
Contents

1

Contents

Contents ... 1

Abstract .. 3

Nomenclature ... 4

Index of Figures .. 6

Index of Tables ... 8

1. Introduction .. 9

1.1 Overview ... 9

1.2 Task ... 10

2. Theory .. 11

2.1 Continuity and Momentum Equation ... 11

2.2 Discrete Phase ... 11

2.2.1 Air-Blast Atomizer Model .. 12

2.2.2 Wall-Film Model Theory .. 13

2.3 Multiphase Flows .. 15

2.3.1 Volume of Fluid (VOF) Model Theory ... 15

3. User-Defined Function (UDF) ... 19

3.1 Mesh Terminology .. 19

3.2 DEFINE Macros and Additional Macros .. 19

3.3 Parallel Processing .. 20

4. Model ... 22

4.1 Mesh .. 22

4.1.1 Objectives of Mesh.. 22

4.1.2 Final Mesh Model .. 24

4.2 Model of PUR-Spray .. 26

4.2.1 Moving Spray Injector ... 27

4.2.2 Air Source at Spray Injector... 30

4.3 VOF Model for Layer Structure ... 35

4.3.1 Collection of Information of PUR on Layer ... 35

4.3.2 Mass Source .. 37

4.3.3 Momentum Source ... 39

4.3.4 Size of Time Step ... 40

Contents

2

4.3.5 Solution Procedure of UDFs for VOF Model ... 40

4.4 Wall-Film Model for Layer Structure ... 42

4.4.1 Collection of information using UDFs ... 42

4.4.2 Solution Procedure of UDFs for Wall-Film Model ... 43

5. Results and Comparisons ... 44

5.1 Practical Experiment ... 44

5.1.1 Method of Practical Experiment ... 44

5.1.2 Results of Practical Experiment ... 44

5.2 Results of Wall-Film Model ... 45

5.3 Results of VOF Model .. 49

5.4 Alternative simulation (Eulerian Model) ... 54

6. Conclusions and Outlooks .. 57

Appendix .. 58

A.1 Experimental and Simulation Data ... 58

A.2 UDFs for Adjustment of Air Momentum ... 62

A.3 UDFs for Mobile PUR-Air Spray Injection .. 67

A.4 UDFs for DPM Model .. 71

A.5 UDFs for Air Source ... 80

Bibliography ... 83

Abstract

3

Abstract

The material, polyurethane (PUR), has been used in spray process for years. It is
sprayed into a mould or a substrate with mixed long fibers to obtain a composite
material. In the research project SFPURC (Spray-simulation Fiber PUR-Composites), a
new simulation model for the spray-process technique is developed and applied, in
order to estimate and optimize the corresponding distributions of PUR and fibers within
a substrate.

In this study, a simulation model was established to estimate the layer structure during
the PUR-spray process without the presence of fibers. Thus, the trajectory of PUR-
particles together with their inter-collision and their final distribution on the substrate
were simulated using different approaches and compared with experimental results.

The spray material is regarded as discrete phase, which is modeled as particles with
help of the Discrete Phase Model (DPM) of the CFD environment ANSYS FLUENT,
because the volume fraction of PUR particles is less than the continuum’s volume
fraction (air) [1]. PUR droplets are disintegrated in smaller droplets by the atomizer’s
external air injection. In this work a cell is defined as an atomizer so that it is easy to
model a mobile injector. For the external air injection an air-blast atomizer has been
chosen according to the experimental requirements. The velocity of the external air
was optimized so that the cell-based velocity of air calculated by ANSYS FLUENT
corresponds to the practical requests.

In order to estimate the PUR-layer structure, a two-phases flow (PUR and air) with help
of the ANSYS FLUENT’s volume of fluid (VOF) model was adopted. This VOF model is
based on a concept of a fractional volume of fluid, as previously proposed by Hirt and
Nichols [7], where the interface between the primary and secondary phase flow is
tracked. In the system of multiphase flows, air is the continuous phase, also regarded
as primary phase, and PUR-particles represent the discrete phase, also named the
secondary phase. The key point in modeling the PUR-layer structure is that the mass
and momentum generated by the PUR-particles hitting the plate should be assigned
through user-defined functions (UDFs) to the mass and momentum sources,
generating the second phase.

In addition, the standard wall-film model based on the work of Stanton [3] and
O’Rourke [4] was used to estimate the PUR-layer structure. At last, the results of VOF
model, wall-film model and practical experiment were compared.

Nomenclature

4

Nomenclature

� Area (m
2
, ft

2
)

�� Acceleration (m/s
2
, ft/s

2
)

��� Courant number (dimensionless)

� Total energy, activation energy (J, kJ, cal, Btu)

�� Force vector (N, lbf)

�� Gravitational acceleration (m/s
2
, ft/s

2
); standard values = 9.80665 m/s

2
, 32.1740 ft/s

2

	 Impulse (kg·m/s)

� Mass flow rate (kg/s, lbm/s)

� Pressure (Pa, atm, mm Hg, lbf /ft
2
)

 Total entropy (J/K, J/kgmol-K, Btu/lbmmol-°F)

� Temperature (K, °C, °R, °F)

� Time (s)

� Velocity (m/s, ft/s)

� Volume (m
3
, ft

3
)

�� Overall velocity vector (m/s, ft/s)

� Density (kg/m
3
, lbm/ft

3
)

� Shear stress (Pa, lbf/ft
2
)

�� Stress tensor (Pa, lbf/ft
2
)

� Volume fraction (dimensionless)

∆ Change in variable, final − initial

� Dynamic viscosity (cP, Pa-s, lbm/ft-s)

Nomenclature

5

Index for Nomenclature

� Index for cell

� Index for boiling

� Index for wall-film

� Index for particle

� Index for gas

� Index for surface

� Index for film

� Index for the current face where particles reside

�
� Index for impingement

� 1 Index for current time step

� Index for previous time step

" Index for heat

Index of Figures

6

Index of Figures

Figure 1.1: PUR-CSM Process (© Hennecke GmbH) (Left) and Simulation of Fiber Spray Process

(Right) .. 9

Figure 2.1: Sheet Breakup [16] .. 12

Figure 2.2: Mechanisms of Splashing, Momentum, Heat and Mass Transfer for the Wall-Film [1]

 ... 13

Figure 2.3: Simplified Decision Chart for Wall Interaction Criterion [1] 14

Figure 2.4: Primary Phase and Secondary Phase in a Domain [6] .. 15

Figure 2.5: Interface Calculations [1] .. 17

Figure 3.1: Mesh Components [10]... 19

Figure 3.2: Parallel ANSYS FLUENT Architecture [2] ... 20

Figure 4.1: From-Top-To-Layer-Finer-Meshed Model .. 22

Figure 4.2: Near-Layer-Finer-Meshed Model .. 23

Figure 4.3: Conduction-Pusher for Cutting the Layer [11] .. 24

Figure 4.4: The Final Scheme of the Meshed Model (Viewed in Z Direction)............................. 25

Figure 4.5: Final Scheme of the Mesh Model (Viewed in Y Direction) 26

Figure 4.6: Nozzle of Air-Blast Atomizer [13] .. 27

Figure 4.7: Position of the Particles at Different Flow Time ... 28

Figure 4.8: Dialog Box of Set Injection Properties .. 29

Figure 4.9: Defining a Source for a Tiny Inlet .. 31

Figure 4.10: Injection Cell and Z-Neighbor Cell ... 33

Figure 4.11: Adjacent Cells c0 and c1 with Vector and Gradient Definitions [10] 33

Figure 4.12: Flow Diagram of Velocity Correction .. 34

Figure 4.13: Procedure for the Pressure-Based Coupled Solver [10] ... 36

Figure 4.14: UDF Calling Sequence by Two different methods .. 38

Figure 4.15: UDF Calling Sequence in ANSYS FLUENT ... 38

Figure 4.16: An Example of the Situation of Parcels Loaded on the Different Grids of the Plate

at Different Flow Time .. 38

Figure 4.17: Flow Diagram of UDFs for VOF Model .. 41

Figure 4.18: Flow Diagram of UDFs for Wall-Film Model ... 43

Figure 5.1: Comparisons of Baytec 400

, 600

 Distance at 21�/� Flow Rate [11] 44

Figure 5.2: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, wall-film

model .. 46

Figure 5.3: Contours of Wall Film Mass, 600

 Distance, wall-film model 47

Figure 5.4: Histogram of Wall Film Mass, 600

 Distance, wall-film model 48

Figure 5.5: Cell-Based Distribution of Wall Film Mass in Width, 600

 Distance 48

Figure 5.6: Distribution of Wall Film Mass in Width, 400

, 600

 Distance at 21�/� Flow

Rate ... 49

Figure 5.7: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, VOF

Model .. 50

Figure 5.8: Contours of Volume Fraction (PUR-Particles) on the Plate by VOF Model, 600

Distance ... 51

Index of Figures

7

Figure 5.9: Contours of Volume Fraction (PUR-Particles) on the cross section of the plate by

VOF Model, 600

 Distance .. 52

Figure 5.10: Distribution of PUR Mass in Width by VOF Model ... 53

Figure 5.11: Scaled Residuals, 600

 Distance, VOF Model ... 54

Figure 5.12: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, Eulerian

Model .. 55

Figure 5.13: Contours of Volume Fraction (PUR-Particles) on the Plate by Eulerian Model, 600

 Distance .. 56

Index of Tables

8

Index of Tables

Table 4.1: Comparison of Meshes between Two Models ... 23

Table 4.2: Meshes Specified in Gambit ... 25

Table 4.3: Usage of DEFINE_DPM_INJECTION_INIT ... 28

Table 4.4: Usage of DEFINE_ADJUST ... 32

Table 4.5: Usage of DEFINE_DPM_BC ... 36

Table 4.6: Usage of DEFINE_ EXECUTE_AT_END .. 37

Table 5.1: Parameter for Practical Experiment ... 44

Table A.1: Experimental Data of Baytec 600

 Distance at 21�/� Flow Rate 58

Table A.2: Experimental Data of Baytec 400

, Distance at 21�/� Flow Rate 58

Table A.3: Wall Film Mass in Width, 600

 Distance at 21�/� Flow Rate.............................. 59

Table A.4: Wall Film Mass in Width, 400

, Distance at 21�/� Flow Rate............................. 60

Table A.5: PUR Mass in Width by VOF Model, 600

 Distance at 21�/� Flow Rate 61

Introduction

9

1. Introduction

1.1 Overview

The manufacture of single- or multi-layer fiber composite materials based on
polyurethane has been used in spray process for years, by injecting (spraying) reactive,
liquid polyurethane (PUR) into a mould or on a substrate and simultaneously
introducing long fibers for stiffening. The mixture, then, cures either under or without
pressure to a composite material.

The fiber reinforcement improves stiffness and strength of the composite properties
significantly. Nevertheless, there are limited information about the mechanic properties,
because of the unknown distribution and direction of fibers due to the complicate
dynamics of the spray process. However, these properties are essential for crash
simulations of PUR automobile parts. Therefore, in the research project SFPURC
(Spray-simulation of Fiber PUR-Composites) a new simulation model for this process
technique should be developed and applied, in order to estimate and optimize the
distributions of liquid and fibers on the substrate. The simulation model should indicate
the distribution of the flow and particles as well as the interaction of the mixed fibers
with the flow field of spray stream and the interaction between the fibers themselves.
The key point of this scientific work should focus on the development and integration of
a fiber model, for within this model the dynamic and mutual reaction (impulse exchange)
of the fibers and their reaction upon the flow field will be described. To ensure the
practical application in the industrial development project, the model should be built as
far as possible on the commercially available CFD software.

Figure 1.1: PUR-CSM Process (© Hennecke GmbH) (Left) and Simulation of Fiber Spray Process

(Right)

Introduction

10

1.2 Task

As a part of the SFPURC project, the layer structure resulting of the PUR-spray
process is modeled and numerically simulated in this study. The major task includes:
1. optimization of the air-PUR spray model concerning the air velocity at the injector

(discussed in Section 4.2.2: Air Source at Spray Injector)
2. modeling the layer structure with the volume of fluid (VOF) model for free surfaces

instead of the existing ANSYS FLUENT’s wall-film model.
The integral mass and momentum conservation by the transition of PUR-particles
into a wall film are respected (discussed in Section 4.3: VOF Model for Layer

Structure)
3. comparison between experimental reports and results of the standard wall-

film model or the VOF model (discussed in Chapter 5: Results and Comparisons)

In this study, user-defined functions (UDFs) of ANSYS FLUENT are significant. They
are used to optimize the velocity of extern air at spray injector, and to process the mass
and impulse of particles on the layer.

Theory

11

2. Theory

In this chapter, the significant concepts used for the study are briefly described. The
basic theory for fluid flow can be found in Section 2.1. Dispersed phase flow is
described in Section 2.2 including an injection model, ANSYS FLUENT’s air-blast
atomizer model and a boundary condition model, ANSYS FLUENT’s wall-film model.
Section 2.3 introduces multiphase flows with ANSYS FLUENT’s volume of fluid (VOF)
model.

2.1 Continuity and Momentum Equation

In ANSYS FLUENT, all flows are solved based on the conservation equations for mass
and momentum. [1]

The mass conservation equation or continuity equation is formed as follows:

)�)� * · ,���- . / (2.1)

This form is valid for incompressible as well as compressible flows. / denotes the
mass source added to the continuous phase and can be defined as a user-defined
source.

The momentum conservation equation for an inertial (non-accelerating) reference
frame is formed:

))� ,���- * · ,�����- . 0*� * · ,��- ��� �� (2.2)

where � is the static pressure, �� is the stress tensor (its calculation can be found in

[1]), ��� is the gravitational body force and �� is external body forces (e.g., that arise

from interaction with the dispersed phase). �� can also contain other model-dependent
sources.

2.2 Discrete Phase

Discrete phase model (DPM) is described as Lagrangian discrete phase model in
ANSYS FLUENT, which follows the Euler-Lagrangian approach. The equation of
motion of each particle can be written as follows:

1�21� . �3 �4 �5 (2.3)

where �2 describes the particle velocity, �3 is the drag force per unit particle mass

based on the relative velocity between fluid and particle, �4 is the density based
gravitational acceleration and �5 gathers additional accelerations arising from
thermophoretic, Brownian, Saffman’s lift motions for example.

DPM is used to model particles, droplets, or bubbles dispersed in a continuous fluid
phase. Momentum, mass and energy transfer between the dispersed phase and the
continuous phase can be coupled. In practice, the discrete phase model is usually

Theory

12

used, when the volume fraction of the particles in the computational domain is less
than 10-12%. The equation for volume fraction of the dispersed phase has the
following form:

 �8 . �8�9 (2.4)

where �8 is the volume of this dispersed phase in a cell or domain, �9 is the volume of

the cell or domain.

2.2.1 Air-Blast Atomizer Model

The realistic PUR-particles are generated from an atomizer. Air-blast atomizer is one of
the complex injection types of spray in ANSYS FLUENT, which is the closest to the
industrial atomizers for PUR. With physical parameters for the given atomizer, the initial
conditions of particles such as size, velocity and position are calculated. The process of
air-blast atomization requires an additional air stream to generate small drops from
liquid sheets. (See Figure 2.1)

Figure 2.1: Sheet Breakup [16]

The following point properties for air-blast atomizer need to be specified in ANSYS
FLUENT [2]:

• Position
The x, y, and z (if 3D) positions of the injected stream in the Cartesian system

• Axis (only for 3D)
The x, y, and z components of the vector defining the axis of the orifice

• Temperature
The temperature of the streams

• Mass flow rate
The mass flow rate of the streams in the atomizer

• Duration of injection
The starting and ending time for the injection when the particle tracking is
unsteady

• Inner diameter
The inner diameter of the injector

• Outer diameter

Sheet Ligamen
t

Drop

Theory

13

The outer diameter of the injector, it determines the thickness of the liquid sheet
with the inner diameter

• Spray angle
The initial trajectory of the film as it leaves the end of the orifice

• Relative velocity
The maximum relative velocity that is produced by the sheet and air

• Sheet breakup
The value of the empirical constant that determines the length of the ligaments
that are formed after sheet breakup

• Ligament diameter
For short waves, the proportionality constant that linearly relates the ligament
diameter to the wavelength that breaks up the sheet

• Dispersion angle
It determines the initial velocities for a smooth distribution of the droplets.

The equations for these point parameters are described in [1]. For the PUR-spray
model, the atomizer is moving along a Cartesian axis, thus requires a user-defined
function. Details are described in Section 4.2.1.

2.2.2 Wall-Film Model Theory

In ANSYS FLUENT, wall-film model is a specific boundary condition for simulation of
internal combustion engines. A typical application is modeling of the wall-film
phenomena inside port fuel injected (PFI) and direct injection (DI) engines [1]. The
particles within the discrete phase model (DPM) are used to model the wall-film.
Hereby a single component liquid drop can impinge upon a boundary surface and form
a thin film. The model is composed of four major subtopics: interaction during the initial
impact with a wall boundary, subsequent tracking on surfaces, calculation of film
variables, and coupling to the gas phase. Figure 2.2 shows the basic mechanisms for
wall-film model.

Figure 2.2: Mechanisms of Splashing, Momentum, Heat and Mass Transfer for the Wall-Film [1]

The wall interaction is based on the work of Stanton [3] and O’Rourke [4]. The
outcomes of drop-film interactions include four regimes based on the impact energy
and wall temperature: stick, rebound, spread and splash. (See Figure 2.3) Sticking

Theory

14

droplets hit the wall film and stay on it. Rebounding droplets rebound off the wall with
diminished momentum. Entire spreading droplets hit the wall at higher impact energies
than sticking droplets. In the splashing regime, the incoming droplets produce
secondary droplets. Below the boiling temperature of the liquid, the impinging droplet
can stick, spread or splash, while above the boiling temperature, the particle can either
rebound or splash.

Figure 2.3: Simplified Decision Chart for Wall Interaction Criterion [1]

Conservation equations for momentum and mass of each parcel in the wall-film are
described in [1]. This particle-based approach for thin films was first formulated by
O’Rourke [5] and most of the derivation for the conservation equations is based on that
work.

The equation for the momentum of a parcel on the film is

 �" 1�:�21� ",;<�=-> . �?��? �@��@ A:��B/2,> 0 D� B/2,>�:�2 ���E,> �",�� 0 ��@- (2.5)

where
FG::�HFI = particle position over the time

 � = index of the current face where particles reside
 " = current film height at the particle location
 ;< = gradient operator restricted to the surface
 �= = pressure on the surface of the film

 �? = magnitude of the shear stress of the gas flow on the film surface

 ��? = unit vector in the direction of the relative motion of the gas and

the film surface
 �@ = magnitude of the stress that the wall exerts on the film

 ��@ = unit vector in the direction of the relative motion of the wall and
the film surface

 A:��B/2,> = impingement pressure on the film surface

 D� B/2,> = impingement momentum source

 ���E,> = force to keep the film on the surface
 �",�� 0 ��@- = body force term

The detailed equations for these variables can be found in [1].

Splash

Spread

Rebound

Stick

Tb Tw

E

Theory

15

The mass transition is based on the film vaporization law. In this study, the temperature
of the wall film does not reach Tb , therefore, the mass transfer is not considered.
In this study, wall-film model was used to model the PUR-liquid film on the sprayed wall
for the boundary condition of DPM model. It was then compared with the solution of
VOF model. The explanation for VOF model is described in Section 2.3.1.

2.3 Multiphase Flows

A large number of flows in nature and technology are called mixture of phases.
Multiphase flow regimes can be grouped into four categories: gas-liquid or liquid-liquid
flows, gas-solid flows, liquid-solid flows, and three-phase flows. The fluid system is
defined by a primary and multiple secondary phases. Primary phase is considered to
be a continuous phase such as air and secondary phase is considered as a dispersed
phase within the continuous phase. (See Figure 2.4) PUR-spray model is modeled as
Euler-Lagrange-two-phase flows: the primary phase is air, and the PUR-droplets are
defined as the secondary phase regarded as particles. Particles deposing on the
substrate are transferred via source terms to the Volume Of Fluid (VOF) model.

Figure 2.4: Primary Phase and Secondary Phase in a Domain [6]

2.3.1 Volume of Fluid (VOF) Model Theory

The simulation of layer structure of PUR-spray was carried out by using ANSYS
FLUENT’s volume of fluid (VOF) model, of which the method is based on a concept of
a fractional volume of fluid, as previously proposed by Hirt and Nichols [7]. The VOF
method, one of the Euler-Euler multiphase models, is used to capture the interface of
two or more immiscible fluids. Except tracking liquid-gas interface, VOF model is
typically used for the prediction of jet breakup, the motion of large bubbles in a liquid,
the motion of liquid after a dam break.

In VOF model, the governing equations are solved by using the volume fraction in each
cell. In each control volume, the volume fractions of all phases �L sum to unity.

 M �L
E

LN3
. 1 (2.6)

Secondary
Phase

Primary
Phase

Theory

16

If the volume fraction of the OIP phase in the cell is denoted as �8, then the following

three conditions are possible:

- �8 . 0: This cell is empty of the OIP phase.

- 0 Q �8 Q 1: This cell represents the interface region between the OIP phase

and one or more other phases.
- �8 . 1: This cell is full of the OIP phase.

The fields for all variables and properties are shared by all the phases and represent
volume-averaged values in any given cell depending upon the volume fraction value.
For example, the volume-fraction-averaged density of an n-phase system takes on the
following form:

 � . M �8�8 (2.7)

where �8 is the tracked volume fraction and �8 is the density of its phase. All other

properties (e.g., volume-fraction-averaged viscosity) are computed in the same
manner.

The interface(s) between the phases is tracked by the solution of a continuity equation
for the volume fraction of one (or more) of phases. For the OIP phase, this equation has
the following form:

)�8)� * · S�8��8T . 1�8 U>V MS
� 28 0
� 82TE

2N3
W (2.8)

where
� 28 is the mass transfer from the �IP phase to the OIP phase and
� 82 is the

mass transfer from the OIP phase to the �IP phase. >V is the source term which is zero

by default.

The volume fraction equation may be solved through either implicit or explicit time
discretization. For implicit scheme:

�8EX3�8EX3 0 �8E�8E∆� � M,�8EX3Y=EX3�8,=EX3-

=
. U>V MS
� 28 0
� 82TE

2N3
W � (2.9)

This equation requires the volume fraction value at the current time step. Thus, a
standard scalar transport equation is solved iteratively for each of secondary-phase
volume fractions at each time step.

In the explicit approach, the standard finite-difference interpolation schemes are
applied to the volume fraction values which were computed at the previous time step:

�8EX3�8EX3 0 �8E�8E∆� � M,�8Y=E�8,=E -

=
. U>V MS
� 28 0
� 82TE

2N3
W � (2.10)

where � 1 = index for current time step

 � = index for previous time step

Theory

17

 �8,= = face value of the OIP volume fraction

 � = volume of cell
 Y= = volume flux through the face, based on normal velocity

One of the techniques to calculate the face fluxes of volume fraction is geometric
reconstruction scheme, generalized for unstructured meshes from the work of Youngs
[8]. It assumes that the interface between two fluids has a linear slope within each cell,
and uses this linear shape for calculation of the advection of fluid through the cell
faces. Another is Donor-Acceptor Scheme, used to determine the amount of fluid
flowing through all the faces of a cell [7]. (See Figure 2.5)

Figure 2.5: Interface Calculations [1]

The high viscosity ratio between air-phase and PUR-phase (ca. 107) may lead to
convergence difficulties. As a high resolution differencing scheme, the compressive
interface capturing scheme for arbitrary meshes (CICSAM), based on Ubbink’s work [9]
was used for solving the problem of poor convergence.

A single momentum equation is solved throughout the domain, and the obtained
velocity field is shared among the phases:

))� ,���- * · ,�����- . 0*� * · [�,*�� *��\-] ��� �� (2.11)

The momentum equation is dependent on the volume fractions of all phases through �
and �, the density and the viscosity.

The energy equation, also shared among the phases, is shown below:

))� ,��- * · ,��,�� �-- . * · ,^_==*�- P (2.12)

where P is the volumetric heat source. The properties � and ^_== (effective thermal

conductivity) are shared by the phases.

The energy � and temperature � are treated as mass-averaged variables by VOF
model:

actual interface shape interface shape represented by
the geometric reconstruction
scheme

interface shape represented
by the donor acceptor scheme

Theory

18

 � . M �8�8�8
E

8N3
/ M �8�8

E
8N3

 (2.13)

where �8 is based on the specific heat of the OIP phase and the shared temperature.

However, heat transfer is neglected in PUR-spray model.

Otherwise, surface tension and wall adhesion effects can be taken into account in VOF
model.

User-Defined Function (UDF)

19

3. User-Defined Function (UDF)

In ANSYS FLUENT, we can program a user-defined function (UDF) to enhance the
standard features of the code. UDFs can be used to define boundary conditions,
material properties or source terms of flow regime, and initialize the solution, or
enhance post-processing as well. They are also necessary for fitting the particular
model needs (e.g. DPM, multiphase models). UDFs are written in C programming
language and the source code is stored with X.c extension.

3.1 Mesh Terminology

Most UDFs access data from an ANSYS FLUENT solver, of which data is defined in
terms of mesh components. Before writing a UDF, some basic mesh terminologies
need to be learnt. Figure 3.1 schematically shows the mesh components.

• domain
grouping of node, face, cell threads in a mesh

• node/face/cell thread
grouping of nodes/faces/cells

• cell
A mesh is broken up into control volumes, and this control volume is called as
cell.

• cell center
location where cell data is stored

• face
boundary of a cell

• edge
boundary of a face

• node
mesh point

Figure 3.1: Mesh Components [10]

3.2 DEFINE Macros and Additional Macros

DEFINE macros predefined macros provided by ANSYS FLUENT, Inc. must be used to
define UDFs for specific purposes. Definitions for DEFINE macros are contained within

simple 2D mesh simple 3D mesh

edge

cell face

node
face

cell

node

cell center

User-Defined Function (UDF)

20

the udf.h file. In this study, some general purpose DEFINE macros and DPM DEFINE
macros were used. They are discussed in Chapter 4.

ANSYS FLUENT provides the predefined additional macros to facilitate the
programming of UDFs and the use of CFD objects as defined inside it. Data access
macros can be used to obtain or specify some information, e.g. face area of a face,
volume of a cell, adjacent cell thread, velocity of a particle and so on. A listing and
discussion of each macro is presented in [10]. In this study, additional macros for mesh
component and particles are frequently utilized. In addition, a set of predefined looping
macros are also required in UDFs when performing repeated operations. For example,
in order to track the particles which reside on the wall-boundary, each face on this
boundary should be visited so that face looping for this boundary is required. The
detailed description of these macros with the specific purposes for the study can be
found in Chapter 4.

3.3 Parallel Processing

In order to increase the running speed for complex ANSYS FLUENT‘s models, parallel
processing is needed. Multiple Processes are essential when using ANSYS FLUENT’s
parallel solver and execute on the same computer, or on different computers in a
Network. (Figure 3.2)

Figure 3.2: Parallel ANSYS FLUENT Architecture [2]

The mesh model is separated into a set of parts, and the solution of each part is
computed by a parallel process or computer node. A host process does not contain
mesh data (cell, face, and node data), but parallel processes do. Instead, it only
interprets commands from ANSYS FLUENT’s graphics-related interface, cortex. Thus,
the mesh data must be defined only for computer nodes in UDFs.

User-Defined Function (UDF)

21

In short, we should pay attention to following points when using parallel processing:

- Suitable mesh partitioning and load balancing are necessary.
- When DPM model works with the multiphase flows models (e.g. VOF model),

Message Passing option is automatic enabled.
- Mesh data are defined only for computer processes or nodes.
- Looping macro for interior cells is used to avoid repeating cell looping. For the

same reason, the specific macro for face looping is also used.
- The definition of global variables for parallel process is more complex than for serial

process.
- The transfer and reduction of data between host process and computer processes

is important.
- UDFs are specified for both parallel and serial version.

Model

22

4. Model

This chapter describes the mesh modeling, the air-particle-spray modeling and layer
structure modeling (VOF, wall-film) using the preprocessor Gambit and the solver
ANSYS FLUENT.

4.1 Mesh

An appropriate mesh for the model can not only calculate accurately but also save the
running time. Thus, an appropriate mesh is modeled within the Gambit environment.

4.1.1 Objectives of Mesh

In order to track the position of transient interface between two fluids (air as primary
phase and PUR as secondary phase throughout the domain), the structure of PUR-
layer is modeled using ANSYS FLUENT’s Volume of Fluid (VOF) model by solving a
single set of momentum equations and tracking the volume fraction of PUR-particles
and air. In the VOF model, a very fine mesh is important for an accurate solution due to
the expected, tiny PUR-layer on the substrate. However, only the interface of two fluids
on the plate needs to be tracked, so the grids far away from the plate need not to be as
fine as the grids nearby. Considering the problem above, two kinds of models were
created (See Figure 4.1 and Figure 4.2):

Figure 4.1: From-Top-To-Layer-Finer-Meshed Model

Model

23

Figure 4.2: Near-Layer-Finer-Meshed Model

Figure 4.1 and Figure 4.2 show the meshed model viewed in the direction of x-z plane.
The line located on the bottom of the model is the spray-layer. The models are the
rectangular container considered as the surroundings of the PUR-spray process. The
mesh showed in Figure 4.1 is refined from top to layer, while in Figure 4.2 only the grid
near layer (� . 5 a 10bc
) is refined.

The unique advantages and disadvantages of two grid methods are listed in Table 4.1:

 Advantages Disadvantages

From-Top-To-
Layer-Finer-
Meshed Model

1. The simulation is stabilized
with the grids gradually finer in
spray direction.

1. The volume of each grid is
different, which means the sizes
of injection cells at different
positions are not same. This
leads to inconsistent
experimental conditions.

2. The prohibitive number of grid
cells cost more running time.

Near-Layer-
Finer-Meshed
Model

1. There are fewer cells in this
case because finer grids are
only built near the bottom.

2. The sizes of injection cells at
different positions (e.g.
distance between plate and
injection is 0.2
, 0.4
 , or 0.6
) are
same.

1. The ratio of grid changes rapidly,
which may lead to the unsteady
simulation, e.g. Courant number
increases unexpectedly.

Table 4.1: Comparison of Meshes between Two Models

Additionally, the size of grids is important for the post-processing of simulated results.
In order to compare the distribution of layer weight obtained from ANSYS FLUENT’s
models and practical experiments, the size of each sample cut from the layer by
experiment should be the integer multiple size of grids. Figure 4.3 shows the cutting tool

� . 5 a 10bc

Model

24

used in experiment, the size of each part cut from the sprayed layer is 11

 a 75

.
It cuts the layer into a group of samples and these samples are weighted to obtain the
distribution of weight on the layer.

Figure 4.3: Conduction-Pusher for Cutting the Layer [11]

Furthermore, the working environment including the plate of PUR-spray is modeled as
a rectangular container. It should be larger than the space that spray particles may
pass through, so that except the sprayed plate, the other five boundaries of container
will not affect the spray process.

Therefore, a simply container with meshes and boundary conditions created in Gambit
includes following points:

- The grids are finer from the plane on the top of the container to the spray plate.
- Change of the size of grids should be gentle.
- The size of grids is based on the size of the conduction-pusher’s sample.
- Size of the container is larger than the spray space.

4.1.2 Final Mesh Model

Geometry:

The model created in Gambit is a rectangular container, of which size is:

�e���"f a g�1�"h a ie��"�j . 1.5
 a 0.561
 a 0.65

X-axis direction is considered as the trajectory of the moving PUR-spray injector and
the bottom of the container is the sprayed layer (see Figure 4.4 and Figure 4.5).

Model

25

Coordinate System:

As Figure 4.4 shows, the Cartesian coordinate origin is located in the middle of the short
edge of the plane on the top of the container. Positive z direction is defined as the
spray direction.

Figure 4.4: The Final Scheme of the Meshed Model (Viewed in Z Direction)

Mesh:

As described above, the model is optimized by combining the advantages of two
methods and avoiding the disadvantage. The gentle ratios of grids are necessary for
the simulation. Thus, the optimization will be described as following: (see Figure 4.5)

- On the basis of near-layer-finer-meshed model, the height is divided into two parts,
one is from k . 0
 to k . 0.5
, the other is from k . 0.5
 to k . 0.65
.

- For the upper part (k . 0 l 0.5
), the successive ratio is 1 and the number of grids
is 20, the length of grids is 0.025m. We obtain equally spaced cells.

- For the lower part (k . 0.5 l 0.65
), in order to get the gentle changing of ratio,
the first length of grids is defined as same as the length of grids for the upper part.
And the number of grids is also 20 to ensure the length of grids near the layer is
fine enough.

The terminology and performing of mesh can be found in [12]. The details of settings
for mesh described above are listed in the following Table 4.2:

Edge / Parameters Length (
) Mesh Length (
) Number of Grids Ratio
x positive 1.5 0.0125 120 1
y positive 0.561 0.011 51 1
z positive 0 l 0.5 0.025 20 1
z positive 0.5 l 0.65 first length: 0.025 20

Table 4.2: Meshes Specified in Gambit

Model

26

��m�� ne���" . 0.025

"e��"� . 0.15

e�" ��
�em . 20

Figure 4.5: Final Scheme of the Mesh Model (Viewed in Y Direction)

Boundary conditions:

The boundary condition of sprayed plate is defined as “Wall”, while the other five
planes of the container are defined as “Pressure Outlet”.

The key point in this study is that the VOF model for the plate requires fine meshes,
and the other area can be consists of a normal and rough mesh. The solving time
would be shortened by this method of mesh.

4.2 Model of PUR-Spray

In this study, the air-PUR spray injector was specified as an air-blast atomizer. It moves
along a direction with a fixed speed. Under the influence of impulse generated by the
extern air into the injector, particle dispersion occurs by using ANSYS FLUENT’s
Discrete Phase Models (DPM).

Usually when modeling the particles sprayed from air-blast atomizer, a nozzle with
specific shape (see Figure 4.6) is created, and then defined as Air-Blast Atomizer in
ANSYS FLUENT (See tutorial 17 in [13]). But an air-blast atomizer created with specific
shape cannot work as a moving spray injector because of the restrictions on the
definition in the ANSYS FLUENT. Therefore, another method was used to model the
PUR-spray process.

Model

27

Figure 4.6: Nozzle of Air-Blast Atomizer [13]

Due to small nozzle (diameter: 5

 l 7

), a cell was regarded as a spray injector.
In the following description, it is called as injection cell. Using the defined injection cell,
ANSYS FLUENT can solve the problem of the moving PUR-spray injector with extern
air source. This issue involves three specific aspects:

- How to move PUR-spray injector along a certain direction?
- How to define the extern air source at PUR-spray injector?
- How to control the impulse of this air source?

4.2.1 Moving Spray Injector

As mentioned above, the spray injector was modeled using ANSYS FLUENT’s air-blast
atomizer model. For an air-blast atomizer, the point properties needed to be specified
are: position, axis (if 3D), temperature, mass flow rate, duration of injection (if
unsteady), injector inner diameter, injector outer diameter, spray angle, relative
velocity, sheet breakup, ligament diameter, azimuthal angles (if relevant) and
dispersion angle. However, with these parameters the injector is still unable to move. In
this case, user-defined functions (UDFs) are useful for this specific application.

When the injector moves, the particles at injector move at the same speed
simultaneously, which means we can define the position of the injector by specifying
the position of the particles at injector indirectly. In UDFs, the macro called
P_INIT_POS(p)[i], returns the position of the particles at injection. Expressed in
mathematical language, a moving injector implies that the particles at injection shift
from one position to another position with the distance returned by the product of the
speed and the flow time. Or in other words, the current position of the particles at
injection changes with a certain rate over solving time. Suppose the starting position
locates at the point ,0,0,0- in Cartesian coordinate system and moves along x positive

inner air stream

swirling annular stream

Model

28

direction, the macro called P_POS0(p)[i] can be compiled in an appropriate macro
function as:

P_INIT_POS(p)[0] = C * CURRENT_TIME;

where C is the speed of injection, CURRENT_TIME is a time-dependent macro which
returns the current flow time (in seconds). The argument type p is the tracked particles,
i = 0 means it is in x direction, corresponding 1 and 2 mean in y and z direction.

There comes the next problem with the selection of macro function, which will be used
to define the injector with the command of P_INIT_POS(p)[i]. The DEFINE macro for
DPM model, DEFINE_DPM_INJECTION_INIT, has a purpose to initialize a particle’s
injection properties such as location, diameter, and velocity. Table 4.3 below lists the
usages of it:

DEFINE_DPM_INJECTION_INIT(name,I)

Argument Type Description Function returns
symbol name UDF name. void

Injection *I Pointer to the Injection structure which is a container
for the particles being created. This function is called
twice for each Injection before the first DPM iteration,
and then called once for each Injection before the
particles are injected into the domain at each
subsequent DPM iteration.

Table 4.3: Usage of DEFINE_DPM_INJECTION_INIT

During the first few attempts using DFEINE_DPM_INIT_INJECTION with the command for
P_INIT_POS(p)[i], the problem was identified that the injector didn’t move actually
because the particles stayed at the starting position. The position of particles at current
position (see Figure 4.7) should also be defined, although the initial position of particles
has been defined. The macro for current position of particle is P_POS(p)[i]. In ANSYS
FLUENT, when looping over the particles of the injection, P_POS(p)[i] returns the
position a little bit below the nozzle.

Figure 4.7: Position of the Particles at Different Flow Time

particles at
current positions

particles at
injection

Model

29

Therefore, for a moving injector we can hook the UDF as the following simplified
function into the Set Injections properties box showed in Figure 4.8:

DEFINE_DPM_INJECTION_INIT(INJECTION_POS,I)

{

Particle *p;

loop(p,I->p_init)

{

P_INIT_POS(p)[0] = 0.5 * CURRENT_TIME; /* 0.5 is the velocity of injection along x

direction, in m/s */

P_POS(p)[0] = 0.5 * CURRENT_TIME;

}

}

where loop(p,I->p_init) loops over the particles at or around the injector. It is used for
transient particles, while loop(p,I->p) is for steady simulation.

Figure 4.8: Dialog Box of Set Injection Properties

In addition, the velocity of particles in the discrete direction needs to be defined as
initial velocity, and it will also be compiled in DFEINE_DPM_INIT_INJECTION. For 3D
model, the magnitude of velocity of particles at current position is:

 �2 . o�2,f4 �2,h4 �2,j4 (4.1)

where �2,f , �2,h , �2,j are the velocity of particles (parcels) in x, y, z direction. The

required initial magnitude velocity of particles is equal to 13
/� [11] and constant for all

Model

30

initial particles. But the vector of each particle is not the same value because the spray
half angle is defined for the injection. No equations, which explain the relationships
between the velocity of particles (parcels) and the properties of spray injection, have
been found in [1]. Thence, we can at first read the default initial magnitude velocity
resulted by the pre-set properties of spray injection, and then divide the maximal
velocity value to the required velocity to get our correction factor, and then multiply this
factor to each velocity component of each particle (parcel). At the end, the required
initial magnitude velocity of particles (parcels) is specified. Through the following
simplified UDF, this idea will be clearly declared:

DEFINE_DPM_INJECTION_INIT(INJECTION_VEL,I)

{

Particle *p;

loop(p,I->p_init)

{

real p_vel_mag;

p_vel_mag = sqrt(SQR(P_VEL(p)[0]) + SQR(P_VEL(p)[1]) + SQR(P_VEL(p)[2]));

/* Read default initial magnitude velocity of particles with P_VEL(p)[i] */

/* P_VEL(p)[i] is the macro for the velocity of particles (parcels) at current position. */

/* SQR(k) returns the square of the given variable k, or k * k. */

real rate = 13 / p_vel_mag ;

/* 13 is the required initial magnitude velocity of particles (parcels) in m/s */

int i;

for(i=0;i<3;i++)

P_VEL(p)[i] = rate * P_VEL(p)[i] ;

/* Define the velocity component by multiplying the rate to the default velocity. */

}

}

However, DEFINE_DPM_INJECTION_INIT(INJECTION_POS,I) and
DEFINE_DPM_INJECTION_INIT(INJECTION_VEL,I) were combined into one function. The
complete UDFs about it can be found in A.3.

4.2.2 Air Source at Spray Injector

Application of air source for the spray injector is one of the key points in this study. It is
an important definition for particle dispersion. With the impulse of extern air, the
diameter of particles decreases from the nozzle to the sprayed layer.

The volume stream of extern air source has been given as 300�/
�� [11]. Through the
following equations, we can get the mass stream and velocity of it:

� . ��� (4.2)

 � . �� /� (4.3)

where
� is mass steam of the extern air source in ^�/�, �� is volume stream in
5/�, �
is the density of air as 1.225^�/
5, � is the impulse velocity generated by air source,

Model

31

whose direction is the same as the face area vector of the face whose area is �. The
face in this case is the surface of the nozzle.

As Figure 4.9 shows, air source is modeled by setting of volumetric mass source of /�q . rstsusq in ^�/
5� and momentum source of
/� uq . /� usq in v/
5 as compiled in

function macro DEFINE_SOURCE, where � is the cell volume. These source terms are
added to the injection cell, where the moving injector currently locates.

Figure 4.9: Defining a Source for a Tiny Inlet

Note that if only mass source is defined for a cell, the mass will enter the domain with
no momentum or thermal heat. The mass of air transpires therefore in all the direction
of the cell. Thus, a volumetric momentum source is necessary to be defined.

The theoretical velocity of air source calculated through Equation 4.3 with diameter of
nozzle (5

) is about 150
/� , and mass stream is about 6.125 a 10b5^�/
5� .
Anyway, with both of the parameters, the solution of ANSYS FLUENT shows, that the
maximum cell-based velocity is much smaller than the velocity by hand calculation
(150
/�). It is hard to find out the reason of this deviation by ANSYS FLUENT. In order
to obtain the precise velocity generated by air source, a UDF used to achieve this
purpose should be compiled. The main idea of it is to increase the velocity (�w) defined

in momentum source (
/� uq . /� usq) every a few iterations until the velocity showed as the

cell-based velocity (�xyz) in the next cell of the source cell in the direction of the
momentum source reaches the hand calculated value (�{). This correction is executed
under steady simulation, and it needs many iterations (about 1000), even though the
whole solution is transient and it needs much fewer iterations (about 20) for every time
step. 20 iterations in every narrow time step are enough for getting the precise solution
and more iterations cost more solving time. ANSYS FLUENT cannot control the
changing of iteration-number in different time step. Therefore, the solution of searching
the required velocity and the solution of VOF Model must be separated into two parts,
one is by steady with many iterations, and the other is by transient with fewer iterations
in every time step.

The UDFs for this purpose includes following basic macro functions:

- one DEFINE_SOURCE for air mass source in injection cell,

injection cell �

nozzle surface �w

�w

Model

32

- one DEFINE_SOURCE for air momentum source in spray direction,
- and one DEFINE_ADJUST for correction of the air velocity.

Both mass source and momentum source of air must be defined for the same cell
where the injection point locates, since the different cell volume in the container model
previously described leads to different result of velocity. The UDF defined for spray
injector must be combined with these UDFs to find the source cell not only for spray
injector but also for air source by using the extern variables of injection position.
Although the injector moves along a direction, or further to say, it stays at different cell
from time to time, it does not affect the correction of the velocity solved by steady and
related with the cell volume, owing to the equal cell volume in the no-spray direction.

DEFINE_ADJUST executes at each iteration and is called at the beginning of every
iteration before transport equations are solved and it can also be used to modify the
flow variables includes velocity. The usage of this macro is listed in Table 4.4. It is still
an appropriate function for correction of velocity even if the solution must be separated
into two parts. Some points are sequential involved in DEFINE_ADJUST,

- Find out the injection cell,
- Find out the neighbor cell of injection cell in the spray direction,
- Correct the cell-based velocity of this neighbor cell.

DEFINE ADJUST(name,d)

Argument Type Description Function returns
symbol name UDF name. void

Domain *d Pointer to the domain over which the adjust function
is to be applied. The domain argument provides
access to all cell and face threads in the mesh. For
multiphase flows, the pointer that is passed to the
function by the solver is the mixture-level domain.

Table 4.4: Usage of DEFINE_ADJUST

Find out the injection cell:

As previously described, injection cell is the cell where the injector locates. Using
command extern can import the injection position from the UDF defined for spray

injector to find out the injection cell. After extraction of the injection position, the
injection cell can be found using the cxboolean macro SV_is_point_in_cell predefined in

dpm.h. Then this injection cell will be marked with user-defined memory (UDM) macro.
C_UDMI can be used to store a value like 2.0 (except 0.0) in this injection cell and the
value of C_UDMI in the other cells without definition is a default value 0.0. A simple
example is showed as following:

if(SV_is_point_in_cell(&cx_cell,c,t,inj_init))

/* inj_init is the extern variable of injecton position */

{

C_UDMI(c,t,0) = 2.0;

/* Mark the injection cell by storing it as value 2.0 */

}

Model

33

Later, this marked cell is used as a condition to define the air source in the UDF for
correction of velocity. In another word, if the visited cell is the marked cell, UDFs add
the volumetric source items into it or, if not, nothing happens to this cell.

Find out the neighbor cell of injection cell in the spray direction:

In Section 4.1.2, the spray direction has been described and it sprays along z-positive
direction. So this neighbor cell is just the next cell of injection cell in z-positive direction.
(See Figure 4.10) In the following description, it will be named as z-neighbor cell.

Figure 4.10: Injection Cell and Z-Neighbor Cell

Searching z-neighbor cell is not as direct as searching injection cell because a cubical
cell contains six neighbor cells. Z-neighbor cell satisfies two conditions: 1. The absolute
value of z component of the face area vector (�) of the injection cell is greater than
zero. As Figure 4.11 shows, � is the area normal vector of a face directed from adjacent
cell c0 to c1. This condition filters two faces whose face area vector is parallel to z axis
from six faces of the injection cell. 2. z component of face centroid of the injection cell
is greater than the cell centroid of the injection cell. This condition further filters the
bottom face (see Figure 4.10) from those two faces. On either side of the bottom face
there are two cells, one is injection cell and the other is the z-neighbor cell. If � of
bottom face directs from injection cell to z-neighbor cell, it means that injection cell is c0

and z-neighbor cell is c1. After obtaining the z-neighbor cell, the cell-based velocity of

it (�xyz) can be immediately solved.

Figure 4.11: Adjacent Cells c0 and c1 with Vector and Gradient Definitions [10]

z

x

injection cell

z-neighbor cell

bottom face
of injection cell

Model

34

Correction of cell-based velocity of this neighbor cell:

The velocity (�w) defined in momentum source (
/� uq . /� usq) will be increased by a fixed

dimension every few iterations (about 10iterations). With increasing of �w, momentum

source changes and the cell-based velocity of z-neighbor cell (�xyz) also changes. The
increasing of �w does not stop until �xyz reaches the hand calculation value (�{).

Through the following flow diagram (Figure 4.12), it will be clearly figured out:

Figure 4.12: Flow Diagram of Velocity Correction

In the flow diagram, n is an integer, which means, the adjustment executes every 10
iterations. ∆�3 for rough adjustment is larger than ∆�4 for fine adjustment.

After obtaining the value of velocity for momentum source which makes the value of
the cell-based velocity of z-neighbor cell equal as the hand calculation value, the air
source by transient solution was defined with this value.

At this point, the main definition and method of DPM including the moving spray
injector and the extern air source are described. In the next section, the model of PUR-
layer structure will be discussed in detail.

END if

 �w . �w ∆�3 �w . �w ∆�4

true

true

true

true

false

false

false

false

�xyz Q �{ Fine Adjustment �xyz Q �{ 0 20 Rough Adjustment

It is the 10nth iteration It is the 10nth iteration

Model

35

4.3 VOF Model for Layer Structure

This section is the emphasis also the difficulty of this study. It describes how to model a
layer structure of PUR-spray process using ANSYS FLUENT’s VOF model. VOF model
is for the solution of the multiphase flows. There are two phases in the model, the
primary phase (continuous phase) as air and the secondary phase (dispersed phase),
which is material PUR hitting the plate. With VOF model the interfaces between the two
phases at every time step can be solved. Usually the boundary conditions for
secondary phases are defined as inlet or outlet by VOF model. For this PUR-spray
model, PUR-particles as secondary phase do not come from any boundaries but from
the injection cell and then remain on the plate whose boundary condition is “wall”.
Therefore, it is complex to define a VOF model for PUR-layer structure. The basic idea
to solve this problem is to use the information of the PUR particles hitting the plate to
define the mass source and momentum source for the first layer of cells lying on the
plate. With these two sources, the volume fraction of PUR or air can be automatically
calculated with the density of PUR predefined for materials.

Otherwise, another model, ANSYS FLUENT’s wall-film model was used to study the
PUR-layer structure. It will be discussed in Section 4.4.

4.3.1 Collection of Information of PUR on Layer

In order to model the PUR-layer structure to identify the interface between the PUR
fluid on the plate and the air as the primary phase at all times, some information of
particles hitting the plate was collected to be the source terms of fluid for cell conditions
in VOF model. As soon as a particle hits the plate, the mass, velocity, position of it can
be obtained from ANSYS FLUENT. Mass sources and momentum sources can be
calculated with this information. Initially, the basic realization of this objective requires
following three steps:

- Track the mass, velocity and position of particles which are currently hitting the
plate at every time step.

- Transform the information above into mass and momentum sources for volumetric
cell conditions.

- By each end of time step, reset the information above (set back to 0) after the
source terms become effective so as to refresh the information for next time step.

Before compiling the UDFs for solving these problems, the UDF calling sequence in the
solution process must be learned. Knowing the sequence of function calls within
iteration in the ANSYS FLUENT solution process can help you determine which data
are at current and available at any given time. In this case, we use the pressure-based
coupled solver (Figure 4.13), because one of the limitations for ANSYS FLUENT’s VOF
model is that only the pressure-based solver can be used and VOF model is not
available with the density-based solver.

Model

36

Figure 4.13: Procedure for the Pressure-Based Coupled Solver [10]

Generally the function DEFINE_ADJUST can be used to modify the necessary variables
of particles on the plate for VOF model. Looping macros can be used to loop cells,
faces, threads and so on. When using DEFINE_ADJUST, we need to find the face thread
of the plate at first, and then loop all faces of this face thread to find the face that a
particle is hitting. However, it needs a complex program to track the face that a particle
is hitting by using this function.

Thus, in order to simplify the program and reduce the calculating time, another DEFINE
macro can be used, whose argument has been already defined as the face that a
particle is hitting. Because of DPM, this macro may be found out in the section about
DPM model in [10]. The macro, DEFINE_DPM_BC just meets these requirements. It
includes the argument types: the face that a particle is hitting and the particle on the
plate. See Table 4.5 below shows the detail information of this DEFINE macro.
Commonly, DEFINE_DPM_BC is used to specify the own boundary conditions for
particles, but its arguments can be used for the special purpose as tracking the
information of particles on the plate which are necessary for PUR-source terms. This
function is executed every time when a particle touches a boundary of the domain.

DEFINE_DPM_BC(name,p,t,f,f_normal,dim)

Argument Type Description Function returns
symbol name UDF name. int

Tracked_Particle *p Pointer to the Tracked_Particle data structure which
contains data related to the particle being tracked.

Thread *t Pointer to the face thread the particle is currently
hitting.

face_t f Index of the face that the particle is hitting.
real f_normal[] Array that contains the unit vector which is normal to

the face.

int dim Dimension of the flow problem. The value is 2 in 2D,
for 2D-axisymmetric and 2D-axisymmetric-swirling
flow, while it is 3 in 3d flows.

Table 4.5: Usage of DEFINE_DPM_BC

Model

37

Otherwise, refreshing the information of particles hitting the face at each time step is an
emphasis. Without this step, the information calculated for the mass source and
momentum source is the sum of mass and impulse of all the particles hitting the face.

4.3.2 Mass Source

When a flow source cannot be represented by an inlet, volumetric sources of mass for
the cells on the plate whose boundary condition is “wall” is then defined. The mass
source is

�� . �w�w�w� (4.4)

where � is the cell volume, and
� is mass stream, an argument in the equation for both
mass source and momentum source, is

� . ∆
∆� (4.5)

where ∆
 is mass difference and ∆� is time difference or time step. There are two
methods to get ∆
 by UDFs. The steps of method 1 are described as following:

- Track the mass of new particles hitting on a face in current flow time step using
DEFINE_DPM_BC.

- Use this mass as ∆
 for mass source using DEFINE_SOURCE.
- Initialize all the information of these particles to null using DEFINE_EXECUTE_AT_END,

which is executed at the end of a time step in a transient run. (The usage of it is
detailed in Table 4.6)

DEFINE_EXECUTE_AT_END(name)

Argument Type Description Function returns
symbol name UDF name. void

Table 4.6: Usage of DEFINE_ EXECUTE_AT_END

Therefore, by method 1, the calling sequence of these three DEFINE macros is
showed in Figure 4.14. However, method 1 is not feasible because its sequence does
not meet the UDF calling sequence in ANSYS FLUENT showed in Figure 4.15. Which
means, after initializing the information of particles using DEFINE_EXECUTE_AT_END,
DEFINE_SOURCE will receive the empty signal which leads to null source term. For this
reason, method 2 is designed to avoid this problem.

Model

38

Figure 4.14: UDF Calling Sequence by Two different methods

Figure 4.15: UDF Calling Sequence in ANSYS FLUENT

The steps of method 2:

- Track the mass of all particles which have been loaded on the faces using
DEFINE_DPM_BC, regarding this mass as sum of mass at current flow time(
EX3),
(see Figure 4.16),

- Use DEFINE_EXECUTE_AT_END for taking the difference Δm
n+1

 between sum of mass
at current flow time (
EX3) and sum of mass at previous flow time (
E), and then
store
EX3 used in next time step as previous mass. (The first previous
~ mass
during all the simulation is zero.)

- And then put ∆
EX3 into Equation 4.5 for the mass source.

Figure 4.16: An Example of the Situation of Parcels Loaded on the Different Grids of the Plate at

Different Flow Time

DEFINE_EXECUTE_AT_END

DEFINE_DPM_BCDEFINE_SOURCE

DEFINE_EXECUTE_AT_END

DEFINE_SOURCEDEFINE_DPM_BC

sequence of method 1 sequence of method 2

DEFINE_SOURCE

DEFINE_DPM_BC

DEFINE_EXECUTE_AT_END 3,� 1-IP iteration

�IP time step ,� 1-IP time step

�=��@ . �E �=��@ . �EX3

previous parcels
new parcels
current parcels

Position
2E

2E+1
 	2E 	2E+1

...

Model

39

In Figure 4.16, the red points indicates the total parcels of the injection from the
beginning of the simulation �~

 to previous flow time �E, and the blue points indicates the
total new parcels which is hitting the plate during the current time step. Thus, when the
injection sprays at current flow time �EX3 , the total parcels on the plate are the
combination of the red and the blue points. Every grid of the plate is called as face
(boundary of a cell) in UDFs of ANSYS FLUENT. Each face or cell can store and
retrieve up to 500 values of the user-defined memory (UDM) using macros F_UDMI (for
a face) or C_UDMI (for a cell) for post-processing. Therefore, the position of the parcels,
the current and previous mass of parcels, and the current and previous impulse of
parcels and so on can be stored and retrieved as UDM on a face or in a cell.

4.3.3 Momentum Source

If a mass source is defined for a cell zone, a momentum source should be also defined.
If only mass source is defined, that mass enters the domain with no momentum or
thermal heat. The mass will therefore have to be accelerated and heated by the flow
and, consequently, there may be a drop in velocity or temperature. This drop may or
may not be perceptible, depending on the size of the source.

The momentum source is

� �� .
� �w� (4.6)

compared with Equation 4.4, it is multiplied with a velocity of source �w. The item
� �w is

the impulse stream,

 	� .
� ��w . ∆	∆� (4.7)

where ∆	 is momentum difference and ∆� is time difference or time step called in
ANSYS FLUENT. ∆	 can be also obtained with method 2 for catching ∆
. Momentum 	
on a face is an accumulation momentum of every particle, which is expressed as:

 	B . M �B
B��B (4.8)

where � is the direction index, �B is the number of particles of each tracked parcel. In
UDFs, the mass and velocity of each particle in a parcel is equivalent and represented
by
B and ��B are the mass and velocity of this parcel which in UDFs represent the mass
and velocity of each particle belongs to this parcel.

The logic in the computation of the momentum source is the same as explained for the
mass source. Therefore the 3 components of the momentum vector are stored in 3
different C_UDMIs and refreshed at the end of every time step.

Model

40

4.3.4 Size of Time Step

When using VOF Model, non-convergence problems may happen. In order to avoid
this problem, dynamic time step for the simulation is necessary. [14] The range for a
variable time step needs to be set. Time step can be estimated as [15]:

 ∆� . ��� a �9_��,/BE3/5
Y (4.9)

where �9_��,/BE is the minimum volume of grid obtained from the Grid Check panel. U is
the velocity scale of problem, the maximum one along particle velocity, air velocity and
gravitational velocity. ��� is Courant number in the range of 0.5 to 1.

4.3.5 Solution Procedure of UDFs for VOF Model

In order to get an intuitional view over the UDFs for this VOF model running in ANSYS
FLUENT, the following figure summarizes their particular tasks and sequence over
each other which have been discussed in Section 4.2 and Section 4.3.

Model

41

Figure 4.17: Flow Diagram of UDFs for VOF Model

5.2

	���z�EX3/�9

a) Definition of momentum
source for PUR

DEFINE_SOURCE

5.1

� �z�EX3/�9

a) Definition of mass source
for PUR

DEFINE_SOURCE

direction of flows

direction of infos

DPM model

VOF model

data outsides

UDFs process

4.a

3

a) Tracking the face that a particle is hitting
b) Tracking sum of mass in current flow

time on a face of sprayed plate
c) Tracking sum of impulse in current flow

time on a face sprayed plate

DEFINE_DPM_BC

� �B{

1

d) Definition of the velocity of parcels
 P_VEL(p)[i]

e) Definition of the position of injection
 P_POS(p)[i], P_POS0(p)[i]

f) Definition of the velocity of injector
DEFINE_DPM_INJECTION_INIT

1.b,1.c

4

� �z�EX3 . ∆
∆� .
2EX3 0
2E�EX3 0 �E

	���z�EX3 . ∆	�∆� . 	�2EX3 0 	�2E�EX3 0 �E

a) Tracking the time that the first particle
hits the sprayed plate

b) Calculation of mass stream on a face
in current time step

c) Calculation of impulse stream on a
face in current time step

d) Storing
2E and 	�2E as previous mass
and impulse used in next time step, at �EX4

DEFINE_EXECUTE_AT_END

4.c

4.b

3.a,
3.b,
3.c

2.2

� �B{�j/�9

a) Definition of momentum
source for air at injector

DEFINE_SOURCE

2.1

� �B{/�9

a) Definition of mass source
for air at injector

DEFINE_SOURCE

��B{

�BEw

Model

42

4.4 Wall-Film Model for Layer Structure

In ANSYS FLUENT, wall-film model is a specific boundary condition for simulation of
internal combustion engines. This model is usually important for the port fuel injected
(PFI) engines. DPM particles are used to model the wall-film. The wall-film model in
ANSYS FLUENT allows a single component liquid drop to impinge upon a boundary
surface and form a thin film.

4.4.1 Collection of information using UDFs

In order to obtain a spray-wall of wall-film for this PUR-spray model, “wall-film” should
be selected in the dialog box of the boundary conditions after the DPM model has been
enabled. Compared with the VOF model, no source items stimulated by particles on
the surface are defined for cell zone conditions, which means, there is no need to
collect the information about the spray particles on the surface. Discussed in Section
4.2.1, the injection begins to move itself straightly at a constant speed as soon as the
first particle hits the plate (key time). When calculating a VOF model the time is
collected through two DEFINE macros, DEFINE_DPM_BC and DEFINE_EXECUTE_AT_END.
However, for wall-film model, the boundary condition is defined as “wall-film” instead,
while for VOF model it is defined as “user-defined function” which is compiled with
DEFINE_DPM_BC.

So another DEFINE macro is compiled to get this key time. Considering to simplify the
compiling (No looping of faces or cells), it is better to use a DEFINE macro which
contains an argument of the face that the particle is hitting just like the argument 'face_t'
in DEFINE_DPM_BC. DEFINE_DPM_EROSION is a DEFINE macro, which is usually used to
specify the erosion and accretion rates by being calculated as the particle stream
strikes a wall surface. The steps obtaining the key time is described as following:

- Mark the face that the particles are hitting with UDM macro in
DEFINE_DPM_EROSION.

- In DEFINE_EXECUTE_AT_END, if the marked face is found out, record the flow time as
the time the first particle hits the wall, and this step is called only once during all
the simulation.

- Use this key time as global variable to define the situation of moving injection in
DEFINE_DPM_INIT_INJECTION.

For VOF Model, it is the same way to find out this key time except the face here is
marked by using DEFINE_DPM_BC instead.

Besides using face_t to obtain the key time, noting will be defined in
DEFINE_DPM_EROSION, so it will not specify any erosion or accretion for the reflecting
surface to influence the wall-film model. This function will be visible and selectable in
the Discrete Phase Model dialog box in ANSYS FLUENT after enabling the Interaction
with Continuous Phase option under Interaction in the Discrete Phase Model dialog
box.

Model

43

4.4.2 Solution Procedure of UDFs for Wall-Film Model

Compared with VOF Model, UDFs for wall-film model are simpler and its procedure is
showed as following:

Figure 4.18: Flow Diagram of UDFs for Wall-Film Model

direction of flows

direction of infos

DPM model

wall-film model

data outsides

UDFs process

�BEw
� �B{

2.2

� �B{�j/�9

a) Definition of momentum
source for air at injector

DEFINE_SOURCE

2.1

m� ���/V�

a) Definition of mass source
for air at injector

DEFINE_SOURCE

1

a) Definition of the velocity of parcels
P_VEL(p)[i]

b) Definition of the position of injection
P_POS(p)[i], P_POS0(p)[i]

c) Definition of the velocity of injector
DEFINE_DPM_INJECTION_INIT

��B{

1.b,1.c

3

a) Tracking the time that the first particle
hits the sprayed plate

DEFINE_DPM_EROSION

3.a

4

Boundary condition “wall-film” for
sprayed layer

ANSYS FLUENT’s Wall-Film Model

Results and Comparisons

44

5. Results and Comparisons

In this chapter, the results of experiment and simulation, wall-film model and VOF
model, are discussed and compared. Section 5.1 explains concisely the method of the
practical experiment. Section 5.2 shows the results of the layer structure calculated and
simulated with wall-film model. And Section 5.3 shows the results of the layer structure
calculated and simulated with VOF model.

5.1 Practical Experiment

5.1.1 Method of Practical Experiment

The method of the practical experiment is optimized on the base of Hennecke method
[11]. A PUR-air atomizer with fixed parameters (e.g. outer and inner diameter)
executed at different height at the same moving speed along a direction. (See Table 5.1)
The plate was a special paper with a constant weight-area ratio. After spraying, the
layer structure was punched with the conduction-pusher tool (Figure 4.3) accurately into
a group of samples with the same surface area. Each sample was weighted, and the
weight of the PUR-film was deducted from the weight of the sample. PUR used in the
experiment were Baytec, Baypreg, Bayflex and Multitec. Here, the results of Baytec are
discussed and compared.

Spray height (

) 600 400
Flow rate (�/�) 21 21
Moving speed (

/�) 500 500
Nozzle 5

 conical 5

 conical

Table 5.1: Parameter for Practical Experiment

5.1.2 Results of Practical Experiment

Figure 5.1: Comparisons of Baytec 400

, 600

 Distance at 21�/� Flow Rate [11]

Results and Comparisons

45

Figure 5.1 shows the distribution of the PUR mass in width. More PUR particles
deposited in the middle of the layer than on two side of the layer. The larger the
distance between the atomizer and the sprayed layer is, the wider the distribution is.
Because of the limited source of information, the spray time and spray trajectory are
unknown. However, the atomizer trajectory by CFD simulation in ANSYS FLUENT is a
simple straight trajectory along the middle line of the plate. It stops just when the
atomizer exceeds the simulated area.

5.2 Results of Wall-Film Model

By standard film model, wall-film model, two-way coupling was enabled because the
effect of the discrete phase is included on continues phase. Owing to the high energy
when particles hit the plate, splash was also enabled in wall-film model. To model a
spray atomizer which generates small droplets, breakup and collision of droplet were
considered. The layer was sprayed only once during the CFD simulation.

Results and Comparisons

46

Figure 5.2: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, wall-film

model

b) �=��@ . 0.50 � a) �=��@ . 0.10 �

d) �=��@ . 1.30 � c) �=��@ . 0.90 �

e) �=��@ . 1.70 � f) �=��@ . 2.50 �

Results and Comparisons

47

Figure 5.3: Contours of Wall Film Mass, 600

 Distance, wall-film model

Figure 5.2 shows the particle traces colored by magnitude velocity of particle. The
injector moves straightly from the left side of x axis. When particles reside on the plate,
the velocity of almost all the particles changed to zero. The whole area of the plate was
full of the particles although the area of the spray area which related with the half spay
angle is more narrow than the width of the plate. We can see that many droplets

b) �=��@ . 0.50 � a) �=��@ . 0.10 �

c) �=��@ . 0.90 � d) �=��@ . 1.30 �

e) �=��@ . 1.70 � f) �=��@ . 2.50 �

Results and Comparisons

48

rebound back into the air instead of residing on the plate. However, the results are
different as predicted in practice. The distributions of film mass are showed in Figure

5.3.

Figure 5.4: Histogram of Wall Film Mass, 600

 Distance, wall-film model

Figure 5.4 shows this mass distribution related with the quantity of faces. For example,
in this diagram on each face from ca. 27% (6th bar) of the whole plate was loaded 6 a 10b� to 8 a 10b� kg of the mass.

Figure 5.5: Cell-Based Distribution of Wall Film Mass in Width, 600

 Distance

Results and Comparisons

49

Figure 5.6: Distribution of Wall Film Mass in Width, 400

, 600

 Distance at 21�/� Flow Rate

According to the experimental sample mentioned in Section 5.1, a region with same
area was marked from the sprayed layer in order to capture simulation data. Figure 5.5

shows the distribution of wall film mass in width. Different with the experimental data
(see Figure 5.1), the curve bends downward a little bit at the top middle because the
nozzle is a ring form (see Figure 5.7a). Each white point denotes a control volume. The
distribution of total mass in length direction is showed in Figure 5.6. As the figure shows,
the mass distribution is relatively stable in the condition when the injector works at a
high position. By 400

 and 600

 distance, the average masses of the samples are
both ca. 0.0364g, and the maximum masses of the samples are respectively 0.0638g
and 0.0528g.

5.3 Results of VOF Model

By VOF model, two-way coupling was also enabled with the same reason as wall-film
model. To model a spray atomizer which generates small droplets, breakup and
collision of droplet were considered. The layer was sprayed only once during the CFD
simulation. It runs with a dynamic time step.

Results and Comparisons

50

Figure 5.7: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, VOF Model

a) �=��@ . 0.10 � b) �=��@ . 0.49873 �

c) �=��@ . 0.89826 � d) �=��@ . 1.2956 �

e) �=��@ . 1.6954 � f) �=��@ . 2.0799 �

Results and Comparisons

51

Figure 5.8: Contours of Volume Fraction (PUR-Particles) on the Plate by VOF Model, 600

Distance

b) �=��@ . 0.49873� a) �=��@ . 0.10 �

c) �=��@ . 0.89826 � d) �=��@ . 1.2956 �

e) �=��@ . 1.6954 � f) �=��@ . 2.0799 �

Results and Comparisons

52

Figure 5.9: Contours of Volume Fraction (PUR-Particles) on the cross section of the plate by VOF

Model, 600

 Distance

Figure 5.7 shows the tracking of PUR-particles at different time. The boundary condition
for particles after they hit the plate was not defined in VOF model. With regard to these
particles which are hitting the plate, only mass and momentum of them were collected.
Thus, as figures showed, it is unexplained, that the particles rebounded back into the

f) �=��@ . 2.0799 � e) �=��@ . 1.6954 �

a) �=��@ . 0.10 � b) �=��@ . 0.49873�

c) �=��@ . 0.89826 � d) �=��@ . 1.2956 �

Results and Comparisons

53

air. Compared with wall-film model, less rebounded particles were included, and the
direction of them was single.

Figure 5.8 shows the tracking of volume fraction of PUR on the plate at different time. By
VOF model, not every volume fraction (PUR-phase) in control volume increased over
the flow time. It can be conjectured, that the PUR particles did not resided on the faces
that they hit originally. The condition of the particles hit the faces was unknown. As
Figure 5.8f shows, PUR particles distributed inhomogeneous by the end of the
simulation. Thus, ANSYS FLUENT’s VOF model is not suitable for modeling the layer
structure.

Figure 5.9 shows the volume of PUR on the cross section of the plate in the view of x
direction. Only the cells of the plate were occupied by PUR particles in the beginning
(see Figure 5.9a, b, c). And then PUR-layer turned thicker in some regions. As Figure 5.9f

shows, the red area was full of PUR particles, the volume fraction of PUR was 1.

Figure 5.10: Distribution of PUR Mass in Width by VOF Model

PUR mass on the sprayed plate simulated by VOF model cannot be directly captured
from ANSYS FLUENT. Through Equation 5.1, mass was obtained.

8 . �8�9�8 (5.1)

Figure 5.10 shows the distribution of PUR mass in width at 600

 by VOF model.
Compared with experimental data and wall-film data, the curve of VOF model does not
show up like a parabola. The average and the maximum mass of the samples are
respectively 1.2939g and 6.6825g. With the same flow rate and nearly same flow time,
the average mass by VOF model is about 36 times as large as it by wall-film model.

During the simulation for VOF model, “Floating Point Error” often occurred to stop the
calculation. (See Figure 5.11) In order to optimize the model, the following possibilities
which lead to the error were considered as following:

a) There were particles whose velocities were unrealistically and unexplainably large,
and the positions of these particles were arbitrary (maybe on the plate, maybe
near the plate or in the air).

Results and Comparisons

54

To avoid this problem, these particles were slowed down by using UDFs.
b) There were control volumes whose mixture velocities were unrealistically and

unexplainably large. The mixture velocity of a control volume is calculated with the
velocities of all the phases. The large velocity of continuum (air) may be the reason
of the large mixture velocity as well as the large velocity of discrete phase (PUR-
particle).
Although the problem a) was avoided, “Floating Point Error” remained. Assume
that the large velocities of continuum (air) leaded to the large velocities of PUR-
particles, the mixture velocities of these control volumes were also slowed down.

c) An insufficiently long time step size may not satisfy a large velocity.
Dynamic time step was used to solve the problem.

d) The under-relaxation factors for particles/droplets were reduced. The interphase
exchange of momentum, heat, and mass is under-relaxed during the calculation.
Reduced under-relaxation factors improve the stability of coupled calculations

However, after solving the problems described above, it ran still unstably by VOF
model.

Figure 5.11: Scaled Residuals, 600

 Distance, VOF Model

5.4 Alternative simulation (Eulerian Model)

As Figure 5.7 shows, a large amount of particles rebounded from the plate. In order to study

this unexplainable phenomenon, another multiphase flows model, Eulerian model, was tried.

Results and Comparisons

55

Figure 5.12: Particle Traces Colored by Particle Velocity Magnitude, 600

 Distance, Eulerian

Model

a) �=��@ . 0.10 � b) �=��@ . 0.5�

c) �=��@ . 0.9 � d) �=��@ . 1.3 �

e) �=��@ . 1.7 � f) �=��@ . 2.175 �

Results and Comparisons

56

Figure 5.13: Contours of Volume Fraction (PUR-Particles) on the Plate by Eulerian Model, 600

Distance

Figure 5.12 and Figure 5.13 show the solution of Eulerian model. Compared with VOF
model, the number of rebounded particles was much less. And the plate was occupied
almost everywhere by the particles.

a) �=��@ . 0.10 � b) �=��@ . 0.5�

c) �=��@ . 0.9 � d) �=��@ . 1.3 �

e) �=��@ . 1.7 � f) �=��@ . 2.175 �

Conclusions and Outlooks

57

6. Conclusions and Outlooks

Neither the VOF-simulation nor the Wall-Film simulation leads to accurate results,
when qualitatively compared with the experimental data. Neither the shape of Figure 5.1
nor the position of the maximal value has been achieved by the different models.

One of the major purposes of this study is to optimize the injector model. Because of
the limitation of definition in CFD software, the mobile nozzle can be only setup with a
control cell. Using this injection cell, the trajectory of the spray can be well controlled.
But, the momentum component of extern air cannot be modeled in a cone form
according to the physics. This leads to the phenomenon, that the particles in the middle
of the injection cell are obviously accelerated, while the particles at the border of the
spray cone keep their initial velocity. For the further optimization of spray model, this
problem should be solved.

The other major purpose of this study is to setup a VOF model to track the PUR-film on
the plate. A “wall” boundary condition cannot be simultaneously an “inlet” boundary for
the production of the VOF-film. Using UDFs, the mass source and momentum source
generated by PUR-particles on “wall” can be collected, and with this work, the volume
of fluid can be tracked. However, traces of particles by VOF model and by standard
wall-film model are different. The scattered distribution of particles on the plate in the
VOF simulation can be explained by an insufficient resolution of the film, due to its tinny
thickness. Compared with wall-film model, the average mass of particles residing on
the plate is relatively larger (about 36 times); the difference between maximum mass
and minimum mass is also relatively greater (about 155 times) by VOF model. The
reason for these differences might lie in the high amount of particles flying around
during the simulation with the wall-film model compared to the VOF simulation. For the
optimization of the whole simulation, a routine should written, which avoids the
detachment of a landed particle from the substrate.

In addition, VOF model runs relatively unstable. An extra short time step size may
prevent this error, but it will cost a relatively greater running time. Thus, parallel
processing with more processors (computer nodes) is necessary for VOF model,
especially together with DPM model.

Besides the Eulerian multiphase model should be considered as an alternative to the
VOF model to study the PUR layer structure.

Appendix

58

Appendix

A.1 Experimental and Simulation Data

position in width (mm) mass (g) position in width (mm) mass (g)

-155 0 11 0.231

-143 0.020625 25 0.212025

-130 0.04125 40 0.18975

-119 0.05775 52 0.164175

-104 0.078375 65 0.13695

-91 0.10725 79 0.103125

-79 0.142725 91 0.08085

-65 0.17325 104 0.0528

-52 0.18975 117 0.043725

-40 0.20955 130 0.0231

-26 0.22935 142 0.010725

-13 0.235125 156 0

0 0.236775
Table A.1: Experimental Data of Baytec 600

 Distance at 21�/� Flow Rate

position in width (mm) Mass (g) position in width (mm) Mass (g)

-155 0 11 0.325875

-143 0.00825 25 0.30525

-130 0.0165 40 0.26895

-119 0.02145 52 0.21945

-104 0.027225 65 0.16335

-91 0.040425 79 0.104775

-79 0.073425 91 0.08085

-65 0.1221 104 0.047025

-52 0.182325 117 0.038775

-40 0.245025 130 0.022275

-26 0.284625 142 0.01155

-13 0.325875 156 0

0 0.332475
Table A.2: Experimental Data of Baytec 400

, Distance at 21�/� Flow Rate

Appendix

59

position in width (mm) mass (g) position in width (mm) mass (g)

280.5 9.78E-03 -5.5 4.68E-02

269.5 1.07E-02 -16.5 4.65E-02

258.5 1.26E-02 -27.5 4.83E-02

247.5 1.59E-02 -38.5 4.90E-02

236.5 1.85E-02 -49.5 5.07E-02

225.5 2.08E-02 -60.5 5.17E-02

214.5 2.42E-02 -71.5 5.06E-02

203.5 2.66E-02 -82.5 5.28E-02

192.5 2.95E-02 -93.5 5.14E-02

181.5 3.42E-02 -104.5 4.88E-02

170.5 3.76E-02 -115.5 4.79E-02

159.5 3.84E-02 -126.5 4.55E-02

148.5 4.20E-02 -137.5 4.45E-02

137.5 4.32E-02 -148.5 4.23E-02

126.5 4.20E-02 -159.5 3.93E-02

115.5 4.59E-02 -170.5 3.55E-02

104.5 4.76E-02 -181.5 3.13E-02

93.5 4.76E-02 -192.5 2.89E-02

82.5 4.92E-02 -203.5 2.62E-02

71.5 5.08E-02 -214.5 2.34E-02

60.5 5.15E-02 -225.5 2.08E-02

49.5 4.94E-02 -236.5 1.90E-02

38.5 4.75E-02 -247.5 1.76E-02

27.5 4.72E-02 -258.5 1.48E-02

16.5 4.65E-02 -269.5 1.27E-02

5.5 4.64E-02 -280.5 1.20E-02
Table A.3: Wall Film Mass in Width, 600

 Distance at 21�/� Flow Rate

Appendix

60

position in width (mm) mass (g) position in width (mm) mass (g)

-280.5 0.004214 5.5 0.05167

-269.5 0.005697 16.5 0.05256

-258.5 0.00832 27.5 0.05107

-247.5 0.01185 38.5 0.05085

-236.5 0.01521 49.5 0.05437

-225.5 0.01927 60.5 0.06351

-214.5 0.02261 71.5 0.05232

-203.5 0.02603 82.5 0.06298

-192.5 0.03025 93.5 0.05759

-181.5 0.03223 104.5 0.04694

-170.5 0.03366 115.5 0.04696

-159.5 0.03663 126.5 0.03738

-148.5 0.03965 137.5 0.04129

-137.5 0.04133 148.5 0.03956

-126.5 0.04667 159.5 0.03902

-115.5 0.04311 170.5 0.03347

-104.5 0.04249 181.5 0.02905

-93.5 0.04133 192.5 0.02826

-82.5 0.0502 203.5 0.02673

-71.5 0.06192 214.5 0.02143

-60.5 0.06337 225.5 0.0157

-49.5 0.06384 236.5 0.01289

-38.5 0.05308 247.5 0.01102

-27.5 0.05083 258.5 0.00832

-16.5 0.05218 269.5 0.005987

-5.5 0.05156 280.5 0.004776
Table A.4: Wall Film Mass in Width, 400

, Distance at 21�/� Flow Rate

Appendix

61

position in width (mm) mass (g) position in width (mm) mass (g)

-280.5 0 5.5 0.059804095

-269.5 0 16.5 1.082440024

-258.5 0 27.5 2.115592342

-247.5 0 38.5 1.063116332

-236.5 1.49387E-06 49.5 0.012863889

-225.5 0.69729874 60.5 0.576115425

-214.5 1.389985824 71.5 0.807425408

-203.5 0.736879757 82.5 0.490990814

-192.5 0.099204229 93.5 1.441004592

-181.5 0.505526872 104.5 4.242591131

-170.5 1.109383604 115.5 5.944356642

-159.5 0.926383364 126.5 6.427882596

-148.5 0.197316654 137.5 6.682469704

-137.5 0.045363175 148.5 6.081573144

-126.5 0.035705812 159.5 5.246382494

-115.5 0.047622607 170.5 2.079594265

-104.5 0.945314042 181.5 0.000571034

-93.5 2.830048137 192.5 0.340412231

-82.5 3.612188333 203.5 0.928422104

-71.5 3.392262544 214.5 0.520587705

-60.5 2.005690969 225.5 0.088397501

-49.5 0.468449383 236.5 0

-38.5 0.565331929 247.5 0

-27.5 0.796051093 258.5 0

-16.5 0.519134869 269.5 0

-5.5 0.126833517 280.5 0
Table A.5: PUR Mass in Width by VOF Model, 600

 Distance at 21�/� Flow Rate

Appendix

62

A.2 UDFs for Adjustment of Air Momentum

/** *****************
Name: GU_Velo_correction.c

Target:
Set the air source in injection cell to get the vel ocity.
The air source consists of mass source and momentum source.
The calculation of the velocity during the simulati on in fluent is
cell based.
Due to the combination of two sources, it is hard t o control the
velocity required in the end.
In order to reach the velocity required, this UDF i ncludes an
automatic searching.

 UDFs terms: Definition at:
1. velo_correction Define -> Function Hooks - > Adjust
2. corr_mass_source Cell Zone Conditions-> Mas s
3. corr_momentum_source Cell Zone Conditions-> Z M omentum

Last edit: 21.Febr.2011
*** ****************/
#include "udf.h"
#include "surf.h"
#include "dpm.h"

/**********************************
Get the phase ID
**********************************/
extern int mixture_ID;

/**********************************
UDMI DATA
**********************************/
real Corr_cell = 1.0;

/**********************************
Global Variables
**********************************/
extern real geom[ND_ND];
extern real inj_init[ND_ND];
extern real air_mass_stream;

real e[ND_ND] = {1,1,1};
real mass_stream; /* Mass steam used for mass source and

momentum source */
real velo_momentum; /* Initial velocity used for momentum

source in DEFINE_SOURCE */
real velo_req = 25.0; /* The velocity required for the air source

from the cell in middle */
real velo_delta_1 = 10.0; /* Rough adjustment of velocity with

velo_delta_1 */
real velo_delta_2 = 1.0; /* Fine adjustment of velocity with

velo_delta_2 */
real last_iter = 5.0; /* After 5 iterations, it begins to search

the velo_req */
int iter_delta = 5.0; /* After each 5 iterations, the velocity

adds itself with velo_delta*/
real c_volume; /* Cell volume */

Appendix

63

/** ***************

1. Get the injection cell.
2. Define the air source for the injection cell.
3. Look for the velocity required.
 Increase the velocity for momentum (velo_momentu m)
 with dv(velo_delta) in every iter_delta iteratio ns
 until the velocity of the cell under the marked cell
 in z positive direction (v_z) reaches to the vel ocity required.

*** ***************/
DEFINE_ADJUST(velo_correction,d)
{
 real v_z; /* Cell based velocity of the neighbor of the injec tion

cell in z-positive direction */

 #if !RP_HOST
 real f_x,f_y,f_z; /* Surface area in x,y,z direction*/
 real v_x,v_y; /* Cell based velocity of the neighbor of the

injection cell in x,y direction */
 real c_u,c_v,c_w; /* Three components of the cell based velocity

in each cell */

 real c_centroid[ND_ND]; /* Vector of cell centroid */
 real f_centroid[ND_ND]; /* Vector of face centroid */
 real NV_VEC(A); /* Vector of face area */
 real cell_area = 0; /* Initialing the surface areas of the

cell marked */

 int i = 0; /* Number of the cells marked */
 int n; /* Number of surfaces of the cell in the middle of model */

 Thread *t;
 cell_t c;
 Thread *tf;
 face_t f;

 CX_Cell_Id cx_cell; /* Define the current cell */
 cell_t c_mark = 0; /* Define and initial the marked cell */
 Thread *t_mark = NULL; /* Define and initial the marked thread */

 thread_loop_c(t,d) /* Loop all the cell threads in the mixture

domain */
 {
 begin_c_loop(c,t) /* Loop all cells in all cell thread */
 {
 if(SV_is_point_in_cell(&cx_cell,c,t,inj_init))
 /* If the point x[ND_ND] is in the cell, mark it */
 {
 i++;

 c_mark = RP_CELL(&cx_cell); /* Get the marked cell */

 t_mark = RP_THREAD(&cx_cell); /* Get the cell thread of
this marked cell */

 C_CENTROID(c_centroid,c_mark,t_mark); /* Get the cell
centroid of the marked
cell*/

 C_UDMI(c_mark,t_mark,0) = Corr_cell; /* Store the marked
cell*/

Appendix

64

 c_face_loop(c_mark,t_mark,n) /* Loop all faces on this
marked cell */

 {
 f = C_FACE(c_mark,t_mark,n); /* Get the faces on the

marked cell */
 tf = C_FACE_THREAD(c_mark,t_mark,n); /* Get the face threads

of the marked cell */

 F_AREA(A,f,tf); /* Get the vector of face
area on the marked cell */

 cell_area += NV_MAG(A); /* Calculate the surface
areas of the marked cell */

 F_CENTROID(f_centroid,f,tf); /* Get all the face centroids
of the marked cell */

 /* Get the cell based velocity components of the ne ighboring

cells of the marked cell */
 /* If the face area directs outside of the marked cell,

marked cell is C0.*/
 if (NV_DOT(A,e) > 0) ND_SET(c_u,c_v,c_w,
 C_U(F_C1(f,tf),THREAD_T1(tf)),
 C_V(F_C1(f,tf),THREAD_T1(tf)),
 C_W(F_C1(f,tf),THREAD_T1(tf)));

 /* If the face area directs inside of the marked cell,
marked cell is C1.*/

 else if (NV_DOT(A,e) < 0)
 ND_SET(c_u,c_v,c_w,
 C_U(F_C0(f,tf),THREAD_T0(tf)),
 C_V(F_C0(f,tf),THREAD_T0(tf)),
 C_W(F_C0(f,tf),THREAD_T0(tf)));

 /* Get the face of the marked cell in positive x di rection*/
 if(fabs(A[0]) > 0 && f_centroid[0] > c_centroid[0])
 {
 f_x = NV_MAG(A); /* Get the face area of this face */
 v_x = sqrt(SQR(c_u) + SQR(c_v) + SQR(c_w));
 /* Velocity of positive-x-neighbor cell */
 }
 /* Equal in positive y and z directions */
 else if(fabs(A[1]) > 0 && f_centroid[1] > c_centroid[1])
 {
 f_y = NV_MAG(A);
 v_y = sqrt(SQR(c_u) + SQR(c_v) + SQR(c_w));
 }
 else if(fabs(A[2]) > 0 && f_centroid[2] > c_centroid[2])
 {
 f_z = NV_MAG(A);
 v_z = sqrt(SQR(c_u) + SQR(c_v) + SQR(c_w));
 }
 }

 printf("\n**************************************\n");

 printf(" air source at :[%g, %g, %g]\n",
 inj_init[0],inj_init[1],inj_init[2]);

 printf(" Velocity_momentum: %g, Z-Velocity:%g\n",
 velo_momentum,v_z);
 printf("\n**************************************\n");
 }
 }
 end_c_loop(c,t)
 }

Appendix

65

 #if RP_NODE /* Perform node synchronized actions here Does noth ing

in Serial */
velo_momentum = PRF_GRHIGH1(velo_momentum);
/* send pur_on_wall_time to node-0 */
v_z = PRF_GRHIGH1(v_z);

 #endif /* RP_NODE */

 #endif /* !RP_HOST */

 /* Pass velo_momentum and v_z from node-0 to the Ho st */
 node_to_host_real_2(velo_momentum,v_z); /* Does nothing in

SERIAL*/

 /* Rough Adjustment of velocity */
 if (v_z < (velo_req - 20.0))
 {
 if (N_ITER == last_iter)
 {
 velo_momentum += velo_delta_1;
 last_iter = last_iter +iter_delta;
 }
 }
 /* Fine Adjustment of velocity */
 else if (v_z >=(velo_req - 20.0) && v_z < velo_req)
 {
 if (N_ITER == last_iter)
 {
 velo_momentum += velo_delta_2;
 last_iter = last_iter +iter_delta;
 }
 }

 /* Pass velo_momentum and v_z from host to all the nodes */
 host_to_node_real_2(velo_momentum,v_z); /* Does nothing in SERIAL */
}

Appendix

66

/** ********

Define the mass source of air exists in the marked cell.

*** *******/
DEFINE_SOURCE(corr_mass_source,c,t,dS,eqn)
{
 #if !RP_HOST
 real mass_source;

 mass_stream = air_mass_stream;

if (C_UDMI(c,t,0) == Corr_cell) /* The mass source exists in this
marked cell */

 {
 c_volume = C_VOLUME(c,t); /* Get the volume of the cell */
 mass_source = mass_stream / c_volume; /* Mass source */
 dS[eqn] = 0;/* No dependent variables of the transport equation */
 }

 else mass_source = dS[eqn] = 0;

 return mass_source;
 #endif
}

/** *********

Define the momentum source of air exists in the mar ked cell.

*** *********/
DEFINE_SOURCE(corr_momentum_source,c,t,dS,eqn)
{
 #if !RP_HOST
 real momentum_source;

 mass_stream = air_mass_stream;

 if (C_UDMI(c,t,0) == Corr_cell)
 {
 c_volume = C_VOLUME(c,t);
 momentum_source = mass_stream * velo_momentum / c_volume;
 dS[eqn] = 0;
 }

 else momentum_source = dS[eqn] = 0;

 return momentum_source;
 #endif
}

Appendix

67

A.3 UDFs for Mobile PUR-Air Spray Injection

/** *
Name: GU_move_injection.c

Target:
1. Define the trajectory of the moving injection
2. Define velocity of particles in the spray inject ion.
3. Read the position point of moving injection
 and use it for the source file "GU_air_source.c"

 UDFs terms: Definition at:
1. INJECTION_POS Injections -> Initializati on

Last edit: 21.Ferb.2011
*** /
#include "udf.h"
#include "dpm.h"
#include "surf.h"

/**********************************
Get the phase ID
**********************************/
extern int mixture_ID;

/**********************************
Global Variables
**********************************/
extern real pur_on_wall_time; /* Time when the first particle hits the

wall*/
extern real flow_time; /* Current flow time */

/* Geometry of the Model */
extern real geom[ND_ND];
extern real mesh[ND_ND];

/* Global initial position of injection */
extern real inj_init[ND_ND];

/* Read the position point of moving injection
 and use it for the source file "GU_air_source.c" */
real inj_pos[ND_ND];

real wish_vel = 13; /*Required maximum velocity of the parcel in m/s*/
int alpha = 0; /* variable used to insure a unique (only once)

computation of "K" */
real K = 0; /* linear factor between wish_vel and maximum

ist_vel_betrag */

Appendix

68

/** ******************

Define the moving injection through changing the in itial position of
particles.

*** *****************/
DEFINE_DPM_INJECTION_INIT(INJECTION_POS,I)
{

#if !RP_HOST /* Compile this section for computing
processes only (serial and node) */

 flow_time = CURRENT_TIME; /* Get current flow time */
 int i; /* Item for dimension */

 real v_inj = 0.5; /* Moving speed of injection in m/s */
 real t_tot = geom[0] / v_inj;
 real p_pos_x = 200;

 real inj_vel[ND_ND];

 Particle *p;
 cell_t c;
 Thread *t;
 Domain *d;

 d = Get_Domain(mixture_ID); /* Get the mixture domain */

 /* Adjustment for the velocity of particles at inje ctor*/
 /* Define the magnitude velocity of particles at injector as

wish_vel, and retain the vector of the velocity as default */
 if (alpha ==0)
 {
 real ist_vel[ND_ND]={0.0}; /* Define and initialize the actual

velocity of particles */
 real ist_vel_betrag = 0.0; /* Define and initialize the actual

magnitude velocity of particles */

 loop(p,I->p_init) /* Loop all the particles at injection */
 {
 for(i=0;i<3;i++)
 ist_vel[i] = P_VEL(p)[i]; /* Get the actual velocity of

particles */

 if (NV_MAG(ist_vel)> ist_vel_betrag) /* Search the max. velocity

of particles */
 {
 ist_vel_betrag = NV_MAG(ist_vel); /* Get the actual magnitude

velocity of particles */
 K = wish_vel / ist_vel_betrag; /* Get the linear factor */
 }
 }
 alpha =1;
 }

Appendix

69

 loop(p,I->p_init)
 {
 c = P_CELL(p); /* Cell index of the cell that the particle

is currently in */
 t = P_CELL_THREAD(p); /* Pointer to the thread of the cell that

the particle is currently in */

 /* Define the moving trajectory of the injection */
 /* x-y coordinate is in the middle of the conta in */
 /* It moves along the x-axis at v_inj m/s from the point

inj_pos[ND_ND]. The injection stays at this point u ntil a
particle hits the wall. */

 if(pur_on_wall_time <= flow_time) /* After the first particle hits
the wall */

 {
 /* Define the position of the particles under the i njection */
 P_POS(p)[0] = v_inj * (flow_time - pur_on_wall_time) +

inj_init[0];
 /* Define the position of the particles in the inje ction */
 P_INIT_POS(p)[0] = v_inj*(flow_time - pur_on_wall_time) +

inj_init[0];
 P_INIT_POS(p)[1] = inj_init[1];
 P_INIT_POS(p)[2] = inj_init[2];

 /* Get the position of particles in the injection * /
 for(i=0;i<3;i++)
 inj_pos[i] = P_INIT_POS(p)[i];

 /* Define the velocity of the particles under the injection */
 for(i=0;i<3;i++)
 inj_vel[i] = P_VEL(p)[i];
 for(i=0;i<3;i++)
 P_VEL(p)[i] = K * inj_vel[i];

 if (p_pos_x != P_INIT_POS(p)[0])
 {
 Message("\n*********DEFINE_DPM_INJECTION_INIT**********\n");
 Message("\n At time: %g\n
 Injector moves to: [%g, %g, %g]\n",
 flow_time,inj_pos[0],inj_pos[1],inj_pos[2]);

Message("\n*********DEFINE_DPM_INJECTION_INIT**********\n");
 p_pos_x = P_INIT_POS(p)[0];
 }
 Message("\n velocity of particle: [%g, %g, %g]\n",
 inj_vel[0],inj_vel[1],inj_vel[2]);
 Message("\n velocity of particle after increasing:
 [%g, %g, %g]\n",P_VEL(p)[0],P_VEL(p)[1],P_VEL(p)[2]);
 }

 else /* Before the first particle hits the wall */
 {
 P_POS(p)[0] = inj_init[0];

 P_INIT_POS(p)[0] = inj_init[0];
 P_INIT_POS(p)[1] = inj_init[1];
 P_INIT_POS(p)[2] = inj_init[2];

 for(i=0;i<3;i++)
 inj_pos[i] = P_INIT_POS(p)[i];

Appendix

70

 /* Define the velocity of the particles under the injection */
 for(i=0;i<3;i++)
 inj_vel[i] = P_VEL(p)[i];
 for(i=0;i<3;i++)
 P_VEL(p)[i] = K * inj_vel[i];

 if (p_pos_x != P_INIT_POS(p)[0])
 {
 for(i=0;i<3;i++)
 inj_vel[i] = P_VEL(p)[i];
 Message("\n******DEFINE_DPM_INJECTION_INIT********n");
 Message("\n At time: %g\n
 Injector stays at: [%g, %g, %g]\n",
 flow_time,inj_pos[0],inj_pos[1],inj_pos[2]);
 Message("\n*******DEFINE_DPM_INJECTION_INIT******\n");
 p_pos_x = P_INIT_POS(p)[0];
 }
 Message("\n velocity of particle: [%g, %g, %g]\n",
 inj_vel[0],inj_vel[1],inj_vel[2]);
 Message("\n velocity of particle after increasing:
 [%g, %g, %g]\n",P_VEL(p)[0],P_VEL(p)[1],P_VEL(p)[2]);
 }
 }

 #endif /* !RP_HOST */
}

Appendix

71

A.4 UDFs for DPM Model

/** **************
Name: GU_DPM_VOF.c

Model:
real geom[ND_ND] = {1.5, 0.561, 0.65};
real mesh[ND_ND] = {120, 51, 40};
Target:
1. Set names of user-defined memories (UDMI)
 using udf "on_loading".
2. Get the information of mass and velocity of part icles
 hitting the wall using udf
 "Particle_Infos" and "plot_and_store".
3. With the information from Target 2,
 define the mass and momentum sources of PUR-part icles
 for the VOF Model using UDFs written by DEFINE_S OURCE.

 UDFs terms: Definition at:
1. on_loading automatically loading when compiling UDFs
2. Particle_Infos Boundary Conditions-> wall -> Mixture -> DPM
3. p_mass_source Cell Zone Conditions-> Pha se-2-> Mass
4. p_x_momentum_source Cell Zone Conditions-> Mix ture-> X Momentum
5. p_y_momentum_source Cell Zone Conditions-> Mix ture-> Y Momentum
6. p_z_momentum_source Cell Zone Conditions-> Mix ture-> Z Momentum
7. plot_and_store Define -> Function Hooks - > Execute at End

Last edit: 21.Febr.2011
*** *************/
#include "udf.h"
#include "dpm.h"
#include "sg.h"

/**********************************
Model from Gambit
**********************************/
real geom[ND_ND] = {1.5, 0.561, 0.65};
real mesh[ND_ND] = {120, 51, 40};

/**********************************
Get ID from ANSYS FLUENT
**********************************/
int mixture_ID = 1; /* ID for mixture phase */
int secondary_ID = 3; /* ID for secondary phase */
int wall_ID = 5; /* ID for wall boundary */

/**********************************
Global Variables
**********************************/
/* Global initial position of injection */
real inj_init[ND_ND] = {0.2111, 0, 0.0511}; /* The initial position

of injection */

/* Global variables used by serial, host, node vers ions */
real pur_c_volume; /* Volume of the cell where particles reside */
real pur_f_centroid[ND_ND]; /* Centroid of the face where particles

reside */
real pur_c_centroid[ND_ND]; /* Centroid of the cell where particles

reside */
real curr_ts_size; /* Current time step */

Appendix

72

real flow_time; /* Current flow time */
real pur_on_wall_time = 100.0; /* Assume the time particle hits the

wall is 100. This time is updated
if a particle hits the wall. */

real PUR_cell = 5.0; /* UDMI number of the cell where particles
reside */

real p_vel_max = 25.0; /* The velocity of particles on plate cannot
be greater than p_vel_max m/s */

real p_vel_soll = 0.1;

extern real velo_req;

/**********************
Setting names of UDMI
**********************/
DEFINE_EXECUTE_ON_LOADING(on_loading, libname)
{
 Set_User_Memory_Name(0,"Source_cell");
 Set_User_Memory_Name(1,"Num_Particle(t)");
 Set_User_Memory_Name(2,"Mass_Particle(t)");
 Set_User_Memory_Name(3,"Deltat_mass_Particle");
 Set_User_Memory_Name(4,"Mass_Particle(t-dt)");
 Set_User_Memory_Name(5,"Mass_Stream");
 Set_User_Memory_Name(6,"Impluse_x(t)");
 Set_User_Memory_Name(7,"Impluse_y(t)");
 Set_User_Memory_Name(8,"Impluse_z(t)");
 Set_User_Memory_Name(9,"Deltat_Num_Parcel");
 Set_User_Memory_Name(10,"Num_Parcel(t-dt)");
 Set_User_Memory_Name(11,"ave_Impluse_x(t)");
 Set_User_Memory_Name(12,"Impluse_x(t-dt)");
 Set_User_Memory_Name(13,"ave_Impluse_y(t)");
 Set_User_Memory_Name(14,"Impluse_y(t-dt)");
 Set_User_Memory_Name(15,"ave_Impluse_zx(t)");
 Set_User_Memory_Name(16,"Impluse_z(t-dt)");
 Set_User_Memory_Name(17,"Num_Parcel(t)");
}

Appendix

73

/** *****************
Store the information of the particles on the wall for all the time.
*** *****************/
DEFINE_DPM_BC(Particle_Infos,p,t,f,f_normal,dim)
{
 #if !RP_HOST
 Thread *p_cell_thread; /* Threads of the cells where particles

reside */
 cell_t p_cell; /* Cells where particles reside */
 real p_n; /* Number of particles in a parcel */
 real p_mass; /* Mass of each particle */
 real pur_vel[ND_ND]; /* Velocity of each particle */
 int i; /* vector number*/
 flow_time = CURRENT_TIME; /* Get current flow time */

 /* return cell index in which face "f" is */
 p_cell = F_C0(f,t);
 /* return cell thread index in which face thread "t " is */
 p_cell_thread = THREAD_T0(t);
 /* Get the face centroid from ANSYS FLUENT */
 F_CENTROID(pur_f_centroid,f,t);
 /* Get the number of the particles in a parcel from FLUENT */
 p_n = P_N(p);
 /* Get the mass of the particle from ANSYS FLUENT * /
 p_mass = P_MASS(p);
 /* Get the velocity of the particle from ANSYS FLUE NT */
 for(i=0;i<dim;i++)
 pur_vel[i] = P_VEL(p)[i];

 /* When the particles hit the wall face, mark the c ell,
 which consists this face.*/
 C_UDMI(p_cell,p_cell_thread,0) = PUR_cell;

 /* Store the number of particles hitting this face all the time. */
 C_UDMI(p_cell,p_cell_thread,1) += p_n;

 /**
 Information of particles used for mass source
 ***/
 /* mass of particles hitting the face */
 C_UDMI(p_cell,p_cell_thread,2) += p_n * p_mass;

 /**
 Information of particles used for momentum source
 *** /
 /* Impulse = mass * velocity */
 /* Total impulse of all parcels in x direction in a cell */
 C_UDMI(p_cell,p_cell_thread,6) += p_n * p_mass * pur_vel[0];
 /* Equal in y and z direction */
 C_UDMI(p_cell,p_cell_thread,7) += p_n * p_mass * pur_vel[1];
 C_UDMI(p_cell,p_cell_thread,8) += p_n * p_mass * pur_vel[2];

 /** ****************
 Store the number of parcels hitting on this face all the time.

*** **************/
 C_UDMI(p_cell,p_cell_thread,17) += 1;

 return PATH_ABORT;
 #endif
}

Appendix

74

/** *******************

This function is used only for wall film model, to search the time
when the first
particle is hitting on the wall face.

By VOF model, this time is obtained through functio n "Particle_Infos"
and
"plot_and_store", which is hooked into DPM_BC as us er defined
function.

However, when the wall film model is running, DPM_B C is defined as
"wall film",
so another function which can get the particle_on_w all_time can be
hooked into
another place should be compiled.

DEFINE_DPM_EROSION is hooked for Erosion/Accretion from
Discrete Phase Model dialog box.

*** ******************/
DEFINE_DPM_EROSION(on_wall_time,p,t,f,normal,alpha,Vmag,mdot)
{
 #if !RP_HOST
 Thread *p_cell_thread;
 cell_t p_cell;

 /* return cell index in which face "f" is */
 p_cell = F_C0(f,t);
 /* return cell thread index in which face thread "t" is */
 p_cell_thread = THREAD_T0(t);

/***
 Mark the cell, when there are particles hit the wall face, which

consists this face.
 **/
 C_UDMI(p_cell,p_cell_thread,0) = PUR_cell;

 #endif
}

/** ********

Define the mass source of the particles hitting on the wall

*** ********/
DEFINE_SOURCE(p_mass_source,c,t,dS,eqn)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 real pur_mass_source;

 /* Get the volume of the cell from FLUENT*/
 pur_c_volume = C_VOLUME(c,t);

 /* When the particles hit on the face, define the mass source*/
 if(C_UDMI(c,t,0) == PUR_cell)
 {

Appendix

75

 /* Mass source of the particle in a face */
 pur_mass_source = C_UDMI(c,t,5) / pur_c_volume;
 /* No dependent variables of the transport equa tion */
 dS[eqn] = 0;
 }
 else
 pur_mass_source = dS[eqn] = 0;

 return pur_mass_source;

 #endif /* !RP_HOST */
}

/** ******************

Define the momentum source in x direction aroused
by the particles hitting on the wall

*** *****************/
DEFINE_SOURCE(p_x_momentum_source,c,t,dS,eqn)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 real pur_momentum_source_x;

 pur_c_volume = C_VOLUME(c,t);

 if(C_UDMI(c,t,0) == PUR_cell)
 {
 /* Momentum source of the particle in a face */
 pur_momentum_source_x = C_UDMI(c,t,11)/ pur_c_volume;
 dS[eqn] = 0;
 }
 else
 pur_momentum_source_x = dS[eqn] = 0;

 return pur_momentum_source_x;
 #endif /* !RP_HOST */
}

Appendix

76

/** *******************

Define the momentum source in y direction aroused
by the particles hitting on the wall

*** ******************/
DEFINE_SOURCE(p_y_momentum_source,c,t,dS,eqn)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 real pur_momentum_source_y;

 pur_c_volume = C_VOLUME(c,t);

 if(C_UDMI(c,t,0) == PUR_cell)
 {
 pur_momentum_source_y = C_UDMI(c,t,13)/ pur_c_volume;
 dS[eqn] = 0;
 }
 else
 pur_momentum_source_y = dS[eqn] = 0;

 return pur_momentum_source_y;
 #endif /* !RP_HOST */
}

/** ******************

Define the momentum source in z direction aroused
by the particles hitting on the wall

*** ******************/
DEFINE_SOURCE(p_z_momentum_source,c,t,dS,eqn)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 real pur_momentum_source_z;

 pur_c_volume = C_VOLUME(c,t);

 if(C_UDMI(c,t,0) == PUR_cell)
 {
 pur_momentum_source_z = C_UDMI(c,t,15)/ pur_c_volume;
 dS[eqn] = 0;
 }
 else
 pur_momentum_source_z = dS[eqn] = 0;

 return pur_momentum_source_z;
 #endif /* !RP_HOST */
}

Appendix

77

/** *******************

DEFINE_EXECUTE_AT_END runs after DEFINE_DPM_BC at e ach end of a time
step. In this function, current mass, mass source a nd momentum source
of particles are calculated just after the running of DEFINE_DPM_BC.
And it store the total mass of particles and total impulse of parcels
in current time step, for using in next time step a s previous mass and
previous impulse.

*** ******************/
int counter = 0;
int p_large = 0;
int air_large = 0;

DEFINE_EXECUTE_AT_END(plot_and_store)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 Domain *d;
 Thread *t;
 cell_t c;
 Injection *I;
 Injection *dpm_injections = Get_dpm_injections();
 Particle *p;

 d = Get_Domain(mixture_ID); /* Get mixture domain */

 int dim = 3;
 int i;
 int only_one = 0;
 real wall_vel_max = 0.0;
 real wall_vel = 0.0;
 real mixture_vel = 0.0;
 curr_ts_size = CURRENT_TIMESTEP; /* Get current time step */
 flow_time = CURRENT_TIME; /* Get current flow time */

 thread_loop_c(t,d)
 {
 begin_c_loop_int(c,t)
 {
 if(C_UDMI(c,t,0) == PUR_cell)
 {
 if (counter == 0)
 {
 pur_on_wall_time = flow_time;
 counter = 1;
 }
 if (only_one == 0)
 {
 Message("\n IN RP_NODE-%d, from time: %g,
 Particles are hitting the wall.\n",
 myid,pur_on_wall_time);
 only_one = 1;
 }

 /**************************************
 Begin running for mass source
 **************************************/
 /* mass_deltat = mass(t) -mass(t-t-deltat) */
 C_UDMI(c,t,3) = C_UDMI(c,t,2) - C_UDMI(c,t,4);
 /* mass stream = mass_deltat / t_deltat */

Appendix

78

 C_UDMI(c,t,5) = C_UDMI(c,t,3) / curr_ts_size;

 /* Store the total mass of particles in current tim e step,
 for using in next time step as previous mass. */
 C_UDMI(c,t,4) = C_UDMI(c,t,2);

 /**************************************
 Begin running for momentum source
 **************************************/
 /* Begin running for x momentum source*/
 /* impulse stream (dI) in x direction of a cell =

current total impulse of all particles in current t ime step
/ current number of particles */

 C_UDMI(c,t,11) = (C_UDMI(c,t,6) - C_UDMI(c,t,12))
 / curr_ts_size;

 /* Store the total impulse of parcels in current t ime step,
 for using in next time step as previous impul se.*/
 C_UDMI(c,t,12) = C_UDMI(c,t,6);

 /* Equal in y and z direction */
 /* Begin running for y momentum source*/
 C_UDMI(c,t,13) = (C_UDMI(c,t,7) - C_UDMI(c,t,14))
 / curr_ts_size;
 C_UDMI(c,t,14) = C_UDMI(c,t,7);

 /* Begin running for z momentum source*/
 C_UDMI(c,t,15) = (C_UDMI(c,t,8) - C_UDMI(c,t,16))
 / curr_ts_size;
 C_UDMI(c,t,16) = C_UDMI(c,t,8);
 }

 mixture_vel = sqrt(SQR(C_U(c,t))
 + SQR(C_V(c,t)) + SQR(C_W(c,t)));

/** ***
adjust the cells whose velocity is too large to
lead to the convergence difficulties.
*** ***/

 if (mixture_vel > velo_req)
 {
 C_CENTROID(pur_c_centroid,c,t);
 air_large++;
 C_U(c,t) = 0;
 C_V(c,t) = 0;
 C_W(c,t) = 1;
 Message("\n***Adjust the air with large velocity***\n");
 Message("\n The mixture_vel: %g.
 After changing: %g, position:[%g, %g, %g]",

mixture_vel,
sqrt(SQR(C_U(c,t))+SQR(C_V(c,t))+SQR(C_W(c,t))),
pur_c_centroid[0],
pur_c_centroid[1], pur_c_centroid[2]);

 Message("\n***Adjust the air with large velocity***\n");
 }
 }
 end_c_loop_int(c,t)
 }

Appendix

79

 /** **
 Adjust the particles whose velocity is too large to
 lead to the convergence difficulties.
 *** ***/
 loop(I,dpm_injections)/* Loop all particles in the mixture domain */
 {
 loop(p,I->p)
 {
 real pur_vel_mag;
 pur_vel_mag = NV_MAG(P_VEL(p));
 c = P_CELL(p);
 t = P_CELL_THREAD(p);
 if (pur_vel_mag > p_vel_max)
 {
 p_large++;
 C_CENTROID(pur_c_centroid,c,t);
 for(i=0;i<dim;i++)
 P_VEL(p)[i] = p_vel_soll;
 Message("\n***Adjust the particle with large velocity***\n");
 Message("\n The pur_vel_mag: %g.
 After changing: %g, position:[%g, %g, %g]",
 pur_vel_mag, (NV_MAG(P_VEL(p))),
 pur_c_centroid[0],pur_c_centroid[1],
 pur_c_centroid[2]);
 Message("\n***Adjust the particle with large velocity***\n");
 }
 }
 }

 #if RP_NODE /* Perform node synchronized actions here Does noth ing

in Serial */
 /* send pur_on_wall_time to node-0 */
 pur_on_wall_time = PRF_GRLOW1(pur_on_wall_time);

 air_large = PRF_GRSUM1(air_large);
 p_large = PRF_GRSUM1(p_large);

 Message("\n The mixture velocity of %d cells,
 the velocity of %d particles are too large.",
 air_large,p_large);

 #endif /* RP_NODE */

 #endif /* !RP_HOST */

 /* Pass the pur_on_wall_time from node-0 to the Hos t */
 node_to_host_real_1(pur_on_wall_time);
 /* Pass the pur_on_wall_time from host to all the n odes */
 host_to_node_real_1(pur_on_wall_time);
}

Appendix

80

A.5 UDFs for Air Source

/***
Name: GU_air_source.c

Target:
This Source file is used to define the air source f or spray injection.
It includes mass source and momentum source of air.

 UDFs terms: Definition at:
1. air_mass_source Cell Zone Conditions-> Pha se-1-> Mass
2. air_momentum_source Cell Zone Conditions-> Mix ture-> Z Momentum

Last edit: 21.Feb.2011
*** *************/
#include "udf.h"
#include "dpm.h"

/*******************************
Global Variables
*******************************/
real air_c_centroid[ND_ND]; /* Centroid of the injection cell */
real air_velo_momentum = 0.0;
real air_mass_stream = 6.125e-3; /* Mass steam used for mass source

and momentum source, in kg/s */
real air_c_volume; /* Volume of the injection cell */
extern real inj_pos[ND_ND];
extern real velo_momentum;

Appendix

81

/** ********

Define the mass source of air exists in the marked cell.

*** *******/
DEFINE_SOURCE(air_mass_source,c,t,dS,eqn)
{
 #if !RP_HOST /* Compile this section for computing processes onl y
 (serial and node) */
 real air_mass_source;

 CX_Cell_Id cx_cell; /* Define the current cell */
 cell_t c_mark = 0; /* Define and initial the marked cell */
 Thread *t_mark = NULL; /* Define and initial the marked thread */

 if (inj_pos[0] != 0.) /* Excludes this variables as 0.0
 in the other computer n ode or host */
 {
 if(SV_is_point_in_cell(&cx_cell,c,t,inj_pos))
 /* If the injection point in this cell */
 {
 c_mark = RP_CELL(&cx_cell); /* Get the marked cell */
 t_mark = RP_THREAD(&cx_cell); /* Get the thread of this

marked cell */
 C_CENTROID(air_c_centroid,c_mark,t_mark); /* Get the cell

centroid of the
marked cell*/

 air_c_volume = C_VOLUME(c_mark,t_mark); /* Get the volume of
the cell from ANSYS
FLUENT*/

 air_mass_source = air_mass_stream / air_c_volume; /* Mass

source */
 dS[eqn] = 0; /* No dependent variables of

the transport equation */

 Message("\n****************air source*****************\n");
 Message("\n air inj_pos: [%g, %g, %g]\n",
 inj_pos[0],inj_pos[1],inj_pos[2]);
 Message("\n air source centroid: [%g, %g, %g]\n",
 air_c_centroid[0],air_c_centroid[1],air_c_centroid[2]);
 Message("\n****************air source*****************\n");
 }
 }
 else air_mass_source = dS[eqn] = 0;

 return air_mass_source;

 #endif /* !RP_HOST */
}

Appendix

82

/** *********

Define the momentum source of air exists in the mar ked cell.

*** *********/
DEFINE_SOURCE(air_momentum_source,c,t,dS,eqn)
{
 #if !RP_HOST
 real air_momentum_source;

 air_velo_momentum = RP_Get_Real("air/velo_momentum");
 /* initial velocity used for momentum source in DEF INE_SOURCE */
 /* To set up this user Scheme variable in cortex type */
 /* (rp-var-define ' air/velo_momentum 1 ' real #f) */
 /* After set up you can change it to another vari able: */
 /* (rpsetvar ' air/velo_momentum 34) */

 CX_Cell_Id cx_cell;
 cell_t c_mark = 0;
 Thread *t_mark = NULL;

 if (inj_pos[0] != 0.)
 {
 if(SV_is_point_in_cell(&cx_cell,c,t,inj_pos))
 {
 c_mark = RP_CELL(&cx_cell);
 t_mark = RP_THREAD(&cx_cell);
 air_c_volume = C_VOLUME(c_mark,t_mark);

 air_momentum_source = air_mass_stream * air_velo_momentum
 / air_c_volume;
 dS[eqn] = 0;
 }
 }
 else air_momentum_source = dS[eqn] = 0;

 return air_momentum_source;

 #endif /* !RP_HOST */
}

Bibliography

83

Bibliography

[1] ANSYS FLUENT 12.0 Theory Guide, ANSYS, Inc., April, 2009.

[2] ANSYS FLUENT 12.0 User’s Guide, ANSYS, Inc., April, 2009.

[3] D. W. Stanton and C. J. Rutland. Modeling Fuel Film Formation and Wall Interaction in
Diesel Engines. SAE Paper 960628, 1996.

[4] P. J. O’Rourke and A. A. Amsden. A Spray/Wall Interaction Submodel for the KIVA-3
Wall Film Model. SAE Paper 2000-01-0271, 2000.

[5] P. J. O’Rourke and A. A. Amsden. A Particle Numerical Model for Wall Film Dynamics
in Port-Fuel Injected Engines. SAE Paper 961961, 1996.

[6] Modeling Multiphase Flows, Introductory FLUENT Training, ANSYS Inc, 2008.

[7] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for the Dynamics of Free
Boundaries. J. Comput. Phys., 39:201–225, 1981.

[8] D. L. Youngs. Time-Dependent Multi-Material Flow with Large Fluid Distortion. In K.
W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics. Academic
Press, 1982.

[9] O. Ubbink. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. PhD
thesis, Imperial College of Science, Technology and Medicine, London, England, 1997.

[10] ANSYS FLUENT 12.0 UDF Manual, ANSYS, Inc., April, 2009.

[11] FLORIAN HELPA, Dipolom Thsis, HENNECKE GMBH, 2006.

[12] Gambit 2.4, Modeling Guide, Volume 2, Fluent, Inc., May, 2007.

[13] ANSYS FLUENT 12.0 Tutorial Guide, ANSYS, Inc., April, 2009.

[14] Practices for the VOF Model, On-line FLUENT Training, ANSYS, Inc., 2006.

[15] Volume Of Fluid Model, Advanced Multiphase Modeling Course, ANSYS, Inc., 2007.

[16] Genong Li, Modeling Spray Behavior: Tools and Applications, Prepared for Fluent
UGM2003.

