possibility for P is to fill the diagonal 
blocks with the diagonal blocks of J. This 
has the effect of developing a matrix that 
looks like a decoupled Jacobian, capturing a 
lot of the behavior of the true-coupled 



system without all of the complexity. This 
block diagonal matrix can then be partially 
inverted using methods like ILU, Jacobi, and 
multigrid. Multigrid methods, and 
specifically Algebraic Multigrid (AMG) 
methods, are particularly interesting because 
of their ability to provide a good 
approximation to the inverse of a matrix that 
is dominated by elliptic looking operators 
(Henson and Yang, 2002). Considering 
several governing equations include 
prominent elliptic components the choice of 
a block diagonal P being partially inverted 
by AMG was the most frequently used 
approach for this study. 
 
MOOSE also provides the ability to perform 
physics-based preconditioning, where each 
physics is targeted with a different 
preconditioning method. Physics-based 
preconditioning allows for more efficient 
and simultaneously more effective 
preconditioning. For more information on 
physics-based preconditioning and its use 
within the MOOSE framework, see (Park et 
al., 2010). The use of physics-based 
preconditioning within FALCON is an 
ongoing area of research. 
 

MODEL APPLICATION 

One-dimensional (1D) flow and heat 
transport, comparison with analytical 
solution  
Our first example is to solve a simple one-
dimensional heat conduction-convection 
problem using FALCON and compare the 
numerical solution with the analytical 
solution. In this particular example, only two 
equations, fluid flow and heat transport, are 
solved. Furthermore, for simplicity, we 
assumed constant fluid density and 
viscosity. Figure 1 shows problem 
geometry, the mesh used in the simulation 
and simulation results at three different 
stages. 
 

 

 

 
Figure 1. Three-dimensional mesh for a 1D 

cylindrical column and simulation 
results. 

 
Figure 2 shows the comparison between 
numerical and analytical solutions at two 
different times. It is very clear that the 
numerical solution agrees very well with the 
analytical solution. 
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Figure 2. Comparison of the numerical and 

analytical solutions for 1D heat 
conduction-convection problem. 

Two-Dimensional Thermal Induced 
Convection and Instability 
The second example examines a case of 
density driven free thermal convection, 
similar to that detailed by Elder (1967), in 
which a water saturated homogeneous 



isotropic medium is heated from the bottom 
causing a large density change (>5%) and 
leads to unstable flow.  This example was 
chosen to demonstrate FALCON’s 
capabilities for fully coupling the fluid flow 
and heat transport equations along with the 
temperature-dependent constitutive relations 
for fluid density and viscosity, as well as 
adaptive mesh refinement (AMR).   
 
The simulation domain and boundary 
condition locations chosen for the problem 
follows those detailed by Oldenberg and 
Pruess (1995), using symmetry about the 
midpoint of the x-axis of the Elder problem, 
reducing the domain size to 300 meters by 
150 meters.  Initial conditions chosen for the 
problem are a hydrostatic pressure 
distribution and a uniform 12O C over the 
entire domain.  The bottom left (x = 0 to 
150m) boundary condition imposed at 
startup applies a constant temperature of 
200C, and initiates a density driven 
instability into the system.  Relevant 
material properties used in the simulation 
are an intrinsic permeability of 1X10-10 m2, 
porosity of 0.40, rock specific heat of 920.0 
J/kg OC, and a rock density of 2,500 kg/m3. 
Fluid density and viscosity are initialized at 
values provided from the constitutive 
relations provided above. The problem was 
specifically parameterized to be convection 
dominated and have a large Rayleigh 
number, testing the stability and efficacy of 
the code. 
 
Oldenberg and Pruess (1995) showed that 
the results of this problem are strongly grid 
dependent, with a relatively coarse grid 
returning [upward] flows concentrated along 
the axis of symmetry in their simulations.  
When a finer grid was used an area of 
downwelling was predicted along the axis of 
symmetry.   
 
Three simulation cases were tested with 
FALCON focusing on fine mesh scenarios 
and adaptive mesh refinement. The cases 

were 1) a uniform 1m by 1m mesh, 2) a 
uniform 10m by 10m mesh with aggressive 
adaptive mesh refinement, and 3) a uniform 
10m by 10m mesh with conservative 
adaptive mesh refinement. Shown on Figure 
3 is the temperature distribution after twenty 
years of simulated time.  The red color 
represents a temperature of 20OC, whereas 
the blue color represents 12OC. The meshes 
used in the simulations are shown on Figure 
4.   
 
As can be seen on Figure 3, the results for 
the two adaptive mesh simulations return 
similar results, whereas there is a difference 
when compared to the static fine mesh 
simulation.  Frolkovic and DeSchepper 
(2000), when comparing the results of fine 
grid simulations and adaptive mesh 
applications, reported that adaptive mesh 
results being identical to those obtained with 
an extremely fine mesh. While our fine 
mesh test cases do not directly compare with 
those of Frolkovic and DeSchepper (2000), 
examination and comparison of the 
simulation case results are illustrative of the 
potential gains in computational capability 
obtained with FALCON.   
 
The first simulation case using a uniform 1m 
by 1m grid (45,000 grid blocks), shown in 
the top frame on Figure 3, predicted a large 
central upwelling zone and three additional 
upwelling fingers.  The 20-year simulation 
required approximately 2,100 seconds for 
the calculations using a MPI scheme with 8 
processors and a uniform timestep of 10 
days.  The second and third cases, both 
using an initial 10m by 10m mesh and 
adaptive mesh refinement, produced very 
similar results. For the second (aggressive 
adaptive mesh refinement) case, the mesh 
refinement was allowed to reduce the grid 
cells to 0.15m by 0.15m, and forced the 
refined areas to persist over a large area of 
the simulated domain. As the mesh evolved 
over the duration of the simulation, the 
simulation time actually suffer when 



compared to the uniform mesh case, 
requiring a total of 4,077 seconds to 
simulate 20 years of convection.  The 
aggressive mesh refinement resulted in the 
existence of 37,047 grid cells at the 
conclusion of the simulation.  The third test 
case produced similar results as the second 
case (see Figure 3), but with much less 
computational burden. Allowing the grid 
only to refine to a uniform 1.25m cell size, 
and relaxing the grid after perturbations 
passed by, reduced the computational time 
to 434 seconds to complete the simulation. 
5,826 grid cells existed at the conclusion of 
the run. 
 
While our results are preliminary and 
qualitative in nature, they are very 
promising. Significant reductions in 
computational time were achieved using 
adaptive meshing capabilities. Questions 
remain however, regarding quantification of 
the simulation results and predicted 
temperature distribution.  Work is currently 
ongoing to quantify the solution of the 
problems and benchmark the code 
performance against existing simulators. 
 

 
Figure 3. Simulated temperature distribution 

for unstable thermal convection 
using a fixed mesh (top), 
aggressive adaptive mesh (middle), 
and conservative adaptive mesh 
(bottom). 

 



 
Figure 4. Mesh corresponding to simulation 

cases shown in Figure 3. 

Three-Dimensional Wellbore-scale 
Coupled Thermal-Hydro-Mechanical 
Problems 
Here we consider modeling a more complex 
coupled thermoporoelastic problem in the 
vicinity of injection well due to injection of 
cold water into an initially hot reservoir in 
order to demonstrate the capability of our 
fully coupled modeling approach. Firstly, 
we consider only fluid-rock interaction and 
ignore the thermal-induced rock deformation 
effect (a classical poroelasticity problem). 
Figure 5 shows the problem geometry and 
finite element mesh used in this simulation. 
Both lateral and bottom boundaries are 
confined (with prescribed zero lateral 
displacement). 
 

 
Figure 5. Three-dimensional mesh in the 

vicinity of an injection well. Notice 
that in this problem, the wellbore 
is explicitly meshed. 

 
Water is injected via the injection well in the 
middle of the domain at a constant rate. 
Figure 6 shows the simulation results of the 
final steady-state 3D pressure and rock 
displacement fields. The simulation results 
clearly show the coupling of fluid injection 
and rock deformation and are qualitatively 
reasonable. The rock bulging out across the 
top surface due to the lateral confinement 
boundary condition used in this simulation. 
This is very similar to thermal expansion 
near a heater well. Readers also need to 
notice that the vertical displacement has 
been largely exaggerated in order to 
visualize the bulging effect. The actual 
vertical and lateral displacements are indeed 
very small. The lateral displacement field 
indicates that the rock is “pushed” away 
from the injection well, also a clear evidence 
of fluid-rock interaction. Also notice that in 
this simulation, only fluid to rock 
displacement is modeled for simplicity. The 
effect of rock deformation on fluid flow can 
be easily incorporated into the simulation. 
 
A more complex problem is to add heat 
transport and couple all three processes—
fluid flow, heat transport, and rock 
deformation due to both fluid injection and 



thermal-induced stress—together by solving 
all three governing equations (Eqns. 7-9) 
simultaneously. Figure 7 shows the 
simulation results for such a problem. In this 
simulation, cold water at 20°C is injected 
into the reservoir that is initially at a 
temperature of 100°C, which leads to 
decreasing reservoir temperature (as shown 
in Figure 7). Therefore the rock near the 
wellbore tends to shrink toward the injection 
well due to cooling, a processes similar to 
land subsidence due to excessive 
groundwater pumping. A close comparison 
between Figures 6 and 7 on the magnitudes 
and displacement directions for the lateral 
and vertical displacements indicates that in 
this particular example, the deformation of 
rock due to reservoir cooling is far more 
significant that that due to injection of water. 
Thus the rock near the wellbore is under 
tension. One immediate application of the 
simulation results is to evaluate the stress 
state near the wellbore and potential of rock 
failure. 
 

DISCUSSION AND CONCLUSIONS 

Commercial scale deployment of EGS 
greatly depends on our understanding of the 
dynamics of the coupled rock-fracture-fluid-
heat system and our ability to reliably 
predict how reservoirs behave under 

stimulation and production. A key 
assumption associated with reservoir 
creation is that the reservoir rock can be 
hydraulically fractured in quantities 
sufficient to allow for commercial levels of 
heat transfer.  
 
The work detailed in the paper documented 
the development of a parallel, fully coupled, 
implicit, multiscale geothermal-
geomechanical simulation code. While this 
is just the initial code development, focusing 
only on a single-phase, continuum based 
description of the processes, further work is 
underway to extend the processes described 
to multiphase flow and couple the 
continuum mechanical equations with 
mesos-scale DEM descriptions of rock 
failure and fracture propagation. 
 
The framework developed for the code to 
date provides a strong numerical foundation 
for further development of more complex 
problems, utilizing the MOOSE library for a 
finite element discretization strategy and 
state of the art preconditioned Jacobian-Free 
Newton-Krylov solution methods and 
multiscale coupling . 
 
Testing the code against a one-dimensional 
analytical solution for single-phase flow and 
heat transport in porous media showed that 

   
 
Figure 6. Simulation results of the poroelastic problem-steady-state solution: (left) pressure 

field in Pascal; (mid) lateral (x-component) displacement field in meters and (right) 
vertical (z-component) displacement field in meters. Note that displacement fields are 
exaggerated for visualization purpose. 



the predicted temperatures agreed very well 
with the analytical solution.  Testing a more 
challenging, two-dimensional fully coupled 
example, similar to that described by Elder 
(1967), demonstrated the adaptive mesh 
capabilities of the code. While the two-
dimensional results are preliminary and 
qualitative in nature, they are very 
promising. Significant reductions in 
computational time were achieved using 
adaptive meshing capabilities. Questions do 
remain however, especially regarding grid 
sensitivity and the effect of adaptive 
meshing schemes on predicted temperature 
distributions. These topics have been the 
focus of significant research in the past, and 
are a fertile area for future work. 
 
Simulation of coupled thermoporoelastic 
processes in the vicinity of injection well 
due to injection of cold water into an 
initially hot reservoir demonstrated the 
capability of our fully coupled modeling 
approach. Two cases were examined, 1) a 
classical poroelasticity problem which 
considered only fluid-rock interactions, and 
2) a fully coupled case where fluid flow, 
heat transport, and rock deformation due to 
both fluid injection and thermal-induced 
stress (coupling all three governing 
equations), were solved simultaneously. The 
magnitudes and displacement directions 

predicted for this example are reasonable 
and qualitatively agree with many previous 
studies. The preliminary results clearly 
demonstrate the potential of applying 
physics-based, fully coupled numerical 
models to advance the understandings of 
strongly nonlinear, tightly coupled thermal-
hydro-mechanical processes that are 
extremely difficult to study via physical 
experiments. 
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