
Master Thesis

Assessing the Security of
IEC 60870-5-104 Implementations

using Automata Learning

Max Kerkers

April 2017

Max Kerkers: Assessing the Security of IEC 60870-5-104 Implementations using Automata
Learning, April 2017

Supervisors:

prof. dr. ir. B.R.H.M. (Boudewijn) Haverkort - University of Twente
dr. A.K.I. (Anne) Remke - University of Twente
J.J. (Justyna) Chromik MSc - University of Twente
D. (Dennis) Waalewijn MSc - KPMG
M.J. (Martijn) Sprengers MSc - KPMG

3

Abstract

Industrial Control Systems (ICS) that monitor and control (critical) infrastructures have
become more connected and therefore easier to reach from the internet. As a result of
this, it has become easier for attackers to perform an attack on an ICS from a remote
location. A protocol, that is used in such an ICS for the control of power distribution, is
IEC 60870-5-104. In this thesis, a tool is presented that can be used to infer automata,
i.e. finite state machines, from implementations of this protocol. This tool is used to learn
automata from three simulators and two real devices that all implement IEC 60870-5-104.
These automata are compared with each other and with the specification in the IEC 60870-
5-104 standard. The real devices follow the specification more closely then the simulators.
However, for both real devices, specific sequences of messages have still been found that
make the implementation deviate from the specification. These differences could be used
in attacks against this protocol or to fingerprint devices.

5

Acknowledgements

First of all, I would like to express my gratitude to Juystyna Chromik from the University
of Twente, for the many discussions about my research, arranging meetings with Stedin
and Cogas so that I could perform research there, the thorough reading through everything
I wrote and the really helpful feedback. I would also like to thank Boudewijn Haverkort,
as my first supervisor, and Anne Remke for joining my graduation committee.

I am very grateful that I could write my thesis as part of the KPMG Cyber team.
Particularly, I would like to thank Dennis Waalewijn as my main supervisor from KPMG
and Martijn Sprengers for helping me to come up with the subject of my research. Also,
I would like to express my appreciation for my co-interns, who provided the occasional
necessary distraction.

Furthermore, I would like express my gratitude to Joey Godefrooi and Pascal Everste
from Stedin, for providing me access to one of their testing stations, where I could perform
research. I would also like to thank Gerard Geist from Cogas and Ronald Robbertsen from
Datawatt, for proving me with an RTU to perform tests on.

Lastly, I would like to thank my friends and family for their support throughout this
research and the rest of my study.

7

Contents

1 Introduction 17

2 Industrial Control Systems 21
2.1 History of ICS . 21
2.2 ICS components . 23
2.3 Security of ICS . 25

2.3.1 Security attributes . 25
2.3.2 Security weaknesses . 26
2.3.3 Example attack scenario . 28

2.4 IEC 60870-5-104 . 28
2.4.1 Structure . 30
2.4.2 State transition diagram . 34
2.4.3 IEC-104 parameters . 36

2.5 Conclusion . 36

3 Representing protocols 37
3.1 Protocol implementation . 37
3.2 Formal protocol description . 39

3.2.1 Deterministic finite automaton . 40
3.2.2 Mealy machines . 41
3.2.3 Protocol inputs (alphabet) . 41

3.3 Automata learning . 42
3.4 Algorithm . 43

3.4.1 Example . 46
3.5 Automata comparison . 47
3.6 Conclusion . 48

8 Contents

4 Methodology 49
4.1 Set-up . 49
4.2 Learner . 51

4.2.1 LearnLib . 51
4.2.2 Design of the Alphabet . 52

4.3 Mapper . 52
4.4 Teacher . 54

4.4.1 Subjects under Test . 54
4.5 Checker . 56
4.6 Conclusion . 58

5 Results 59
5.1 Simulators . 59

5.1.1 Axon Test . 60
5.1.2 Mitra Software IEC 870-5-104 Simulator 61
5.1.3 Siemens IEC-Test . 62

5.2 Real devices . 63
5.2.1 Datawatt D05-Lite . 63
5.2.2 Sprecher Sprecon-E-C-92 . 65

5.3 Additional considerations . 66
5.4 Conclusion . 66

6 Conclusions 69
6.1 Discussion . 73
6.2 Future Work . 73
6.3 Recommendations . 74

A IEC-104 ASDU command types 81
A.1 Process information in monitoring direction 81
A.2 Process telegrams with long time tag (7 octets) 82
A.3 Process information in control direction . 82
A.4 Command telegrams with long time tag (7 octets) 83
A.5 System information in monitoring direction 83
A.6 System information in control direction . 83
A.7 Parameter in control direction . 83
A.8 File transfer . 84

9

List of Figures

2.1 Generations in development of ICS/SCADA [12] 22
2.2 Overview scopes ICS, SCADA and DCS . 23
2.3 Typical Industrial Control System . 24
2.4 Architecture of IEC TC57 Information Exchange Standards [10] 29
2.5 Application Protocol Data Unit (APDU) formats 32
2.6 Application Service Data Unit (ASDU) structure 33
2.7 State transition diagram for Start/Stop procedure (controlled station) [42] . 35

3.1 Example protocol . 38
3.2 Possible implementations . 38
3.3 Deterministic finite automaton . 40
3.4 Mealy machine . 41
3.5 Automata learning setup . 42
3.6 Observation Tables and automata learnt from Example 47

4.1 Test Set-up . 50
4.2 Example of concrete mapping from I[C SC NA] 53
4.3 Test Set-up at Stedin . 55
4.4 Test Set-up Datawatt . 56
4.5 Automaton deduced from IEC-104 State Transition Diagram (Figure 2.7) . 57

5.1 Automaton learnt from Axon Test simulator 60
5.2 Automaton learnt from Mitra Software IEC 870-5-104 Simulator 61
5.3 Automata learnt from IEC-Test Simulator 62
5.4 Automaton learnt from Datawatt implementation 63
5.5 Automaton learnt from Datawatt implementation with strange behaviour . 64
5.6 Automaton learnt from Sprecher implementation 65

11

List of Tables

2.1 Order of importance of security attributes per sector 26
2.2 OSI layers . 30
2.3 ASDU types defined in IEC 60870-5-104 . 33
2.4 IEC-104 parameters and default values [42] 36

4.1 Alphabet . 52

5.1 Results overview . 67

13

List of Abbreviations

APCI Application Protocol Control Information. 30, 53

APDU Application Protocol Data Unit. 36, 53, 54

ARP Address Resolution Protocol. 27

ASDU Application Service Data Unit. 30, 34, 52–54, 59, 64, 73, 74

DCS Distributed Control Systems. 23

DFA Deterministic Finite Automaton. 40, 41, 43, 47

DNP3 Distributed Network Protocol. 28, 54

FSM Finite State Machine. 3, 39, 40

HMI Human-Machine Interface. 24, Glossary: HMI

ICS Industrial Control Systems. 3, 17–19, 21, 23, 25–28, 36, 56, 66, 72, 73

IEC International Electrotechnical Commission. 3, 18, 19, 26–28, 30, 36, 56, 66, 69–71,
73, 74

IEC-101 IEC 60870-5-101. 28, 30, 54, 60

IEC-104 IEC 60870-5-104. 21, 27, 28, 30, 48, 51–54, 56, 60, 61, 63, 65, 70–74

IED Intelligent Electronic Device. 24, Glossary: IED

IoT Internet of Things. 25

IP Internet Protocol. 23, 25, 27, 28, 30

14 List of Abbreviations

LAN Local Area Network. 21

MAC Media Access Control. 27

MMS Manufacturing Message Specification. 27, 73

MTU Master Terminal Unit. 24, Glossary: MTU

PLC Programmable Logic Controller. 24, 56, Glossary: PLC

RTU Remote Terminal Unit. 21, 23, 24, 28, 33, 55, 56, 63–67, 70, 71, 73, 74, Glossary:
RTU

SCADA Supervisory Control And Data Acquisition. 15, 17, 23, 28

SSH Secure Shell. 40

SUT Subject Under Test. 42, 46, 51, 54

TCP Transmission Control Protocol. 23, 25, 27, 28, 30, 36, 39

WAN Wide Area Network. 24, 25

15

Glossary

control server Host of the supervisory control software. 24

historian Database with records of all process information. 24

HMI (human-machine interface) Interface to provide human operators with informa-
tion and control. 24

IED (intelligent electronic device) Sensor or actuator that is able to acquire data,
communicate to other devices and perform local processing and control. 24

implementation The realisation of a specification into an actual system. 37

MTU (master terminal unit) Device acting as master for the communication in SCADA
system. 24

PLC (programmable logic controller) Special purpose data acquisition and control
unit provided with a communication interface. 24

protocol “A formal description of messages to be exchanged and rules to be followed for
two or more systems to exchange information.” [20]. 15, 37

RTU (remote terminal unit) Special purpose data acquisition and control unit pro-
vided with a communication interface. 21, 24

specification The complete formal description of a protocol. 15, 37

standard “Document, established by consensus and approved by a recognised body, that
provides, for common and repeated use, rules, guidelines or characteristics for activ-
ities or their results, aimed at the achievement of the optimum degree of order in a
given context.” [19]. 37

17

Chapter 1

Introduction

In 2007, the Idaho National Labratories conducted an experiment that demonstrated that,
when having access to the control network, it is possible to physically damage components
that are used in power grids [35, 40]. This experiment was referred to as the Aurora
generator test and it showed that it was possible to physically destroy a power generator
by attacking its process control system. This control system is also used in operational
power plants.

These Industrial Control Systems (ICS), such as Supervisory Control And Data Acqui-
sition (SCADA) systems, are used to control and monitor (critical) infrastructures. These
SCADA systems often control geographically distributed facilities such as power generation
and distribution, water treatment, and oil and gas distribution. Also, ICS are found in
systems for, e.g., heating, ventilation and air conditioning, as well as lighting or physical
security.

Most of these systems were designed decades ago as standalone systems and were not
connected to other networks. However, as these systems have become more connected over
the years, threats from outside the network cannot be disregarded anymore. Even if the
network of some industry, e.g., a power plant, is not connected to the internet, it can still
be infected with malicious software by a device from outside the network. For example,
this happened to an Iranian nuclear power plant, when a computer that was infected with
the Stuxnet virus was connected to the trusted network of the nuclear power plant [26].

ICS are widely used, especially for controlling critical infrastructures; unfortunately, in
many cases the protocols used for the communication in ICS, lack a formal proof that they
satisfy the specification. For example, there could be flaws in implementations of protocols
used in ICS, which may affect the security of the entire system. Such a flaw could cause
a device to crash or become unresponsive, but this often only happens under irregular
conditions, e.g., when multiple unusual messages are received in a specific order. This can

18 Chapter 1. Introduction

be a serious threat to the process, if the device with the implementation flaw is important
to the system.

This research investigates implementations of the IEC 60870-5-104 protocol, which is an
ICS protocol that is mainly used in power distribution. This protocol was chosen, because
it is crucial for the communication between the control stations and distribution stations in
Europe, even when these distribution station use newer protocols internally. Although this
protocol is widely used in Europe, not much research has been performed on its security
[28]. In the research for this thesis a tool is developed that is capable of inferring a formal
representation from an IEC 60870-5-104 implementation. The source code of this tool can
be found on GitHub [24].

The goal of this research is to provide a method to formally represent implementations
of IEC 60870-5-104, as well as to provide means to analyse and compare the obtained
representations and use them to assess the security attributes of IEC 60870-5-104. To
achieve these mentioned goals, the following research questions are addressed in this master
thesis:

RQ1: How can implementations of IEC 60870-5-104 be represented formally?

The goal of this research question is to propose a method to generate formal representations
from the implementations of IEC 60870-5-104. To achieve this goal, two sub-questions need
to be addressed first:

a) Which methods exist to generate formal representations?

b) What method is suitable for formally representing protocols?

RQ2: To what extent do implementations of IEC 60870-5-104 comply to their
standard?

The goal of this research question is to provide an analysis of implementations of the IEC
60870-5-104 protocol and to compare them to the standard. The method that is obtained
from the first research question can be used to represent these implementations formally.
In order to be able to achieve this goal, these sub-questions need to be addressed first:

a) What implementations of IEC 60870-5-104 are available?

b) How can the IEC 60870-5-104 standard be formally represented?

c) How to compare these formal representations?

Chapter 1. Introduction 19

d) What do the findings from these questions tell about the IEC 60870-5-104 standard?

If these comparisons yield differences between implementations of the IEC 60870-5-104
specification, this indicates that the specification contains ambiguities and obscurities.
These differences are described and their significance is examined by, e.g., investigating if
a transition that can be circumvented in one of the implementation could cause incorrect
behaviour.

RQ3: What information security attributes are violated in the implementations
that were researched in the second research question and how?

The goal of this research question is to perform an assessment of the information security
attributes based on the findings from the second research question. Before violations of
these security attributes can be found, the following sub-question needs to be addressed:

a) What information security attributes are relevant in ICS?

The first contribution of this thesis is the described tool that can be used to infer formal
representations automatically from any implementation of IEC 60870-5-104. The second
contribution is the comparison and analysis of these formal representations that this tool
generates. Another contribution is the assessment of the information security attributes
of the implementations. Finally, the last contribution is the analysis of the specification
itself.

The rest of this thesis consists of the following: Chapter 2 provides a background
on ICS and their development and security aspects. In Chapter 3, methods on how to
learn state machines from protocol implementations are given. Chapter 4 describes the
methodology and the tools that were used and Chapter 5 describes the results. Finally,
Chapter 6 concludes this thesis with a discussion about the research, ideas for future work
and recommendations for vendors and operators.

21

Chapter 2

Industrial Control Systems

This chapter provides background information about Industrial Control Systems (ICS) and
their security. First, section 2.1 provides some historical background on the development of
ICS. Section 2.2 defines the components of ICS, as they are used in the rest of this thesis.
Then, background information about the security of ICS is given in section 2.3. Section
2.4 describes the protocol IEC 60870-5-104 (IEC-104) that is examined in the rest of this
research. Finally, this chapter is concluded with several final remarks in section 2.5.

2.1 History of ICS

Thakur [44] divides the historical development of ICS into three generations: (i) the mono-
lithic generation (Figure 2.1a), (ii) the distributed generation (Figure 2.1b) and (iii) the
networked generation (Figure 2.1c).

In the monolitic generation, ICS consisted of a mainframe computer with a dedicated
serial line to each remote terminal unit (RTU) in the system. Each ICS vendor had
developed their own devices that were using their own proprietary protocols. This resulted
globally in about 200 proprietary protocols that were not interoperable [22].

In the distributed generation, ICS were not controlled by a single mainframe anymore.
Instead, the mainframe was replaced by a local area network (LAN) of multiple systems.
In this LAN each of the systems had a specific task. Communication between this LAN
and the RTUs still happened over dedicated lines, but now there was one single computer
in the LAN with the task of communicating with the RTUs. On the LAN itself the devices
became connected using standard protocols, while for the communication with the RTUs
proprietary protocols were still used.

In the networked generation, the proprietary protocols and architecture were replaced
by open standards. In this generation all devices (that are capable of it), communicate

22 Chapter 2. Industrial Control Systems

(a) First generation: monolithic (b) Second generation: distributed

(c) Third generation: networked

Figure 2.1: Generations in development of ICS/SCADA [12]

2.2. ICS components 23

over packet switched networks using standard protocols like, e.g., TCP/IP [11]. Between
the legacy RTUs, that are not capable of communicating over the standard protocols, a
communication server is placed, which translates the communication. As the protocols in
this architecture are based on open standards, interoperability between systems of different
vendors became possible.

2.2 ICS components

ICS is the most comprehensive term for several types of control systems, including Super-
visory Control And Data Acquisition (SCADA) systems and Distributed Control Systems
(DCS) [39]. In Figure 2.2 the used terminology is visualised. The term SCADA is used to
describe systems spanning a large geographical area, whereas DCS describes systems con-
trolling a single location. This is denoted in Figure 2.2 by presenting DCS as a subsystem
of SCADA. Note, that DCS do not have to be a part of a SCADA system; it can also be
a standalone system.

ICS: all industrial processes

SCADA: large geographical area

DCS: single location

devices

Figure 2.2: Overview scopes ICS, SCADA and DCS

ICS or SCADA systems generally can be divided intro three parts: (i) field network,
(ii) control network and (iii) communication link [5]. For each of these parts several gen-
eral components can be identified, as can be seen in Figure 2.3. How these components
cooperate is described next.

24 Chapter 2. Industrial Control Systems

 WAN

Communication link
RTU / PLC IED

 Field network 1

RTU / PLC IED

 Field network 2

Control server

MTU

Historian

HMI

 Control network

Figure 2.3: Typical Industrial Control System

Field network

The field network comprises the remote location that is controlled. Components that gen-
erally can be found in a field network are: a remote terminal unit (RTU), a programmable
logic controller (PLC) and an intelligent electronic device (IED) [5, 33, 14]. The primary
function of the RTU is to communicate with the MTU in the control network. Further-
more, an RTU can also act as a PLC in the field network. Attached to a PLC there can
be several IEDs, from which the PLC collects data and to which it can send commands.

Control network

The control network comprises the location from where the entire system is controlled.
Components that generally can be found in control networks are: a control server, a human-
machine interface (HMI), a master terminal unit (MTU) and a historian. The control server
controls this network and hosts the control software. The MTU sends control data to the
RTUs and presents gathered data to the HMI. This HMI can be used by human operator
to obtain information and to control the system. Lastly, the historian contains a database
with all prior process information.

Communication link

The communication link can be any link, both wired or wireless that connects a field
network to the control network. Most communication links are using a wide area network

2.3. Security of ICS 25

(WAN).

2.3 Security of ICS

As described in section 2.1, ICS historically were structured so that they mainly depended
on two forms of protection [5]: (i) the so-called air gap that isolated the systems from
other networks, and (ii) the reliance of vendors on security through obscurity. This latter
means that vendors believed that their systems would be safe as long as they would keep
the information about them secret.

However, in the latest generation, ICS have become more interconnected, as a result
of which protecting ICS became an even greater challenge [11]. Before this generation, an
attacker had to acquire physical access in order to intrude the ICS, because there were only
dedicated serial lines. Nowadays, the attacker would be able to attack the ICS remotely
by compromising only a single machine that has access to the ICS’ network.

Because of the standardisation of protocols and the increase in use of generic network
devices, security through obscurity cannot be considered as a protection mechanism. In the
endeavour of reducing cost and increasing efficiency, more low cost commercial off-the-shelf
devices, like Windows computers, are used in ICS [5]. Also, the universal TCP/IP protocol
stack is adapted more often.

Additionally, with the current tendency where all devices become increasingly connected
to the internet, resulting in the so-called Internet of Things (IoT), the attack surface became
larger for ICS [21]. Also, with the development of search engines that index both ICS and
IoT devices, these devices have become easier to find over the internet. Examples of these
are Shodan [38] and Censys [7], in which a protocol name can be entered, which results
in all indexed devices that are accessible through the internet and recognised to use that
protocol.

The rest of this section, first, describes the security attributes as they apply to ICS.
Then, security weaknesses in ICS are addressed and, finally, an example attack scenario is
described.

2.3.1 Security attributes

ICS face different security challenges than regular IT. Table 2.1 shows that the order of
importance of security attributes in ICS is the opposite of the order in regular IT. Where in
securing regular IT confidentiality is most important, in securing ICS, availability is most
important [47]. The reason for this is that most ICS controlled processes are real time

26 Chapter 2. Industrial Control Systems

processes that depend on immediate feedback. When these processes are not available, this
could result in significant (financial) loss for the operator. On the contrary, confidentiality
generally is less important in ICS, as the messages sent in those are relatively predictable
and not containing much private information.

This difference is important, as this means that it would be a much bigger issue if an
attacker would be able to shut down or disrupt a protocol in an ICS, than it would be for
IT systems. Therefore, it is essential that the systems and protocols do not get disturbed.

Table 2.1: Order of importance of security attributes per sector

IT security

1. confidentiality

2. integrity

3. availability

ICS security

1. availability

2. integrity

3. confidentiality

2.3.2 Security weaknesses

The security weaknesses found in ICS are caused either by lack of sufficient security mech-
anisms or they origin in design [25]. The first ones often are known but not implemented
either due to the costs of deploying security measures, or because of difficulties in applying
them in legacy systems [28]. The second ones can have different causes, like weaknesses in
the way a network is built or that there are security mechanisms available but not used.
Even more particularly, these design vulnerabilities can origin in incorrect implementations
of ICS specific protocols.

Most communication between ICS devices follow ICS specific protocols [35]. As seen
in the last section, the availability of these protocols is crucial for the functioning of the
ICS. That means that if there is a vulnerability in the implementation of such a protocol
in a device in the ICS, this is a vulnerability for the entire ICS. Therefore, attacks on ICS
protocols should be considered a significant threat to ICS. In the rest of this section several
examples are given to show that attacks on ICS protocols are possible in practice. After
that, the ICS protocol IEC 60870-5-104 is introduced in section 2.4 and examined in the
rest of this research.

The most extreme objective of attacks on ICS can be to cause physical damage. An ex-
ample proving that this is possible by manipulating an ICS protocol is the Aurora generator
test that was described in the Introduction.

2.3. Security of ICS 27

Most of the protocols used in ICS, such as also IEC-104, do not contain any form of
cryptographic protection [35]. Also, most ICS protocols use weak or no authentication
and integrity checks. This enables conducting several types of attacks on these protocols.
Rrushi [35] describes three of these types of attacks:

man-in-the-middle attack where the attacker obtains access to the network and can
intercept all messages between two nodes in the network;

malicious machine code upload attack where the attacker is able to use the ICS pro-
tocol to upload malicious machine code to a process control system;

denial of services attack where the attacker is able to disrupt connections to specific
devices in the network.

For example, Kang et al. present an attack on an ICS protocol that is caused by
the lack of authentication [23]. They describe a man-in-the-middle attack on the ICS
protocol IEC 61850, which is also mainly used in power grids. In order to perform this
attack they use the Address Resolution Protocol (ARP) that is used to resolve IP addresses
into MAC addresses. By spoofing the table that is used to resolve these addresses, they
are able to route all traffic in the ICS protocol via an attacker. Kang et al. use this ARP
spoofing to man-in-the-middle IEC 61850’s communication service Manufacturing Message
Specification (MMS). Due to the lack of authentication, the attackers are able to intercept
the sent MMS messages and alter them. As IEC-104 also misses authentication, it would
also be possible to conduct a similar attack on IEC-104.

Furthermore, Zhu et al. [47] describe several attacks on the implementations of pro-
tocols used in ICS. For example, they describe several denial of service attacks that ex-
ploit vulnerabilities in the implementation of TCP/IP in Windows systems that were not
patched. Also, they describe a vulnerability in an implementation of MMS, i.e. it does
not handle all malformed packets correctly, which makes a remote denial of service attack
possible.

More generally, for every protocols that runs on top of TCP/IP, the absence of adequate
authentication makes it possible to spoof TCP packets and set wrong flags [35]. This could
be used by an attacker to perform a denial of service attack, as wrong flags could cause a
TCP connection to terminate.

As these examples show, various research has been performed that examine vulnerabil-
ities in TCP. Therefore, these vulnerabilities are not further investigated in this research.
This research is scoped to an ICS protocol on top of TCP, i.e. IEC-104, which is described
in more detail in section 2.4.

28 Chapter 2. Industrial Control Systems

2.3.3 Example attack scenario

Before the details on IEC-104 are given, this section first provides an example of an attack
scenario that could be performed with the ICS security weaknesses that are investigated
in this research. This attack scenario consists of the following steps:

1. Achieve (one-time) access to the control network (for example with an infected USB-
stick).

2. Send messages to multiple RTUs to set unsafe conditions.

3. Make substations unreachable by sending a specific stream of messages that exploits
the incorrect implementation.

When these steps are executed, the processes on multiple sites are in unsafe conditions
and an operator would not be able to resolve that remotely. This could have serious
consequences if the operator is not able to reach each of the sites before accidents occur.

These first two steps are not in the scope of the research in this thesis, as the first step
can be performed in multiple different ways and the second step requires regular use of the
protocol. Therefore, the focus of this research is on the third step of this example attack
scenario.

2.4 IEC 60870-5-104

As stated in the Introduction, this research focuses on IEC 60870-5-104 [42]. This is one
of the protocols in the IEC 60870 collection of standards that was developed by Technical
Committee 57 (TC57) of the International Electrotechnical Commission (IEC) [28]. The
standards in IEC 60870 were developed between 1988 and 2000 for the transmission of
SCADA telemetry control data. These standards describe the protocols that are currently
used in the European electrical industry [9]. Next to that, they are also used by some
water and gas industries in Europe.

As Figure 2.4 shows, both IEC 60870-5-101 and -104 are used for the communication
between the control centre and the substations. IEC-104 is the TCP/IP version of the
older serial protocol, IEC 60870-5-101 (IEC-101) [30]. IEC-101 defines all functionality
and data objects that are necessary for telecontrol applications over wide areas, such as
communication between electrical control station and substation systems [9].

According to Maynard and Mclaughlin [28], most research on vulnerabilities in ICS
protocols is not conducted on IEC-104, but on other protocols like DNP3 (i.e. a standard

2.4. IEC 60870-5-104 29

Figure 2.4: Architecture of IEC TC57 Information Exchange Standards
[10]

30 Chapter 2. Industrial Control Systems

that is derived from IEC-104 during its development and is used mainly in North-America).
Therefore, more research has to be performed on vulnerabilities in IEC-104.

Technical specification IEC TS 60870-5-7 [43] defines an implementation of IEC 62351 to
provide security and authentication to IEC-104. The purpose of this technical specification
is to make it possible to verify that IEC-104 messages were sent by an authorised user and
that they were not modified by a third party. However, due to implementation costs, this
technical specification is not implemented in many systems.

2.4.1 Structure

Table 2.2: OSI layers

7 Application
ASDU
APCI

6 Presentation
5 Session

4 Transport TCP

3 Network IP

2 Link
Ethernet

1 Physical

IEC-104 describes two different layers that can be
placed in the application layer (layer 7) of the OSI-
model [42]. As shown in Table 2.2, the bottom one is
the Application Protocol Control Information (APCI)
layer. The APCI layer lays on top of the TCP layer
and can has three different of message formats: Unnum-
bered control functions (U-format), numbered Supervi-
sory functions (S-format) and the Information transfer
format (I-format). On top of the APCI layer is the Ap-
plication Service Data Unit (ASDU) layer. This layer is
derived from the message structure defined in IEC-101
and it is only used in I-format messages. The purpose and structure of these two layers is
examined next.

As can be seen in Figure 2.5, the first two bytes of each of the three IEC-104 message
formats have the same purpose. The first byte indicates that it is an IEC-104 message and
this byte always the decimal number 104. The second byte indicates the length of the rest
of the message, i.e. the length of the message without the first two bytes. For U-format
and S-format messages, this length should always be 4.

U-format messages (Figure 2.5a) either describe activation or confirmation and have
three types: STARTDT, STOPDT and TESTFR. The STARTDT (start data transfer)
type is to set up a connection, the STOPDT (stop data transfer) to tear down the connec-
tion and the TESTFR (test frame) is to test if the connection is still active.

S-format messages (Figure 2.5b) are used to confirm up to which I-format message is
received.

I-format messages (Figure 2.5c) are the messages that are used to send actual data.
They use TypeIDs to define what kind of message is sent. These are numbers that range

2.4. IEC 60870-5-104 31

from 0 to 255, where TypeID 0 is reserved not to be used. The TypeIDs ranging between
1 and 127 mostly originate from the IEC 60870-5-101 standard, except for several changes
and additions [41, 42]. This TypeID range from 1 to 127 is divided further into the groups
that are shown in Table 2.3. The TypeIDs in the range from 128 up to 255 are not defined
in the standard and are there to be used by a vendor to define its own custom private
TypeIDs. Of this private range, the TypeIDs 128 up to 135 are reserved for routing of
messages.

32 Chapter 2. Industrial Control Systems

01234567

START (104)

Length

TESTFR STOPDT STARTDT 1 1

0

0 0

APCI

(a) Unnumbered control functions (U-format)

01234567

START (104)

Length

0 0 1

Receive Sequence Number 0

APCI

(b) Numbered Supervisory functions (S-format)

01234567

START (104)

Length

Send Sequence Number 0

Receive Sequence Number 0

APCI

. . .

ASDU

(c) Information transfer format (I-format)

Figure 2.5: Application Protocol Data Unit (APDU) formats

2.4. IEC 60870-5-104 33

01234567

Type Identification (TypeID)

Variable Structure Qualifier

Cause of Transmission

Common Address

Data Unit Identifier

Information Object Identifier (IOA)

. . .

Information Object

Figure 2.6: Application Service Data Unit (ASDU) structure

Table 2.3: ASDU types defined in IEC 60870-5-104

TypeID

0..44 Process information in monitoring direction (from slave to master)

45..69 Process information in control direction (from master to slave)

70..99 System information in monitor direction

100..109 System information in control direction

110..119 Parameter in control direction

120..127 File transfer

Not all TypeIDs in all ranges are used. When there are TypeIDs missing they are
reserved for new compatible definitions in that range. An example of a type of message
from the first range is TypeID 1, which is also represented with the tag M SP NA 1 and is
used to send single point formatted data in monitoring direction (from RTU to controlling
station). An example of a message that is sent in control direction is the message with
TypeID 100 (C IC NA 1). This is the general interrogation command that can be used to
request information from all controlled stations. The full specification of the rest of these
TypeIDs can be found in Appendix A.

34 Chapter 2. Industrial Control Systems

Not every device that implements IEC-104 implements all of these different TypeIDs.
As specified in the standard, every device should have an interoperability list, that specifies
which ASDU types are supported, combined with which Causes of Transmission can be
used for each type [42].

2.4.2 State transition diagram

Figure 2.7 shows the state transition diagram for controlled stations, as it is presented
in the IEC-104 standard. This diagram shows that in the initial (STOPPED) state, the
device should only respond to U-frames and terminate the connection if any other type
of message is received. Also, it shows that there is an UNCONFIRMED STOPPED state
that is reached when a STOPDT command is send while not all I-frames are confirmed by
an S-frame. Otherwise, if all I-frames are confirmed, a STOPDT should directly receive a
STOPDT confirmation and enter the STOPPED state.

2.4. IEC 60870-5-104 35

60870-5-104/FDIS © IEC – 21 –

STOPPED
connection

start

STARTED
connection

Pending
UNCONFIRMED

STOPPED
connection

U-frame[]/
or S-frame[]/
or I-frame[]/

U-frame[]/
S-frame [no unconfirmed I-frames]
/Send STOPDT con

STOPDT act[unconfirmed I-frames]

U-frame[]/
or S-frame[]/

STARTDT act[]
/Send STARTDT con

stop

Timeout t1[]/Active close
or S-frame[]/Active close
or I-frame[]/Active close

Timeout t1[]/Active close

Timeout t1[]/Active close
or I-frame[]/Active close

STOPDT act[no unconfirmed I-frames]
/Send STOPDT con

Connection established

Connection terminated

NOTE 1 Connection terminated means that there is no longer any data exchange betwen TCP and the application
protocol (CS104).

NOTE 2 t1 is the timeout of a sent U-frame or I-frame.

Figure 17 – State transition diagram for Start/Stop procedure (controlled station)

Figure 2.7: State transition diagram for Start/Stop procedure (controlled
station) [42]

36 Chapter 2. Industrial Control Systems

2.4.3 IEC-104 parameters

In IEC-104 several parameters are used, that have to be defined for each device. The TCP
port number should be 2404 in all cases. In Table 2.4 the other parameters are explained
and their default values are given.

Table 2.4: IEC-104 parameters and default values [42]

k Maximum number of unacknowledged I-format APDUs
before transmitter terminates

(default: 12 APDUs)

w Maximum number of received I-format APDUs before
receiver must acknowledge

(default: 8 APDUs)

t0 Time-out of connection establishment (default: 30s)
t1 Time-out of receiving response to latest sent I-format/U-

format APDUs
(default: 15s)

t2 Time-out for sending acknowledgement S-format mes-
sage (t2 < t1)

(default: 10s)

t3 Time-out for sending TESTFR after not receiving any
APDUs

(default: 20s)

2.5 Conclusion

This chapter described that ICS consist of a control network, a field network and a com-
munication link. Each of these networks consists of different components. The historical
development is described and shows the development of air-gapped ICS to networked ICS
that are in use nowadays. These networked ICS are better controllable, but also introduce
security issues. One of the reasons for that is that the protocols used in ICS are not secure
by design. Finally, the end of this chapter specifies IEC 60870-5-104, which is an ICS
protocol that is not secure by design.

37

Chapter 3

Representing protocols

This chapter starts in section 3.1 with an explanation regarding what is meant with the
implementation of a protocol. Next, methods to formally describe protocols are given in
section 3.2, after which in section 3.3 an elaboration is given on how automata, i.e. these
formal descriptions, are learnt. In section 3.4 the algorithm to learn these automata is
given. Section 3.5 gives a description on how to compare these automata with each other,
after which section 3.6 this chapter concludes.

3.1 Protocol implementation

In short, an implementation is the interpretation of a specification that is presented in a
standard for a particular protocol. When a specification is unclear, e.g., it consists only of
a long ambiguous textual description [34], it might be interpreted differently then intended
during the implementation of a protocol. This causes differences in interpretation of the
specification which results in differences in the implementations of this specification.

For example, suppose a specification defines a protocol structure as shown in Figure 3.1
and specifies that: “If flag F is set in the packet, field X contains the value of parameter
x.” This specification insufficiently defines what should happen if flag F is not set. Figure
3.2 shows three different possible implementations that follow this specification. The im-
plementation in Figure 3.2a sets X to zero when flag F is not set. In the implementation in
Figure 3.2b it is undefined what should happen with X. In the implementation in Figure
3.2c the entire field X is skipped and the next field starts where X would start if the flag
is set. All these three cases comply to the given specification although their behaviour is
rather different. Therefore, this is a case of underspecification, which could cause problems
if two devices are implemented differently.

38 Chapter 3. Representing protocols

. . . F

X Y

Figure 3.1: Example
protocol

. . . 0

0 Y

(a) Field X is zero when F=0

. . . 0

undefined Y

(b) Field X is undefined when F=0

. . . 0

Y

(c) Field X is skipped when F=0

Figure 3.2: Possible im-
plementations

3.2. Formal protocol description 39

The implementation of a protocol should be able to handle every input in every state.
If there are states in a protocol where some input cannot be handled, this could poten-
tially result either in incompatibilities between different implementations or even worse,
in security flaws [34]. In such a case, it might be possible to let an implementation crash
by sending a specially crafted input when the implementation is in a certain state of the
protocol. This could, e.g., be used in a denial of service attack. Van den Broek et al. show
that this was possible in GSM [45]. By sending specially crafted messages, they were able
to crash a mobile phone.

3.2 Formal protocol description

As described in the previous section, protocols describe which messages can be exchanged
and which rules have to be followed. An implementation should be able to handle all of
these messages in each state. Therefore, the messages of these protocols can be regarded
as symbols in the alphabet of all possible messages.

Gunawan et al. describe three types of models to formally describe protocols: the State
Transition Model, the Programming Language Model and the Hybrid Model [16]. State
Transition Models describe protocols as a finite graph where the protocol’s events are
described as inputs and outputs between nodes. Programming Language Models describe
protocols in a high level programming language notation. Hybrid Models combine both
State Transition Models and Programming Language Models to describe protocols.

State Transition Models are the simplest models and are best understandable for hu-
mans. Therefore, this study elaborates on the most widely accepted State Transition
Model: the finite state machine (FSM), which is also known as the finite automaton.
Henceforward, this study refers to these FSMs using the term automaton.

Automata provide a method to systematically model the implementation of protocols.
An automaton can be inferred from an implementation using a learning algorithm as de-
scribed in section 3.3. These automata can be used to compare the implementations to
explore if there are differences between them. These differences could, e.g., indicate incom-
patibilities or possibly even a security flaw in one of the implementations. For example,
in the research of Fiterau-Brostean et al. [13] differences are found between the automata
of TCP implementations of different operating systems. As a result of these differences
in implementation, irregular situations exist in which the behaviour of TCP differs per
operating system, making it possible to fingerprint the operating system.

40 Chapter 3. Representing protocols

Similarly, Verleg [46] discovered differences between different implementations of the
SSH protocol. He discovered that in a situation where the standard does not specify what
to do, different implementations act differently.

Generally, there are two different types of automata in the form of FSMs: i) those that
either accept or reject an input and ii) those that return an output depending on the input.
From the first type, deterministic finite automata are described in section 3.2.1. For the
second type, Mealy machines are described in section 3.2.2.

3.2.1 Deterministic finite automaton

A simple automaton is the deterministic finite automaton (DFA). A DFA consists of states
and actions [31]. By performing an action in a certain state, you are able to reach a new
state. Furthermore, it has one starting state and one or more accepting states. In Figure
3.3 an example DFA is shown. The starting state of this DFA is s0 and the only accepting
state also is s0.

DFAs can be used to describe which sequences of actions are accepted and which are
rejected. When a specific sequence of actions starting from the starting state transitions
the DFA into an accepting state, that means that that sequence of actions is accepted.
Otherwise, if the DFA is not in an accepting state after the sequence, that means that the
sequence is rejected by the DFA.

s0

s1

s2

A B

B
A

A

B

Figure 3.3: Deterministic finite automaton

3.2. Formal protocol description 41

3.2.2 Mealy machines

To represent the implementations, the research by Verleg [46] is used as example on how
to represent the automata in the form of Mealy machines. A Mealy machine is a com-
prehensible automaton consisting of states and transitions. A combination of both the
current state and the input determine the next state. Except for that, this combination
also determines the output. This results in each transition containing both an input and
an output.

In contrast to DFAs, Mealy machines do not only describe whether a sequence of inputs
is accepted or rejected, but is also able to describe more of the behaviour of the system in
terms of output.

s0

s1

s2

A/B B/B

B/B
A/A

A/B

B/A

Figure 3.4: Mealy machine

In Figure 3.4 a Mealy machine is graphically represented. The circles represent the
states and the arrows represent transitions. As explained each transition represents both
an input and an output, therefore also the arrow represents these two in the form of
input/output. For example, if in Figure 3.4 in state s0 the input A is received, the output
B is returned and the state becomes s1.

3.2.3 Protocol inputs (alphabet)

As the messages in a protocol contain many different values per field, the total number
of possible messages is rather large. Therefore, it is important to specify the granular-
ity/extensiveness of the alphabet to be able to contain the time complexity for learning

42 Chapter 3. Representing protocols

within feasible boundaries.
The complexity of this alphabet is determined by the level of detail of the alphabet.

Generally, the more extensive the alphabet is, the more complex the learnt automaton
becomes.

3.3 Automata learning

The method used to infer automata is similar to the approaches used by Caldwall et al.
[6] and Verleg [46]. In these approaches the automaton learning process requires three
components, as seen in Figure 3.5. These components are a learner, a teacher and an
intermediate layer (or mapper). The explanation of these terms can be found below.

Figure 3.5: Automata learning setup

Learner tool that implements a learning algorithm.

Teacher subject under test (SUT), e.g., the implementation of a protocol, of which the
automaton is learnt.

Mapper abstraction layer used to abstract from the specific content and reduce the so-
called alphabet (explained in section 3.4) of all possible requests. This layer determines
the level of abstraction and therefore of detail of the alphabet. The mapper is constructed
using extra information from informal specifications or observing the behaviour of the SUT
[2].

The learner learns the SUT’s automaton by querying the teacher and parsing its re-
sponses. Figure 3.5 also shows that these queries and responses pass through the mapper.
This mapper transforms the abstract queries from the learner to concrete queries that the
teacher can understand. Vice versa, the mapper also transforms the concrete responses
from the teacher to abstract responses, so that these can be used by the mapper. Section
3.4 introduces the algorithm that is used for learning the automata. Subsequently, Chapter

3.4. Algorithm 43

4 (Methodology) describes the tool that actually applies this algorithm and produces these
automata.

3.4 Algorithm

As a learning algorithm to learn automata, Angluin’s L? algorithm [3] can be used. The
original version of this L? algorithm produces DFAs by randomly sending different se-
quences of inputs from the alphabet and then observing if these are accepted. If a specific
input, that causes all subsequent inputs to change their accepting behaviour, is found, a
state change is inferred. By repeating this procedure, a DFA is inferred.

However, this original L? algorithm only produce DFAs that describe whether inputs
are accepted or not. To be able to produce Mealy machines that can represent the more
complex behaviour of input/output systems, the algorithm needs some adjustments. Shah-
baz and Groz describe these adjustments and show how the L? algorithm can be altered
to produce Mealy machines [37]. The result of this is the L?

M algorithm (Algorithm 1).
Instead of observing whether an input is accepted, this altered L?

M algorithm observes
the output that is returned for each input [8]. If, then, an input is found that causes all
subsequent inputs to produce different outputs, the algorithm infers that a state change
occurred. By repeating this procedure, not a hypothesis for a DFA, but a hypothesis for a
Mealy machine is inferred.

Before looking in greater detail to the learning process in the L?
M algorithm, some

terminology is defined:

distinguishing sequence input sequence that produces different outputs for different
states

access sequence input sequence to reach a specific state from the initial state

counterexample input sequence that results in different outputs for the teacher and the
hypothesis

When looking in greater detail to the L?
M algorithm, the learning consists of first

creating a hypothesis and then iteratively refining this hypothesis in a process that consists
of two steps: the membership step and the equivalence step.

In the membership step the learner chooses an input sequence and sends it to the teacher
to obtain outputs. The learner tries to discover different states by finding distinguishing
sequences. If a new state is found, its access sequence is stored. When every input in every

44 Chapter 3. Representing protocols

known state results in a transition to another known state, the model is closed. When
every state has exactly one transition for every input, the model is consistent. When the
model is both closed and consistent, a hypothesis is generated and this hypothesis is passed
to the equivalence step.

In the equivalence step, the learner sends equivalence queries to the teacher to check if
the the hypothesis is equal to the automaton of the teacher. If these are not equal it means
that a counterexample is found. Then, the membership step is repeated with the coun-
terexample used as an additional distinguishing sequence. When no more counterexamples
are found in the equivalence step, the hypothesis is returned as final and the learning has
finished.

Algorithm 1 shows the pseudo-code of the complete L?
M algorithm. Here, the Input

Alphabet AI is the alphabet as described earlier. The Output Alphabet AO consists of all
possible outputs. The hypothesis is structured as the so-called Observation Table (OT).
This OT can be represented as a 3-tuple (S,E, T), that consists of a set of prefixes (S), a
set of suffixes (E) and a finite function (T) that maps combinations of prefixes and suffixes
to an output.

The OT is called closed when adding any symbol of the alphabet has an equivalent
output to one of the rows that already exists. The OT is called consistent if for all prefixes
that have the same output row, the outputs of that prefixes followed by the same letter of
the alphabet and suffix are also the same.

If the Observation Table is both closed and consistent, the membership step ends and
the equivalence step starts to investigate if a counterexample can be found.

3.4. Algorithm 45

Algorithm 1 L?
M : learning algorithm L? for Mealy machines [3, 31, 37, 17]

Input Alphabet AI

Output Alphabet AO

Observation Table OT = (S,E, T), where initially S = {ε} and E = AI

repeat
OT ← update(OT)
while (¬isClosed(OT) ∨ ¬isConsistent(OT)) do

if ¬isClosed(OT) then . ∃s1 ∈ S, a ∈ AI .∀s ∈ S.row(s1 · a) 6= row(s)
S ← S ∪ {s1 · a}
OT ← update(OT)

end if
if ¬isConsistent(OT) then . ∃s1, s2 ∈ S, a ∈ AI , e ∈ E.row(s1) =

row(s2) ∧ T (s1 · a · e) 6= T (s2 · a · e)
E ← E ∪ {a · e}
OT ← update(OT)

end if
end while
Mconj ←M(OT) . conjecture Mealy machine after the first phase of this round
σconj ← EO(Mconj) . EO denotes a call to the Equivalence Oracle
if σconj 6= ⊥ then

S ← S ∪ Prefix(σconj) . Prefix(σ) generates the set of all pos-
sible prefixes of σ including σ itself

end if
until σconj = ⊥ . until no counterexample is found

function update(OT)
for (s ∈ (S ∪ S ·AI), e ∈ E) do

T (s · e)←MO(s · e) . MO denotes a call to the Membership Oracle
end for
return (S,E, T) . updated OT

end function

function M(OT)
Q← {row(s)|s ∈ S}
for (s ∈ S, a ∈ AI) do

δ(row(s), a)← row(s · a)
λ(row(s), a)← T (s · a)

end for
q0 = row(ε)
return (Q,AI , AO, δ, λ, q0) . Mealy machine

end function

46 Chapter 3. Representing protocols

3.4.1 Example

As an example of how the algorithm runs, this section describes a scenario that shows how
Mealy machines are generated. Given a SUT that holds a variable x and has an input
alphabet a, b and an output alphabet 0, 1. Initially this value x = 0. When the SUT
receives an input a the value of x is XORed with 1 and the result is returned as output.
When the SUT receives a b the current value of x is returned as output. For example,
when first an a is sent, the SUT returns a 1. If the a is followed by a b this results in the
SUT again returning a 1. When subsequently another a is sent, this now causes a 0 to be
returned.

Figure 3.6 shows the OT s and their corresponding automata during the learning pro-
cess. The left side of the OT shows the prefixes, i.e. the messages that are sent first, and
the top side of the OT shows the suffixes, i.e. the last messages that are sent. Figure 3.6a
shows the initial OT after the initial update. This OT is not closed (as can also be seen in
the automaton), because there is a row in the bottom part of the table that does not occur
in the top part of the table (the row with prefix a). Therefore, the algorithm adds this row
to the top part of the table (so that S = {ε, a}) and updates the table again. This update
makes the table both consistent and closed, and because the equivalence oracle does not
find a counterexample, this is the final OT as shown in Figure 3.6b.

3.5. Automata comparison 47

E
a b

S ε 1 0

S ·AI
a 0 1
b 1 0

x = 0 b / 0

 a / 1

(a) First OT and Mealy machine

E
a b

S
ε 1 0
a 0 1

S ·AI

b 1 0
aa 1 0
ab 0 1

x = 0 b / 0

x = 1

 a / 1 a / 0

b / 1

(b) Final OT and Mealy machine

Figure 3.6: Observation Tables and automata learnt from Example

3.5 Automata comparison

When this methodology is used to formally describe multiple implementations as automata,
it is possible to compare these automata. Moreover, it could be valuable to compare a
derived automaton directly to the specification. To be able to compare an automaton to
an automaton that is produced using L? or derived from the specification, a method of
comparison is needed. Possible methods of comparison are described next.

To compare automata the notion of automaton equivalence can be used. Two automata
are called equivalent when they recognise the same language [36]. For DFAs, this can

48 Chapter 3. Representing protocols

easily be understood, as they are equivalent when the same sets of inputs lead to either
an accepting state or not. For other automata, like Mealy machines, this means, that
two automata with the same input and output alphabet, are equivalent if they produce
the same output for each input, when starting from the same initial state. Therefore, it
is possible to check if two automata are equivalent by traversing over both automata in
parallel, while checking if the same input produces the same output. In order to show that
two machines are not equivalent, a sequence of inputs needs to be found, such that this
produces different outputs for the two machines. If such an output exists in some state,
the automata are not equivalent. Otherwise, if such a difference cannot be found after
traversing over the entire automaton, this means that the automata are equivalent.

Aarts et al. [1] describe an alternative method which uses conformance learning model-
based testing. This is a method to compare two models that were learnt using automata
learning. In this method they use the CADP (Construction and Analysis of Distributed
Processes) toolset, which is a toolset that can check the equivalence of two Mealy machines.

Another possibility for the comparison of an automaton to a specification, is by using
Holzmann’s SPIN [18]. SPIN is an automatic model checker that is able to automatically
check an automaton against a specification when that specification is modelled using SPIN.
Also, the inferred automata can be compared with existing automata that originate from
the specification. For example, F. Qin-cui et al. describe how to model the protocol
specification of IEC-104 as an automaton [15].

3.6 Conclusion

In this chapter, methods to formally describe protocols as automata were described. From
these methods, the L?

M algorithm for learning Mealy machines from implementations was
examined more in depth. In the end of this chapter, methods of comparing these produced
automata were described.

49

Chapter 4

Methodology

The following chapter describes the design of the set-up. Beside the earlier described
teacher, learner and mapper that are part of the set-up, this chapter introduces a fourth
component to the set-up: the checker. The set-up with these four components is graphically
shown in Figure 4.1 and is described in section 4.1, after which the separate components
are described in depth in sections 4.2 to 4.5.

4.1 Set-up

The learner implements the L?
M algorithm as described in section 3.4. As shown in Figure

4.1, the learner consists of several components: (i) the experiment, (ii) the membership
oracle + cache and (iii) the equivalence oracle. The experiment uses the membership oracle
to learn a hypothesis (which is structured as an Observation Table). During learning the
membership oracle sends abstract membership queries to the mapper (as presented in
Figure 4.1 as steps 2 and 3), from which it in return receives abstract membership answers
(steps 8 and 9). These queries and answers are called abstract because they are human
readable and they make up the input and output alphabet of the Mealy machine. There
is a cache between the membership oracle and the mapper, which stores each membership
query and its corresponding answer. When a query is passed to this cache it will first
attempt to look it up. Only if the answer is not found in the cache, it will be passed to
the mapper. The membership oracle will continue sending queries until it has a closed
and consistent Observation Table. Then a hypothesis Mealy machine is produced from the
Observation Table.

When the experiment finds a hypothesis, this hypothesis is checked using the equiv-
alence oracle. This oracle will attempt to find a counterexample to the hypothesis. In
order to do that, the oracle first checks if there are not any inconsistencies with the cache

50 Chapter 4. Methodology

SUT

MembershipOracle

EquivalenceOracle

Cache

MapperExperiment

Alphabet

IEC-104
Master

IEC-104
Slave

1

10

2

9

3

8

12

1718

11

5, 14

6, 15

4

7

13

16

Learner Mapper Teacher

1 : Learn / Refine Hypothesis
2, 3 : Abstract Membership Query
4, 5 : Concrete Membership Query
6, 7 : Concrete Membership Answer
8, 9 : Abstract Membership Answer
10,11 : Hypothesis
12 : Abstract Equivalence Query
13,14 : Concrete Equivalence Query
15,16 : Concrete Equivalence Answer
17 : Abstract Equivalence Answer
18 : Confirmation / Counterexample
19 : Final Hypothesis

Checker

19

Figure 4.1: Test Set-up

4.2. Learner 51

and then starts to send 1000 random queries to the mapper, while checking if it matches
the hypothesis. While sending these queries, there is a 1% change that the SUT and the
hypothesis are reset to the initial starting position. When one of these queries contradicts
with the hypothesis, this query is called a counterexample. If no counterexample is found
after the 1000 random queries, the hypothesis is confirmed.

As described, the learner sends queries to the mapper. The main goal of the mapper is
to transform the human readable abstract queries to concrete queries that comply to the
protocol. Conversely, it also transforms the concrete answers back into more simple and
human understandable abstract answers that can be used in the Mealy machine.

The teacher is the SUT, which is an implementation of an IEC-104 controlled station
(slave). To manage the connection with this slave and to really send the messages to
it, the mapper sends its messages to an IEC-104 controlling station (master) that was
implemented. This master then takes these messages, sends them to the SUT and waits
for the SUT to respond. If the SUT does not respond within a specified interval, the master
returns to the mapper that there was no answer. This interval can be configured.

Finally, the final hypothesis is compared to the standard by the checker. In order
to do this, the set-up contains a automaton for the standard, with which the produced
automaton is compared.

4.2 Learner

To learn the automata of the IEC-104 implementations a framework named LearnLib [27]
was used. This framework was used to implement both the learner and the mapper as
described in the previous section. In the following section this framework is described in
more depth.

4.2.1 LearnLib

LearnLib is a Java library that contains a framework to implement both the classical L?

and the L?
M algorithm, as explained in section 3.4. It can be used to determine which input

from the alphabet to send to the SUT. Then it can use the resulting output to learn the
states of the automaton and determine which query to send next [46]. Then it will produce
a Mealy machine that can be compared with the Mealy machine that was deduced from
the specification.

52 Chapter 4. Methodology

4.2.2 Design of the Alphabet

The alphabet is chosen so that it implements all the different message format types from
the IEC-104 standard as described in section 2.4. Of these, all three different U-format
types are part of the alphabet and for all of the different categories of I-format messages
there is one in the alphabet. The complete alphabet is shown in Table 4.1.

Table 4.1: Alphabet

Word Representation

U[STARTDT]
U-format message for starting or stopping data transfer or for testing
the connection, as described in section 2.4

U[STOPDT]
U[TESTFR]

S S-format message as described in section 2.4

I[0] Artificial I-format message with undefined TypeID 0

I[C SC NA]

All specified I-format ASDU command types are in the alphabet. A
complete list of these can be found in Appendix A

I[C DC NA]
...
I[F DR TA]
I[F SC NB]

Lmax Artificial message that only contains the START byte (104) and the
length field set to the maximum om 253 without actually containing
that length

Because of the limitations for learning within feasible boundaries as described in section
3.2.3, not the entire alphabet is used in every run, but a sub-alphabet is constructed out
of this alphabet. Automata are created with these sub-alphabets.

Every I-format messages uses a Cause of Transmission that is allowed according to the
definition in the standard. When it is allowed, this Cause of Transmission is Activation.
Otherwise, it is the most common Cause of Transmission for that TypeID.

4.3 Mapper

As described in section 3.3, the mapper is an abstraction layer that translates between
abstract messages on the learner side and concrete messages on teacher side and vice versa.
For every abstract message in the alphabet, the mapper contains an implementation of a

4.3. Mapper 53

concrete message. These concrete messages are structured according to the formats as
defined in the IEC-104 specification (except for the abstract messages I[0] and Lmax). For
example, the abstract message I[C SC NA] is translated to a concrete message that is
shown in Figure 4.2. In this Figure the I-format APCI header from Figure 2.5c and the
ASDU from Figure 2.6 are combined to form the I[C SC NA] APDU. To implement these
concrete messages OpenMUC j60870 [32] is used.

01234567

104
}

START

14
}

Length

0

[1 - 65535]

}
Send Sequence Number

0

[1 - 65535]

}
Receive Sequence Number

C SC NA (45)
}

Type Identification

0 1
}

Variable Structure Qualifier

0 0 Activation (6)
}

Cause of Transmission

[configurable]

}
Common Address

0

}
Information Object Identifier (IOA)

0 0 0 1
}

Single Command

Figure 4.2: Example of concrete mapping from I[C SC NA]

For every concrete message that the mapper receives from the teacher, the mapper
contains a translation to an abstract message. Such an abstract message contains the
message format (U, S or I); when it is U-format, it also contains whether it is STARTDT,
STOPDT or TESTFR; when it is I-format it also contains the ASDU type of the message.
When an error occurs, e.g., the connection is lost, the mapper translates this to the abstract
message ERROR.

54 Chapter 4. Methodology

4.4 Teacher

To communicate with the SUTs, which are IEC-104 controlled stations (slaves), an IEC-
104 controlling station (master) was implemented using OpenMUC j60870 [32]. However,
before j60870 could be used for this research, several additions and modifications had to
be made. OpenMUC j60870 already implements large parts of the protocol, however, as it
was necessary to be able to control all fields inside the APDUs, several parts needed to be
rewritten. The connection handler needed to be adapted to be able to have control over
the APDUs. Furthermore, j60870 did not support sending and receiving of STOPDT and
TESTFR messages, so these had to be implemented as well.

Also, all the different types of ASDUs needed to be implemented, as well as the custom
ASDU with TypeId 0 (I[0]) and the custom APDU with the length set to the maximum of
253 (Lmax). For the implementation of these, parts of j60870 were used.

In the implementation of this tool the default parameters for IEC-104 were used as
described in section 2.4.

4.4.1 Subjects under Test

The SUTs are the slave implementations of IEC-104. All of these implementations used the
default parameters for IEC-104 as defined in Table 2.4. For this research, it was possible
to acquire access to five different implementations, of which three are simulators and two
are real devices. These implementations are the following:

Axon Test Simulation tool from Axon Group for both masters and slaves of DNP3,
IEC-101, IEC-104 and Modbus [4]. From this tool only the IEC-104 slave was used. This
simulation tool was obtained from http://www.axongroup.com.co/axongroupen/axon_

productos_int.php?i=36.

IEC 870-5-104 Simulator Simulation tool from Mitra Software that simulates an IEC-
104 slave [29]. This simulation tool was obtained from http://mitraware.com/apps/

iec104sim.php.

IEC-Test Free simulation tool from Siemens. This simulation tool is not publicly avail-
able.

http://www.axongroup.com.co/axongroupen/axon_productos_int.php?i=36
http://www.axongroup.com.co/axongroupen/axon_productos_int.php?i=36
http://mitraware.com/apps/iec104sim.php
http://mitraware.com/apps/iec104sim.php

4.4. Teacher 55

Figure 4.3: Test Set-up at Stedin

Sprecher Sprecon-E-C-92 Implementation of an RTU in a real device. Functions as
a gateway to translate IEC-104 to IEC 61850. Figure 4.3 shows the set-up of this device.
Access to this device was provided by Stedin.

56 Chapter 4. Methodology

Figure 4.4: Test Set-up Datawatt

Datawatt D05-Lite Implementation of an RTU in a real device. Can be used as a fully
functional PLC with support for several ICS protocols, e.g., Modbus and IEC 60870-5-101,
-103 and -104. This device was used as an IEC-104 controlled station. Figure 4.4 shows
the test set-up of this device. Access to this device was provided by Cogas.

4.5 Checker

To check if the implementation of a device complies to the standard, its automaton is
compared to an automaton that is deduced from the State Transition Diagram in Figure 2.7.
In this deduced automaton, that is shown in Figure 4.5, the transitions that are caused by a
timeout are omitted. These transitions can be omitted as the tool is built so that timeouts
do not occur during automata learning. The STARTED state is split into two states,
as that actually also is the case in the transition diagram, because a STOPDT message
can cause different transitions depending on if there are UNCONFIRMED I-frames or not.
Therefore, the STARTED state is the state in which there are no unconfirmed I-frames and

4.5. Checker 57

the UNCONFIRMED STARTED state is the state in which there are unconfirmed I-frames.
The other states are the same as in the state transition diagram, where TERMINATED is
the state in which the connection is terminated.

STOPPED U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

STARTED

U[STARTDT] / U[STARTDT]

TERMINATED

S / ERROR
I / ERROR

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

S / -

UNCONFIRMED
STARTED

I / I

U[STARTDT] / ERROR
U[STOPDT] / ERROR
U[TESTFR] / ERROR

S / ERROR
I / ERROR

S / -

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

I / I

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

I / ERROR

U[STARTDT] / -
U[STOPDT] / -

U[TESTFR] / U[TESTFR]

Figure 4.5: Automaton deduced from IEC-104 State Transition Diagram
(Figure 2.7)

The implementation of a device complies to the standard if its produced automaton
is equivalent to this deduced automaton. To check this, a checker was built using Au-
tomataLib [27], which checks whether both automata are equivalent by traversing both

58 Chapter 4. Methodology

automata as described in section 3.5. The algorithm that is implemented in the checker is
shown in Figure 2.

Algorithm 2 Checker algorithm for checking Mealy machine equivalence

Mealy machines (Q,AI , AO, δ, λ, q0) and (Q′, AI , AO, δ
′, λ′, q′0)

P ← {(q0, q′0)} . queue of state tuples to process
repeat

(q, q′)← head(P) . take first tuple from process queue
for a ∈ AI do . for every word in the alphabet

if λ(q, a) 6= λ(q′, a) then . if the outputs are different
d← wordsToReach(q) ∪ a . separating word is found

end if
if (δ(q, a), δ′(q′, a)) /∈ R then . if successor state is not already processed

P ← P ∪ (δ(q, a), δ′(q′, a))) . add successor states to process queue
end if

end for
P ← tail(P) . remove processed tuple from process queue
R← (q, q′) . add processed tuple to set of processed state tuples

until P = ∅ . until all reachable combinations of states are processed
return (d == ⊥) . return whether no separating word is found

4.6 Conclusion

In this chapter the used methodology was described. First, section 4.1 showed that the
global set-up consists of a learner, mapper, teacher and checker. Next, the components of
each of these were described and showed how this set-up produces automata.

59

Chapter 5

Results

The results are presented in the following chapter. First, in section 5.1, the results col-
lected from the three simulators (Axon Test, Mitra Software IEC 870-5-104 Simulator
and Siemens IEC-Test) are discussed. Next, in section 5.2, the results collected from real
implementations (Datawatt and Sprecher) are examined.

As shown next, in most automata only one ASDU type is used for I-format messages.
This is the case because differing the I-format ASDU type would not lead to a different
automaton. Also, for certain ASDU types this would lead to differences that are only based
on the amount of information objects returned per message. This would only lead to larger
automata that actually are equivalent to those presented here.

5.1 Simulators

The simulators were used to build the learner and learn the first automata. For each of
these simulators, the results and limitations are discussed here.

60 Chapter 5. Results

STARTED

U[STARTDT] / U[STARTDT] | I[M_EI]
U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[C_SC] / I[C_SC]

Figure 5.1: Automaton learnt from Axon Test simulator

5.1.1 Axon Test

The first tested simulator was the Axon Test simulator mentioned in section 4.4.1. As can
be seen in Figure 5.1, Axon Test responds with a confirmation message when it receives
any message. This shows that Axon Test only simulates responses on the IEC-101 layer. It
only confirms the U-format messages of the IEC-104, but further ignores them. Therefore
only a single state exists that is most similar to the STARTED state in the state transition
diagram in Figure 2.7. Also, it can be seen that when Axon Test receives a STARTDT
message it does not only reply with the STARTDT confirmation, but also with an End of
Initialization I-format message. This message is sent because Axon Test was reset before
every run. Although this simulator does not give an automaton that provides many new
insights for comparison, it was useful to use it in the test phase in order to learn how
the packages have to be structured, because it was crashed when it received a wrongly
structured IEC-104 packet.

Limitations and challenges The IEC-104 standard was not implemented properly in
Axon Test, as it did not respond to any messages after the connection was closed and a
new connection was made. Because of this, the simulator had to be restarted before every
run.

5.1. Simulators 61

STOPPED

U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[C_SC] / -

STARTED

U[STARTDT] / U[STARTDT]

U[STARTDT] / U[STARTDT]
U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[C_SC] / I[C_SC]

Figure 5.2: Automaton learnt from Mitra Software IEC 870-5-104 Simu-
lator

5.1.2 Mitra Software IEC 870-5-104 Simulator

Mitra Software’s IEC 870-5-104 Simulator is the only tested simulator that actually has
more than one state. In its initial state the simulator only responds to U-format messages,
but ignores I-format messages. Only when a STARTDT is sent, the simulator converts to a
state in which it responds to I-format messages. However, once the simulator has reached
this (STARTED) state, it cannot return to the initial (STOPPED) state when a STOPDT
is sent. So after reaching the STARTED state, the simulator remains in this state as long
is the connection is not reset. The learnt automata of this simulator can be seen in Figure
5.2.

Limitations and challenges The entire IEC-104 stopping process did not seem to be
implemented in this simulator.

62 Chapter 5. Results

STOPPED

U[STARTDT] / U[STARTDT]
U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[C_SC] / -

Figure 5.3: Automata learnt from IEC-Test Simulator

5.1.3 Siemens IEC-Test

The automaton that was learnt from IEC-Test (Figure 5.3) looks very similar to the au-
tomaton of Axon Test. In its initial state IEC-Test responds to U-format messages, how-
ever, it does not reply to any sent I-messages.

Limitations and challenges IEC-Test is a very manual tool that did not appear to
have options to automatically reply to anything other than U-format messages.

5.2. Real devices 63

5.2 Real devices

STOPPED U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

STARTED

U[STARTDT] / U[STARTDT]

TERMINATED

S / ERROR
I[P_ME] / ERROR

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

S / -

UNCONFIRMED
STARTED

I[P_ME] / I[P_ME]

U[STARTDT] / ERROR
U[STOPDT] / ERROR
U[TESTFR] / ERROR

S / ERROR
I[P_ME] / ERROR

S / -

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

I[P_ME] / I[P_ME]

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

I[P_ME] / ERROR

U[STARTDT] / -
U[STOPDT] / -

U[TESTFR] / U[TESTFR]

Figure 5.4: Automaton learnt from Datawatt implementation

5.2.1 Datawatt D05-Lite

Figure 5.4 shows that the automaton of Datawatt’s RTU appears very similar to the de-
duced automaton in Figure 4.5. This is not only appearance, as the checker indeed indicates
that this automaton is equivalent to the to the automaton that is deduced from the IEC-
104 standard. What especially can be noticed is that in the UNCONFIRMED STOPPED

64 Chapter 5. Results

state, the only messages to which the RTU responds are the TESTFR and the S-format
confirmation message. Also a TERMINATED state is reached when specific unexpected
messages are sent in a state, which also follows from the standard.

When looking at more different ASDU types, an automaton was found that does not
comply to the standard when sending the, rarely used, I-format message for File Select.
Then a new strange state appears, as can be seen in Figure 5.5. As the File Select message
that is sent does not contain a valid address of a file, the RTU appears to be more strict
than the standard by terminating the connection on the next received I-format message.
However, according to the standard, the expected response would be a negative confirma-
tion I-format message.

STOPPED U[STOPDT] / U[STOPDT]

STARTED

U[STARTDT] / U[STARTDT]

TERMINATED

S / ERROR
I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
S / -

X

I[F_SC_NA] / -UNCONFIRMED
STARTED

I[F_LS_NA] / I[F_LS_NA]U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
S / -

I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STARTDT] / ERROR
U[STOPDT] / ERROR

S / ERROR
I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

S / -

I[F_SC_NA] / -

U[STARTDT] / U[STARTDT]
I[F_LS_NA] / I[F_LS_NA]

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

I[F_SC_NA] / ERROR
I[F_LS_NA] / ERROR

U[STARTDT] / -
U[STOPDT] / -

Figure 5.5: Automaton learnt from Datawatt implementation with strange
behaviour

5.2. Real devices 65

STOPPED

U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[P_ME] / -

STARTED

U[STARTDT] / U[STARTDT] U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT]
U[TESTFR] / U[TESTFR]

S / -

UNCONFIRMED
STARTED

I[P_ME] / I[P_ME] S / -

U[STARTDT] / U[STARTDT] | I[P_ME]
U[TESTFR] / U[TESTFR]

I[P_ME] / I[P_ME]

UNCONFIRMED
STOPPED

U[STOPDT] / -

S / U[STOPDT]

U[STOPDT] / -
U[TESTFR] / U[TESTFR]

UNCONFIRMED
STOPPED*

U[STARTDT] / U[STARTDT]

STOPPED*

I[P_ME] / U[STOPDT]

U[STARTDT] / U[STARTDT]
U[STOPDT] / -

U[TESTFR] / U[TESTFR]

S / U[STOPDT]

STOPPED*

I[P_ME] / U[STOPDT]

U[STARTDT] / U[STARTDT] | I[P_ME]

U[TESTFR] / U[TESTFR]
S / -

I[P_ME] / -

STOPPED*

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT] | I[P_ME] | I[P_ME]

U[TESTFR] / U[TESTFR]
S / -

I[P_ME] / -

STOPPED*

U[STOPDT] / U[STOPDT]

U[STARTDT] / U[STARTDT] | S | I[P_ME]

U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[P_ME] / -

U[STARTDT] / U[STARTDT] | S | I[P_ME] | I[P_ME]

U[STOPDT] / U[STOPDT]
U[TESTFR] / U[TESTFR]

S / -
I[P_ME] / -

Figure 5.6: Automaton learnt from Sprecher implementation

5.2.2 Sprecher Sprecon-E-C-92

According to the checker, the automaton that was produced from the RTU from Sprecher
is not equivalent to the automaton of the standard. Therefore, the RTU does not follow
the protocol as specified by IEC-104 completely. This can also be seen in the automaton,
as the connection is never actively closed when packages with a wrong type are received.
This causes a couple of strange states to emerge in the automaton. When a new I-format
message is sent from the UNCONFIRMED STOPPED state, this I-format message con-
firms everything up to the moment that the STOPDT message was sent, which should
bring the state to STOPPED, but now that I-format message itself is not confirmed yet.
This is an interesting difference with the RTU from Datawatt, as that RTU directly termi-
nates the connection when a message is received that should not be received in that state.
According to the standard, this termination also should happen. One of the reasons for

66 Chapter 5. Results

the Sprecher RTU to never terminate the connection when faulty packages are received,
might be because it is used as a gateway to another IEC 61850 subnetwork.

Also, when the RTU is in the UNCONFIRMED STOPPED state, it is still possible to
send a U-format STARTDT, which makes the RTU come in a sort of hybrid state between
UNCONFIRMED STOPPED and STARTED.

5.3 Additional considerations

As described in section 4.2.2 two artificial messages, I[0] and Lmax, were also implemented
in the developed tool. The I[0] messages did not provide any behaviour that was different
from the normal behaviour. However, the tests with the Lmax message, consisting of only
the START byte (104) and the maximum length (253), provided some interesting results
that are discussed here separately. When an Lmax message was sent in any state, the tested
implementations did not respond until they had received the total number of bytes that
were specified in the length field. This means that every message that is sent after an Lmax

message, is ignored, because the implementation thinks that message belongs to the initial
Lmax message. As showed in section 2.3.1, availability is of a great importance for ICS.
When messages are ignored, this is a problem for the availability of the system. Therefore,
an attacker would be able to disrupt the communication by sending an Lmax message.

Furthermore, there are some rare occurrences where the algorithm gives some strange
extra states during learning, while these in reality are not new states. These could be
caused by interruption during learning. However, these automata are equal to each other.
The checker properly handles these automata, because the comparison in the checker is
based on the output sequences.

5.4 Conclusion

This chapter described the results of learning the automata of both simulators as real
devices. Table 5.1 provides an overview of all implementations and i) their number of
states, ii) if they comply to the standard, iii) if they have a started state, i.e. a separate
state when STARTDT is sent and iv) if they have a terminated state, i.e. a state in which
the connection is lost. Only the device from Datawatt seems to correctly implement the
protocol as described in the specification for almost all messages. The other real device
does not entirely comply with the specification, because it never terminates the connection
and it has some strange behaviour when sending a STARTDT message to a connection

5.4. Conclusion 67

that is being closed. All simulators that were used, were very limited and therefore also
do not comply to the specification.

When comparing only the real devices to each other and the standard, there are two
main differences that should be noted. The first one is the difference in whether the
device terminates the connection, when it receives a message that is not allowed in that
state. According to the standard, this termination of the connection should happen. The
Datawatt RTU correctly terminates in these cases, while the Sprecher RTU ignores the
message. The second difference is the behaviour when a STARTDT is received in the
UNCONFIRMED STOPPED state. The standard specifies that this STARTDT should
not cause a state change. However, the standard does not unambiguously specify if the
device should respond to this STARTDT message. The Datawatt RTU correctly ignores
this STARTDT and also does not respond to this. However, the Sprecher RTU shows
some strange behaviour at this point. Not only does the Sprecher RTU respond to the
STARTDT with a STARTDT confirmation (which is underspecified), but also a change in
state occurs, which results in strange behaviour in its subsequent responses.

Table 5.1: Results overview

Implementation #states Standard
compliance

Started
state

Terminated
state

Standard 5 True True True

Axon Test 1 False False False

IEC 870-5-104 Simulator 2 False True False

IEC-Test 1 False False False

Datawatt D05-Lite 5 True True True

Sprecher Sprecon-E-C-92 9 False True False

69

Chapter 6

Conclusions

This chapter concludes this thesis by, first, reviewing the research questions that were posed
in the Introduction. Then, in section 6.1 the strengths and limitations of this research are
discussed and recommendations for future work are given in section 6.2. Finally, in section
6.3, concrete recommendations for vendors and operators are presented.

In this thesis, three research questions were posed. These three are concluded here
separately:

RQ1: How can implementations of IEC 60870-5-104 be represented for-
mally?

This question was divided into two sub-questions that were addressed first. After that,
these two sub-questions were used to address this complete research question.

RQ1a: Which methods exist to generate formal representations?

This thesis described methods to generate formal representations in section 3.3. In order
to generate these formal representations, these methods used the L? algorithm and its
deduced L?

M algorithm. These are algorithms to generate a formal implementation in the
form of an automaton for any sort of implementation.

RQ1b: What method is suitable for formally representing protocols?

The most suitable formal representation for protocols was a specific automaton, called a
Mealy machine. Mealy machines are comprehensible due to their simplicity and they can
clearly describe protocol behaviour, as described in section 3.2.

70 Chapter 6. Conclusions

The method and formal representation that were found in the sub-questions above, were
used to design a tool that is able to iteratively build automata from RTUs that implement
IEC-104. This tool implements an IEC-104 controlling station and is able to send all mes-
sages that are defined in the IEC-104 standard, as described in section 2.4. Furthermore,
it uses the L?

M algorithm, that was described in section 3.4, to learn automata. The details
of the design and functionality of this tool were described in Chapter 4. Also, the source
code of the mentioned tool can be found on GitHub [24].

RQ2: To what extent do implementations of IEC 60870-5-104 comply to
their standard?

To be able to address this question, four sub-question had to be addressed first:

RQ2a: What implementations of IEC 60870-5-104 are available?

Obtaining implementations of IEC 60870-5-104 in the form of real devices was a challenge,
because vendors were reserved in sharing these. Eventually, it was possible to acquire
access to two real devices. Next to that, three implementations in the form of simulators
were available. These simulators were Axon Test, Mitra Software IEC 870-5-104 Simulator
and Siemens IEC-Test. The real devices that were available were the Datawatt D05-Lite
RTU and the Sprecher Sprecon-E-C-92.

RQ2b: How can the IEC 60870-5-104 standard be formally represented?

The IEC 60870-5-104 standard contains a state transition diagram (shown in Figure 2.7).
Section 4.5 described how this state transition diagram can be represented as a Mealy ma-
chine. This Mealy machine, that represents the IEC 60870-5-104 standard and is compared
with the Mealy machines inferred from the implementations, is shown in Figure 4.5.

RQ2c: How to compare these formal representations?

To be able to compare the inferred automata, a method for comparison was described
in section 3.5. This method was used in an algorithm to compare the produced Mealy
machines to the Mealy machine that was deduced from the standard in the previous sub-
question. The component of the tool that contains this comparison algorithm together
with the Mealy machine from the standard, was called the checker.

Chapter 6. Conclusions 71

RQ2d: What do the findings from these questions tell about the IEC 60870-5-
104 standard?

By analysing the produced automata, it can be concluded that vendor implementations
differ greatly. This means that potentially systems for different vendors are not completely
compatible. When the origin of these differences was investigated in the standard, there
are some interesting findings.

One of these findings, described in section 5.3, showed that it was not specified in the
standard whether the entire length of the packet had to be received before parsing the
message format. Therefore, the vendor that implements the standard can either decide to
parse the format when three bytes are received or when the entire length is received.

Another finding, described in 5.4, was that the standard does not exactly specify
whether an implementation should respond when a message to start a connection is re-
ceived, while the former connection is being closed, but still is waiting for the confirmation
of messages. In this case the standard does not specify whether the device should ignore
this message or respond. In one of the investigated devices this led to strange behaviour,
as it seemed to react on this message as it did respond to it and after this deviated from
protocol. Therefore, ignoring this message in such a state appears to be a better option and
would prevent this from happening. However, the Sprecher device still should not show
this behaviour according to the standard, as the state transition diagram in the standard
shows that this should not lead to a new state.

Overall, none of the tested implementations comply to the specification for all possible
IEC-104 messages. However, the real devices follow specification for the greater part, es-
pecially the RTU from Datawatt. This Datawatt RTU is the only tested implementation
that correctly terminates the connection on the reception of incorrect messages in specific
states. The Sprecher RTU ignores these messages, which means that the vendor either
overlooked that the connection should be terminated or chose not to terminate the con-
nection deliberately. If this was by choice, this might relate to the tested Sprecher RTU
acting as a gateway, translating between IEC-104 and IEC 61850.

RQ3: What information security attributes are violated in the implemen-
tations that were researched in the second research question and how?

In order to address this question, the attributes needed to be defined by addressing the
following sub-question first:

72 Chapter 6. Conclusions

RQ3a: What information security attributes are relevant in ICS?

The information security attributes (confidentiality, integrity and availability) that are used
for regular IT systems, were also applicable to ICSs. However, as described in section 2.3.1,
the order of the importance for each of these attributes was reversed, so these are, in order
of importance (starting from most important): availability, integrity and confidentiality.

The evaluation of this research question was divided into the three information security
attributes. Each of these attributes was examined separately:

Availability In section 5.3, the results when sending the artificial Lmax message were
described. These results showed that it is possible to disrupt the communication. By send-
ing a single (2-byte) Lmax message, all subsequently received messages were ignored up to
251 bytes. If the first four bytes would be a correct U-format message, the implementations
would not even notice a disturbance. This test was not run on all implementations, but
this behaviour was noticed on all implementations on which it was tested. As availability
and timely responses are considered to be the most important in ICS, this behaviour when
an Lmax messages is sent, is considered as a violation of availability, as it potentially could
provide attackers basis for, e.g., denial of service attacks, which could result in a power
outage for example.

Integrity As described in section 2.3.2, most ICS protocols lack authentication. As IEC-
104 also lacks any form of authentication, it is possible to perform a man-in-the-middle
attack (or other attacks described in section 2.3.2) and therefore influence the integrity of
IEC-104.

Confidentiality All analysed implementations produced different automata, therefore
it is possible for an attacker to fingerprint the used devices, i.e. identify which device is
used, via the network. Confidentiality is considered to be of least importance to ICS, be-
cause most messages are predictable. However, recognising which devices are used without
having physical access, is considered to be violating confidentiality, as it helps attackers to
gain knowledge about the system. Attackers could, e.g., use this knowledge to find other
vulnerabilities in the system.

6.1. Discussion 73

6.1 Discussion

Reviewing this research, strengths and limitations can be identified. As a first limitation,
there was no access to a simulators that simulated IEC-104 completely. There might be
other simulators, that are not publicly available, that contain a better implementation of
IEC-104.

One of the strengths of this research is that the tested devices are devices that are
both actually used in the power distribution sector in the Netherlands. Unfortunately, for
this research only two of these devices were tested, as only access to two devices could be
acquired. Therefore, this is a limitation, as with more devices a more complete comparison
could have been made.

Another strength of this research is the open-source mealy104 tool [24] that was built
for this research. This tool was designed in a modular and generic manner, which makes
it easy for other parties to extend the tool or to adapt it for other (ICS) protocols.

6.2 Future Work

A general first recommendation is that more research should be performed on the security
of the (application layer) protocols that are used in ICS. More specifically, the method
presented in this thesis should be applied to other ICS protocols. Even though currently
IEC-104 devices are being produced that will be used for at least a decade, the power
sector is gradually progressing towards the adaption of IEC 61850. Therefore, it would
particularly be interesting to apply the proposed method to MMS, which is used in IEC
61850.

This research only focused on testing the controlled station side of IEC-104. Further
research should be conducted regarding testing the implementations in the opposite direc-
tion, i.e. testing the controlling station.

To extend the methodology of this research itself, more variation could be brought in
the alphabet. The messages that are currently in the alphabet only use correct Causes of
Transmission. Therefore, it would be interesting to add messages with incorrect Causes
of Transmission. Also, other messages with more variations in the ASDU layer might be
interesting to investigate. Finally, beside the current I[0] and Lmax messages, more custom
defined messages could be added. Those could than even have more strange unspecified
formats.

In this research, the automata that are built are based on the responses of the RTU.
In future research this could be extended by examining the responses in the processes

74 Chapter 6. Conclusions

or processes behind the RTU and what happens to those states. Then, it might also be
interesting to extend the alphabet with more variations in the ASDU layer.

The presented tool itself could also be improved. By applying the work of Henrix [17],
the learning process for learning automata can become more efficient. Also, it should be
investigated if there are better alternatives for the current equivalence oracle that is used
for the learning process. This equivalence is currently, as described in Chapter 4, based on
a certain randomness in order to keep the time of learning within feasible boundaries.

6.3 Recommendations

Several recommendations for both IEC-104 vendors and operators can be derived from the
research in this thesis. The first recommendation for both vendors and operators in general
is to use the tool that was developed in this research to check if their IEC-104 devices comply
to the standard. Furthermore, when the device does not comply completely, the behaviour
of the device can be examined, because the tool provides an understandable automaton.
In order to reduce the possibility of fingerprinting, it would be best if all devices would
comply to the standard and thus have an automaton equivalent to the automaton in Figure
4.5.

A general recommendation for vendors is to examine the behaviour of their devices
when length fields are used that do not match with the actual length. More specifically,
when the first three bytes of an IEC-104 message are received, these bytes can already be
parsed to identify which message format was received. If a U-format or S-format message
is received, the length-field should always be 4. When, e.g., a message is received of which
the third byte indicates that it has a U-format, but the length field is larger then 4, the
device should already notice that this message is faulty. If the device recognises these
messages as faulty, the device is less prone to denial of service attacks that utilise this.

A general recommendation for operators is to ensure that integrity is guaranteed, i.e.
that authentication needs to take place before IEC-104 messages can be sent to the device.
Operators can accomplish this by implementing standards like IEC 62351, which provides
end-to-end encryption, as was mentioned in section 2.4.

A recommendation specifically for Sprecher is to comply to the standard more strict.
Therefore, two changes need to be made: i) when in a certain state packages are received
that are not allowed according to the standard, the connection should be terminated and
ii) when a message to stop the data transfer (STOPDT) is received, the device should
ignore all messages except an S-format message.

75

Bibliography

[1] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and Sicco Verwer.
Improving active Mealy machine learning for protocol conformance testing. Machine
Learning, 96(1-2):189–224, jul 2014.

[2] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and Abstraction of the
Biometric Passport. In Lecture Notes in Computer Science, pages 673–686. Springer
Berlin Heidelberg, 2010.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, nov 1987.

[4] Axon Group. Axon Test, 2016. http://www.axongroup.com.co/axongroupen/axon_
productos-text.php.

[5] Rafael R R Barbosa. Anomaly Detection in SCADA Systems. PhD thesis, University
of Twente, 2014.

[6] Ben Caldwell, Rachel Cardell-Oliver, and Tim French. Learning Time Delay Mealy
Machines From Programmable Logic Controllers. IEEE Transactions on Automation
Science and Engineering, 13(2):1155–1164, apr 2016.

[7] Censys. Censys, 2017. https://censys.io/.

[8] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri de Ruiter. Automated Re-
verse Engineering using Lego. Proceedings of the 8th USENIX Workshop on Offensive
Technologies - WOOT ’14, page 9, 2014.

[9] Gordon Clarke and Reynders Deon. Practical Modern SCADA Protocols: DNP3,
60870.5 and Related Systems. Newnes, 2004.

[10] Frances Cleveland. IEC 62351 Security Standards for the Power System Information
Infrastructure. IEC TC57 WG15 Security Standards ver 14, 2012.

http://www.axongroup.com.co/axongroupen/axon_productos-text.php
http://www.axongroup.com.co/axongroupen/axon_productos-text.php
https://censys.io/

76 BIBLIOGRAPHY

[11] CPNI and Red Tiger Security. Securing the move to IP-based SCADA/PLC networks.
Technical Report November, CPNI, 2011.

[12] Edvard Csanyi. Three generations of SCADA system archi-
tectures, 2015. http://electrical-engineering-portal.com/

three-generations-of-scada-system-architectures.

[13] Paul Fiterau-Brostean, Ramon Janssen, and Frits Vaandrager. Learning fragments of
the TCP network protocol. Lecture Notes in Computer Science, 8718 LNCS:78–93,
2014.

[14] Igor Nai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. Design
and Implementation of a Secure Modbus Protocol. In IFIP Advances in Information
and Communication Technology, volume 311, pages 83–96. Springer Berlin Heidelberg,
2009.

[15] Fu Qin-cui, Liu Zi-ying, and Fu Ke-jia. Implementation of IEC60870-5-104 protocol
based on finite state machines. In 2009 International Conference on Sustainable Power
Generation and Supply, pages 1–5. IEEE, apr 2009.

[16] E. Gunawan, Pek Tong Tan, and Nansi Shi. Selection of a formal description technique
(FDT) for a FDT based protocol converter. In [Proceedings] Singapore ICCS/ISITA
‘92, pages 188–192. IEEE, 1992.

[17] M Henrix. Performance improvement in automata learning. Master’s thesis, Radboud
University Nijmegen, 2015.

[18] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, may 1997.

[19] ISO/TMBG. ISO/IEC Guide 2:2004. Technical report, International Organization for
Standardization, 2004.

[20] O.J. Jacobsen and D.C. Lynch. A Glossary of Networking Terms. RFC, RFC Editor,
1991.

[21] Qi Jing, Athanasios V. Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. Security of
the Internet of Things: perspectives and challenges. Wireless Networks, 20(8):2481–
2501, nov 2014.

http://electrical-engineering-portal.com/three-generations-of-scada-system-architectures
http://electrical-engineering-portal.com/three-generations-of-scada-system-architectures

BIBLIOGRAPHY 77

[22] Rao Kalapatapu. SCADA Protocols and Communication Trends. Technical report,
ISA, 2004.

[23] BooJoong Kang, Peter Maynard, Kieran McLaughlin, Sakir Sezer, Filip Andren,
Christian Seitl, Friederich Kupzog, and Thomas Strasser. Investigating cyber-physical
attacks against IEC 61850 photovoltaic inverter installations. In 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation (ETFA), volume 2015-
Octob, pages 1–8. IEEE, sep 2015.

[24] Max Kerkers. Mealy104, 2017. https://github.com/mkerkers/mealy104.

[25] Maryna Krotofil and Dieter Gollmann. Industrial control systems security: What is
happening? In 2013 11th IEEE International Conference on Industrial Informatics
(INDIN), pages 670–675. IEEE, jul 2013.

[26] Ralph Langner. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security & Pri-
vacy Magazine, 9(3):49–51, may 2011.

[27] LearnLib. LearnLib, 2016. http://learnlib.de/.

[28] Peter Maynard, Kieran McLaughlin, and Berthold Haberler. Towards Understanding
Man-In-The-Middle Attacks on IEC 60870-5-104 SCADA Networks. In 2nd Inter-
national Symposium for ICS & SCADA Cyber Security Research 2014, pages 30–42.
BCS Learning & Development, sep 2014.

[29] Mitra Software. IEC 870-5-104 Simulator, 2016. http://mitraware.com/apps/

iec104sim.php.

[30] S. Mohagheghi, J. Stoupis, and Z. Wang. Communication protocols and networks for
power systems-current status and future trends. In 2009 IEEE/PES Power Systems
Conference and Exposition, pages 1–9. IEEE, mar 2009.

[31] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versität Dortmund, 2003.

[32] OpenMUC. j60870, 2016. https://www.openmuc.org/iec-60870-5-104/.

[33] Al Sakib Khan Pathan. The State of the Art in Intrusion Prevention and Detection.
Auerbach Publications, 2014.

https://github.com/mkerkers/mealy104
http://learnlib.de/
http://mitraware.com/apps/iec104sim.php
http://mitraware.com/apps/iec104sim.php
https://www.openmuc.org/iec-60870-5-104/

78 BIBLIOGRAPHY

[34] Erik Poll, Joeri De Ruiter, and Aleksy Schubert. Protocol State Machines and Session
Languages: Specification, implementation, and Security Flaws. In 2015 IEEE Security
and Privacy Workshops, pages 125–133. IEEE, may 2015.

[35] Julian L. Rrushi. SCADA protocol vulnerabilities. In Lecture Notes in Computer
Science, volume 7130, pages 150–176. Springer Berlin Heidelberg, 2012.

[36] John E. Savage. Models of computation, exploring the power of computing. IEEE
Design & Test of Computers, page 672, 1998.

[37] Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In Lecture Notes in
Computer Science, volume 5850, pages 207–222. Springer Berlin Heidelberg, 2009.

[38] Shodan. Shodan, 2016. https://www.shodan.io/.

[39] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to Industrial Control Systems
(ICS) Security. Technical report, National Institute of Standards and Technology,
2011.

[40] Michael Swearingen, Steven Brunasso, Joe Weiss, and Dennis Huber. What You Need
to Know (and Don’t) About the AURORA Vulnerability. POWER, 2013.

[41] TC 57 - Power systems management and associated information exchange. IEC 60870-
5-101:2003. Standard, International Electrotechnical Commission, Geneva, 2003.

[42] TC 57 - Power systems management and associated information exchange. IEC 60870-
5-104:2006. Standard, International Electrotechnical Commission, Geneva, 2006.

[43] TC 57 - Power systems management and associated information exchange. IEC TS
60870-5-7:2013. Technical specification, International Electrotechnical Commission,
Geneva, 2013.

[44] Anshul Thakur. SCADA Systems, 2014. http://www.engineersgarage.com/

articles/scada-systems.

[45] Fabian van den Broek, Brinio Hond, and Arturo Cedillo Torres. Security Testing
of GSM Implementations. Engineering Secure Software and Systems, 8364:179–195,
2014.

[46] Patrick Verleg. Inferring SSH state machines using protocol state fuzzing. PhD thesis,
Radboud University, 2016.

https://www.shodan.io/
http://www.engineersgarage.com/articles/scada-systems
http://www.engineersgarage.com/articles/scada-systems

BIBLIOGRAPHY 79

[47] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. A Taxonomy of Cyber Attacks
on SCADA Systems. 2011 International Conference on Internet of Things and 4th
International Conference on Cyber, Physical and Social Computing, pages 380–388,
oct 2011.

81

Appendix A

IEC-104 ASDU command types

A.1 Process information in monitoring direction

1 M SP NA 1 Single point information

2 M SP TA 1 Single point information with time tag

3 M DP NA 1 Double point information

4 M DP TA 1 Double point information with time tag

5 M ST NA 1 Step position information

6 M ST TA 1 Step position information with time tag

7 M BO NA 1 Bit string of 32 bit

8 M BO TA 1 Bit string of 32 bit with time tag

9 M ME NA 1 Measured value, normalised value

10 M ME TA 1 Measured value, normalised value with time tag

11 M ME NB 1 Measured value, scaled value

12 M ME TB 1 Measured value, scaled value with time tag

13 M ME NC 1 Measured value, short floating point value

14 M ME TC 1 Measured value, short floating point value with time tag

15 M IT NA 1 Integrated totals

16 M IT TA 1 Integrated totals with time tag

17 M EP TA 1 Event of protection equipment with time tag

18 M EP TB 1 Packed start events of protection equipment with time tag

19 M EP TC 1 Packed output circuit information of protection equipment with
time tag

20 M PS NA 1 Packed single-point information with status change detection

21 M ME ND 1 Measured value, normalised value without quality descriptor

82 Appendix A. IEC-104 ASDU command types

A.2 Process telegrams with long time tag (7 octets)

30 M SP TB 1 Single point information with time tag CP56Time2a

31 M DP TB 1 Double point information with time tag CP56Time2a

32 M ST TB 1 Step position information with time tag CP56Time2a

33 M BO TB 1 Bit string of 32 bit with time tag CP56Time2a

34 M ME TD 1 Measured value, normalised value with time tag CP56Time2a

35 M ME TE 1 Measured value, scaled value with time tag CP56Time2a

36 M ME TF 1 Measured value, short floating point value with time tag
CP56Time2a

37 M IT TB 1 Integrated totals with time tag CP56Time2a

38 M EP TD 1 Event of protection equipment with time tag CP56Time2a

39 M EP TE 1 Packed start events of protection equipment with time tag
CP56time2a

40 M EP TF 1 Packed output circuit information of protection equipment with
time tag CP56Time2a

A.3 Process information in control direction

45 C SC NA 1 Single command

46 C DC NA 1 Double command

47 C RC NA 1 Regulating step command

48 C SE NA 1 Setpoint command, normalised value

49 C SE NB 1 Setpoint command, scaled value

50 C SE NC 1 Setpoint command, short floating point value

51 C BO NA 1 Bit string 32 bit

A.4. Command telegrams with long time tag (7 octets) 83

A.4 Command telegrams with long time tag (7 octets)

58 C SC TA 1 Single command with time tag CP56Time2a

59 C DC TA 1 Double command with time tag CP56Time2a

60 C RC TA 1 Regulating step command with time tag CP56Time2a

61 C SE TA 1 Setpoint command, normalised value with time tag CP56Time2a

62 C SE TB 1 Setpoint command, scaled value with time tag CP56Time2a

63 C SE TC 1 Setpoint command, short floating point value with time tag
CP56Time2a

64 C BO TA 1 Bit string 32 bit with time tag CP56Time2a

A.5 System information in monitoring direction

70 M EI NA 1 End of initialization

A.6 System information in control direction

100 C IC NA 1 (General-) Interrogation command

101 C CI NA 1 Counter interrogation command

102 C RD NA 1 Read command

103 C CS NA 1 Clock synchronisation command

104 C TS NB 1 Test command [IEC-101]

105 C RP NC 1 Reset process command

106 C CD NA 1 Delay acquisition command [IEC-101]

107 C TS TA 1 Test command with time tag CP56Time2a

A.7 Parameter in control direction

110 P ME NA 1 Parameter of measured value, normalised value

111 P ME NB 1 Parameter of measured value, scaled value

112 P ME NC 1 Parameter of measured value, short floating point value

113 P AC NA 1 Parameter activation

84 Appendix A. IEC-104 ASDU command types

A.8 File transfer

120 F FR NA 1 File ready

121 F SR NA 1 Section ready

122 F SC NA 1 Call directory, select file, call file, call section

123 F LS NA 1 Last section, last segment

124 F AF NA 1 Ack file, Ack section

125 F SG NA 1 Segment

126 F DR TA 1 Directory

127 F SC NB 1 QueryLog - Request archive file

	Introduction
	Industrial Control Systems
	History of ICS
	ICS components
	Security of ICS
	Security attributes
	Security weaknesses
	Example attack scenario

	IEC 60870-5-104
	Structure
	State transition diagram
	IEC-104 parameters

	Conclusion

	Representing protocols
	Protocol implementation
	Formal protocol description
	Deterministic finite automaton
	Mealy machines
	Protocol inputs (alphabet)

	Automata learning
	Algorithm
	Example

	Automata comparison
	Conclusion

	Methodology
	Set-up
	Learner
	LearnLib
	Design of the Alphabet

	Mapper
	Teacher
	Subjects under Test

	Checker
	Conclusion

	Results
	Simulators
	Axon Test
	Mitra Software IEC 870-5-104 Simulator
	Siemens IEC-Test

	Real devices
	Datawatt D05-Lite
	Sprecher Sprecon-E-C-92

	Additional considerations
	Conclusion

	Conclusions
	Discussion
	Future Work
	Recommendations

	IEC-104 ASDU command types
	Process information in monitoring direction
	Process telegrams with long time tag (7 octets)
	Process information in control direction
	Command telegrams with long time tag (7 octets)
	System information in monitoring direction
	System information in control direction
	Parameter in control direction
	File transfer

