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ABSTRACT

The dielectric properties of materials plays an important role in many fields, these prop-

erties can be described by the Cole-Cole parameters. In this thesis an automated method

for fitting of the Cole-Cole model to relative permittivity spectrum has been developed.

Two different iterative estimation techniques were implemented and analyzed based on

their performance. The implemented techniques were the Levenberg-Marquardt method

and the variable projection method.

One of the main difficulties with implementing an automated estimation method is the

need for good initial values. The variable projection method factorizes the Cole-Cole

equation into a linear and non-linear part. By doing this the problem can be reduced

down from a five dimensional problem into a problem only depending on the two non-

linear parameters. The reduction in dimensionality makes it viable to find initial values

by performing a grid search.

A Monte-Carlo simulation was part in the validation and comparison of the methods.

The result from this was that the variable projection method was more time consuming

but were able to obtained tighter uncertainty bounds for all of the parameters and a

smaller mean square error for the fitted curves.

The methods were applied to a data set containing measurements of the relative permit-

tivity of 15 crude oils. The result from this was consistent with that of the Monte-Carlo

simulation. The variable projection method obtained better fitting curves and smaller

mean square error for all oils.
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Söderkvist for their support and encouragement throughout the project. I am also very

thankful to Kjetil Folgerø and Christian Michelsen Research AS for providing the mea-

surement data and valuable feedback.

Finally, a special thanks to my family for their encouragement and support during

these five years.

v





CONTENTS

Chapter 1 – Introduction 1

1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work/Literature study . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Frequently used variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 – Theory 7

2.1 Permittivity and dielectric materials . . . . . . . . . . . . . . . . . . . . . 7

2.2 The method of least squares . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The Levenberg-Marquardt algorithm . . . . . . . . . . . . . . . . . . . . 15

2.5 The variable projection method . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 – Numerical implementation 21

3.1 Calculation of the Jacobian matrix . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 The Jacobian matrix for the Levenberg-Marquardt method . . . . 21

3.1.2 The Jacobian matrix for the variable projection method . . . . . 22

3.2 The initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Initial guess for the Levenberg-Marquardt method . . . . . . . . . 25

3.2.2 Initial guess for the variable projection method . . . . . . . . . . 26

3.3 Convergence criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4 – Comparison between the two methods 29

4.1 Validation of the two estimation techniques . . . . . . . . . . . . . . . . . 29

4.2 Applying the models to real measurement data . . . . . . . . . . . . . . . 34

4.2.1 The measurement data . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 5 – Discussion and conclusions 39

Chapter 6 – Future work 41

Appendix A – Cole-Cole model fitted to measured relative permittiv-

ity spectrum of crude oils 43

A.1 Oil 1S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



A.2 Oil 2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Oil 3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.4 Oil 4S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.5 Oil 5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.6 Oil 6B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.7 Oil 7S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.8 Oil 10S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.9 Oil 11B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.10 Oil 12S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.11 Oil 13B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.12 Oil 15B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.13 Oil 16S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.14 Oil 17S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.15 Oil 18B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



CHAPTER 1

Introduction

The Cole-Cole equation [1], is a relaxation model often used to model relative permit-

tivity, εr. The model parameters describe dielectric properties that, in combination with

other metrics, are used when characterizing crude oils, [2]. The measured relative per-

mittivity is a complex valued quantity that is dependent on the (angular) frequency, ω

[rad/s]. Current research aims at developing methods for automatic measurement of the

dielectric parameters, using a wide range of frequencies. Fitting the Cole-Cole model to

the measured relative permittivity spectrum is done by adjusting the unknown param-

eters. Since the size of the Cole-Cole parameters varies by several orders of magnitude

the estimation problem is ill-conditioned. Hence, the parameter estimation is sensitive

to experimental noise. In order to assure decent to global minimum good initial guesses

of the parameters needs to be available. Furthermore, in order for the method to be of

practical use in an online setup it has to be automated, robust and reasonably fast.

1.1 Goal
The primary objective for this thesis is to:

• Develop and implement a rapid and robust estimation technique for fitting of Cole-

Cole models to relative permittivity measurements.

• The developed algorithm should be fully automated, i.e. no manual adjustments

or initialization sequences should be required.
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2 Introduction

1.2 Related work/Literature study
The Cole-Cole model [1], is a equation used to describe the dielectric relaxation in dif-

ferent materials. The model is used in a wide area of fields, most notably in the field

of biology, where it is used for characterizing the electrochemical properties of biological

tissues and biochemical materials [3], and geology, where the method of spectral induced

polarization is widely used in geophysical surveys and the interpretation of the results

are often based on the Cole-Cole model [4],[5],[6]. In all of those cases it is used in order

to describe the impedance or permittivity in dielectric materials.

Similarly to other fields, dielectric properties are used in the oil industry where they, in

combination with other metrics, are used in the quality control and characterization of

crude oils, [2]. They are also used in several Multiphase Flow Metering systems [7], which

are used for online monitoring of the flow rates of gas, water and oil in the pipelines.

Since the introduction and spread of the Cole-Cole model different techniques have

been developed for estimating the dielectric parameters.

A estimation technique based on least absolute deviation (LAD) was developed, [8],

for extraction of the Cole-Cole parameters.

But commonly the estimation problem is treated as a least squares problem and solved

by using iterative Gauss-Newton-based schemes, [9], [10]. The damped least squares

algorithm developed by Levenberg, [11], and Marquardt, [12], called the Levenberg-

Marquardt algorithm is a Gauss-Newton base algorithm that uses a trust region strategy.

It is more robust than the traditional Gauss-Newton algorithm, but has similar to other

iterative techniques it is dependant on good initial guesses in order to assure decent to

the global minima. Difficulties with these approaches.

Since the estimation results strongly depend on the choice of starting values a method

for finding initial values to these algorithms is important. A method where purposed in

[13] which gave the suggestion that a Markov-chain Monte-Carlo based method can be

used first to obtain the medians of unknown parameters by starting from an arbitrary

set of initial values. The median could then be used as a initial guess.

The Cole-Cole equation can be separated in to two parts that depends linearly and

nonlinearly on the parameters, respectively. Golub and Pereyra [14] developed a Gauss-

Newton algorithm for solving separable nonlinear least squares problem. Borges later

extended the algorithm into a full-Newton algorithm [15]. The advantage of separable

least squares problem approach is that it allows the problem to be reduced to only depend

on the nonlinear parameter which will increase the robustness.
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1.3 Thesis structure
The outline of this thesis will be as follows: Chapter 2 contain the theoretical framework

of the thesis. The chapter begins with giving an introduction to permittivity and the

Cole-Cole model. This is followed by derivation of the Levenberg-Marquardt algorithm

and the variable projection method. Chapter 3 contain some of the key aspects of the

numerical implementation of the methods. The result of the validation and comparison

of the methods can be found in Chapter 4. In the last two chapters the results are

discussed and recommendations for future improvements to the algorithms are provided.



4 Introduction

1.4 Frequently used variables

a - The linear model parameters.

A - The model matrix.

b - The non-linear model parameters.

D - The electric displacement field.

D0 - The amplitude of the electric displacement field.

E - The electric field.

E0 - The amplitude of the electric field.

f - The model function.

g - The gradient.

h - The search direction.

H - The Hessian matrix.

I - The identity matrix.

j - The imaginary unit.

J - The Jacobian matrix.

k - Iteration index.

m - Number of data points.

n - Number of parameters.

p - The model parameters.

p0 - The initial guess of the model parameters.

P d - The polarization density.

P - The projection matrix. Projects vectors onto the range of A.

P⊥ - The projection matrix. Projects vectors onto the null space of AT .

r - The residual, i.e. the difference between the measure data and the model.

S - The sum of the square residual, i.e. the cost-function.

t - Time.

x - Independent variable of the model function, e.g. frequency or time.

X - A Matrix of linear equations, with more equations than unknown coefficients.

y - The measure data.

α - The distribution factor.

γ - The step length.

∆ - The radius of the trust-region.

ε - The permittivity.

ε0 - The permittivity in vacuum.

εr - The Relative permittivity.

εs - The static permittivity.

ε∞ - The high-frequency permittivity.

λ - The damping parameter.

ρ - The gain ratio.

σ - The conductivity.
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τ - The relaxation time.

φ - The quadratic model function.

ω - The angular frequency.

T - Matrix transpose.
† - The Moore-Penrose generalized inverse.
∗ - Indicates the solution to an equation.

∇ - The Nabla operator.
⊥ - Denotes projection to an orthogonal subspace.





CHAPTER 2

Theory

This section will give the reader an introduction to the theoretical framework used in

this thesis. A introduction of permittivity, [16, ch. 5], and the Cole-Cole model, [1], will

be presented followed by theory regarding techniques and methods used to perform the

curve fitting, [17, 18]. The main focus will lay on two different curve fitting techniques,

the Levenberg-Marquardt method, [11, 12], and the Variable projection method [14].

2.1 Permittivity and dielectric materials

A dielectric medium is an electrical insulator, a material whose internal electrical charges

do not flow freely and that can be polarized when an electric field is applied. Absolute

permittivity is a measure of how an electric field affects and is affected by a dielectric

medium. In the simple case the dielectric can be reduced down to an electric dipole,

a molecule or atom where the positive and negative electric charges are separated by a

small distance, in Figure 2.1 a schematic of a hydrogen fluoride molecule is shown.

Figure 2.1: Schematic description of an electric dipole, in this case a hydrogen fluoride

molecule. A separation of charge is present with negative charge to the right (red shade),

and positive charge to the left (blue shade).

7



8 Theory

If an electric field were to be applied to a dielectric, the electric charges in the material

would shift from their average equilibrium position causing dielectric polarization. An

easy way to visualize this is by using the classical approach to the dielectric model. That

is, each material is made up of atoms and each atom has a positive charge at its core.

The positive charge is surrounded by a negatively charged cloud consisting of electrons.

By applying an electric field the negatively charged cloud will be temporarily distorted

as long as the field is applied, see Figure 2.2.

Figure 2.2: Schematic description of the interaction between an applied electric field and

an atom.

The Electrical dipole momentum, represented by M in Figure 2.2, is a measure of

the systems overall polarity, i.e. the separation of the positive (+q) and negative (−q)
electrical charges. The applied electric field is represented by E. It is the relationship

between the electrical dipole moment and the electric field that is responsible for the

behavior of the dielectric. If the electric field is removed the atom will return to its

original state, however a momentary lag will by percent due to the delay in molecular

polarization with respect to a changing electric field in a dielectric medium, this lag is

call relaxation time. If a dipole, see Figure 2.1, is placed in an electric field the dielectric

polarization will cause the positive and negative charges to rotate and align with the

field, see Figure 2.3.
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Figure 2.3: Schematic of the polarization effects when an electric field is applied to a

dipole.

Similarly the same thing will happen when considering a material consisting of more

than one single dipole.

Figure 2.4: Schematic of the polarization effects when an electric field is applied to a

dielectric.

The shift of positive charges will be towards the field and the negative charges will

shift in the opposite direction. This shift of the charged particles will also create an

internal electric field that reduces the overall field within the dielectric. The dielectric

medium both affect and is affected by the electric field and a measure of these affects is

the absolute permittivity.

As shown, the presence of an electric field in a dielectric material causes the bound

charges in the material to slightly separate, see Figure 2.2. The electric displacement

field, D, describes how the presence of an electric field, E, affects the orientation of the

electric charges and is defined as

D ≡ ε0E + Pd, (2.1)

where Pd is the polarization density, an entity that describes the induced dipole moment

in the material. The constant ε0 is the permittivity in vacuum and is defined as
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ε0
def
=

1

c20µ0

≈ 8.854 · 10−12 [F/m], (2.2)

where c0 is the speed of light in vacuum and µ0 is the permeability in vacuum, i.e.

the ability of the material to support the formation of a magnetic field within itself.

In a dielectric that is linear, isotropic, nondispersive, and homogeneous, and respond

instantaneous to a change in the electric field, the polarization density depends linearly

on the electric field,

Pd = ε0χE. (2.3)

Here χ is a dimensionless constant called electric susceptibility and indicates the di-

electrics degree of polarization in response to an applied electric field. The electric sus-

ceptibility is directly related to the relative permittivity, εr = ε/ε0, by

χ = εr − 1 =
ε

ε0
− 1. (2.4)

Hence, the electric displacement field can be expressed as

D = ε0E + Pd = ε0E + ε0χE = ε0E (1 + χ) = ε0E

(
1 +

ε

ε0
− 1

)
= εE. (2.5)

In dispersive dielectric mediums the polarization of the charged particles, due to an

applied electric field, cannot happen immediately. Hence the relation between P d and E

is dynamic. If an arbitrary electric field is applied at time t = 0, the polarization density

can be expressed as a superposition of the effects of E(t′) for all t′ ≤ t. That is

Pd(t) = ε0

t∫
−∞

χ(t− t′)E(t′)dt′. (2.6)

The polarization density is time dependent and obtained by calculating the convolution

of the impulse response susceptibility and the electric field. The convolution theorem,

[16, p.1129], makes it possible to move a convolution in time domain to a point wise

product of Fourier transforms in frequency domain it is therefore convenient to take the

Fourier transform and write the function as a function of frequency as.

Pd(ω) = ε0χ(ω)E(ω), (2.7)

where ω in this case is the angular frequency. Since the susceptibility, χ, now is fre-

quency dependent, the permittivity will also be frequency dependent, see (2.4). Usually

permittivity is treated as frequency dependent since the response of materials to electric

fields in general depend on the frequency of the applied field, an exception being vacuum

permittivity which is a constant.

This frequency dependence arrive from the fact that the polarization of the material

does not respond immediately to the applied electric field, the response to the field
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most be casual. This causality can be represented by a phase difference. Since complex

numbers allow specification of magnitude and phase, the permittivity is usually treated

as a complex function dependent on angular frequency. This allows permittivity to be

defined as

D0e
−jωt = ε̂(ω)E0e

−jωt, (2.8)

where D0 and E0 are the amplitudes of the displacement and electric fields, respectively

and j is the imaginary unit, j2 = −1.

Since the permittivity is represented by a complex function, it is natural to separate

the real and imaginary part as

ε̂(ω) = ε′(ω) + jε′′(ω), (2.9)

where the real part, ε′(ω), is related to the energy stored within the medium and the

imaginary part, ε′′(ω), is related to the loss of energy within the medium.

In some mediums, often called lossy mediums, a significant amount of the energy is

absorbed. The reason for this is that the medium have free electric charges and an

associated electric current density, Jd, that has to be taken into account. By including

Jd along with the displacement current density, iωD, the total current density is given

by

J tot = jωD + Jd. (2.10)

For dielectric mediums with conductivity σ and linear conductive and dielectric proper-

ties, i.e. D = εE, the electrical current density is proportional to the electric field

Jd = σE, (2.11)

which is a form of Ohm’s law, [16, p.758]. Combining (2.10) with (2.11) gives

J tot = jωD + σE = jω(ε+
σ

jω
)E. (2.12)

That is, if the medium is lossy the extra term σ
jω

needs to be taken into account. It

should be noted that the term varies inversely with frequency and hence the contribution

of the conductive component decreases as the frequency increases.

The electromagnetic energy absorbed by dielectrics does in general depend on a few

different mechanisms which in turn affect shape of the permittivity spectrum. There are

resonance effects that can arise from the vibration or rotation of the electrons, atoms

or ions. These can be observed in the area around their absorption frequencies. There

are also relaxation effects. The field changes slowly at low-frequencies and this allows

the dipoles to reach equilibrium before the field has a measurable change. At higher

frequencies and due to the viscosity of the medium, the dipoles cannot always follow

the changes in the allied field and an energy loss will occur due to the absorption of the
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fields energy. For ideal dipoles the dielectric relaxation can be described by the Debye

relaxation model, [19].

The Debye equation is used to describe the relaxation response of a group of ideal

noninteracting dipoles to an applied altering electric field. The Debye relaxation equation

given below describes the complex relative permittivity of the medium as a function of

the frequency, ω, of the applied electric field

ε̂(ω) = ε∞ +
εs − ε∞
1 + jωτ

, (2.13)

where ω is the angular frequency, εs = lim
ω→0

ε̂(ω) is the static permittivity, ε∞ = lim
ω→∞

ε̂(ω)

is the high-frequency permittivity and τ is the relaxation time of the dipole.

In 1941 the brothers Kenneth and Robert Cole developed a variant of the Debye equa-

tion. It is

ε̂(ω) = ε∞ +
εs − ε∞

1 + (jωτ)1−α
+ j

σ

ωε0
, (2.14)

which is called the Cole-Cole equation, [1]. The last term in 2.14 is added in the case

of a lossy medium. The main differences between the models is that the Cole-Cole

model uses a relaxation time distribution and that the parameter τ here is the central

relaxation time. The model includes an exponent 1 − α, which describes the broadness

of the relaxation time distribution. It is bounded by 0 ≤ α ≤ 1. When the exponent

becomes smaller the relaxation time distribution becomes broader. This means that

the transition between the low- and the high-frequency values becomes wider, and the

peak on the imaginary part of the spectrum becomes wider. The Cole-Cole model can

be viewed as a superposition of multiple Debye models. The central relaxation time

is an inverse of the frequency corresponding to peak position on the imaginary part of

spectrum.

It should be noted that the model assumes that the dielectric dispersion curve is sym-

metric and that both the Debye and the Cole-Cole equation given here describes the

complex relative permittivity, εr = ε/ε0. The models are based on relative permittivity

because it is usually what is measured.

Measurements of the relative permittivity can be obtained by measuring the capaci-

tance between two plates separated by a distance l. By first measuring the capacitance

with vacuum in between the plates, C0, and then measure the capacitance with the di-

electric in between the plates, Cl. The quota between these two measurements will be

the same as the quota between the absolute permittivity and the permittivity in vacuum,

that is, the relative permittivity.

Cl
C0

=
ε

ε0
= εr. (2.15)
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2.2 The method of least squares

When fitting a model to data points a standard approach is the method of least squares

[17, ch.10]. This method finds an approximate solution to a over determined system and

does so by finding the unknown parameters that minimizes the sum of squared errors.

Least squares can fall under two categories

• Linear least squares,

• Nonlinear least squares,

depending on whether the model is linear or nonlinear in unknown parameters. For

both the cases the overall objective of the least squares method is to find the unknown

parameters p so that the model f(p;x), where x is an independent variable, best fit the

observed data y in a least square sense. Here it will be assumed that x = [x1, ..., xm]

and y = [y1, ..., ym] are vectors. The vector p = [p1, ..., pn], contains the adjustable

parameters and the subscripts n and m satisfy n ≤ m.

As stated above the least squares method assumes that the best fit of the model to the

data is found when the sum,

S(p) =
1

2

m∑
i=1

ri(p)2 =
1

2
||r(p)||22, (2.16)

of the squared residuals is minimized. Here || · || is the Euclidean norm and the residual,

ri(p) = f(p;xi)−yi, is the difference between the model at the points xi and the measured

spectrum. It is clear that both S and r are functions of p although from now on we will

suppress that in the notation for the sake of clarity.

The minimum of the sum S in (2.16) is found when the gradient vector is zero, if it

is not zero then there is a direction in which we can move to minimize it further. By

differentiating S with respect to the unknown parameters p and setting the result to

zero, the minimum of S can be found.

Linear least squares, [17, ch.10.2], is a least squares method used for fitting data to a

model which is linear in the unknown parameters. If the function, f(p;x), is linear then

the residual vector can be written as r = Xp− y, where X is a m× n matrix of linear

equations. Hence, the linear least squares problem is

min
p

1

2
||Xp− y||. (2.17)

The minimizer, p∗, of (2.17) must satisfy(
XTX

)
p∗ = XTy, (2.18)

which are known as the normal equations of (2.17).
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Nonlinear least squares, [17, ch.10.3], fits data to models that are nonlinear in the

unknown parameters. But since the model and hence also the residual is nonlinear the

derivatives are functions of both the independent variable, x, and the parameters, p.

This means that usually there is no closed solution to the gradient equations,

∂S

∂pj
= 0. (2.19)

A common method used to solve nonlinear least squares problem is the Gauss-Newton

method. The method can, given an initial guess, find the parameters by successive

iterations. At each iteration the estimated parameters will be refined, accordingly

p(k+1) = p(k) + h. (2.20)

Here k represents the iteration number and h is the refinement of the parameter, i.e.

the parameter change between the iteration k and k + 1. From now on a quantity with

superscript k or k + 1 will denote that it is evaluated at p(k) or p(k+1) respectively.

The method will linearize the residual at each iteration by approximation to a first-

order Taylor series expansion, [20, pp.52-53], about p(k). That is

r(k+1) ≈ r(k) + J (k)h. (2.21)

Here J (k) is a m × n matrix of all the first order partial derivatives of r(k), known as

the Jacobian matrix. Note that since the matrix depends on p(k) it will change from one

iteration to another. Since the residual is linearized we have the following linear least

squares problem

min
h

1

2
||J (k)h + r(k)||. (2.22)

The minimizer of (2.22) satisfies

J (k)TJ (k)h = −J (k)Tr(k). (2.23)

Using the Gauss-Newton algorithm the sum S in (2.16) may not decrease at each itera-

tion. Since the search direction h is a descent direction, it should be decreasing at each

iteration, as long as S(p(k)) not is a stationary point. If a divergence would occur, a

solution would be to only use a fraction, γ, of the increment vector, h in the updating

formula, i.e.

p(k+1) = p(k) + γh. (2.24)

The fraction γ, 0 < γ < 1, is a scalar known as the step-length. It is useful to include

it in the formula since the increment vector might be pointing in the right direction but

it is too long, so by only go a part of the way will decrease S. An optimum value of the

step-length γ can be found by using a line search algorithm. There are different methods

that can be used for this, Wolfe conditions, [21], are common.
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2.3 Method

Since the Cole-Cole equation, (2.14), is nonlinear in some of the unknown parameters

the method of nonlinear least squares will be used for the curve fitting. Two different

curve fitting techniques will be compared. One being the Levenberg-Marquardt method.

The other method is the Variable projection method, which takes into account some of

the characteristics of the Cole-Cole equation. Both the Levenberg-Marquardt and the

variable projection method makes use of the Gauss-Newton algorithm derived in the

previous section. It should be noted that quantities with subscript 1 or 2 denotes that

the quantity is specific for the Levenberg-Marquardt and variable projection method

respectively.

2.4 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt method, [11] and [12], is a standard, iterative technique used

to solve nonlinear least squares problems. The Levenberg-Marquardt method is similar to

the Gauss-Newton method but uses a trust region strategy. Using a trust region strategy

avoids one of the weaknesses of Gauss-Newton, namely, its behavior when the Jacobian

J is rank deficient or ill-conditioned.

In line search methods a search direction h is calculated and then the focus is on finding

a step-length γ along this direction. The trust region method, [17, ch.4], on the other

hand defines a region around the current working point within which a model function is

trusted to provide a reasonable approximation of the cost-function. In other words one

can say that both the length and direction of the step is chosen simultaneously.

The size of the trust region is usually chosen depending on the performance of the

algorithm during the previous iteration. The fact that the size of the trust region can

vary helps increase the effectiveness of each step. This also mean that the choice of the

size of the trust region is vital. If it is chosen poorly opportunities to take substantial

steps, and hence move much closer to the minimizer of the cost-function, will be missed.

Similarly if the trust region is too large then the minimizer of the model might be far

from the minimizer of the cost function in that region and thus the size of the trust region

has to be reduced and a new step has to be calculated.

The basic idea of the trust region approach is to accept the minimum of the model

function as long as the model adequately reflects the behavior of the cost-function. The

model function φ(k), where k is the iteration index, used for the Levenberg-Marquardt

method, [17, p.258] is given by the second order Taylor series expansion of S around the

current working point pk

φ(k)(h) =
1

2
||r(k)

1 ||22 + g
(k)T
1 h +

1

2
hTH

(k)
1 h. (2.25)

Here g
(k)
1 = J

(k)T
1 r

(k)
1 is the gradient and H

(k)
1 is the Hessian matrix which is approxi-
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mated as H
(k)
1 = J

(k)T
1 J

(k)
1 . In order to minimize the model new search directions, h, has

to be calculated. The new steps are obtained by at each iteration solving the constrained

subproblem,

min
h∈<m

1

2
||J (k)

1 h + r
(k)
1 ||22 s.t.||h||2 ≤ ∆(k). (2.26)

Here ∆(k) is the radius of the trust region. It can be shown, [17, ch.4], that the solution,

h(k)∗, to (
J

(k)T
1 J

(k)
1 + λ(k)I

)
h(k)∗ = −J (k)T

1 r
(k)
1 , (2.27)

where I is the identity matrix and λ(k) is a scalar such that the matrix J
(k)T
1 J

(k)
1 + λ(k)I

is positive semi-definite, solves the subproblem (2.26) if either ||h||2 = ∆ and λ ≥ 0 or

||h||2 ≤ ∆ and λ = 0. This method is known as the Levenberg-Marquardt method.

It should be noted that if ∆ is large enough the solution to (2.27) is found when λ = 0.

That is, (2.27) becomes the Gauss-Newton algorithm, see (2.23). It should also be noted

that when λ → +∞, ||h||2 → 0 and h becomes parallel to the search direction of the

steepest descent method, [20, pp.102-103]. That is, it approaches the direction of the

negative gradient

h(k)∗ = −J (k)T
1 r

(k)
1 . (2.28)

An updated relationship where the identity matrix I in (2.27) is replaced with the

diagonal elements of the J
(k)T
1 J

(k)
1 matrix was suggested by Marquardt, [12]. Using this

relationship the search direction is computed by solving(
J

(k)T
1 J

(k)
1 + λ(k)diag(J

(k)T
1 J

(k)
1 )
)
h(k)∗ = J

(k)T
1 r. (2.29)

The advantage of this is that each component of the gradient will now be scaled according

to the curvature. Hence, there will now be larger movement along the directions where

the gradient is smaller. This avoids slow convergence in the direction of small gradient.

A good value of the trust region radius, ∆, and the damping parameter λ needs to

be chosen in order to ensure descent. Since the two parameters are related, choosing

one is equivalent to choosing the other. The choice can either be done by adjusting the

damping parameter directly, or, by first choosing an acceptable step size and then finding

a λ such that ||h|| ≤ ∆. Here the focus will be on λ. There are many different methods

available that can be used for this, but usually it is adequate to use the simple method

suggested by Marquardt, in which λ is either increased by a fixed factor λup or decreased

by a fixed factor λdn. Different sets of values will be more suitable for different types

of problems, but it is often sufficient to use λup = λdn = 10. Whether or not λ will be

increased or decreased depends in turn on the change between the model function and

the cost-function. Given the current and previous step a scalar ρ, [17, p.68], is defined as
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ρ(k) =
S(k) − S(k+1)

φ(k)(0)− φ(k)(h)
. (2.30)

Depending on the value of ρ there are a few things that should be noted. The predicted

reduction should always be nonnegative since the step h is obtained by minimizing φ(k)

over a region that includes h = 0. Thus, if ρ(k) is negative, that means that the cost-

function is increasing, S(k+1) > S(k), and the step most be rejected. If, on the other

hand, ρ(k) is larger than some threshold ν > 0 it means that the model at the current

step is consistent with the function and hence the trust region can be expanded for the

next iteration. Similarly if ρ(k) is smaller than the threshold it means that the model is

not consistent with the function at the current step and the trust region is reduced to

the next iteration.

To summarize

• if ρ < ν: λ = λ/λdown and p(k+1) = p(k),

• if ρ > ν: λ = λ · λup and p(k+1) = p(k) + h.

2.5 The variable projection method

The variable projection method, [14], is a method used to solve separable nonlinear least

squares problems. Consider a function, f(p;x), that one wants to fit to observations,

y = [y1, ..., ym]T . The model function contains an independent variable x = [x1, ..., xm]T ,

which usually represents time or frequency, and the model parameters p. The least

squares problem is said to be separable when the model parameters can be separated into

two sets of parameters, one that enter nonlinearly into the model, b = [b1, ..., bn2 ]
T , and

another set of parameters that enter the model linearly, a = [a1, ..., an1 ]
T , i.e. p = [a, b].

This fitting problem can be written as

y = A(b)a, (2.31)

where A is called the model matrix and is a function of b and x. The fitting problem is

a nonlinear least squares problem and the goal is to find the values of the parameters a

and b by solving

min
a,b

1

2
||y −A(b)a||22 . (2.32)

From (2.32) it is clear that, given a value of b, the linear parameters a can be calculated

using the linear least squares, (2.18). The estimate of the linear parameter is thus given

by

â = (AT (b)A(b))−1AT (b)y = A†(b)y, (2.33)
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where A†(b) denotes the Moore-Penrose generalized inverse of A(b) which will be used

henceforth for notational simplicity. It will from here on, also be assumed that the model

matrix A is a full rank <m×n1 matrix, where m > n1, for all b.

Let us now define a projection matrix P (b) and a projection matrix P⊥(b) that projects

a vector onto the range of A(b) and onto the null space of AT (b) respectively. The

projection matrix P (b) will be defined as

P (b) = A(b)A†(b). (2.34)

It should be noted that the projection matrix is both idempotent, P 2(b) = P (b), and

symmetric, P T (b) = P (b). The projection matrix P⊥(b) will be defined as

P⊥(b) = I − P (b). (2.35)

By using the expression for the estimate of the linear parameters, â, the residual, r2 =

y −A(b)a, can be rewritten using the projection matrix, P⊥(b), as

r2 = y −A(b)â = y −A(b)A†(b)y = y − P (b)y = (I − P (b))y = P⊥(b)y. (2.36)

As seen from the equation above the residual becomes a function of b, r2 = r2(b) =

P⊥(b)y. Combining this with (2.32) results in

min
b

1

2

∣∣∣∣P⊥(b)y
∣∣∣∣2
2
. (2.37)

The linear parameters has been removed and we are left with a nonlinear least squares

problem that needs to be solved in order to find b. Introducing the function q(b) = 1
2
rT2 r2

the original problem (2.32) can be separated into two least squares problem

min
b
q(b), (2.38)

min
a

1

2

∣∣∣∣∣∣y −A(b̂)a
∣∣∣∣∣∣2
2
, (2.39)

where (2.38) is a nonlinear least squares problem whose solution, b̂, is needed as input to

the linear least squares problem (2.39). The technique developed by Golub and Pereyra,

[14], a useful for solving this problem. The technique is based on applying Gauss-Newton

method, (2.23) - (2.24), to the variable projection functional, which is in essence the

squared norm of the residual, P⊥(b)y.

The developed method solves (2.38) by iteratively updating b as

b(k) = b(k−1) − γ
(
H

(k)
2

)−1
g
(k)
2 , (2.40)

where k is the iteration index, γ is the step length, H2 and g2 are the Hessian matrix

and the gradient of q(b) respectively. Both the vector gradient, defined as g2 = J2r2(b),
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and the Hessian matrix, approximated as H2 = JT
2 J2, are evaluated at b(k−1). Here

J2 = ∇r2(b) represents the Jacobian matrix

As can be seen above, the Jacobian matrix is needed in order to be able to calculate

the next step b(k). Knowing that the Jacobian matrix is defined as J2 = ∇r2 and that

the residual is given by r2 = P⊥(b)y, see (2.36), we need to calculate the first partial

derivative of P⊥(b) in order to calculate the next step, b(k).

The partial derivatives can be obtained by following the derivation done in [14]. Since

P⊥(b) = I − P (b), see (2.35), the derivative of P⊥(b) can be found be finding the

derivative of P (b). From now on the subscript i, 1 < i < n2, will be used to denote the

differentiation of a matrix with respect to the variable bi. By taking into account that

the projection matrix is idempotent, P 2(b) = P (b), differentiation yields

P i(b) = P i(b)P (b) + P (b)P i(b). (2.41)

The next step is to note that the projection matrix satisfies

P (b)A(b) = A(b). (2.42)

By differentiating both sides with respect to bi the following expression is obtained

P i(b)A(b) + P (b)Ai(b) = Ai(b). (2.43)

Subtracting P (b)Ai(b) from both sides of the equation yields

P i(b)A(b) = Ai(b)− P (b)Ai(b) = (I − P (b))Ai(b) = P⊥(b)Ai(b). (2.44)

Right multiplication with A†(b) and applying the definition of the projection matrix

given by (2.34) gives

P i(b)P (b) = P⊥(b)Ai(b)A†(b). (2.45)

By transposing and exploiting the symmetry, P T (b) = P (b), on the left yields

P (b)P i(b) = (P⊥(b)Ai(b)A†(b))T . (2.46)

Combining the results given from (2.45) and (2.46) with (2.41) gives that

P i(b) = P i(b)P (b) + P (b)P i(b) = P⊥(b)Ai(b)A†(b) + (P⊥(b)Ai(b)A†(b))T . (2.47)

Using the result given by the equation above together with (2.35) gives that the partial

derivative of the projection matrix, P †(b), becomes

P⊥i (b) = −P⊥(b)Ai(b)A†(b)− (P⊥(b)Ai(b)A†(b))T . (2.48)
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Knowing that the Jacobian matrix is given by J2 = ∇r2(b) = P⊥(b)y and applying

(2.33), its jth column becomes

J2,i = −P⊥(b)Ai(b)a− (A†(b))TAi(b)Tr2(b). (2.49)

Some more algorithmic details about the variable projection method can be seen in

[15] and [22].



CHAPTER 3

Numerical implementation

This section covers some of the implementation of the Levenberg-Marquardt and the vari-

able projection method. Both methods were implemented specifically to fit the Cole-Cole

model, (2.14), to measured relative permittivity spectrum. In particular the calculation of

the Jacobian matrix, the selection of the initial guesses and the convergence criterion will

be covered. All code has been written in MATLAB and as in the previous section, quan-

tities with subscript 1 or 2 denotes that they are specific for the Levenberg-Marquardt

and variable projection method respectively.

3.1 Calculation of the Jacobian matrix
Both the Levenberg-Marquardt and the variable projection method uses the Jacobian

matrix, J , in order to calculate the search direction, h. But the calculation of the matrix

differ between the methods.

3.1.1 The Jacobian matrix for the Levenberg-Marquardt method

For the Levenberg-Marquardt method the calculation is quite straight forward. From

Section 2.2 it is given that the Jacobian matrix is a matrix of all the first order partial

derivatives of the residual r1 = f(p;x) − y. Since only the model depends on p the

Jacobian matrix can be calculated by using the current estimate of the parameters and

the partial derivatives of the function f(p,x). For the Cole-Cole equation, (2.14), the

analytical expression for the partial derivatives is

21
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∂ε̂

∂ε∞
=

jτω

(jτω)α + jτω
, (3.1)

∂ε̂

∂εs
=

1

1 + (jτω)(1−α)
, (3.2)

∂ε̂

∂τ
= jω

α− 1

((jτω)(1−α) + 1)
2

εs − ε∞
(jτω)α

, (3.3)

∂ε̂

∂α
=

lnjτω

((jτω)(1−α) + 1)
2 (εs − ε∞)(jτω)(1−α), (3.4)

∂ε̂

∂σ
= − j

ωε0
. (3.5)

It should be noted that the Jacobian matrix in this case is a matrix of size m× 5, where

m is the number of data points.

3.1.2 The Jacobian matrix for the variable projection method

For the variable projection method the calculation of the Jacobian matrix will be some-

what different. As stated in Section 2.5 the method divides the parameter, p into two

separate sets of parameters, a and b. Where a are parameters that enter the model

linearly and b are parameters that enter the model nonlinearly. This results in the fitting

problem given by (2.31).

Applying this to the Cole-Cole equation results in the following factorization of the

model

f(a, b;ω) =

[(
1− 1

1 + (jωτ)1−α

) (
1

1 + (jωτ)1−α

)
−j
ωε0

]
︸ ︷︷ ︸

A(b)

ε∞εs
σ


︸ ︷︷ ︸

a

, (3.6)

where b = [τ, α]. The linear parameters in a can be calculated given a value of the

nonlinear parameters in b according to (2.33). Due to this, the problem has been reduced

from a five dimensional to a two dimensional problem. In (2.49) it is shown how the

ith column of the Jacobian matrix can be calculated. The only unknown is the term

Ai, which is the partial derivative of A(b), see (3.6), with respect to the parameter bi.

Since b = [b1, b2] = [τ, α], the derivative of A(b) with respect to τ and α is needed.

Differentiating A(b) with respect, τ , gives the analytical expression
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∂A(b)

∂τ
=



−j(α− 1)ω(jτω)α

((jτω)α + jτω)
2

j(α− 1)ω(jτω)α

((jτω)α + jτω)
2

0


, (3.7)

whereas differentiating with respect to α gives

∂A(b)

∂α
=



−(jτω)α+1ln(jτω)

((jτω)α + jτω)
2

(jτω)α+1ln(jτω)

((jτω)α + jτω)
2

0


. (3.8)

The current estimate of the parameters τ and α are used as input.

3.2 The initial guess
Since both methods are iterative, initial guesses, p0, will be needed in order for the

iterations to start. The importance of the choice of the initial guess differ depending

on the characteristics of the problem. If it is known that the cost-function only has one

minima a uniform initial guess like p0 = [1, ..., 1] will work fine. The algorithm will refine

the initial guess at each iteration and eventually stop when a convergence criterion is

met. A example of this is shown in Figure 3.1. The function in this example is only

dependent on one parameter.
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Figure 3.1: Example of initial guess when cost-function only has one minima and the

function is only dependant on one parameter.

But using a uniform initial guesses in cases where the cost-function has multiple minima

there is a risk that the found minima is only a local and not the global minima. Hence,

the correct model parameter p has not been found. An example of this is shown in

Figure 3.2, one again the function is only dependant on one parameter.

Figure 3.2: Example of initial guess when cost-function has multiple minima and the

function is only dependant on one parameter.

As can be seen by the example given by Figure 3.2, good initial guesses are needed to

ensure that the global minima is found.
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3.2.1 Initial guess for the Levenberg-Marquardt method

The initial guess for the Levenberg-Marquardt method will be chosen by looking at the

physical interpretation of the parameters in the Cole-Cole equation,

ε̂(ω) = ε∞ +
εs − ε∞

1 + (iωτ)1−α
+ j

σ

ωε0
. (3.9)

By definition it is known that the static permittivity, εs, is the permittivity when ω →
0. Using this, an initial guess εs,0 can be obtained by looking at the low frequency

permittivity of the real part of the measured spectrum. Since measurements contain

noise, an average is used to minimize the effects of the noise,

εs,0 =
1

M

M∑
i=1

<{ε(ωi)} , (3.10)

where ε(ωi) is the measured spectrum at frequency ωi, 1 < i < M . Here M << m and

m is as before the total number of measurement points.

Similarly, ε∞ is the high frequency permittivity and is found when ω →∞. The initial

guess, ε∞,0, is hence found by taking the average of the high frequency permittivity of

the real part of the measured spectrum.

The relaxation time, τ , is related to the (angular) frequency, ω, of the applied electric

field. The initial guess, τ0, can be found by finding at which frequency the imaginary part

permittivity spectrum has its maximum value. This frequency is then used to calculate

the initial estimate of the relaxation time according to

τ0 =
j

ωImax

, (3.11)

where ωImax here represents the frequency at the point where the imaginary part of the

permittivity spectrum has its maximum value.

The parameter α represents the width of the dispersion area and is bounded between

[0, 1]. The initial guess is chosen as the midpoint in this interval, α0 = 0.5.

Lastly we consider the initial guess for the conductivity parameter σ. In Section 2.1

it was show that the conductivity was part of the extra term, jσ/ω, added in order to

account for the case of lossy mediums. From this term it is seen that σ will affect the

spectrum most at low frequencies. Hence, the initial guess for the conductivity will be

chosen as

σ0 = ωlε0={ε(ωl)} , (3.12)

where ωl represents that the initial guess for the conductivity was calculated at low

frequency. The permittivity in vacuum, ε0 ≈ 8.854 ·10−12[F/m], is part of the expression

since it is the relative permittivity that is used.

Figure 3.3 gives a graphical description of how the initial guess are chosen for the

Levenberg-Marquardt method.
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Figure 3.3: Graphical description of how the initial guess is found using the Levenberg-

Marquardt method.

Note that the spectrum in Figure 3.3 was generated with the help of the Cole-Cole

model and hence does not contain any noise.

3.2.2 Initial guess for the variable projection method

One of the big advantages with this method is that since the linear parameters can be

calculated given a value of the nonlinear parameters no initial guesses are needed for the

linear parameters. The nonlinear parameters do on the other hand need initial guesses

and although the method described in the previous section can be used there is a more

robust method for choosing the initial guesses.

By defining an interval of τ and combining it with the fact that α is bounded between 0

and 1, a grid search could be performed. The value of the parameters that results in the

smallest value of the cost-function would be chosen as the initial guess. The computation

time for the grid search will increase exponentially with the number of calculation points.

Obtaining good starting guesses with this method can therefore be time consuming. The

computation time can on the other hand be reduced to some extent by using a hierarchic

grid search. This means that a coarse gird search will be used in order to find a general

area within which the cost-function seems to have its minimum. Another gird search will

then be performed on that area, see Figure 3.4 below.

In Figure 3.4 the number of segments the parameter interval is divided into is rep-

resented by Q and R. The advantage of a hierarchic grid search is that fever function

evaluations has to be performed. If a hierarchic grid search is performed in two steps

2(Q ·R)− 1 function evaluations is needed. To achieve the same accuracy on the whole
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Figure 3.4: Schematic description of a two step hierarchic grid search.

grid (Q ·R)2 function evaluations will be needed.

3.3 Convergence criterion
Convergence criterion are used to determine when the algorithm should terminate. We

have used the same convergence criterion for both methods.

As stated in Section 2.4 and 2.5 both the Levenberg-Marquardt and variable projection

method are built to find the parameter that minimize the cost-function, (2.16). It is also

stated that the cost-function should always be decreasing. Hence, the first criteria is

S(k+1) < S(k), (3.13)

where S is the cost-function and k is the iteration index.

The other criterion implemented here takes into account what accuracy of the sought

after parameter is needed. If the change of the cost-function is smaller than a set toler-

ance, µ1,

||S(k) − S(k+1)|| < µ1, (3.14)

then p is deemed to be accurate enough. Similarly if the scaled norm of parameter change

is smaller than a set tolerance, µ2,

||h/p|| < µ2, (3.15)

the parameters are deemed accurate enough. Note that here the division of the parameter

change, h, and the current estimate of the parameters, p, is done element wise. If neither

of these criteria’s are met the algorithm will terminate after a pre-specified number of

iterations, kmax.





CHAPTER 4

Comparison between the two
methods

In this section the methods will be tested and compared against each other. The com-

parison will be based on computational speed and accuracy in finding the parameters.

Lastly the methods will be applied to real measurement data.

4.1 Validation of the two estimation techniques
All measurements are to a varying degree subject to disturbances. It is therefore of

interest to evaluate how sensitive the two estimation methods are to disturbances and

how accurately the parameters can be estimated. Here the Monte-Carlo method was

used for the evaluation.

For the Monte-Carlo simulations 10, 000 realizations of a generated relative permittivity

spectrum was used. The realizations where made to emulate the measurement data in

regards of expected parameters, noise and used frequency range. The parameters of the

generated spectrum was

p =


ε∞
εs
τ

α

σ

 =


2.2000

2.3500

1.4700 · 10−8

0.6000

2.5000 · 10−9

 . (4.1)

For each realization additive white Gaussian noise (AWGN) was added. The signal-to-

noise ratio (SNR) of the added noise was chosen with regards to the SNR of the set of

measured spectrum, see appendix. For the Monte-Carlo simulation the SNR was chosen

to be similar to the worst part of the worst of the measured spectrum, this resulted in

SNRdB = 40.

29



30 Simulation results

An example of a generated signal where AWGN with a SNRdB = 40 has been added

can be seen in Figure 4.1 below.

Figure 4.1: Example showing the generated curve (green) and the generated curve when

AWGN with SNR = 40 dB has been added (blue).

The Cole-Cole equation was fitted to each realization using both estimation techniques.

The grid used in the variable projection method, see Section 3.2.2, divided the parameter

interval of τ and α into 15 and 10 segments respectively. The interval for the relaxation

time was τ ∈ [10−12, 10−5]. The methods used the same tolerance values for the conver-

gence criterion, see Section 3.3. If the change in cost-function, (3.14), is smaller than

µ1 = 10−6 or the scaled parameter change, (3.15), is smaller than µ2 = 10−4 the algo-

rithms will terminate. If neither of these are met the algorithms will terminate after

reaching the maximum number of iterations kmax = 1000.

The Monte-Carlo simulation was used to calculate a two standard deviations (2SD)

confidence interval for each of the parameters. That is, the confidence interval indicates

that the parameters lies within 2SD of the mean. In Figure 4.2 the generated permittivity

spectrum is shown without noise together with the mean estimate and confidence interval

of the spectrum calculated using both the variable projection method and the Levenberg-

Marquardt method.
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Figure 4.2: Result from the Monte-Carlo simulation. The top and bottom left plots

are the real and imaginary part of the permittivity spectrum for the variable projection

method, respectively. The top and bottom right plots are the real and imaginary part

of the permittivity spectrum for the Levenberg-Marquardt method, respectively. The

green and blue solid lines represent the true and mean estimated permittivity spectrum,

respectively. The confidence interval is shown as dashed lines.

From the Figure 4.2 it seems like there are more uncertainties in the Levenberg-

Marquardt method, due to it having a wider confidence interval, than in the variable pro-

jection method. The corresponding parameters and their confidence interval are shown

in Table 4.1.

Table 4.1: Monte-Carlo simulation results. The computed parameters p∗ are shown with

a calculated 2SD confidence interval and the mean starting guess p0 for both methods.

The generated curve used the parameters displayed in the column True parameters.

Variable projection True Levenberg-Marquardt

E[p∗]± 2SD E[p0] parameters E[p∗]± 2SD E[p0]

ε∞ 2.1985± 0.0063 2.1981 2.2000 2.1952± 0.0381 2.2357

εs 2.3504± 0.0035 2.3498 2.3500 2.3514± 0.0152 2.3411

τ [10−8] 1.4147± 0.2296 1.3947 1.4700 3.1714± 5.5305 5.4472

α 0.6041± 0.0263 0.6050 0.6000 0.6034± 0.1336 0.5000

σ [10−9] 2.3456± 2.6728 2.1820 2.5000 2.5140± 5.1158 9.1158
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From Table 4.1 it can be seen that the variable projection method had better (average)

initial guesses, i.e. closer to the true values, than the Levenberg-Marquardt method

whose initial guesses for especially τ and σ where poor.

The mean estimate of the parameters for both method are on the other hand quite

close to the true parameter values. The width of the confidence interval varies between

the parameters but the variable projection method had a tighter confidence interval in all

cases. For the variable projection method the estimates of εs and ε∞ are good, inside the

2SD confidence interval the estimated parameters are within 0.1%, respectively 0.3%,

from the true parameter value. The estimates for relaxation time, τ , and the distribution

factor, α, both had wider confidence intervals resulting in the estimates being within 16%,

respectively 4% from the true values. As seen from Table 4.1 the confidence interval for

σ were poor.

In combination with the results from Table 4.1 it is interesting to see how the parameters

affect the mean squared error (MSE). This was studied by generating a curve, y1, with

the parameters in (4.1). Another curve , y2, was generated using the same parameters

with the exception that ε∞ had been increased with 5%. The MSE between the two

curves was then calculated. The same thing was done for the four other parameters.

The result can be seen in the Table 4.2. As seen from Table 4.2 a 5% increase of the

Table 4.2: Affect on MSE due to a 5 % change in a parameter.

MSE

ε∞ + 5% 3.5

εs + 5% 5.6

τ + 5% 3.5 · 10−4

α + 5% 6.9 · 10−3

σ + 5% 8.8 · 10−7

parameters τ , α and σ hardly affects the MSE at all. Whereas a 5 % increase of ε∞ and

especially εs have a huge affect on the MSE. Combining the result from Table 4.1 and 4.2

the overall conclusion is that the more the parameters affect the MSE the more accurate

the estimate of the parameters will be.

As seen from Table 4.2, σ has a small affect on the MSE. This is largely due to the

fact that the affect of σ on the spectrum is in the low frequency region of the imaginary

part. Extending the frequency range more in the low frequency region should give clearer

indication of the affect of σ and hence make it easier to estimate. This was confirmed

with a Monte-Carlo simulation where the lower end of the frequency interval was changed

from roughly ω = 105 to ω = 104. The confidence interval for σ became a lot better for

both methods 2.4886 ·10−9±0.2812 ·10−9 and 2.4807 ·10−9±0.5615 ·10−9 for the variable

projection method and the Levenberg-Marquardt method respectively.

The increase of the frequency range had some affect the of the other parameters. For
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the variable projection method the estimate for εs and α became better, 2.3502± 0.0018

and 0.6030± 0.0208, whereas the estimate for ε∞ not experience any significant change.

The increase of the frequency range made the grid segments for τ a bit larger which had a

negative effect on the estimate 1.4304 ·10−8±0.3408 ·10−8. To obtain the same coarseness

in the grid search the number of segments used in the first level of the hierarchy can be

increased.

The Levenberg-Marquardt method obtained overall better estimates after the lower end

of the frequency interval was changed than it did before the change. Notably the estimate

of τ , which became 1.5322 · 10−8 ± 1.2674 · 10−8 and the estimate of εs, which became

2.3505 ± 0.0091, likely due to the fact that better starting guesses could be obtained,

εs,0 = 2.3467.

During the first Monte-Carlo simulations some other quantities where also calculated

and can be seen in Table 4.3. Form Table 4.3 it should be noted that h is the parameter

Table 4.3: Quantities used for an extended comparison. All quantities below are averages

obtained from the Monte-Carlo simulation.

Variable projection Levenberg-Marquardt

MSE 0.0794 0.0937

||h/p|| 0.0452 0.0795

Number of iterations 4 374

Computation time 0.4660 0.2968

change and p is the current parameter estimate. The quantity ||h/p|| represents the

scaled parameter change during the last iteration and that the division is element wise.

As seen the average last step was smaller for the variable projection method. The average

MSE is also smaller for the variable projection method. It should be noted that poor

initial guesses might result in the methods only finding local minima, which would affect

the MSE.

The variable projection method had fewer iterations, better initial guesses is one likely

reason. The computation time was on the other hand longer due to the gird search being

time consuming. The gird search is responsible for about 40% of the computation time

for the variable projection method. As seen the variable projection method is overall

more time consuming than the Levenberg-Marquardt method.

The average number of iterations differ a lot between the methods. The Levenberg-

Marquardt method use an average of 374 iterations compared to about 4 for the variable

projection method. It should also be noted that in about 32% of the cases the Levenberg-

Marquardt method is terminated because the maximum number of iterations has been

reached. In contrast, the maximum number of iterations was never reached by the vari-

able projection method.
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4.2 Applying the models to real measurement data
In this section the two estimation method, the Levenberg-Marquardt method and the

variable projection method, will be applied to experimental data. The data set was

provided by Christian Michelsen Research and contained the measurements of the relative

permittivity spectrum for 15 crude oils. The oils originate mainly from the North Sea,

but includes one sample from Nigeria/Angola and Brazil respectively. The oils have been

classified into two groups, biodegraded oils labeled B and non-biodegraded oils that will

be labeled S.

Biodegraded crude oil refers to oils where microorganisms has been degrading certain

chemical compounds in the oil and thus altered the crude oil composition. The sample

set here contains 6 biodegraded and 9 non-biodegraded oils.

4.2.1 The measurement data

During the storage of the oils waxes may have precipitated. Thus, before the permittivity

measurements could be made potential waxes had to be dissolved. This was achieved by

placing the oils in an oven, set at a temperature of 60oC, for four hours and afterwards

homogenize them by shaking and turning them upside down multiple times.

The permittivity spectra was measured over the frequency range extending from 100

kHz to 1 GHz, all measurements where performed at 20o C using the experimental set-

up and procedure described in [23]. The measurement cell was 20 cm long and the oils

where placed between the inner and outer conductor. The measurements were divided

into two parts, one for the low frequencies and one for the high frequencies.

In the low frequency range, meaning below 20 MHz, an impedance analyzer (Hewlett

Packard 4294) was used to measure the impedance of the measurement cell as a function

of frequency. This measurement, combined with a linear, frequency independent model,

where the used to calculate the permittivity. Measurements of n-decane, toluene and

n-heptane where used to calibrate the model. The n-heptane measurements where used

to correct systematic errors in the imaginary part of the measured relative permittivity.

For the high frequency, above 50 MHz, measurements a network analyzer (Hewlett

Packard HP8722C and Rohde & Schwarz ZVL-13) was used. The network analyzer mea-

sured the reaction and transmission coefficients of the measurement cell. The permittivity

was calculate using a bilinear calibration method, see [24] and [25].

Three calibration fluids are required for the calibration of the bilinear method, n-

heptane, n-decane and toluene were used. The reaction measurements where used to

calculate the permittivity at the frequency range extending from 50 − 150 MHz. For

frequencies higher than 150 MHz the transmission measurements where used.
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4.2.2 Result

In this section will only show the results for one of the crude oils, oil 1S. Results, in form

of plots and tables, for the 14 remaining oils can be seen in the appendix. It should be

noted that the same settings for the algorithms used in the Monte-Carlo simulation was

used here. Since it is unknown if the conductivity parameter, σ, should be included in the

Cole-Cole equation, (2.14), both versions of the model were applied and the one resulting

in the smallest MSE was chosen. Figure 4.3 below displays the measured permittivity

spectrum of the oil (dotted and blue) together with the fitted model (solid and red) for

both the variable projection method and the Levenberg-Marquardt method.
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Figure 4.3: Real (top) and imaginary (bottom) part of the estimated and measured

relative permittivity spectrum for oil 1S. The estimated spectrum in the left hand plots

was obtained with the variable projection method and the estimated spectrum in the

right hand plots was obtained with the Levenberg-Marquardt method respectively.

As can be seen from Figure 4.3 there is a gap in the measurement data between the
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high and low frequencies which is due to the change of measurement equipment. The gap

in the data may at times lead to a poor initial guess of τ for the Levenberg-Marquardt

method. This does not seem to be a problem in this case since the initial guesses of τ

are quite similar for both methods.

It can also be seen that for the most part the measurement noise is quite limited.

The majority of the noise seems to occur after the changing measurement equipment to

measure the higher frequencies and then especially at the imaginary part of the spectrum.

From Figure 4.3 it seems like the variable projection method provided a better fit of

the Cole-Cole model to the spectrum. Comparing the MSE of the methods, see MSE in

Table 4.5, it is seen that there is a significant difference, in favor of the variable projection

method. Comparing the initial guess with the final estimate of the parameters, see Table

4.4, for the variable projection method, one can see that the difference is small and hence

only one iteration was needed. It is also interesting to note that the variable projection

method deemed that the estimate was better when the σ parameter was neglected, hence

σ = 0. If the conduction current is negligible it would mean that the oil 1S not is a lossy

medium.

Table 4.4: The found parameters p∗ and the initial guesses p0 for oil 1S using the variable

projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.1249 2.1254 2.1570 2.1720

εs 2.2902 2.2899 2.2790 2.2797

τ 8.4834 · 10−9 8.4834 · 10−9 1.2900 · 10−8 8.6402 · 10−9

α 0.5924 0.5924 0.3690 0.5000

σ 0 0 0 0

Table 4.5: Quantities used for extended comparison, oil 1S .

Variable projection Levenberg-Marquardt

MSE 0.0097 0.0305

||h/p|| 2.3465 · 10−4 5.4406 · 10−4

Number of iterations 1 70

Computation time [s] 0.355 0.100

The conclusion from this is that the variable projection method did a better job of

fitting the Cole-Cole model to the measure spectrum of the oil 1S than the Levenberg-

Marquardt method did.

The accuracy of the initial guesses for the variable projection method is dependant

on the coarseness of the grid search. To study how the coarseness of the grid affected



4.2. Applying the models to real measurement data 37

the result for the variable projection method the coarseness was both increased and

decreased. The change of the coarseness was achieved by dividing the parameter interval

for τ and α into a different number of segments. Three different segment pairs were used

and the result can be seen in Table 4.6.

Table 4.6: Result from variable projection method with different coarseness of the grid.

The segment pair (x,y) means that the interval for τ and α was divided into x and y

segments respectively.

Variable projection

Segments (τ, α) (8, 5) (30, 20) (2000, 200)

ε∞ 2.1405 2.1288 2.1302

εs 2.2860 2.2895 2.2892

τ 1.1790 · 10−8 9.3337 · 10−9 9.6452 · 10−9

α 0.5343 0.5816 0.5772

σ 0 0 0

As can be seen from Table 4.6 changing the coarseness of the grid and hence also the

accuracy of the initial guesses results in the method finding different parameters. Table

4.7 shows the various quantities used for the comparison.

Table 4.7: Quantities used for extended comparison, variable projection method with

different grid coarseness of the grid.

Variable projection

Segments (τ, α) (8, 5) (30, 20) (2000, 200)

MSE 0.0105 0.0095 0.0095

||h/p|| 6.6303 · 10−9 2.8726 · 10−4 3.0921 · 10−4

Number of iterations 2 1 1

Computation time [s] 0.3350 0.7850 392

From Table 4.7 it can be seen that decreasing the number of segments for τ and α

from 15 and 10 to 8 and 5 respectively resulted in an increase of the MSE. Whereas

doubling the number of segments for τ and α from 15 and 10 to 30 and 20 respectively

resulted in a slight decrease of the MSE. This increase resulted in about a doubling of

the computation time. Increasing the number of segments further did not seem to have

any significant affect on the MSE.

Extending the comparison between the variable projection method and the Levenberg-

Marquardt method to include the 14 oils in the appendix the result is similar. The
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variable projection method was able to provide a better fit in all cases. The result when

comparing the MSE was similarly as above, it is always significantly smaller for the

variable projection method. The Levenberg-Marquardt method had at times difficulties

with obtaining good initial guesses of τ , mostly in cases when there were no measurement

points for the maximum of the imaginary part.



CHAPTER 5

Discussion and conclusions

In this master thesis two estimation techniques, one based on the Levenberg-Marquardt

algorithm and the other on the variable projection method, were implemented. The

objective was to develop an automated method that in a quick and accurate manner can

estimate the parameters of the Cole-Cole model for relative permittivity.

Both methods are iterative and needs good initial guesses to ensure decent to the global

minima. An advantage with the variable projection method in this regard is that the

quality of the initial guesses is determined by the coarseness of the gird, hence largely

depends on what is deemed acceptable in regards of computational time.

When it comes to accurately estimate the parameters it is to be beneficial to factorize

the Cole-Cole model into a linear and non-linear part and hence reduce the problem

down from a 5-dimensional to a 2-dimensional problem. As seen from the result of the

Monte-Carlo simulation the accuracy of the variable projection method were better for

all parameters, see Table 4.1. Both methods had some difficulties obtaining accurate

estimations for of the relaxation time, τ , and the conductivity of the material, σ.

The difficulties with obtaining accurate estimations of τ were probably due to the small

affect the parameter has on the MSE compared to the other parameters, see Table 4.2.

On the other hand, the difficulties with estimating σ stemmed from the fact that the

used frequency range did not include lower frequencies. The affect that the conductivity

has on the spectrum is largely in the low-frequency region of the imaginary part. If the

frequency range does not include low enough frequencies the affects of σ will be difficult

to see, hence it will also be difficult to estimate its magnitude.

In regards to time consumption the Levenberg-Marquardt method were faster that

the variable projection method, whose the grid search was time consuming. The grid

search is largely dependent on the interval for τ . If it can be reduced then the number

of segments can be reduced and the computational time will be faster.

The variable projection method were more reliable than the Levenberg-Marquardt

method when it came to the real measurement data. It provided smaller MSE:s for

every oil and the estimated spectrum seemed to fit well with the measured spectrum.
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CHAPTER 6

Future work

Some improvements to the algorithm has been considered and the most significant of

them are described here.

• The implementation of complex weights to the algorithm. This will allow the

algorithm to weight down noisier regions of the spectrum and thus limit the affect

this the noise has on the calculations.

• The implementation of a method that estimates the accuracy of the estimated

parameters. This would make it easy for the user to determine if the estimated

parameters are good enough.

• Implement the method using QR-decomposition would make it more robust. If e.g.

the Jacobian matrix, J , is poorly conditioned computing (JTJ)−1 can be a source

of numerical rounding errors.

• If the medium is lossy the conductivity parameter, σ, should be included in the Cole-

Cole equation in order to account for the energy loss. Development of a method

for determining whether or not it should included in the Cole-Cole equation would

be beneficial since it would make sure a more accurate model is used.

• An extension of the algorithm could also be made to include some other relaxation

models like e.g. Debye, Cole-Davidson and Havriliak-Negami relaxation.
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APPENDIX A

Cole-Cole model fitted to
measured relative permittivity

spectrum of crude oils

This appendix will contain the results, in form of plots and tables, of when the variable

projection method and the Levenberg-Marquardt method was used to fit the Cole-Cole

equation to measured relative permittivity spectrum of crude oils. Two things should be

noted. Firstly, the conductivity, parameter, σ, at times can be excluded from the Cole-

Cole equation, (2.14). Therefore both versions were applied and the one resulting in the

smallest MSE was chosen. For this reason the conductivity parameter will in some cases

be σ = 0. Secondly, all the plots in this appendix contains four images. The top images

contain the real part of the permittivity spectrum and the bottom images contain the

imaginary part of the permittivity spectrum. The estimated spectrum in the left hand

plots were obtained with the variable projection method and the estimated spectrum in

the right hand plots were obtained with the Levenberg-Marquardt method respectively.
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A.1 Oil 1S
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Figure A.1: Measured and estimated relative permittivity spectrum for oil 1S.

Table A.1: The found parameters p∗ and the initial guesses p0 for oil 1S using the variable

projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.1249 2.1254 2.1570 2.1720

εs 2.2902 2.2899 2.2790 2.2797

τ 8.4834 · 10−9 8.4834 · 10−9 1.2900 · 10−8 8.6402 · 10−9

α 0.5924 0.5924 0.3690 0.5000

σ 0 0 0 0

Table A.2: Quantities used for extended comparison, oil 1S .

Variable projection Levenberg-Marquardt

MSE 0.0097 0.0305

||h/p|| 2.3465 · 10−4 5.4406 · 10−4

Number of iterations 1 70

Computation time [s] 0.355 0.100
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A.2 Oil 2S
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Figure A.2: Measured and estimated relative permittivity spectrum for oil 2S.

Table A.3: The found parameters p∗ and the initial guesses p0 for oil 2S using the variable

projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.0304 2.0310 2.0890 2.0943

εs 2.1132 2.1130 2.1120 2.1115

τ 1.0000 · 10−10 1.0000 · 10−10 4.8200 · 10−9 1.0342 · 10−9

α 0.5431 0.5431 0.0900 0.5000

σ 0 0 0 0

Table A.4: Quantities used for extended comparison, oil 2S .

Variable projection Levenberg-Marquardt

MSE 0.0076 0.0256

||h/p|| 3.0512 · 10−4 5.4152 · 10−5

Number of iterations 1 71

Computation time [s] 0.327 0.050
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A.3 Oil 3S
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Figure A.3: Measured and estimated relative permittivity spectrum for oil 3S.

Table A.5: The found parameters p∗ and the initial guesses p0 for oil 3S using the variable

projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.1091 2.1023 2.1350 2.1456

εs 2.2346 2.2371 2.2280 2.2245

τ 1.0269 · 10−8 8.4834 · 10−9 2.8380 · 10−8 8.6399 · 10−9

α 0.6265 0.6540 0.3980 0.5000

σ 0 0 0 0

Table A.6: Quantities used for extended comparison, oil 3S .

Variable projection Levenberg-Marquardt

MSE 0.0089 0.0501

||h/p|| 3.2428 · 10−8 9.5957 · 10−5

Number of iterations 2 33

Computation time [s] 0.429 0.055
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A.4 Oil 4S
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Figure A.4: Measured and estimated relative permittivity spectrum for oil 4S.

Table A.7: The found parameters p∗ and the initial guesses p0 for oil 4S using the variable

projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 1.9816 1.9914 2.0820 2.0952

εs 2.1244 2.1243 2.1230 2.1207

τ 2.7434 · 10−11 3.7276 · 10−11 3.4210 · 10−9 1.0291 · 10−9

α 0.6595 0.6540 0.3440 0.5000

σ 3.9062 · 10−10 2.3304 · 10−10 0 0

Table A.8: Quantities used for extended comparison, oil 4S .

Variable projection Levenberg-Marquardt

MSE 0.0093 0.0154

||h/p|| 0.0521 6.4575 · 10−5

Number of iterations 2 51

Computation time [s] 0.372 0.031
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A.5 Oil 5B
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Figure A.5: Measured and estimated relative permittivity spectrum for oil 5B.

Table A.9: The found parameters p∗ and the initial guesses p0 for oil 5B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.2023 2.2026 2.2160 2.2255

εs 2.3553 2.3547 2.3380 2.3415

τ 3.7276 · 10−8 3.7276 · 10−8 2.6570 · 10−8 1.7504 · 10−8

α 0.5678 0.5678 0.4070 0.5000

σ 0 0 7.3160 · 10−9 8.4911 · 10−9

Table A.10: Quantities used for extended comparison, oil 5B .

Variable projection Levenberg-Marquardt

MSE 0.0082 0.0202

||h/p|| 2.8927 · 10−4 4.1146 · 10−3

Number of iterations 1 65

Computation time [s] 0.246 0.047
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A.6 Oil 6B
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Figure A.6: Measured and estimated relative permittivity spectrum for oil 6B.

Table A.11: The found parameters p∗ and the initial guesses p0 for oil 6B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.2556 2.2557 2.2530 2.2732

εs 2.4466 2.4463 2.4420 2.4275

τ 1.0000 · 10−7 1.0000 · 10−7 7.9620 · 10−8 2.1975 · 10−7

α 0.5431 0.5431 0.5310 0.5000

σ 0 0 0 0

Table A.12: Quantities used for extended comparison, oil 6B .

Variable projection Levenberg-Marquardt

MSE 0.0105 0.0138

||h/p|| 1.6624 · 10−4 6.0337 · 10−4

Number of iterations 1 27

Computation time [s] 0.242 0.033



50 Appendix A

A.7 Oil 7S
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Figure A.7: Measured and estimated relative permittivity spectrum for oil 7S.

Table A.13: The found parameters p∗ and the initial guesses p0 for oil 7S using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.1330 2.1334 2.1330 2.1596

εs 2.2736 2.2732 2.2690 2.2625

τ 2.2758 · 10−8 2.2758 · 10−8 1.9680 · 10−8 1.616 · 10−8

α 0.5801 0.5801 0.5340 0.5000

σ 0 0 2.8200 · 10−9 5.5661 · 10−9

Table A.14: Quantities used for extended comparison, oil 7S .

Variable projection Levenberg-Marquardt

MSE 0.011 0.0203

||h/p|| 2.3031 · 10−4 2.9328 · 10−4

Number of iterations 1 25

Computation time [s] 0.257 0.029
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A.8 Oil 10S
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Figure A.8: Measured and estimated relative permittivity spectrum for oil 10S

Table A.15: The found parameters p∗ and the initial guesses p0 for oil 10S using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.0055 2.0056 2.0150 2.0152

εs 2.0172 2.0172 2.0170 2.0166

τ 1.3895 · 10−10 1.3895 · 10−10 5.3480 · 10−9 5.3477 · 10−9

α 0.4322 0.4322 0.5000 0.5000

σ 0 0 0 0

Table A.16: Quantities used for extended comparison, oil 10S .

Variable projection Levenberg-Marquardt

MSE 0.0052 0.006

||h/p|| 2.8871 · 10−5 6.1347 · 10−5

Number of iterations 1 23

Computation time [s] 0.271 0.012
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A.9 Oil 11B
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Figure A.9: Measured and estimated relative permittivity spectrum for oil 11B.

Table A.17: The found parameters p∗ and the initial guesses p0 for oil 11B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.0761 2.0769 2.1020 2.1035

εs 2.1165 2.1163 2.1160 2.1162

τ 5.1795 · 10−10 5.1795 · 10−10 5.1380 · 10−9 1.0457 · 10−9

α 0.3337 0.3337 0.0840 0.5000

σ 0 0 0 0

Table A.18: Quantities used for extended comparison, oil 11B .

Variable projection Levenberg-Marquardt

MSE 0.0069 0.0162

||h/p|| 3.8911 · 10−4 −
Number of iterations 1 1000

Computation time [s] 0.254 0.722
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A.10 Oil 12S
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Figure A.10: Measured and estimated relative permittivity spectrum for oil 12S.

Table A.19: The found parameters p∗ and the initial guesses p0 for oil 12S using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.0689 2.0678 2.1300 2.1359

εs 2.2232 2.2233 2.2100 2.2150

τ 2.8012 · 10−9 2.6827 · 10−9 1.6510 · 10−8 8.5515 · 10−9

α 0.6767 0.6787 0.2980 0.5000

σ 9.3244 · 10−9 9.2217 · 10−9 1.702, ·10−8 1.5817 · 10−8

Table A.20: Quantities used for extended comparison, oil 12S .

Variable projection Levenberg-Marquardt

MSE 0.0088 0.0354

||h/p|| 0.0049 6.7963 · 10−5

Number of iterations 1 115

Computation time [s] 0.254 0.067
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A.11 Oil 13B
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Figure A.11: Measured and estimated relative permittivity spectrum for oil 13B.

Table A.21: The found parameters p∗ and the initial guesses p0 for oil 13B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.3487 2.3501 2.3430 2.3593

εs 2.6180 2.5995 2.6590 2.5563

τ 9.2086 · 10−7 7.1969 · 10−7 1.5840 · 10−6 2.3904 · 10−6

α 0.5494 0.5308 0.6020 0.5000

σ 9.3177 · 10−9 1.3998 · 10−8 0 0

Table A.22: Quantities used for extended comparison, oil 13B .

Variable projection Levenberg-Marquardt

MSE 0.0152 0.0196

||h/p|| 0.0672 2.1479 · 10−3

Number of iterations 1 122

Computation time [s] 0.315 0.101
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A.12 Oil 15B
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Figure A.12: Measured and estimated relative permittivity spectrum for oil 15B.

Table A.23: The found parameters p∗ and the initial guesses p0 for oil 15B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.1227 2.1227 2.1660 2.1736

εs 2.2870 2.2870 2.2650 2.2714

τ 1.3895 · 10−8 1.3895 · 10−8 3.6100 · 10−8 8.5098 · 10−9

α 0.6787 0.6787 0.3160 0.5000

σ 1.2133 · 10−8 1.2133 · 10−8 1.2290 · 10−8 2.0494 · 10−8

Table A.24: Quantities used for extended comparison, oil 15B .

Variable projection Levenberg-Marquardt

MSE 0.0076 0.0852

||h/p|| 6.0993 · 10−8 8.0109 · 10−2

Number of iterations 1 1000

Computation time [s] 0.255 0.739
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A.13 Oil 16S
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Figure A.13: Measured and estimated relative permittivity spectrum for oil 16S.

Table A.25: The found parameters p∗ and the initial guesses p0 for oil 16S using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.3069 2.3069 2.3040 2.3311

εs 2.7483 2.7483 2.7250 2.6186

τ 1.0000 · 10−6 1.0000 · 10−6 6.6210 · 10−7 1.1240 · 10−6

α 0.6170 0.6170 0.6010 0.5000

σ 1.0157 · 10−8 1.0157 · 10−8 0 0

Table A.26: Quantities used for extended comparison, oil 16S .

Variable projection Levenberg-Marquardt

MSE 0.0123 0.0285

||h/p|| 2.2833 · 10−8 7.7404 · 10−5

Number of iterations 1 29

Computation time [s] 0.248 0.028
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Figure A.14: Measured and estimated relative permittivity spectrum for oil 17S.

Table A.27: The found parameters p∗ and the initial guesses p0 for oil 17S using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 1.9813 1.9815 2.0730 2.0729

εs 2.0806 2.0806 2.0800 2.0801

τ 1.9307 · 10−12 1.9307 · 10−12 6.496 · 10−9 9.9027 · 10−9

α 0.6170 0.6170 0.0410 0.5000

σ 0 0 0 0

Table A.28: Quantities used for extended comparison, oil 17S .

Variable projection Levenberg-Marquardt

MSE 0.013 0.0154

||h/p|| 7.0101 · 10−5 1.0225 · 10−3

Number of iterations 3 116

Computation time [s] 0.455 0.077
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A.15 Oil 18B
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Figure A.15: Measured and estimated relative permittivity spectrum for oil 18B.

Table A.29: The found parameters p∗ and the initial guesses p0 for oil 18B using the

variable projection method and the Levenberg-Marquardt method.

Variable projection Levenberg-Marquardt

p∗ p0 p∗ p0

ε∞ 2.2242 2.2242 2.2330 2.2471

εs 2.4268 2.4268 2.4270 2.4153

τ 5.1795 · 10−8 5.1795 · 10−8 6.1620 · 10−8 9.9027 · 10−9

α 0.5431 0.5431 0.4520 0.5000

σ 1.6027 · 10−8 1.6027 · 10−8 0 0

Table A.30: Quantities used for extended comparison, oil 18B .

Variable projection Levenberg-Marquardt

MSE 0.0206 0.0595

||h/p|| 3.3599 · 10−9 8.4423 · 10−5

Number of iterations 1 10

Computation time [s] 0.273 0.016
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