

Mastering Linux Security and
Hardening

Secure your Linux server and protect it from intruders,
malware attacks, and other external threats

Donald A. Tevault

BIRMINGHAM - MUMBAI

Mastering Linux Security and Hardening
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Devika Battike
Technical Editor: Mohd Riyan Khan
Copy Editors: Safis Editing, Dipti Mankame
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tania Dutta
Production Coordinator: Deepika Naik

First published: January 2018

Production reference: 1090118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-030-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Donald A. Tevault—but you can call him Donnie—got involved with Linux way back in
2006, and has been working with it ever since. He holds the Linux Professional Institute
Level 3—Security certification, and the GIAC Incident Handler certification. Donnie is a
professional Linux trainer, and thanks to the magic of the internet, teaches Linux classes
literally the world over from the comfort of his living room.

First, I'd like to thank the good folk at Packt, who were most delightful to work with on this
project. I'd also like to thank my cats, who so graciously allowed me to use their names in
the demos.

About the reviewer
Salman Aftab has 10+ years of experience in Linux and 7+ years of experience in networks
and security. He authored the book Linux Security and Unified Threat Management System.

Salman is an owner of the Linux Zero To Hero project, where he teaches Linux from very
basic to advanced level free of cost. He is skilled in Linux, AWS, Networks and Security,
and VOIP. He is RHCE trained and holds NCLA, SCNS, CEH, 3 X CCNA, CCNA Security,
CCNA Voice, CCNP Security, CCNP, and OSCP is in progress.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Running Linux in a Virtual Environment 6

The threat landscape 7
So, how does this happen? 8

Keeping up with security news 8
Introduction to VirtualBox and Cygwin 9

Installing a virtual machine in VirtualBox 10
The EPEL repository on the CentOS virtual machine 14
Configuring a network for VirtualBox virtual machines 15
Creating a virtual machine snapshot with VirtualBox 16

Using Cygwin to connect to your virtual machines 18
Installing Cygwin on your Windows host 18

Summary 20

Chapter 2: Securing User Accounts 21

The dangers of logging in as the root user 22
The advantages of using sudo 23
Setting up sudo privileges for full administrative users 24

Method 1 – adding users to a predefined admin group 24
Method 2 – creating an entry in the sudo policy file 26

Setting up sudo for users with only certain delegated privileges 27
Hands-on lab for assigning limited sudo privileges 31

Advanced tips and tricks for using sudo 33
The sudo timer 33

Hands-on lab for disabling the sudo timer 34
Preventing users from having root shell access 35
Preventing users from using shell escapes 35
Preventing users from using other dangerous programs 36
Limiting the user's actions with commands 37
Letting users run as other users 38

Locking down users' home directories the Red Hat or CentOS way 38
Locking down users' home directories the Debian/Ubuntu way 39

useradd on Debian/Ubuntu 40
adduser on Debian/Ubuntu 41

Hands-on lab for configuring adduser 42

Table of Contents

[ii]

Enforcing strong password criteria 43
Installing and configuring pwquality 45

Hands-on lab for setting password complexity criteria 48
Setting and enforcing password and account expiration 49

Configuring default expiry data for useradd – for Red Hat or CentOS only 50
Setting expiry data on a per-account basis, with useradd and usermod 52
Setting expiry data on a per-account basis, with chage 54

Hands-on lab for setting account and password expiry data 55
Preventing brute-force password attacks 56

Configuring the pam_tally2 PAM module 57
Hands-on lab for configuring pam_tally2 58

Locking user accounts 59
Using usermod to lock a user account 60
Using passwd to lock user accounts 61
Locking the root user account 62

Setting up security banners 63
Using the motd file 63
Using the issue file 64
Using the issue.net file 65

Summary 65

Chapter 3: Securing Your Server with a Firewall 66

An overview of iptables 67
Basic usage of iptables 67

Hands-on lab for basic iptables usage 73
Uncomplicated Firewall for Ubuntu systems 75

Basic usage of ufw 75
Hands-on lab for basic ufw usage 76

firewalld for Red Hat systems 77
Verifying the status of firewalld 78
firewalld zones 79
firewalld services 83
Adding ports to a firewalld zone 87
firewalld rich language rules 88

Hands-on lab for firewalld commands 90
nftables – a more universal type of firewall system 91

nftables tables and chains 92
Getting started with nftables 92
Using nft commands 95

Hands-on lab for nftables on Ubuntu 100
Summary 101

Table of Contents

[iii]

Chapter 4: Encrypting and SSH Hardening 102

GNU Privacy Guard 103
Creating your GPG keys 104
Symmetrically encrypting your own files 106

Hands-on lab – combining gpg and tar for encrypted backups 109
Using private and public keys for asymmetric encryption and signing 110
Signing a file without encryption 115

Encrypting partitions with Linux Unified Key Setup – LUKS 116
Disk encryption during operating system installation 117
Adding an encrypted partition with LUKS 119
Configuring the LUKS partition to mount automatically 124

Encrypting directories with eCryptfs 126
Home directory and disk encryption during Ubuntu installation 126
Encrypting a home directory for a new user account 128
Creating a private directory within an existing home directory 129
Encrypting other directories with eCryptfs 131
Encrypting the swap partition with eCryptfs 133

Using VeraCrypt for cross-platform sharing of encrypted containers 134
Getting and installing VeraCrypt 134
Creating and mounting a VeraCrypt volume in console mode 135
Using VeraCrypt in GUI mode 138

Ensuring that SSH protocol 1 is disabled 139
Creating and managing keys for password-less logins 140

Creating a user's SSH key set 141
Transferring the public key to the remote server 142

Disabling root user login 143
Disabling username/password logins 144
Setting up a chroot environment for SFTP users 145

Creating a group and configuring the sshd_config file 145
Hands-on lab – setting up a chroot directory for sftpusers group 147

Summary 148

Chapter 5: Mastering Discretionary Access Control 149

Using chown to change ownership of files and directories 150
Using chmod to set permissions values on files and directories 152

Setting permissions with the symbolic method 153
Setting permissions with the numerical method 153

Using SUID and SGID on regular files 155
The security implications of the SUID and SGID permissions 156

Table of Contents

[iv]

Finding spurious SUID or SGID files 157
Hands-on lab – searching for SUID and SGID files 158

Preventing SUID and SGID usage on a partition 159
Using extended file attributes to protect sensitive files 160

Setting the a attribute 161
Setting the i attribute 162

Hands-on lab – setting security-related extended file attributes 163
Summary 164

Chapter 6: Access Control Lists and Shared Directory Management 165

Creating an access control list for either a user or a group 166
Creating an inherited access control list for a directory 169
Removing a specific permission by using an ACL mask 170
Using the tar --acls option to prevent the loss of ACLs during a backup 172
Creating a user group and adding members to it 174

Adding members as we create their user accounts 175
Using usermod to add an existing user to a group 175
Adding users to a group by editing the /etc/group file 176

Creating a shared directory 177
Setting the SGID bit and the sticky bit on the shared directory 178
Using ACLs to access files in the shared directory 181

Setting the permissions and creating the ACL 181
Charlie tries to access Vicky's file with an ACL set for Cleopatra 182

Hands-on lab – creating a shared group directory 183
Summary 184

Chapter 7: Implementing Mandatory Access Control with SELinux and
AppArmor 185

How SELinux can benefit a systems administrator 186
Setting security contexts for files and directories 187

Installing the SELinux tools 189
Creating web content files with SELinux enabled 189
Fixing an incorrect SELinux context 193

Using chcon 193
Using restorecon 194
Using semanage 195
Hands-on lab – SELinux type enforcement 197

Troubleshooting with setroubleshoot 198
Viewing setroubleshoot messages 199
Using the graphical setroubleshoot utility 200
Troubleshooting in permissive mode 202

Table of Contents

[v]

Working with SELinux policies 205
Viewing the Booleans 205
Configuring the Booleans 207
Protecting your web server 208
Protecting network ports 209
Creating custom policy modules 212

Hands-on lab – SELinux Booleans and ports 215
How AppArmor can benefit a systems administrator 216
Looking at AppArmor profiles 217
Working with AppArmor command-line utilities 220
Troubleshooting AppArmor problems 223
Summary 227

Chapter 8: Scanning, Auditing, and Hardening 228

Installing and updating ClamAV and maldet 229
Installing ClamAV and maldet 230
Configuring maldet 231
Updating ClamAV and maldet 232

Scanning with ClamAV and maldet 235
SELinux considerations 236
Scanning for rootkits with Rootkit Hunter 236

Installing and updating Rootkit Hunter 237
Scanning for rootkits 238

Controlling the auditd daemon 239
Creating audit rules 240

Auditing a file for changes 240
Auditing a directory 242
Auditing system calls 243

Using ausearch and aureport 244
Searching for file change alerts 245
Searching for directory access rule violations 247
Searching for system call rule violations 252
Generating authentication reports 255
Using predefined rules sets 256

Applying OpenSCAP policies with oscap 258
Installing OpenSCAP 258
Viewing the profile files 259
Scanning the system 260
Remediating the system 262

Table of Contents

[vi]

Using SCAP Workbench 264
More about OpenSCAP profiles 267
Applying an OpenSCAP profile during system installation 269
Summary 271

Chapter 9: Vulnerability Scanning and Intrusion Detection 272

Looking at Snort and Security Onion 273
Obtaining and installing Snort 273
Graphical interfaces for Snort 276
Getting Snort in prebuilt appliances 277
Using Security Onion 281

Scanning and hardening with Lynis 288
Installing Lynis on Red Hat/CentOS 288
Installing Lynis on Ubuntu 289
Scanning with Lynis 289

Finding vulnerabilities with OpenVAS 294
Web server scanning with Nikto 306

Nikto in Kali Linux 306
Installing and updating Nikto on Linux 307
Scanning a web server with Nikto 308

Summary 310

Chapter 10: Security Tips and Tricks for the Busy Bee 311

Auditing system services 311
Auditing system services with systemctl 312
Auditing network services with netstat 313
Auditing network services with Nmap 320

Port states 322
Scan types 323

Password-protecting the GRUB 2 bootloader 327
Resetting the password for Red Hat/CentOS 329
Resetting the password for Ubuntu 331
Preventing kernel parameter edits on Red Hat/CentOS 332
Preventing kernel parameter edits on Ubuntu 333
Password-protecting boot options 336

Disabling the submenu for Ubuntu 336
Password-protecting boot option steps for both Ubuntu and Red Hat 337

Securely configuring BIOS/UEFI 341
Using a security checklist for system setup 344
Summary 346

Table of Contents

[vii]

Appendix A: Other Books You May Enjoy 347

Leave a review – let other readers know what you think 349

Index 350

Preface
In this book, we'll cover security and hardening techniques that apply to any Linux-based
server or workstation. Our goal is to make it harder for the bad guys to do nasty things to
your systems.

Who this book is for
We're aiming this book at Linux administrators in general, whether or not they specialize in
Linux security. The techniques that we present can be used on either Linux servers or on
Linux workstations.

We assume that our target audience has had some hands-on experience with the Linux
command line, and has the basic knowledge of Linux Essentials.

What this book covers
Chapter 1, Running Linux in a Virtual Environment, gives an overview of the IT security
landscape, and will inform the reader of why learning Linux security would be a good
career move. We'll also cover how to set up a lab environment for performing hands-on
exercises. We'll also show how to set up a virtualized lab environment for performing the
hands-on labs.

Chapter 2, Securing User Accounts, covers the dangers of always using the root user
account, and will introduce the benefits of using sudo, instead. We'll then cover how to lock
down normal user accounts, and ensure that the users use good-quality passwords.

Chapter 3, Securing Your Server with a Firewall, involves working with the various types of
firewall utilities.

Chapter 4, Encrypting and SSH Hardening, makes sure that important information—both at
rest and in transit—are safeguarded with proper encryption. For data-in-transit, the default
Secure Shell configuration is anything but secure, and could lead to a security breach if left
as is. This chapter shows how to fix that.

Preface

[2]

Chapter 5, Mastering Discretionary Access Control, covers how to set ownership and
permissions on files and directories. We'll also cover what SUID and SGID can do for us,
and the security implications of using them. We'll wrap things up by covering Extended
File Attributes.

Chapter 6, Access Control Lists and Shared Directory Management, explains that normal Linux
file and directory permissions settings aren't very granular. With Access Control Lists, we
can allow only a certain person to access a file, or we can allow multiple people to access a
file with different permissions for each person. We're also going to put what we've learned
together in order to manage a shared directory for a group.

Chapter 7, Implementing Mandatory Access Control with SELinux and AppArmor, talks about
SELinux, which is a Mandatory Access Control technology that is included with Red Hat-
type Linux distros. We'll give a brief introduction here about how to use SELinux to prevent
intruders from compromising a system. AppArmor is another Mandatory Access Control
technology that is included with Ubuntu and Suse-type Linux distros. We'll give a brief
introduction here about how to use AppArmor to prevent intruders from compromising a
system.

Chapter 8, Scanning, Auditing, and Hardening, discusses that viruses aren't yet a huge
problem for Linux users, but they are for Windows users. If your organization has
Windows clients that access Linux fileservers, then this chapter is for you. You can use
auditd to audit, which accesses either files, directories, or system calls. It won't prevent
security breaches, but it will let you know if some unauthorized person is trying to access a
sensitive resource. SCAP, the Security Content Application Protocol, is a compliance
framework that's promulgated by the National Institute of Standards and Technology.
OpenSCAP, the open source implementation, can be used to apply a hardening policy to a
Linux computer.

Chapter 9, Vulnerability Scanning and Intrusion Detection, explains how to scan our systems
to see if we've missed anything since we've already learned how to configure our systems
for best security. We'll also take a quick look at an intrusion detection system.

Chapter 10, Security Tips and Tricks for the Busy Bee, explains that since you're dealing with
security, we know that you're a busy bee. So, the chapter introduces you to some quick tips
and tricks to help make the job easier.

Preface

[3]

To get the most out of this book
To get the most out of this book, you don't need much. However, the following things
would be quite helpful:

A working knowledge of basic Linux commands, and of how to navigate through1.
the Linux filesystem.
A basic knowledge about tools such as less and grep.2.
Familiarity with command-line editing tools, such as vim or nano.3.
A basic knowledge of how to control systemd services with systemctl commands.4.

For hardware, you don't need anything fancy. All you need is a machine that's capable of
running 64-bit virtual machines. So, you can use any host machine that runs with almost
any modern CPU from either Intel or AMD. (The exception to this rule is with Intel Core i3
and Core i5 CPUs. Even though they're 64-bit CPUs, they lack the hardware acceleration
that's needed to run 64-bit virtual machines. Ironically, Intel Core 2 CPUs and AMD
Opteron CPUs that are much older work just fine.) For memory, I'd recommend at least 8
Gigabytes.

You can run any of the three major operating systems on your host machine, because the
virtualization software that we'll be using comes in flavors for Windows, MacOS, and
Linux.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/MasteringLinuxSecurityandHardening_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "let's use getfacl to see if we have any Access Control Lists already set on the
acl_demo.txt file."

http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

 [base]
 name=CentOS-$releasever - Base
 mirrorlist=http://mirrorlist.centos.org/?
 release=$releasever&arch=$basearch&repo=os&infra=$infra
 #baseurl=http://mirror.centos.org/centos/
 $releasever/os/$basearch/
 gpgcheck=1
 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
 priority=1

Any command-line input or output is written as follows:

[donnie@localhost ~]$ tar cJvf new_perm_dir_backup.tar.xz new_perm_dir/ --
acls
new_perm_dir/
new_perm_dir/new_file.txt
[donnie@localhost ~]$

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click the Network menu item, and change the Attached to setting from NAT to Bridged
Adapter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Running Linux in a Virtual

Environment
So, you may be asking yourself, "Why do I need to study Linux security? Isn't Linux already
secure? After all, it's not Windows." But, the fact is, there are many reasons.

It's true that Linux has certain advantages over Windows when it comes to security. These
include:

Unlike Windows, Linux was designed from the ground up as a multiuser
operating system. So, user security tends to be a bit better on a Linux system.
Linux offers a better separation between administrative users and unprivileged
users. This makes it a bit harder for intruders, and it also makes it a bit harder for
a user to accidentally infect a Linux machine with something nasty.
Linux is much more resistant to virus and malware infections than Windows is.
Certain Linux distributions come with built-in mechanisms, such as SELinux in
Red Hat and CentOS and AppArmor in Ubuntu, which prevents intruders from
taking control of a system.
Linux is a free and open source software. This allows anyone who has the skill to
audit Linux code to hunt for bugs or backdoors.

But, even with those advantages, Linux is just like everything else that's been created by
mankind. That is, it isn't perfect.

Running Linux in a Virtual Environment Chapter 1

[7]

Here are the topics that we'll cover in this chapter:

Why every Linux administrator needs to learn about Linux security
A bit about the threat landscape, with some examples of how attackers have, at
times, been able to breach Linux systems
Resources for keeping up with IT security news
How to set up Ubuntu Server and CentOS virtual machines with VirtualBox, and
how to install the EPEL repository in the CentOS virtual machine
How to create virtual machine snapshots
How to install Cygwin on a Windows host so that Windows users can connect to
a virtual machine from their Windows hosts

The threat landscape
If you've kept up with IT technology news over the past few years, you'll likely have seen at
least a few articles about how attackers have compromised Linux servers. For example,
while it's true that Linux isn't really susceptible to virus infections, there have been several
cases where attackers have planted other types of malware on Linux servers. These cases
have included:

Botnet malware: It causes a server to join a botnet that is controlled by a remote
attacker. One of the more famous cases involved joining Linux servers to a botnet
that launched denial-of-service attacks against other networks.
Ransomware: It is designed to encrypt user data until the server owner pays a
ransom fee. But, even after paying the fee, there's no guarantee that the data can
be recovered.
Cryptocoin mining software: It causes the CPUs of the server on which it's
planted to work extra hard and consume more energy. Cryptocoins that get
mined go to the accounts of the attackers who planted the software.

And, of course, there have been plenty of breaches that don't involve malware, such as
where attackers have found a way to steal user credentials, credit card data, or other
sensitive information.

Some security breaches come about because of plain carelessness. Here's
an example of where a careless Adobe administrator placed the company's
private security key on a public security blog: https:/ / www.theinquirer.
net/inquirer/ news/ 3018010/ adobe- stupidly- posts- private- pgp- key-
on-its- security- blog.

https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog
https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog

Running Linux in a Virtual Environment Chapter 1

[8]

So, how does this happen?
Regardless of whether you're running Linux, Windows, or whatever else, the reasons for
security breaches are usually the same. They could be security bugs in the operating system,
or security bugs in an application that's running on that operating system. Often, a bug-
related security breach could have been prevented had the administrators applied security
updates in a timely manner.

Another big issue is poorly-configured servers. A standard, out-of-the-box configuration of
a Linux server is actually quite insecure and can cause a whole ton of problems. One cause
of poorly-configured servers is simply the lack of properly-trained personnel to securely
administer Linux servers. (Of course, that's great news for the readers of this book, because,
trust me, there's no lack of well-paying, IT security jobs.)

As we journey through this book, we'll see how to do business the right way, to make our
servers as secure as possible.

Keeping up with security news
If you're in the IT business, even if you're not a security administrator, you want to keep up
with the latest security news. In the age of the internet, that's easy to do.

First, there are quite a few websites that specialize in network security news. Examples
include Packet Storm Security and The Hacker News. Regular tech news sites and Linux news
websites, such as The INQUIRER, The Register, ZDNet, and LXer also carry reports about
network security breaches. And, if you'd rather watch videos than read, you'll find plenty
of good YouTube channels, such as BeginLinux Guru.

Finally, regardless of which Linux distribution you're using, be sure to keep up with the
news and current documentation for your Linux distribution. Distribution maintainers
should have a way of letting you know if a security problem crops up in their products.

Running Linux in a Virtual Environment Chapter 1

[9]

Links to security news sites are as follows:

Packet Storm Security: https:/ / packetstormsecurity. com/

The Hacker News: http:/ /thehackernews. com/

Links to general tech news sites are as follows:

The INQUIRER: https:/ /www. theinquirer. net/

The Register: http:/ / www.theregister. co.uk/

ZDNet: http:/ / www.zdnet. com/

You can check out some general Linux learning resources as well. Linux
News Site:

LXer: http:/ /lxer. com/

BeginLinux Guru on YouTube: https:/ /www. youtube. com/
channel/ UC88eard_ 2sz89an6unmlbeA

(Full disclosure: I am the BeginLinux Guru.)

One thing to always remember as you go through this book is that the only operating
system you'll ever see that's totally, 100% secure will be installed on a computer that never
gets turned on.

Introduction to VirtualBox and Cygwin
Whenever I write or teach, I try very hard not to provide students with a cure for insomnia.
Throughout this book, you'll see a bit of theory whenever it's necessary, but I mainly like to
provide good, practical information. There will also be plenty of step-by-step hands-on labs.

The best way to do the labs is to use Linux virtual machines. Most of what we'll do can
apply to any Linux distribution, but we will also do some things that are specific to either
Red Hat Enterprise Linux or Ubuntu Linux. (Red Hat Enterprise Linux is the most popular
for enterprise use, while Ubuntu is most popular for cloud deployments.)

https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
https://packetstormsecurity.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
http://thehackernews.com/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
https://www.theinquirer.net/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.theregister.co.uk/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://www.zdnet.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
http://lxer.com/
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA

Running Linux in a Virtual Environment Chapter 1

[10]

Red Hat is a billion-dollar company, so there's no doubt about where they
stand in the Linux market. But, since Ubuntu Server is free-of-charge, we
can't judge its popularity strictly on the basis of its parent company's
worth. The reality is that Ubuntu Server is the most widely-used Linux
distribution for deploying cloud-based applications.

See here for details: http:/ /www. zdnet. com/ article/ ubuntu- linux-
continues- to- dominate- openstack- and- other- clouds/ .

Since Red Hat is a fee-based product, we'll substitute CentOS 7, which is built from Red Hat
source code and is free-of-charge. There are several different virtualization platforms that
you can use, but my own preferred choice is VirtualBox.

VirtualBox is available for Windows, Linux, and Mac hosts, and is free of charge for all of
them. It has features that you have to pay for on other platforms, such as the ability to
create snapshots of virtual machines.

Some of the labs that we'll be doing will require you to simulate creating a connection from
your host machine to a remote Linux server. If your host machine is either a Linux or a Mac
machine, you'll just be able to open the Terminal and use the built-in Secure Shell tools. If
your host machine is running Windows, you'll need to install some sort of Bash shell, which
we'll do by installing Cygwin.

Installing a virtual machine in VirtualBox
For those of you who've never used VirtualBox, here's a quick how-to to get you going:

Download and install VirtualBox and the VirtualBox Extension Pack. You can get1.
them from: https:/ / www. virtualbox. org/ .

Download the installation .iso files for Ubuntu Server and CentOS 7. You can2.
get them from: https:/ / www. ubuntu. com/ and https:/ /www. centos. org/ .

http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/

Running Linux in a Virtual Environment Chapter 1

[11]

Start VirtualBox and click the New icon at the top of the screen. Fill out the3.
information where requested. Increase the virtual drive size to 20 GB, but leave
everything else as the default settings:

Start the new virtual machine. Click on the folder icon at the bottom-left corner of4.
the dialog box and navigate to the directory where you stored the .iso files that
you downloaded. Choose either the Ubuntu .iso file or the CentOS .iso file as
shown in the following screenshot:

Running Linux in a Virtual Environment Chapter 1

[12]

Click the Start button on the dialog box to start installing the operating system.5.
Note that, for Ubuntu Server, you won't be installing a desktop interface. For the
CentOS virtual machine, choose either the KDE desktop or the Gnome desktop,
as you desire. (We'll go through at least one exercise that will require a desktop
interface for the CentOS machine.)
Repeat the procedure for the other Linux distribution.6.
Update the Ubuntu virtual machine by entering:7.

 sudo apt update
 sudo apt dist-upgrade

Running Linux in a Virtual Environment Chapter 1

[13]

Hold off on updating the CentOS virtual machine because we'll do that in the8.
next exercise.

When installing Ubuntu, you'll be asked to create a normal user account and
password for yourself. It won't ask you to create a root user password, but
will instead automatically add you to the sudo group so that you'll have
admin privileges.

When you get to the user account creation screen of the CentOS installer, be
sure to check the Make this user administrator box for your own user
account, since it isn't checked by default. It will offer you the chance to create
a password for the root user, but that's entirely optional—in fact, I never do.

The user account creation screen of CentOS installer is shown as follows:

Running Linux in a Virtual Environment Chapter 1

[14]

The EPEL repository on the CentOS virtual
machine
While the Ubuntu package repositories have pretty much everything that you need for this
course, the CentOS package repositories are—shall we say—lacking. To have the packages
that you'll need for the CentOS hands-on labs, you'll need to install the EPEL (Extra
Packages for Enterprise Linux) repository. (The EPEL project is run by the Fedora team.)
When you install third-party repositories on Red Hat and CentOS systems, you'll also need
to install a priorities package, and edit the .repo files to set the proper priorities for
each repository. This will prevent packages from the third-party repository from
overwriting official Red Hat and CentOS packages if they just happen to have the same
name. The following steps will help you install the required packages and edit .repo file:

The two packages that you'll need to install EPEL are in the normal CentOS1.
repositories. Run the command:

 sudo yum install yum-plugin-priorities epel-release

When the installation completes, navigate to the /etc/yum.repos.d directory,2.
and open the CentOS-Base.repo file in your favorite text editor. After the last
line of the base, updates, and extras sections, add the line, priority=1. After
the last line of the centosplus section, add the line, priority=2. Save the file
and close the editor. Each of the sections that you've edited should look
something like this (except with the appropriate name and priority number):

 [base]
 name=CentOS-$releasever - Base
 mirrorlist=http://mirrorlist.centos.org/?
 release=$releasever&arch=$basearch&repo=os&infra=$infra
 #baseurl=http://mirror.centos.org/centos/
 $releasever/os/$basearch/
 gpgcheck=1
 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
 priority=1

Running Linux in a Virtual Environment Chapter 1

[15]

Open the epel.repo file for editing. After the last line of the epel section, add3.
the line, priority=10. After the last line of each remaining section, add the line,
priority=11.
Update the system and then create a list of the installed and available packages4.
by running:

 sudo yum upgrade
 sudo yum list > yum_list.txt

Configuring a network for VirtualBox virtual
machines
Some of our training scenarios will require you to simulate creating a connection to a
remote server. You would do this by using your host machine to connect to a virtual
machine. When you first create a virtual machine on VirtualBox, the networking is set to
NAT mode. In order to connect to the virtual machine from the host, you'll need to set the
virtual machine's network adapter to Bridged Adapter mode. Here's how you can do this:

Shut down any virtual machines that you've already created.1.
On the VirtualBox manager screen, open the Settings dialog for a virtual2.
machine.
Click the Network menu item, and change the Attached to setting from NAT to3.
Bridged Adapter:

Running Linux in a Virtual Environment Chapter 1

[16]

Expand the Advanced item, and change the Promiscuous Mode setting to Allow4.
All:

Restart the virtual machine and set it to use a static IP address.5.

If you assign static IP addresses from the high end of your subnet range, it
will be easier to prevent conflicts with low-number IP addresses that get
handed out from your internet gateway.

Creating a virtual machine snapshot with
VirtualBox
One of the beautiful things about working with virtual machines is that you can create a
snapshot and roll back to it if you mess something up. With VirtualBox, that's easy to do.

At the top, right-hand corner of the VirtualBox manager screen, click the1.
Snapshots button:

Running Linux in a Virtual Environment Chapter 1

[17]

Just left of mid-screen, you'll see a camera icon. Click on that to bring up the2.
snapshot dialog box. Either fill in the desired Snapshot Name, or accept the
default name. Optionally, you can create a description:

After you've made changes to the virtual machine, you can roll back to the3.
snapshot by shutting down the virtual machine, then right-clicking on the
snapshot name, and selecting the proper menu item:

Running Linux in a Virtual Environment Chapter 1

[18]

Using Cygwin to connect to your virtual
machines
If your host machine is either a Linux or Mac machine, you'll simply open the host's
Terminal and use the tools that are already there to connect to the virtual machine. But, if
you're running a Windows machine, you'll want to install some sort of Bash shell and use
its networking tools. Windows 10 Pro now comes with a Bash shell that's been provided by
the Ubuntu folk and you can use that if you desire. But, if you don't have Windows 10 Pro,
or if you prefer to use something else, you might consider Cygwin.

Cygwin, a project of the Red Hat company, is a free open source Bash shell that's built for
Windows. It's free-of-charge, and easy to install.

Installing Cygwin on your Windows host
Here's a quick how-to to get you going with Cygwin:

In your host machine's browser, download the appropriate setup*.exe file for1.
your version of Windows from: http:/ /www. cygwin. com/ .

Double-click on the setup icon to begin the installation. For the most part, just2.
accept the defaults until you get to the package selection screen. (The one
exception will be the screen where you select a download mirror.)
At the top of the package selection screen, select Category from the View menu:3.

Expand the Net category:4.

http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/

Running Linux in a Virtual Environment Chapter 1

[19]

Scroll down until you see the openssh package. Under the New column, click on5.
Skip. (This causes a version number to appear in place of the Skip.):

After you have selected the proper package, your screen should look like this:6.

In the bottom right-hand corner, click Next. If a Resolving Dependencies screen7.
pops up, click Next on it as well.
Keep the setup file that you downloaded, because you'll use it later to either8.
install more software packages, or to update Cygwin. (When you open Cygwin,
any updated packages will show up on the Pending view on View menu.)
Once you open Cygwin from the Windows Start menu, you can resize it as you9.
desire, and use either the Ctrl + + or Ctrl + - key combinations to resize the font:

Running Linux in a Virtual Environment Chapter 1

[20]

Summary
So, we've made a good start to our journey into Linux security and hardening. In this
chapter, we looked at why it's just as important to know about securing and hardening
Linux systems as it is to know how to secure and harden Windows systems. We provided a
few examples of how a poorly-configured Linux system can be compromised, and we
mentioned that learning about Linux security could be good for your career. After that, we
looked at how to set up a virtualized lab environment using VirtualBox and Cygwin.

In the next chapter, we'll look at locking down user accounts, and ensuring that the wrong
people never get administrative privileges. I'll see you there.

2
Securing User Accounts

Managing users is one of the more challenging aspects of IT administration. You need to
make sure that users can always access their stuff and that they can perform the required
tasks to do their jobs. You also need to ensure that users' stuff is always secure from
unauthorized users and that users can't perform any tasks that don't fit their job description.
It's a tall order, but we aim to show that it's doable.

In this chapter, we'll cover the following topics:

The dangers of logging in as the root user
The advantages of using sudo
How to set up sudo privileges for full administrative users and for users with
only certain delegated privileges
Advanced tips and tricks to use sudo
Locking down users' home directories
Enforcing strong password criteria
Setting and enforcing password and account expiration
Preventing brute-force password attacks
Locking user accounts
Setting up security banners

Securing User Accounts Chapter 2

[22]

The dangers of logging in as the root user
A huge advantage that Unix and Linux operating systems have over Windows is that Unix
and Linux do a much better job of keeping privileged administrative accounts separated
from normal user accounts. Indeed, one reason that older versions of Windows were so
susceptible to security issues, such as drive-by virus infections, was the common practice of
setting up user accounts with administrative privileges, without having the protection of
the User Access Control that's in newer versions of Windows. (Even with User Access
Control, Windows systems still do get infected, just not quite as often.) With Unix and
Linux, it's a lot harder to infect a properly configured system.

You likely already know that the all-powerful administrator account on a Unix or Linux
system is the root account. If you're logged in as the root user, you can do anything you
want to do to that system. So you may think, "Yeah, that's handy, so that's what I'll do."
However, always logging in as the root user can present a whole load of security problems.
Consider the following. Logging in as the root user can:

Make it easier for you to accidentally perform an action that causes damage to the
system
Make it easier for someone else to perform an action that causes damage to the
system

So if you always log on as the root user or even if you just make the root user account
readily accessible, you could say that you're doing a big part of attackers' and intruders'
work for them. Also, imagine if you were the head Linux administrator at a large
corporation, and the only way to allow users to perform admin tasks was to give them all
the root password. What would happen if one of those users were to leave the company?
You wouldn't want for that person to still have the ability to log in to the systems, so you'd
have to change the password and distribute the new one to all of the other users. And, what
if you just want for users to have admin privileges for only certain tasks, instead of having
full root privileges?

What we need is a mechanism that allows users to perform administrative tasks without
incurring the risk of having them always log on as the root user and that would also allow
users to have only the admin privileges they really need to perform a certain job. In Linux
and Unix, we have that mechanism in the form of the sudo utility.

Securing User Accounts Chapter 2

[23]

The advantages of using sudo
Used properly, the sudo utility can greatly enhance the security of your systems, and it can
make an administrator's job much easier. With sudo, you can do the following:

Assign certain users full administrative privileges, while assigning other users
only the privileges they need to perform tasks that are directly related to their
respective jobs.
Allow users to perform administrative tasks by entering their own normal user
passwords so that you don't have to distribute the root password to everybody
and his brother.
Make it harder for intruders to break into your systems. If you implement sudo
and disable the root user account, would-be intruders won't know which account
to attack because they won't know which one has admin privileges.
Create sudo policies that you can deploy across an entire enterprise network even
if that network has a mix of Unix, BSD, and Linux machines.
Improve your auditing capabilities because you'll be able to see what users are
doing with their admin privileges.

In regards to that last bullet point, consider the following snippet from the secure log of
my CentOS 7 virtual machine:

Sep 29 20:44:33 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/donnie ;
USER=root ; COMMAND=/bin/su -
Sep 29 20:44:34 localhost su: pam_unix(su-l:session): session opened for
user root by donnie(uid=0)
Sep 29 20:50:39 localhost su: pam_unix(su-l:session): session closed for
user root

You can see that I used su - to log in to the root command prompt and that I then logged
back out. While I was logged in, I did several things that require root privileges, but none of
that got recorded. What did get recorded though is something that I did with sudo. That is,
because the root account is disabled on this machine, I used my sudo privilege to get su -
to work for me. Let's look at another snippet to show a bit more detail about how this
works:

Sep 29 20:50:45 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/donnie ;
USER=root ; COMMAND=/bin/less /var/log/secure
Sep 29 20:55:30 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/donnie ;
USER=root ; COMMAND=/sbin/fdisk -l
Sep 29 20:55:40 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/donnie ;
USER=root ; COMMAND=/bin/yum upgrade
Sep 29 20:59:35 localhost sudo: donnie : TTY=tty1 ; PWD=/home/donnie ;

Securing User Accounts Chapter 2

[24]

USER=root ; COMMAND=/bin/systemctl status sshd
Sep 29 21:01:11 localhost sudo: donnie : TTY=tty1 ; PWD=/home/donnie ;
USER=root ; COMMAND=/bin/less /var/log/secure

This time, I used my sudo privilege to open a log file, to view my hard drive configuration,
to perform a system update, to check the status of the Secure Shell daemon, and to once
again view a log file. So, if you were the security administrator at my company, you'd be
able to see whether or not I'm abusing my sudo power.

Now, you're asking, "What's to prevent a person from just doing a sudo su - to prevent his or her
misdeeds from being detected?" That's easy. Just don't give people the power to go to the root
command prompt.

Setting up sudo privileges for full
administrative users
Before we look at how to limit what users can do, let's first look at how to allow a user to do
everything, including logging into the root command prompt. There are a couple of
methods for doing that.

Method 1 – adding users to a predefined admin
group
The first method, which is the simplest, is to add users to a predefined administrators group
and then, if it hasn't already been done, to configure the sudo policy to allow that group to
do its job. It's simple enough to do except that different Linux distro families use different
admin groups.

On Unix, BSD, and most Linux systems, you would add users to the wheel group.
(Members of the Red Hat family, including CentOS, fall into this category.) When I do the
groups command on my CentOS machine, I get this:

[donnie@localhost ~]$ groups
donnie wheel
[donnie@localhost ~]$

Securing User Accounts Chapter 2

[25]

This shows that I'm a member of the wheel group. By doing sudo visudo, I'll open the
sudo policy file. Scrolling down, we'll see the line that gives the wheel group its awesome
power:

Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

The percent sign indicates that we're working with a group. The three ALLs mean that
members of that group can perform any command, as any user, on any machine in the
network on which this policy is deployed. The only slight catch is that group members will
be prompted to enter their own normal user account passwords in order to perform a sudo
task. Scroll down a bit more, and you'll see the following:

Same thing without a password
%wheel ALL=(ALL) NOPASSWD: ALL

If we were to comment out the %wheel line in the former snippet and remove the comment
symbol from in front of the %wheel line in this snippet, then members of the wheel group
would be able to perform all of their sudo tasks without ever having to enter any password.
That's something that I really don't recommend, even for home use. In a business setting,
allowing people to have passwordless sudo privileges is a definite no-no.

To add an existing user to the wheel group, use usermod with the -G option. You might
also want to use the -a option as well, in order to prevent removing the user from other
groups to which he or she belongs. For our example, let's add Maggie:

sudo usermod -a -G wheel maggie

You can also add a user account to the wheel group as you create it. Let's do that now for
Frank:

sudo useradd -G wheel frank

Note that with my usage of useradd, I'm assuming that we're working
with a member of the Red Hat family, which comes with predefined
default settings to create user accounts. For non-Red Hat-type distros that
use the wheel group, you'd need to either reconfigure the default settings
or use extra option switches in order to create the user's home directory
and to assign the correct shell. Your command then would look something
like:

sudo useradd -G wheel -m -d /home/frank -s /bin/bash
frank

Securing User Accounts Chapter 2

[26]

For members of the Debian family, including Ubuntu, the procedure is the same, except that
you would use the sudo group instead of the wheel group. (This kind of figures,
considering that the Debian folk have pretty much always marched to the beat of a different
drummer.)

One way in which this technique would come in handy is whenever you
need to create a virtual private server on a cloud service, such as
Rackspace, DigitalOcean, or Vultr. When you log in to one of those
services and initially create your virtual machine, the cloud service will
have you log in to that virtual machine as the root user. (This even
happens with Ubuntu, even though the root user account is disabled
whenever you do a local installation of Ubuntu.)

The first thing that you'll want to do in this scenario is to create a normal
user account for yourself and give it full sudo privileges. Then, log out of
the root account and log back in with your normal user account. You'll
then want to disable the root account with the command:

sudo passwd -l root

You'll also want to do some additional configuration to lock down Secure
Shell access, but we'll cover that in Chapter 4, Encrypting and SSH
Hardening.

Method 2 – creating an entry in the sudo policy
file
Okay, adding users to either the wheel group or the sudo group works great if you're
either just working with a single machine or if you're deploying a sudo policy across a
network that uses just one of these two admin groups. But what if you want to deploy a
sudo policy across a network with a mixed group of both Red Hat and Ubuntu machines?
Or what if you don't want to go around to each machine to add users to an admin group?
Then, just create an entry in the sudo policy file. You can either create an entry for an
individual user or create a user alias. If you do sudo visudo on your CentOS virtual
machine, you'll see a commented-out example of a user alias:

User_Alias ADMINS = jsmith, mikem

Securing User Accounts Chapter 2

[27]

You can uncomment this line and add your own set of usernames, or you can just add a line
with your own user alias. To give members of the user alias full sudo power, add another
line that would look like this:

ADMINS ALL=(ALL) ALL

It's also possible to add a visudo entry for just a single user, and you might need to do that
under very special circumstances. For example:

frank ALL=(ALL) ALL

But for ease of management, it's best to go with either a user group or a user alias.

The sudo policy file is the /etc/sudoers file. I always hesitate to tell
students that because every once in a while I have a student try to edit it in
a regular text editor. That doesn't work though, so please don't try it.
Always edit sudoers with the command, sudo visudo.

Setting up sudo for users with only certain
delegated privileges
A basic tenet of IT security philosophy is to give network users enough privileges so that
they can get their jobs done, but no privileges beyond that. So, you'll want as few people as
possible to have full sudo privileges. (If you have the root user account enabled, you'll want
even fewer people to know the root password.) You'll also want a way to delegate
privileges to people according to what their specific jobs are. Backup admins will need to be
able to perform backup tasks, help desk personnel will need to perform user management
tasks, and so on. With sudo, you can delegate these privileges and disallow users from
doing any other administrative jobs that don't fit their job description.

The best way to explain this is to have you open visudo on your CentOS virtual machine.
So, go ahead and start the CentOS VM and enter the following command:

sudo visudo

Securing User Accounts Chapter 2

[28]

Unlike Ubuntu, CentOS has a fully commented and well-documented sudoers file. I've
already shown you the line that creates the ADMIN user alias, and you can create other user
aliases for other purposes. You can, for example, create a BACKUPADMINS user alias for
backup administrators, a WEBADMINS user alias for web server administrators, or whatever
else you desire. So, you could add a line that looks something like this:

User_Alias SOFTWAREADMINS = vicky, cleopatra

That's good, except that Vicky and Cleopatra still can't do anything. You'll need to assign
some duties to the user alias.

If you look at the example user alias mentioned later, you'll see a list of example Command
Aliases. One of these examples just happens to be SOFTWARE, which contains the
commands that an admin would need to either install or remove software or to update the
system. It's commented out, as are all of the other example command aliases, so you'll need
to remove the hash symbol from the beginning of the line before you can use it:

Cmnd_Alias SOFTWARE = /bin/rpm, /usr/bin/up2date, /usr/bin/yum

Now, it's just a simple matter of assigning the SOFTWARE command alias to the
SOFTWAREADMINS user alias:

SOFTWAREADMINS ALL=(ALL) SOFTWARE

Vicky and Cleopatra, both members of the SOFTWAREADMINS user alias, can now run the
rpm, up2date, and yum commands with root privileges.

All but one of these predefined command aliases are ready to use after you uncomment
them and assign them to either a user, group, or user alias. The one exception is the
SERVICES command alias:

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/systemctl
start, /usr/bin/systemctl stop, /usr/bin/systemctl reload,
/usr/bin/systemctl restart, /usr/bin/systemctl status, /usr/bin/systemctl
enable, /usr/bin/systemctl disable

The problem with this SERVICES alias is that it also lists the different subcommands for the
systemctl command. The way sudo works is that if a command is listed by itself, then the
assigned user can use that command with any subcommands, options, or arguments. So, in
the SOFTWARE example, members of the SOFTWARE user alias can run a command such as:

sudo yum upgrade

Securing User Accounts Chapter 2

[29]

But, when a command is listed in the command alias with a subcommand, option, or
argument, that's all anyone who's assigned to the command alias can run. With the
SERVICES command alias in its current configuration, the systemctl commands just won't
work. To see why, let's set Charlie and Lionel up in the SERVICESADMINS user alias and
then uncomment the SERVICES command alias, as we've already done earlier:

User_Alias SERVICESADMINS = charlie, lionel
SERVICESADMINS ALL=(ALL) SERVICES

Now, watch what happens when Lionel tries to check the status of the Secure Shell service:

[lionel@centos-7 ~]$ sudo systemctl status sshd
[sudo] password for lionel:
Sorry, user lionel is not allowed to execute '/bin/systemctl status sshd'
as root on centos-7.xyzwidgets.com.
[lionel@centos-7 ~]$

Okay, so Lionel can run sudo systemctl status, which is pretty much useless, but he
can't do anything meaningful, like specifying the service that he wants to check. That's a bit
of a problem. There are two ways to fix this, but there's only one way that you want to use.
You could just eliminate all of the systemctl subcommands and make the SERVICES alias
look like this:

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/systemctl

But, if you do that, Lionel and Charlie will also be able to shut down or reboot the system,
edit the services files, or change the machine from one systemd target to another. That's
probably not what you want. Because the systemctl command covers a lot of different
functions, you have to be careful not to allow delegated users to access too many of those
functions. A better solution would be to add a wildcard to each of the systemctl
subcommands:

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/systemctl
start *, /usr/bin/systemctl stop *, /usr/bin/systemctl reload *,
/usr/bin/systemctl restart *, /usr/bin/systemctl status *,
/usr/bin/systemctl enable *, /usr/bin/systemctl disable *

Now, Lionel and Charlie can perform any of the systemctl functions that are listed in this
command alias, for any service:

[lionel@centos-7 ~]$ sudo systemctl status sshd
[sudo] password for lionel:
● sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled; vendor
preset: enabled)

Securing User Accounts Chapter 2

[30]

 Active: active (running) since Sat 2017-09-30 18:11:22 EDT; 23min ago
 Docs: man:sshd(8)
 man:sshd_config(5)
 Main PID: 13567 (sshd)
 CGroup: /system.slice/sshd.service
 └─13567 /usr/sbin/sshd -D

Sep 30 18:11:22 centos-7.xyzwidgets.com systemd[1]: Starting OpenSSH server
daemon...
Sep 30 18:11:22 centos-7.xyzwidgets.com sshd[13567]: Server listening on
0.0.0.0 port 22.
Sep 30 18:11:22 centos-7.xyzwidgets.com sshd[13567]: Server listening on ::
port 22.
Sep 30 18:11:22 centos-7.xyzwidgets.com systemd[1]: Started OpenSSH server
daemon.
[lionel@centos-7 ~]$

Keep in mind that you're not limited to using user aliases and command aliases. You can
also assign privileges to either a Linux group or to an individual user. You can also assign
individual commands to a user alias, Linux group, or individual user. For example:

katelyn ALL=(ALL) STORAGE
gunther ALL=(ALL) /sbin/fdisk -l
%backup_admins ALL=(ALL) BACKUP

Katelyn can now do all of the commands in the STORAGE command alias, whereas Gunther
can only use fdisk to look at the partition tables. The members of the backup_admins
Linux group can do commands in the BACKUP command alias.

The last thing we'll look at for this topic is the host aliases examples that you see preceding
the user alias example:

Host_Alias FILESERVERS = fs1, fs2
Host_Alias MAILSERVERS = smtp, smtp2

Each host alias consists of a list of server hostnames. This is what allows you to create one
sudoers file on one machine, and deploy it across the network. For example, you could
create a WEBSERVERS host alias, a WEBADMINS user alias, and a WEBCOMMANDS command
alias with the appropriate commands.

Securing User Accounts Chapter 2

[31]

Your configuration would look something like this:

Host_Alias WEBSERVERS = webserver1, webserver2
User_Alias WEBADMINS = junior, kayla
Cmnd_Alias WEBCOMMANDS = /usr/bin/systemctl status httpd,
/usr/bin/systemctl start httpd, /usr/bin/systemctl stop httpd,
/usr/bin/systemctl restart httpd

WEBADMINS WEBSERVERS=(ALL) WEBCOMMANDS

Now, when a user types a command into a server on the network, sudo will first look at the
hostname of that server. If the user is authorized to perform that command on that server,
then sudo allows it. Otherwise, sudo denies it. In a small to medium-sized business, it
would probably work just fine to manually copy the master sudoers file to all the servers
on the network. But, in a large enterprise, you'll want to streamline and automate the
process. For this, you could use something like Puppet, Chef, or Ansible. (These three
technologies are beyond the scope of this book, but you'll find plenty of books and video
courses about all three of them at the Packt website.)

All of these techniques will work on your Ubuntu VM as well as on the CentOS VM. The
only catch is, Ubuntu doesn't come with any predefined command aliases, so you'll have to
type them in yourself.

Anyway, I know that you're tired of reading, so let's do some work.

Hands-on lab for assigning limited sudo
privileges
In this lab, you'll create some users and assign them different levels of privileges. To
simplify things, we'll use the CentOS virtual machine.

Log in to the CentOS virtual machine and create user accounts for Lionel,1.
Katelyn, and Maggie:

 sudo useradd lionel
 sudo ueradd katelyn
 sudo useradd maggie
 sudo passwd lionel
 sudo passwd katelyn
 sudo passwd maggie

Securing User Accounts Chapter 2

[32]

Open visudo:2.

 sudo visudo

Find the STORAGE command alias and remove the comment symbol from in front
of it.

Add the following lines to the end of the file, using tabs to separate the columns:3.

 lionel ALL=(ALL) ALL
 katelyn ALL=(ALL) /usr/bin/systemctl status sshd
 maggie ALL=(ALL) STORAGE

Save the file and exit visudo.

To save time, we'll use su to log into the different user accounts. You won't need4.
to log out of your own account to perform these steps. First, log in to Lionel's
account and verify that he has full sudo privileges by running several root-level
commands:

 su - lionel
 sudo su -
 exit
 sudo systemctl status sshd
 sudo fdisk -l
 exit

This time, log in as Katelyn and try to run some root-level commands. (Don't be5.
too disappointed if they don't all work, though.)

 su - katelyn
 sudo su -
 sudo systemctl status sshd
 sudo systemctl restart sshd
 sudo fdisk -l
 exit

Finally, log in as Maggie, and run the same set of commands that you ran for6.
Katelyn.
Keep in mind that although we only had three individual users for this lab, you7.
could just as easily have handled more users by setting them up in user aliases or
Linux groups.

Securing User Accounts Chapter 2

[33]

Since sudo is such a great security tool, you would think that everyone
would use it, right? Sadly, that's not the case. Pretty much any time you
look at either a Linux tutorial website or a Linux tutorial YouTube
channel, you'll see the person who's doing the demo logged in at the root
user command prompt. In some cases, I've seen the person remotely
logged in as the root user on a cloud-based virtual machine. Now, if
logging in as the root user is already a bad idea, then logging in across the
internet as the root user is an even worse idea. In any case, seeing
everybody do these tutorial demos from the root user's shell drives me
absolutely crazy.

Having said all this, there are some things that don't work with sudo. Bash
shell internal commands, such as cd don't work with it, and injecting
kernel values into the /proc filesystem also doesn't work with it. For tasks
such as these, a person would have to go to the root command prompt.
Still though, make sure that only users who absolutely have to use the root
user command prompt have access to it.

Advanced tips and tricks for using sudo
Now that we've looked at the basics of setting up a good sudo configuration, we're
confronted with a bit of a paradox. That is, even though sudo is a security tool, certain
things that you can do with it can make your system even more insecure than it was. Let's
see how to avoid that.

The sudo timer
By default, the sudo timer is set for 5 minutes. This means that once a user performs one
sudo command and enters a password, he or she can perform another sudo command
within 5 minutes without having to enter the password again. Although this is obviously
handy, it can also be problematic if users were to walk away from their desks with a
command terminal still open. If the 5 minute timer hasn't yet expired, someone else could
come along and perform some root-level task. If your security needs require it, you can
easily disable this timer by adding a line to the Defaults section of the sudoers file. This
way, users will have to enter their passwords every time they run a sudo command. You
can make this a global setting for all users, or you can just set it for certain individual users.

Securing User Accounts Chapter 2

[34]

Hands-on lab for disabling the sudo timer
For this lab, you'll disable the sudo timer on your CentOS VM.

Log in to the same CentOS virtual machine that you used for the previous lab.1.
We'll be using the user accounts that you've already created.
At your own user account command-prompt, enter the following commands:2.

 sudo fdisk -l
 sudo systemctl status sshd
 sudo iptables -L

You'll see that you only needed to enter the password once to do all three
commands.

Open visudo with:3.

 sudo visudo

In the Defaults specification section of the file, add the following line:

 Defaults timestamp_timeout = 0

Save the file and exit visudo.

Perform the commands that you performed in Step 2. This time, you should see4.
that you have to enter a password every time.
Open visudo and modify the line that you added so that it looks like this:5.

 Defaults:lionel timestamp_timeout = 0

Save the file and exit visudo.

From your own account shell, repeat the commands that you performed in Step 2.6.
Then, log in as Lionel and perform the commands again.
Note that this same procedure also works for Ubuntu.7.

Securing User Accounts Chapter 2

[35]

Preventing users from having root shell access
Let's say that you want to set up a user with limited sudo privileges, but you did so by
adding a line like this:

maggie ALL=(ALL) /bin/bash, /bin/zsh

I'm sorry to say that you haven't limited Maggie's access at all. You effectively gave her full
sudo privileges with both the Bash shell and the Zsh shell. So, don't add lines like this to
your sudoers because it will get you into trouble.

Preventing users from using shell escapes
Certain programs, especially text editors and pagers, have a handy shell escape feature. This
allows a user to run a shell command without having to exit the program first. For example,
from the command mode of the Vi and Vim editors, someone could run the ls command
by doing :!ls. Executing the command would look like this:

useradd defaults file
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes

~
~
:!ls

The output would look like this:

[donnie@localhost default]$ sudo vim useradd
[sudo] password for donnie:

grub nss useradd

Press ENTER or type command to continue
grub nss useradd

Press ENTER or type command to continue

Securing User Accounts Chapter 2

[36]

Now, imagine that you want Frank to be able to edit the sshd_config file and only that
file. You might be tempted to add a line to your sudo configuration that would look like
this:

frank ALL=(ALL) /bin/vim /etc/ssh/sshd_config

This looks like it would work, right? Well, it doesn't because once Frank has opened the
sshd_config file with his sudo privilege, he can then use Vim's shell escape feature to
perform other root-level commands, which would include being able to edit other
configuration files. You can fix this problem by having Frank use sudoedit instead of vim:

frank ALL=(ALL) sudoedit /etc/ssh/sshd_config

sudoedit has no shell escape feature, so you can safely allow Frank to use it.

Other programs that have a shell escape feature include the following:

emacs
less
view
more

Preventing users from using other dangerous
programs
Some programs that don't have shell escapes can still be dangerous if you give users
unrestricted privileges to use them. These include the following:

cat
cut
awk
sed

If you must give someone sudo privileges to use one of these programs, it's best to limit
their use to only specific files. And, that brings us to our next tip.

Securing User Accounts Chapter 2

[37]

Limiting the user's actions with commands
Let's say that you create a sudo rule so that Sylvester can use the systemctl command:

sylvester ALL=(ALL) /usr/bin/systemctl

This allows Sylvester to have full use of the systemctl features. He can control daemons,
edit service files, shutdown or reboot, and every other function that systemctl does. That's
probably not what you want. It would be better to specify what systemctl functions that
Sylvester is allowed to do. Let's say that you want him to be able to control just the Secure
Shell service. You can make the line look like this:

sylvester ALL=(ALL) /usr/bin/systemctl * sshd

Sylvester can now do everything he needs to do with the Secure Shell service, but he can't
shut down or reboot the system, edit service files, or change systemd targets. But, what if
you want Sylvester to do only certain specific actions with the Secure Shell service? Then,
you'll have to omit the wild card and specify all of the actions that you want for Sylvester to
do:

sylvester ALL=(ALL) /usr/bin/systemctl status sshd, /usr/bin/systemctl
restart sshd

Now, Sylvester can only restart the Secure Shell service or check its status.

When writing sudo policies, you'll want to be aware of the differences
between the different Linux and Unix distros on your network. For
example, on Red Hat 7 and CentOS 7 systems, the systemctl binary file
is located in the /usr/bin directory. On Debian/Ubuntu systems, it's
located in the /bin directory. If you have to roll out a sudoers file to a
large enterprise network with mixed operating systems, you can use host
aliases to ensure that servers will only allow the execution of commands
that are appropriate for their operating systems.

Also, be aware that some system services have different names on
different Linux distros. On Red Hat and CentOS systems, the Secure Shell
service is sshd. On Debian/Ubuntu systems, it's just plain ssh.

Securing User Accounts Chapter 2

[38]

Letting users run as other users
In the following line, (ALL) means that Sylvester can run the systemctl commands as any
user:

sylvester ALL=(ALL) /usr/bin/systemctl status sshd, /usr/bin/systemctl
restart sshd

This effectively gives Sylvester root privileges for these commands because the root user is
definitely any user. You could, if desired, change that (ALL) to (root) in order to specify
that Sylvester can only run these commands as the root user:

sylvester ALL=(root) /usr/bin/systemctl status sshd, /usr/bin/systemctl
restart sshd

Okay, there's probably not much point in that because nothing changes. Sylvester had root
privileges for these systemctl commands before, and he still has them now. But, there are
more practical uses for this feature. Let's say that Vicky is a database admin, and you want
her to run as the database user:

vicky ALL=(database) /usr/local/sbin/some_database_script.sh

Vicky could then run the command as the database user by entering the following code:

sudo -u database some_database_script.sh

This is one of those features that you might not use that often, but keep it in mind anyway.
You never know when it might come in handy.

Okay, this wraps it up for our discussion of sudo. Let's now turn our attention to ensuring
the security of our regular users.

Locking down users' home directories the
Red Hat or CentOS way
This is another area where different Linux distro families do business differently from each
other. As we shall see, each distro family comes with different default security settings. A
security administrator who oversees a mixed environment of different Linux distros will
need to take this into account.

Securing User Accounts Chapter 2

[39]

One beautiful thing about Red Hat Enterprise Linux and all of its offspring, such as CentOS,
is that they have better out-of-the-box security than any other Linux distro. This makes it
quicker and easier to harden Red Hat-type systems because much of the work has already
been done. One thing that's already been done for us is locking down users' home
directories:

[donnie@localhost home]$ sudo useradd charlie
[sudo] password for donnie:
[donnie@localhost home]$

[donnie@localhost home]$ ls -l
total 0
drwx------. 2 charlie charlie 59 Oct 1 15:25 charlie
drwx------. 2 donnie donnie 79 Sep 27 00:24 donnie
drwx------. 2 frank frank 59 Oct 1 15:25 frank
[donnie@localhost home]$

By default, the useradd utility on Red Hat-type systems creates user home directories with
a permissions setting of 700. This means that only the user who owns the home directory
can access it. All other normal users are locked out. We can see why by looking at the
/etc/login.defs file. Scroll down towards the bottom of the file, and you'll see:

CREATE_HOME yes
UMASK 077

The login.defs file is one of two files where default settings for useradd are configured.
This UMASK line is what determines the permissions values on home directories as they get
created. Red Hat-type distros have it configured with the 077 value, which removes all
permissions from the group and others. This UMASK line is in the login.defs file for all
Linux distros, but Red Hat-type distros are the only ones that have UMASK set to such a
restrictive value by default. Non-Red Hat distros usually have a UMASK value of 022, which
creates home directories with a permissions value of 755. This allows everybody to enter
everybody else's home directories and access each others' files.

Locking down users' home directories the
Debian/Ubuntu way
Debian and its offspring, such as Ubuntu, have two user creation utilities:

useradd on Debian/Ubuntu
adduser on Debian/Ubuntu

Securing User Accounts Chapter 2

[40]

useradd on Debian/Ubuntu
The useradd utility is there, but Debian and Ubuntu don't come with the handy
preconfigured defaults as Red Hat and CentOS do. If you were to just do sudo useradd
frank on a default Debian/Ubuntu machine, Frank would have no home directory and
would be assigned the wrong default shell. So, to create a user account with useradd on a
Debian or Ubuntu system, the command would look something like:

sudo useradd -m -d /home/frank -s /bin/bash frank

In this command:

-m creates the home directory.
-d specifies the home directory.
-s specifies Frank's default shell. (Without the -s, Debian/Ubuntu would assign
to Frank the /bin/sh shell.)

When you look at the home directories, you'll see that they're wide open, with execute and
read privileges for everybody:

donnie@packt:/home$ ls -l
total 8
drwxr-xr-x 3 donnie donnie 4096 Oct 2 00:23 donnie
drwxr-xr-x 2 frank frank 4096 Oct 1 23:58 frank
donnie@packt:/home$

As you can see, Frank and I can get into each other's stuff. (And no, I don't want Frank
getting into my stuff.) Each user could change the permissions on his or her own directory,
but how many of your users would know how to do that? So, let's fix that ourselves:

cd /home
sudo chmod 700 *

Let's see what we have now:

donnie@packt:/home$ ls -l
total 8
drwx------ 3 donnie donnie 4096 Oct 2 00:23 donnie
drwx------ 2 frank frank 4096 Oct 1 23:58 frank
donnie@packt:/home$

That looks much better.

Securing User Accounts Chapter 2

[41]

To change the default permissions setting for home directories, open /etc/login.defs for
editing. Look for the line:

UMASK 022

Change it to:

UMASK 077

Now, new users' home directories will get locked down on creation, just as they do with
Red Hat.

adduser on Debian/Ubuntu
The adduser utility is an interactive way to create user accounts and passwords with a
single command, which is unique to the Debian family of Linux distros. Most of the default
settings that are missing from the Debian implementation of useradd are already set for
adduser. The only thing wrong with the default settings is that it creates user home
directories with the wide-open 755 permissions value. Fortunately, that's easy to change.
(We'll see how in just a bit.)

Although adduser is handy for just casual creation of user accounts, it doesn't offer the
flexibility of useradd and it isn't suitable for use in shell scripting. One thing that adduser
will do that useradd won't is to automatically encrypt a user's home directory as you create
the account. To make it work, you'll first have to install the ecryptfs-utils package. So,
to create an account with an encrypted home directory for Cleopatra, you do:

sudo apt install ecryptfs-utils

donnie@ubuntu-steemnode:~$ sudo adduser --encrypt-home cleopatra
[sudo] password for donnie:
Adding user `cleopatra' ...
Adding new group `cleopatra' (1004) ...
Adding new user `cleopatra' (1004) with group `cleopatra' ...
Creating home directory `/home/cleopatra' ...
Setting up encryption ...

**
YOU SHOULD RECORD YOUR MOUNT PASSPHRASE AND STORE IT IN A SAFE LOCATION.
 ecryptfs-unwrap-passphrase ~/.ecryptfs/wrapped-passphrase
THIS WILL BE REQUIRED IF YOU NEED TO RECOVER YOUR DATA AT A LATER TIME.
**

Securing User Accounts Chapter 2

[42]

Done configuring.

Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for cleopatra
Enter the new value, or press ENTER for the default
 Full Name []: Cleopatra Tabby Cat
 Room Number []: 1
 Work Phone []: 555-5556
 Home Phone []: 555-5555
 Other []:
Is the information correct? [Y/n] Y
donnie@ubuntu-steemnode:~$

The first time that Cleopatra logs in, she'll need to run the ecryptfs-unwrap-passphrase
command that's mentioned in the preceding output. She'll then want to write her
passphrase down and store it in a safe place:

cleopatra@ubuntu-steemnode:~$ ecryptfs-unwrap-passphrase
Passphrase:
d2a6cf0c3e7e46fd856286c74ab7a412
cleopatra@ubuntu-steemnode:~$

We'll look at the whole encryption thing more in detail when we get to the encryption
chapter.

Hands-on lab for configuring adduser
For this lab, we'll be working with the adduser utility, which is peculiar to Debian/Ubuntu
systems:

On your Ubuntu virtual machine, open the /etc/adduser.conf file for editing.1.
Find the line that says:

 DIR_MODE=0755

Change it to:

 DIR_MODE=0700

Securing User Accounts Chapter 2

[43]

Save the file and exit the text editor.

Install the ecryptfs-utils package:2.

 sudo apt install ecryptfs-utils

Create a user account with encrypted home directory for Cleopatra and then3.
view the results:

 sudo adduser --encrypt-home cleopatra
 ls -l /home

Log in as Cleopatra and run the ecryptfs-unwrap-passphrase command:4.

 su - cleopatra
 ecryptfs-unwrap-passphrase
 exit

Note that some of the information that adduser asks for is optional, and you can
just hit the Enter key for those items.

Enforcing strong password criteria
You wouldn't think that a benign-sounding topic such as strong password criteria would be
so controversial, but it is. The conventional wisdom that you've undoubtedly heard for your
entire computer career says:

Make passwords of a certain minimum length
Make passwords that consist of a combination of uppercase letters, lowercase
letters, numbers, and special characters
Ensure that passwords don't contain any words that are found in the dictionary
or that are based on the users' own personal data
Force users to change their passwords on a regular basis

But, using your favorite search engine, you'll see that different experts disagree on the
details of these criteria. For example, you'll see disagreements about whether passwords
should be changed every 30, 60, or 90 days, disagreements about whether all four types of
characters need to be in a password, and even disagreements on what the minimum length
of a password should be.

Securing User Accounts Chapter 2

[44]

The most interesting controversy of all comes from—of all places—the guy who invented
the preceding criteria to begin with. He now says that it's all bunk and regrets having come
up with it. He now says that we should be using passphrases that are long, yet easy to
remember. He also says that they should be changed only if they've been breached.

Bill Burr, the former National Institutes of Standards and Technology
engineer who created the strong password criteria that I've outlined
earlier, shares his thoughts about why he now disavows his own work.

Refer to: https:/ /www. pcmag.com/ news/ 355496/ you-might- not-need-
complex- alphanumeric- passwords- after- all.

However, having said all that, there is the reality that most organizations are still wedded to
the idea of using complex passwords that regularly expire, and you'll have to abide by their
rules if you can't convince them otherwise. And besides, if you are using traditional
passwords, you do want them to be strong enough to resist any sort of password attack. So
now, we'll take a look at the mechanics of enforcing strong password criteria on a Linux
system.

I have to confess that I had never before thought to try creating a
passphrase to use in place of a password on a Linux system. So, I just now
tried it on my CentOS virtual machine to see if it would work.

I created an account for Maggie, my black-and-white tuxedo kitty. For her
password, I entered the passphrase, I like other kitty cats. You
may think, "Oh, that's terrible. This doesn't meet any complexity criteria, and it
uses dictionary words. How is that secure?" But, the fact that it's a phrase with
distinct words separated by blank spaces does make it secure and very
difficult to brute-force.

Now, in real life, I would never create a passphrase that expresses my love
for cats because it's not hard to find out that I really do love cats. Rather, I
would choose a passphrase about some more obscure part of my life that
nobody but me knows about.

In any case, there are two advantages of passphrases over passwords.
They're more difficult to crack than traditional passwords, yet they're
easier for users to remember. For extra security though, just don't create
passphrases about a fact of your life that everybody knows about.

https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all
https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all

Securing User Accounts Chapter 2

[45]

Installing and configuring pwquality
We'll be using the pwquality module for PAM (Pluggable Authentication Module). This
is a newer technology that has replaced the old cracklib module. On a Red Hat 7 or
CentOS 7 system, pwquality is installed by default, even if you do a minimal installation.
If you cd into the /etc/pam.d directory, you can do a grep operation to see that the PAM
configuration files are already set up. The retry=3 means that a user will only have three
tries to get the password right when logging into the system:

[donnie@localhost pam.d]$ grep 'pwquality' *
password-auth:password requisite pam_pwquality.so try_first_pass
local_users_only retry=3 authtok_type=
password-auth-ac:password requisite pam_pwquality.so try_first_pass
local_users_only retry=3 authtok_type=
system-auth:password requisite pam_pwquality.so try_first_pass
local_users_only retry=3 authtok_type=
system-auth-ac:password requisite pam_pwquality.so try_first_pass
local_users_only retry=3 authtok_type=
[donnie@localhost pam.d]$

For your Ubuntu system, you'll need to install pwquality yourself. You'll do that with the
command:

sudo apt install libpam-pwquality

We'll now cd into the /etc/pam.d directory and perform the same grep command that we
did before. We'll see that installing the libpam-pwquality modules automatically updates
the PAM configuration files:

donnie@packt:/etc/pam.d$ grep 'pwquality' *
common-password:password requisite
pam_pwquality.so retry=3
donnie@packt:/etc/pam.d$

The rest of the procedure is the same for both operating systems and consists of just editing
the /etc/security/pwquality.conf file. When you open this file in your text editor,
you'll see that everything is commented out, which means that no password complexity
criteria are in effect. You'll also see that it's very well-documented because every setting has
its own explanatory comment.

Securing User Accounts Chapter 2

[46]

You can set password complexity criteria however you want just by uncommenting the
appropriate lines and setting the proper values. Let's take a look at just one setting:

Minimum acceptable size for the new password (plus one if
credits are not disabled which is the default). (See pam_cracklib
manual.)
Cannot be set to lower value than 6.
minlen = 8

The minimum length setting works on a credit system. This means that for every different
type of character class in the password, the minimum required password length will be
reduced by one character. For example, let's set the minlen to a value of 19 and try to
assign Katelyn the password, turkeylips:

minlen = 19

[donnie@localhost ~]$ sudo passwd katelyn
Changing password for user katelyn.
New password:
BAD PASSWORD: The password is shorter than 18 characters
Retype new password:
[donnie@localhost ~]$

Because the lowercase characters in turkeylips count as credit for one type of character
class, we're only required to have 18 characters instead of 19. If we try this again with
TurkeyLips, we'll get:

[donnie@localhost ~]$ sudo passwd katelyn
Changing password for user katelyn.
New password:
BAD PASSWORD: The password is shorter than 17 characters
Retype new password:
[donnie@localhost ~]$

This time, the uppercase T and uppercase L count as a second character class, so we only
need to have 17 characters in the password.

Just below the minlen line, you'll see the credit lines. Let's say that you don't want
lowercase letters to count toward your credits. You would find this line:

lcredit = 1

Also, you would change the 1 to a 0:

lcredit = 0

Securing User Accounts Chapter 2

[47]

 Then, try assigning Katelyn turkeylips as a password:

[donnie@localhost ~]$ sudo passwd katelyn
Changing password for user katelyn.
New password:
BAD PASSWORD: The password is shorter than 19 characters
Retype new password:
[donnie@localhost ~]$

This time, the pwquality really does want 19 characters. If we set a credit value to
something higher than one, we would get credit for multiple characters of the same class
type up to that value.

We can also set the credit values to negative numbers in order to require a certain number
of characters types in a password. We have the following example:

dcredit = -3

This would require at least three digits in a password. However, it's a really a bad idea to
use this feature because someone who's doing a password attack would soon find the
patterns that you require, which would help the attacker to more precisely direct the attack.
If you need to require that a password has multiple character types, it would be better to
use the minclass parameter:

minclass = 3

It's already set to a value of three, which would require characters from three different
classes. To use this value, all you have to do is to remove the comment symbol.

The rest of the parameters in pwquality.conf work pretty much the same way, and each
one has a well-written comment to explain what it does.

If you use your sudo privilege to set someone else's password, the system
will complain if you create a password that doesn't meet complexity
criteria, but it will let you do it. If a normal user were to try to change his
or her own password without sudo privileges, the system would not allow
a password that doesn't meet complexity criteria.

Securing User Accounts Chapter 2

[48]

Hands-on lab for setting password complexity criteria
For this lab, you can use either the CentOS or Ubuntu virtual machine, as desired. The only
difference is that you won't perform Step 1 for CentOS:

For Ubuntu only, install the libpam-pwquality package:1.

 sudo apt install libpam-pwquality

Open the /etc/security/pwquality.conf file in your preferred text editor.2.
Remove the comment symbol from in front of the minlen line and change the
value to 19. It should now look like this:

 minlen = 19

Save the file and exit the editor.

Create a user account for Goldie and attempt to assign her the passwords,3.
turkeylips, TurkeyLips, and Turkey93Lips. Note the change in each
warning message.
In the pwquality.conf file, comment out the minlen line. Uncomment the4.
minclass line and the maxclassrepeat line. Change the maxclassrepeat
value to 5. The lines should now look like:

 minclass = 3
 maxclassrepeat = 5

Save the file and exit the text editor.

Try assigning various passwords that don't meet the complexity criteria that5.
you've set to Goldie's account and view the results.

In the /etc/login.defs file on your CentOS machine, you'll see the line:

PASS_MIN_LEN 5

Supposedly, this is to set the minimum password length, but in reality,
pwquality overrides it. So, you could set this value to anything at all, and
it would have no effect.

Securing User Accounts Chapter 2

[49]

Setting and enforcing password and account
expiration
Something you never want is to have unused user accounts remain active. There have been
incidents where an administrator set up user accounts for temporary usage, such as for a
conference, and then just forgot about them after the accounts were no longer needed.
Another example would be if your company were to hire contract workers whose contract
expires on a specific date. Allowing those accounts to remain active and accessible after the
temporary employees leave the company would be a huge security problem. In cases like
these, you want a way to ensure that temporary user accounts aren't forgotten about when
they're no longer needed. If your employer subscribes to the conventional wisdom that
users should change their passwords on a regular basis, then you'll also want to ensure that
it gets done.

Password expiration data and account expiration data are two different things. They can be
set either separately or together. When someone's password expires, he or she can change it,
and everything will be all good. If somebody's account expires, only someone with the
proper admin privileges can unlock it.

To get started, take a look at the expiry data for your own account. (Note that you won't
need sudo privileges to look at your own data, but you will still need to specify your own
username.)

donnie@packt:~$ chage -l donnie
[sudo] password for donnie:
Last password change : Oct 03, 2017
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
donnie@packt:~$

You can see here that no expiration data have been set. Everything here is set according to
the out-of-box system default values. Other than the obvious items, here's a breakdown of
what you see:

Password inactive: If this were set to a positive number, I would have that many
days to change an expired password before the system would lock out my
account.

Securing User Accounts Chapter 2

[50]

Minimum number of days between password change: Because this is set to 0, I
can change my password as often as I like. If it were set to a positive number, I
would have to wait that number of days after changing my password before I
could change it again.
Maximum number of days between password change: This is set to the default
value of 99999, meaning that my password will never expire.
Number of days warning before password expires: The default value is 7, but
that's rather meaningless when the password is set to never expire.

With the chage utility, you can either set password and account
expiration data for other users or you use the -l option to view expiration
data. Any unprivileged user can use chage -l without sudo to view his
or her own data. To either set data or view someone else's data, you need
sudo. We'll take a closer look at chage a bit later.

Before we look at how to change expiration data, let's first look at where the default settings
are stored. We'll first look at the /etc/login.defs file. The three relevant lines are:

PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_WARN_AGE 7

You can edit these values to fit your organization's needs. For example, changing
PASS_MAX_DAYS to a value of 30 would cause all new user passwords from that point on to
have a 30 day expiration data. (By the way, setting the default password expiry data in
login.defs works for both Red Hat or CentOS and Debian/Ubuntu.)

Configuring default expiry data for useradd – for
Red Hat or CentOS only
The /etc/default/useradd file has the rest of the default settings. In this case, we'll look
at the one from the CentOS machine.

Ubuntu also has this same useradd configuration file, but it doesn't work.
No matter how you configure it, the Ubuntu version of useradd just
won't read it. So, the write-up about this file only applies to Red Hat or
CentOS.

useradd defaults file
GROUP=100

Securing User Accounts Chapter 2

[51]

HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes

The EXPIRE= line sets the default expiration date for new user accounts. By default, there is
no default expiration date. INACTIVE=-1 means that user accounts won't be automatically
locked out after the users' passwords expire. If we set this to a positive number, then any
new users will have that many days to change an expired password before the account gets
locked. To change the defaults in the useradd file, you can either hand-edit the file or use
useradd -D with the appropriate option switch for the item that you want to change. For
example, to set a default expiration date of December 31, 2019, the command would be:

sudo useradd -D -e 2019-12-31

To see the new configuration, you can either open the useradd file or just do sudo
useradd -D:

[donnie@localhost ~]$ sudo useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=2019-12-31
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
[donnie@localhost ~]$

You've now set it so that any new user accounts that get created will have the same
expiration date. You can do the same thing with either the INACTIVE setting or the SHELL
setting:

sudo useradd -D -f 5
sudo useradd -D -s /bin/zsh

[donnie@localhost ~]$ sudo useradd -D
GROUP=100
HOME=/home
INACTIVE=5
EXPIRE=2019-12-31
SHELL=/bin/zsh
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
[donnie@localhost ~]$

Securing User Accounts Chapter 2

[52]

Now, any new user accounts that get created will have the Zsh shell set as the default shell
and will have to have expired passwords changed within five days to prevent having the
account automatically locked out.

useradd doesn't do any safety checks to ensure that the default shell that
you've assigned is installed on the system. In our case, Zsh isn't installed,
but useradd will still allow you to create accounts with Zsh as the default
shell.

So, just how useful is this useradd configuration feature in real life? Probably not that
much, unless you need to create a whole bunch of user accounts at once with the same
settings. Even so, a savvy admin would just automate the process with a shell script, rather
than messing around with this configuration file.

Setting expiry data on a per-account basis, with
useradd and usermod
You might find it useful to set the default password expiry data in login.defs, but you
probably won't find it too useful to configure the useradd configuration file. Really, what
are the chances that you'll want to create all user accounts with the same account expiration
date? Setting password expiry data in login.defs is more useful because you'll just be
saying that you want new passwords to expire within a certain number of days, rather than
to have them all expire on a specific date.

Most likely, you'll want to set account expiry data on a per-account basis, depending on
whether you know that the accounts will no longer be needed as of a specific date. There
are three ways that you can do this:

Use useradd with the appropriate option switches to set expiry data as you
create the accounts. (If you need to create a whole bunch of accounts at once with
the same expiry data, you can automate the process with a shell script.)
Use usermod to modify expiry data on existing accounts. (The beautiful thing
about usermod is that it uses the same option switches as useradd.)
Use chage to modify expiry data on existing accounts. (This one uses a whole
different set of option switches.)

Securing User Accounts Chapter 2

[53]

You can use useradd and usermod to set account expiry data, but not for setting password
expiry data. The only two option switches that affect account expiry data are:

-e: Use this to set an expiration date for the account, in the form YYYY-MM-DD
-f: Use this to set the number of days after the user's password expires that you
want for his or her account to get locked out

Let's say that you want to create an account for Charlie that will expire at the end of 2020.
On a Red Hat or CentOS machine, you could enter the following:

sudo useradd -e 2020-12-31 charlie

On a non-Red Hat or CentOS machine, you'd have to add the option switches that create the
home directory and assign the correct default shell:

sudo useradd -m -d /home/charlie -s /bin/bash -e 2020-12-31 charlie

Use chage -l to verify what you've entered:

donnie@ubuntu-steemnode:~$ sudo chage -l charlie
Last password change : Oct 06, 2017
Password expires : never
Password inactive : never
Account expires : Dec 31, 2020
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
donnie@ubuntu-steemnode:~$

Now, let's say that Charlie's contract has been extended, and you need to change his
account expiration to the end of January, 2021. You'll use usermod the same way on any
Linux distro:

sudo usermod -e 2021-01-31 charlie

Again, verify that everything is correct with chage -l:

donnie@ubuntu-steemnode:~$ sudo chage -l charlie
Last password change : Oct 06, 2017
Password expires : never
Password inactive : never
Account expires : Jan 31, 2021
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
donnie@ubuntu-steemnode:~$

Securing User Accounts Chapter 2

[54]

Optionally, you can set the number of days before an account with an expired password
will get locked out:

sudo usermod -f 5 charlie

But, if you were to do that now, you wouldn't see any difference in the chage -l output
because we still haven't set an expiration data for Charlie's password.

Setting expiry data on a per-account basis, with
chage
You would only use chage to modify existing accounts, and you would use it for setting
either an account expiration or a password expiration. Here are the relevant option
switches:

-d
If you use the -d 0 option on someone's account, you'll force the user to change his or
her password on their next login.

-E
This is equivalent to the lower-case -e for useradd or usermod. It sets the expiration
date for the user account.

-I
This is equivalent to -f for useradd or usermod. It sets the number of days before an
account with an expired password will be locked out.

-m
This sets the minimum number of days between password changes. In other words, if
Charlie changes his password today, a -m 5 option will force him to wait five days
before he can change his password again.

-M
This sets the maximum number of days before a password expires. (Be aware though
that if Charlie last set his password 89 days ago, using a -M 90 option on his account
will cause his password to expire tomorrow, not 90 days from now.)

-W This will set the number of warning days for passwords that are about to expire.

You can set just one of these data items at a time or you can set them all at once. In fact, to
avoid frustrating you with a different demo for each individual item, let's set them all at
once, except for the -d 0, and then we'll see what we've got:

sudo chage -E 2021-02-28 -I 4 -m 3 -M 90 -W 4 charlie

donnie@ubuntu-steemnode:~$ sudo chage -l charlie
Last password change : Oct 06, 2017
Password expires : Jan 04, 2018

Securing User Accounts Chapter 2

[55]

Password inactive : Jan 08, 2018
Account expires : Feb 28, 2021
Minimum number of days between password change : 3
Maximum number of days between password change : 90
Number of days of warning before password expires : 4
donnie@ubuntu-steemnode:~$

All expiration data have now been set.

For our final example, let's say that you've just created a new account for Samson, and you
want to force him to change his password the first time he logs in. There are two ways to do
that. Either way, you would do it after you've set his password initially. We have the
following code:

sudo chage -d 0 samson

or

sudo passwd -e samson

donnie@ubuntu-steemnode:~$ sudo chage -l samson
Last password change : password must be changed
Password expires : password must be changed
Password inactive : password must be changed
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
donnie@ubuntu-steemnode:~$

Hands-on lab for setting account and password expiry
data
In this lab, you'll create a couple of new user accounts, set expiration data, and view the
results. You can do this lab on either the CentOS or the Ubuntu virtual machine. (The only
difference will be with the useradd commands.)

Create a user account for Samson with the expiration date of June 30, 2023, and1.
view the results.

For CentOS:

 sudo useradd -e 2023-06-30 samson
 sudo chage -l samson

Securing User Accounts Chapter 2

[56]

For Ubuntu:

 sudo useradd -m -d /home/samson -s /bin/bash -e 2023-06-30
 sudo chage -l samson

Use usermod to change Samson's account expiration date to July 31, 2023:2.

 sudo usermod -e 2023-07-31
 sudo chage -l samson

Assign a password to Samson's account, then force him to change his password3.
on his first login. Log in as Samson, change his password, then log back out to
your own account:

 sudo passwd samson
 sudo passwd -e samson
 sudo chage -l samson
 su - samson
 exit

Use chage to set a 5 day waiting period for changing passwords, a password4.
expiration period of 90 days, an inactivity period of 2 days, and a warning period
of 5 days:

 sudo chage -m 5 -M 90 -I 2 -W 5 samson
 sudo chage -l samson

Keep this account because you'll be using it for the lab in the next section.5.

Preventing brute-force password attacks
Amazingly enough, this is another topic that engenders a bit of controversy. I mean,
nobody denies the wisdom of automatically locking out user accounts that are under attack.
The controversial part concerns the number of failed login attempts that we should allow
before locking the account.

Back in the stone age of computing, so long ago that I still had a full head of hair, the early
Unix operating systems only allowed users to create a password with a maximum of eight
lowercase letters. So in those days, it was possible for early man to brute-force someone
else's password just by sitting down at the keyboard and typing in random passwords.
That's when the philosophy started of having user accounts get locked out after only three
failed login attempts. Nowadays, with strong passwords, or better yet, a strong passphrase,
setting a lockout value of three failed login attempts will do three things:

Securing User Accounts Chapter 2

[57]

It will unnecessarily frustrate users
It will cause extra work for help desk personnel
If an account really is under attack, it will lock the account before you've had a
chance to gather information about the attacker

Setting the lockout value to something more realistic, like 100 failed login attempts, will still
provide good security, while still giving you enough time to gather information about the
attackers. Just as importantly, you won't cause undue frustration to users and help desk
personnel.

Anyway, regardless of how many failed login attempts your employer allows you to allow,
you'll still need to know how to set it all up. So, let's dig in.

Configuring the pam_tally2 PAM module
To make this magic work, we'll rely on our good friend, the PAM module. The pam_tally2
module comes already installed on both CentOS and Ubuntu, but it isn't configured. For
both of our virtual machines, we'll be editing the /etc/pam.d/login file. Figuring out
how to configure it is easy because there's an example at the bottom of the pam_tally2
man page:

EXAMPLES
 Add the following line to /etc/pam.d/login to lock the account after
4 failed logins. Root account will be locked as well. The accounts will be
automatically unlocked after 20 minutes. The module does not have to be
called in the account phase because the login calls pam_setcred(3)
correctly.

 auth required pam_securetty.so
 auth required pam_tally2.so deny=4 even_deny_root
unlock_time=1200
 auth required pam_env.so
 auth required pam_unix.so
 auth required pam_nologin.so
 account required pam_unix.so
 password required pam_unix.so
 session required pam_limits.so
 session required pam_unix.so
 session required pam_lastlog.so nowtmp
 session optional pam_mail.so standard

Securing User Accounts Chapter 2

[58]

In the second line of the example, we see that pam_tally2 is set with:

deny=4: This means that the user account under attack will get locked out after
only four failed login attempts
even_deny_root: This means that even the root user account will get locked if
it's under attack
unlock_time=1200: The account will get automatically unlocked after 1200
seconds or 20 minutes

Now, if you look at the actual login file on either of your virtual machines, you'll see that
they don't look exactly like this example login file that's in both of their man pages. That's
okay, we'll still make it work.

Once you've configured the login file and have had a failed login, you'll see a new file
created in the /var/log directory. You'll view information from that file with the
pam_tally2 utility. You can also use pam_tally2 to manually unlock a locked account if
you don't want to wait for the timeout period:

donnie@ubuntu-steemnode:~$ sudo pam_tally2
Login Failures Latest failure From
charlie 5 10/07/17 16:38:19
donnie@ubuntu-steemnode:~$ sudo pam_tally2 --user=charlie --reset
Login Failures Latest failure From
charlie 5 10/07/17 16:38:19
donnie@ubuntu-steemnode:~$ sudo pam_tally2
donnie@ubuntu-steemnode:~$

Note how after I did the reset on Charlie's account, I received no output from doing another
query.

Hands-on lab for configuring pam_tally2
Configuring pam_tally2 is super easy because it only requires adding one line to the
/etc/pam.d/login file. To make things even easier, you can just copy and paste that line
from the example in the pam_tally2 man page. In spite of what I said earlier about
bumping the number of failed logins up to 100, we'll keep that number at 4 for now. (I
know that you don't want to have to do 100 failed logins in order to demo this.)

On either the CentOS or the Ubuntu virtual machine, open the1.
/etc/pam.d/login file for editing. Look for the line that invokes the
pam_securetty module. (That should be around line 32 on Ubuntu and around
line 2 on CentOS.)

Securing User Accounts Chapter 2

[59]

Beneath that line, insert the following line:

 auth required pam_tally2.so deny=4
 even_deny_root unlock_time=1200

Save the file and exit the editor.

For this step, you'll need to log out of your own account because pam_tally22.
doesn't work with su. So, log out, and while purposely using the wrong
password, attempt to log in to the samson account that you created in the
previous lab. Keep doing that until you see the message that the account is
locked. Note that when the deny value is set to 4, it will actually take five failed
login attempts to lock Samson out.
Log back in to your own user account. Run this command and note the output:3.

 sudo pam_tally2

For this step, you'll simulate that you're a help desk worker, and Samson has just4.
called to request that you unlock his account. After verifying that you really are
talking to the real Samson, enter the following line:

 sudo pam_tally2 --user=samson --reset
 sudo pam_tally2

Now that you've seen how this works, open the /etc/pam.d/login file for5.
editing, and change the deny= parameter from 4 to 100 and save the file. (This
will make your configuration a bit more realistic in terms of modern security
philosophy.)

Locking user accounts
Okay, you've just seen how to have Linux automatically lock user accounts that are under
attack. There will also be times when you'll want to be able to manually lock out user
accounts. Let us look at the following example:

When a user goes on vacation and you want to ensure that nobody monkeys
around with that user's account while he or she is gone
When a user is under investigation for questionable activities
When a user leaves the company

Securing User Accounts Chapter 2

[60]

In regard to the last point, you may be asking yourself, "Why can't we just delete the accounts
of people who are no working here?" And, you certainly can, easily enough. However, before
you do so, you'll need to check with your local laws to make sure that you don't get yourself
into deep trouble. Here in the United States, for example, we have the Sarbanes-Oxley law,
which restricts what files that publicly traded companies can delete from their computers. If
you were to delete a user account, along with that user's home directory and mail spool,
you just might be running afoul of Sarbanes-Oxley or whatever you may have as the
equivalent law in your own home country.

Anyway, there are two utilities that you can use to temporarily lock a user account:

Using usermod to lock a user account
Using passwd to lock user accounts

Using usermod to lock a user account
Let's say that Katelyn has gone on maternity leave and will be gone for at least several
weeks. We can lock her account with:

sudo usermod -L katelyn

When you look at Katelyn's entry in the /etc/shadow file, you'll now see an exclamation
point in front of her password hash, as follows:

katelyn:!6uA5ecH1A$MZ6q5U.cyY2SRSJezV000AudP.ckXXndBNsXUdMI1vPO8aFmlLXcbG
V25K5HSSaCv4RlDilwzlXq/hKvXRkpB/:17446:0:99999:7:::

This exclamation point prevents the system from being able to read her password, which
effectively locks her out of the system.

To unlock her account, just follow this:

sudo usermod -U katelyn

You'll see that the exclamation point has been removed so that she can now log in to her
account.

Securing User Accounts Chapter 2

[61]

Using passwd to lock user accounts
You could also lock Katelyn's account with:

sudo passwd -l katelyn

This does the same job as usermod -L, but in a slightly different manner. For one thing,
passwd -l will give you some feedback about what's going on, where usermod -L gives
you no feedback at all. On Ubuntu, the feedback looks like this:

donnie@ubuntu-steemnode:~$ sudo passwd -l katelyn
[sudo] password for donnie:
passwd: password expiry information changed.
donnie@ubuntu-steemnode:~$

On CentOS, the feedback looks like this:

[donnie@localhost ~]$ sudo passwd -l katelyn
Locking password for user katelyn.
passwd: Success
[donnie@localhost ~]$

Also, on the CentOS machine, you'll see that passwd -l places two exclamation points in
front of the password hash, instead of just one. Either way, the effect is the same.

To unlock Katelyn's account, just do:

sudo passwd -u katelyn

In versions of Red Hat or CentOS prior to version 7, usermod -U would
remove only one of the exclamation points that passwd -l places in front
of the shadow file password hash, thus leaving the account still locked. No
big deal, though, because running usermod -U again would remove the
second exclamation point.

In Red Hat or CentOS 7, it has been fixed. The passwd -l command still
places two exclamation points in the shadow file, but usermod -U now
removes both of them. (That's a shame, really, because it ruined a perfectly
good demo that I like to do for my students.)

Securing User Accounts Chapter 2

[62]

Locking the root user account
The cloud is big business nowadays, and it's now quite common to rent a virtual private
server from companies such as Rackspace, DigitalOcean, or Microsoft Azure. These can
serve a variety of purposes, as follows:

You can run your own website, where you install your own server software
instead of letting a hosting service do it
You can set up a web-based app for other people to access
Recently, I saw a YouTube demo on a crypto-mining channel that showed how to
set up a Proof of Stake master node on a rented virtual private server

One thing that these cloud services have in common is that when you first set up your
account and the provider sets up a virtual machine for you, they'll have you log in to the
root user account. (It even happens with Ubuntu, even though the root account is disabled
on a local installation of Ubuntu.)

I know that there are some folk who just keep logging in to the root account of these cloud-
based servers and think nothing of it, but that's really a horrible idea. There are botnets,
such as the Hail Mary botnet, that continuously scan the internet for servers that have their
Secure Shell port exposed to the internet. When the botnets find one, they'll do a brute-force
password attack against the root user account of that server. And yes, the botnets
sometimes are successful in breaking in, especially if the root account is set with a weak
password.

So, the first thing that you want to do when you set up a cloud-based server is to create a
normal user account for yourself and set it up with full sudo privileges. Then, log out of the
root user account, log into your new account, and do the following:

sudo passwd -l root

I mean, really, why take the chance of getting your root account compromised?

Securing User Accounts Chapter 2

[63]

Setting up security banners
Something that you really, really don't want is to have a login banner that says something to
the effect, "Welcome to our network". I say that because quite a few years ago, I attended a
mentored SANS course on incident handling. Our instructor told us the story about how a
company took a suspected network intruder to court, only to get the case thrown out. The
reason? The alleged intruder said, "Well, I saw the message that said 'Welcome to the network',
so I thought that I really was welcome there." Yeah, supposedly, that was enough to get the case
thrown out.

A few years later, I related that story to the students in one of my Linux admin classes. One
student said, "That makes no sense. We all have welcome mats at our front doors, but that doesn't
mean that burglars are welcome to come in." I have to confess that he had a good point, and I
now have to wonder about the veracity of the story.

At any rate, just to be on the safe side, you do want to set up login messages that make clear
that only authorized users are allowed to access the system.

Using the motd file
The /etc/motd file will present a message banner to anyone who logs in to a system
through Secure Shell. On your CentOS machine, an empty motd file is already there. On
your Ubuntu machine, the motd file isn't there, but it's a simple matter to create one. Either
way, open the file in your text editor and create your message. Save the file and test it by
remotely logging in through Secure Shell. You should see something like:

maggie@192.168.0.100's password:
Last login: Sat Oct 7 20:51:09 2017
Warning: Authorized Users Only!

All others will be prosecuted.
[maggie@localhost ~]$

motd stands for Message of the Day.

Securing User Accounts Chapter 2

[64]

Using the issue file
The issue file, also found in the /etc directory, shows a message on the local terminal, just
above the login prompt. A default issue file would just contain macro code that would
show information about the machine. Look at the following example:

Ubuntu 16.04.3 LTS \n \l

Or, on a CentOS machine:

\S
Kernel \r on an \m

On an Ubuntu machine, the banner would look something like this:

On a CentOS machine, it would look something like this:

You could put a security message in the issue file, and it would show up after a reboot:

In reality, is there really any point in placing a security message in the issue file? If your
servers are properly locked away in a server room with controlled access, then probably
not.

Securing User Accounts Chapter 2

[65]

Using the issue.net file
Just don't. It's for telnet logins, and anyone who has telnet enabled on their servers is
seriously screwing up. However, for some strange reason, the issue.net file still hangs
around in the /etc directory.

Summary
We covered a lot of ground in this chapter, and hopefully you found some suggestions that
you can actually use. We started out with showing you the dangers of always logging in as
the root user and how you should use sudo, instead. In addition to showing you the basics
of sudo usage, we also looked at some good sudo tips and tricks. We moved on to user
management, by looking at how to lock down users' home directories, how to enforce
strong password policies, and how to enforce account and password expiration policies.
Then, we talked about a way to prevent brute-force password attacks, how to manually
lockout user accounts, and set up security banners.

In the next chapter, we'll look at how to work with various firewall utilities. I'll see you
there.

3
Securing Your Server with a

Firewall
Security is one of those things that's best done in layers. Security-in-depth, we call it. So, on
any given corporate network, you will find a firewall appliance separating the internet from
the demilitarized zone (DMZ), where your internet-facing servers are kept. You will also
find a firewall appliance between the DMZ and the internal LAN, and firewall software
installed on each individual server and client. We want to make it as tough as possible for
intruders to reach their final destinations within our networks.

Interestingly though, of all the major Linux distros, only the SUSE distros and the Red Hat-
type distros come with firewalls already set up and enabled. When you look at your
Ubuntu virtual machine, you'll see that it's wide open, as if it were extending a hearty
welcome to any would-be intruder.

Since the focus of this book is on hardening our Linux servers, we'll focus this chapter on
that last level of defense, the firewalls on our servers and clients.

In this chapter, we'll cover:

An overview of iptables
Uncomplicated Firewall for Ubuntu systems
firewalld for Red Hat systems
nftables, a more universal type of firewall system

Securing Your Server with a Firewall Chapter 3

[67]

An overview of iptables
A common misconception is that iptables is the name of the Linux firewall. In reality, the
name of the Linux firewall is netfilter and every Linux distro has it built-in. What we know
as iptables is just one of several command-line utilities that we can use to manage netfilter.
It was originally introduced as a feature of Linux kernel, version 2.6, so it's been around for
a long time. With iptables, you do have a few advantages:

It's been around long enough that most Linux admins already know how to use it
It's easy to use iptables commands in shell scripts to create your own custom
firewall configuration
It has great flexibility, in that you can use it to set up a simple port filter, a router,
or a virtual private network
It comes preinstalled on pretty much every Linux distro, although most distros
don't come with it preconfigured
It's very well documented, with free of charge, book-length tutorials available on
the internet

But, as you might know, there are also a few disadvantages:

IPv4 and IPv6 require their own special implementation of iptables. So, if your
organization still needs to run IPv4 while in the process of migrating to IPv6,
you'll have to configure two firewalls on each server, and run a separate daemon
for each (one for IPv4, the other for IPv6).
If you need to do Mac bridging that requires ebtables, which is the third
component of iptables, with its own unique syntax.
arptables, the fourth component of iptables, also requires its own daemon and
syntax.
Whenever you add a rule to a running iptables firewall, the entire iptables ruleset
has to be reloaded, which can have a huge impact on performance.

Until recently, iptables was the default firewall manager on every Linux distro. It still is on
most distros, but Red Hat Enterprise Linux 7 and all of its offspring now use a newer
technology called firewalld. Ubuntu comes with Uncomplicated Firewall (ufw), an easy-
to-use frontend for iptables. An even newer technology that we'll explore at the end of the
chapter is nftables.

For the purposes of this chapter, we'll only look at the IPv4 component of iptables. (The
syntax for the IPv6 component would be very similar.)

Securing Your Server with a Firewall Chapter 3

[68]

Basic usage of iptables
iptables consists of four tables of rules, each with its own distinct purpose:

Filter table: For basic protection of our servers and clients, this is the only table
that we would normally use
NAT table: Network Address Translation (NAT) is used to connect the public
internet to private networks
Mangle table: This is used to alter network packets as they go through the
firewall
Security table: The security table is only used for systems that have SELinux
installed

Since we're currently only interested in basic host protection, we'll only look at the filter
table. Each table consists of chains of rules, and the filter table consists of the INPUT,
FORWARD, and OUTPUT chains. Since our CentOS 7 machine uses Red Hat's firewalld, we'll
look at this on our Ubuntu machine.

While it's true that Red Hat Enterprise Linux 7 and its offspring do come
with iptables already installed, it's disabled by default so that we can use
firewalld. It's not possible to have both iptables and firewalld running at
the same time, because they're two totally different animals that are
completely incompatible. So, if you need to run iptables on a Red Hat 7
system, you can do so, but you must disable firewalld first.

However, if your organization is still running its network with version 6 of
either Red Hat or CentOS, then your machines are still running with
iptables, since firewalld isn't available for them.

We'll first look at our current configuration with sudo iptables -L command:

donnie@ubuntu:~$ sudo iptables -L
[sudo] password for donnie:
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
donnie@ubuntu:~$

Securing Your Server with a Firewall Chapter 3

[69]

And remember, we said that you need a separate component of iptables to deal with IPv6.
Here we will use sudo ip6tables -L command:

donnie@ubuntu:~$ sudo ip6tables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
donnie@ubuntu:~$

In both cases, you see that there are no rules, and that the machine is wide open. Unlike the
SUSE and Red Hat folk, the Ubuntu folk expect you to do the work of setting up a firewall.
We'll start by creating a rule that will allow the passage of incoming packets from servers to
which our host has requested a connection:

sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

Here's the breakdown of this command:

-A INPUT: The -A places a rule at the end of the specified chain, which in this
case is the INPUT chain. We would have used a -I had we wanted to place the
rule at the beginning of the chain.
-m: This calls in an iptables module. In this case, we're calling in the conntrack
module for tracking connection states. This module allows iptables to determine
whether our client has made a connection to another machine, for example.
--ctstate: The ctstate or connection state, portion of our rule is looking for
two things. First, it's looking for a connection that the client established with a
server. Then, it looks for the related connection that's coming back from the
server, in order to allow it to connect to the client. So, if a user were to use a web
browser to connect to a website, this rule would allow packets from the web
server to pass through the firewall to get to the user's browser.
-j: This stands for jump. Rules jump to a specific target, which in this case is
ACCEPT. (Please don't ask me who came up with this terminology.) So, this rule
will accept packets that return from the server with which the client has
requested a connection.

Securing Your Server with a Firewall Chapter 3

[70]

Our new ruleset looks like this:

donnie@ubuntu:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
donnie@ubuntu:~$

We'll next open up port 22 in order to allow us to connect through Secure Shell. For now,
we don't want to open any more ports, so we'll finish this with a rule that blocks everything
else:

sudo iptables -A INPUT -p tcp --dport ssh -j ACCEPT
sudo iptables -A INPUT -j DROP

Here's the breakdown:

-A INPUT: As before, we want to place this rule at the end of the INPUT chain
with a -A.
-p tcp: The -p indicates the protocol that this rule affects. This rule affects the
TCP protocol, of which Secure Shell is a part.
--dport ssh: When an option name consists of more than one letter, we need to
precede it with two dashes, instead of just one. The --dport option specifies the
destination port on which we want this rule to operate. (Note that we could also
have listed this portion of the rule as --dport 22, since 22 is the number of the
SSH port.)
-j ACCEPT: Put it all together with -j ACCEPT, and we have a rule that allows
other machines to connect to this one through Secure Shell.
The DROP rule at the end silently blocks all connections and packets that aren't
specifically allowed in by our two ACCEPT rules.

Securing Your Server with a Firewall Chapter 3

[71]

There are actually two ways in which we could have written that final
blocking rule:

sudo iptables -A INPUT -j DROP: It causes the firewall to
silently block packets, without sending any notification back to
the source of those packets.

sudo iptables -A INPUT -j REJECT: It would also cause
the firewall to block packets, but it would also send a message
back to the source about the fact that the packets have been
blocked. In general, it's better to use DROP, because we normally
want to make it harder for malicious actors to figure out what
our firewall configuration is.

Either way, you always want to have this rule at the end of the chain,
because any ALLOW rule that comes after it will have no effect.

Finally, we have an almost complete, usable ruleset for our INPUT chain:

donnie@ubuntu:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate
RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
DROP all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
donnie@ubuntu:~$

It's almost complete, because there's still one little thing that we forgot. That is, we need to
allow traffic for the loopback interface. That's okay, because it gives us a good chance to see
how to insert a rule where we want it, if we don't want it at the end. In this case, we'll insert
the rule at INPUT 1, which is the first position of the INPUT chain:

sudo iptables -I INPUT 1 -i lo -j ACCEPT

Securing Your Server with a Firewall Chapter 3

[72]

When we look at our new ruleset, we'll see something that's rather strange:

donnie@ubuntu:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
DROP all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
donnie@ubuntu:~$

Hmmm...

The first rule and the last rule look the same, except that one is a DROP and the other is an
ACCEPT. Let's look at it again with the -v option:

donnie@ubuntu:~$ sudo iptables -L -v
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source
destination
 0 0 ACCEPT all -- lo any anywhere
anywhere
 393 25336 ACCEPT all -- any any anywhere
anywhere ctstate RELATED,ESTABLISHED
 0 0 ACCEPT tcp -- any any anywhere
anywhere tcp dpt:ssh
 266 42422 DROP all -- any any anywhere
anywhere

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source
destination

Chain OUTPUT (policy ACCEPT 72 packets, 7924 bytes)
 pkts bytes target prot opt in out source
destination
donnie@ubuntu:~$

Securing Your Server with a Firewall Chapter 3

[73]

Now, we see that lo, for loopback, shows up under the in column of the first rule, and any
shows up under the in column of the last rule. This all looks great, except that if we were to
reboot the machine right now, the rules would disappear. The final thing that we need to do
is make them permanent. There are several ways to do this, but the simplest way to do this
on an Ubuntu machine is to install the iptables-persistent package:

sudo apt install iptables-persistent

During the installation process, you'll be presented with two screens that ask whether you
want to save the current set of iptables rules. The first screen will be for IPv4 rules, and the
second will be for IPv6 rules:

You'll now see two new rules files in the /etc/iptables directory:

donnie@ubuntu:~$ ls -l /etc/iptables*
total 8
-rw-r--r-- 1 root root 336 Oct 10 10:29 rules.v4
-rw-r--r-- 1 root root 183 Oct 10 10:29 rules.v6
donnie@ubuntu:~$

If you were to now reboot the machine, you'd see that your iptables rules are still there and
in effect.

Hands-on lab for basic iptables usage
You'll do this lab on your Ubuntu virtual machine.

Shut down your Ubuntu virtual machine, and create a snapshot. 1.

You'll roll back to this snapshot for the lab in the next section.

Securing Your Server with a Firewall Chapter 3

[74]

Look at your iptables rules, or lack thereof, with:2.

 sudo iptables -L

Create the rules that you need for a basic firewall, allowing for Secure Shell access3.
but denying everything else:

 sudo iptables -A INPUT -m conntrack
 --ctstate ESTABLISHED,RELATED
 -j ACCEPT
 sudo iptables -A INPUT -p tcp --dport ssh -j ACCEPT
 sudo iptables -A INPUT -j DROP

View the results with:4.

 sudo iptables -L

Oops, it looks like you forgot about that loopback interface. Add a rule for it at5.
the top of the list:

 sudo iptables -I INPUT 1 -i lo -j ACCEPT

View the results with these two commands. Note the difference between the6.
output of each:

 sudo iptables -L
 sudo iptables -L -v

Install the iptables-persistent package, and choose to save the IPv4 and7.
IPv6 rules when prompted:

 sudo apt install iptables-persistent

Reboot the virtual machine and verify that your rules are still active.8.
End of lab.9.

Now, I know you're thinking, "Wow, that's a lot of hoops to jump through just to set up a basic
firewall." And yeah, you're right. So, give me a moment to get rid of what I just did with
iptables, and I'll show you what the Ubuntu folk came up with to make things simpler.

You can get the whole scoop on how to do iptables on Ubuntu
here: https:/ /help. ubuntu. com/ community/ IptablesHowTo.

https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo
https://help.ubuntu.com/community/IptablesHowTo

Securing Your Server with a Firewall Chapter 3

[75]

Uncomplicated Firewall for Ubuntu systems
The Uncomplicated Firewall is already installed on your Ubuntu machine. It still uses the
iptables service, but it offers a vastly simplified set of commands. Perform just one simple
command to enable it, and you have a good, preconfigured firewall. There's a graphical
frontend for use on desktop machines, but since we're learning about server security, we'll
just cover the command-line utility here.

Basic usage of ufw
ufw is disabled by default, so you'll need to enable it:

donnie@ubuntu:~$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)?
y
Firewall is active and enabled on system startup
donnie@ubuntu:~$

To do this, I logged in to the virtual machine remotely from a terminal of my trusty
OpenSUSE workstation. It gave me a warning that my Secure Shell connection could be
disrupted, but that didn't happen. (It could be because of connection tracking rules, or it
could be that I just got lucky.) I'll leave it up to you to do a sudo iptables -L, because
ufw creates a very large default ruleset that would be impossible to display in this book.

Next, let's add a rule that will allow us to remotely connect through Secure Shell in the
future:

sudo ufw allow 22/tcp

Do a sudo iptables -L, and you'll see that the new rule shows up in the ufw-user-
input chain:

Chain ufw-user-input (1 references)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

Securing Your Server with a Firewall Chapter 3

[76]

In the preceding sudo ufw allow 22/tcp command, we had to specify the TCP protocol,
because TCP is all that we need for Secure Shell. We can also open a port for both TCP and
UDP just by not specifying a protocol. For example, if you're setting up a DNS server, you'll
want to have port 53 open for both protocols (you'll see the entries for port 53 listed as
domain ports):

sudo ufw allow 53

Chain ufw-user-input (1 references)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
ACCEPT tcp -- anywhere anywhere tcp
dpt:domain
ACCEPT udp -- anywhere anywhere udp
dpt:domain

If you do sudo ip6tables -L, you'll see that a rule for IPv6 also got added for both of the
two preceding examples.

Hands-on lab for basic ufw usage
You'll do this lab on a clean snapshot of your Ubuntu virtual machine:

Shut down your Ubuntu virtual machine and restore the snapshot. (You want to1.
do this to get rid of all of the iptables stuff that you just did.)
When you've restarted the virtual machine, verify that the iptables rules are now2.
gone:

 sudo iptables -L

View the status of ufw, enable it, and view the results:3.

 sudo ufw status
 sudo ufw enable
 sudo ufw status
 sudo iptables -L
 sudo ip6tables -L

Open port 22/tcp to allow Secure Shell access:4.

 sudo ufw allow 22/tcp
 sudo iptables -L
 sudo ip6tables -L

Securing Your Server with a Firewall Chapter 3

[77]

This time, open port 53 for both TCP and UDP:5.

 sudo ufw allow 53
 sudo iptables -L
 sudo ip6tables -L

End of lab.6.

firewalld for Red Hat systems
So far, we've looked at iptables, a generic firewall management system that's available on all
Linux distros, and ufw, which is only available for Ubuntu. For our next act, we turn our
attention to firewalld, which is specific to Red Hat Enterprise Linux 7 and all of its
offspring.

Unlike ufw for Ubuntu, firewalld isn't just an easy-to-use frontend for iptables. Rather, it's
an entirely new way of doing your firewall business, and it isn't compatible with iptables.
Understand, though, that iptables still comes installed on the Red Hat 7 family, but it isn't
enabled, because you can't have iptables and firewalld enabled at the same time. If you
have to use older shell scripts that leverage iptables, you can disable firewalld and enable
iptables.

The reason that iptables and firewalld are incompatible is that iptables
stores its rules in plain text files in the /etc/sysconfig directory, and
firewalld stores its rules files in .xml format files in the /etc/firewalld
directory and in the /usr/lib/firewalld directory. Also, iptables
doesn't understand the concepts of zones and services the way that
firewalld does, and the rules themselves are of a completely different
format. So, even if you could have both iptables and firewalld running at
the same time, you'd just end up confusing the system and breaking the
firewall.

The bottom line is, you can run either iptables or firewalld on your Red
Hat or CentOS machine, but you can't run both at the same time.

Securing Your Server with a Firewall Chapter 3

[78]

If you're running Red Hat or CentOS on a desktop machine, you'll see in the applications
menu that there is a GUI frontend for firewalld. On a text-mode server, though, all you have
is the firewalld commands. For some reason, the Red Hat folk haven't created an ncurses-
type program for text-mode servers, the way they did for iptables configuration on older
versions of Red Hat.

A big advantage of firewalld is the fact that it's dynamically managed. That means that you
can change the firewall configuration without restarting the firewall service, and without
interrupting any existing connections to your server.

Verifying the status of firewalld
Let's start by verifying the status of firewalld. There are two ways to do this. We can use the
--state option of firewall-cmd:

[donnie@localhost ~]$ sudo firewall-cmd --state
running
[donnie@localhost ~]$

Or, if we want a more detailed status, we can just check the daemon, the same as we would
any other daemon on a systemd machine:

[donnie@localhost ~]$ sudo systemctl status firewalld
● firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled;
vendor preset: enabled)
 Active: active (running) since Fri 2017-10-13 13:42:54 EDT; 1h 56min ago
 Docs: man:firewalld(1)
 Main PID: 631 (firewalld)
 CGroup: /system.slice/firewalld.service
 └─631 /usr/bin/python -Es /usr/sbin/firewalld --nofork --nopid

Oct 13 13:42:55 localhost.localdomain firewalld[631]: WARNING: ICMP type
'reject-route' is not supported by the kernel for ipv6.
Oct 13 13:42:55 localhost.localdomain firewalld[631]: WARNING: reject-
route: INVALID_ICMPTYPE: No supported ICMP type., ignoring for run-time.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICMP type
'beyond-scope' is not supported by the kernel for ipv6.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: beyond-
scope: INVALID_ICMPTYPE: No supported ICMP type., ignoring for run-time.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICMP type
'failed-policy' is not supported by the kernel for ipv6.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: failed-
policy: INVALID_ICMPTYPE: No supported ICMP type., ignoring for run-time.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICMP type

Securing Your Server with a Firewall Chapter 3

[79]

'reject-route' is not supported by the kernel for ipv6.
Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: reject-
route: INVALID_ICMPTYPE: No supported ICMP type., ignoring for run-time.
[donnie@localhost ~]$

firewalld zones
firewalld is a rather unique animal, in that it comes with several preconfigured zones and
services. If you look in the /usr/lib/firewalld/zones directory of your CentOS
machine, you'll see the zones files, all in .xml format:

[donnie@localhost ~]$ cd /usr/lib/firewalld/zones
[donnie@localhost zones]$ ls
block.xml dmz.xml drop.xml external.xml home.xml internal.xml public.xml
trusted.xml work.xml
[donnie@localhost zones]$

Each zone file specifies which ports are to be open, and which ones are to be blocked for
various given scenarios. Zones can also contain rules for ICMP messages, forwarded ports,
masquerading information, and rich language rules.

For example, the .xml file for the public zone, which is set as the default, looks like this:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other
computers on networks to not harm your computer. Only selected incoming
connections are accepted.</description>
 <service name="ssh"/>
 <service name="dhcpv6-client"/>
</zone>

In the service name lines, you can see that the only open ports are for Secure Shell access
and for DHCPv6 discovery. Look at the home.xml file, and you'll see that it also opens the
ports for Multicast DNS, and the ports that allow this machine to access shared directories
from either Samba servers or Windows servers:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Home</short>
 <description>For use in home areas. You mostly trust the other computers
on networks to not harm your computer. Only selected incoming connections
are accepted.</description>
 <service name="ssh"/>

Securing Your Server with a Firewall Chapter 3

[80]

 <service name="mdns"/>
 <service name="samba-client"/>
 <service name="dhcpv6-client"/>
</zone>

The firewall-cmd utility is what you would use to configure firewalld. You can use it to
view the list of zone files on your system, without having to cd into the zone file directory:

[donnie@localhost ~]$ sudo firewall-cmd --get-zones
[sudo] password for donnie:
block dmz drop external home internal public trusted work
[donnie@localhost ~]$

A quick way to see how each zone is configured is to use the --list-all-zones option:

[donnie@localhost ~]$ sudo firewall-cmd --list-all-zones
block
 target: %%REJECT%%
 icmp-block-inversion: no
 interfaces:
 sources:
 services:
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
, , ,
, , ,

Of course, this is only a portion of the output, because the listing for all zones is more than
we can display here. More likely, you'll just want to see information about one particular
zone:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=internal
internal
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh mdns samba-client dhcpv6-client
 ports:
 protocols:
 masquerade: no
 forward-ports:

Securing Your Server with a Firewall Chapter 3

[81]

 source-ports:
 icmp-blocks:
 rich rules:

[donnie@localhost ~]$

So, the internal zone allows the ssh, mdns, samba-client, and dhcpv6-client
services. This would be handy for setting up client machines on your internal LAN.

Any given server or client will have one or more installed network interface adapter. Each
adapter in a machine can be assigned one, and only one, firewalld zone. To see the default
zone:

[donnie@localhost ~]$ sudo firewall-cmd --get-default-zone
public
[donnie@localhost ~]$

That's great, except that it doesn't tell you anything about which network interface is
associated with this zone. To see that information:

[donnie@localhost ~]$ sudo firewall-cmd --get-active-zones
public
 interfaces: enp0s3
[donnie@localhost ~]$

When you first install Red Hat or CentOS, the firewall will already be active with the public
zone as the default. Now, let's say that you're setting up your server in the DMZ, and you
want to make sure that its firewall is locked down for that. You can change the default zone
to the dmz zone. Let's take a look at the dmz.xml file to see what that does for us:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>DMZ</short>
 <description>For computers in your demilitarized zone that are publicly-
accessible with limited access to your internal network. Only selected
incoming connections are accepted.</description>
 <service name="ssh"/>
</zone>

So, the only thing that the DMZ allows through is the Secure Shell. Okay, that's good
enough for now, so let's set the dmz zone as the default:

[donnie@localhost ~]$ sudo firewall-cmd --set-default-zone=dmz
[sudo] password for donnie:
success
[donnie@localhost ~]$

Securing Your Server with a Firewall Chapter 3

[82]

We'll verify:

[donnie@localhost ~]$ sudo firewall-cmd --get-default-zone
dmz
[donnie@localhost ~]$

And we're all good. Except, that is, that an internet-facing server in the DMZ probably
needs to do more than just allow SSH connections. This is where we'll use the firewalld
services. But, before we look at that, let's consider one more important point.

You never want to modify the files in the /usr/lib/firewalld directory. Whenever you
modify the firewalld configuration, you'll see the modified files show up in the
/etc/firewalld directory. So far, all we've modified is the default zone. So, we'll see this
in /etc/firewalld:

[donnie@localhost ~]$ sudo ls -l /etc/firewalld
total 12
-rw-------. 1 root root 2003 Oct 11 17:37 firewalld.conf
-rw-r--r--. 1 root root 2006 Aug 4 17:14 firewalld.conf.old
. . .

We can do a diff on those two files to see the difference between them:

[donnie@localhost ~]$ sudo diff /etc/firewalld/firewalld.conf
/etc/firewalld/firewalld.conf.old
6c6
< DefaultZone=dmz

> DefaultZone=public
[donnie@localhost ~]$

So, the newer of the two files shows that the dmz zone is now the default.

To get more information about firewalld zones, enter:

man firewalld.zones

Securing Your Server with a Firewall Chapter 3

[83]

firewalld services
Each service file contains a list of ports that need to be opened for a particular service.
Optionally, the service files may contain one or more destination addresses, or call in any
needed modules, such as for connection tracking. For some services, all you need to do is to
open just one port. Other services, such as the Samba service, require that multiple ports be
opened. Either way, it's sometimes handier to remember the service name, rather than the
port numbers, that goes with each service.

The services files are in the /usr/lib/firewalld/services directory. You can look at
the list of them with the firewall-cmd command, just as you could do with the list of
zones:

[donnie@localhost ~]$ sudo firewall-cmd --get-services
[sudo] password for donnie:
RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client bitcoin
bitcoin-rpc bitcoin-testnet bitcoin-testnet-rpc ceph ceph-mon cfengine
condor-collector ctdb dhcp dhcpv6 dhcpv6-client dns docker-registry
dropbox-lansync elasticsearch freeipa-ldap freeipa-ldaps freeipa-
replication freeipa-trust ftp ganglia-client ganglia-master high-
availability http https imap imaps ipp ipp-client ipsec iscsi-target kadmin
kerberos kibana klogin kpasswd kshell ldap ldaps libvirt libvirt-tls
managesieve mdns mosh mountd ms-wbt mssql mysql nfs nrpe ntp openvpn ovirt-
imageio ovirt-storageconsole ovirt-vmconsole pmcd pmproxy pmwebapi
pmwebapis pop3 pop3s postgresql privoxy proxy-dhcp ptp pulseaudio
puppetmaster quassel radius rpc-bind rsh rsyncd samba samba-client sane sip
sips smtp smtp-submission smtps snmp snmptrap spideroak-lansync squid ssh
synergy syslog syslog-tls telnet tftp tftp-client tinc tor-socks
transmission-client vdsm vnc-server wbem-https xmpp-bosh xmpp-client xmpp-
local xmpp-server
[donnie@localhost ~]$

The dropbox-lansync service would be very handy for us Dropbox users. Let's see which
ports this opens:

[donnie@localhost ~]$ sudo firewall-cmd --info-service=dropbox-lansync
[sudo] password for donnie:
dropbox-lansync
 ports: 17500/udp 17500/tcp
 protocols:
 source-ports:
 modules:
 destination:
[donnie@localhost ~]$

Securing Your Server with a Firewall Chapter 3

[84]

It looks like Dropbox uses ports 17500 UDP and TCP.

Now, let's say that we have our web server set up in the DMZ, with the dmz zone set as its
default:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

[donnie@localhost ~]$

As we saw before, the Secure Shell port is the only one that's open. Let's fix that so that
users can actually access our website:

[donnie@localhost ~]$ sudo firewall-cmd --add-service=http
success
[donnie@localhost ~]$

When we look at the info for the dmz zone again, we'll see:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh http
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

[donnie@localhost ~]$

Securing Your Server with a Firewall Chapter 3

[85]

We see that the http service is now allowed through. But look what happens when we add
the --permanent option to this info command:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --info-zone=dmz
dmz
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[donnie@localhost ~]$

Oops! The http service isn't here. What's going on?

For pretty much every command-line alteration of either zones or services, you need to add
the --permanent option to make the change persistent across reboots. But, without that --
permanent option, the change takes effect immediately. With the --permanent option,
you'll have to reload the firewall configuration in order for the change to take effect. To
demo, I'm going to reboot the virtual machine to get rid of the http service.

Okay, I've rebooted, and the http service is now gone:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz
[sudo] password for donnie:
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

[donnie@localhost ~]$

Securing Your Server with a Firewall Chapter 3

[86]

This time, I'll add two services with just one command, and specify for the change to be
permanent:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-
service={http,https}
[sudo] password for donnie:
success
[donnie@localhost ~]$

You can add as many services as you need to with a single command, but you have to
separate them with commas and enclose the whole list within a pair of curly brackets. Let's
look at the results:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

[donnie@localhost ~]$

Since we decided to make this configuration permanent, it hasn't yet taken effect. But, if we
add the --permanent option to this --info-zone command, we'll see that the
configuration files have indeed been changed:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --info-zone=dmz
dmz
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh http https
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:

Securing Your Server with a Firewall Chapter 3

[87]

 rich rules:

[donnie@localhost ~]$

We now need to make that change take effect by reloading the configuration:

[donnie@localhost ~]$ sudo firewall-cmd --reload
success
[donnie@localhost ~]$

Run the sudo firewall-cmd --info-zone=dmz command again, and you'll see that the
new configuration is now in effect.

To remove a service from a zone, just replace --add-service with --remove-service.

Note that we never specified which zone we're working with in any of
these service commands. That's because if we don't specify a zone,
firewalld just assumes that we're working with the default zone. If you
want to add a service to something other than the default zone, just add a
--zone= option to your commands.

Adding ports to a firewalld zone
Having the service files is handy, except that not every service that you'll need to run has its
own predefined service file. Let's say that you've installed Webmin on your server, which
requires port 10000/tcp to be open. A quick grep operation will show that port 10000
isn't in any of our predefined services:

donnie@localhost services]$ pwd
/usr/lib/firewalld/services
[donnie@localhost services]$ grep '10000' *
[donnie@localhost services]$

So, let's just add that port to our default zone, which is still the dmz zone:

donnie@localhost ~]$ sudo firewall-cmd --add-port=10000/tcp
[sudo] password for donnie:
success
[donnie@localhost ~]$

Securing Your Server with a Firewall Chapter 3

[88]

Again, this isn't permanent, because we didn't include the --permanent option. Let's do it
again and then reload:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-port=10000/tcp
success
[donnie@localhost ~]$ sudo firewall-cmd --reload
success
[donnie@localhost ~]$

You can also add multiple ports at once by enclosing the comma-separated list within a pair
of curly brackets, just as we did with the services (yeah, I purposely left the --permanent
out):

[donnie@localhost ~]$ sudo firewall-cmd --add-
port={636/tcp,637/tcp,638/udp}
success
[donnie@localhost ~]$

And of course, you can remove ports from a zone by substituting --remove-port for --
add-port.

firewalld rich language rules
What we've looked at so far might be all you'll ever need for general use scenarios, but for
more granular control, you'll want to know about rich language rules. (Yes, that really is
what they're called.)

Compared to iptables rules, rich language rules are a bit less cryptic, and are closer to plain
English. So, if you're new to the business of writing firewall rules, you might find rich
language a bit easier to learn. On the other hand, if you're already used to writing iptables
rules, you might find some elements of rich language a bit quirky. Let's look at one
example:

sudo firewall-cmd --add-rich-rule='rule family="ipv4" source
address="200.192.0.0/24" service name="http" drop'

So, we're adding a rich rule. Note that the entire rule is surrounded by a pair of single
quotes, and the assigned value for each parameter is surrounded by a pair of double quotes.
With this rule, we're saying that we're working with IPv4, and that we want to silently
block the http port from accepting packets from the 200.192.0.0/24 network. We didn't
use the --permanent option, so this rule will disappear when we reboot the machine. Let's
see what our zone looks like with this new rule:

Securing Your Server with a Firewall Chapter 3

[89]

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz
[sudo] password for donnie:
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh http https
 ports: 10000/tcp 636/tcp 637/tcp 638/udp
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
 rule family="ipv4" source address="200.192.0.0/24" service name="http"
drop
[donnie@localhost ~]$

The rich rule shows up at the bottom. After we've tested this rule to make sure that it does
what we need it to do, we'll make it permanent:

sudo firewall-cmd --permanent --add-rich-rule='rule family="ipv4" source
address="200.192.0.0/24" service name="http" drop'

sudo firewall-cmd --reload

You could just as easily write a rule for IPv6 by replacing family="ipv4" with
family="ipv6", and supplying the appropriate IPv6 address range.

Some rules are generic, and apply to either IPv4 or IPv6. Let's say that we want to log
messages about Network Time Protocol (NTP) packets, and you want to log no more than
one message per minute. The command to create that rule would look like this:

sudo firewall-cmd --permanent --add-rich-rule='rule service name="ntp"
audit limit value="1/m" accept'

There is, of course, a lot more to firewalld rich language rules than we can present here. But,
you at least now know the basics. For more information, consult the man page:

man firewalld.richlanguage

Securing Your Server with a Firewall Chapter 3

[90]

Hands-on lab for firewalld commands
With this lab, you'll get some practice with basic firewalld commands:

Log into your CentOS 7 virtual machine and run the following commands.1.
Observe the output after each one:

 sudo firewall-cmd --get-zones
 sudo firewall-cmd --get-default-zone
 sudo firewall-cmd --get-active-zones

Briefly view the man pages that deal with firewalld zones:2.

 man firewalld.zones
 man firewalld.zone

(Yes, there are two of them. One explains the zone configuration files, and the
other explains the zones themselves.)

Look at the configuration information for all of the available zones:3.

 sudo firewall-cmd --list-all-zones

Look at the list of predefined services. Then, look at information about the4.
dropbox-lansync service:

 sudo firewall-cmd --get-services
 sudo firewall-cmd --info-service=dropbox-lansync

Set the default zone to dmz. Look at information about the zone, add the http5.
and https services, and then look at the zone information again:

 sudo firewall-cmd --set-default-zone=dmz
 sudo firewall-cmd --permanent --add-service={http,https}
 sudo firewall-cmd --info-zone=dmz
 sudo firewall-cmd --permanent --info-zone=dmz

Reload the firewall configuration, and look at zone info again. Also, look at the6.
list of services that are being allowed:

 sudo firewall-cmd --reload
 sudo firewall-cmd --info-zone=dmz
 sudo firewall-cmd --list-services

Securing Your Server with a Firewall Chapter 3

[91]

Permanently open port 10000/tcp, and view the results:7.

 sudo firewall-cmd --permanent --add-port=10000/tcp
 sudo firewall-cmd --list-ports
 sudo firewall-cmd --reload
 sudo firewall-cmd --list-ports
 sudo firewall-cmd --info-zone=dmz

Remove the port that you just added:8.

 sudo firewall-cmd --permanent --remove-port=10000/tcp
 sudo firewall-cmd --reload
 sudo firewall-cmd --list-ports
 sudo firewall-cmd --info-zone=dmz

View the list of main pages for firewalld:9.

 apropos firewall

End of lab.10.

nftables – a more universal type of firewall
system
Let's now turn our attention to nftables, the new kid on the block. So, what does nftables
bring to the table? (Yes, the pun was intended.):

You can now forget about needing separate daemons and utilities for all of the
different networking components. The functionality of iptables, ip6tables,
ebtables, and arptables is now all combined in one neat package. The nft utility is
now the only firewall utility that you'll need.
With nftables, you can create multidimensional trees to display your rulesets.
This makes troubleshooting vastly easier, because it's now easier to trace a packet
all the way through all of the rules.
With iptables, you have the filter, NAT, mangle, and security tables installed by
default, whether or not you use each one. With nftables, you only create the
tables that you intend to use, resulting in enhanced performance.
Unlike iptables, you can specify multiple actions in one rule, instead of having to
create multiple rules for each action.

Securing Your Server with a Firewall Chapter 3

[92]

Unlike iptables, new rules get added atomically. (That's a fancy way of saying
that there's no longer a need to reload the entire ruleset in order to just add one
rule.)
nftables has its own built-in scripting engine, allowing you to write scripts that
are more efficient and more human-readable.
If you already have lots of iptables scripts that you still need to use, you can
install a set of utilities that will help you convert them to nftables format.

nftables tables and chains
If you're used to iptables, you might recognize some of the nftables terminology. The only
problem is, some of the terms are used in different ways, with different meanings. Here's
some of what I'm talking about:

Tables: Tables in nftables refer to a particular protocol family. The table types are
ip, ip6, inet, arp, bridge, and netdev.
Chains: Chains in nftables roughly equate to tables in iptables. For example, in
nftables you could have filter, route, or NAT chains.

Getting started with nftables
Let's start with a clean snapshot of our Ubuntu virtual machine, and install the nftables
package.

The command-line utility for nftables is nft. You can either do nft
commands from the Bash shell, or you can do sudo nft -i to run nft in
interactive mode. For our present demos, we'll just run the commands
from the Bash shell.

Now, let's take a look at the list of installed tables:

sudo apt install nftables
sudo nft list tables

Hmmm... You didn't see any tables, did you? So, let's load some up.

Securing Your Server with a Firewall Chapter 3

[93]

If you look at the nftables.conf file in the /etc directory, you'll see the beginnings of a
basic nft firewall configuration:

#!/usr/sbin/nft -f
flush ruleset
table inet filter {
 chain input {
 type filter hook input priority 0;

 # accept any localhost traffic
 iif lo accept

 # accept traffic originated from us
 ct state established,related accept

 # activate the following line to accept
 common local services
 # tcp dport { 22, 80, 443 } ct state new accept

 # accept neighbour discovery otherwise
 IPv6 connectivity breaks.
 ip6 nexthdr icmpv6 icmpv6 type { nd-neighbor-solicit,
 nd-router-advert, nd-neighbor-advert } accept

 # count and drop any other traffic
 counter drop
 }
}

Here's the breakdown of what all this means:

#!/usr/sbin/nft -f: Although you can create normal Bash shell scripts with
nftables commands, it's better to use the built-in scripting engine that's included
with nftables. That way, we can make our scripts more human-readable, and we
don't have to type nft in front of everything we want to do.
flush ruleset: We want to start with a clean slate, so we'll flush out any rules
that may have already been loaded.
table inet filter: This creates an inet family filter, which works for both
IPv4 and IPv6. The name of this table is filter, but it could just as well have
been something a bit more descriptive.
chain input: Within the first pair of curly brackets, we have a chain with the
name of input. (Again, the name could have been something more descriptive.)

Securing Your Server with a Firewall Chapter 3

[94]

type filter hook input priority 0;: Within the next pair of curly
brackets, we define our chain and then list the rules. This chain is defined as a
filter type. hook input indicates that this chain is meant to process incoming
packets. Because this chain has both a hook and a priority, it will accept
packets directly from the network stack.
Finally, we have the standard rules for a very basic host firewall, starting with the
iif rule that allows the loopback interface to accept packets (iif stands for input
interface.)
Next is the standard connection tracking (ct) rule, which accepts traffic that's in
response to a connection request from this host.
Then, there's a commented-out rule to accept Secure Shell and both secure and
nonsecure web traffic. The ct state new indicates that the firewall will allow
other hosts to initiate connections to our server on these ports.
The ipv6 rule accepts neighbor discovery packets, allowing for IPv6
functionality.
The counter drop rule at the end silently blocks all other traffic, and counts
both the number of packets and the number of bytes that it blocks. (This is an
example of how you can have one rule perform two different actions.)

If all you need on your Ubuntu server is a basic, no-frills firewall, your best bet is to just edit
this /etc/nftables.conf file to suit your own needs. For starters, let's remove the
comment symbol from in front of the tcp dport line, and get rid of ports 80 and 443. The
line should now look like:

tcp dport 22 ct state new accept

Note that when you're only opening one port, you don't need to enclose that port number
within curly brackets. When opening multiple ports, just include the comma-separated list
within curly brackets, with a blank space before the first element and after the last element.

Load the configuration file, and view the results:

sudo nft -f /etc/nftables.conf

donnie@ubuntu2:~$ sudo nft list table inet filter
table inet filter {
 chain input {
 type filter hook input priority 0; policy accept;
 iif lo accept
 ct state established,related accept
 tcp dport ssh ct state new accept
 ip6 nexthdr ipv6-icmp icmpv6 type { nd-router-advert, nd-neighbor-

Securing Your Server with a Firewall Chapter 3

[95]

solicit, nd-neighbor-advert} accept
 counter packets 67 bytes 10490 drop
 }
}
donnie@ubuntu2:~$

Now, let's say that we want to block certain IP addresses from reaching the Secure Shell
port of this machine. We can edit the file, placing a drop rule above the rule that opens port
22. The relevant section of the file would look like this:

tcp dport 22 ip saddr { 192.168.0.7, 192.168.0.10 } drop
tcp dport 22 ct state new accept

After we reload the file, we'll be blocking SSH access from two different IPv4 addresses.
Note that we've placed the drop rule ahead of the accept rule, because if the accept rule
gets read first, the drop rule will never have any effect.

Another really cool thing to note is how we've mixed IPv4 (ip) rules with IPv6 (ip6) rules in
the same configuration file. That's the beauty of using an inet-type table. For simplicity and
flexibility, you'll want to use inet tables as much as possible, rather than separate ip and ip6
tables.

Most of the time, when all you need is just a simple host firewall, your best bet would be to
just use this nftables.conf file as your starting point, and edit the file to suit your own
needs. However, there's also a command-line component that you may at times find useful.

Using nft commands
There are two ways to use the nft utility. You can just do everything directly from the Bash
shell, prefacing every action you want to perform with nft, followed by the nft
subcommands. You can also use nft in interactive mode. For our present purposes, we'll just
go with the Bash shell.

Let's first delete our previous configuration, and create an inet table, since we want
something that works for both IPv4 and IPv6. We'll want to give it a somewhat descriptive
name, so let's call it ubuntu_filter:

sudo nft delete table inet filter
sudo nft list tables
sudo nft add table inet ubuntu_filter
sudo nft list tables

Securing Your Server with a Firewall Chapter 3

[96]

Next, we'll add an input filter chain to the table that we just created. (Note that since we're
doing this from the Bash shell, we need to escape the semi-colon with a backslash.)

sudo nft add chain inet ubuntu_filter input { type filter hook input
priority 0\; policy drop\; }

In this command, the first input after the ubuntu_filter is the name of the chain. (We
could have given it a more descriptive name, but for now, input works.) Within the pair of
curly brackets, we're setting the parameters for this chain.

Each nftables protocol family has its own set of hooks, which define how packets will be
processed. For now, we're only concerned with the ip/ip6/inet families, which have these
hooks:

Prerouting
Input
Forward
Output
Postrouting

Of these, we're presently only concerned with the input and output hooks, which would
apply to filter-type chains. By specifying a hook and a priority for our input chain, we're
saying that we want this chain to be a base chain, which will accept packets directly from
the network stack. You also see that certain parameters must be terminated by a semicolon,
which in turn would need to be escaped with a backslash if you're running the commands
from the Bash shell. Finally, we're specifying a default policy of drop. If we had not
specified drop as the default policy, then the policy would have been accept by default.

Every nft command that you enter takes effect immediately. So, if you're
doing this remotely, you'll drop your Secure Shell connection as soon as
you create a filter chain with a default drop policy.

Some people like to create chains with a default accept policy, and then
add a drop rule as the final rule. Other people like to create chains with a
default drop policy, and then leave off the drop rule at the end. The
advantage of using a default accept rule is that you would be able to
perform these firewall commands remotely, without having to worry
about locking yourself out.

Securing Your Server with a Firewall Chapter 3

[97]

Verify that the chain has been added, and you should see something like this:

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter
[sudo] password for donnie:
table inet filter {
 chain input {
 type filter hook input priority 0; policy drop;
 }
}
donnie@ubuntu2:~$

That's great, but we still need some rules. Let's start with a connection tracking rule and a
rule to open the Secure Shell port. We'll then verify that they got added:

sudo nft add rule inet ubuntu_filter input ct state established accept
sudo nft add rule inet ubuntu_filter input tcp dport 22 ct state new accept

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter
table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 ct state established accept
 tcp dport ssh ct state new accept
 }
}
donnie@ubuntu2:~

Okay, that looks good. You now have a basic, working firewall that allows Secure Shell
connections. Well, except that just as we did in the ufw chapter, we forgot to create a rule to
allow the loopback adapter to accept packets. Since we want this rule to be at the top of the
rules list, we'll use insert instead of add:

sudo nft insert rule inet ubuntu_filter input iif lo accept

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter
table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept
 ct state established accept
 tcp dport ssh ct state new accept
 }
}
donnie@ubuntu2:~$

Securing Your Server with a Firewall Chapter 3

[98]

Now, we're all set. But what if we want to insert a rule in a specific location? For that, you'll
need to use list with the -a option to see the handles rule:

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a
table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept # handle 4
 ct state established accept # handle 2
 tcp dport ssh ct state new accept # handle 3
 }
}
donnie@ubuntu2:~$

As you can see, there's no real rhyme or reason to the way the handles are numbered. Let's
say that we want to insert the rule about blocking certain IP addresses from accessing the
Secure Shell port. We see that the ssh accept rule is handle 3, so we'll need to insert our
drop rule before it. Our command to do that would look like this:

sudo nft insert rule inet ubuntu_filter input position 3 tcp dport 22 ip
saddr { 192.168.0.7, 192.168.0.10 } drop

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a
table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept # handle 4
 ct state established accept # handle 2
 tcp dport ssh ip saddr { 192.168.0.10, 192.168.0.7} drop # handle 6
 tcp dport ssh ct state new accept # handle 3
 }
}
donnie@ubuntu2:~$

So, to place the rule before the rule with the handle 3 label, we have to insert to
position 3. The new rule that we just inserted has the label handle 6. To delete a rule,
we'll specify the rule's handle number:

sudo nft delete rule inet ubuntu_filter input handle 6

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a
table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept # handle 4
 ct state established accept # handle 2

Securing Your Server with a Firewall Chapter 3

[99]

 tcp dport ssh ct state new accept # handle 3
 }
}
donnie@ubuntu2:~$

As is the case with iptables, everything you do from the command line will disappear once
you reboot the machine. To make it permanent, let's redirect the output of the list
subcommand into a configuration file (of course, we'll want to give the file a unique name
that's different from the name of our default file):

sudo sh -c "nft list table inet ubuntu_filter > new_nftables.conf"

Due to a quirk in the Bash shell, we can't just redirect output to a file in the /etc directory
in the normal manner, even when we use sudo. That's why I had to add the sh -c
command, with the nft list command surrounded by double quotes. Now, when we
look at the file, we'll see that there are a couple of things that are missing:

table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept
 ct state established accept
 tcp dport ssh ct state new accept
 }
}

You sharp-eyed folk will see that we're missing the flush rule, and the shebang line to
specify the shell that we want to interpret this script. Let's add them in:

#!/usr/sbin/nft -f
flush ruleset

table inet ubuntu_filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept
 ct state established accept
 tcp dport ssh ct state new accept
 }
}

Much better. Let's test it by loading the new configuration and observing the list output:

sudo nft -f /etc/new_nftables.conf

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter
table inet ubuntu_filter {

Securing Your Server with a Firewall Chapter 3

[100]

 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept
 ct state established accept
 tcp dport ssh ct state new accept
 }
}
donnie@ubuntu2:~$

That's all there is to creating your own simple host firewall. Of course, running commands
from the command line, rather than just creating a script file in your text editor, does make
for a lot more typing. But, it does allow you to test your rules on the fly, as you create them.
And, creating your configuration in this manner and then redirecting the list output to
your new configuration file relieves you of the burden of having to keep track of all of those
curly brackets.

It's also possible to take all of the nft commands that we just did, and place them into a
regular, old-fashioned Bash shell script. Trust me, though, you really don't want to do that.
Just use the nft-native scripting format as we've done here, and you'll have a script that
performs better, and that is much more human-readable.

Hands-on lab for nftables on Ubuntu
For this lab, you need a clean snapshot of your Ubuntu virtual machine:

Restore your Ubuntu virtual machine to a clean snapshot to clear out any firewall1.
configurations that you created previously. Verify with the commands:

 sudo ufw status
 sudo iptables -L

You should see no rules listed for iptables, and the ufw status should be
inactive.

Install the nftables package:2.

 sudo apt install nftables

List the tables, which should give you no output. Load the default configuration3.
file, and list both the tables and the rules:

 sudo nft list tables
 sudo nft -f /etc/nftables.conf

Securing Your Server with a Firewall Chapter 3

[101]

 sudo nft list tables
 sudo nft list table inet filter

Make a backup copy of the nftables configuration file:4.

 sudo cp /etc/nftables.conf /etc/nftables.conf.bak

Open the original /etc/nftables.conf file in your text editor. Just before the5.
tcp dport . . . accept line, insert this line:

 tcp dport ssh ip saddr { 192.168.0.7, 192.168.0.10 } drop

Save the file and exit the text editor.

Reload the configuration and view the results:6.

 sudo nft list tables
 sudo nft -f /etc/nftables.conf
 sudo nft list tables
 sudo nft list table inet filter

End of lab.7.

Summary
In this chapter, we've looked at four different frontends for the netfilter firewall. We first
looked at our trusty old friend, iptables. We saw that even though it's been around forever
and still works, it does have some shortcomings. We then saw how Ubuntu's
Uncomplicated Firewall can vastly simplify setting up an iptables-based firewall. For you
Red Hatters, we looked at firewalld, which is specific to Red Hat-type distros. Finally, we
wrapped things up by looking at the latest in Linux firewall technology, nftables.

In the space allotted, I've only been able to present the bare essentials that you need to set
up basic host protection. But, it is at least enough to get you started.

4
Encrypting and SSH Hardening

You may work for a super-secret government agency, or you may be just a regular Joe or
Jane citizen. Either way, you will still have sensitive data that you need to protect from
prying eyes. Business secrets, government secrets, personal secrets—it doesn't matter; it all
needs protection. Locking down user's home directories with restrictive permissions
settings, as we saw in Chapter 2, Securing User Accounts, is only part of the puzzle; we also
need encryption.

The two general types of data encryption that we'll look at in this chapter are meant to
protect data at rest and data in transit. We'll begin with using file, partition, and directory
encryption to protect data at rest. We'll then cover Secure Shell (SSH) to protect data in
transit.

In this chapter, we'll cover:

GNU Privacy Guard (GPG)
Encrypting partitions with Linux Unified Key Setup (LUKS)
Encrypting directories with eCryptfs
Using VeraCrypt for the cross-platform sharing of encrypted containers
Ensuring that SSH protocol 1 is disabled
Creating and managing keys for password-less logins
Disabling root user login
Disabling username/password logins
Setting up a chroot environment for SFTP users

Encrypting and SSH Hardening Chapter 4

[103]

GNU Privacy Guard
We'll begin with GNU Privacy Guard (GPG). This is a free open source implementation
of Phil Zimmermann's Pretty Good Privacy, which he created back in 1991. You can use
either one of them to either encrypt or cryptographically sign files or messages. In this
section, we'll focus strictly on GPG.

There are some advantages of using GPG:

It uses strong, hard-to-crack encryption algorithms.
It uses the private/public key scheme, which eliminates the need to transfer a
password to a message or file recipient in a secure manner. Instead, just send
along your public key, which is useless to anyone other than the intended
recipient.
You can use GPG to just encrypt your own files for your own use, the same as
you'd use any other encryption utility.
It can be used to encrypt email messages, allowing you to have true end-to-end
encryption for sensitive emails.
There are a few GUI-type frontends available to make it somewhat easier to use.

But, as you might know, there are also some disadvantages:

Using public keys instead of passwords is great when you work directly only
with people who you implicitly trust. But, for anything beyond that, such as
distributing a public key to the general population so that everyone can verify
your signed messages, you're dependent upon a web-of-trust model that can be
very hard to set up.
For the end-to-end encryption of email, the recipients of your email must also
have GPG set up on their systems, and know how to use it. That might work in a
corporate environment, but lots of luck getting your friends to set that up. (I've
never once succeeded in getting someone else to set up email encryption.)
If you use a standalone email client, such as Mozilla Thunderbird, you can install
a plugin that will encrypt and decrypt messages automatically. But, every time a
new Thunderbird update is released, the plugin breaks, and it always takes a
while before a new working version gets released.

Even with its numerous weaknesses, GPG is still one of the best ways to share encrypted
files and emails. GPG comes preinstalled on both Ubuntu Server and CentOS. So, you can
use either of your virtual machines for these demos.

Encrypting and SSH Hardening Chapter 4

[104]

Creating your GPG keys
Getting started with GPG requires you to first generate your GPG keys. You'll do that with:

gpg --gen-key

Note that, since you're setting this up for yourself, you don't need sudo
privileges.

The output of this command is too long to show all at once, so I'll show relevant sections of
it, and break down what it means.

The first thing that this command does is to create a populated .gnupg directory in your
home directory:

gpg: directory `/home/donnie/.gnupg' created
gpg: new configuration file `/home/donnie/.gnupg/gpg.conf' created
gpg: WARNING: options in `/home/donnie/.gnupg/gpg.conf' are not yet active
during this run
gpg: keyring `/home/donnie/.gnupg/secring.gpg' created
gpg: keyring `/home/donnie/.gnupg/pubring.gpg' created

You'll then be asked to select which kinds of keys you want. We'll just go with the default
RSA and RSA. (RSA keys are stronger and harder to crack than the older DSA keys.
Elgamal keys are good, but they may not be supported by older versions of GPG.):

Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection?

For decent encryption, you'll want to go with a key of at least 2048 bits, because anything
smaller is now considered vulnerable. Since 2048 just happens to be the default, we'll go
with it:

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)

Encrypting and SSH Hardening Chapter 4

[105]

Next, select how long you want for the keys to remain valid before they automatically
expire. For our purposes, we'll go with the default key does not expire.

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)

Provide your personal information:

GnuPG needs to construct a user ID to identify your key.

Real name: Donald A. Tevault
Email address: donniet@something.net
Comment: No comment
You selected this USER-ID:
 "Donald A. Tevault (No comment) <donniet@something.net>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

Create a passphrase for your private key:

You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

This could take a while, even when you're doing all of the recommended things to create
entropy. Be patient; it will eventually finish. By running a sudo yum upgrade in another
window, I created enough entropy so that the process didn't take too long:

gpg: /home/donnie/.gnupg/trustdb.gpg: trustdb created
gpg: key 19CAEC5B marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 2048R/19CAEC5B 2017-10-26
 Key fingerprint = 8DE5 8894 2E37 08C4 5B26 9164 C77C 6944 19CA EC5B
uid Donald A. Tevault (No comment) <donniet@something.net>
sub 2048R/37582F29 2017-10-26

Encrypting and SSH Hardening Chapter 4

[106]

Verify that the keys did get created:

[donnie@localhost ~]$ gpg --list-keys
/home/donnie/.gnupg/pubring.gpg

pub 2048R/19CAEC5B 2017-10-26
uid Donald A. Tevault (No comment) <donniet@something.net>
sub 2048R/37582F29 2017-10-26

[donnie@localhost ~]$

And, while you're at it, take a look at the files that you created:

[donnie@localhost ~]$ ls -l .gnupg
total 28
-rw-------. 1 donnie donnie 7680 Oct 26 13:22 gpg.conf
drwx------. 2 donnie donnie 6 Oct 26 13:40 private-keys-v1.d
-rw-------. 1 donnie donnie 1208 Oct 26 13:45 pubring.gpg
-rw-------. 1 donnie donnie 1208 Oct 26 13:45 pubring.gpg~
-rw-------. 1 donnie donnie 600 Oct 26 13:45 random_seed
-rw-------. 1 donnie donnie 2586 Oct 26 13:45 secring.gpg
srwxrwxr-x. 1 donnie donnie 0 Oct 26 13:40 S.gpg-agent
-rw-------. 1 donnie donnie 1280 Oct 26 13:45 trustdb.gpg
[donnie@localhost ~]$

These files are your public and private keyrings, your own gpg.conf file, a random seed
file, and a trusted users database.

Symmetrically encrypting your own files
You may find GPG useful for encrypting your own files, even when you never plan to share
them with anyone else. For this, you'll use symmetric encryption, which involves using
your own private key for encryption. Before you try this, you'll need to generate your keys,
as I outlined in the previous section.

Symmetric key encryption is, well, just that, symmetric. It's symmetric in
the sense that the same key that you would use to encrypt a file is the
same key that you would use to decrypt the file. That's great for if you're
just encrypting files for your own use. But, if you need to share an
encrypted file with someone else, you'll need to figure out a secure way to
give that person the password. I mean, it's not like you'd want to just send
the password in a plain-text email.

Encrypting and SSH Hardening Chapter 4

[107]

Let's encrypt a super-secret file that we just can't allow to fall into the wrong hands:

[donnie@localhost ~]$ gpg -c secret_squirrel_stuff.txt
[donnie@localhost ~]$

Note that the -c option indicates that I chose to use symmetric encryption with a
passphrase for the file. The passphrase that you enter will be for the file, not for your
private key.

One slight flaw with this is that GPG makes an encrypted copy of the file, but it also leaves
the original, unencrypted file intact:

[donnie@localhost ~]$ ls -l
total 1748
-rw-rw-r--. 1 donnie donnie 37 Oct 26 14:22 secret_squirrel_stuff.txt
-rw-rw-r--. 1 donnie donnie 94 Oct 26 14:22
secret_squirrel_stuff.txt.gpg
[donnie@localhost ~]$

Let's get rid of that unencrypted file with shred. We'll use the -u option to delete the file,
and the -z option to overwrite the deleted file with zeros:

[donnie@localhost ~]$ shred -u -z secret_squirrel_stuff.txt
[donnie@localhost ~]$

It doesn't look like anything happened, because shred doesn't give you any output. But, an
ls -l will prove that the file is gone. Now, if I were to look at the encrypted file with less
secret_squirrel_stuff.txt.gpg, I would be able to see its contents, after being asked
to enter my private key passphrase:

Shhh!!!! This file is super-secret.
secret_squirrel_stuff.txt.gpg (END)

As long as my private key remains loaded into my keyring, I'll be able to view my
encrypted file again without having to reenter the passphrase. Now, just to prove to you
that the file really is encrypted, I'll create a shared directory, and move the file there for
others to access:

sudo mkdir /shared
sudo chown donnie: /shared
sudo chmod 755 /shared
mv secret_squirrel_stuff.txt.gpg /shared

Encrypting and SSH Hardening Chapter 4

[108]

When I go into that directory to view the file with less, I can still see its contents, without
having to reenter my passphrase. But now, let's see what happens when Maggie tries to
view the file:

[maggie@localhost shared]$ less secret_squirrel_stuff.txt.gpg
"secret_squirrel_stuff.txt.gpg" may be a binary file. See it anyway?

And when she hits the Y key to see it anyway:

<8C>^M^D^C^C^B<BD>2=<D3> ͈u<93><CE><C9>MОOy<B6>^O<A2><AD>}Rg9<94><EB><C4>^W^E
<A6><8D><B9><B8><D3>(<98><C4>æF^_8Q2b<B8>C<B5><DB>^]<F1><CD>#<90>H<EB><90><
C5>^S%X [<E9><EF><C7>
^@y+<FC><F2><BA><U+058C>H'+<D4>v<84>Y<98>G<D7>֊
secret_squirrel_stuff.txt.gpg (END)

Poor Maggie really wants to see my file, but all she can see is encrypted gibberish.

What I've just demonstrated is another advantage of GPG. After entering your private key
passphrase once, you can view any of your encrypted files without having to manually
decrypt them, and without having to reenter your passphrase. With other symmetric file
encryption tools, such as Bcrypt, you wouldn't be able to view your files without manually
decrypting them first.

But, let's now say that you no longer need to have this file encrypted, and you want to
decrypt it in order to let other people see it. Just use gpg with the -d option:

[donnie@localhost shared]$ gpg -d secret_squirrel_stuff.txt.gpg
gpg: CAST5 encrypted data
gpg: encrypted with 1 passphrase
Shhh!!!! This file is super-secret.
gpg: WARNING: message was not integrity protected
[donnie@localhost shared]$

The WARNING message about the message not being integrity protected means that I had
encrypted the file, but I never signed the file. Without a digital signature, someone could
alter the file without me knowing about it, and I wouldn't be able to prove that I am the
originator of the file. (Have no fear, we'll talk about signing files in just a bit.)

Encrypting and SSH Hardening Chapter 4

[109]

Hands-on lab – combining gpg and tar for encrypted
backups
For this lab, you'll combine tar and gpg to create an encrypted backup on a simulated
backup device. You can perform this lab on either one of your virtual machines:

Start off by creating your GPG keys. You will do that with the following1.
command:

 gpg --gen-key

Create some dummy files in your home directory, so that you'll have something2.
to back up:

 touch {file1.txt,file2.txt,file3.txt,file4.txt}

Create a backup directory at the root level of the filesystem. (In real life, you3.
would have the backup directory on a separate device, but for now, this works.)
Change ownership of the directory to your own account, and set the permissions
so that only you can access it:

 sudo mkdir /backup
 sudo chown your_username: /backup
 sudo chmod 700 /backup

Create an encrypted backup file of your own home directory. Compression is4.
optional, but we'll go ahead and use xz for the best compression. (Note that you'll
need to use sudo for this, because the .viminfo directory in your home
directory is owned by the root user.):

 cd /home
 sudo tar cJvf - your_username/ | gpg -c >
 /backup/your_username_backup.tar.xz.gpg

Now, let's say that either your home directory got deleted, or that you5.
accidentally deleted some important files from your own home directory. Extract
and decrypt the original home directory within the /backup directory:

 cd /backup
 sudo gpg -d your_username.tar.xz.gpg | tar xvJ
 ls -la your_username/

Encrypting and SSH Hardening Chapter 4

[110]

Note that, by combining tar with gpg, the -C option of tar to automatically place
your home directory back within the /home directory won't work. So, you'll either
need to manually copy the extracted directory back to /home, or move the
encrypted backup file to /home before you extract it. Also, be aware that when
you extract an encrypted archive with gpg, the ownership of the files will change
to that of whoever extracted the archive. So, this probably wouldn't be a good
choice for backing up an entire /home directory with home directories for
multiple users. Finally, since this creates one huge archive file, any type of
corruption in the archive file could cause you to lose the entire backup.

End of Lab.6.

Using private and public keys for asymmetric
encryption and signing
Symmetric encryption is great if you're just using GPG locally for your own stuff, but what
if you want to share an encrypted file with someone, while ensuring that they can decrypt
it? With symmetric encryption, you'd need to find a secure way to transmit the passphrase
for the file to the file's recipient. In doing so, there will always be the risk that some third
party could intercept the passphrase, and could then get into your stuff. Here's where
asymmetric encryption comes to the rescue. To demonstrate, I'm going to create a file,
encrypt it, and send it to my buddy Frank to decrypt.

Asymmetric encryption, is, well, asymmetric. Being asymmetric means
that you would use one key to encrypt a file, and another key to decrypt it.
You would keep your private key to yourself and guard it with your life,
but you would share the public key with the whole world. The beauty of
this is that you can share encrypted files with another person, and only
that person would be able to decrypt them. This is all done without having
to share a password with the recipient.

To begin, both Frank and I have to create a key set, as we've already shown you. Next, each
of us needs to extract our public keys, and send them to each other. We'll extract the key
into an ASCII text file:

cd .gnupg
gpg --export -a -o donnie_public-key.txt

donnie@ubuntu:~/.gnupg$ ls -l
total 36
-rw-rw-r-- 1 donnie donnie 1706 Oct 27 18:14 donnie_public-key.txt

Encrypting and SSH Hardening Chapter 4

[111]

. . .

frank@ubuntu:~/.gnupg$ ls -l
total 36
-rw-rw-r-- 1 frank frank 1714 Oct 27 18:18 frank_public-key.txt

Normally, the participants in this would either send their keys to each other through an
email attachment, or by placing the keys in a shared directory. In this case, Frank and I will
receive each other's public key files, and place them into our respective .gnupg directories.
Once that's done, we're ready to import each other's keys:

donnie@ubuntu:~/.gnupg$ gpg --import frank_public-key.txt
gpg: key 4CFC6990: public key "Frank Siamese (I am a cat.) <frank@any.net>"
imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
donnie@ubuntu:~/.gnupg$

frank@ubuntu:~/.gnupg$ gpg --import donnie_public-key.txt
gpg: key 9FD7014B: public key "Donald A. Tevault <donniet@something.net>"
imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
frank@ubuntu:~/.gnupg$

Now for the good stuff. I've created a super-secret message for Frank, and will
asymmetrically encrypt it (-e) and sign it (-s). (Signing the message is the verification that
the message really is from me, rather than from an impostor.):

donnie@ubuntu:~$ gpg -s -e secret_stuff_for_frank.txt

You need a passphrase to unlock the secret key for
user: "Donald A. Tevault <donniet@something.net>"
2048-bit RSA key, ID 9FD7014B, created 2017-10-27

gpg: gpg-agent is not available in this session
You did not specify a user ID. (you may use "-r")

Current recipients:

Enter the user ID. End with an empty line: frank
gpg: CD8104F7: There is no assurance this key belongs to the named user

pub 2048R/CD8104F7 2017-10-27 Frank Siamese (I am a cat.) <frank@any.net>
 Primary key fingerprint: 4806 7483 5442 D62B B9BD 95C1 9564 92D4 4CFC
6990
 Subkey fingerprint: 9DAB 7C3C 871D 6711 4632 A5E0 6DDD E3E5 CD81

Encrypting and SSH Hardening Chapter 4

[112]

04F7

It is NOT certain that the key belongs to the person named
in the user ID. If you *really* know what you are doing,
you may answer the next question with yes.

Use this key anyway? (y/N) y

Current recipients:
2048R/CD8104F7 2017-10-27 "Frank Siamese (I am a cat.) <frank@any.net>"

Enter the user ID. End with an empty line:
donnie@ubuntu:~$

So, the first thing I had to do was to enter the passphrase for my private key. Where it says
to enter the user ID, I entered frank, since he's the intended recipient of my message. But,
look at the line after that, where it says, There is no assurance this key belongs
to the named user. That's because I still haven't trusted Frank's public key. We'll get to
that in a bit. The last line of the output again says to enter a user ID, so that we can
designate multiple recipients. But, Frank is the only one I care about right now, so I just hit
the Enter key to break out of the routine. This results in a .gpg version of my message to
Frank:

donnie@ubuntu:~$ ls -l
total 8
. . .
-rw-rw-r-- 1 donnie donnie 143 Oct 27 18:37 secret_stuff_for_frank.txt
-rw-rw-r-- 1 donnie donnie 790 Oct 27 18:39 secret_stuff_for_frank.txt.gpg
donnie@ubuntu:~$

My final step is to send Frank his encrypted message file, by whatever means available.

When Frank receives his message, he'll use the -d option to view it:

frank@ubuntu:~$ gpg -d secret_stuff_for_frank.txt.gpg

You need a passphrase to unlock the secret key for
user: "Frank Siamese (I am a cat.) <frank@any.net>"
2048-bit RSA key, ID CD8104F7, created 2017-10-27 (main key ID 4CFC6990)

gpg: gpg-agent is not available in this session
gpg: encrypted with 2048-bit RSA key, ID CD8104F7, created 2017-10-27
 "Frank Siamese (I am a cat.) <frank@any.net>"
This is TOP SECRET stuff that only Frank can see!!!!!
If anyone else see it, it's the end of the world as we know it.
(With apologies to REM.)

Encrypting and SSH Hardening Chapter 4

[113]

gpg: Signature made Fri 27 Oct 2017 06:39:15 PM EDT using RSA key ID
9FD7014B
gpg: Good signature from "Donald A. Tevault <donniet@something.net>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Primary key fingerprint: DB0B 31B8 876D 9B2C 7F12 9FC3 886F 3357 9FD7 014B
frank@ubuntu:~$

Frank enters the passphrase for his private key, and he sees the message. At the bottom, he
sees the warning about how my public key isn't trusted, and that there's no indication
that the signature belongs to the owner. Well, since Frank knows me personally,
and he knows for a fact that the public key really is mine, he can add my public key to the
trusted list:

frank@ubuntu:~$ cd .gnupg
frank@ubuntu:~/.gnupg$ gpg --edit-key donnie
gpg (GnuPG) 1.4.20; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 2 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 2u
pub 2048R/9FD7014B created: 2017-10-27 expires: never usage: SC
 trust: ultimate validity: ultimate
sub 2048R/9625E7E9 created: 2017-10-27 expires: never usage: E
[ultimate] (1). Donald A. Tevault <donniet@something.net>

gpg>

The last line of this output is the command prompt for the gpg shell. Frank is concerned
with trust, so he'll enter the command, trust:

gpg> trust
pub 2048R/9FD7014B created: 2017-10-27 expires: never usage: SC
 trust: unknown validity: unknown
sub 2048R/9625E7E9 created: 2017-10-27 expires: never usage: E
[unknown] (1). Donald A. Tevault <donniet@something.net>

Please decide how far you trust this user to correctly verify other users'
keys
(by looking at passports, checking fingerprints from different sources,
etc.)

 1 = I don't know or won't say

Encrypting and SSH Hardening Chapter 4

[114]

 2 = I do NOT trust
 3 = I trust marginally
 4 = I trust fully
 5 = I trust ultimately
 m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

Frank has known me for quite a while, and he knows for a fact that I'm the one who sent the
key. So, he chooses option 5 for ultimate trust. Once Frank logs out and logs back in, that
trust will take effect:

frank@ubuntu:~$ gpg -d secret_stuff_for_frank.txt.gpg

You need a passphrase to unlock the secret key for
user: "Frank Siamese (I am a cat.) <frank@any.net>"
2048-bit RSA key, ID CD8104F7, created 2017-10-27 (main key ID 4CFC6990)

gpg: gpg-agent is not available in this session
gpg: encrypted with 2048-bit RSA key, ID CD8104F7, created 2017-10-27
 "Frank Siamese (I am a cat.) <frank@any.net>"
This is TOP SECRET stuff that only Frank can see!!!!!
If anyone else see it, it's the end of the world as we know it.
(With apologies to REM.)
gpg: Signature made Fri 27 Oct 2017 06:39:15 PM EDT using RSA key ID
9FD7014B
gpg: Good signature from "Donald A. Tevault <donniet@something.net>"
frank@ubuntu:~$

With no more warning messages, this looks much better. At my end, I'll do the same thing
with Frank's public key.

What's so very cool about this is that even though the whole world may have my public
key, it's useless to anyone who isn't a designated recipient of my message.

On an Ubuntu machine, to get rid of the gpg-agent is not available
in this session messages, and to be able to cache your passphrase in
the keyring, install the gnupg-agent package:

sudo apt install gnupg-agent

Encrypting and SSH Hardening Chapter 4

[115]

Signing a file without encryption
If a file isn't secret, but you still need to ensure authenticity and integrity, you can just sign
it without encrypting it:

donnie@ubuntu:~$ gpg -s not_secret_for_frank.txt

You need a passphrase to unlock the secret key for
user: "Donald A. Tevault <donniet@something.net>"
2048-bit RSA key, ID 9FD7014B, created 2017-10-27

gpg: gpg-agent is not available in this session
donnie@ubuntu:~$ ls -l
. . .
-rw-rw-r-- 1 donnie donnie 40 Oct 27 19:30 not_secret_for_frank.txt
-rw-rw-r-- 1 donnie donnie 381 Oct 27 19:31 not_secret_for_frank.txt.gpg

Just as before, I create a .gpg version of the file. When Frank receives the file, he may try to
open it with less:

frank@ubuntu:~$ less not_secret_for_frank.txt.gpg
"not_secret_for_frank.txt.gpg" may be a binary file. See it anyway?

<A3>^A^Av^A<89><FE><90>^M^C^@^B^A<88>o3W<9F><D7>^AK^A<AC>Fb^Xnot_secret_for
_frank.txtY<F3><C1><C0>This isn't secret, so I just signed it.
<89>^A^\^D^@^A^B^@^F^E^BY<F3><C1><C0>^@
^P<88>o3W<9F><D7>^AK6<AF>^G<FF>Bs<9A>^Lc^@<E9><ED><C2>-2<AE><A7><DF> ͺaB
<EC>/[:<D1>{<B2><FD>o8<C6><C9>x<FE>*4^D<CD>^G^O^F<F3>@v<87>_1<D0>^Bp<FE>q^N
3<B0><BE><85><D2>9]{<D6><EF><9A><D8> `<C2><E4>^NC<9B>
"Ձ^?M<89>s<9F>z^B"<DF>
s}`<A4>:<B4>&<F7><F4>\EjȰ!^Q
<9C>6^E|H<E2>ESC<D9>9<DC>p_ӞESCB<DE>^P<FF>i<CA>)^O
<A0>
<CB><C4>+<81><F5><A7>`5<90><BF>Y<DE><FF><<A0>z<BC><BD>5<C5><E8><FE>>
<B7><A2>^L^_^D<DD>Kk<E0><9A>8<C6>S^E<D0>fjz<B2>&G<A4><A8>^Lg$8Q>{<FF><FA>^M
_A
<A1><93><C3>4<DC><C4>x<86><D9>^]- <8A>
F0<87><8A><94>%A<96><DF><CD>C><80><C3>l
<D3>K<E5>^G<8E><90>d<8C><DA>Aɱb<86><89><DA>S<B6><91><D8><D2><E0><B3>K<FC><9
E>
<ED>^@*<EF>x<E7>jø<FD><D3><FA><9A>^]
not_secret_for_frank.txt.gpg (END)

Encrypting and SSH Hardening Chapter 4

[116]

There's a lot of gibberish there because of the signature, but if you look carefully, you'll see
the plain, unencrypted message. Frank will use gpg with the --verify option to verify that
the signature really does belong to me:

frank@ubuntu:~$ gpg --verify not_secret_for_frank.txt.gpg
gpg: Signature made Fri 27 Oct 2017 07:31:12 PM EDT using RSA key ID
9FD7014B
gpg: Good signature from "Donald A. Tevault <donniet@something.net>"
frank@ubuntu:~$

Encrypting partitions with Linux Unified Key
Setup – LUKS
Being able to encrypt individual files can be handy, but it can be quite unwieldy for a large
number of files. For that, we need something better, and we have three different methods:

Block encryption: We can use this for either whole-disk encryption, or to encrypt
individual partitions
File-level encryption: We'd use this to encrypt individual directories, without
having to encrypt the underlying partitions
Containerized Encryption: Using third-party software that doesn't come with
any Linux distribution, we can create encrypted, cross-platform containers that
can be opened on either Linux, Mac, or Windows machines

The Linux Unified Key Setup (LUKS), falls into the first category. It's built into pretty
much every Linux distribution, and directions for use are the same for each. For our demos,
I'll use the CentOS virtual machine, since LUKS is now the default encryption mechanism
for Red Hat Enterprise Linux 7 and CentOS 7.

Encrypting and SSH Hardening Chapter 4

[117]

Disk encryption during operating system
installation
When you install Red Hat Enterprise Linux 7 or one of its offspring, you have the option of
encrypting the drive. All you have to do is to click on a checkbox:

Other than that, I just let the installer create the default partitioning scheme, which means
that the / filesystem and the swap partition will both be logical volumes. (I'll cover that in a
moment.)

Before the installation can continue, I have to create a passphrase to mount the encrypted
disk:

Encrypting and SSH Hardening Chapter 4

[118]

Now, whenever I reboot the system, I need to enter this passphrase:

Once the machine is up and running, I can look at the list of logical volumes. I see both the /
logical volume and the swap logical volume:

[donnie@localhost etc]$ sudo lvdisplay
 --- Logical volume ---
 LV Path /dev/centos/swap
 LV Name swap
 VG Name centos
 LV UUID tsme2v-uy87-uech-vpNp-W4E7-fHLf-3bf817
 LV Write Access read/write
 LV Creation host, time localhost, 2017-10-28 13:00:11 -0400
 LV Status available
 # open 2
 LV Size 2.00 GiB
 Current LE 512
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 8192
 Block device 253:2

 --- Logical volume ---
 LV Path /dev/centos/root
 LV Name root
 VG Name centos
 LV UUID MKXVO9-X8fo-w2FC-LnGO-GLnq-k2Xs-xI1gn0
 LV Write Access read/write
 LV Creation host, time localhost, 2017-10-28 13:00:12 -0400
 LV Status available
 # open 1
 LV Size 17.06 GiB
 Current LE 4368
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 8192
 Block device 253:1

[donnie@localhost etc]$

Encrypting and SSH Hardening Chapter 4

[119]

And I can look at the list of physical volumes. (Actually, there's only one physical volume in
the list, and it's listed as a luks physical volume.):

[donnie@localhost etc]$ sudo pvdisplay
 --- Physical volume ---
 PV Name /dev/mapper/luks-2d7f02c7-864f-42ce-
b362-50dd830d9772
 VG Name centos
 PV Size <19.07 GiB / not usable 0
 Allocatable yes
 PE Size 4.00 MiB
 Total PE 4881
 Free PE 1
 Allocated PE 4880
 PV UUID V50E4d-jOCU-kVRn-67w9-5zwR-nbwg-4P725S

[donnie@localhost etc]$

This shows that the underlying physical volume is encrypted, which means that both the /
and the swap logical volumes are also encrypted. That's a good thing, because leaving the
swap space unencrypted—a common mistake when setting up disk encryption up
manually—can lead to data leakage.

Adding an encrypted partition with LUKS
There may be times when you'll need to either add another encrypted drive to an existing
machine, or encrypt a portable device, such as a USB memory stick. This procedure works
for both scenarios.

To demonstrate, I'll shut down my CentOS VM and add another virtual drive:

Encrypting and SSH Hardening Chapter 4

[120]

I'll bump the drive capacity up to 20 GB, which will give me plenty of room to play with:

Encrypting and SSH Hardening Chapter 4

[121]

After rebooting the machine, I now have a /dev/sdb drive to play with. My next step is to
create a partition. It doesn't matter whether I create a new-fangled GPT partition, or an old-
fashioned MBR partition. I'll create a GPT partition, and my preferred utility for doing that
is gdisk, simply because it's so similar to the old fdisk that I know and love so well. The
only catch is that gdisk isn't installed on CentOS by default:

sudo yum install gdisk
sudo gdisk /dev/sdb

I'll use the entire drive for my partition, and leave the partition type set at the default 8300.
I now have the /dev/sdb1 partition:

[donnie@localhost ~]$ sudo gdisk -l /dev/sdb
[sudo] password for donnie:
GPT fdisk (gdisk) version 0.8.6

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Found valid GPT with protective MBR; using GPT.
Disk /dev/sdb: 43978112 sectors, 21.0 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): DC057EC6-3BA8-4269-ABE9-2A28B4FDC84F
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 43978078
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)

Number Start (sector) End (sector) Size Code Name
 1 2048 43978078 21.0 GiB 8300 Linux filesystem
[donnie@localhost ~]$

I'll next use cryptsetup to convert the partition to LUKS format. In this command, the -v
signifies verbose mode, and the -y signifies that I'll have to enter my passphrase twice in
order to properly verify it. Note that when it says to type yes all in uppercase, it really does
mean to type it in uppercase:

[donnie@localhost ~]$ sudo cryptsetup -v -y luksFormat /dev/sdb1

WARNING!
========
This will overwrite data on /dev/sdb1 irrevocably.

Encrypting and SSH Hardening Chapter 4

[122]

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:
Command successful.
[donnie@localhost ~]$

Although I don't have to, I'd like to look at the information about my new encrypted
partition:

[donnie@localhost ~]$ sudo cryptsetup luksDump /dev/sdb1
LUKS header information for /dev/sdb1

Version: 1
Cipher name: aes
Cipher mode: xts-plain64
Hash spec: sha256
. . .
. . .

There's a lot more to the output than what I can show here, but you get the idea.

Next, I'll map the partition to a device name. You can name the device pretty much
whatever you want, and I'll just name mine secrets. (I know, it's a corny name. You
probably won't want to make it so obvious where you're storing your secrets.):

[donnie@localhost ~]$ sudo cryptsetup luksOpen /dev/sdb1 secrets
Enter passphrase for /dev/sdb1:
[donnie@localhost ~]$

When I look in the /dev/mapper directory, I see my new secrets device, listed as a
symbolic link to the dm-3 device:

[donnie@localhost mapper]$ pwd
/dev/mapper
[donnie@localhost mapper]$ ls -l se*
lrwxrwxrwx. 1 root root 7 Oct 28 17:39 secrets -> ../dm-3
[donnie@localhost mapper]$

I'll use dmsetup to look at the information about my new device:

[donnie@localhost mapper]$ sudo dmsetup info secrets
[sudo] password for donnie:
Name: secrets
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 0

Encrypting and SSH Hardening Chapter 4

[123]

Event number: 0
Major, minor: 253, 3
Number of targets: 1
UUID: CRYPT-LUKS1-6cbdce1748d441a18f8e793c0fa7c389-secrets

[donnie@localhost mapper]$

The next step is to format the partition in the usual manner. I could use any filesystem that's
supported by Red Hat and CentOS. But, since everything else on my system is already
formatted with XFS, that's what I'll go with here, as well:

[donnie@localhost ~]$ sudo mkfs.xfs /dev/mapper/secrets
meta-data=/dev/mapper/secrets isize=512 agcount=4, agsize=1374123
blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=0, sparse=0
data = bsize=4096 blocks=5496491, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=1
log =internal log bsize=4096 blocks=2683, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
[donnie@localhost ~]$

My final step is to create a mount point and to mount the encrypted partition:

[donnie@localhost ~]$ sudo mkdir /secrets
[sudo] password for donnie:
[donnie@localhost ~]$ sudo mount /dev/mapper/secrets /secrets
[donnie@localhost ~]$

The mount command will verify that the partition is mounted properly:

[donnie@localhost ~]$ mount | grep 'secrets'
/dev/mapper/secrets on /secrets type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
[donnie@localhost ~]$

Encrypting and SSH Hardening Chapter 4

[124]

Configuring the LUKS partition to mount
automatically
The only missing piece of the puzzle is to configure the system to automatically mount the
LUKS partition upon boot-up. To do that, I'll configure two different files:

/etc/crypttab

/etc/fstab

Had I not chosen to encrypt the disk when I installed the operating system, I wouldn't have
a crypttab file, and I would have to create it myself. But, since I did choose to encrypt the
drive, I already have one with information about that drive:

luks-2d7f02c7-864f-42ce-b362-50dd830d9772 UUID=2d7f02c7-864f-42ce-
b362-50dd830d9772 none

The first two fields describe the name and location of the encrypted partition. The third
field is for the encryption passphrase. If it's set to none, as it is here, then the passphrase
will have to be manually entered upon boot-up.

In the fstab file, we have the entry that actually mounts the partition:

/dev/mapper/centos-root / xfs defaults,x-
systemd.device-timeout=0 0 0
UUID=9f9fbf9c-d046-44fc-a73e-ca854d0ca718 /boot xfs
defaults 0 0
/dev/mapper/centos-swap swap swap defaults,x-
systemd.device-timeout=0 0 0

Well, there are actually two entries in this case, because I have two logical volumes, / and
swap, on top of my encrypted physical volume. The UUID line is the /boot partition, which
is the only part of the drive that isn't encrypted. Now, let's add our new encrypted partition
so that it will mount automatically, as well.

This is where it would be extremely helpful to remotely log into your
virtual machine from your desktop host machine. By using a GUI-type
Terminal, whether it be the Terminal from a Linux or MacOS machine, or
Cygwin from a Windows machine, you'll have the ability to perform copy-
and-paste operations, which you won't have if you work directly from the
virtual machine terminal. (Trust me, you don't want to be typing in those
long UUIDs.)

Encrypting and SSH Hardening Chapter 4

[125]

The first step is to obtain the UUID of the encrypted partition:

[donnie@localhost etc]$ sudo cryptsetup luksUUID /dev/sdb1
[sudo] password for donnie:
6cbdce17-48d4-41a1-8f8e-793c0fa7c389
[donnie@localhost etc]$

I'll copy that UUID, and paste it into the /etc/crypttab file. (Note that you'll paste it in
twice. The first time, you'll prepend it with luks-, and the second time you'll append it
with UUID=.):

luks-2d7f02c7-864f-42ce-b362-50dd830d9772 UUID=2d7f02c7-864f-42ce-
b362-50dd830d9772 none
luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389
UUID=6cbdce17-48d4-41a1-8f8e-793c0fa7c389 none

Finally, I'll edit the /etc/fstab file, adding the last line in the file for my new encrypted
partition. (Note that I again used luks-, followed by the UUID number.):

/dev/mapper/centos-root / xfs defaults,x-systemd.device-timeout=0 0 0
UUID=9f9fbf9c-d046-44fc-a73e-ca854d0ca718 /boot xfs defaults 0 0
/dev/mapper/centos-swap swap swap defaults,x-systemd.device-timeout=0 0 0
/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 /secrets xfs defaults
0 0

When editing the fstab file for adding normal, unencrypted partitions, I
always like to do a sudo mount -a to check the fstab file for typos. That
won't work with LUKS partitions though, because mount won't recognize
the partition until the system reads in the crypttab file, and that won't
happen until I reboot the machine. So, just be extra careful with editing
fstab when adding LUKS partitions.

Now for the moment of truth. I'll reboot the machine to see if everything works.

Okay, the machine has rebooted, and mount shows that my endeavors have been
successful:

[donnie@localhost ~]$ mount | grep 'secrets'
/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 on /secrets type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
[donnie@localhost ~]$

Encrypting and SSH Hardening Chapter 4

[126]

Encrypting directories with eCryptfs
Encrypting entire partitions is cool, but you might, at times, just need to encrypt an
individual directory. For that, we can use eCryptfs. We'll need to use our Ubuntu machines
for this, because Red Hat and CentOS no longer include eCryptfs in version 7 of their
products. (It was in Red Hat 6 and CentOS 6, but it's no longer even available for
installation in version 7.)

Home directory and disk encryption during
Ubuntu installation
When you install Ubuntu Server, you have two chances to implement encryption. You'll
first be given the chance to encrypt your home directory:

Encrypting and SSH Hardening Chapter 4

[127]

Later, on the Partition disks screen, you'll be given the chance to set up encrypted logical
volumes for whole disk encryption:

After choosing this option, you will then be asked to enter a passphrase:

Encrypting and SSH Hardening Chapter 4

[128]

The disk encryption uses LUKS, just the same as we saw on the CentOS machine. To prove
this, all we have to do is look for a populated crypttab file in the /etc directory:

donnie@ubuntu3:~$ cd /etc
donnie@ubuntu3:/etc$ cat crypttab
sda5_crypt UUID=56190c2b-e46b-40a9-af3c-4cb26c4fe998 none luks,discard
cryptswap1 UUID=60661042-0dbd-4c2a-9cf9-7f02a73864ae /dev/urandom
swap,offset=1024,cipher=aes-xts-plain64
donnie@ubuntu3:/etc$

Unlike Red Hat and CentOS, an Ubuntu machine will always have the
/etc/crypttab file, even if there are no LUKS partitions. Without LUKS
partitions, the file will be empty.

The home directory encryption uses eCryptfs, as evidenced by the .ecryptfs directory in
the /home directory:

donnie@ubuntu3:/home$ ls -la
total 16
drwxr-xr-x 4 root root 4096 Oct 29 15:06 .
drwxr-xr-x 23 root root 4096 Oct 29 15:23 ..
drwx------ 3 donnie donnie 4096 Oct 29 15:29 donnie
drwxr-xr-x 3 root root 4096 Oct 29 15:06 .ecryptfs
donnie@ubuntu3:/home$

So, what we have here is encryption on top of encryption, for double protection. Is that
really necessary? Probably not, but choosing to encrypt my home directory ensured that the
access permissions for it got set to the more restrictive 700 setting, rather than the default
755 setting. Be aware though, that any user accounts you create now will have wide open
permissions settings on their home directories. Unless, that is, we create user accounts with
the encryption option.

Encrypting a home directory for a new user
account
In Chapter 2, Securing User Accounts, I showed you how Ubuntu allows you to encrypt a
user's home directory as you create his or her user account. To review, let's see the
command for creating Goldie's account:

sudo adduser --encrypt-home goldie

Encrypting and SSH Hardening Chapter 4

[129]

When Goldie logs in, the first thing she'll want to do is to unwrap her mount passphrase,
write it down, and store it in a secure place. (She'll need this if she ever needs to recover a
corrupted directory.):

ecryptfs-unwrap-passphrase .ecryptfs/wrapped-passphrase

When you use adduser --encrypt-home, home directories for new users will
automatically be set to a restrictive permissions value that will keep everyone out except for
the owner of the directory. This happens even when you leave the adduser.conf file set
with its default settings.

Creating a private directory within an existing
home directory
Let's say that you have users who, for whatever strange reason, don't want to encrypt their
entire home directories, and want to keep the 755 permissions settings on their home
directories so that other people can access their files. But, they also want a private directory
that nobody but them can access.

Instead of encrypting an entire home directory, any user can create an encrypted private
directory within his or her own home directory. The first step, if it hasn't already been done,
is for someone with admin privileges to install the ecryptfs-utils package:

sudo apt install ecryptfs-utils

To create this private directory, we'll use the interactive ecryptfs-setup-private utility.
If you have admin privileges, you can do this for other users. Users without admin
privileges can do it for themselves. For our demo, let's say that Charlie, my big
Siamese/Gray tabby guy, needs his own encrypted private space. (Who knew that cats had
secrets, right?):

charlie@ubuntu2:~$ ecryptfs-setup-private
Enter your login passphrase [charlie]:
Enter your mount passphrase [leave blank to generate one]:
Enter your mount passphrase (again):

**
YOU SHOULD RECORD YOUR MOUNT PASSPHRASE AND STORE IT IN A SAFE LOCATION.
 ecryptfs-unwrap-passphrase ~/.ecryptfs/wrapped-passphrase
THIS WILL BE REQUIRED IF YOU NEED TO RECOVER YOUR DATA AT A LATER TIME.
**

Encrypting and SSH Hardening Chapter 4

[130]

Done configuring.

Testing mount/write/umount/read...
Inserted auth tok with sig [e339e1ebf3d58c36] into the user session keyring
Inserted auth tok with sig [7a40a176ac647bf0] into the user session keyring
Inserted auth tok with sig [e339e1ebf3d58c36] into the user session keyring
Inserted auth tok with sig [7a40a176ac647bf0] into the user session keyring
Testing succeeded.

Logout, and log back in to begin using your encrypted directory.

charlie@ubuntu2:~$

For the login passphrase, Charlie enters his normal password or passphrase for logging
into his user account. He could have let the system generate its own mount passphrase, but
he decided to enter his own. Since he did enter his own mount passphrase, he didn't need to
do the ecryptfs-unwrap-passphrase command to find out what the passphrase is. But,
just to show how that command works, let's say that Charlie entered TurkeyLips as his
mount passphrase:

charlie@ubuntu2:~$ ecryptfs-unwrap-passphrase .ecryptfs/wrapped-passphrase
Passphrase:
TurkeyLips
charlie@ubuntu2:~$

Yes, it's a horribly weak passphrase, but for our demo purposes, it works.

After Charlie logs out and logs back in, he can start using his new private directory. Also,
you can see that he has three new hidden directories within his home directory. All three of
these new directories are only accessible by Charlie, even though his top-level home
directory is still wide open to everybody:

charlie@ubuntu2:~$ ls -la
total 40
drwxr-xr-x 6 charlie charlie 4096 Oct 30 17:00 .
drwxr-xr-x 4 root root 4096 Oct 30 16:38 ..
-rw------- 1 charlie charlie 270 Oct 30 17:00 .bash_history
-rw-r--r-- 1 charlie charlie 220 Aug 31 2015 .bash_logout
-rw-r--r-- 1 charlie charlie 3771 Aug 31 2015 .bashrc
drwx------ 2 charlie charlie 4096 Oct 30 16:39 .cache
drwx------ 2 charlie charlie 4096 Oct 30 16:57 .ecryptfs
drwx------ 2 charlie charlie 4096 Oct 30 16:57 Private
drwx------ 2 charlie charlie 4096 Oct 30 16:57 .Private
-rw-r--r-- 1 charlie charlie 655 May 16 08:49 .profile
charlie@ubuntu2:~$

Encrypting and SSH Hardening Chapter 4

[131]

If you do a grep 'ecryptfs' * command in the /etc/pam.d directory, you'll see that
PAM is configured to automatically mount users' encrypted directories whenever they log
into the system:

donnie@ubuntu2:/etc/pam.d$ grep 'ecryptfs' *
common-auth:auth optional pam_ecryptfs.so unwrap
common-password:password optional pam_ecryptfs.so
common-session:session optional pam_ecryptfs.so unwrap
common-session-noninteractive:session optional pam_ecryptfs.so unwrap
donnie@ubuntu2:/etc/pam.d$

Encrypting other directories with eCryptfs
Encrypting other directories is a simple matter of mounting them with the ecryptfs
filesystem. For our example, let's create a secrets directory in the top level of our
filesystem, and encrypt it. Note how you list the directory name twice, because you also
need to specify a mount point. (Essentially, you're using the directory that you're mounting
as its own mount point.)

sudo mkdir /secrets
sudo mount -t ecryptfs /secrets /secrets

The output from this command is a bit lengthy, so let's break it down.

First, you'll enter your desired passphrase, and choose the encryption algorithm and the key
length:

donnie@ubuntu2:~$ sudo mount -t ecryptfs /secrets /secrets
[sudo] password for donnie:
Passphrase:
Select cipher:
 1) aes: blocksize = 16; min keysize = 16; max keysize = 32
 2) blowfish: blocksize = 8; min keysize = 16; max keysize = 56
 3) des3_ede: blocksize = 8; min keysize = 24; max keysize = 24
 4) twofish: blocksize = 16; min keysize = 16; max keysize = 32
 5) cast6: blocksize = 16; min keysize = 16; max keysize = 32
 6) cast5: blocksize = 8; min keysize = 5; max keysize = 16
Selection [aes]:
Select key bytes:
 1) 16
 2) 32
 3) 24
Selection [16]:

Encrypting and SSH Hardening Chapter 4

[132]

We'll go with the default of aes, and 16 bytes for the key.

I'm going to go with the default of no for plaintext passthrough, and with yes for
filename encryption:

Enable plaintext passthrough (y/n) [n]:
Enable filename encryption (y/n) [n]: y

I'll go with the default Filename Encryption Key, and verify the mounting options:

Filename Encryption Key (FNEK) Signature [e339e1ebf3d58c36]:
Attempting to mount with the following options:
 ecryptfs_unlink_sigs
 ecryptfs_fnek_sig=e339e1ebf3d58c36
 ecryptfs_key_bytes=16
 ecryptfs_cipher=aes
 ecryptfs_sig=e339e1ebf3d58c36

This warning only comes up when you mount the directory for the first time. For the final
two questions, I'll type yes in order to prevent that warning from coming up again:

WARNING: Based on the contents of [/root/.ecryptfs/sig-cache.txt],
it looks like you have never mounted with this key
before. This could mean that you have typed your
passphrase wrong.

Would you like to proceed with the mount (yes/no)? : yes
Would you like to append sig [e339e1ebf3d58c36] to
[/root/.ecryptfs/sig-cache.txt]
in order to avoid this warning in the future (yes/no)? : yes
Successfully appended new sig to user sig cache file
Mounted eCryptfs
donnie@ubuntu2:~$

Just for fun, I'll create a file within my new encrypted secrets directory, and then
unmount the directory:

cd /secrets
sudo vim secret_stuff.txt
cd
sudo umount /secrets
ls -l /secrets

donnie@ubuntu2:/secrets$ ls -l
total 12
-rw-r--r-- 1 root root 12288 Oct 31 18:24
ECRYPTFS_FNEK_ENCRYPTED.FXbXCS5fwxKABUQtEPlumGPaN-RGvqd13yybkpTr1eCVWVHdr-

Encrypting and SSH Hardening Chapter 4

[133]

lrmi1X9Vu-mLM-A-VeqIdN6KNZGcs-
donnie@ubuntu2:/secrets$

By choosing to encrypt filenames, nobody can even tell what files you have when the
directory is unmounted. When I'm ready to access my encrypted files again, I'll just
remount the directory the same as I did before.

Encrypting the swap partition with eCryptfs
If you're just encrypting individual directories with eCryptfs instead of using LUKS whole-
disk encryption, you'll need to encrypt your swap partition in order to prevent accidental
data leakage. Fixing that problem requires just one simple command:

donnie@ubuntu:~$ sudo ecryptfs-setup-swap
[sudo] password for donnie:

WARNING:
An encrypted swap is required to help ensure that encrypted files are not
leaked to disk in an unencrypted format.

HOWEVER, THE SWAP ENCRYPTION CONFIGURATION PRODUCED BY THIS PROGRAM WILL
BREAK HIBERNATE/RESUME ON THIS SYSTEM!

NOTE: Your suspend/resume capabilities will not be affected.

Do you want to proceed with encrypting your swap? [y/N]: y

INFO: Setting up swap: [/dev/sda5]
WARNING: Commented out your unencrypted swap from /etc/fstab
swapon: stat of /dev/mapper/cryptswap1 failed: No such file or directory
donnie@ubuntu:~$

Don't mind the warning about the missing /dev/mapper/cryptswap1 file. It will get
created the next time you reboot the machine.

Encrypting and SSH Hardening Chapter 4

[134]

Using VeraCrypt for cross-platform sharing
of encrypted containers
Once upon a time, there was TrueCrypt, a cross-platform program that allowed the sharing
of encrypted containers across different operating systems. But the project was always
shrouded in mystery, because its developers would never reveal their identities. And then,
right out of the blue, the developers released a cryptic message about how TrueCrypt was
no longer secure, and shut down the project.

VeraCrypt is the successor to TrueCrypt, and it allows the sharing of encrypted containers
across Linux, Windows, MacOS, and FreeBSD machines. Although LUKS and eCryptfs are
good, VeraCrypt does offer more flexibility in certain ways:

As mentioned, VeraCrypt offers cross-platform sharing, whereas LUKS and
eCryptfs don't
VeraCrypt allows you to encrypt either whole partitions or whole storage
devices, or to create virtual encrypted disks
Not only can you create encrypted volumes with VeraCrypt, you can also hide
them, giving you plausible deniability
VeraCrypt comes in both command-line and GUI variants, so it's appropriate for
either server use or for the casual desktop user
Like LUKS and eCryptfs, VeraCrypt is free open source software, which means
that it's free to use, and that the source code can be audited for either bugs or
backdoors

Getting and installing VeraCrypt
The Linux version of VeraCrypt comes as a set of universal installer scripts that should
work on any Linux distribution. Once you extract the .tar.bz2 archive file, you'll see two
scripts for GUI installation, and two for console-mode installation. One of each of those is
for 32-bit Linux, and one of each is for 64-bit Linux:

donnie@linux-0ro8:~/Downloads> ls -l vera*
-r-xr-xr-x 1 donnie users 2976573 Jul 9 05:10 veracrypt-1.21-setup-
console-x64
-r-xr-xr-x 1 donnie users 2967950 Jul 9 05:14 veracrypt-1.21-setup-
console-x86
-r-xr-xr-x 1 donnie users 4383555 Jul 9 05:08 veracrypt-1.21-setup-gui-
x64
-r-xr-xr-x 1 donnie users 4243305 Jul 9 05:13 veracrypt-1.21-setup-gui-

Encrypting and SSH Hardening Chapter 4

[135]

x86
-rw-r--r-- 1 donnie users 14614830 Oct 31 23:49 veracrypt-1.21-
setup.tar.bz2
donnie@linux-0ro8:~/Downloads>

For the server demo, I used scp to transfer the 64-bit console-mode installer to one of my
Ubuntu virtual machines. The executable permission is already set, so all you have to do to
install is:

donnie@ubuntu:~$./veracrypt-1.21-setup-console-x64

You'll need sudo privileges, but the installer will prompt you for your sudo password. After
reading and agreeing to a rather lengthy license agreement, the installation only takes a few
seconds.

Creating and mounting a VeraCrypt volume in
console mode
I haven't been able to find any documentation for the console-mode variant of VeraCrypt,
but you can see a list of the available commands just by typing veracrypt. For this demo,
I'm creating a 2 GB encrypted volume in my own home directory. But you can just as easily
do it elsewhere, such as on a USB memory stick.

To create a new encrypted volume, type:

veracrypt -c

This will take you into an easy-to-use, interactive utility. For the most part, you'll be fine
just accepting the default options:

donnie@ubuntu:~$ veracrypt -c
Volume type:
 1) Normal
 2) Hidden
Select [1]:

Enter volume path: /home/donnie/good_stuff

Enter volume size (sizeK/size[M]/sizeG): 2G

Encryption Algorithm:
 1) AES
 2) Serpent
 3) Twofish

Encrypting and SSH Hardening Chapter 4

[136]

 4) Camellia
 5) Kuznyechik
 6) AES(Twofish)
 7) AES(Twofish(Serpent))
 8) Serpent(AES)
 9) Serpent(Twofish(AES))
 10) Twofish(Serpent)
Select [1]:

Hash algorithm:
 1) SHA-512
 2) Whirlpool
 3) SHA-256
 4) Streebog
Select [1]:
. . .
. . .

For the filesystem, the default option of FAT will give you the best cross-platform
compatibility between Linux, MacOS, and Windows:

Filesystem:
 1) None
 2) FAT
 3) Linux Ext2
 4) Linux Ext3
 5) Linux Ext4
 6) NTFS
 7) exFAT
Select [2]:

You'll then select your password and a PIM, which stands for Personal Iterations Multiplier.
(For the PIM, I entered 8891. High PIM values give better security, but they will also cause
the volume to take longer to mount.) Then, type at least 320 random characters in order to
generate the encryption key. (This is where it would be handy to have my cats walking
across my keyboard.):

Enter password:
Re-enter password:

Enter PIM: 8891

Enter keyfile path [none]:

Please type at least 320 randomly chosen characters and then press Enter:

Encrypting and SSH Hardening Chapter 4

[137]

After you hit Enter, be patient, because the final generation of your encrypted volume will
take a few moments. Here, you see that my 2 GB good_stuff container has been
successfully created:

donnie@ubuntu:~$ ls -l good_stuff
-rw------- 1 donnie donnie 2147483648 Nov 1 17:02 good_stuff
donnie@ubuntu:~$

To use this container, I have to mount it. I'll begin by creating a mount point directory; the
same as I would for mounting normal partitions:

donnie@ubuntu:~$ mkdir good_stuff_dir
donnie@ubuntu:~$

Use the veracrypt utility to mount your container on this mount point:

donnie@ubuntu:~$ veracrypt good_stuff good_stuff_dir
Enter password for /home/donnie/good_stuff:
Enter PIM for /home/donnie/good_stuff: 8891
Enter keyfile [none]:
Protect hidden volume (if any)? (y=Yes/n=No) [No]:
Enter your user password or administrator password:
donnie@ubuntu:~$

To see what VeraCrypt volumes you have mounted, use veracrypt -l:

donnie@ubuntu:~$ veracrypt -l
1: /home/donnie/secret_stuff /dev/mapper/veracrypt1
/home/donnie/secret_stuff_dir
2: /home/donnie/good_stuff /dev/mapper/veracrypt2
/home/donnie/good_stuff_dir
donnie@ubuntu:~$

And, that's all there is to it.

Encrypting and SSH Hardening Chapter 4

[138]

Using VeraCrypt in GUI mode
Desktop users of any of the supported operating systems can install the GUI variant of
VeraCrypt. Be aware though, that you can't install both the console-mode variant and the
GUI variant on the same machine, because one will overwrite the other. Here, you see the
GUI version running on my CentOS 7 virtual machine:

Since the main focus of this book is sever security, I won't go into the details of the GUI
version here. But, it's fairly self-explanatory, and you can view the full VeraCrypt
documentation on their website.

Encrypting and SSH Hardening Chapter 4

[139]

You can get VeraCrypt from here: https:/ / www.veracrypt. fr/ en/ Home.
html

For the rest of this chapter, we'll turn our attention to the subject of protecting data in
transit, by locking down Secure Shell.

Ensuring that SSH protocol 1 is disabled
By this stage in your Linux career, you should already know how to use Secure Shell, or
SSH, to do remote logins and remote file transfers. What you may not know is that a default
configuration of SSH is actually quite insecure.

SSH protocol version 1, the original SSH protocol, is severely flawed, and should never be
used. It's still in most Linux distributions, but fortunately, it's always disabled by default.
But, if you ever open your /etc/ssh/sshd_config file and see this:

Protocol 1

Or this:

Protocol 1, 2

Then you have a problem.

The Ubuntu main page for the sshd_config file says that protocol version 1 is still
available for use with legacy devices. But, if you're still running devices that are that
old, you need to start seriously thinking about doing some upgrades.

As Linux distributions get updated, you'll see SSH protocol 1 gradually being completely
removed, as has happened with Red Hat and CentOS 7.4.

https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html

Encrypting and SSH Hardening Chapter 4

[140]

Creating and managing keys for password-
less logins
The Secure Shell Suite, or SSH, is a great set of tools that provides secure, encrypted
communications with remote servers. You can use the SSH component to remotely log into
the command-line of a remote machine, and you can use either scp or sftp to securely
transfer files. The default way to use any of these SSH components is to use the username
and password of a person's normal Linux user account. So, logging into a remote machine
from the terminal of my OpenSUSE workstation would look something like:

donnie@linux-0ro8:~> ssh donnie@192.168.0.8
donnie@192.168.0.8's password:

While it's true that the username and password go across the network in an encrypted
format, making it hard for malicious actors to intercept, it's still not the most secure way of
doing business. The problem is that attackers have access to automated tools that can
perform brute-force password attacks against an SSH server. Botnets, such as the Hail Mary
Cloud, perform continuous scans across the internet to find internet-facing servers with
SSH enabled. If a botnet finds that the servers allow SSH access via username and
password, it will then launch a brute-force password attack. Sadly, such attacks have been
successful quite a few times, especially when the server operators allow the root user to log
in via SSH.

This older article gives more details about the Hail Mary Cloud
botnet: http:/ / futurismic. com/ 2009/ 11/16/ the- hail- mary- cloud-
slow- but- steady- brute- force- password- guessing- botnet/

In the next section, we'll look at two ways to help prevent these types of attacks:

Enable SSH logins through an exchange of public keys
Disable the root user login through SSH

http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/
http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/

Encrypting and SSH Hardening Chapter 4

[141]

Creating a user's SSH key set
Each user has the ability to create his or her own set of private and public keys. It doesn't
matter whether the user's client machine is running Linux, MacOS, or Cygwin on Windows.
In all three cases, the procedure is exactly the same. To demo, I'll create keys on my
OpenSUSE workstation and transfer the public key to one of my virtual machines. It doesn't
matter which virtual machine I use, but since I haven't shown much love to the CentOS
machine lately, I'll use it.

I'll begin by creating the keys on my OpenSUSE workstation:

donnie@linux-0ro8:~> ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/donnie/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/donnie/.ssh/id_rsa.
Your public key has been saved in /home/donnie/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:oqDpCvAptbE8srN6Z4FNXxgkhPhjh1sEKazfMpxhVI8 donnie@linux-0ro8
The key's randomart image is:
+---[RSA 2048]----+
|...*+.. |
|o.+ .+. |
|.+ oE .o |
|. B + . . |
|.=+% ...S |
|.*O*+... |
|* Bo.. |
|++..o |
|B= o |
+----[SHA256]-----+
donnie@linux-0ro8:~>

There are several different types of keys that you can create, but the default 2048-bit RSA
keys are considered as plenty strong enough for the foreseeable future. The private and
public SSH keys work the same as we saw with GPG. You'll keep your private keys to
yourself, but you can share the public key with the world, if you so desire. In this case
though, I'm only going to share my public key with just one server.

Encrypting and SSH Hardening Chapter 4

[142]

When prompted for the location and name of the keys, I'll just hit Enter to accept the
defaults. You could just leave the private key with a blank passphrase, but that's not a
recommended practice.

Note that if you choose an alternative name for your key files, you'll need
to type in the entire path to make things work properly. For example, in
my case, I would specify the path for donnie_rsa keys as:

/home/donnie/.ssh/donnie_rsa

In the .ssh directory in my home directory, I can see the keys that I created:

donnie@linux-0ro8:~/.ssh> ls -l
total 12
-rw------- 1 donnie users 1766 Nov 2 17:52 id_rsa
-rw-r--r-- 1 donnie users 399 Nov 2 17:52 id_rsa.pub
-rw-r--r-- 1 donnie users 2612 Oct 31 18:40 known_hosts
donnie@linux-0ro8:~/.ssh>

The id_rsa key is the private key, with read and write permissions only for me. The
id_rsa.pub public key has to be world-readable.

Transferring the public key to the remote server
Transferring my public key to a remote server allows the server to readily identify both me
and my client machine. Before I can transfer the public key to the remote server, I need to
add the private key to my session keyring. This requires two commands. (One command is
to invoke the ssh-agent, and the other command actually adds the private key to the
keyring.):

donnie@linux-0ro8:~> exec /usr/bin/ssh-agent $SHELL
donnie@linux-0ro8:~> ssh-add
Enter passphrase for /home/donnie/.ssh/id_rsa:
Identity added: /home/donnie/.ssh/id_rsa (/home/donnie/.ssh/id_rsa)
donnie@linux-0ro8:~>

Finally, I can transfer my public key to my CentOS server, which is at address
192.168.0.101:

donnie@linux-0ro8:~> ssh-copy-id donnie@192.168.0.101
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to
filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are
prompted now it is to install the new keys

Encrypting and SSH Hardening Chapter 4

[143]

donnie@192.168.0.101's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'donnie@192.168.0.101'"
and check to make sure that only the key(s) you wanted were added.

donnie@linux-0ro8:~>

The next time that I log in, I'll use the key exchange, and I won't have to enter a password:

donnie@linux-0ro8:~> ssh donnie@192.168.0.101
Last login: Wed Nov 1 20:11:20 2017
[donnie@localhost ~]$

So, now you're wondering, "How is that secure if I can log in without entering my password?"
The answer is that once you close the client machine's terminal window that you used for
logging in, the private key will be removed from your session keyring. When you open a
new terminal and try to log in to the remote server, you'll see this:

donnie@linux-0ro8:~> ssh donnie@192.168.0.101
Enter passphrase for key '/home/donnie/.ssh/id_rsa':

Now, every time I log into this server, I'll need to enter the passphrase for my private key.
(That is, unless I add it back to the session keyring with the two commands that I showed
you in the preceding section.)

Disabling root user login
A few years ago, there was a somewhat celebrated case where malicious actors had
managed to plant malware on quite a few Linux servers somewhere in southeast Asia.
There were three reasons that the bad guys found this so easy to do:

The internet-facing servers involved were set up to use username/password
authentication for SSH
The root user was allowed to log in through SSH
User passwords, including the root user's password, were incredibly weak

All this meant that it was easy for Hail Mary to brute-force its way in.

Encrypting and SSH Hardening Chapter 4

[144]

Different distributions have different default settings for root user login. In the
/etc/ssh/sshd_config file of your CentOS machine, you'll see this line:

#PermitRootLogin yes

Unlike what you have in most configuration files, the commented-out lines in
sshd_config define the default settings for the Secure Shell daemon. So, this line indicates
that the root user is indeed allowed to log in through SSH. To change that, I'll remove the
comment symbol and change the setting to no:

PermitRootLogin no

To make the new setting take effect, I'll restart the SSH daemon, which is named sshd on
CentOS, and is named ssh on Ubuntu:

sudo systemctl restart sshd

On the Ubuntu machine, the default setting looks a bit different:

PermitRootLogin prohibit-password

This means that the root user is allowed to log in, but only via a public key exchange. That's
probably secure enough, if you really need to allow the root user to log in. But in most
cases, you'll want to force admin users to log in with their normal user accounts, and to use
sudo for their admin needs. So, in most cases, you can still change this setting to no.

Be aware that if you deploy an instance of Ubuntu Server on a cloud
service, such as Azure, Rackspace, or Vultr, the service owners will have
you log into the virtual machine with the root user account. The first thing
you'll want to do is to create your own normal user account, log back in
with that account, disable the root user account, and disable the root user
login in sshd_config.

Disabling username/password logins
This is something that you'll only want to do after you've set up the key exchange with your
clients. Otherwise, clients will be locked out of doing remote logins.

For both Ubuntu and CentOS machines, look for this line in the sshd_config file:

#PasswordAuthentication yes

Encrypting and SSH Hardening Chapter 4

[145]

Remove the comment symbol, change the parameter value to no, and restart the SSH
daemon. The line should now look like this:

PasswordAuthentication no

Now, when the botnets scan your system, they'll see that doing a brute-force password
attack would be useless. They'll then just go away and leave you alone.

Setting up a chroot environment for SFTP
users
Secure File Transfer Protocol (SFTP) is a great tool for performing secure file transfers.
There is a command-line client, but users will most likely use a graphical client, such as
Filezilla. A common use-case for SFTP is to allow website owners to upload web content
files to the proper content directories on a web server. With a default SSH setup, anyone
who has a user account on a Linux machine can log in through either SSH or SFTP, and can
navigate through the server's entire filesystem. What we really want for SFTP users is to
prevent them from logging into a command-prompt via SSH, and to confine them to their
own designated directories.

Creating a group and configuring the
sshd_config file
With the exception of the slight difference in user-creation commands, this procedure works
the same for either CentOS or Ubuntu. So, you can use either one of your virtual machines
to follow along. We'll begin by creating an sftpusers group.

sudo groupadd sftpusers

Create the user accounts, and add them to the sftpusers group. We'll do both operations
in one step. On your CentOS machine, the command for creating Max's account would be:

sudo useradd -G sftpusers max

On your Ubuntu machine, it would be:

sudo useradd -m -d /home/max -s /bin/bash -G sftpusers max

Encrypting and SSH Hardening Chapter 4

[146]

Open the /etc/ssh/sshd_config file in your favorite text editor. Find the line that says:

Subsystem sftp /usr/lib/openssh/sftp-server

Change it to:

Subsystem sftp internal-sftp

This setting allows you to disable normal SSH login for certain users.

At the bottom of the sshd_config file, add a Match Group stanza:

Match Group sftpusers
 ChrootDirectory /home
 AllowTCPForwarding no
 AllowAgentForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

An important consideration here is that the ChrootDirectory has to be owned by the root
user, and it can't be writable by anyone other than the root user. When Max logs in, he'll be
in the /home directory, and will then have to cd into his own directory. This also means that
you want for all users' home directories to have the restrictive 700 permissions settings, in
order to keep everyone out of everyone else's stuff.

Save the file and restart the SSH daemon. Then, try to log on as Max through normal SSH,
just to see what happens:

donnie@linux-0ro8:~> ssh max@192.168.0.8
max@192.168.0.8's password:
This service allows sftp connections only.
Connection to 192.168.0.8 closed.
donnie@linux-0ro8:~>

Okay, so he can't do that. Let's now have him try to log in through SFTP, and verify that he
is in the /home directory:

donnie@linux-0ro8:~> sftp max@192.168.0.8
max@192.168.0.8's password:
Connected to 192.168.0.8.
drwx------ 7 1000 1000 4096 Nov 4 22:53 donnie
drwx------ 5 1001 1001 4096 Oct 27 23:34 frank
drwx------ 3 1003 1004 4096 Nov 4 22:43 katelyn
drwx------ 2 1002 1003 4096 Nov 4 22:37 max
sftp>

Encrypting and SSH Hardening Chapter 4

[147]

Now, let's see him try to cd out of the /home directory:

sftp> cd /etc
Couldn't stat remote file: No such file or directory
sftp>

So, our chroot jail does indeed work.

Hands-on lab – setting up a chroot directory for
sftpusers group
For this lab, you can use either the CentOS virtual machine or the Ubuntu virtual machine.
You'll add a group, then configure the sshd_config file to allow group members to only
be able to log in via SFTP, and to confine them to their own directories. For the simulated
client machine, you can use the terminal of your MacOS or Linux desktop machine, or
Cygwin from your Windows machine:

Create the sftpusers group:1.

 sudo groupadd sftpusers

Create a user account for Max, and add him to the sftpusers group. On2.
CentOS, do:

 sudo useradd -G sftpusers max

On Ubuntu, do:

 sudo useradd -m -d /home/max -s /bin/bash -G sftpusers max

For Ubuntu, ensure that the users' home directories are all set with read, write,3.
and execute permissions for only the directory's user. If that's not the case, do:

 sudo chmod 700 /home/*

Open the /etc/ssh/sshd_config file in your preferred text editor. Find the line4.
that says:

 Subsystem sftp /usr/lib/openssh/sftp-server

Change it to:

 Subsystem sftp internal-sftp

Encrypting and SSH Hardening Chapter 4

[148]

At the end of the sshd_config file, add the following stanza:5.

 Match Group sftpusers
 ChrootDirectory /home
 AllowTCPForwarding no
 AllowAgentForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

Restart the SSH daemon. On CentOS, do:6.

 sudo systemctl sshd restart

On Ubuntu, do:

 sudo systemctl ssh restart

Have Max try to log in through normal SSH, to see what happens:7.

 ssh max@IP_Address_of_your_vm

Now, have Max log in through SFTP. Once he's in, have him try to cd out of the8.
/home directory:

 sftp max@IP_Address_of_your_vm

End of Lab.9.

Summary
In this chapter, we've seen how to work with various encryption technologies that can help
us safeguard our secrets. We started with GNU Privacy Guard for encrypting individual
files. We then moved on to the disk, partition, and directory encryption utilities. LUKS and
eCryptfs are specific to Linux, but we also looked at VeraCrypt, which can be used on any
of the major operating systems.

In the next chapter, we'll take an in-depth look at the subject of discretionary access control.
I'll see you there.

5
Mastering Discretionary Access

Control
Discretionary Access Control, DAC, really just means that each user has the ability to
control who can get into his or her stuff. If I wanted to open my home directory so that
every other user on the system can get into it, I could do that. Having done so, I could then
control who can access each specific file. In the next chapter, we'll use our DAC skills to
manage shared directories, where members of a group might need different levels of access
to the files within.

By this point in your Linux career, you likely know the basics of controlling access by
setting file and directory permissions. In this chapter, we'll do a review of the basics, and
then we'll look at some more advanced concepts. Topics that we'll cover include:

Using chown to change the ownership of files and directories
Using chmod to set permissions on files and directories
What SUID and SGID settings can do for us on regular files
The security implications of having the SUID and SGID permissions set on files
that don't need them
How to use extended file attributes to protect sensitive files

Mastering Discretionary Access Control Chapter 5

[150]

Using chown to change ownership of files
and directories
Controlling access to files and directories really just boils down to ensuring that the proper
users own files and directories, and that each file and directory has permissions set in such
a way that only authorized users can access them. The chown utility covers the first part of
this equation.

One unique thing about chown is that you must have sudo privileges to use it, even if
you're working with your own files in your own directory. You can use it to change the user
of a file or directory, the group that's associated with a file or directory, or both at the same
time.

First, let's say that you own the perm_demo.txt file and you want to change both the user
and group association to that of another user. In this case, I'll change the file ownership
from me to Maggie:

[donnie@localhost ~]$ ls -l perm_demo.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:02 perm_demo.txt

[donnie@localhost ~]$ sudo chown maggie:maggie perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt
-rw-rw-r--. 1 maggie maggie 0 Nov 5 20:02 perm_demo.txt
[donnie@localhost ~]$

The first maggie in maggie:maggie is the user to whom you want to grant ownership. The
second maggie, after the colon, represents the group with which you want the file to be
associated. Since I was changing both the user and group to maggie, I could have left off
the second maggie, with the first maggie followed by a colon, and I would have achieved
the same result:

sudo chown maggie: perm_demo.txt

To just change the group association without changing the user, just list the group name,
preceded by a colon:

[donnie@localhost ~]$ sudo chown :accounting perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt
-rw-rw-r--. 1 maggie accounting 0 Nov 5 20:02 perm_demo.txt
[donnie@localhost ~]$

Mastering Discretionary Access Control Chapter 5

[151]

Finally, to just change the user without changing the group, list the username without the
trailing colon:

[donnie@localhost ~]$ sudo chown donnie perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:02 perm_demo.txt
[donnie@localhost ~]$

These commands work the same way on a directory as they do on a file. But, if you want to
also change the ownership and/or the group association of the contents of a directory, while
also making the change on the directory itself, use the -R option, which stands for recursive.
In this case, I just want to change the group for the perm_demo_dir directory to
accounting:

[donnie@localhost ~]$ ls -ld perm_demo_dir
drwxrwxr-x. 2 donnie donnie 74 Nov 5 20:17 perm_demo_dir

[donnie@localhost ~]$ ls -l perm_demo_dir
total 0
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file1.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file2.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file3.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file4.txt

[donnie@localhost ~]$ sudo chown -R :accounting perm_demo_dir

[donnie@localhost ~]$ ls -ld perm_demo_dir
drwxrwxr-x. 2 donnie accounting 74 Nov 5 20:17 perm_demo_dir

[donnie@localhost ~]$ ls -l perm_demo_dir
total 0
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file1.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file2.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file3.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file4.txt
[donnie@localhost ~]$

And, that's all there is to chown.

Mastering Discretionary Access Control Chapter 5

[152]

Using chmod to set permissions values on
files and directories
On Unix and Linux systems, you would use the chmod utility to set permissions values on
files and directories. You can set permissions for the user of the file or directory, the group
that's associated with the file or directory, and others. The three basic permissions are:

r: This indicates a read permission.
w: This is for a write permission.
x: This is the executable permission. You can apply it to any type of program file,
or to directories. If you apply an executable permission to a directory, authorized
people will be able to cd into it.

Do an ls -l on a file, and you'll see something like this:

-rw-rw-r--. 1 donnie donnie 804692 Oct 28 18:44 yum_list.txt

The first character of this line indicates the type of file. In this case, we see a dash, which
indicates a regular file. (A regular file is pretty much every type of file that a normal user
would be able to access in his or her daily routine.) The next three characters, rw-, indicate
that the file has read and write permissions for the user, which is the person who owns the
file. We then see rw- permissions for the group, and r-- permissions for others. A program
file would also have the executable permissions set:

-rwxr-xr-x. 1 root root 62288 Nov 20 2015 xargs

Here, we see that the xargs program file has executable permissions set for everybody.

There are two ways that you can use chmod to change permissions settings:

The symbolic method
The numerical method

Mastering Discretionary Access Control Chapter 5

[153]

Setting permissions with the symbolic method
Whenever you create a file as a normal user, by default, it will have read and write
permissions for the user and the group, and read permissions for others. If you create a
program file, you have to add the executable permissions yourself. With the symbolic
method, you could use one of the following commands to do so:

chmod u+x donnie_script.sh
chmod g+x donnie_script.sh
chmod o+x donnie_script.sh
chmod u+x,g+x donnie_script.sh
chmod a+x donnie_script.sh

The first three commands add the executable permission for the user, the group, and others.
The fourth command adds executable permissions for both the user and the group, and the
last command adds executable permissions for everybody (a for all). You could also remove
the executable permissions by replacing the + with a -. And, you can also add or remove
the read or write permissions, as appropriate.

While this method can be handy at times, it also has a bit of a flaw. That is, it can only add
permissions to what's already there, or remove permissions from what's already there. If
you need to ensure that all of the permissions for a particular file get set to a certain value,
the symbolic method can get a bit unwieldy. And for shell scripting, forget about it. In a
shell script, you'd need to add all kinds of extra code just to determine which permissions
are already set. The numerical method can vastly simplify things for us.

Setting permissions with the numerical method
With the numerical method, you'll use an octal value to represent the permissions settings
on a file or directory. To the r, w, and x permissions, you assign the numerical values 4, 2,
and 1, respectively. Do this for the user, group, and others positions, and add them all up to
get the permissions value for the file or directory:

User Group Others

rwx rwx rwx

421 421 421

7 7 7

Mastering Discretionary Access Control Chapter 5

[154]

So, if you have all the permissions set for everybody, the file or directory will have a value
of 777. If I were to create a shell script file, by default, it would have the standard 664
permissions, meaning read and write for the user and group, and read-only for others:

-rw-rw-r--. 1 donnie donnie 0 Nov 6 19:18 donnie_script.sh

If you create a file with root privileges, either with sudo or from the root
user command prompt, you'll see that the default permissions setting is
the more restrictive 644.

Let's say that I want to make this script executable, but I want to be the only person in the
whole world who can do anything with it. I could do:

[donnie@localhost ~]$ chmod 700 donnie_script.sh

[donnie@localhost ~]$ ls -l donnie_script.sh
-rwx------. 1 donnie donnie 0 Nov 6 19:18 donnie_script.sh
[donnie@localhost ~]$

With this one simple command, I've removed all permissions from the group and from
others, and set the executable permission for myself. This is the sort of thing that makes the
numerical method so handy for writing shell scripts.

Once you've been working with the numerical method for a while, looking at a file and
figuring out its numerical permissions value will become second nature. In the meantime,
you can use stat with the -c %a option to show you the values. For example:

[donnie@localhost ~]$ stat -c %a yum_list.txt
664
[donnie@localhost ~]$

[donnie@localhost ~]$ stat -c %a donnie_script.sh
700
[donnie@localhost ~]$

[donnie@localhost ~]$ stat -c %a /etc/fstab
644
[donnie@localhost ~]$

Mastering Discretionary Access Control Chapter 5

[155]

Using SUID and SGID on regular files
When a regular file has its SUID permission set, whoever accesses the file will have the
same privileges as the user of the file. When the SGID permission is set on a regular file,
whoever accesses the file will have the same privileges as the group that's associated with
the file. This is especially useful on program files.

To demo this, let's say that Maggie, a regular, unprivileged user, wants to change her own
password. Since it's her own password, she would just use the one-word command,
passwd, without using sudo:

[maggie@localhost ~]$ passwd
Changing password for user maggie.
Changing password for maggie.
(current) UNIX password:
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[maggie@localhost ~]$

To change a password, a person has to make changes to the /etc/shadow file. On my
CentOS machine, the shadow file permissions look like this:

[donnie@localhost etc]$ ls -l shadow
----------. 1 root root 840 Nov 6 19:37 shadow
[donnie@localhost etc]$

On the Ubuntu machine, they look like this:

donnie@ubuntu:/etc$ ls -l shadow
-rw-r----- 1 root shadow 1316 Nov 4 18:38 shadow
donnie@ubuntu:/etc$

Either way, the permissions settings don't allow Maggie to modify the shadow file. Yet, by
changing her password, she is able to modify the shadow file. So, what's going on? To
answer this, let's go into the /usr/bin directory and look at the permissions settings for the
passwd executable file:

[donnie@localhost etc]$ cd /usr/bin

[donnie@localhost bin]$ ls -l passwd
-rwsr-xr-x. 1 root root 27832 Jun 10 2014 passwd
[donnie@localhost bin]$

Mastering Discretionary Access Control Chapter 5

[156]

For the user permissions, you see rws instead of rwx. The s indicates that this file has the
SUID permission set. Since the file belongs to the root user, anyone who accesses this file
has the same privileges as the root user. The fact that we see a lower-case s means that the
file also has the executable permission set for the root user. Since the root user is allowed to
modify the shadow file, whoever uses this passwd utility to change his or her own
password can also modify the shadow file.

A file with the SGID permission set has an s in the executable position for the group:

[donnie@localhost bin]$ ls -l write
-rwxr-sr-x. 1 root tty 19536 Aug 4 07:18 write
[donnie@localhost bin]$

The write utility, which is associated with the tty group, allows users to send messages to
other users via their command-line consoles. Having tty group privileges allows users to
do this.

The security implications of the SUID and
SGID permissions
As useful as it may be to have SUID or SGID permissions on your executable files, we
should consider it as just a necessary evil. While having SUID or SGID set on certain
operating system files is essential to the proper operation of your Linux system, it becomes
a security risk when users set SUID or SGID on other files. The problem is that, if intruders
find an executable file that belongs to the root user and has the SUID bit set, they can use
that to exploit the system. Before they leave, they might leave behind their own root-owned
file with SUID set, which will allow them to easily gain entry into the system the next time.
If the intruder's SUID file isn't found, the intruder will still have access, even if the original
problem is fixed.

The numerical value for SUID is 4000, and for SGID it's 2000. To set SUID on a file, you'd
just add 4000 to whichever permissions value that you would set otherwise. For example, if
you have a file with a permissions value of 755, you'd set SUID by changing the
permissions value to 4755. (This would give you read/write/execute for the user,
read/execute for the group, and read/execute for others, with the SUID bit added on.)

Mastering Discretionary Access Control Chapter 5

[157]

Finding spurious SUID or SGID files
One quick security trick is to run a find command to take inventory of the SUID and SGID
files on your system. You could save the output to a text file, so that you can verify whether
anything got added the next time you run the command. Your command would look
something like this:

sudo find / -type f \(-perm -4000 -o -perm 2000 \) > suid_sgid_files.txt

Here's the breakdown:

/: We're searching through the entire filesystem. Since some directories are only
accessible to someone with root privileges, we need to use sudo.
-type f: This means that we're searching for regular files, which would include
executable program files and shell scripts.
-perm 4000: We're searching for files with the 4000, or SUID, permission bit set.
-o: The or operator.
-perm 2000: We're searching for files with the 2000, or SGID, permission bit set.
>: And, of course, we're redirecting the output into the suid_sgid_files.txt
text file with the > operator.

Note that the two -perm items need to be combined into a term that's enclosed in a pair of
parentheses. In order to prevent the Bash shell from interpreting the parenthesis characters
incorrectly, we need to escape each one with a backslash. We also need to place a blank
space between the first parenthesis character and the first -perm, and another between the
2000 and the last backslash. Also, the and operator between the -type f and the -perm
term is understood to be there, even without inserting -a. The text file that you create
should look something like this:

/usr/bin/chfn
/usr/bin/chsh
/usr/bin/chage
/usr/bin/gpasswd
/usr/bin/newgrp
/usr/bin/mount
/usr/bin/su
/usr/bin/umount
/usr/bin/sudo
/usr/bin/pkexec
/usr/bin/crontab
/usr/bin/passwd
/usr/sbin/pam_timestamp_check
/usr/sbin/unix_chkpwd

Mastering Discretionary Access Control Chapter 5

[158]

/usr/sbin/usernetctl
/usr/lib/polkit-1/polkit-agent-helper-1
/usr/lib64/dbus-1/dbus-daemon-launch-helper

Optionally, if you want to see details about which files are SUID and which are SGID, you
can add in the -ls option:

sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls >
suid_sgid_files.txt

Now, let's say that Maggie, for whatever reason, decides to set the SUID bit on a shell script
file in her home directory:

[maggie@localhost ~]$ chmod 4755 bad_script.sh

[maggie@localhost ~]$ ls -l
total 0
-rwsr-xr-x. 1 maggie maggie 0 Nov 7 13:06 bad_script.sh
[maggie@localhost ~]$

Run the find command again, saving the output to a different text file. Then, do a diff
operation on the two files to see what changed:

[donnie@localhost ~]$ diff suid_sgid_files.txt suid_sgid_files2.txt
17a18
> /home/maggie/bad_script.sh
[donnie@localhost ~]$

The only difference is the addition of Maggie's shell script file.

Hands-on lab – searching for SUID and SGID files
You can do this lab on either of your virtual machines. You'll save the output of the find
command to a text file:

Search through the entire filesystem for all files that have either SUID or SGID1.
set, saving the output to a text file:

 sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls >
 suid_sgid_files.txt

Mastering Discretionary Access Control Chapter 5

[159]

Log into any other user account that you have on the system, and create a2.
dummy shell script file. Then, set the SUID permission on that file, and log back
out into your own user account:

 su - desired_user_account
 touch some_shell_script.sh
 chmod 4755 some_shell_script.sh
 ls -l some_shell_script.sh
 exit

Run the find command again, saving the output to a different text file:3.

 sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls >
 suid_sgid_files_2.txt

View the difference between the two files:4.

 diff suid_sgid_files.txt suid_sgid_files_2.txt

End of lab.5.

Preventing SUID and SGID usage on a partition
As we said before, you don't want users to assign SUID and SGID to files that they create,
because of the security risk that it presents. You can prevent SUID and SGID usage on a
partition by mounting it with the nosuid option. So, the /etc/fstab file entry for the
luks partition that I created in the previous chapter would look like this:

/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 /secrets xfs
nosuid 0 0

Different Linux distributions have different ways of setting up default partition schemes
during an operating system installation. Mostly, the default way of doing business is to
have all directories, except for the /boot directory, under the / partition. If you were to set
up a custom partition scheme instead, you could have the /home directory on its own
partition, where you could set the nosuid option. Keep in mind, you don't want to set
nosuid for the / partition, or else you'll have an operating system that doesn't function
properly.

Mastering Discretionary Access Control Chapter 5

[160]

Using extended file attributes to protect
sensitive files
Extended file attributes are another tool for helping you to protect sensitive files. They
won't keep intruders from accessing your files, but they can help you prevent sensitive files
from being altered or deleted. There are quite a few extended attributes, but we only need
to look at the ones that deal with file security.

First, let's do an lsattr command to see which extended attributes you already have set.
On the CentOS machine, your output would look something like this:

[donnie@localhost ~]$ lsattr
---------------- ./yum_list.txt
---------------- ./perm_demo.txt
---------------- ./perm_demo_dir
---------------- ./donnie_script.sh
---------------- ./suid_sgid_files.txt
---------------- ./suid_sgid_files2.txt
[donnie@localhost ~]$

So, as yet, I don't have any extended attributes set on any of my files.

On the Ubuntu machine, the output would look more like this:

donnie@ubuntu:~$ lsattr
-------------e-- ./file2.txt
-------------e-- ./secret_stuff_dir
-------------e-- ./secret_stuff_for_frank.txt.gpg
-------------e-- ./good_stuff
-------------e-- ./secret_stuff
-------------e-- ./not_secret_for_frank.txt.gpg
-------------e-- ./file4.txt
-------------e-- ./good_stuff_dir
donnie@ubuntu:~$

We won't worry about that e attribute, because that only means that the partition is
formatted with the ext4 filesystem. CentOS doesn't have that attribute set, because its
partition is formatted with the XFS filesystem.

The two attributes that we'll look at are:

a: You can append text to the end of a file that has this attribute, but you can't
overwrite it. Only someone with proper sudo privileges can set or delete this
attribute.

Mastering Discretionary Access Control Chapter 5

[161]

i: This makes a file immutable, and only someone with proper sudo privileges
can set or delete it. Files with this attribute can't be deleted or changed in any
way. It's also not possible to create hard links to files that have this attribute.

To set or delete attributes, you'll use the chattr command. You can set more than one
attribute on a file, but only when it makes sense. For example, you wouldn't set both the a
and the i attributes on the same file, because the i will override the a.

Let's start by creating the perm_demo.txt file with this text:

This is Donnie's sensitive file that he doesn't want to have overwritten.

Setting the a attribute
I'll now set the a attribute:

[donnie@localhost ~]$ sudo chattr +a perm_demo.txt
[sudo] password for donnie:
[donnie@localhost ~]$

You'll use a + to add an attribute, and a - to delete it. Also, it doesn't matter that the file
does belong to me, and is in my own home directory. I still need sudo privileges to add or
delete this attribute.

Now, let's see what happens when I try to overwrite this file:

[donnie@localhost ~]$ echo "I want to overwrite this file." > perm_demo.txt
-bash: perm_demo.txt: Operation not permitted

[donnie@localhost ~]$ sudo echo "I want to overwrite this file." >
perm_demo.txt
-bash: perm_demo.txt: Operation not permitted
[donnie@localhost ~]$

With or without sudo privileges, I can't overwrite it. So, how about if I try to append
something to it?

[donnie@localhost ~]$ echo "I want to append this to the end of the file."
>> perm_demo.txt
[donnie@localhost ~]$

Mastering Discretionary Access Control Chapter 5

[162]

There's no error message this time. Let's see what's now in the file:

This is Donnie's sensitive file that he doesn't want to have overwritten.
I want to append this to the end of the file.

In addition to not being able to overwrite the file, I'm also unable to delete it:

[donnie@localhost ~]$ rm perm_demo.txt
rm: cannot remove ‘perm_demo.txt’: Operation not permitted

[donnie@localhost ~]$ sudo rm perm_demo.txt
[sudo] password for donnie:
rm: cannot remove ‘perm_demo.txt’: Operation not permitted
[donnie@localhost ~]$

So, the a works. But, I've decided that I no longer want this attribute set, so I'll remove it:

[donnie@localhost ~]$ sudo chattr -a perm_demo.txt
[donnie@localhost ~]$ lsattr perm_demo.txt
---------------- perm_demo.txt
[donnie@localhost ~]$

Setting the i attribute
When a file has the i attribute set, the only thing you can do with it is view its contents. You
can't change it, move it, delete it, rename it, or create hard links to it. Let's test this with the
perm_demo.txt file:

[donnie@localhost ~]$ sudo chattr +i perm_demo.txt
[donnie@localhost ~]$ lsattr perm_demo.txt
----i----------- perm_demo.txt
[donnie@localhost ~]$

Now, for the fun part:

[donnie@localhost ~]$ sudo echo "I want to overwrite this file." >
perm_demo.txt
-bash: perm_demo.txt: Permission denied
[donnie@localhost ~]$ echo "I want to append this to the end of the file."
>> perm_demo.txt
-bash: perm_demo.txt: Permission denied
[donnie@localhost ~]$ sudo echo "I want to append this to the end of the
file." >> perm_demo.txt
-bash: perm_demo.txt: Permission denied
[donnie@localhost ~]$ rm -f perm_demo.txt
rm: cannot remove ‘perm_demo.txt’: Operation not permitted

Mastering Discretionary Access Control Chapter 5

[163]

[donnie@localhost ~]$ sudo rm -f perm_demo.txt
rm: cannot remove ‘perm_demo.txt’: Operation not permitted
[donnie@localhost ~]$ sudo rm -f perm_demo.txt

There are a few more commands that I could try, but you get the idea. To remove the i
attribute, I'll do:

[donnie@localhost ~]$ sudo chattr -i perm_demo.txt
[donnie@localhost ~]$ lsattr perm_demo.txt
---------------- perm_demo.txt
[donnie@localhost ~]$

Hands-on lab – setting security-related extended file
attributes
For this lab, you'll create a perm_demo.txt file with the text of your own choosing. You'll
set the i and a attributes, and view the results:

Using your preferred text editor, create the perm_demo.txt file with a line of1.
text.
View the extended attributes of the file:2.

 lsattr perm_demo.txt

Add the a attribute:3.

 sudo chattr +a perm_demo.txt
 lsattr perm_demo.txt

Try to overwrite and delete the file:4.

 echo "I want to overwrite this file." > perm_demo.txt
 sudo echo "I want to overwrite this file." > perm_demo.txt
 rm perm_demo.txt
 sudo rm perm_demo.txt

Now, append something to the file:5.

 echo "I want to append this line to the end of the file." >>
 perm_demo.txt

Mastering Discretionary Access Control Chapter 5

[164]

Remove the a attribute, and add the i attribute:6.

 sudo chattr -a perm_demo.txt
 lsattr perm_demo.txt
 sudo chattr +i perm_demo.txt
 lsattr perm_demo.txt

Repeat Step 4.7.
Additionally, try to change the filename and to create a hard link to the file:8.

 mv perm_demo.txt some_file.txt
 sudo mv perm_demo.txt some_file.txt
 ln ~/perm_demo.txt ~/some_file.txt
 sudo ln ~/perm_demo.txt ~/some_file.txt

Now, try to create a symbolic link to the file:9.

 ln -s ~/perm_demo.txt ~/some_file.txt

Note that the i attribute won't let you create hard links to a file, but it will let you
create symbolic links.

End of lab.10.

Summary
In this chapter, we reviewed the basics of setting ownership and permissions for files and
directories. We then covered what SUID and SGID can do for us when used properly, and
the risk of setting them on our own executable files. Finally, we completed this roundup by
looking at the two extended file attributes that deal with file security.

In the next chapter, we'll extend what we've learned here to more advanced file and
directory access techniques. I'll see you there.

6
Access Control Lists and

Shared Directory Management
In the previous chapter, we reviewed the basics of Discretionary Access Control. In this
chapter, we'll take our discussion of DAC a step further. We'll look at some more advanced
techniques that you can use to make DAC do exactly what you want it to do.

Topics in this chapter include:

Creating an access control list (ACL) for either a user or a group
Creating an inherited ACL for a directory
Removing a specific permission by using an ACL mask
Using the tar --acls option to prevent loss of ACLs during a backup
Creating a user group and adding members to it
Creating a shared directory for a group, and setting the proper permissions on it
Setting the SGID bit and the sticky bit on the shared directory
Using ACLs to allow only certain members of the group to access a file in the
shared directory

Access Control Lists and Shared Directory Management Chapter 6

[166]

Creating an access control list for either a
user or a group
The normal Linux file and directory permissions settings are okay, but they're not very
granular. With an ACL, we can allow only a certain person to access a file or directory, or
we can allow multiple people to access a file or directory with different permissions for each
person. If we have a file or a directory that's wide open for everyone, we can use an ACL to
allow different levels of access for either a group or an individual. Towards the end of the
chapter, we'll put what we've learned all together in order to manage a shared directory for
a group.

You would use getfacl to view an access control list for a file or directory. (Note that you
can't use it to view all files in a directory at once.) To begin, let's use getfacl to see if we
have any access control lists already set on the acl_demo.txt file:

[donnie@localhost ~]$ touch acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt
file: acl_demo.txt
owner: donnie
group: donnie
user::rw-
group::rw-
other::r--

[donnie@localhost ~]$

All we see here are just the normal permissions settings, so there's no ACL.

The first step for setting an ACL is to remove all permissions from everyone except for the
user of the file. That's because the default permissions settings allow members of the group
to have read/write access, and others to have read access. So, setting an ACL without
removing those permissions would be rather senseless:

[donnie@localhost ~]$ chmod 600 acl_demo.txt

[donnie@localhost ~]$ ls -l acl_demo.txt
-rw-------. 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt
[donnie@localhost ~]$

Access Control Lists and Shared Directory Management Chapter 6

[167]

When using setfacl to set an ACL, you can allow a user or a group to have any
combination of read, write, or execute privileges. In our case, let's say that I want to let
Maggie read the file, and to prevent her from having write or execute privileges:

[donnie@localhost ~]$ setfacl -m u:maggie:r acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt
file: acl_demo.txt
owner: donnie
group: donnie
user::rw-
user:maggie:r--
group::---
mask::r--
other::---

[donnie@localhost ~]$ ls -l acl_demo.txt
-rw-r-----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt
[donnie@localhost ~]$

The -m option of setfacl means that we're about to modify the ACL. (Well, to create one
in this case, but that's okay.) The u: means that we're setting an ACL for a user. We then list
the user's name, followed by another colon, and the list of permissions that we want to
grant to this user. In this case, we're only allowing Maggie read access. We complete the
command by listing the file to which we want to apply this ACL. The getfacl output
shows that Maggie does indeed have read access. Finally, we see in the ls -l output that
the group is listed as having read access, even though we've set the 600 permissions setting
on this file. But, there's also a + sign, which tells us that the file has an ACL. When we set an
ACL, the permissions for the ACL show up as group permissions in ls -l.

To take this a step further, let's say that I want Frank to have read/write access to this file:

[donnie@localhost ~]$ setfacl -m u:frank:rw acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt
file: acl_demo.txt
owner: donnie
group: donnie
user::rw-
user:maggie:r--
user:frank:rw-
group::---
mask::rw-
other::---

[donnie@localhost ~]$ ls -l acl_demo.txt

Access Control Lists and Shared Directory Management Chapter 6

[168]

-rw-rw----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt
[donnie@localhost ~]$

So, we can have two or more different ACLs assigned to the same file. In the ls -l output,
we see that we have rw permissions set for the group, which is really just a summary of
permissions that we've set in the two ACLs.

We can set an ACL for group access by replacing the u: with a g::

[donnie@localhost ~]$ getfacl new_file.txt
file: new_file.txt
owner: donnie
group: donnie
user::rw-
group::rw-
other::r--

[donnie@localhost ~]$ chmod 600 new_file.txt

[donnie@localhost ~]$ setfacl -m g:accounting:r new_file.txt

[donnie@localhost ~]$ getfacl new_file.txt
file: new_file.txt
owner: donnie
group: donnie
user::rw-
group::---
group:accounting:r--
mask::r--
other::---

[donnie@localhost ~]$ ls -l new_file.txt
-rw-r-----+ 1 donnie donnie 0 Nov 9 15:06 new_file.txt
[donnie@localhost ~]$

Members of the accounting group now have read access to this file.

Access Control Lists and Shared Directory Management Chapter 6

[169]

Creating an inherited access control list for
a directory
There may be times when you'll want all files that get created in a shared directory to have
the same access control list. We can do that by applying an inherited ACL to the directory.
Although, understand that, even though this sounds like a cool idea, creating files in the
normal way will cause files to have the read/write permissions set for the group, and the
read permission set for others. So, if you're setting this up for a directory where users just
create files normally, the best that you can hope to do is to create an ACL that adds either
the write or execute permissions for someone. Either that, or ensure that users set the 600
permissions settings on all files that they create, assuming that users really do need to
restrict access to their files.

On the other hand, if you're creating a shell script that creates files in a specific directory,
you can include chmod commands to ensure that the files get created with the restrictive
permissions that are necessary to make your ACL work as intended.

To demo, let's create the new_perm_dir directory, and set the inherited ACL on it. I want to
have read/write access for files that my shell script creates in this directory, and for Frank to
have only read access. I don't want anyone else to be able to read any of these files:

[donnie@localhost ~]$ setfacl -m d:u:frank:r new_perm_dir

[donnie@localhost ~]$ ls -ld new_perm_dir
drwxrwxr-x+ 2 donnie donnie 26 Nov 12 13:16 new_perm_dir
[donnie@localhost ~]$ getfacl new_perm_dir
file: new_perm_dir
owner: donnie
group: donnie
user::rwx
group::rwx
other::r-x
default:user::rwx
default:user:frank:r--
default:group::rwx
default:mask::rwx
default:other::r-x

[donnie@localhost ~]$

Access Control Lists and Shared Directory Management Chapter 6

[170]

All I had to do to make this an inherited ACL was to add the d: before the u:frank. I left
the default permissions settings on the directory, which allows everyone read access to the
directory. Next, I'll create the donnie_script.sh shell script that will create a file within
that directory, and that will set read/write permissions for only the user of the new files:

#!/bin/bash
cd new_perm_dir
touch new_file.txt
chmod 600 new_file.txt
exit

After making the script executable, I'll run it and view the results:

[donnie@localhost ~]$./donnie_script.sh

[donnie@localhost ~]$ cd new_perm_dir

[donnie@localhost new_perm_dir]$ ls -l
total 0
-rw-------+ 1 donnie donnie 0 Nov 12 13:16 new_file.txt
[donnie@localhost new_perm_dir]$ getfacl new_file.txt
file: new_file.txt
owner: donnie
group: donnie
user::rw-
user:frank:r-- #effective:---
group::rwx #effective:---
mask::---
other::---

[donnie@localhost new_perm_dir]$

So, new_file.txt got created with the correct permissions settings, and with an ACL that
allows Frank to read it. (I know that this is a really simplified example, but you get the
idea.)

Removing a specific permission by using an
ACL mask
You can remove an ACL from a file or directory with the -x option. Let's go back to the
acl_demo.txt file that I created earlier, and remove the ACL for Maggie:

[donnie@localhost ~]$ setfacl -x u:maggie acl_demo.txt

Access Control Lists and Shared Directory Management Chapter 6

[171]

[donnie@localhost ~]$ getfacl acl_demo.txt
file: acl_demo.txt
owner: donnie
group: donnie
user::rw-
user:frank:rw-
group::---
mask::rw-
other::---

[donnie@localhost ~]$

So, Maggie's ACL is gone. But, the -x option removes the entire ACL, even if that's not
what you really want. If you have an ACL with multiple permissions set, you might just
want to remove one permission, while leaving the others. Here, we see that Frank still has
his ACL that grants him read/write access. Let's now say that we want to remove the write
permission, while still allowing him the read permission. For that, we'll need to apply a
mask:

[donnie@localhost ~]$ setfacl -m m::r acl_demo.txt

[donnie@localhost ~]$ ls -l acl_demo.txt

-rw-r-----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt
[donnie@localhost ~]$ getfacl acl_demo.txt
file: acl_demo.txt
owner: donnie
group: donnie
user::rw-
user:frank:rw- #effective:r--
group::---
mask::r--
other::---

[donnie@localhost ~]$

The m::r sets a read-only mask on the ACL. Running getfacl shows that Frank still has a
read/write ACL, but the comment to the side shows his effective permissions to be read-
only. So, Frank's write permission for the file is now gone. And, if we had ACLs set for
other users, this mask would affect them the same way.

Access Control Lists and Shared Directory Management Chapter 6

[172]

Using the tar --acls option to prevent the
loss of ACLs during a backup
If you ever need to use tar to create a backup of either a file or a directory that has ACLs
assigned to it, you'll need to include the --acls option switch. Otherwise, the ACLs will be
lost. To show this, I'll create a backup of the perm_demo_dir directory without the --acls
option. First, note that I do have ACLs on files in this directory, as indicated by the + sign
on the last two files:

[donnie@localhost ~]$ cd perm_demo_dir
[donnie@localhost perm_demo_dir]$ ls -l
total 0
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file1.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file2.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file3.txt
-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file4.txt
-rw-rw----+ 1 donnie donnie 0 Nov 9 15:19 frank_file.txt
-rw-rw----+ 1 donnie donnie 0 Nov 12 12:29 new_file.txt
[donnie@localhost perm_demo_dir]$

Now, I'll do the backup without the --acls:

[donnie@localhost perm_demo_dir]$ cd
[donnie@localhost ~]$ tar cJvf perm_demo_dir_backup.tar.xz perm_demo_dir/
perm_demo_dir/
perm_demo_dir/file1.txt
perm_demo_dir/file2.txt
perm_demo_dir/file3.txt
perm_demo_dir/file4.txt
perm_demo_dir/frank_file.txt
perm_demo_dir/new_file.txt
[donnie@localhost ~]$

It looks good, right? Ah, but looks can be deceiving. Watch what happens when I delete the
directory, and then restore it from the backup:

[donnie@localhost ~]$ rm -rf perm_demo_dir/

[donnie@localhost ~]$ tar xJvf perm_demo_dir_backup.tar.xz
perm_demo_dir/
perm_demo_dir/file1.txt
perm_demo_dir/file2.txt
perm_demo_dir/file3.txt
perm_demo_dir/file4.txt
perm_demo_dir/frank_file.txt

Access Control Lists and Shared Directory Management Chapter 6

[173]

perm_demo_dir/new_file.txt
[donnie@localhost ~]$ ls -l
total 812
. . .
drwxrwxr-x+ 2 donnie donnie 26 Nov 12 13:16 new_perm_dir
drwxrwx---. 2 donnie donnie 116 Nov 12 12:29 perm_demo_dir
-rw-rw-r--. 1 donnie donnie 284 Nov 13 13:45 perm_demo_dir_backup.tar.xz
. . .
[donnie@localhost ~]$ cd perm_demo_dir/

[donnie@localhost perm_demo_dir]$ ls -l
total 0
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file1.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file2.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file3.txt
-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file4.txt
-rw-rw----. 1 donnie donnie 0 Nov 9 15:19 frank_file.txt
-rw-rw----. 1 donnie donnie 0 Nov 12 12:29 new_file.txt
[donnie@localhost perm_demo_dir]$

I don't even have to use getfacl to see that the ACLs are gone from the perm_demo_dir
directory and all of its files, because the + signs are now gone from them. Now, let's see
what happens when I include the --acls option. First, I'll show you that an ACL is set for
this directory and its only file:

[donnie@localhost ~]$ ls -ld new_perm_dir
drwxrwxr-x+ 2 donnie donnie 26 Nov 13 14:01 new_perm_dir

[donnie@localhost ~]$ ls -l new_perm_dir
total 0
-rw-------+ 1 donnie donnie 0 Nov 13 14:01 new_file.txt
[donnie@localhost ~]$

Now, I'll use tar with --acls:

[donnie@localhost ~]$ tar cJvf new_perm_dir_backup.tar.xz new_perm_dir/ --
acls
new_perm_dir/
new_perm_dir/new_file.txt
[donnie@localhost ~]$

I'll now delete the new_perm_dir directory, and restore it from backup. Again, I'll use the -
-acls option:

[donnie@localhost ~]$ rm -rf new_perm_dir/

[donnie@localhost ~]$ tar xJvf new_perm_dir_backup.tar.xz --acls

Access Control Lists and Shared Directory Management Chapter 6

[174]

new_perm_dir/
new_perm_dir/new_file.txt

[donnie@localhost ~]$ ls -ld new_perm_dir
drwxrwxr-x+ 2 donnie donnie 26 Nov 13 14:01 new_perm_dir

[donnie@localhost ~]$ ls -l new_perm_dir
total 0
-rw-------+ 1 donnie donnie 0 Nov 13 14:01 new_file.txt
[donnie@localhost ~]$

The presence of the + signs indicates that the ACLs did survive the backup and restore
procedure. The one slightly tricky part about this is that you must use --acls for both the
backup and the restoration. If you omit the option either time, you will lose your ACLs.

Creating a user group and adding members
to it
So far, I've been doing all of the demos inside my own home directory, just for the sake of
showing the basic concepts. But, the eventual goal is to show you how to use this
knowledge to do something more practical, such as controlling file access in a shared group
directory. The first step is to create a user group and to add members to it.

Let's say that we want to create a marketing group for members of—you guessed it—the
marketing department:

[donnie@localhost ~]$ sudo groupadd marketing
[sudo] password for donnie:
[donnie@localhost ~]$

Let's now add some members. You can do that in three different ways:

Add members as we create their user accounts
Use usermod to add members that already have user accounts
Edit the /etc/group file

Access Control Lists and Shared Directory Management Chapter 6

[175]

Adding members as we create their user
accounts
First, we can add members to the group as we create their user accounts, using the -G
option of useradd. On Red Hat or CentOS, the command would look like this:

[donnie@localhost ~]$ sudo useradd -G marketing cleopatra
[sudo] password for donnie:

[donnie@localhost ~]$ groups cleopatra
cleopatra : cleopatra marketing
[donnie@localhost ~]$

On Debian/Ubuntu, the command would look like this:

donnie@ubuntu3:~$ sudo useradd -m -d /home/cleopatra -s /bin/bash -G
marketing cleopatra

donnie@ubuntu3:~$ groups cleopatra
cleopatra : cleopatra marketing
donnie@ubuntu3:~$

And, of course, I'll need to assign Cleopatra a password in the normal manner:

[donnie@localhost ~]$ sudo passwd cleopatra

Using usermod to add an existing user to a group
The good news is that this works the same on either Red Hat or CentOS or Debian/Ubuntu:

[donnie@localhost ~]$ sudo usermod -a -G marketing maggie
[sudo] password for donnie:

[donnie@localhost ~]$ groups maggie
maggie : maggie marketing
[donnie@localhost ~]$

In this case, the -a wasn't necessary, because Maggie wasn't a member of any other
secondary group. But, if she had already belonged to another group, the -a would have
been necessary to keep from overwriting any existing group information, thus removing
her from the previous groups.

Access Control Lists and Shared Directory Management Chapter 6

[176]

This method is especially handy for use on Ubuntu systems, where it was necessary to use
adduser in order to create encrypted home directories. (As we saw in a previous chapter,
adduser doesn't give you the chance to add a user to a group as you create the account.)

Adding users to a group by editing the /etc/group
file
This final method is a good way to cheat, to speed up the process of adding multiple
existing users to a group. First, just open the /etc/group file in your favorite text editor,
and look for the line that defines the group to which you want to add members:

. . .
marketing:x:1005:cleopatra,maggie
. . .

So, I've already added Cleopatra and Maggie to this group. Let's edit this to add a couple
more members:

. . .
marketing:x:1005:cleopatra,maggie,vicky,charlie
. . .

When you're done, save the file and exit the editor.

A groups command for each of them will show that our wee bit of cheating works just fine:

[donnie@localhost etc]$ sudo vim group

[donnie@localhost etc]$ groups vicky
vicky : vicky marketing

[donnie@localhost etc]$ groups charlie
charlie : charlie marketing
[donnie@localhost etc]$

This method is extremely handy for whenever you need to add lots of members to a group
at the same time.

Access Control Lists and Shared Directory Management Chapter 6

[177]

Creating a shared directory
The next act in our scenario involves creating a shared directory that all the members of our
marketing department can use. Now, this is another one of those areas that engenders a bit
of controversy. Some people like to put shared directories in the root level of the filesystem,
while others like to put shared directories in the /home directory. And, some people even
have other preferences. But really, it's a matter of personal preference and/or company
policy. Other than that, it really doesn't much matter where you put them. For our
purposes, to make things simple, I'll just create the directory in the root level of the
filesystem:

[donnie@localhost ~]$ cd /

[donnie@localhost /]$ sudo mkdir marketing
[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing
drwxr-xr-x. 2 root root 6 Nov 13 15:32 marketing
[donnie@localhost /]$

The new directory belongs to the root user. It has a permissions setting of 755, which
permits read and execute access to everybody, and write access only to the root user. What
we really want is to allow only members of the marketing department to access this
directory. We'll first change ownership and group association, and then we'll set the proper
permissions:

[donnie@localhost /]$ sudo chown nobody:marketing marketing

[donnie@localhost /]$ sudo chmod 770 marketing

[donnie@localhost /]$ ls -ld marketing
drwxrwx---. 2 nobody marketing 6 Nov 13 15:32 marketing
[donnie@localhost /]$

In this case, we don't have any one particular user that we want to own the directory, and
we don't really want for the root user to own it. So, assigning ownership to the nobody
pseudo user account gives us a way to deal with that. I then assigned the 770 permissions
value to the directory, which allows read/write/execute access to all marketing group
members, while keeping everyone else out. Now, let's let one of our group members log in
to see if she can create a file in this directory:

[donnie@localhost /]$ su - vicky
Password:

Access Control Lists and Shared Directory Management Chapter 6

[178]

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ touch vicky_file.txt

[vicky@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt
[vicky@localhost marketing]$

Okay, it works, except for one minor problem. The file belongs to Vicky, as it should. But,
it's also associated with Vicky's personal group. For the best access control of these shared
files, we need them to be associated with the marketing group.

Setting the SGID bit and the sticky bit on the
shared directory
I've told you before that it's a bit of a security risk to set either the SUID or SGID
permissions on files, especially on executable files. But, it is both completely safe and very
useful to set SGID on a shared directory.

SGID behavior on a directory is completely different from SGID behavior on a file. On a
directory, SGID will cause any files that anybody creates to be associated with the same
group with which the directory is associated. So, bearing in mind that the SGID permission
value is 2000, let's set SGID on our marketing directory:

[donnie@localhost /]$ sudo chmod 2770 marketing
[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing
drwxrws---. 2 nobody marketing 28 Nov 13 15:41 marketing
[donnie@localhost /]$

The s in the executable position for the group indicates that the command was successful.
Let's now let Vicky log back in to create another file:

[donnie@localhost /]$ su - vicky
Password:
Last login: Mon Nov 13 15:41:19 EST 2017 on pts/0

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ touch vicky_file_2.txt

Access Control Lists and Shared Directory Management Chapter 6

[179]

[vicky@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 vicky marketing 0 Nov 13 15:57 vicky_file_2.txt
-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt
[vicky@localhost marketing]$

Vicky's second file is associated with the marketing group, which is just what we want.
Just for fun, let's let Charlie do the same:

[donnie@localhost /]$ su - charlie
Password:

[charlie@localhost ~]$ cd /marketing

[charlie@localhost marketing]$ touch charlie_file.txt

[charlie@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt
-rw-rw-r--. 1 vicky marketing 0 Nov 13 15:57 vicky_file_2.txt
-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt
[charlie@localhost marketing]$

Again, Charlie's file is associated with the marketing group. But, for some strange reason
that nobody understands, Charlie really doesn't like Vicky, and decides to delete her files,
just out of pure spite:

[charlie@localhost marketing]$ rm vicky*
rm: remove write-protected regular empty file ‘vicky_file.txt’? y

[charlie@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt
[charlie@localhost marketing]$

The system complains that Vicky's original file is write-protected, since it's still associated
with her personal group. But, the system does still allow Charlie to delete it, even without
sudo privileges. And, since Charlie has write access to the second file, due to its association
with the marketing group, the system allows him to delete it without question.

Access Control Lists and Shared Directory Management Chapter 6

[180]

Okay. So, Vicky complains about this, and tries to get Charlie fired. But, our intrepid
administrator has a better idea. He'll just set the sticky bit in order to keep this from
happening again. Since the SGID bit has a value of 2000, and the sticky bit has a value
of 1000, we can just add the two together to get a value of 3000:

[donnie@localhost /]$ sudo chmod 3770 marketing
[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing
drwxrws--T. 2 nobody marketing 30 Nov 13 16:03 marketing
[donnie@localhost /]$

The T in the executable position for others indicates that the sticky bit has been set. Since the
T is uppercase, we know that the executable permission for others has not been set. Having
the sticky bit set will prevent group members from deleting anybody else's files. Let's let
Vicky show us what happens when she tries to retaliate against Charlie:

[donnie@localhost /]$ su - vicky
Password:
Last login: Mon Nov 13 15:57:41 EST 2017 on pts/0

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

[vicky@localhost marketing]$ rm charlie_file.txt
rm: cannot remove ‘charlie_file.txt’: Operation not permitted

[vicky@localhost marketing]$ rm -f charlie_file.txt
rm: cannot remove ‘charlie_file.txt’: Operation not permitted

[vicky@localhost marketing]$ ls -l
total 0
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt
[vicky@localhost marketing]$

Even with the -f option, Vicky still can't delete Charlie's file. Vicky doesn't have sudo
privileges on this system, so it would be useless for her to try that.

Access Control Lists and Shared Directory Management Chapter 6

[181]

Using ACLs to access files in the shared
directory
As things currently stand, all members of the marketing group have read/write access to
all other group members' files. Restricting access to a file to only specific group members is
the same two-step process that we've already covered.

Setting the permissions and creating the ACL
First, Vicky sets the normal permissions to allow only her to access her file. Then, she'll set
the ACL:

[vicky@localhost marketing]$ echo "This file is only for my good friend,
Cleopatra." > vicky_file.txt

[vicky@localhost marketing]$ chmod 600 vicky_file.txt

[vicky@localhost marketing]$ setfacl -m u:cleopatra:r vicky_file.txt

[vicky@localhost marketing]$ ls -l
total 4
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt
-rw-r-----+ 1 vicky marketing 49 Nov 13 16:24 vicky_file.txt

[vicky@localhost marketing]$ getfacl vicky_file.txt
file: vicky_file.txt
owner: vicky
group: marketing
user::rw-
user:cleopatra:r--
group::---
mask::r--
other::---

[vicky@localhost marketing]$

There's nothing here that you haven't already seen. Vicky just removed all permissions from
the group and from others, and set an ACL that only allows Cleopatra to read the file. Let's
see if Cleopatra actually can read it:

[donnie@localhost /]$ su - cleopatra
Password:

Access Control Lists and Shared Directory Management Chapter 6

[182]

[cleopatra@localhost ~]$ cd /marketing

[cleopatra@localhost marketing]$ ls -l
total 4
-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt
-rw-r-----+ 1 vicky marketing 49 Nov 13 16:24 vicky_file.txt

[cleopatra@localhost marketing]$ cat vicky_file.txt
This file is only for my good friend, Cleopatra.
[cleopatra@localhost marketing]$

So far, so good. But, can Cleopatra write to it?

[cleopatra@localhost marketing]$ echo "You are my friend too, Vicky." >>
vicky_file.txt
-bash: vicky_file.txt: Permission denied
[cleopatra@localhost marketing]$

Okay, Cleopatra can't do that, since Vicky only allowed her the read privilege in the ACL.

Charlie tries to access Vicky's file with an ACL
set for Cleopatra
Now, though, what about that sneaky Charlie, who wants to go snooping in other users'
files?

[donnie@localhost /]$ su - charlie
Password:
Last login: Mon Nov 13 15:58:56 EST 2017 on pts/0

[charlie@localhost ~]$ cd /marketing

[charlie@localhost marketing]$ cat vicky_file.txt
cat: vicky_file.txt: Permission denied
[charlie@localhost marketing]$

So, yes, it's really true that only Cleopatra can access Vicky's file, and even then only for
reading.

Access Control Lists and Shared Directory Management Chapter 6

[183]

Hands-on lab – creating a shared group directory
For this lab, you'll just put together everything that you've learned in this chapter to create a
shared directory for a group. You can do this on either of your virtual machines:

On either virtual machine, create the sales group:1.

 sudo groupadd sales

Create the users Mimi, Mr. Gray, and Mommy, adding them to the sales group as2.
you create the accounts.

On the CentOS VM, do:

 sudo useradd -G sales mimi
 sudo useradd -G sales mrgray
 sudo useradd -G sales mommy

On the Ubuntu VM, do:

 sudo useradd -m -d /home/mimi -s /bin/bash -G sales mimi
 sudo useradd -m -d /home/mrgray -s /bin/bash -G sales mrgray
 sudo useradd -m -d /home/mommy -s /bin/bash -G sales mommy

Assign each user a password.3.
Create the sales directory in the root level of the filesystem. Set proper4.
ownership and permissions, including the SGID and sticky bits:

 sudo mkdir /sales
 sudo chown nobody:sales /sales
 sudo chmod 3770 /sales
 ls -ld /sales

Log in as Mimi, and have her create a file:5.

 su - mimi
 cd /sales
 echo "This file belongs to Mimi." > mimi_file.txt
 ls -l

Have Mimi set an ACL on her file, allowing only Mr. Gray to read it. Then, have6.
Mimi log back out:

 chmod 600 mimi_file.txt
 setfacl -m u:mrgray:r mimi_file.txt
 getfacl mimi_file.txt

Access Control Lists and Shared Directory Management Chapter 6

[184]

 ls -l
 exit

Have Mr. Gray log in to see what he can do with Mimi's file. Then, have Mr. Gray7.
create his own file and log back out:

 su - mrgray
 cd /sales
 cat mimi_file.txt
 echo "I want to add something to this file." >>
 mimi_file.txt

 echo "Mr. Gray will now create his own file." >
 mr_gray_file.txt

 ls -l
 exit

Mommy will now log in and try to wreak havoc by snooping in other users' files,8.
and by trying to delete them:

 su - mommy
 cat mimi_file.txt
 cat mr_gray_file.txt
 rm -f mimi_file.txt
 rm -f mr_gray_file.txt
 exit

End of Lab.9.

Summary
In this chapter, we saw how to take Discretionary Access Control to the proverbial next
level. We first saw how to create and manage access control lists to provide more fine-
grained access control over files and directories. We then saw how to create a user group for
a specific purpose, and how to add members to it. Then, we saw how we can use the SGID
bit, the sticky bit, and access control lists to manage a shared group directory.

But, sometimes, Discretionary Access Control might not be enough to do the job. For those
times, we also have mandatory access control, which we'll cover in the next chapter. I'll see
you there.

7
Implementing Mandatory

Access Control with SELinux
and AppArmor

As we saw in the previous chapters, Discretionary Access Control allows users to control
who can access their own files and directories. But, what if your company needs to have
more administrative control over who accesses what? For this, we need some sort of
Mandatory Access Control or MAC.

The best way I know to explain the difference between DAC and MAC is to hearken back to
my Navy days. I was riding submarines at the time, and I had to have a Top Secret
clearance to do my job. With DAC, I had the physical ability to take one of my Top Secret
books to the mess decks, and hand it to a cook who didn't have that level of clearance. With
MAC, there were rules that prevented me from doing so. On operating systems, things
work pretty much the same way.

There are several different MAC systems that are available for Linux. The two that we'll
cover in this chapter are SELinux and AppArmor.

In this chapter, we'll cover the following topics:

What SELinux is and how it can benefit a system's administrator
How to set security contexts for files and directories
How to use setroubleshoot to troubleshoot SELinux problems
Looking at SELinux policies and how to create custom policies
What AppArmor is and how it can benefit a systems administrator
Looking at AppArmor policies

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[186]

Working with AppArmor command-line utilities
Troubleshooting AppArmor problems

How SELinux can benefit a systems
administrator
SELinux is a free open source software project that was developed by the U.S. National
Security Agency. While it can theoretically be installed on any Linux distro, the Red Hat-
type distros are the only ones that come with it already set up and enabled. It uses code in
Linux kernel modules, along with filesystem-extended attributes, to help ensure that only
authorized users and processes can access either sensitive files or system resources. There
are three ways in which SELinux can be used:

It can help prevent intruders from exploiting a system
It can be used to ensure that only users with the proper security clearance can
access files that are labeled with a security classification
In addition to MAC, SELinux can also be used as a type of role-based access
control

In this chapter, I'll only be covering the first of these three uses because that is the most
common way in which SELinux is used. There's also the fact that covering all three of these
uses would require writing a whole book, which I don't have space to do here.

If you go through this introduction to SELinux and find that you still need
more SELinux information, you'll find whole books and courses on just
this subject at the Packt Publishing website.

So how can SELinux benefit the busy systems administrator? Well, you might remember
when a few years ago, news about the Shellshock bug hit the world's headlines. Essentially,
Shellshock was a bug in the Bash shell that allowed intruders to break into a system and to
exploit it by gaining root privileges. For systems that were running SELinux, it was still
possible for the bad guys to break in, but SELinux would have prevented them from
successfully running their exploits.

SELinux is also yet another mechanism that can help protect data in users' home directories.
If you have a machine that's set up as a Network File System server, a Samba server, or a
web server, SELinux will prevent those daemons from accessing users' home directories,
unless you explicitly configure SELinux to allow that behavior.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[187]

On web servers, you can use SELinux to prevent the execution of malicious CGI scripts or
PHP scripts. If you don't need for your server to run CGI or PHP scripts, you can disable
them in SELinux.

With older versions of Docker and without Mandatory Access Control, it was trivially easy
for a normal user to break out of a Docker container and gain root-level access to the host
machine. Although Docker security has since improved, SELinux is still a useful tool for
hardening servers that run Docker containers.

So now, you're likely thinking that everyone would use such a great tool, right? Sadly, that's
not the case. In its beginning, SELinux got a reputation for being difficult to work with, and
many administrators would just disable it. In fact, a lot of tutorials you see on the web or on
YouTube have disable SELinux as the first step. In this section, I'd like to show you that
things have improved and that SELinux no longer deserves its bad reputation.

Setting security contexts for files and
directories
Think of SELinux as a glorified labeling system. It adds labels, known as security contexts, to
files and directories through extended file attributes. It also adds the same type of labels,
known as domains, to system processes. To see these contexts and domains on your CentOS
machines, use the -Z option with either ls or ps. For example, files and directories in my
own home directory would look as follows:

[donnie@localhost ~]$ ls -Z
drwxrwxr-x. donnie donnie unconfined_u:object_r:user_home_t:s0 acl_demo_dir
-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 yum_list.txt
[donnie@localhost ~]$

Processes on my system would look something like this:

[donnie@localhost ~]$ ps -Z
LABEL PID TTY TIME CMD
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 1322 pts/0 00:00:00
bash
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 3978 pts/0 00:00:00
ps
[donnie@localhost ~]$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[188]

Now, let's break this down. In the outputs of both the ls -Z and ps -Z commands, we
have the following parts:

The SELinux user: In both cases, the SELinux user is the generic unconfined_u
The SELinux role: In the ls -Z example, we see that the role is object_r, and
in the ps -Z example it's unconfined_r
The type: It's user_home_t in the ls -Z output, and unconfined_t in the ps -
Z output
The sensitivity: In the ps -Z output it's s0. In the ps -Z output it's s0-s0
The category: We don't see a category in the ls -Z output, but we do see
c0.c1023 in the ps -Z output

Out of all of the preceding security context and security domain components, the only one
that interests us now is the type. For the purposes of this chapter, we're only interested in
covering what a normal Linux administrator would need to know to keep intruders from
exploiting the system, and the type is the only one of these components that we need to use
for that. All of the other components come into play when we set up advanced, security
classification-based access control and role-based access control.

Okay, here's the somewhat over-simplified explanation of how this helps a Linux
administrator maintain security. What we want is for system processes to only access
objects that we allow them to access. (System processes include things like the web server
daemon, the FTP daemon, the Samba daemon, and the Secure Shell daemon. Objects
include things such as files, directories, and network ports.) To achieve this, we'll assign a
type to all of our processes and all of our objects. We'll then create policies that define which
process types can access which object types.

Fortunately, whenever you install any Red Hat-type distro, pretty much all of the hard
work has already been done for you. Red Hat-type distros all come with SELinux already
enabled and set up with the targeted policy. Think of this targeted policy as a somewhat
relaxed policy, which allows a casual desktop user to sit down at the computer and actually
conduct business without having to tweak any SELinux settings. But, if you're a server
administrator, you may find yourself having to tweak this policy in order to allow server
daemons to do what you need them to do.

The targeted policy, which comes installed by default, is what a normal
Linux administrator will use in his or her day-to-day duties. If you look in
the repositories of your CentOS virtual machine, you'll see that there are
also several others, which we won't cover in this book.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[189]

Installing the SELinux tools
For some bizarre reason that I'll never understand, the tools that you need to administer
SELinux don't get installed by default, even though SELinux itself does. So, the first thing
you'll need to do on your CentOS virtual machine is to install them:

sudo yum install setools policycoreutils policycoreutils-python

In a later portion of this chapter, we'll be looking at how to use setroubleshoot to help
diagnose SELinux problems. In order to have some cool error messages to look at when we
get there, go ahead and install setroubleshoot now, and activate it by restarting the auditd
daemon. (There's no setroubleshoot daemon because setroubleshoot is meant to be
controlled by the auditd daemon.) We have the following code:

sudo yum install setroubleshoot
sudo service auditd restart

One of the little systemd quirks that we have to deal with is that you can't stop or restart the
auditd daemon with the normal systemctl command, as you're supposed to do when
working with systemd daemons. However, the old-fashioned service command works.
(And no, I don't know why that is.)

Depending on the type of installation that you chose when installing
CentOS, you might or might not already have setroubleshoot installed. To
be sure, go ahead and run the command to install it. It won't hurt anything
if setroubleshoot is already there.

You now have what you need to get started.

Creating web content files with SELinux enabled
Now, let's look at what can happen if you have web content files that are set with the wrong
SELinux type. First, we'll install, enable, and start the Apache web server on our CentOS
virtual machines. (Note that including the --now option allows us to enable and start a
daemon all in one single step.) We have the following code:

sudo yum install httpd
sudo systemctl enable --now httpd

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[190]

If you haven't done so already, you'll want to configure the firewall to allow access to the
web server:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-service=http
success
[donnie@localhost ~]$ sudo firewall-cmd --reload
success
[donnie@localhost ~]$

When we look at the SELinux information for the Apache processes, we'll see this:

[donnie@localhost ~]$ ps ax -Z | grep httpd
system_u:system_r:httpd_t:s0 3689 ? Ss 0:00 /usr/sbin/httpd
-DFOREGROUND
system_u:system_r:httpd_t:s0 3690 ? S 0:00 /usr/sbin/httpd
-DFOREGROUND
system_u:system_r:httpd_t:s0 3691 ? S 0:00 /usr/sbin/httpd
-DFOREGROUND
system_u:system_r:httpd_t:s0 3692 ? S 0:00 /usr/sbin/httpd
-DFOREGROUND
system_u:system_r:httpd_t:s0 3693 ? S 0:00 /usr/sbin/httpd
-DFOREGROUND
system_u:system_r:httpd_t:s0 3694 ? S 0:00 /usr/sbin/httpd
-DFOREGROUND
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 3705 pts/0 R+ 0:00
grep --color=auto httpd
[donnie@localhost ~]$

As I said before, we're not interested in the user or the role. However, we are interested in
the type, which in this case is httpd_t.

On Red Hat-type systems, we would normally place web content files in the
/var/www/html directory. Let's look at the SELinux context for that html directory:

[donnie@localhost www]$ pwd
/var/www
[donnie@localhost www]$ ls -Zd html/
drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 html/
[donnie@localhost www]$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[191]

The type is httpd_sys_content, so it stands to reason that the httpd daemon should be
able to access this directory. It's currently empty, so let's cd into it and create a simple index
file:

[donnie@localhost www]$ cd html
[donnie@localhost html]$ pwd
/var/www/html
[donnie@localhost html]$ sudo vim index.html

I'll put this into the file, as follows:

<html>
<head>
<title>
Test of SELinux
</title>
</head>
<body>
Let's see if this SELinux stuff really works!
</body>
</html>

Okay, as I said, it's simple, as my HTML hand-coding skills aren't what they used to be. But
still, it serves our present purposes.

Looking at the SELinux context, we see that the file has the same type as the html directory:

[donnie@localhost html]$ ls -Z
-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0
index.html
[donnie@localhost html]$

I can now navigate to this page from the web browser of my trusty OpenSUSE workstation:

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[192]

Now though, let's see what happens if I decide to create content files in my own home
directory and then move them to the html directory. First, let's see what the SELinux
context is for my new file:

[donnie@localhost ~]$ pwd
/home/donnie
[donnie@localhost ~]$ ls -Z index.html
-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 index.html
[donnie@localhost ~]$

The context type is now user_home_t, which is a sure-fire indicator that I created this in
my home directory. I'll now move the file to the html directory, overwriting the old file:

[donnie@localhost ~]$ sudo mv index.html /var/www/html/
[sudo] password for donnie:

[donnie@localhost ~]$ cd /var/www/html

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 index.html
[donnie@localhost html]$

Even though I moved the file over to the /var/www/html directory, the SELinux type is
still associated with users' home directories. Now, I'll go to the browser of my host machine
to refresh the page:

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[193]

So, I have a slight bit of a problem. The type that's assigned to my file doesn't match with
the type of the httpd daemon processes, so SELinux doesn't allow the httpd processes to
access the file.

Had I copied the file to the html directory instead of moving it, the
SELinux context would have changed to match that of the destination
directory.

Fixing an incorrect SELinux context
Okay, so I have this web content file that nobody can access, and I really don't feel up to
creating a new one. So, what do I do? Actually, we have three different utilities for fixing
this:

chcon

restorecon

semanage

Using chcon
There are two ways to use chcon to fix an incorrect SELinux type on a file or directory. The
first is to just manually specify the proper type:

[donnie@localhost html]$ sudo chcon -t httpd_sys_content_t index.html
[sudo] password for donnie:

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_t:s0
index.html
[donnie@localhost html]$

We can use chcon to change any part of the context, but as I keep saying, we're only
interested in the type, which gets changed with the -t option. You can see in the ls -Z
output that the command was successful.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[194]

The other way to use chcon is to reference a file that has the proper context. For demo
purposes, I changed the index.html file back to the home directory type and have created
a new file within the /var/www/html directory:

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 index.html
-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0
some_file.html
[donnie@localhost html]$

As you can see, any files that I create within this directory will automatically have the
proper SELinux context settings. Now, let's use that new file as a reference in order to set
the proper context on the index.html file:

[donnie@localhost html]$ sudo chcon --reference some_file.html index.html
[sudo] password for donnie:

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_t:s0
index.html
-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0
some_file.html
[donnie@localhost html]$

So, I used the --reference option and specified the file that I wanted to use as a reference.
The file that I wanted to change is listed at the end of the command.

Now, that's all good, but I want to find an easier way that doesn't require quite as much
typing. After all, I am an old man, and I don't want to overexert myself. So, let's take a look
at the restorecon utility.

Using restorecon
Using restorecon is easy. Just type restorecon, followed by the name of the file that you
need to change. Once again, I've changed the context of the index.html file back to the
home directory type. This time though, I'm using restorecon to set the correct type:

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 index.html

[donnie@localhost html]$ sudo restorecon index.html

[donnie@localhost html]$ ls -Z
-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_t:s0

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[195]

index.html
[donnie@localhost html]$

And, that's all there is to it.

You can also use chcon and restorecon to change the context of an
entire directory and its contents. For either one, just use the -R option. For
example:

sudo chcon -R -t httpd_sys_content_t /var/www/html/
sudo restorecon -R /var/www/html/

(Remember: -R stands for recursive.)

There's still one last thing to take care of, even though it isn't really affecting our ability to
access this file. That is, I need to change ownership of the file to the Apache user:

[donnie@localhost html]$ sudo chown apache: index.html
[sudo] password for donnie:

[donnie@localhost html]$ ls -l
total 4
-rw-rw-r--. 1 apache apache 125 Nov 22 16:14 index.html
[donnie@localhost html]$

Using semanage
In the scenario I've just presented, either chcon or restorecon will suit your needs just
fine. The active SELinux policy mandates what the security contexts in certain directories
are supposed to look like. As long as you're using chcon or restorecon within directories
that are defined in the active SELinux policy, you're good. But let's say that you've created a
directory elsewhere that you want to use for serving out web content files. You would need
to set the httpd_sys_content_t type on that directory and all of the files within it.
However, if you use chcon or restorecon for that, the change won't survive a system
reboot. To make the change permanent, you'll need to use semanage.

For some strange reason, let's say that I want to serve web content out of a directory that
I've created in the /home directory:

[donnie@localhost home]$ pwd
/home

[donnie@localhost home]$ sudo mkdir webdir

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[196]

[sudo] password for donnie:

[donnie@localhost home]$ ls -Zd webdir
drwxr-xr-x. root root unconfined_u:object_r:home_root_t:s0 webdir
[donnie@localhost home]$

Because I had to use my powers of sudo to create the directory here, it's associated with the
root user's home_root_t type, instead of the normal user_home_dir_t type. Any files
that I create within this directory will have the same type:

[donnie@localhost webdir]$ ls -Z
-rw-r--r--. root root unconfined_u:object_r:home_root_t:s0 index.html
[donnie@localhost webdir]$

The next step is to use semanage to add a permanent mapping of this directory and the
httpd_sys_content_t type to the active policy's context list:

[donnie@localhost home]$ sudo semanage fcontext -a -t httpd_sys_content_t
"/home/webdir(/.*)?"

[donnie@localhost home]$ ls -Zd /home/webdir
drwxr-xr-x. root root unconfined_u:object_r:httpd_sys_content_t:s0
/home/web_dir
[donnie@localhost home]$

Okay, here's the breakdown of the semanage command:

fcontext: Because semanage has many purposes, we have to specify that we
want to work with a file context.
-a: This specifies that we're adding a new record to the context list for the active
SELinux policy.
-t: This specifies the type that we want to map to the new directory. In this case,
we're creating a new mapping with the httpd_sys_content type.
/home/webdir(/.*)?: This bit of gibberish is what's known as a regular
expression. I can't go into the nitty-gritty details of regular expressions here, so
suffice it to say that regular expressions is a language that we use to match text
patterns. (And yes, I did mean to say is instead of are, since regular expressions is
the name of the overall language.) In this case, I had to use this particular regular
expression in order to make this semanage command recursive because
semanage doesn't have a -R option switch. With this regular expression, I'm
saying that I want for anything that gets created in this directory to have the same
SELinux type as the directory itself.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[197]

The final step is to do a restorecon -R on this directory to ensure that the proper labels
have been set:

[donnie@localhost home]$ sudo restorecon -R webdir

[donnie@localhost home]$ ls -Zd /home/webdir
drwxr-xr-x. root root unconfined_u:object_r:httpd_sys_content_t:s0
/home/webdir
[donnie@localhost home]$

Yeah, I know. You're looking at this and saying, "But, this 'ls -Zd' output looks the same as it
did after you did the semanage command." And, you're right. After running the semanage
command, the type seems to be set correctly. But the semanage-fcontext man page says
to run restorecon anyway, so I did.

For more information on how to use semanage to manage security
contexts, see the man page by entering man semanage-fcontext.

Hands-on lab – SELinux type enforcement
In this lab, you'll install the Apache web server and the appropriate SELinux tools. You'll
then view the effects of having the wrong SELinux type assigned to a web content file.

Install Apache, along with all the required SELinux tools:1.

 sudo yum install httpd setroubleshoot setools
 policycoreutils policycoreutils-python

Activate setroubleshoot by restarting the auditd service:2.

 sudo service auditd restart

Enable and start the Apache service and open port 80 on the firewall:3.

 sudo systemctl enable --now httpd
 sudo firewall-cmd --permanent --add-service=http
 sudo firewall-cmd --reload

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[198]

In the /var/www/html directory, create an index.html file with the following4.
contents:

 <html>
 <head>
 <title>SELinux Test Page</title>
 </head>
 <body>
 This is a test of SELinux.
 </body>
 </html>

View the SELinux information about the index.html file:5.

 ls -Z index.html

In your host machine's web browser, navigate to the IP address of the CentOS6.
virtual machine. You should be able to view the page.
Induce an SELinux violation by changing the type of the index.html file to7.
something that's incorrect:

 sudo chcon -t tmp_t index.html
 ls -Z index.html

Go back to your host machine's web browser, and reload the document. You8.
should now see a Forbidden message.
Use restorecon to change the file back to its correct type:9.

 sudo restorecon index.html

Reload the page in your host machine's web browser. You should now be able to10.
view the page.

Troubleshooting with setroubleshoot
So, you're now scratching your head and saying, "When I can't access something that I should
be able to, how do I know that it's an SELinux problem?" Ah, I'm glad you asked.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[199]

Viewing setroubleshoot messages
Whenever something happens that violates an SELinux rule, it gets logged in the
/var/log/audit/audit.log file. Tools are available that can let you directly read that
log, but to diagnose SELinux problems, it's way better to use setroubleshoot. The beauty of
setroubleshoot is that it takes the cryptic, hard-to-interpret SELinux messages from the
audit.log file and translates them into plain, natural language. The messages that it sends
to the /var/log/messages file even contain suggestions about how to fix the problem. To
show how this works, let's go back to our problem where a file in the /var/www/html
directory had been assigned the wrong SELinux type. Of course, we knew right away what
the problem was because there was only one file in that directory and a simple ls -Z
showed the problem with it. However, let's ignore that for the moment and say that we
didn't know what the problem was. By opening the /var/log/messages file in less and
searching for sealert, we'll find this message:

Nov 26 21:30:21 localhost python: SELinux is preventing httpd from open
access on the file /var/www/html/index.html.#012#012***** Plugin
restorecon (92.2 confidence) suggests ************************#012#012If
you want to fix the label. #012/var/www/html/index.html default label
should be httpd_sys_content_t.#012Then you can run restorecon.#012Do#012#
/sbin/restorecon -v /var/www/html/index.html#012#012***** Plugin
catchall_boolean (7.83 confidence) suggests ******************#012#012If
you want to allow httpd to read user content#012Then you must tell SELinux
about this by enabling the 'httpd_read_user_content'
boolean.#012#012Do#012setsebool -P httpd_read_user_content 1#012#012*****
Plugin catchall (1.41 confidence) suggests
**************************#012#012If you believe that httpd should be
allowed open access on the index.html file by default.#012Then you should
report this as a bug.#012You can generate a local policy module to allow
this access.#012Do#012allow this access for now by executing:#012# ausearch
-c 'httpd' --raw | audit2allow -M my-httpd#012# semodule -i my-httpd.pp#012

The first line of this message tells us what the problem is. It's saying that SELinux is
preventing us from accessing the /var/www/html/index.html file because it's set with
the wrong type. It then gives us several suggestions on how to fix the problem, with the first
one being to run the restorecon command, as I've already shown you how to do.

A good rule-of-thumb to remember when reading these setroubleshoot
messages is that the first suggestion in the message is normally the one
that will fix the problem.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[200]

Using the graphical setroubleshoot utility
So far, I've only talked about using setroubleshoot on text-mode servers. After all, it's very
common to see Linux servers running in text-mode, so all of us Linux folk have to be text-
mode warriors. But on desktop systems or on servers that have a desktop interface
installed, there is a graphical utility that will automatically alert you when setroubleshoot
detects a problem:

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[201]

Click on that alert icon, and you'll see this:

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[202]

Click the Troubleshoot button, and you'll see your list of suggestions for how to fix the
problem:

As it is often the case with GUI thingies, this is mostly self-explanatory, so you shouldn't
have any problem with figuring it out.

Troubleshooting in permissive mode
If you're dealing with a simple problem like the one I've just shown you, then you can
probably assume that you're safe in doing what the first suggestion in the setroubleshoot
message tells you to do. But there will be times when things get a bit more complex, where
you might have more than one problem. For times like these, you need to use permissive
mode.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[203]

When you first install your Red Hat or CentOS system, SELinux is in enforcing mode, which
is the default. This means that SELinux will actually stop actions that are in violation of the
active SELinux policy. This also means that if you have multiple SELinux problems when
you try to perform a certain action, SELinux will stop the action from taking place after the
first violation occurs. When it happens, SELinux won't even see the remaining problems,
and they won't show up in the messages log file. If you try to troubleshoot these types of
problems while in enforcing mode, you'll be like the proverbial dog who chases its own
tail. You'll go round and round and will accomplish nothing.

In permissive mode, SELinux allows actions that violate policy to occur, but it will log
them. By switching to permissive mode and doing something to induce the problem that
you were seeing, the prohibited actions will take place, but setroubleshoot will log all of
them in the messages file. This way, you'll get a better view of what you need to do to get
things working properly.

First, let's use getenforce to verify what our current mode is:

[donnie@localhost ~]$ sudo getenforce
Enforcing
[donnie@localhost ~]$

Now, let's temporarily place the system into permissive mode:

[donnie@localhost ~]$ sudo setenforce 0

[donnie@localhost ~]$ sudo getenforce
Permissive
[donnie@localhost ~]$

When I say temporarily, I mean that this will only last until you do a system reboot. After a
reboot, you'll be back in enforcing mode. Also, note that a 0 after the setenforce denotes
that I'm setting permissive mode. To get back to enforcing mode after you're done with
troubleshooting, replace the 0 with a 1:

[donnie@localhost ~]$ sudo setenforce 1

[donnie@localhost ~]$ sudo getenforce
Enforcing
[donnie@localhost ~]$

We're now back in enforcing mode.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[204]

At times, you may need to make permissive mode persist after a system reboot. An example
of this would be if you ever have to deal with a system that has had SELinux disabled for a
long period of time. In a case like that, you wouldn't want to just put SELinux into enforcing
mode and reboot. If you try that, it will take forever for the system to properly create the file
and directory labels that make SELinux work, and the system might lock up before it's
done. By placing the system into permissive mode first, you'll avoid having the system lock
up, although it will still take a long time for the relabeling process to complete.

To make permissive mode persistent across system reboots, you'll edit the selinux file in
the /etc/sysconfig directory. Here's what it looks like by default:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

The two important things you see here are that SELinux is in enforcing mode, and that it's
using the targeted policy. To switch to permissive mode, just change the SELINUX= line,
and save the file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

The sestatus utility shows us lots of cool information about what's going on with
SELinux:

[donnie@localhost ~]$ sudo sestatus
SELinux status: enabled

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[205]

SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: permissive
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28
[donnie@localhost ~]$

The two items that interest us here are current mode and mode from a configuration file. By
changing the configuration file to permissive, we haven't changed the current running
mode. So, we're still in enforcing mode. The switch to permissive won't happen until I
either reboot this machine or until I manually switch by issuing a sudo setenforce 0
command. And of course, you don't want to stay in permissive mode forever. As soon as
you no longer need permissive mode, change the configuration file back to enforcing and
do a sudo setenforce 1 to change the running mode.

Working with SELinux policies
So far, all we've looked at is what happens when we have an incorrect SELinux type set on a
file and what to do to set the correct type. Another problem we may have would come
about if we need to allow an action that is prohibited by the active SELinux policy.

Viewing the Booleans
Booleans are part of what makes up an SELinux policy, and each Boolean represents a
binary choice. In SELinux policies, a Boolean either allows something or it prohibits
something. To see all of the Booleans on your system, run the getsebool -a command.
(It's a long list, so I'll only show partial output here.):

[donnie@localhost ~]$ getsebool -a
abrt_anon_write --> off
abrt_handle_event --> off
abrt_upload_watch_anon_write --> on
antivirus_can_scan_system --> off
antivirus_use_jit --> off
auditadm_exec_content --> on
. . .
. . .
xserver_object_manager --> off
zabbix_can_network --> off

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[206]

zarafa_setrlimit --> off
zebra_write_config --> off
zoneminder_anon_write --> off
zoneminder_run_sudo --> off
[donnie@localhost ~]$

To view more than one Boolean, the -a switch is mandatory. If you just happen to know the
name of the Boolean that you want to see, leave the -a out and list the Boolean. In keeping
with the Apache web server theme that we've had going, let's see whether we're allowing
Apache to access files in users' home directories:

[donnie@localhost html]$ getsebool httpd_enable_homedirs
httpd_enable_homedirs --> off
[donnie@localhost html]$

The fact that this Boolean is off means that the Apache server daemon isn't allowed to
access any content within the users' home directories. This is an important protection, and
you really don't want to change it. Instead, just put web content files elsewhere so that you
don't have to change this Boolean.

Most likely, you'll rarely want to look at the entire list, and you likely won't know the name
of the specific Boolean that you want to see. Rather, you'll probably want to filter the output
through grep in order to look at just certain things. For example, to see all of the Booleans
that affect a web server, follow this:

[donnie@localhost html]$ getsebool -a | grep 'http'
httpd_anon_write --> off
httpd_builtin_scripting --> on
httpd_can_check_spam --> off
httpd_can_connect_ftp --> off
httpd_can_connect_ldap --> off
httpd_can_connect_mythtv --> off
httpd_can_connect_zabbix --> off
httpd_can_network_connect --> off
. . .
. . .
httpd_use_nfs --> off
httpd_use_openstack --> off
httpd_use_sasl --> off
httpd_verify_dns --> off
named_tcp_bind_http_port --> off
prosody_bind_http_port --> off
[donnie@localhost html]$

It's also a rather long list, but scroll down a ways, and you'll find the Boolean that you seek.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[207]

Configuring the Booleans
Realistically, you'll likely never have reason to allow users to serve web content out of their
home directories. It's much more probable that you'll set up something like a Samba server,
which would allow users on Windows machines to use their graphical Windows Explorer
to access their home directories on Linux servers. But if you set up a Samba server and don't
do anything with SELinux, users will be complaining about how they don't see any of their
files in their home directories of the Samba server. Because you're the proactive type and
you want to avoid the pain of listening to complaining users, you'll surely just go ahead and
configure SELinux to allow the Samba daemon to access users' home directories. You might
not know the exact name of the Boolean, but you can find it easily enough, as follows:

[donnie@localhost html]$ getsebool -a | grep 'home'
git_cgi_enable_homedirs --> off
git_system_enable_homedirs --> off
httpd_enable_homedirs --> off
mock_enable_homedirs --> off
mpd_enable_homedirs --> off
openvpn_enable_homedirs --> on
samba_create_home_dirs --> off
samba_enable_home_dirs --> off
sanlock_enable_home_dirs --> off
spamd_enable_home_dirs --> on
ssh_chroot_rw_homedirs --> off
tftp_home_dir --> off
use_ecryptfs_home_dirs --> off
use_fusefs_home_dirs --> off
use_nfs_home_dirs --> off
use_samba_home_dirs --> off
xdm_write_home --> off
[donnie@localhost html]$

Okay, you knew that the Boolean name probably had the word home in it, so you filtered
for that word. About half-way down the list, you see samba_enable_home_dirs -->
off. You'll need to change this to on to let users access their home directories from their
Windows machines:

[donnie@localhost html]$ sudo setsebool samba_enable_home_dirs on

[sudo] password for donnie:
[donnie@localhost html]$ getsebool samba_enable_home_dirs
samba_enable_home_dirs --> on
[donnie@localhost html]$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[208]

Users can now access their home directories as they should be able to, but only until you do
a system reboot. Without the -P option, any changes you make with setsebool will only
be temporary. So, let's make the change permanent with -P:

[donnie@localhost html]$ sudo setsebool -P samba_enable_home_dirs on

[donnie@localhost html]$ getsebool samba_enable_home_dirs
samba_enable_home_dirs --> on
[donnie@localhost html]$

Congratulations, you've just made your first change to SELinux policy.

Protecting your web server
Look at the output of the getsebool -a | grep 'http' command again, and you'll see
that most of the httpd-related Booleans are turned off by default, with only a few turned on.
There are two of them that you'll commonly need to turn on when setting up a web server.

If you ever need to set up a website with some sort of PHP-based content management
system, such as Joomla or Wordpress, you may have to turn on the httpd_unified
Boolean. With this Boolean turned off, the Apache web server won't be able to interact
properly with all of the components of the PHP engine:

[donnie@localhost ~]$ getsebool httpd_unified
httpd_unified --> off

[donnie@localhost ~]$ sudo setsebool -P httpd_unified on
[sudo] password for donnie:

[donnie@localhost ~]$ getsebool httpd_unified
httpd_unified --> on
[donnie@localhost ~]$

The other Boolean that you'll commonly need to turn on is the httpd_can_sendmail
Boolean. If you ever need for a website to send mail out through a form or if you need to set
up a mail server with a web-based frontend, you'll definitely need to set this to on:

[donnie@localhost ~]$ getsebool httpd_can_sendmail
httpd_can_sendmail --> off

[donnie@localhost ~]$ sudo setsebool -P httpd_can_sendmail on

[donnie@localhost ~]$ getsebool httpd_can_sendmail
httpd_can_sendmail --> on

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[209]

[donnie@localhost ~]$

On the other hand, there are some Booleans that are turned on by default, and you might
want to consider whether you really need them turned on. For example, allowing CGI
scripts to run on a web server does represent a potential security risk. If an intruder were to
somehow upload a malicious CGI script to the server and run it, much damage could occur
as a result. Yet, for some bizarre reason, the default SELinux policy allows CGI scripts to
run. If you're absolutely certain that nobody who hosts websites on your server will ever
need to run CGI scripts, you might want to consider turning this Boolean off:

[donnie@localhost ~]$ getsebool httpd_enable_cgi
httpd_enable_cgi --> on

[donnie@localhost ~]$ sudo setsebool -P httpd_enable_cgi off

[donnie@localhost ~]$ getsebool httpd_enable_cgi
httpd_enable_cgi --> off
[donnie@localhost ~]$

Protecting network ports
Each network daemon that's running on your system has a specific network port or set of
network ports assigned to it, on which it will listen. The /etc/services file contains the
list of common daemons and their associated network ports, but it doesn't prevent someone
from configuring a daemon to listen on some non-standard port. So, without some
mechanism to prevent it, some sneaky intruder could potentially plant some sort of
malware that would cause a daemon to listen on a non-standard port, possibly listening for
commands from its master.

SELinux protects against this sort of malicious activity by only allowing daemons to listen
on certain ports. Use semanage to look at the list of allowed ports:

[donnie@localhost ~]$ sudo semanage port -l
[sudo] password for donnie:
SELinux Port Type Proto Port Number

afs3_callback_port_t tcp 7001
afs3_callback_port_t udp 7001
afs_bos_port_t udp 7007
afs_fs_port_t tcp 2040
afs_fs_port_t udp 7000, 7005
afs_ka_port_t udp 7004
afs_pt_port_t tcp 7002
afs_pt_port_t udp 7002

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[210]

afs_vl_port_t udp 7003
. . .
. . .
zebra_port_t tcp 2606, 2608-2609, 2600-2604
zebra_port_t udp 2606, 2608-2609, 2600-2604
zented_port_t tcp 1229
zented_port_t udp 1229
zookeeper_client_port_t tcp 2181
zookeeper_election_port_t tcp 3888
zookeeper_leader_port_t tcp 2888
zope_port_t tcp 8021
[donnie@localhost ~]$

This is yet another of those very long lists, so I'm only showing partial output. However,
let's narrow things down a bit. Let's say that I only want to look at the list of ports on which
the Apache web server can listen. For this, I'll use my good friend, grep:

[donnie@localhost ~]$ sudo semanage port -l | grep 'http'
[sudo] password for donnie:
http_cache_port_t tcp 8080, 8118, 8123, 10001-10010
http_cache_port_t udp 3130
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443,
9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989
[donnie@localhost ~]$

Several http items come up, but I'm only interested in the http_port_t item because it's
the one that affects normal web server operation. We see here that SELinux will allow
Apache to listen on ports 80, 81, 443, 488, 8008, 8009, 8443, and 9000. As the Apache
server is the most likely daemon for which you'd ever have a legitimate reason for adding a
non-standard port, let's demo with it.

First, let's go into the /etc/httpd/conf/httpd.conf file and look at the ports on which
Apache is currently listening. Search for Listen, and you'll see the following line:

Listen 80

I don't have the SSL module installed on this machine, but if I did, I would have an
ssl.conf file in the /etc/httpd/conf.d directory with the following line:

Listen 443

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[211]

So for normal, non-encrypted website connections, the default configuration only has
Apache listening on port 80. For secure, encrypted website connections, Apache listens on
port 443. Now, let's go into the httpd.conf file and change Listen 80 to a port number
that SELinux doesn't allow. For example, port 82:

Listen 82

After saving the file, I'll restart Apache to read in the new configuration:

[donnie@localhost ~]$ sudo systemctl restart httpd
Job for httpd.service failed because the control process exited with error
code. See "systemctl status httpd.service" and "journalctl -xe" for
details.
[donnie@localhost ~]$

Yes, I have a problem. I'll look in the /var/log/messages file to see if setroubleshoot gives
me a clue:

Nov 29 16:39:21 localhost python: SELinux is preventing /usr/sbin/httpd
from name_bind access on the tcp_socket port 82.#012#012***** Plugin
bind_ports (99.5 confidence) suggests ************************#012#012If
you want to allow /usr/sbin/httpd to bind to network port 82#012Then you
need to modify the port type.#012Do#012# semanage port -a -t PORT_TYPE -p
tcp 82#012 where PORT_TYPE is one of the following: http_cache_port_t,
http_port_t, jboss_management_port_t, jboss_messaging_port_t, ntop_port_t,
puppet_port_t.#012#012***** Plugin catchall (1.49 confidence) suggests
**************************#012#012If you believe that httpd should be
allowed name_bind access on the port 82 tcp_socket by default.#012Then you
should report this as a bug.#012You can generate a local policy module to
allow this access.#012Do#012allow this access for now by executing:#012#
ausearch -c 'httpd' --raw | audit2allow -M my-httpd#012# semodule -i my-
httpd.pp#012

The problem that SELinux is preventing httpd from binding to port 82 is defined in the
first line of the message. The first suggestion we see for fixing this is to use semanage to
add the port to the list of allowed ports. So, let's do that and look at the list of Apache ports:

[donnie@localhost ~]$ sudo semanage port -a 82 -t http_port_t -p tcp

[donnie@localhost ~]$ sudo semanage port -l | grep 'http_port_t'
http_port_t tcp 82, 80, 81, 443, 488, 8008, 8009,
8443, 9000
pegasus_http_port_t tcp 5988
[donnie@localhost ~]$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[212]

It's not clear in the setroubleshoot message, but you need to specify the port number that
you want to add after the port -a. The -t http_port_t specifies the type for which you
want to add the port, and the -p tcp specifies that you want to use the TCP protocol.

Now, for the moment of truth. Will the Apache daemon start this time? Let's see:

[donnie@localhost ~]$ sudo systemctl restart httpd
[sudo] password for donnie:
[donnie@localhost ~]$ sudo systemctl status httpd
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor
preset: disabled)
 Active: active (running) since Wed 2017-11-29 20:09:51 EST; 7s ago
 Docs: man:httpd(8)
. . .
. . .

It works, and we have achieved coolness. But now, I've decided that I no longer need this
oddball port. Deleting it is just as easy as adding it:

[donnie@localhost ~]$ sudo semanage port -d 82 -t http_port_t -p tcp

[donnie@localhost ~]$ sudo semanage port -l | grep 'http_port_t'
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443,
9000
pegasus_http_port_t tcp 5988
[donnie@localhost ~]$

All I had to do was to replace the port -a with port -d. And of course, I still need to go
into the /etc/httpd/conf/httpd.conf file to change Listen 82 back to Listen 80.

Creating custom policy modules
Sometimes, you'll run into a problem that you can't fix by either changing the type or by
setting a Boolean. In times like these, you'll need to create a custom policy module, and
you'll use the audit2allow utility to do that.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[213]

Here's a screenshot of a problem I had several years ago, when I was helping a client set up
a Postfix mail server on CentOS 7:

So, for some strange reason that I never understood, SELinux wouldn't allow Dovecot, the
Mail Delivery Agent component of the mail server, to read its own dict file. There's no
Boolean to change and there wasn't a type problem, so setroubleshoot suggested that I
create a custom policy module. It's easy enough to do, but you do need to be aware that this
won't work with sudo on your normal user account. This is one of those rare times when
you'll just have to go to the root user command prompt, and you'll also need to be in the
root user's home directory:

sudo su -

Before you do it, be sure to put SELinux into the permissive mode and then do something to
induce the SELinux error. This way, you'll be sure that one problem isn't masking others.

When you run the command to create the new policy module, be sure to replace mypol
with a custom policy name of your own choosing. In my case, I named the module
dovecot_dict, and the command looked like this:

grep dict /var/log/audit/audit.log | audit2allow -M dovecot_dict

What I'm doing here is using grep to search through the audit.log file for SELinux
messages that contain the word dict. I then piped the output of that into audit2allow
and used the -M option to create a custom module with the name, dovecot_dict.

After I created the new policy module, I inserted it into the SELinux policy like so:

semodule -i dovecot_dict.pp

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[214]

There was a also a second problem that required another custom module, but I just
repeated this procedure to produce another module of a different name. After I got all that
done, I reloaded the SELinux policy, in order to get my new modules to take effect:

semodule -R

With semodule, the -R switch stands for reload, rather than recursive, as it does with most
Linux commands.

With all that done, I put SELinux back into enforcing mode and exited back to my own user
account. And, I tested the setup to make sure that I had fixed the problem.

Of course, you also want to bear in mind that you don't want to just modify SELinux policy
or contexts every time you see an sealert message in the log files. For example, consider
this snippet from the messages file of my Oracle Linux 7 machine, which I set up mainly to
run Docker and Docker containers:

Jun 8 19:32:17 docker-1 setroubleshoot: SELinux is preventing
/usr/bin/docker from getattr access on the file /etc/exports. For complete
SELinux messages. run sealert -l b267929a-d3ad-45d5-806e-907449fc2739
Jun 8 19:32:17 docker-1 python: SELinux is preventing /usr/bin/docker from
getattr access on the file /etc/exports.#012#012***** Plugin catchall
(100. confidence) suggests **************************#012#012If you
believe that docker should be allowed getattr access on the exports file by
default.#012Then you should report this as a bug.#012You can generate a
local policy module to allow this access.#012Do#012allow this access for
now by executing:#012# grep docker /var/log/audit/audit.log | audit2allow -
M mypol#012# semodule -i mypol.pp#012
Jun 8 19:32:17 docker-1 setroubleshoot: SELinux is preventing
/usr/bin/docker from getattr access on the file /etc/shadow.rpmnew. For
complete SELinux messages. run sealert -l bc566655-1fbc-4141-af48-
ccd6c76a3d3b
Jun 8 19:32:17 docker-1 python: SELinux is preventing /usr/bin/docker from
getattr access on the file /etc/shadow.rpmnew.#012#012***** Plugin
catchall (100. confidence) suggests **************************#012#012If
you believe that docker should be allowed getattr access on the
shadow.rpmnew file by default.#012Then you should report this as a
bug.#012You can generate a local policy module to allow this
access.#012Do#012allow this access for now by executing:#012# grep docker
/var/log/audit/audit.log | audit2allow -M mypol#012# semodule -i
mypol.pp#012

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[215]

These messages were caused by an early version of Docker trying to access resources on the
host machine. As you can see, Docker is trying to access some rather sensitive files, and
SELinux is preventing Docker from doing so. With early versions of Docker and without
some sort of Mandatory Access Control, it would have been a trivial matter for a normal,
unprivileged user to escape from the Docker container and have root user privileges on the
host system. Naturally, when you see these sorts of messages, you don't want to
automatically tell SELinux to allow the prohibited actions. It just may be that SELinux is
preventing something truly bad from taking place.

Be sure to get your copy of The SELinux Coloring Book at: https:/ /
opensource. com/ business/ 13/ 11/selinux- policy- guide.

Hands-on lab – SELinux Booleans and ports
In this lab, you'll view the effects of having Apache try to listen on an unauthorized port:

View the ports that SELinux allows the Apache web server daemon to use:1.

 sudo semanage port -l | grep 'http'

Open the /etc/httpd/conf/httpd.conf file in your favorite text editor. Find2.
the line that says Listen 80 and change it to Listen 82. Restart Apache by
entering the following:

 sudo systemctl restart httpd

View the error message you receive by entering:3.

 sudo tail -20 /var/log/messages

Add port 82 to the list of authorized ports and restart Apache:4.

 sudo semanage port -a 82 -t http_port_t -p tcp
 sudo semanage port -l
 sudo systemctl restart httpd

Delete the port that you just added:5.

 sudo semanage -d 82 -t http_port_t -p tcp

https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[216]

Go back into the /etc/httpd/conf/httpd.conf file, and change Listen 826.
back to Listen 80. Restart the Apache daemon to return to normal operation.

How AppArmor can benefit a systems
administrator
AppArmor is the Mandatory Access Control system that comes installed with the SUSE and
the Ubuntu families of Linux. Although it's designed to do pretty much the same job as
SELinux, its mode of operation is substantially different:

SELinux labels all system processes and all objects such as files, directories, or
network ports. For files and directories, SELinux stores the labels in their
respective inodes as extended attributes. (An inode is the basic filesystem
component that contains all information about a file, except for the file name.)
AppArmor uses pathname enforcement, which means that you specify the path
to the executable file that you want for AppArmor to control. This way, there's no
need to insert labels into the extended attributes of files or directories.
With SELinux, you have system-wide protection out of the box.
With AppArmor, you have a profile for each individual application.
With either SELinux or AppArmor, you might occasionally find yourself having
to create custom policy modules from scratch, especially if you're dealing with
either third-party applications or home-grown software. With AppArmor, this is
easier, because the syntax for writing AppArmor profiles is much easier than the
syntax for writing SELinux policies. And, AppArmor comes with utilities that can
help you automate the process.
Just as SELinux can, AppArmor can help prevent malicious actors from ruining
your day and can help protect user data.

So, you see that there are advantages and disadvantages to both SELinux and AppArmor,
and a lot of Linux administrators have strong feelings about which one they prefer. (To
avoid being subjected to a flame-war, I'll refrain from stating my own preference.) Also,
note that even though we're working with an Ubuntu virtual machine, the information I
present here, other than the Ubuntu-specific package installation commands, also works
with the SUSE Linux distos.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[217]

Looking at AppArmor profiles
In the /etc/apparmor.d directory, you'll see the AppArmor profiles for your system. (The
SELinux folk say policies, but the AppArmor folk say profiles.):

donnie@ubuntu3:/etc/apparmor.d$ ls -l
total 72
drwxr-xr-x 5 root root 4096 Oct 29 15:21 abstractions
drwxr-xr-x 2 root root 4096 Nov 15 09:34 cache
drwxr-xr-x 2 root root 4096 Oct 29 14:43 disable
drwxr-xr-x 2 root root 4096 Apr 5 2016 force-complain
drwxr-xr-x 2 root root 4096 Oct 29 15:21 local
drwxr-xr-x 2 root root 4096 Oct 29 15:02 lxc
-rw-r--r-- 1 root root 198 Jun 14 16:15 lxc-containers
-rw-r--r-- 1 root root 3310 Apr 12 2016 sbin.dhclient
drwxr-xr-x 5 root root 4096 Oct 29 15:21 tunables
-rw-r--r-- 1 root root 125 Jun 14 16:15 usr.bin.lxc-start
-rw-r--r-- 1 root root 281 May 23 2017 usr.lib.lxd.lxd-bridge-proxy
-rw-r--r-- 1 root root 17667 Oct 18 05:04 usr.lib.snapd.snap-confine.real
-rw-r--r-- 1 root root 1527 Jan 5 2016 usr.sbin.rsyslogd
-rw-r--r-- 1 root root 1469 Sep 8 15:27 usr.sbin.tcpdump
donnie@ubuntu3:/etc/apparmor.d$

The sbin.dhclient file and the usr.* files are all AppArmor profiles. You'll find a few
other profiles in the lxc and lxc-containers subdirectories. Still, though, there's not a
whole lot there in the way of application profiles.

For some reason, a default installation of OpenSUSE comes with more
installed profiles than does Ubuntu Server. To install more profiles on
Ubuntu, use the following:

sudo apt install apparmor-profiles apparmor-profiles-
extra

In the abstractions subdirectory, you'll find files that aren't complete profiles, but that
can be included in complete profiles. Any one of these abstraction files can be included in
any number of profiles. This way, you don't have to write the same code over and over
every time you create a profile. Just include an abstraction file instead.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[218]

If you're familiar with programming concepts, just think of abstraction
files as include files by another name.

Here's a partial listing of the abstraction files:

donnie@ubuntu3:/etc/apparmor.d/abstractions$ ls -l
total 320
-rw-r--r-- 1 root root 695 Mar 15 2017 apache2-common
drwxr-xr-x 2 root root 4096 Oct 29 15:21 apparmor_api
-rw-r--r-- 1 root root 308 Mar 15 2017 aspell
-rw-r--r-- 1 root root 1582 Mar 15 2017 audio
-rw-r--r-- 1 root root 1544 Mar 15 2017 authentication
-rw-r--r-- 1 root root 6099 Mar 15 2017 base
-rw-r--r-- 1 root root 1512 Mar 15 2017 bash
-rw-r--r-- 1 root root 798 Mar 15 2017 consoles
-rw-r--r-- 1 root root 714 Mar 15 2017 cups-client
-rw-r--r-- 1 root root 593 Mar 15 2017 dbus
. . .
. . .
-rw-r--r-- 1 root root 705 Mar 15 2017 web-data
-rw-r--r-- 1 root root 739 Mar 15 2017 winbind
-rw-r--r-- 1 root root 585 Mar 15 2017 wutmp
-rw-r--r-- 1 root root 1819 Mar 15 2017 X
-rw-r--r-- 1 root root 883 Mar 15 2017 xad
-rw-r--r-- 1 root root 673 Mar 15 2017 xdg-desktop
donnie@ubuntu3:/etc/apparmor.d/abstractions$

To get a feel for how AppArmor rules work, let's peek inside the web-data abstraction file:

 /srv/www/htdocs/ r,
 /srv/www/htdocs/** r,
 # virtual hosting
 /srv/www/vhosts/ r,
 /srv/www/vhosts/** r,
 # mod_userdir
 @{HOME}/public_html/ r,
 @{HOME}/public_html/** r,

 /srv/www/rails/*/public/ r,
 /srv/www/rails/*/public/** r,

 /var/www/html/ r,
 /var/www/html/** r,

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[219]

This file is nothing but a list of directories from which the Apache daemon is allowed to
read files. Let's break it down:

Note that each rule ends with r,. This denotes that we want for Apache to have
read access on each listed directory. Also note that each rule has to end with a
comma.
/srv/www/htdocs/ r, means that the listed directory itself has read access for
Apache.
/srv/www.htdocs/* * r, the * * wildcards make this rule recursive. In other
words, Apache can read all files in all subdirectories of this specified directory.
mod_userdir if installed, this Apache module allows Apache to read web
content files from a subdirectory that's within a user's home directory. The next
two lines go along with that.
@{HOME}/public_html/ r, and @{HOME}/public_html/ r, the @{HOME}
variable allows this rule to work with any user's home directory. (You'll see this
variable defined in the /etc/apparmor.d/tunables/home file.)
Note that there's no specific rule that prohibits Apache from reading from other
locations. It's just understood that anything that's not listed here is off-limits to
the Apache web server daemon.

The tunables subdirectory contains files that have predefined variables. You can also use
this directory to either define new variables or make profile tweaks:

donnie@ubuntu3:/etc/apparmor.d/tunables$ ls -l
total 56
-rw-r--r-- 1 root root 624 Mar 15 2017 alias
-rw-r--r-- 1 root root 376 Mar 15 2017 apparmorfs
-rw-r--r-- 1 root root 804 Mar 15 2017 dovecot
-rw-r--r-- 1 root root 694 Mar 15 2017 global
-rw-r--r-- 1 root root 983 Mar 15 2017 home
drwxr-xr-x 2 root root 4096 Oct 29 15:21 home.d
-rw-r--r-- 1 root root 792 Mar 15 2017 kernelvars
-rw-r--r-- 1 root root 631 Mar 15 2017 multiarch
drwxr-xr-x 2 root root 4096 Mar 15 2017 multiarch.d
-rw-r--r-- 1 root root 440 Mar 15 2017 proc
-rw-r--r-- 1 root root 430 Mar 15 2017 securityfs
-rw-r--r-- 1 root root 368 Mar 15 2017 sys
-rw-r--r-- 1 root root 868 Mar 15 2017 xdg-user-dirs
drwxr-xr-x 2 root root 4096 Oct 29 15:02 xdg-user-dirs.d
donnie@ubuntu3:/etc/apparmor.d/tunables$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[220]

Space doesn't permit me to show you the details of how to write your own profiles from
scratch, and thanks to the suite of utilities that we'll look at in the next section, you might
never need to do that. Still, just to give you a better understanding about how AppArmor
does what it does, here's a chart of some example rules that you might find in any given
profile:

/var/run/some_program.pid rw,
The process will have read and write privileges for
this process ID file.

/etc/ld.so.cache r, The process will have read privileges for this file.

/tmp/some_program.* l,
The process will be able to create and delete links
with the some_program name.

/bin/mount ux

The process has executable privileges for the mount
utility, which will then run unconstrained.
(Unconstrained means, without an AppArmor
profile.)

Working with AppArmor command-line
utilities
Whether or not you have all the AppArmor utilities you need will depend on which Linux
distro you have. On my OpenSUSE Leap workstation, the utilities were there out of the
box. On my Ubuntu Server virtual machine, I had to install them myself:

sudo apt install apparmor-utils

First, let's look at the status of AppArmor on the Ubuntu machine:

donnie@ubuntu5:~$ sudo aa-status
[sudo] password for donnie:

apparmor module is loaded.
13 profiles are loaded.
13 profiles are in enforce mode.
 /sbin/dhclient
 /usr/bin/lxc-start
 /usr/lib/NetworkManager/nm-dhcp-client.action
 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[221]

 /usr/sbin/mysqld
 /usr/sbin/tcpdump
 lxc-container-default
 lxc-container-default-cgns
 lxc-container-default-with-mounting
 lxc-container-default-with-nesting
0 profiles are in complain mode.
1 processes have profiles defined.
1 processes are in enforce mode.
 /usr/sbin/mysqld (679)
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.
donnie@ubuntu5:~$

The first thing to note here is that AppArmor has an enforce mode and a complain mode.
The enforce mode does the same job as its enforcing mode counterpart in SELinux. It
prevents system processes from doing things that the active policy doesn't allow, and it logs
any violations. The complain mode is the same as the permissive mode in SELinux. It
allows processes to perform actions that are prohibited by the active policy, but it records
those actions in either the /var/log/audit/audit.log file, or the system log file,
depending on whether you have auditd installed. (Unlike the Red Hat-type distros,
auditd doesn't come installed by default on Ubuntu.) You would use the complain mode
to either help with troubleshooting or to test new profiles.

Most of the enforce mode profiles we see here have to do with either network management
or with lxc container management. Two exceptions we see are the two profiles for snapd,
which is the daemon that makes the snap packaging technology work. The third exception
is for the mysqld profile.

Snap packages are universal binary files that are designed to work on
multiple distros. Snap technology is currently available for Ubuntu and
Fedora.

Curiously, when you install a daemon package on Ubuntu, you'll sometimes get a
predefined profile for that daemon and sometimes you won't. Even when a profile does
come with the package that you've installed, it's sometimes already in the enforce mode and
sometimes it isn't. For example, if you're setting up a Domain Name Service (DNS) server
and you install the bind9 package for it, you'll get an AppArmor profile that's already in
enforce mode. If you're setting up a database server and install the mysql-server
package, you'll also get a working profile that's already in the enforce mode.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[222]

But, if you're setting up a database server and you prefer to install the mariadb-server
instead of mysql-server, you'll get an AppArmor profile that's completely disabled and
that can't be enabled. When you look in the usr.sbin.mysqld profile file that gets
installed with the mariadb-server package, you'll see this:

This file is intensionally empty to disable apparmor by default for newer
versions of MariaDB, while providing seamless upgrade from older versions
and from mysql, where apparmor is used.
#
By default, we do not want to have any apparmor profile for the MariaDB
server. It does not provide much useful functionality/security, and
causes
several problems for users who often are not even aware that apparmor
exists and runs on their system.
#
Users can modify and maintain their own profile, and in this case it will
be used.
#
When upgrading from previous version, users who modified the profile
will be promptet to keep or discard it, while for default installs
we will automatically disable the profile.

Okay, so apparently, AppArmor isn't good for everything. (And, whoever wrote this needs
to take spelling lessons.)

And then, there's Samba, which is a special case in more ways than one. When you install
the samba package to set up a Samba server, you don't get any AppArmor profiles at all.
For Samba and several other different applications as well, you'll need to install the
AppArmor profiles separately:

sudo apt install apparmor-profiles apparmor-profiles-extras

When you install these two profile packages, the profiles will all be in the complain mode.
That's okay, because we have a handy utility to put them into enforce mode. Since Samba
has two different daemons that we need to protect, there are two different profiles that we'll
need to place into enforce mode:

donnie@ubuntu5:/etc/apparmor.d$ ls *mbd
usr.sbin.nmbd usr.sbin.smbd
donnie@ubuntu5:/etc/apparmor.d$

We'll use aa-enforce to activate enforce mode for both of these profiles:

donnie@ubuntu5:/etc/apparmor.d$ sudo aa-enforce /usr/sbin/nmbd
usr.sbin.nmbd
Setting /usr/sbin/nmbd to enforce mode.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[223]

Setting /etc/apparmor.d/usr.sbin.nmbd to enforce mode.

donnie@ubuntu5:/etc/apparmor.d$ sudo aa-enforce /usr/sbin/smbd
usr.sbin.smbd
Setting /usr/sbin/smbd to enforce mode.
Setting /etc/apparmor.d/usr.sbin.smbd to enforce mode.
donnie@ubuntu5:/etc/apparmor.d$

To use aa-enforce, you first need to specify the path to the executable file of the process
that you want to protect. (Fortunately, you normally won't even have to look that up, since
the path name is normally part of the profile filename.) The last part of the command is the
name of the profile. Note that you'll need to restart the Samba daemon to get this
AppArmor protection to take effect.

Placing a profile into other modes is just as easy. All you have to do is to replace the aa-
enforce utility with the utility for the mode that you need to use. Here's a chart of the
utilities for the other modes:

aa-audit
Audit mode is the same as enforce mode, except that allowed actions get
logged, as well as the actions that have been blocked. (Enforce mode only
logs actions that have been blocked.)

aa-disable This completely disables a profile.

aa-complain This places a profile into complain mode.

Troubleshooting AppArmor problems
So, I've been here racking my brain for the past several days, trying to come up with a good
troubleshooting scenario. It turns out that I didn't need to. The Ubuntu folk have handed
me a good scenario on a silver platter, in the form of a buggy Samba profile.

As you've just seen, I used aa-enforce to put the two Samba-related profiles into enforce
mode. But, watch what happens now when I try to restart Samba in order to get the profiles
to take effect:

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl restart smbd
Job for smbd.service failed because the control process exited with error
code. See "systemctl status smbd.service" and "journalctl -xe" for details.
donnie@ubuntu3:/etc/apparmor.d$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[224]

Okay, that's not good. Looking at the status for the smbd service, I see this:

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl status smbd
● smbd.service - LSB: start Samba SMB/CIFS daemon (smbd)
 Loaded: loaded (/etc/init.d/smbd; bad; vendor preset: enabled)
 Active: failed (Result: exit-code) since Tue 2017-12-05 14:56:35 EST;
13s ago
 Docs: man:systemd-sysv-generator(8)
 Process: 31160 ExecStop=/etc/init.d/smbd stop (code=exited,
status=0/SUCCESS)
 Process: 31171 ExecStart=/etc/init.d/smbd start (code=exited,
status=1/FAILURE)

Dec 05 14:56:35 ubuntu3 systemd[1]: Starting LSB: start Samba SMB/CIFS
daemon (smbd)...
Dec 05 14:56:35 ubuntu3 smbd[31171]: * Starting SMB/CIFS daemon smbd
Dec 05 14:56:35 ubuntu3 smbd[31171]: ...fail!
Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Control process exited,
code=exited status=1
Dec 05 14:56:35 ubuntu3 systemd[1]: Failed to start LSB: start Samba
SMB/CIFS daemon (smbd).
Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Unit entered failed
state.
Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Failed with result 'exit-
code'.
donnie@ubuntu3:/etc/apparmor.d$

The important things to see here are all of the places where some form of the word fail
shows up.

The original error message said to use journalctl -xe to view the log message. But,
journalctl has this bad habit of truncating lines of output at the right edge of the screen.
So instead, I'll just use either less or tail to look in the regular /var/log/syslog log file:

Dec 5 20:09:10 ubuntu3 smbd[14599]: * Starting SMB/CIFS daemon smbd
Dec 5 20:09:10 ubuntu3 kernel: [174226.392671] audit: type=1400
audit(1512522550.765:510): apparmor="DENIED" operation="mknod"
profile="/usr/sbin/smbd" name="/run/samba/msg.
lock/14612" pid=14612 comm="smbd" requested_mask="c" denied_mask="c"
fsuid=0 ouid=0
Dec 5 20:09:10 ubuntu3 smbd[14599]: ...fail!
Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Control process exited,
code=exited status=1
Dec 5 20:09:10 ubuntu3 systemd[1]: Failed to start LSB: start Samba
SMB/CIFS daemon (smbd).
Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Unit entered failed
state.

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[225]

Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Failed with result 'exit-
code'.

So, we see apparmor=DENIED. Obviously, Samba is trying to do something that the profile
doesn't allow. Samba needs to write temporary files to the /run/samba/msg.lock
directory, but it isn't allowed to. I'm guessing that the profile is missing a rule that allows
that to happen.

But, even if this log file entry were to give me no clue at all, I could just cheat, using a
troubleshooting technique that has served me well for many years. That is, I could just copy
and paste the error message from the log file into my favorite search engine. Pretty much
every time I've ever done that, I've found that other people before me have already had the
same problem:

Okay, I didn't paste in the entire error message, but I did paste in enough for DuckDuckGo
to work with. And, lo and behold, it worked:

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[226]

Hmmm, it looks like my profile file might be missing an important line. So, I'll open the
usr.sbin.smbd file and place this line at the end of the rule set:

/run/samba/** rw,

This line will allow read and write access to everything in the /run/samba directory. After
making the edit, I'll need to reload this profile because it's already been loaded with aa-
enforce. For this, I'll use the apparmor_parser utility:

donnie@ubuntu3:/etc/apparmor.d$ sudo apparmor_parser -r usr.sbin.smbd
donnie@ubuntu3:/etc/apparmor.d$

All you need to do is use the -r option for reloading and list the name of the profile file.
Now, let's try to restart Samba:

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl restart smbd

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl status smbd
● smbd.service - LSB: start Samba SMB/CIFS daemon (smbd)
 Loaded: loaded (/etc/init.d/smbd; bad; vendor preset: enabled)
 Active: active (running) since Wed 2017-12-06 13:31:32 EST; 3min 6s ago
 Docs: man:systemd-sysv-generator(8)
 Process: 17317 ExecStop=/etc/init.d/smbd stop (code=exited,
status=0/SUCCESS)
 Process: 16474 ExecReload=/etc/init.d/smbd reload (code=exited,
status=0/SUCCESS)
 Process: 17326 ExecStart=/etc/init.d/smbd start (code=exited,
status=0/SUCCESS)
 Tasks: 3
 Memory: 9.3M
 CPU: 594ms
 CGroup: /system.slice/smbd.service
 ├─17342 /usr/sbin/smbd -D
 ├─17343 /usr/sbin/smbd -D
 └─17345 /usr/sbin/smbd -D

Dec 06 13:31:28 ubuntu3 systemd[1]: Stopped LSB: start Samba SMB/CIFS
daemon (smbd).
Dec 06 13:31:28 ubuntu3 systemd[1]: Starting LSB: start Samba SMB/CIFS
daemon (smbd)...
Dec 06 13:31:32 ubuntu3 smbd[17326]: * Starting SMB/CIFS daemon smbd
Dec 06 13:31:32 ubuntu3 smbd[17326]: ...done.
Dec 06 13:31:32 ubuntu3 systemd[1]: Started LSB: start Samba SMB/CIFS
daemon (smbd).
donnie@ubuntu3:/etc/apparmor.d$

Implementing Mandatory Access Control with SELinux and AppArmor Chapter 7

[227]

And, it works. The two Samba profiles are in enforce mode, and Samba finally starts up just
fine.

The odd part about this is that I had this same problem with both Ubuntu 16.04 and Ubuntu
17.10. So, the bug has been there for a long time, and it would seem that the Ubuntu folk
either don't know about it or don't care to fix it. In a way, I hope that it never does get fixed
because getting it fixed would ruin a perfectly good training demo for me.

Summary
In this chapter, we looked at the basic principles of Mandatory Access Control and
compared two different Mandatory Access Control systems. We saw what SELinux and
AppArmor are and how they can help safeguard your systems from malicious actors. We
then looked at the basics of how to use them and the basics of how to troubleshoot them.
We also saw that even though they're both meant to do the same job, they work in vastly
different ways.

Whether you're working with AppArmor or with SELinux, you'll always want to
thoroughly test a new system in either complain or permissive mode before you put it into
production. Make sure that what you want to protect gets protected, while at the same
time, what you want to allow gets allowed. After you place the machine into production,
don't just assume that you can automatically change a policy setting every time you see a
policy violation occur. It could be that nothing is wrong with your Mandatory Access
Control setup and that MAC is just doing its job in protecting you from the bad guys.

There's a lot more to both of these topics than we can cover here. Hopefully, though, I've
given you enough to whet your appetite and enough to help you out in your day-to-day
duties.

In the next chapter, we'll look at scanning, auditing, and hardening. I'll see you there.

8
Scanning, Auditing, and

Hardening
A common misconception is that Linux users never need to worry about malware. Yes, it's
true that Linux is much more resistant to viruses than Windows is. But, viruses are only one
type of malware, and other types of malware can be planted on Linux machines. And, if
you're running a server that will share files with Windows users, you'll want to make sure
that you don't share any virus-infected files with them.

While Linux system log files are nice, they don't always give a good picture of who does
what or who accesses what. It could be that either intruders or insiders are trying to access
data that they're not authorized to access. What we really want is a good auditing system to
alert us when people do things that they're not supposed to do.

And then, there's the issue of regulatory compliance. Your organization may have to deal
with one or more regulatory bodies that dictate how you harden your servers against
attacks. If you're not in compliance, you could be fined or put out of business.

Fortunately, we have ways to deal with all of these issues, and they aren't all that
complicated.

In this chapter, we'll cover the following topics:

Installing and updating ClamAV and maldet
Scanning with ClamAV and maldet
SELinux considerations
Scanning for rootkits with Rootkit Hunter
Controlling the auditd daemon
Creating audit rules

Scanning, Auditing, and Hardening Chapter 8

[229]

Using the ausearch and aureport utilities to search the audit logs for problems
oscap, the command-line utility in order to manage and apply OpenSCAP
policies
OpenSCAP Workbench, the GUI utility to manage and apply OpenSCAP policies
OpenSCAP policy files and the compliance standards that each of them is
designed to meet
Applying a policy during operating system installation

Installing and updating ClamAV and maldet
Although we don't have to worry much about viruses infecting our Linux machines, we do
need to worry about sharing infected files with Windows users. ClamAV is a Free Open
Source Software (FOSS) antivirus solution that can either run as a standalone program or
can be integrated with a mail server daemon, such as Postfix. It's a traditional antivirus
scanner that works pretty much the same as the antivirus program on your typical
Windows workstation. The included freshclam utility allows you to update virus
signatures.

Linux Malware Detect, which you'll often see abbreviated as either LMD or maldet, is
another FOSS antivirus program that can work alongside ClamAV. (To save typing, I'll just
refer to it as LMD from now on.) As far as I know, it's not available in the repositories of any
Linux distro, but it's still simple enough to install and configure. One of its features is that it
automatically generates malware detection signatures when it sees malware on the
network's edge intrusion detection systems. End users can also submit their own malware
samples. When you install it, you'll get a systemd service that's already enabled and a cron
job that will periodically update both the malware signatures and the program itself. It
works with the Linux kernel's inotify capability to automatically monitor directories for files
that have changed. The procedure to install it is pretty much the same for any systemd-
based Linux distro.

You can get all the nitty-gritty details about Linux Malware Detect at:
https:/ /www. rfxn. com/ projects/ linux- malware- detect/ .

The reason that we're installing ClamAV and LMD together is that, as the LMD folk freely
admit, the ClamAV scan engine gives a much better performance when scanning large file
sets. Also, by having them both together, ClamAV can use the LMD malware signatures as
well as its own malware signatures.

https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/
https://www.rfxn.com/projects/linux-malware-detect/

Scanning, Auditing, and Hardening Chapter 8

[230]

Installing ClamAV and maldet
We'll begin by installing ClamAV. (It's in the normal repository for Ubuntu, but not for
CentOS. For CentOS, you'll need to install the EPEL repository, as I showed you how to do
in Chapter 1, Running Linux in a Virtual Environment.) We'll also install Wget, which we'll
use to download LMD.

The following command will help you install ClamAV and Wget on Ubuntu:

donnie@ubuntu3:~$ sudo apt install clamav wget

The following command will help you install ClamAV and Wget on CentOS:

[donnie@localhost ~]$ sudo yum install clamav clamav-update wget

For Ubuntu, the clamav package contains everything you need. For CentOS, you'll need to
also install clamav-update in order to obtain virus updates.

The rest of the steps will be the same for either virtual machine.

Next, you'll download and install LMD. Here, you'll want to do something that I rarely tell
people to do. That is, you'll want to log in to the root user shell. The reason is that although
the LMD installer works fine with sudo, you'll end up with the program files being owned
by the user who performed the installation, instead of by the root user. Performing the
installation from the root user's shell saves us the trouble of tracking down those files and
changing ownership. So, download the file as follows:

sudo su -
wget http://www.rfxn.com/downloads/maldetect-current.tar.gz

You'll now have the file in the root user's home directory. Now, extract the archive, enter
the resultant directory, and run the installer. Once the installer finishes, copy the README
file to your own home directory so that you can have it for ready reference. (This README
file is the documentation for LMD.) Then, exit from the root user's shell back to your own
shell:

tar xzvf maldetect-current.tar.gz
cd maldetect-1.6.2/

root@ubuntu3:~/maldetect-1.6.2# ./install.sh
Created symlink from /etc/systemd/system/multi-
user.target.wants/maldet.service to /usr/lib/systemd/system/maldet.service.
update-rc.d: error: initscript does not exist: /etc/init.d/maldet
Linux Malware Detect v1.6
 (C) 2002-2017, R-fx Networks <proj@r-fx.org>

Scanning, Auditing, and Hardening Chapter 8

[231]

 (C) 2017, Ryan MacDonald <ryan@r-fx.org>
This program may be freely redistributed under the terms of the GNU GPL

installation completed to /usr/local/maldetect
config file: /usr/local/maldetect/conf.maldet
exec file: /usr/local/maldetect/maldet
exec link: /usr/local/sbin/maldet
exec link: /usr/local/sbin/lmd
cron.daily: /etc/cron.daily/maldet
maldet(22138): {sigup} performing signature update check...
maldet(22138): {sigup} local signature set is version 2017070716978
maldet(22138): {sigup} new signature set (201708255569) available
maldet(22138): {sigup} downloading
https://cdn.rfxn.com/downloads/maldet-sigpack.tgz
maldet(22138): {sigup} downloading
https://cdn.rfxn.com/downloads/maldet-cleanv2.tgz
maldet(22138): {sigup} verified md5sum of maldet-sigpack.tgz
maldet(22138): {sigup} unpacked and installed maldet-sigpack.tgz
maldet(22138): {sigup} verified md5sum of maldet-clean.tgz
maldet(22138): {sigup} unpacked and installed maldet-clean.tgz
maldet(22138): {sigup} signature set update completed
maldet(22138): {sigup} 15218 signatures (12485 MD5 | 1954 HEX | 779 YARA |
0 USER)

root@ubuntu3:~/maldetect-1.6.2# cp README /home/donnie

root@ubuntu3:~/maldetect-1.6.2# exit
logout
donnie@ubuntu3:~$

As you can see, the installer automatically creates the symbolic link that enables the maldet
service, and it also automatically downloads and installs the newest malware signatures.

Configuring maldet
If you try to start the maldet service at this point, it will fail. To make it work, you need to
configure the directories that you want it to automatically monitor and scan. To do this,
you'll add the directories to the /usr/local/maldetect/monitor_paths file. For now, I
just want to monitor the /home and /root directories, so my monitor_paths file looks like
this:

/home
/root

Scanning, Auditing, and Hardening Chapter 8

[232]

After you save the file, you'll be able to start the maldet daemon:

sudo systemctl start maldet

You can add more directories to the monitor_paths file at any time, but remember to
restart the maldet daemon any time that you do, in order to read in the new additions.

The configuration file for LMD is /usr/local/maldetect/conf.maldet. It's very well-
documented with well-written comments for every configuration item, so you shouldn't
have any trouble figuring it out. For now, we're only going to make a few configuration
changes.

At the top of the file, enable email alerts and set your username as the email address. The
two lines should now look something like this:

email_alert="1"
email_addr="donnie"

LMD isn't already configured to move suspicious files to the quarantine folder, and we
want to make it do that. Open the conf.maldet file in your text editor and look for the line
that says:

quarantine_hits="0"

Change the previous line to the following line:

quarantine_hits="1"

You'll see a few other quarantine actions that you can configure, but for now, this is all we
need. After you save the file, restart maldet:

sudo systemctl restart maldet

The new changes will now be in effect.

Updating ClamAV and maldet
The good news for busy admins is that you don't have to do anything to keep either of these
programs updated. Both of them run with a cron job that gets created automatically and
that does the updates for us. To prove that ClamAV is getting updated, we can look in the
system log file:

Dec 8 20:02:09 localhost freshclam[22326]: ClamAV update process started at
Fri Dec 8 20:02:09 2017
Dec 8 20:02:29 localhost freshclam[22326]: Can't query

Scanning, Auditing, and Hardening Chapter 8

[233]

current.cvd.clamav.net
Dec 8 20:02:29 localhost freshclam[22326]: Invalid DNS reply. Falling back
to HTTP mode.
Dec 8 20:02:29 localhost freshclam[22326]: Reading CVD header (main.cvd):
Dec 8 20:02:35 localhost freshclam[22326]: OK
Dec 8 20:02:47 localhost freshclam[22326]: Downloading main-58.cdiff [100%]
Dec 8 20:03:19 localhost freshclam[22326]: main.cld updated (version: 58,
sigs: 4566249, f-level: 60, builder: sigmgr)
. . .
. . .
Dec 8 20:04:45 localhost freshclam[22326]: Downloading daily.cvd [100%]
Dec 8 20:04:53 localhost freshclam[22326]: daily.cvd updated (version:
24111, sigs: 1799769, f-level: 63, builder: neo)
Dec 8 20:04:53 localhost freshclam[22326]: Reading CVD header
(bytecode.cvd):
Dec 8 20:04:54 localhost freshclam[22326]: OK
Dec 8 20:04:54 localhost freshclam[22326]: Downloading bytecode-279.cdiff
[100%]
Dec 8 20:04:55 localhost freshclam[22326]: Downloading bytecode-280.cdiff
[100%]
Dec 8 20:04:55 localhost freshclam[22326]: Downloading bytecode-281.cdiff
[100%]
Dec 8 20:04:56 localhost freshclam[22326]: Downloading bytecode-282.cdiff
[100%]
. . .
. . .

You'll see these same entries in either the Ubuntu logs or the CentOS logs. However, there
is a difference between how the updates get run automatically.

In the /etc/clamav/freshclam.conf file of your Ubuntu machine, you'll see the
following lines at the end:

Check for new database 24 times a day
Checks 24
DatabaseMirror db.local.clamav.net
DatabaseMirror database.clamav.net

So essentially, this means that on Ubuntu, ClamAV will be checking for updates every hour.

On your CentOS machine, you'll see a clamav-update cron job in the /etc/cron.d
directory that looks like this:

Adjust this line...
MAILTO=root

It is ok to execute it as root; freshclam drops privileges and becomes

Scanning, Auditing, and Hardening Chapter 8

[234]

user 'clamupdate' as soon as possible
0 */3 * * * root /usr/share/clamav/freshclam-sleep

The */3 in the second column from the left indicates that ClamAV will check for updates
every 3 hours. You can change that if you like, but you'll also need to change the setting in
the /etc/sysconfig/freshclam file. Let's say that you want for CentOS to also check for
ClamAV updates every hour. In the cron job file, change the */3 to *. (You don't need to do
*/1 because the asterisk by itself in that position already indicates that the job will run
every hour.) Then, in the /etc/sysconfig/freshclam file, look for this line:

FRESHCLAM_MOD=

Uncomment that line and add the number of minutes that you want between updates. To
set it to 1 hour, in order to match the cron job, it will look like this:

FRESHCLAM_MOD=60

To prove that maldet is getting updated, you can look in its own log files in the
/usr/local/maldetect/logs/ directory. In the event_log file, you'll see the following
code:

Dec 06 22:06:14 localhost maldet(3728): {sigup} performing signature update
check...
Dec 06 22:06:14 localhost maldet(3728): {sigup} local signature set is
version 2017070716978
Dec 06 22:07:13 localhost maldet(3728): {sigup} downloaded
https://cdn.rfxn.com/downloads/maldet.sigs.ver
Dec 06 22:07:13 localhost maldet(3728): {sigup} new signature set
(201708255569) available
Dec 06 22:07:13 localhost maldet(3728): {sigup} downloading
https://cdn.rfxn.com/downloads/maldet-sigpack.tgz
. . .
. . .
Dec 06 22:07:43 localhost maldet(3728): {sigup} unpacked and installed
maldet-clean.tgz
Dec 06 22:07:43 localhost maldet(3728): {sigup} signature set update
completed
Dec 06 22:07:43 localhost maldet(3728): {sigup} 15218 signatures (12485 MD5
| 1954 HEX | 779 YARA | 0 USER)
Dec 06 22:14:55 localhost maldet(4070): {scan} signatures loaded: 15218
(12485 MD5 | 1954 HEX | 779 YARA | 0 USER)

Scanning, Auditing, and Hardening Chapter 8

[235]

In the /usr/local/maldetect/conf.maldet file, you'll see these two lines, but with
some comments in between them:

autoupdate_signatures="1"

autoupdate_version="1"

Not only will LMD automatically update its malware signatures, it will also ensure that you
have the latest version of LMD itself.

Scanning with ClamAV and maldet
LMD's maldet daemon constantly monitors the directories that you specify in the
/usr/local/maldetect/monitor_paths file. When it finds a file that it suspects might
be malware, it automatically takes whatever action that you specified in the conf.maldet
file. To see how this works, I'll create a simulated malware file in my home directory.
Fortunately, that's easier than it sounds, because we have a website that will help us out.

EICAR, which used to be known by its full name of European Institute
for Computer Antivirus Research, provides a virus signature that you can
include in a plain text file. You can get it at: http:/ /www. eicar. org/ 86-0-
Intended- use. html.

To create the simulated virus file, go to the page that I've listed in the
preceding link.

Scroll down toward the bottom of the page until you see this line of text within a text box:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Copy that line of text and insert it into a text file that you'll save to your home directory of
either virtual machine. (You can name it anything you want, but I'll just name mine
testing.txt.) Wait just a few moments, and you should see the file disappear. Then, look
in the /usr/local/maldetect/logs/event_log file to verify that the LMD moved the
file to quarantine:

Dec 09 19:03:43 localhost maldet(7192): {quar} malware quarantined from
'/home/donnie/testing.txt' to
'/usr/local/maldetect/quarantine/testing.txt.89513558'

There's still a bit more to LMD than what I can show you here. However, you can read all
about it in the README file that comes with it.

http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html

Scanning, Auditing, and Hardening Chapter 8

[236]

SELinux considerations
It used to be that doing an antivirus scan on a Red Hat-type system would trigger an
SELinux alert. But, in the course of proofing this chapter, the scans all worked as they
should, and SELinux never bothered me even once. So, it would appear that that problem is
now fixed.

If you ever do generate any SELinux alerts with your virus scans, all you need to do to fix it
is to change one Boolean:

[donnie@localhost ~]$ getsebool -a | grep 'virus'
antivirus_can_scan_system --> off
antivirus_use_jit --> off
[donnie@localhost ~]$

What interests us here is the antivirus_can_scan_system Boolean, which is off by
default. To turn it on to enable virus scans, just follow this:

[donnie@localhost ~]$ sudo setsebool -P antivirus_can_scan_system on
[sudo] password for donnie:

[donnie@localhost ~]$ getsebool antivirus_can_scan_system
antivirus_can_scan_system --> on
[donnie@localhost ~]$

That should fix any SELinux-related scan problems that you may have. But, as things stand
now, you probably won't need to worry about it.

Scanning for rootkits with Rootkit Hunter
Rootkits are exceedingly nasty pieces of malware that can definitely ruin your day. They
can listen for commands from their masters, steal sensitive data and send it to their masters,
or provide an easy-access back door for their masters. They're designed to be stealthy, with
the ability to hide themselves from plain view. Sometimes, they'll replace utilities such as ls
or ps with their own trojaned versions that will show all files or processes on the system
except for the ones that are associated with the rootkit. Rootkits can infect any operating
system, even our beloved Linux.

In order to plant a rootkit, an attacker has to have already gained administrative privileges
on a system. This is one of the many reasons why I always cringe when I see people doing
all of their work from the root user's shell and why I'm a firm advocate of using sudo
whenever possible. I mean, really, why should we make it easy for the bad guys?

Scanning, Auditing, and Hardening Chapter 8

[237]

Several years ago, back in the dark days of Windows XP, Sony Music got
into a bit of trouble when someone discovered that they had planted a
rootkit on their music CDs. They didn't mean to do anything malicious,
but only wanted to stop people from using their computers to make illegal
copies. Of course, most people ran Windows XP with an administrator
account, which made it really easy for the rootkit to infect their computers.
Windows users still mostly run with administrator accounts, but they at
least now have User Access Control to help mitigate these types of
problems.

There are a couple of different programs that scan for rootkits, and both are used pretty
much the same way. The one that we'll look at now is named, Rootkit Hunter.

Installing and updating Rootkit Hunter
For Ubuntu, Rootkit Hunter is in the normal repository. For CentOS, you'll need to install
the EPEL repository, as I showed you how to do in Chapter 1, Running Linux in a Virtual
Environment. For both Linux distros, the package name is rkhunter.

For Ubuntu:

sudo apt install rkhunter

For CentOS:

sudo yum install rkhunter

After it's installed, you can look at its options with:

man rkhunter

Easy, right?

The next thing you'll need to do is to update the rootkit signatures, using the --update
option:

[donnie@localhost ~]$ sudo rkhunter --update
[Rootkit Hunter version 1.4.4]

Checking rkhunter data files...
 Checking file mirrors.dat [Updated]
 Checking file programs_bad.dat [Updated]
 Checking file backdoorports.dat [No update]
 Checking file suspscan.dat [Updated]

Scanning, Auditing, and Hardening Chapter 8

[238]

 Checking file i18n/cn [No update]
 Checking file i18n/de [Updated]
 Checking file i18n/en [Updated]
 Checking file i18n/tr [Updated]
 Checking file i18n/tr.utf8 [Updated]
 Checking file i18n/zh [Updated]
 Checking file i18n/zh.utf8 [Updated]
 Checking file i18n/ja [Updated]
[donnie@localhost ~]$

Now, we're ready to scan.

Scanning for rootkits
To run your scan, use the -c option. (That's -c for check.) Be patient, because it will take a
while:

sudo rkhunter -c

When you run the scan in this manner, Rootkit Hunter will periodically stop and ask you to
hit the Enter key to continue. When the scan completes, you'll find an rkhunter.log file in
the /var/log directory.

To have Rootkit Hunter automatically run as a cron job, you'll want to use the --cronjob
option, which will cause the program to run all the way through without prompting you to
keep hitting the Enter key. You might also want to use the --rwo option, which will cause
the program to only report warnings, instead of also reporting on everything that's good.
From the command line, the command would look like this:

sudo rkhunter -c --cronjob --rwo

To create a cron job that will automatically run Rootkit Hunter on a nightly basis, open the
crontab editor for the root user:

sudo crontab -e -u root

Let's say that you want to run Rootkit Hunter every night at 20 minutes past 10. Enter this
into the crontab editor:

20 22 * * * /usr/bin/rkhunter -c --cronjob --rwo

Scanning, Auditing, and Hardening Chapter 8

[239]

Since cron only works with 24 hour clock time, you'll have to express 10:00 P.M. as 22. (Just
add 12 to the normal P.M. clock times that you're used to using.) The three asterisks mean,
respectively, that the job will run every day of the month, every month, and every day of
the week. You'll need to list the entire path for the command, or else cron won't be able to
find it.

You'll find more options that might interest you in the rkhunter man page, but this should
be enough to get you going with it.

Controlling the auditd daemon
So, you have a directory full of super-secret files that only a very few people need to see,
and you want to know when unauthorized people try to see them. Or, maybe you want to
see when a certain file gets changed. Or, maybe you want to see when people log into the
system and what they're doing once they do log in. For all this and more, you have the
auditd system. It's a really cool system, and I think that you'll like it.

One of the beauties of auditd is that it works at the Linux kernel level,
rather than at the user-mode level. This makes it much harder for attackers
to subvert.

On Red Hat-type systems, auditd comes installed and enabled by default. So, you'll find it
already there on your CentOS machine. On Ubuntu, it isn't already installed, so you'll have
to do it yourself:

sudo apt install auditd

On Ubuntu, you can control the auditd daemon with the normal systemctl commands.
So, if you need to restart auditd to read in a new configuration, you can do that with the
following:

sudo systemctl restart auditd

On CentOS 7, for some reason that I don't understand, the normal systemctl commands
don't work with auditd. (For all other daemons, they do.) So, on your CentOS 7 machine,
you'll restart the auditd daemon with the old-fashioned service command, like so:

sudo service auditd restart

Scanning, Auditing, and Hardening Chapter 8

[240]

Other than this minor difference, everything I tell you about auditd from here on will apply
to both Ubuntu and CentOS.

Creating audit rules
Okay, let's start with something simple and work our way up to something awesome. First,
let's check to see whether any audit rules are in effect:

[donnie@localhost ~]$ sudo auditctl -l
[sudo] password for donnie:
No rules
[donnie@localhost ~]$

As you can see, the auditctl command is what we use to manage audit rules. The -l
option lists the rules.

Auditing a file for changes
Now, let's say that we want to see when someone changes the /etc/passwd file. (The
command that we'll use will look a bit daunting, but I promise that it will make sense once
we break it down.) Look at the following code:

[donnie@localhost ~]$ sudo auditctl -w /etc/passwd -p wa -k passwd_changes
[sudo] password for donnie:

[donnie@localhost ~]$ sudo auditctl -l
-w /etc/passwd -p wa -k passwd_changes
[donnie@localhost ~]$

Here's the breakdown:

-w: This stands for where, and it points to the object that we want to monitor. In
this case, it's /etc/passwd.
-p: This indicates the object's permissions that we want to monitor. In this case,
we're monitoring to see when anyone either tries to (w)rite to the file, or tries to
make (a)ttribute changes. (The other two permissions that we can audit are (r)ead
and e(x)ecute.)
-k: The k stands for key, which is just auditd's way of assigning a name to a rule.
So, passwd_changes is the key, or the name, of the rule that we're creating.

Scanning, Auditing, and Hardening Chapter 8

[241]

The auditctl -l command shows us that the rule is indeed there.

Now, the slight problem with this is that the rule is only temporary and will disappear
when we reboot the machine. To make it permanent, we need to create a custom rules file in
the /etc/audit/rules.d/ directory. Then, when you restart the auditd daemon, the
custom rules will get inserted into the /etc/audit/audit.rules file. Because the
/etc/audit/ directory can only be accessed by someone with root privileges, I'll just open
the file by listing the entire path to the file, rather than trying to enter the directory:

sudo less /etc/audit/audit.rules

There's not a whole lot in this default file:

This file is automatically generated from /etc/audit/rules.d
-D
-b 8192
-f 1

Here's the breakdown for this file:

-D: This will cause all rules and watches that are currently in effect to be deleted,
so that we can start from a clean slate. So, if I were to restart the auditd daemon
right now, it would read this audit.rules file, which would delete the rule that
I just now created.
-b 8192: This sets the number of outstanding audit buffers that we can have
going at one time. If all of the buffers get full, the system can't generate any more
audit messages.
-f 1: This sets the failure mode for critical errors, and the value can be either 0, 1,
or 2. A -f 0 would set the mode to silent, meaning that auditd wouldn't do
anything about critical errors. A -f 1, as we see here, tells auditd to only report
the critical errors, and a -f 2 would cause the Linux kernel to go into panic
mode. According to the auditctl man page, anyone in a high-security
environment would likely want to change this to -f 2. For our purposes though,
-f1 works.

You could use your text editor to create a new rules file in the /etc/audit/rules.d/
directory. Or, you could just redirect the auditctl -l output into a new file, like this:

[donnie@localhost ~]$ sudo sh -c "auditctl -l >
/etc/audit/rules.d/custom.rules"
[donnie@localhost ~]$ sudo service auditd restart

Scanning, Auditing, and Hardening Chapter 8

[242]

Since the Bash shell doesn't allow me to directly redirect information into a file in the /etc
directory, even with sudo, I have to use the sudo sh -c command in order to execute the
auditctl command. After restarting the auditd daemon, our audit.rules file now looks
like this:

This file is automatically generated from /etc/audit/rules.d
-D
-b 8192
-f 1

-w /etc/passwd -p wa -k passwd_changes

Now, the rule will take effect every time the machine gets rebooted, and every time that you
manually restart the auditd daemon.

Auditing a directory
Vicky and Cleopatra, my solid gray kitty and my gray-and-white tabby kitty, have some
supersensitive secrets that they need to safeguard. So, I created the secretcats group and
added them to it. I then created the secretcats shared directory and set the access
controls on it as I showed you how to do in Chapter 6, Access Control Lists and Shared
Directory Management:

[donnie@localhost ~]$ sudo groupadd secretcats
[sudo] password for donnie:

[donnie@localhost ~]$ sudo usermod -a -G secretcats vicky
[donnie@localhost ~]$ sudo usermod -a -G secretcats cleopatra

[donnie@localhost ~]$ sudo mkdir /secretcats
[donnie@localhost ~]$ sudo chown nobody:secretcats /secretcats/
[donnie@localhost ~]$ sudo chmod 3770 /secretcats/

[donnie@localhost ~]$ ls -ld /secretcats/
drwxrws--T. 2 nobody secretcats 6 Dec 11 14:47 /secretcats/
[donnie@localhost ~]$

Vicky and Cleopatra want to be absolutely sure that nobody gets into their stuff, so they
requested that I set up an auditing rule for their directory:

[donnie@localhost ~]$ sudo auditctl -w /secretcats/ -k secretcats_watch
[sudo] password for donnie:

[donnie@localhost ~]$ sudo auditctl -l

Scanning, Auditing, and Hardening Chapter 8

[243]

-w /etc/passwd -p wa -k passwd_changes
-w /secretcats -p rwxa -k secretcats_watch
[donnie@localhost ~]$

As before, the -w denotes what we want to monitor, and the -k denotes the name of the
audit rule. This time, I left out the -p option because I want to monitor for every type of
access. In other words, I want to monitor for any read, write, attribute change, or execute
actions. (Because this is a directory, the execute action happens when somebody tries to cd
into the directory.) You can see in the auditctl -l output that by leaving out the -p, we
will now monitor for everything. However, let's say that I only want to monitor for when
someone tries to cd into this directory. Instead, I could have made the rule look like this:

sudo auditctl -w /secretcats/ -p x -k secretcats_watch

Easy enough so far, right? Let's now look at something a bit more complex.

Auditing system calls
Creating rules to monitor when someone performs a certain action isn't hard, but the
command syntax is a bit trickier than what we've seen so far. With this rule, we're going to
be alerted every time that Charlie either tries to open a file or tries to create a file:

[donnie@localhost ~]$ sudo auditctl -a always,exit -F arch=b64 -S openat -F
auid=1006
[sudo] password for donnie:

[donnie@localhost ~]$ sudo auditctl -l
-w /etc/passwd -p wa -k passwd_changes
-w /secretcats -p rwxa -k secretcats_watch
-a always,exit -F arch=b64 -S openat -F auid=1006
[donnie@localhost ~]$

Here's the breakdown:

-a always,exit: Here, we have the action and the list. The exit part means
that this rule will be added to the system call exit list. Whenever the operating
system exits from a system call, the exit list will be used to determine if an audit
event needs to be generated. The always part is the action, which means that an
audit record for this rule will always be created on exit from the specified system
call. Note that the action and list parameters have to be separated by a comma.

Scanning, Auditing, and Hardening Chapter 8

[244]

-F arch=b64: The -F option is used to build a rule field, and we see two rule
fields in this command. This first rule field specifies the machine's CPU
architecture. The b64 means that the computer is running with an x86_64 CPU.
(Whether it's Intel or AMD doesn't matter.) Considering that 32-bit machines are
dying off and that Sun SPARC and PowerPC machines aren't all that common,
b64 is what you'll now mostly see.
-S openat: The -S option specifies the system call that we want to monitor.
openat is the system call that either opens or creates a file.
-F auid=1006: This second audit field specifies the user ID number of the user
that we want to monitor. (Charlie's user ID number is 1006.)

A complete explanation about system calls, or syscalls, is a bit too esoteric
for our present purpose. For now, suffice it to say that a syscall happens
whenever a user issues a command that requests that the Linux kernel
provide a service. If you're so inclined, you can read more about syscalls
at: https:/ / blog. packagecloud. io/ eng/ 2016/ 04/05/ the- definitive-
guide- to- linux- system- calls/ .

What I've presented here are just a few of the many things that you can do with auditing
rules. To see more examples, check out the auditctl man page:

man auditctl

So, now you're wondering, "Now that I have these rules, how do I know when someone tries to
violate them?" As always, I'm glad that you asked.

Using ausearch and aureport
The auditd daemon logs events to the /var/log/audit/audit.log file. Although you
could directly read the file with something like less, you really don't want to. The
ausearch and aureport utilities will help you translate the file into a language that makes
some sort of sense.

https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/

Scanning, Auditing, and Hardening Chapter 8

[245]

Searching for file change alerts
Let's start by looking at the rule that we created that will alert us whenever a change is
made to the /etc/passwd file:

sudo auditctl -w /etc/passwd -p wa -k passwd_changes

Now, let's make a change to the file and look for the alert message. Rather than add another
user, since I'm running out of cats whose names I can use, I'll just use the chfn utility to
add contact information to the comment field for Cleopatra's entry:

[donnie@localhost etc]$ sudo chfn cleopatra
Changing finger information for cleopatra.
Name []: Cleopatra Tabby Cat
Office []: Donnie's back yard
Office Phone []: 555-5555
Home Phone []: 555-5556

Finger information changed.
[donnie@localhost etc]

I'll now use ausearch to look for any audit messages that this event may have generated:

[donnie@localhost ~]$ sudo ausearch -i -k passwd_changes

type=CONFIG_CHANGE msg=audit(12/11/2017 13:06:20.665:11393) : auid=donnie
ses=842 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
op=add_rule key=passwd_changes li
st=exit res=yes

type=CONFIG_CHANGE msg=audit(12/11/2017 13:49:15.262:11511) : auid=donnie
ses=842 op=updated_rules path=/etc/passwd key=passwd_changes list=exit
res=yes
[donnie@localhost ~]$

Here's the breakdown:

-i: This takes any numeric data and, whenever possible, converts it into text. In
this case, it takes user ID numbers and converts them to the actual username,
which shows up here as auid=donnie. If I were to leave the -i out, the user
information would instead show up as auid=1000, which is my user ID number.
-k passwd_changes: This specifies the key, or the name, of the audit rule for
which we want to see audit messages.

Scanning, Auditing, and Hardening Chapter 8

[246]

You can see that there are two parts to this output. The first part just shows when I created
the audit rule, so we're not interested in that. In the second part, you can see when I
triggered the rule, but it doesn't show how I triggered it. So, let's use aureport to see if it
will give us a bit more of a clue:

[donnie@localhost ~]$ sudo aureport -i -k | grep 'passwd_changes'
1. 12/11/2017 13:06:20 passwd_changes yes ? donnie 11393
2. 12/11/2017 13:49:15 passwd_changes yes ? donnie 11511
3. 12/11/2017 13:49:15 passwd_changes yes /usr/bin/chfn donnie 11512
4. 12/11/2017 14:54:11 passwd_changes yes /usr/sbin/usermod donnie 11728
5. 12/11/2017 14:54:25 passwd_changes yes /usr/sbin/usermod donnie 11736
[donnie@localhost ~]$

What's curious is that with ausearch, you have to specify the name, or key, of the audit
rule that interests you after the -k option. With aureport, the -k option means that you
want to look at all log entries that have to do with all audit rule keys. To see log entries for a
specific key, just pipe the output into grep. The -i option does the same thing that it does
for ausearch.

As you can see, aureport parses the cryptic language of the audit.log file into plain
language that's easier to understand. I wasn't sure about what I had done to generate events
1 and 2, so I looked in the /var/log/secure file to see if I could find out. I saw these two
entries for those times:

Dec 11 13:06:20 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/donnie ;
USER=root ; COMMAND=/sbin/auditctl -w /etc/passwd -p wa -k passwd_changes
. . .
. . .
Dec 11 13:49:24 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/donnie ;
USER=root ; COMMAND=/sbin/ausearch -i -k passwd_changes

So, event 1 was from when I initially created the audit rule, and event 2 happened when I
did an ausearch operation.

I must confess that the events in lines 4 and 5 are a bit of a mystery. Both were created when
I invoked the usermod command, and both of them correlate to the secure log entries where
I added Vicky and Cleopatra to the secretcats group:

Dec 11 14:54:11 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/donnie ;
USER=root ; COMMAND=/sbin/usermod -a -G secretcats vicky
Dec 11 14:54:11 localhost usermod[14865]: add 'vicky' to group 'secretcats'
Dec 11 14:54:11 localhost usermod[14865]: add 'vicky' to shadow group
'secretcats'
Dec 11 14:54:25 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/donnie ;
USER=root ; COMMAND=/sbin/usermod -a -G secretcats cleopatra

Scanning, Auditing, and Hardening Chapter 8

[247]

Dec 11 14:54:25 localhost usermod[14871]: add 'cleopatra' to group
'secretcats'
Dec 11 14:54:25 localhost usermod[14871]: add 'cleopatra' to shadow group
'secretcats'

The strange part about this is that adding a user to a secondary group doesn't modify the
passwd file. So, I really don't know why the rule got triggered to create the events in lines 4
and 5.

This leaves us with the event in line 3, which is where I used chfn to actually modify the
passwd file. Here's the secure log entry for that:

Dec 11 13:48:49 localhost sudo: donnie : TTY=pts/1 ; PWD=/etc ; USER=root
; COMMAND=/bin/chfn cleopatra

So, out of all of these events, the one in line 3 is the only one where the /etc/passwd file
actually got modified.

The /var/log/secure file that I keep mentioning here is on Red Hat-
type operating systems, such as CentOS. On your Ubuntu machine, you'll
see the /var/log/auth.log file, instead.

Searching for directory access rule violations
In our next scenario, we created a shared directory for Vicky and Cleopatra and created an
audit rule for it that looks like this:

sudo auditctl -w /secretcats/ -k secretcats_watch

So, all accesses or attempted accesses to this directory should trigger an alert. First, let's
have Vicky enter the /secretcats directory and run an ls -l command:

[vicky@localhost ~]$ cd /secretcats
[vicky@localhost secretcats]$ ls -l
total 4
-rw-rw-r--. 1 cleopatra secretcats 31 Dec 12 11:49 cleopatrafile.txt
[vicky@localhost secretcats]$

Scanning, Auditing, and Hardening Chapter 8

[248]

We see that Cleopatra has already been there and has created a file. (We'll get back to that in
a moment.) When an event triggers an auditd rule, it often creates multiple records in the
/var/log/audit/audit.log file. If you study through each record for an event, you'll see
that each one covers a different aspect of that event. When I do an ausearch command, I
see a total of five records just from that one ls -l operation. For the sake of saving space,
I'll just put the first one and the last one here:

sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:15:35.447:14077) : proctitle=ls --
color=auto -l
type=PATH msg=audit(12/12/2017 12:15:35.447:14077) : item=0 name=.
inode=33583041 dev=fd:01 mode=dir,sgid,sticky,770 ouid=nobody
ogid=secretcats rdev=00:00 obj=unconfined_u:object_r:default_t:s0
objtype=NORMAL
type=CWD msg=audit(12/12/2017 12:15:35.447:14077) : cwd=/secretcats
type=SYSCALL msg=audit(12/12/2017 12:15:35.447:14077) : arch=x86_64
syscall=openat success=yes exit=3 a0=0xffffffffffffff9c a1=0x2300330
a2=O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC a3=0x0 items=1 ppid=10805
pid=10952 auid=vicky uid=vicky gid=vicky euid=vicky suid=vicky fsuid=vicky
egid=vicky sgid=vicky fsgid=vicky tty=pts0 ses=1789 comm=ls exe=/usr/bin/ls
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=secretcats_watch
. . .
. . .
type=PROCTITLE msg=audit(12/12/2017 12:15:35.447:14081) : proctitle=ls --
color=auto -l
type=PATH msg=audit(12/12/2017 12:15:35.447:14081) : item=0
name=cleopatrafile.txt inode=33583071 dev=fd:01 mode=file,664
ouid=cleopatra ogid=secretcats rdev=00:00
obj=unconfined_u:object_r:default_t:s0 objtype=NORMAL
type=CWD msg=audit(12/12/2017 12:15:35.447:14081) : cwd=/secretcats
type=SYSCALL msg=audit(12/12/2017 12:15:35.447:14081) : arch=x86_64
syscall=getxattr success=no exit=ENODATA(No data available)
a0=0x7fff7c266e60 a1=0x7f0a61cb9db0 a2=0x0 a3=0x0 items=1 ppid=10805
pid=10952 auid=vicky uid=vicky gid=vicky euid=vicky suid=vicky fsuid=vicky
egid=vicky sgid=vicky fsgid=vicky tty=pts0 ses=1789 comm=ls exe=/usr/bin/ls
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=secretcats_watch

In both records, you see the action that was taken (ls -l), and information about the
person—or, cat, in this case—that took the action. Since this is a CentOS machine, you also
see SELinux context information. In the second record, you also see the name of the file that
Vicky saw when she did the ls command.

Scanning, Auditing, and Hardening Chapter 8

[249]

Next, let's say that that sneaky Charlie guy logs in and tries to get into the
/secretcats directory:

[charlie@localhost ~]$ cd /secretcats
-bash: cd: /secretcats: Permission denied
[charlie@localhost ~]$ ls -l /secretcats
ls: cannot open directory /secretcats: Permission denied
[charlie@localhost ~]$

Charlie isn't a member of the secretcats group and doesn't have permission to go into the
secretcats directory. So, he should trigger an alert message. Well, he actually triggered
one that consists of four records, and I'll again just list the first and the last:

sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14152) : proctitle=ls --
color=auto -l /secretcats
type=PATH msg=audit(12/12/2017 12:32:04.341:14152) : item=0
name=/secretcats inode=33583041 dev=fd:01 mode=dir,sgid,sticky,770
ouid=nobody ogid=secretcats rdev=00:00
obj=unconfined_u:object_r:default_t:s0 objtype=NORMAL
type=CWD msg=audit(12/12/2017 12:32:04.341:14152) : cwd=/home/charlie
type=SYSCALL msg=audit(12/12/2017 12:32:04.341:14152) : arch=x86_64
syscall=lgetxattr success=yes exit=35 a0=0x7ffd8d18f7dd a1=0x7f2496858f8a
a2=0x12bca30 a3=0xff items=1 ppid=11637 pid=11663 auid=charlie uid=charlie
gid=charlie euid=charlie suid=charlie fsuid=charlie egid=charlie
sgid=charlie fsgid=charlie tty=pts0 ses=1794 comm=ls exe=/usr/bin/ls
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=secretcats_watch
. . .
. . .
type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14155) : proctitle=ls --
color=auto -l /secretcats
type=PATH msg=audit(12/12/2017 12:32:04.341:14155) : item=0
name=/secretcats inode=33583041 dev=fd:01 mode=dir,sgid,sticky,770
ouid=nobody ogid=secretcats rdev=00:00
obj=unconfined_u:object_r:default_t:s0 objtype=NORMAL
type=CWD msg=audit(12/12/2017 12:32:04.341:14155) : cwd=/home/charlie
type=SYSCALL msg=audit(12/12/2017 12:32:04.341:14155) : arch=x86_64
syscall=openat success=no exit=EACCES(Permission denied)
a0=0xffffffffffffff9c a1=0x12be300
a2=O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC a3=0x0 items=1 ppid=11637
pid=11663 auid=charlie uid=charlie gid=charlie euid=charlie suid=charlie
fsuid=charlie egid=charlie sgid=charlie fsgid=charlie tty=pts0 ses=1794
comm=ls exe=/usr/bin/ls subj=unconfined_u:unconfined_r:unconfined_t:s0-
s0:c0.c1023 key=secretcats_watch

Scanning, Auditing, and Hardening Chapter 8

[250]

There are two things to note here. First, just attempting to cd into the directory doesn't
trigger an alert. However, using ls to try to read the contents of the directory does.
Secondly, note the Permission denied message that shows up in the second record.

The last set of alerts that we'll look at got created when Cleopatra created her
cleopatrafile.txt file. This event triggered an alert that consists of 30 records. Here are
two of them:

. . .

. . .
type=PROCTITLE msg=audit(12/12/2017 11:49:37.536:13856) : proctitle=vim
cleopatrafile.txt
type=PATH msg=audit(12/12/2017 11:49:37.536:13856) : item=0 name=.
inode=33583041 dev=fd:01 mode=dir,sgid,sticky,770 ouid=nobody
ogid=secretcats rdev=00:00 obj=unconfined_u:o
bject_r:default_t:s0 objtype=NORMAL
type=CWD msg=audit(12/12/2017 11:49:37.536:13856) : cwd=/secretcats
type=SYSCALL msg=audit(12/12/2017 11:49:37.536:13856) : arch=x86_64
syscall=open success=yes exit=4 a0=0x5ab983 a1=O_RDONLY a2=0x0 a3=0x63
items=1 ppid=9572 pid=9593 auid=cle
opatra uid=cleopatra gid=cleopatra euid=cleopatra suid=cleopatra
fsuid=cleopatra egid=cleopatra sgid=cleopatra fsgid=cleopatra tty=pts0
ses=1779 comm=vim exe=/usr/bin/vim sub
j=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=secretcats_watch

type=PROCTITLE msg=audit(12/12/2017 11:49:56.001:13858) : proctitle=vim
cleopatrafile.txt
type=PATH msg=audit(12/12/2017 11:49:56.001:13858) : item=1
name=/secretcats/.cleopatrafile.txt.swp inode=33583065 dev=fd:01
mode=file,600 ouid=cleopatra ogid=secretcats rdev
=00:00 obj=unconfined_u:object_r:default_t:s0 objtype=DELETE
type=PATH msg=audit(12/12/2017 11:49:56.001:13858) : item=0
name=/secretcats/ inode=33583041 dev=fd:01 mode=dir,sgid,sticky,770
ouid=nobody ogid=secretcats rdev=00:00 obj=unc
onfined_u:object_r:default_t:s0 objtype=PARENT
type=CWD msg=audit(12/12/2017 11:49:56.001:13858) : cwd=/secretcats
type=SYSCALL msg=audit(12/12/2017 11:49:56.001:13858) : arch=x86_64
syscall=unlink success=yes exit=0 a0=0x15ee7a0 a1=0x1 a2=0x1
a3=0x7ffc2c82e6b0 items=2 ppid=9572 pid=9593
auid=cleopatra uid=cleopatra gid=cleopatra euid=cleopatra suid=cleopatra
fsuid=cleopatra egid=cleopatra sgid=cleopatra fsgid=cleopatra tty=pts0
ses=1779 comm=vim exe=/usr/bin
/vim subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=secretcats_watch
. . .
. . .

Scanning, Auditing, and Hardening Chapter 8

[251]

You can tell that the first of these two messages happened when Cleopatra saved the file
and exited vim because the second message shows objtype=DELETE, where her temporary
vim swap file got deleted.

Okay, this is all good, but what if this is too much information? What if you just want a
quick and sparse list of all of the security events that got triggered by this rule? For that,
we'll use aureport. We'll use it just like we did before.

First, let's pipe the aureport output into less instead of into grep so that we can see the
column headers:

[donnie@localhost ~]$ sudo aureport -i -k | less

Key Report
===
date time key success exe auid event
===
1. 12/11/2017 13:06:20 passwd_changes yes ? donnie 11393
2. 12/11/2017 13:49:15 passwd_changes yes ? donnie 11511
3. 12/11/2017 13:49:15 passwd_changes yes /usr/bin/chfn donnie 11512
4. 12/11/2017 14:54:11 passwd_changes yes /usr/sbin/usermod donnie 11728
5. 12/11/2017 14:54:25 passwd_changes yes /usr/sbin/usermod donnie 11736
. . .
. . .

The status in the success column will be either yes or no, depending on if the user was
able to successfully perform an action that violated a rule. Or, it could be a question mark if
the event isn't the result of the rule getting triggered.

For Charlie, we see a yes event in line 48, with the events in lines 49 through 51 all having a
no status. We also see that all of these entries were triggered by Charlie's use of the
ls command:

sudo aureport -i -k | grep 'secretcats_watch'

[donnie@localhost ~]$ sudo aureport -i -k | grep 'secretcats_watch'
6. 12/11/2017 15:01:25 secretcats_watch yes ? donnie 11772
8. 12/12/2017 11:49:29 secretcats_watch yes /usr/bin/ls cleopatra 13828
9. 12/12/2017 11:49:37 secretcats_watch yes /usr/bin/vim cleopatra 13830
10. 12/12/2017 11:49:37 secretcats_watch yes /usr/bin/vim cleopatra 13829
. . .
. . .
48. 12/12/2017 12:32:04 secretcats_watch yes /usr/bin/ls charlie 14152
49. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14153
50. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14154
51. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14155

Scanning, Auditing, and Hardening Chapter 8

[252]

[donnie@localhost ~]$

You'd be tempted to think that the yes event in line 48 indicates that Charlie was successful
in reading the contents of the secretcats directory. To analyze further, look at the event
numbers at the end of each line and correlate them to the output of our previous
ausearch command. You'll see that event numbers 14152 through 14155 belong to records
that all have the same timestamp. We can see that in the first line of each record:

[donnie@localhost ~]$ sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14152) : proctitle=ls --
color=auto -l /secretcats

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14153) : proctitle=ls --
color=auto -l /secretcats

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14154) : proctitle=ls --
color=auto -l /secretcats

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14155) : proctitle=ls --
color=auto -l /secretcats

As we noted before, the last record of this series shows Permission denied for Charlie
and that's what really counts.

Space doesn't permit me to give a full explanation of each individual item
in an audit log record. But, you can read about it here in the official Red
Hat documentation: https:/ /access. redhat. com/documentation/ en- us/
red_hat_ enterprise_ linux/ 7/ html/ security_ guide/ sec-
understanding_ audit_ log_ files.

Searching for system call rule violations
The third rule that we created was to monitor that sneaky Charlie. This rule will alert us
whenever Charlie tries to open or create a file. (As we noted before, 1006 is Charlie's user
ID number.):

sudo auditctl -a always,exit -F arch=b64 -S openat -F auid=1006

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files

Scanning, Auditing, and Hardening Chapter 8

[253]

Even though Charlie hasn't done that much on this system, this rule gives us a lot more log
entries than what we bargained for. We'll look at just a couple of entries:

time->Tue Dec 12 11:49:29 2017
type=PROCTITLE msg=audit(1513097369.952:13828):
proctitle=6C73002D2D636F6C6F723D6175746F
type=PATH msg=audit(1513097369.952:13828): item=0 name="." inode=33583041
dev=fd:01 mode=043770 ouid=99 ogid=1009 rdev=00:00
obj=unconfined_u:object_r:default_t:s0 objtype=NO
RMAL
type=CWD msg=audit(1513097369.952:13828): cwd="/secretcats"
type=SYSCALL msg=audit(1513097369.952:13828): arch=c000003e syscall=257
success=yes exit=3 a0=ffffffffffffff9c a1=10d1560 a2=90800 a3=0 items=1
ppid=9572 pid=9592 auid=1004 u
id=1004 gid=1006 euid=1004 suid=1004 fsuid=1004 egid=1006 sgid=1006
fsgid=1006 tty=pts0 ses=1779 comm="ls" exe="/usr/bin/ls"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0
:c0.c1023 key="secretcats_watch"

This record was generated when Charlie tried to access the /secretcats/ directory. So,
we can expect to see this one. But, what we didn't expect to see was the exceedingly long list
of records of files that Charlie indirectly accessed when he logged in to the system through
Secure Shell. Here are just a couple:

time->Tue Dec 12 11:50:28 2017
type=PROCTITLE msg=audit(1513097428.662:13898):
proctitle=737368643A20636861726C6965407074732F30
type=PATH msg=audit(1513097428.662:13898): item=0 name="/proc/9726/fd"
inode=1308504 dev=00:03 mode=040500 ouid=0 ogid=0 rdev=00:00
obj=unconfined_u:unconfined_r:unconfined_t
:s0-s0:c0.c1023 objtype=NORMAL
type=CWD msg=audit(1513097428.662:13898): cwd="/home/charlie"
type=SYSCALL msg=audit(1513097428.662:13898): arch=c000003e syscall=257
success=yes exit=3 a0=ffffffffffffff9c a1=7ffc7ca1d840 a2=90800 a3=0
items=1 ppid=9725 pid=9726 auid=1
006 uid=1006 gid=1008 euid=1006 suid=1006 fsuid=1006 egid=1008 sgid=1008
fsgid=1008 tty=pts0 ses=1781 comm="sshd" exe="/usr/sbin/sshd"
subj=unconfined_u:unconfined_r:unconfin
ed_t:s0-s0:c0.c1023 key=(null)

time->Tue Dec 12 11:50:28 2017
type=PROCTITLE msg=audit(1513097428.713:13900):
proctitle=737368643A20636861726C6965407074732F30
type=PATH msg=audit(1513097428.713:13900): item=0 name="/etc/profile.d/"
inode=33593031 dev=fd:01 mode=040755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:bin_t:s0 objtype=
NORMAL

Scanning, Auditing, and Hardening Chapter 8

[254]

type=CWD msg=audit(1513097428.713:13900): cwd="/home/charlie"
type=SYSCALL msg=audit(1513097428.713:13900): arch=c000003e syscall=257
success=yes exit=3 a0=ffffffffffffff9c a1=1b27930 a2=90800 a3=0 items=1
ppid=9725 pid=9726 auid=1006 u
id=1006 gid=1008 euid=1006 suid=1006 fsuid=1006 egid=1008 sgid=1008
fsgid=1008 tty=pts0 ses=1781 comm="bash" exe="/usr/bin/bash"
subj=unconfined_u:unconfined_r:unconfined_t:s
0-s0:c0.c1023 key=(null)

In the first record, we see that Charlie accessed the /usr/sbin/sshd file. In the second, we
see that he accessed the /usr/bin/bash file. It's not that Charlie chose to access those files.
The operating system accessed those files for him in the course of just a normal login event.
So as you can see, when you create audit rules, you have to be careful of what you wish
because there's a definite danger that the wish might be granted. If you really need to
monitor someone, you'll want to create a rule that won't give you quite this much
information.

While we're at it, we might as well see what the aureport output for this looks like:

[donnie@localhost ~]$ sudo aureport -s -i | grep 'openat'
[sudo] password for donnie:
1068. 12/12/2017 11:49:29 openat 9592 ls cleopatra 13828
1099. 12/12/2017 11:50:28 openat 9665 sshd charlie 13887
1100. 12/12/2017 11:50:28 openat 9665 sshd charlie 13889
1101. 12/12/2017 11:50:28 openat 9665 sshd charlie 13890
1102. 12/12/2017 11:50:28 openat 9726 sshd charlie 13898
1103. 12/12/2017 11:50:28 openat 9726 bash charlie 13900
1104. 12/12/2017 11:50:28 openat 9736 grep charlie 13901
1105. 12/12/2017 11:50:28 openat 9742 grep charlie 13902
1108. 12/12/2017 11:50:51 openat 9766 ls charlie 13906
1110. 12/12/2017 12:15:35 openat 10952 ls vicky 14077
1115. 12/12/2017 12:30:54 openat 11632 sshd charlie 14129
1116. 12/12/2017 12:30:54 openat 11632 sshd charlie 14131
1117. 12/12/2017 12:30:54 openat 11632 sshd charlie 14132
1118. 12/12/2017 12:30:54 openat 11637 sshd charlie 14140
1119. 12/12/2017 12:30:54 openat 11637 bash charlie 14142
1120. 12/12/2017 12:30:54 openat 11647 grep charlie 14143
1121. 12/12/2017 12:30:54 openat 11653 grep charlie 14144
1125. 12/12/2017 12:32:04 openat 11663 ls charlie 14155
[donnie@localhost ~]$

In addition to what Charlie did, we also see what Vicky and Cleopatra did. That's because
the rule that we set for the /secretcats/ directory generated openat events when Vicky
and Cleopatra accessed, viewed, or created files in that directory.

Scanning, Auditing, and Hardening Chapter 8

[255]

Generating authentication reports
You can generate user authentication reports without having to define any audit rules. Just
use aureport with the -au option switch. (Remember au, the first two letters of
authentication.):

[donnie@localhost ~]$ sudo aureport -au
[sudo] password for donnie:

Authentication Report
==
date time acct host term exe success event
==
1. 10/28/2017 13:38:52 donnie localhost.localdomain tty1 /usr/bin/login yes
94
2. 10/28/2017 13:39:03 donnie localhost.localdomain /dev/tty1 /usr/bin/sudo
yes 102
3. 10/28/2017 14:04:51 donnie localhost.localdomain /dev/tty1 /usr/bin/sudo
yes 147
. . .
. . .
239. 12/12/2017 11:50:20 charlie 192.168.0.222 ssh /usr/sbin/sshd no 13880
244. 12/12/2017 12:10:06 cleopatra 192.168.0.222 ssh /usr/sbin/sshd no
13992
247. 12/12/2017 12:14:28 vicky 192.168.0.222 ssh /usr/sbin/sshd no 14049
250. 12/12/2017 12:30:49 charlie 192.168.0.222 ssh /usr/sbin/sshd no 14122
265. 12/12/2017 19:06:20 charlie 192.168.0.222 ssh /usr/sbin/sshd no 725
269. 12/12/2017 19:23:45 donnie ? /dev/pts/0 /usr/bin/sudo no 779
[donnie@localhost ~]$

For login events, this tells us whether the user logged in at the local terminal or remotely
through Secure Shell. To see the details of any event, use ausearch with the -a option,
followed by the event number that you see at the end of a line. (Strangely, the -a option
stands for an event.) Let's look at event number 14122 for Charlie:

[donnie@localhost ~]$ sudo ausearch -a 14122

time->Tue Dec 12 12:30:49 2017
type=USER_AUTH msg=audit(1513099849.322:14122): pid=11632 uid=0
auid=4294967295 ses=4294967295 subj=system_u:system_r:sshd_t:s0-s0:c0.c1023
msg='op=pubkey acct="charlie" exe="/usr/sbin/sshd" hostname=?
addr=192.168.0.222 terminal=ssh res=failed'

The problem with this is that it really doesn't make any sense. I'm the one who did the
logins for Charlie, and I know for a fact that Charlie never had any failed logins. In fact, we
can correlate this with the matching entry from the /var/log/secure file:

Scanning, Auditing, and Hardening Chapter 8

[256]

Dec 12 12:30:53 localhost sshd[11632]: Accepted password for charlie from
192.168.0.222 port 34980 ssh2
Dec 12 12:30:54 localhost sshd[11632]: pam_unix(sshd:session): session
opened for user charlie by (uid=0)

The time stamps for these two entries are a few seconds later than the timestamp for the
ausearch output, but that's okay. There's nothing in this log file to suggest that Charlie
ever had a failed login, and these two entries clearly show that Charlie's login really was
successful. The lesson here is that when you see something strange in either the
ausearch or aureport output, be sure to correlate it with the matching entry in the proper
authentication log file to get a better idea of what's going on. (By authentication log file, I
mean /var/log/secure for Red Hat-type systems and /var/log/auth.log for Ubuntu
systems. The names may vary for other Linux distros.)

Using predefined rules sets
In the /usr/share/doc/audit-version_number/ directory of your CentOS machine,
you'll see some premade rule sets for different scenarios. Once you install auditd on
Ubuntu, you'll have audit rules for it too, but the location is different for Ubuntu 16.04 and
Ubuntu 17.10. On Ubuntu 16.04, the rules are in the
/usr/share/doc/auditd/examples/ directory. On Ubuntu 17.10, they're in the
/usr/share/doc/auditd/examples/rules/ directory. In any case, some of the rule sets
are common among all three of these distros. Let's look on the CentOS machine to see what
we have there:

[donnie@localhost rules]$ pwd
/usr/share/doc/audit-2.7.6/rules
[donnie@localhost rules]$ ls -l
total 96
-rw-r--r--. 1 root root 163 Aug 4 17:29 10-base-config.rules
-rw-r--r--. 1 root root 284 Apr 19 2017 10-no-audit.rules
-rw-r--r--. 1 root root 93 Apr 19 2017 11-loginuid.rules
-rw-r--r--. 1 root root 329 Apr 19 2017 12-cont-fail.rules
-rw-r--r--. 1 root root 323 Apr 19 2017 12-ignore-error.rules
-rw-r--r--. 1 root root 516 Apr 19 2017 20-dont-audit.rules
-rw-r--r--. 1 root root 273 Apr 19 2017 21-no32bit.rules
-rw-r--r--. 1 root root 252 Apr 19 2017 22-ignore-chrony.rules
-rw-r--r--. 1 root root 4915 Apr 19 2017 30-nispom.rules
-rw-r--r--. 1 root root 5952 Apr 19 2017 30-pci-dss-v31.rules
-rw-r--r--. 1 root root 6663 Apr 19 2017 30-stig.rules
-rw-r--r--. 1 root root 1498 Apr 19 2017 31-privileged.rules
-rw-r--r--. 1 root root 218 Apr 19 2017 32-power-abuse.rules
-rw-r--r--. 1 root root 156 Apr 19 2017 40-local.rules

Scanning, Auditing, and Hardening Chapter 8

[257]

-rw-r--r--. 1 root root 439 Apr 19 2017 41-containers.rules
-rw-r--r--. 1 root root 672 Apr 19 2017 42-injection.rules
-rw-r--r--. 1 root root 424 Apr 19 2017 43-module-load.rules
-rw-r--r--. 1 root root 326 Apr 19 2017 70-einval.rules
-rw-r--r--. 1 root root 151 Apr 19 2017 71-networking.rules
-rw-r--r--. 1 root root 86 Apr 19 2017 99-finalize.rules
-rw-r--r--. 1 root root 1202 Apr 19 2017 README-rules
[donnie@localhost rules]$

The three files I want to focus on are the nispom, pci-dss, and stig files. Each of these
three rule sets is designed to meet the auditing standards of a particular certifying agency.
In order, these rules sets are:

nispom: The National Industrial Security Program—you'll see this rule set used
at either the U.S. Department of Defense or its contractors
pci-dss: Payment Card Industry Data Security Standard—if you work in the
banking or financial industries, or even if you're just running an online business
that accepts credit cards, you'll likely become very familiar with this
stig: Security Technical Implementation Guides—if you work for the U.S.
Government or possibly other governments, you'll be dealing with this one

To use one of these rules sets, copy the appropriate files over to the
/etc/audit/rules.d/ directory:

[donnie@localhost rules]$ sudo cp 30-pci-dss-v31.rules /etc/audit/rules.d
[donnie@localhost rules]$

Then, restart the auditd daemon to read in the new rules.

For Red Hat or CentOS:

sudo service auditd restart

For Ubuntu:

sudo systemctl restart auditd

Of course, there's always the chance that a particular rule in one of these sets might not
work for you or that you might need to enable a rule that's currently disabled. If so, just
open the rules file in your text editor, and comment out what doesn't work or uncomment
what you need to enable.

Even though auditd is very cool, bear in mind that it only alerts you about potential security
breaches. It doesn't do anything to harden the system against them.

Scanning, Auditing, and Hardening Chapter 8

[258]

That pretty much wraps it up for our discussion of the auditd system. Give it a go and see
what you think.

Applying OpenSCAP policies with oscap
SCAP, the Security Content Automation Protocol (SCAP), was created by the U.S.
National Institute of Standards and Technology. It consists of hardening guides, hardening
templates, and baseline configuration guides for setting up secure systems. OpenSCAP is a
set of free open source software tools that can be used to implement SCAP. It consists of the
following:

Security profiles that you can apply to a system. There are different profiles for
meeting the requirements of several different certifying agencies.
Security guides to help with the initial setup of your system.
The oscap command-line utility to apply security templates.
On Red Hat-type systems that have a desktop interface, you have SCAP
Workbench, a GUI-type utility.

You can install OpenSCAP on either the Red Hat or the Ubuntu distros, but it's much better
implemented on the Red Hat distros. For one thing, the Red Hat world has the very cool
SCAP Workbench, but the Ubuntu world doesn't. When you install a Red Hat-type
operating system, you can choose to apply a SCAP profile during installation. You can't do
that with Ubuntu. Finally, the Red Hat distros come with a fairly complete set of ready-to-
use profiles. Curiously, Ubuntu only comes with profiles for older versions of Fedora and
Red Hat, which aren't usable on an Ubuntu system. If you want usable profiles for Ubuntu,
you'll have to download them from the OpenSCAP website and manually install them
yourself. (We'll cover that in the last section of the chapter.) Having said this, let's see how
to install OpenSCAP and how to use the command-line utility that's common to both of our
distros. Since CentOS has the more complete implementation, I'll use it for the demos.

Installing OpenSCAP
On your CentOS machine, assuming that you didn't install OpenSCAP during operating
system installation, follow this:

sudo yum install openscap-scanner scap-security-guide

Scanning, Auditing, and Hardening Chapter 8

[259]

On the Ubuntu machine, do this:

sudo apt install python-openscap

Viewing the profile files
On the CentOS machine, you'll see the profile files in the
/usr/share/xml/scap/ssg/content/ directory. On the Ubuntu machine, you'll see
what few profiles there are in the /usr/share/openscap/ directory. The profile files are
in the .xml format, and each one contains one or more profiles that you can apply to the
system:

[donnie@localhost content]$ pwd
/usr/share/xml/scap/ssg/content
[donnie@localhost content]$ ls -l
total 50596
-rw-r--r--. 1 root root 6734643 Oct 19 19:40 ssg-centos6-ds.xml
-rw-r--r--. 1 root root 1596043 Oct 19 19:40 ssg-centos6-xccdf.xml
-rw-r--r--. 1 root root 11839886 Oct 19 19:41 ssg-centos7-ds.xml
-rw-r--r--. 1 root root 2636971 Oct 19 19:40 ssg-centos7-xccdf.xml
-rw-r--r--. 1 root root 642 Oct 19 19:40 ssg-firefox-cpe-
dictionary.xml
. . .
. . .
-rw-r--r--. 1 root root 11961196 Oct 19 19:41 ssg-rhel7-ds.xml
-rw-r--r--. 1 root root 851069 Oct 19 19:40 ssg-rhel7-ocil.xml
-rw-r--r--. 1 root root 2096046 Oct 19 19:40 ssg-rhel7-oval.xml
-rw-r--r--. 1 root root 2863621 Oct 19 19:40 ssg-rhel7-xccdf.xml
[donnie@localhost content]$

The command-line utility for working with OpenSCAP is oscap. We can use this with the
info switch to view information about any of the profile files. Let's look at the ssg-
centos7-xccdf.xml file:

[donnie@localhost content]$ sudo oscap info ssg-centos7-xccdf.xml
Document type: XCCDF Checklist
Checklist version: 1.1
Imported: 2017-10-19T19:40:43
Status: draft
Generated: 2017-10-19
Resolved: true
Profiles:
 standard
 pci-dss
 C2S

Scanning, Auditing, and Hardening Chapter 8

[260]

 rht-ccp
 common
 stig-rhel7-disa
 stig-rhevh-upstream
 ospp-rhel7
 cjis-rhel7-server
 docker-host
 nist-800-171-cui
Referenced check files:
 ssg-rhel7-oval.xml
 system: http://oval.mitre.org/XMLSchema/oval-definitions-5
 ssg-rhel7-ocil.xml
 system: http://scap.nist.gov/schema/ocil/2
 https://www.redhat.com/security/data/oval/com.redhat.rhsa-RHEL7.xml.bz2
 system: http://oval.mitre.org/XMLSchema/oval-definitions-5
[donnie@localhost content]$

We can see that this file contains 11 different profiles that we can apply to the system.
Among them, you see profiles for stig and pci-dss, just as we had for the auditing rules.
And, if you're running Docker containers, the docker-host profile would be extremely
handy.

Scanning the system
Now, let's say that we need to ensure that our systems are compliant with Payment Card
Industry standards. We'll first scan the CentOS machine to see what needs remediation.
(Note that the following command is very long and wraps around on the printed page.)

sudo oscap xccdf eval --profile pci-dss --results scan-xccdf-results.xml
/usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml

As we always like to do, let's break this down:

xccdf eval: The Extensible Configuration Checklist Description is one of the
languages with which we can write security profile rules. We're going to use a
profile that was written in this language to perform an evaluation of the system.
--profile pci-dss: Here, I specified that I want to use the Payment Card
Industry Data Security Standard profile to evaluate the system.
--results scan-xccdf-results.xml: I'm going to save the scan results to
this .xml format file. When the scan has finished, I'll create a report from this file.
/usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml: This is the
file that contains the pci-dss profile.

Scanning, Auditing, and Hardening Chapter 8

[261]

As the scan progresses, the output will get sent to the screen as well as to the designated
output file. It's a long list of items, so I'll only show you a few of them:

 Ensure Red Hat GPG Key Installed
 ensure_redhat_gpgkey_installed
 pass

 Ensure gpgcheck Enabled In Main Yum Configuration
 ensure_gpgcheck_globally_activated
 pass

 Ensure gpgcheck Enabled For All Yum Package Repositories
 ensure_gpgcheck_never_disabled
 pass

 Ensure Software Patches Installed
 security_patches_up_to_date
 notchecked

 . . .
 . . .

 Install AIDE
 package_aide_installed
 fail

 Build and Test AIDE Database
 aide_build_database
 fail
. . .
. . .

So, we have GPG encryption installed, which is good. But, it's a bad thing that we don't
have the AIDE intrusion detection system installed.

Now that I've run the scan and created an output file with the results, I can build my report:

sudo oscap xccdf generate report scan-xccdf-results.xml > scan-xccdf-
results.html

This extracts the information from the .xml format file, which isn't meant for humans to
read, and transfers it to a .html file that you can open in your web browser. (For the record,
the report says that there are total 20 problems that need to be fixed.)

Scanning, Auditing, and Hardening Chapter 8

[262]

Remediating the system
So, we have 20 problems that we need to fix before our system can be considered as
compliant with Payment Card Industry standards. Let's see how many of them that oscap
can fix for us:

sudo oscap xccdf eval --remediate --profile pci-dss --results scan-xccdf-
remediate-results.xml /usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml

This is the same command that I used to perform the initial scan, except that I added the --
remediate option, and I'm saving the results to a different file. You'll want to have a bit of
patience when you run this command, because fixing some problems involves
downloading and installing software packages. In fact, even as I type this, oscap is busy
downloading and installing the missing AIDE intrusion detection system package.

Okay, the remediation is still running, but I can still show you some of the things that got
fixed:

 Disable Prelinking
 disable_prelink
 error

 Install AIDE
 package_aide_installed
 fixed

 Build and Test AIDE Database
 aide_build_database
 fixed

 Configure Periodic Execution of AIDE
 aide_periodic_cron_checking
 fixed

 Verify and Correct File Permissions with RPM
 rpm_verify_permissions
 error

 Prevent Log In to Accounts With Empty Password
 no_empty_passwords
 fixed
. . .
. . .

Scanning, Auditing, and Hardening Chapter 8

[263]

There are a couple of errors because of things that oscap couldn't fix, but that's normal. At
least you know about them so that you can try to fix them yourself.

And, check this out. Do you remember how in Chapter 2, Securing User Accounts, I made
you jump through hoops to ensure that users had strong passwords that expire on a regular
basis? Well, by applying this OpenSCAP profile, you get all that fixed for you
automatically:

 Set Password Maximum Age
 accounts_maximum_age_login_defs
 fixed

 Set Account Expiration Following Inactivity
 account_disable_post_pw_expiration
 fixed

 Set Password Strength Minimum Digit Characters
 accounts_password_pam_dcredit
 fixed

 Set Password Minimum Length
 accounts_password_pam_minlen
 fixed

 Set Password Strength Minimum Uppercase Characters
 accounts_password_pam_ucredit
 fixed

 Set Password Strength Minimum Lowercase Characters
 accounts_password_pam_lcredit
 fixed

 Set Deny For Failed Password Attempts
 accounts_passwords_pam_faillock_deny
 fixed

 Set Lockout Time For Failed Password Attempts
 accounts_passwords_pam_faillock_unlock_time
 fixed

 Limit Password Reuse
 accounts_password_pam_unix_remember
 fixed

So yeah, OpenSCAP is pretty cool, and even the command-line tools aren't hard to use.

Scanning, Auditing, and Hardening Chapter 8

[264]

Using SCAP Workbench
For Red Hat and CentOS machines with a desktop environment installed, we have SCAP
Workbench. However, if the last time you ever worked with SCAP Workbench was on Red
Hat/CentOS 7.0 or Red Hat/CentOS 7.1, you were likely quite disappointed. Indeed, the
early versions of the Workbench were so bad that they weren't even usable. Thankfully,
things greatly improved with the introduction of Red Hat 7.2 and CentOS 7.2. Now, the
Workbench is quite the nice little tool.

To get it on your CentOS machine, just use the following code:

sudo yum install scap-workbench

Yeah, the package name is just scap-workbench instead of openscap-workbench. I don't
know why, but I do know that you'll never find it if you're searching for
openscap packages.

Once you get it installed, you'll see its menu item under the System Tools menu.

Scanning, Auditing, and Hardening Chapter 8

[265]

When you first open the program, you would think that the system would ask you for a
root or sudo password. But, it doesn't. We'll see in a moment if that affects us.

The thing you'll see on the opening screen is a drop-down list for you to select the type of
content that you want to load. I'll select CentOS7 and then click on the Load
content button:

Scanning, Auditing, and Hardening Chapter 8

[266]

Next, you'll see in the top panel where you can select the desired profile. You can also
choose to customize the profile, and whether you want to run the scan on the local machine
or on a remote machine. In the bottom pane, you'll see a list of rules for that profile. You can
expand each rule item to get a description of that rule:

Scanning, Auditing, and Hardening Chapter 8

[267]

Now, let's click that Scan button to see what happens:

Cool. As I had hoped, it prompts you for your sudo password. Beyond that, I'll leave it to
you to play with it. It's just another one of those GUI-thingies, so the rest of it should be
fairly easy to figure out.

More about OpenSCAP profiles
So now you're saying, "Okay, this is all good, but how do I find out what's in these profiles and
which one I need?" Well, there are several ways.

Scanning, Auditing, and Hardening Chapter 8

[268]

The first way, which I've just shown you, is to install the SCAP Workbench on a machine
with a desktop interface and read through the descriptions of all the rules for each profile.

The second way, which might be a bit easier, is to go to the OpenSCAP website and look
through the documentation that they have there.

You'll find information about the available OpenSCAP profiles at https:/
/www. open- scap. org/ security- policies/ choosing- policy/ .

As far as knowing which profile to choose, there are a few things to consider:

If you work in the financial sector or in a business that does online financial
transactions, then go with the pci-dss profile.
If you work for a government agency, especially if it's the U.S. government, then
go with either the stig profile or the nispom profile, as dictated by the particular
agency.
If neither of these two considerations applies to your situation, then you'll just
want to do some research and planning, in order to figure out what really needs
to be locked down. Look through the rules in each profile and read through the
documentation at the OpenSCAP website to help decide what you need.

The next thing on your mind is, "What about Ubuntu? We've already seen that the profiles that
come with Ubuntu are useless because they're for RHEL and Fedora." That's true, but you'll find
profiles for various different distros, including for the Long Term Support versions of
Ubuntu, at the OpenSCAP website:

https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/
https://www.open-scap.org/security-policies/choosing-policy/

Scanning, Auditing, and Hardening Chapter 8

[269]

Applying an OpenSCAP profile during
system installation
One of the things that I love about the Red Hat folk is that they totally get this whole
security thing. Yeah, we can lock down other distros and make them more secure, as we've
already seen. But, with Red Hat distros, it's a bit easier. For a lot of things, the maintainers
of the Red Hat-type distros have set secure default options that aren't securely set on other
distros. (For example, Red Hat distros are the only ones that come with users' home
directories locked down by default.) For other things, the Red Hat-type distros come with
tools and installation options that help make life easier for a busy, security-conscious
administrator.

When you install a Red Hat 7-type distro, you'll be given the chance to apply an OpenSCAP
profile during the operating system installation. Here on this CentOS 7 installer screen, you
see the option to choose a security profile at the lower right-hand corner of the screen:

Scanning, Auditing, and Hardening Chapter 8

[270]

All you have to do is to click on that and then choose your profile:

Okay, that pretty much wraps it up for our discussion of OpenSCAP. The only thing left to
add is that, as great as OpenSCAP is, it won't do everything. For example, some security
standards require that you have certain directories, such as /home/ or /var/, on their own
separate partitions. An OpenSCAP scan will alert you if that's not the case, but it can't
change your existing partitioning scheme. So for things like that, you'll need to get a
checklist from the governing body that dictates your security requirements and do a bit of
advanced work before you even touch OpenSCAP.

Scanning, Auditing, and Hardening Chapter 8

[271]

Summary
We covered a lot of ground in this chapter, and we saw some really cool stuff. We began by
looking at a couple of antivirus scanners so that we can prevent infecting any Windows
machines that access our Linux servers. In the Rootkit Hunter section, we saw how to scan
for those nasty rootkits. It's important to know how to audit systems, especially in high-
security environments, and we saw how to do that. Finally, we wrapped things up with a
discussion of hardening our systems with OpenSCAP.

In the next chapter, we'll look at vulnerability scanning and intrusion detection. I'll see you
there.

9
Vulnerability Scanning and

Intrusion Detection
There are lots of threats out there, and some of them might even penetrate into your
network. You'll want to know when that happens, so you'll want to have a good Network
Intrusion Detection System (NIDS) in place. We'll look at Snort, which is probably the
most famous one. I'll then show you a way to cheat so that you can have a Snort system up
and running in no time at all.

We've already seen how to scan a machine for viruses and rootkits by installing scanning
tools onto the machines that we want to scan. However, there are a lot more vulnerabilities
for which we can scan, and I'll show you some cool tools that you can use for that.

The following topics are covered in this chapter:

An introduction to Snort and Security Onion
Scanning and hardening with Lynis
Finding vulnerabilities with OpenVAS
Web server scanning with Nikto

Vulnerability Scanning and Intrusion Detection Chapter 9

[273]

Looking at Snort and Security Onion
Snort is a NIDS, which is offered as a free open source software product. The program itself
is free of charge, but you'll need to pay if you want to have a complete, up-to-date set of
threat detection rules. Snort started out as a one-man project, but it's now owned by Cisco.
Understand though, this isn't something that you install on the machine that you want to
protect. Rather, you'll have at least one dedicated Snort machine someplace on the network,
just monitoring all network traffic, watching for anomalies. When it sees traffic that
shouldn't be there—something that indicates the presence of a bot, for example—it can
either just send an alert message to an administrator or it can even block the anomalous
traffic, depending on how the rules are configured. For a small network, you can have just
one Snort machine that acts as both a control console and a sensor. For large networks, you
could have one Snort machine set up as a control console and have it receive reports from
other Snort machines that are set up as sensors.

Snort isn't too hard to deal with, but setting up a complete Snort solution from scratch can
be a bit tedious. After we look at the basics of Snort usage, I'll show you how to vastly
simplify things by setting up a prebuilt Snort appliance.

Space doesn't permit me to present a comprehensive tutorial about Snort.
Instead, I'll present a high-level overview and then present you with other
resources for learning Snort in detail.

Obtaining and installing Snort
Snort isn't in the official repository of any Linux distro, so you'll need to get it from the
Snort website. On their downloads page, you'll see installer files in the .rpm format for
Fedora and CentOS and a .exe installer file for Windows. However, you won't see any
.deb installer files for Ubuntu. That's okay because they also provide source code files that
you can compile on a variety of different Linux distros. To make things simple, let's just talk
about installing Snort on CentOS 7 with the prebuilt .rpm packages.

You can get Snort and Snort training from the official Snort
website: https:/ /www. snort. org.

https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org

Vulnerability Scanning and Intrusion Detection Chapter 9

[274]

On the Snort home page, just scroll down a bit, and you'll see the guide on how to
download and install Snort. Click on the Centos tab and follow the steps. The commands in
Step 1 will download and install Snort all in one smooth operation, as shown in the
following screenshot:

Vulnerability Scanning and Intrusion Detection Chapter 9

[275]

Step 2 and Step 3 involve signing up for your Oinkcode so that you can download the
official Snort detection rules and then installing PulledPork so that you can keep the rules
updated automatically, as shown in the following screenshot:

Bear in mind though that the free-of-charge detection rules that the Snort folk provide are
about a month behind the ones that paid subscribers get. For learning purposes though,
they're all that you need. Also, if you choose to not get the Oinkcode, you can just use the
Community rules, which are a subset of the official Snort rules.

Step 4 is just to read the documentation:

Vulnerability Scanning and Intrusion Detection Chapter 9

[276]

And, that's it. You now have a working copy of Snort. The only catch is all you have so far is
just the command-line interface, which might not be what you want.

Graphical interfaces for Snort
Plain, unadorned Snort will do what you need it to do, and it will save its findings to its
own set of log files. However, reading through log files to discern network traffic trends can
get a bit tedious, so you'll want some tools to help you out. The best tools are the graphical
ones, which can give you a good visualization of what's going on with your network.

One example is the Basic Analysis and Security Engine (BASE), as shown in the following
screenshot:

Vulnerability Scanning and Intrusion Detection Chapter 9

[277]

There are several more, but I'll show them to you when we get to the Security Onion section.

You can find out more about BASE from the author's Professionally
Evil website: https:/ /professionallyevil. com/

Getting Snort in prebuilt appliances
Snort itself isn't too terribly difficult to set up. However, if you're doing everything
manually, it can be a bit tedious by the time you've set up the control console, the sensors,
and your choice of graphical frontends. So—and, imagine me peering at you over my dark
glasses as I say this—what if I told you that you can get your Snort setup as part of a ready-
to-go appliance? What if I told you that setting up such an appliance is an absolute breeze? I
imagine that you'd probably say, So, show me already!

If you feel bad about cheating by making Snort deployment so easy,
there's really no need to. An official Snort representative once told me that
most people deploy Snort in this manner.

Since Snort is a Free Open Source Software (FOSS) project, it's perfectly legal for people to
build it into their own FOSS applications. Also, if you think back to our discussion of
firewalls in Chapter 3, Securing Your Server with a Firewall, I completely glossed over any
discussion of creating the Network Address Translation (NAT) rules that you would need
for setting up an edge or gateway type of firewall. That's because there are several Linux
distros that have been created specifically for this purpose. What if I told you, that some of
them also include a full implementation of Snort?

https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/
https://professionallyevil.com/

Vulnerability Scanning and Intrusion Detection Chapter 9

[278]

IPFire is completely free of charge, and it only takes a few minutes to set up. You install it
on a machine with at least two network interface adapters and configure it to match your
network configuration. It's a proxy-type of a firewall, which means that in addition to doing
normal firewall-type packet inspection, it also includes caching, content-filtering, and NAT
capabilities. You can set up IPFire in a number of different configurations:

On a computer with two network interface adapters, you can have one connected
to the internet, and the other connected to the internal LAN.
With three network adapters, you can have one connection to the internet, one to
the internal LAN, and one to the Demilitarized Zone (DMZ), where you have
your internet-facing servers.
With a fourth network adapter, you can have all the above, plus protection for a
wireless network.

Vulnerability Scanning and Intrusion Detection Chapter 9

[279]

After you install IPFire, you'll need to use the web browser of your normal workstation to
navigate to the IPFire dashboard. Under the Services menu, you'll see an entry for
Intrusion Detection. Click on that to get to this screen, where you can download and enable
the Snort detection rules:

There's really only one slight bit of manual tweaking that you might need to do from the
command line. That is, you might want to go into the rules directory and make sure that the
rules that you want to enable are enabled. On my demo machine, I installed the community
rules and the emerging threat rules:

[root@ipfire rules]# ls -l
total 19336
-rw-r--r-- 1 nobody nobody 1656 Dec 19 06:01 BSD-License.txt
-rw-r--r-- 1 nobody nobody 2638 Dec 19 06:01 classification.config
-rw-r--r-- 1 nobody nobody 1478085 Dec 19 06:01 community.rules
-rw-r--r-- 1 nobody nobody 15700 Dec 19 06:01 compromised-ips.txt
-rw-r--r-- 1 nobody nobody 378690 Dec 19 06:01 emerging-activex.rules
-rw-r--r-- 1 nobody nobody 79832 Dec 19 06:01 emerging-
attack_response.rules
-rw-r--r-- 1 nobody nobody 82862 Dec 19 06:01 emerging-
botcc.portgrouped.rules

Vulnerability Scanning and Intrusion Detection Chapter 9

[280]

-rw-r--r-- 1 nobody nobody 249176 Dec 19 06:01 emerging-botcc.rules
-rw-r--r-- 1 nobody nobody 34658 Dec 19 06:01 emerging-chat.rules
. . .
. . .
-rw-r--r-- 1 nobody nobody 1375 Dec 19 06:01 reference.config
-rw-r--r-- 1 nobody nobody 3691529 Dec 19 06:01 sid-msg.map
-rw-r--r-- 1 nobody nobody 0 Dec 19 06:01 snort-2.9.0-enhanced-
open.txt
-rw-r--r-- 1 nobody nobody 53709 Dec 19 06:01 unicode.map
-rw-r--r-- 1 nobody nobody 21078 Dec 19 04:46 VRT-License.txt
[root@ipfire rules]#

When you first install IPFire, the only user account that it sets up is for the
root user. However, the tools are there to create a normal user account and
give it sudo privileges. I haven't yet done that on this machine because I
wanted to show you the default configuration. But, I definitely would do it
on a production machine. I would then disable the root account.

When you open one of these rules files, you'll see that a lot of them are disabled and
relatively few are enabled. The disabled rules have a # sign in front of them, as do these two
rules from the community.rules file:

#alert tcp $HOME_NET 2589 -> $EXTERNAL_NET any (msg:"MALWARE-BACKDOOR -
Dagger_1.4.0"; flow:to_client,established; content:"2|00 00 00 06 00 00
00|Drives|24 00|"; depth:16; metadata:ruleset community; classtype:misc-
activity; sid:105; rev:14;)
#alert tcp $EXTERNAL_NET any -> $HOME_NET 7597 (msg:"MALWARE-BACKDOOR QAZ
Worm Client Login access"; flow:to_server,established;
content:"qazwsx.hsq"; metadata:ruleset community; reference:mcafee,98775;
classtype:misc-activity; sid:108; rev:11;)

You've probably also noted that each rule begins with the keyword, alert. You can use
grep to do a quick check to see which rules in a file are enabled:

[root@ipfire rules]# grep ^alert community.rules | less
[root@ipfire rules]#

The ^ character means that I'm searching through the community.rules file for every line
that begins with the word alert, without the preceding # sign. Piping the output into
less is optional, but it can help you better see all of the output data. You can also search
through all the files at once using a wildcard:

[root@ipfire rules]# grep ^alert *.rules | less
[root@ipfire rules]#

Vulnerability Scanning and Intrusion Detection Chapter 9

[281]

You'll want to look through the rules to see which you need and which you don't need.
Enable the desired rule by removing the # sign from in front of it and disable an undesired
rule by placing a # sign in front of it.

Unfortunately, IPFire doesn't include a graphical frontend for visualizing Snort data, but it
does come with an IDS log viewer:

IPFire also has a lot of other cool features that I haven't yet mentioned. These include built-
in Virtual Private Network (VPN) capabilities, a built-in DHCP server, a built-in dynamic
DNS server, and Quality of Service controls. The best part is that it's totally free of charge
unless you want to buy a subscription to always get the most up-to-date Snort rules.

You can download IPFire from their website: https:/ / www.ipfire. org/ .

Using Security Onion
Okay, so maybe the firewall appliance with the built-in Snort isn't what you need right
now. Maybe what you need instead is a full-blown NIDS. But, you're a busy person who
needs something quick and easy, and your boss has put you on a rather strict budget. So,
what do you do?

https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/
https://www.ipfire.org/

Vulnerability Scanning and Intrusion Detection Chapter 9

[282]

Security Onion is a free-of-charge specialty Linux distro that's built on top of the Xubuntu
Long-term Support (LTS) distro. It includes a full implementation of Snort, complete with
just about every graphical goody you can imagine to help you visualize what's happening
on your network. If you can install a Linux distro and do some point-and-click
configuration after the installation, then you can install Security Onion.

Note that the Xubuntu LTS version on which Security Onion is based is
always at least one version behind the current LTS version of Xubuntu. At
the time of writing, the current Xubuntu LTS version is version 16.04,
whereas Security Onion is still based on Xubuntu 14.04. But, that may
change by the time you read this book.

Also, if you want to try out Security Onion, you can set it up in a
VirtualBox virtual machine. When you create the virtual machine, set it
up with two network adapters, both in Bridged mode. For best
performance, allocate at least 3 GB of memory.

Once you've finished installing the operating system, the configuration is just a simple
matter of double-clicking the Setup icon and then following through with the dialog boxes:

Vulnerability Scanning and Intrusion Detection Chapter 9

[283]

For setting up a machine with sensor capabilities, you'll need a machine with two interface
cards. One interface, which will have an IP address assigned to it, will be the management
interface:

You can set the management interface to automatically get an IP address via DHCP, but it's
much better to assign a static IP address:

Vulnerability Scanning and Intrusion Detection Chapter 9

[284]

You'll use the other network adapter as the sniffing interface. You won't assign an IP
address to it because you want that interface to be invisible to the bad guys:

After you confirm the network configuration that you've selected, you'll reboot the
machine:

Vulnerability Scanning and Intrusion Detection Chapter 9

[285]

Once the machine has rebooted, double-click on the Setup icon again, but this time choose
to skip the network configuration. For a first-time user of Security Onion, Evaluation Mode
is quite helpful because it automatically chooses the most correct options for most stuff.

From here on out, it's just a matter of confirming which network interface will be the
sniffer interface and filling in login credentials for the different graphical frontends. And
then, after waiting a few moments for the setup utility to download Snort rules and perform
the final configuration steps, you'll have your very own operational NIDS. Now I ask, what
could be easier?

Security Onion comes with several different graphical frontends. My favorite is Squert,
which is shown here. Even with just the default set of detection rules, I'm already seeing
some interesting stuff. The following screenshot shows Squert:

Vulnerability Scanning and Intrusion Detection Chapter 9

[286]

For one thing, I see that somebody on the network is mining some Monero cryptocoin.
Well, actually, I'm the one who's doing it, so it's okay. But, that is a good thing to be able to
detect because bad guys have been known to plant Monero mining software on corporate
servers for their own benefit. Monero cryptocoin mining puts a big load on a server's CPUs,
so it's not something that you want on your servers. Also, some sneaky website operators
have placed JavaScript code on their web pages that cause any computer that visits them to
start mining Monero. So, this rule is also good for protecting desktop systems.

Another thing I see is Dropbox client broadcasting, which again is okay because I'm a
Dropbox user. But, that's something else that you may not want to have on a corporate
network.

Vulnerability Scanning and Intrusion Detection Chapter 9

[287]

To see the Snort rule that's associated with a particular item, just click on it:

It's just a standard Snort rule that's already been set up for us.

Bad guys who want to mine Monero without paying for it have set up
botnets of machines that have been infected with their mining software. In
some of the attacks, only Windows servers have been infected. But, here's
a case where both Windows and Linux servers have been infected:
https:/ /www. v3. co. uk/ v3- uk/ news/ 3023348/ cyber- crooks- conducting-
sophisticated- malware- campaign- to-mine- monero

Click on Squert's VIEWS tab, and you'll see a graphical representation of the connections
that your machines have established:

There's still a lot more than I could show you about both Security Onion and Snort, but alas,
space doesn't permit. I've given you the gist of it, now go try it for yourself.

https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero

Vulnerability Scanning and Intrusion Detection Chapter 9

[288]

I know that I made this Snort/Security Onion thing look rather easy, but
there's a lot more to it than what I've been able to show you. On a large
network, you might see a lot of traffic that doesn't make a lot of sense
unless you know how to interpret the information that Snort presents to
you. You might also need to fine-tune your Snort rules in order to see the
anomalies that you want to see, without generating false positives. Or, you
might even find the need to write your own custom Snort rules to handle
unusual situations. Fortunately, the Security Onion folk do provide
training, both on-site and online. You can find out more about it at the
following website:
https://securityonionsolutions.com/.

Scanning and hardening with Lynis
Lynis is yet another FOSS tool that you can use to scan your systems for vulnerabilities and
bad security configurations. It comes as a portable shell script that you can use not only on
Linux, but also on a variety of different Unix systems and Unix-like systems. It's a
multipurpose tool, which you can use for compliance auditing, vulnerability scanning, or
hardening. Unlike most vulnerability scanners, you install and run Lynis on the system that
you want to scan. According to the creator of Lynis, this allows for more in-depth scanning.

The Lynis scanning tool is available as a free-of-charge version, but its scanning capabilities
are somewhat limited. If you need all that Lynis has to offer, you'll need to purchase an
enterprise license.

Installing Lynis on Red Hat/CentOS
Red Hat/CentOS users will find an up-to-date version of Lynis in the EPEL repository. So, if
you have EPEL installed, as I showed you in Chapter 1, Running Linux on a Virtual
Environment, installation is just a simple matter of doing:

sudo yum install lynis

https://securityonionsolutions.com/

Vulnerability Scanning and Intrusion Detection Chapter 9

[289]

Installing Lynis on Ubuntu
Ubuntu has Lynis in its own repository, but which version you get depends on which
version of Ubuntu you have. The Ubuntu 16.04 LTS repository has a version that's fairly far
behind what's current. The version in the Ubuntu 17.10 repository is newer, but still not
completely up to date. In either case, the command to install Lynis is:

sudo apt install lynis

If you want the newest version for Ubuntu or if you want to use Lynis on operating systems
that don't have it in their repositories, you can download it from the author's website.

You can download Lynis from https://cisofy.com/downloads/lynis/.
The cool thing about this is that once you download it, you can use it on
any Linux, Unix, or Unix-like operating system. (This even includes
MacOS, which I just now confirmed by running it on my old Mac Pro
that's running with macOS High Sierra.)

Since the executable file is nothing but a common shell script, there's no need to perform an
actual installation. All you need to do is to extract the archive file, cd into the resultant
directory, and run Lynis from there:

tar xzvf lynis-2.5.7.tar.gz
cd lynis
sudo ./lynis -h

The lynis -h command shows you the help screen, with all of the Lynis commands that
you need to know.

Scanning with Lynis
Lynis commands work the same regardless of which operating system that you want to
scan. The only difference is that if you're running it from the archive file that you
downloaded from the website, you would cd into the lynis directory and precede the
lynis commands with a ./. (That's because, for security reasons, your own home
directory isn't in the path setting that allows the shell to automatically find executable files.)

To scan your system that has Lynis installed, follow this:

sudo lynis audit system

https://cisofy.com/downloads/lynis/

Vulnerability Scanning and Intrusion Detection Chapter 9

[290]

To scan a system on which you just downloaded the archive file, follow this:

cd lynis
sudo ./lynis audit system

Running Lynis from the shell script in your home directory presents you with this message:

donnie@ubuntu:~/lynis$ sudo ./lynis audit system
[sudo] password for donnie:

[!] Change ownership of /home/donnie/lynis/include/functions to 'root' or
similar (found: donnie with UID 1000).

 Command:
 # chown 0:0 /home/donnie/lynis/include/functions

[X] Security check failed

 Why do I see this error?

 This is a protection mechanism to prevent the root user from executing
user created files. The files may be altered, or including malicious pieces
of script.

 What can I do?

 Option 1) Check if a trusted user created the files (e.g. due to using
Git, Homebrew or similar).
 If you trust these files, you can decide to continue this run
by pressing ENTER.

 Option 2) Change ownership of the related files (or full directory).

 Commands (full directory):
 # cd ..
 # chown -R 0:0 lynis
 # cd lynis
 # ./lynis audit system

[Press ENTER to continue, or CTRL+C to cancel]

That's not hurting anything, so you can just hit Enter to continue. Or, if seeing this message
really bothers you, you can change ownership of the Lynis files to the root user, as the
message tells you. For now, I'll just press Enter.

Vulnerability Scanning and Intrusion Detection Chapter 9

[291]

Running a Lynis scan in this manner is similar to running an OpenSCAP scan against a
generic security profile. The major difference is that OpenSCAP has an automatic
remediation feature, but Lynis doesn't. Lynis tells you what it finds and suggests how to fix
what it perceives to be a problem, but it doesn't fix anything for you.

Space doesn't permit me to show the entire scan output, but I can show you a couple of
example snippets:

[+] Boot and services

 - Service Manager [systemd]
 - Checking UEFI boot [DISABLED]
 - Checking presence GRUB [OK]
 - Checking presence GRUB2 [FOUND]
 - Checking for password protection [WARNING]
 - Check running services (systemctl) [DONE]
 Result: found 21 running services
 - Check enabled services at boot (systemctl) [DONE]
 Result: found 28 enabled services
 - Check startup files (permissions) [OK]

The warning message shows that I don't have password protection for my GRUB2
bootloader. That may or may not be a big deal because the only way someone can exploit
that is to gain physical access to the machine. If it's a server that's locked away in a room
that only a few trusted personnel can access, then I'm not going to worry about it, unless
rules from an applicable regulatory agency dictate that I do. If it's a desktop machine that's
out in an open cubicle, then I would definitely fix that. (We'll look at GRUB password
protection in Chapter 10, Security Tips and Tricks for the Busy Bee.)

In the File systems section, we see some items with the SUGGESTION flag:

[+] File systems

 - Checking mount points
 - Checking /home mount point [SUGGESTION
]
 - Checking /tmp mount point [SUGGESTION
]
 - Checking /var mount point [SUGGESTION
]
 - Query swap partitions (fstab) [OK]
 - Testing swap partitions [OK]
 - Testing /proc mount (hidepid) [SUGGESTION
]
 - Checking for old files in /tmp [OK]
 - Checking /tmp sticky bit [OK]

Vulnerability Scanning and Intrusion Detection Chapter 9

[292]

 - ACL support root file system [ENABLED]
 - Mount options of / [NON DEFAULT
]
 - Checking Locate database [FOUND]
 - Disable kernel support of some filesystems
 - Discovered kernel modules: cramfs freevxfs hfs hfsplus jffs2 udf

Exactly what Lynis suggests comes near the end of the output:

. . .

. . .

 * To decrease the impact of a full /home file system, place /home on a
separated partition [FILE-6310]
 https://cisofy.com/controls/FILE-6310/

 * To decrease the impact of a full /tmp file system, place /tmp on a
separated partition [FILE-6310]
 https://cisofy.com/controls/FILE-6310/

 * To decrease the impact of a full /var file system, place /var on a
separated partition [FILE-6310]
 https://cisofy.com/controls/FILE-6310/
. . .
. . .

The last thing we'll look at is the scan details section at the end of the output:

 Lynis security scan details:

 Hardening index : 67 [#############]
 Tests performed : 218
 Plugins enabled : 0

 Components:
 - Firewall [V]
 - Malware scanner [X]

 Lynis Modules:
 - Compliance Status [?]
 - Security Audit [V]
 - Vulnerability Scan [V]

 Files:
 - Test and debug information : /var/log/lynis.log
 - Report data : /var/log/lynis-report.dat

Vulnerability Scanning and Intrusion Detection Chapter 9

[293]

For Components, there's a red X by Malware Scanner. That's because I don't have
ClamAV or maldet installed on this machine, so Lynis couldn't do a virus scan.

For Lynis Modules, we see a question mark by Compliance Status. That's because this
feature is reserved for the Enterprise version of Lynis, which requires a paid subscription.
As we saw in the previous chapter, you have OpenSCAP profiles to make a system
compliant with several different security standards, and it doesn't cost you anything. With
Lynis, you have to pay for the compliance profiles, but you have a wider range from which
to choose. In addition to the compliance profiles that OpenSCAP offers, Lynis also offers
profiles for HIPAA and Sarbanes-Oxley compliance.

If you're based here in the United States, you most surely know what
HIPAA and Sarbanes-Oxley are and whether they apply to you. If you're
not in the United States, then you probably don't need to worry about
them.

Having said that, if you work in the healthcare industry, even if you're not
in the United States, the HIPAA profile can give you guidance about how
to protect private data for patients.

The last thing I want to say about Lynis is about the Enterprise version. In this screenshot
from their website, you can see the current pricing and the differences between the different
subscription plans:

As you can see, you have choices.

Vulnerability Scanning and Intrusion Detection Chapter 9

[294]

You'll find information about pricing at this website:
https:/ /cisofy. com/ pricing/ .

That pretty much wraps it up for our discussion of Lynis. Next, let's look at an external
vulnerability scanner.

Finding vulnerabilities with OpenVAS
The Open Vulnerability Assessment Scanner (OpenVAS) is something that you would
use to perform remote vulnerability scans. You can scan a single machine, a group of
similar machines, or an entire network. It's not included in the repositories of the major
Linux distros, so the best way to get it is to install one of the specialty security distros.

The big three security distros are Kali Linux, Parrot Linux, and Black Arch. They're aimed at
security researchers and penetration testers, but they contain tools that would also be good
for just a normal security administrator of either the Linux or Windows variety. OpenVAS
is one such tool. All three of these three security distros have their unique advantages and
disadvantages, but as Kali is the most popular, we'll go with it for the demos.

You can download Kali Linux from https:/ /www. kali. org/ downloads/ .

When you go to the Kali download page, you'll see lots of choices. If you're like me and
don't like the default Gnome 3 desktop environment, you can choose something else. I'm
personally an LXDE guy, so I'll go with it:

https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://cisofy.com/pricing/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/

Vulnerability Scanning and Intrusion Detection Chapter 9

[295]

Kali is built from Debian Linux, so installing it is pretty much the same as installing
Debian. The one exception is that the Kali installer lets you create a password for the root
user, but it doesn't let you create a normal, non-root user account. That's because pretty
much everything you do with Kali requires you to be logged in as the root user. I know that
flies in the face of what I've been telling you about not logging in as root and about using
sudo from a normal user account instead. However, most of the stuff you need to do with
Kali doesn't work with sudo. Besides, Kali isn't meant to be used as a general-purpose
distro, and you'll be okay logging in as a root as long as you only use Kali as it was
intended to be used.

OpenVAS is a rather memory-hungry program, so if you're installing Kali
in a virtual machine, be sure to allocate at least three GB of memory.

The first thing you'll want to do after installing Kali is to update it, which is done in the
same way that you'd update any Debian/Ubuntu-type of distro. Then, install OpenVAS, as
follows:

apt update
apt dist-upgrade
apt install openvas

After the OpenVAS installation completes, you'll need to run a script that will create the
security certificates and download the vulnerability database:

openvas-setup

This will take a long time, so you might as well go grab a sandwich and a coffee while it's
running. When it's finally done, you'll be presented with the password that you'll use to log
in to OpenVAS. Write it down and keep it in a safe place:

Vulnerability Scanning and Intrusion Detection Chapter 9

[296]

You can control and update OpenVAS from the applications menu:

Vulnerability Scanning and Intrusion Detection Chapter 9

[297]

On that menu, click on openvas start. Then, open Firefox and navigate to
https://localhost:9392. You'll get a security alert because OpenVAS uses a self-signed
security certificate, but that's okay. Just click on the Advanced button, then click on Add
Exception:

At the login page, enter admin as the user and then enter the password that got generated
by the openvas-setup script.

Now, there's all kinds of fancy stuff that you can do with OpenVAS, but for now, we'll just
look at how to do a basic vulnerability scan. To begin, select Tasks from the Scans menu on
the OpenVAS dashboard:

Vulnerability Scanning and Intrusion Detection Chapter 9

[298]

This makes this dialog box pop up, telling you to use the wizard. (Yes indeed, we're off to
see the wizard.):

Vulnerability Scanning and Intrusion Detection Chapter 9

[299]

After you close the dialog box, you'll see the purple wizard icon show up in the upper left-
hand corner. For now, we'll just select the Task Wizard option, which will choose all of the
default scan settings for us:

The only thing you need to do here is to enter the IP address of the machine that you want
to scan and then start the scan:

Vulnerability Scanning and Intrusion Detection Chapter 9

[300]

The scan will take some time, so you might as well go grab a sandwich and a coffee.

Vulnerability Scanning and Intrusion Detection Chapter 9

[301]

The type of scan that you're doing is named Full and Fast, which isn't the most
comprehensive type of scan. To select another type of scan and to configure other scan
options, use the Advanced Task Wizard as shown in the following screenshot:

Vulnerability Scanning and Intrusion Detection Chapter 9

[302]

Here, you see the drop-down list of the different scan options:

Vulnerability Scanning and Intrusion Detection Chapter 9

[303]

When I did the first scan with the default Full and Fast option, I didn't discover many
problems. I had one of medium severity and 18 of low severity, and that was it. I knew that
there had to be more problems than that due to the age of the machine that I was scanning,
so I tried again with the Full and fast ultimate option. This time, I found more, including
some high severity stuff:

Vulnerability Scanning and Intrusion Detection Chapter 9

[304]

The report shows that my machine is using weak encryption algorithms for Secure Shell,
which is classified as medium severity. It also has a print server vulnerability that's
classified as a high-severity problem.

You also want to pay attention to the items that aren't flagged as vulnerabilities. For
example, the VNC security types item shows that port 5900 is open. This means that the
Virtual Network Computing (VNC) daemon is running, which allows users to remotely
log in to this machine's desktop. If this machine were an internet-facing machine, that
would be a real problem because there's no real security with VNC, the way there is with
Secure Shell.

Vulnerability Scanning and Intrusion Detection Chapter 9

[305]

By clicking on the print server item, I can see an explanation of this vulnerability.

Keep in mind that the target machine, in this case, is a desktop machine. If it were a server,
there's a good chance that we'd see even more problems.

And, that pretty much wraps things up for OpenVAS. As I said before, there's a lot of
awesome stuff that you can do with it. But, what I've shown you here should be enough to
get you started. Play around with it and try out the different scan options to see the
difference in results.

If you want to find out more about Kali Linux, you'll find a great selection
of books about it at the Packt Publishing website.

Vulnerability Scanning and Intrusion Detection Chapter 9

[306]

Web server scanning with Nikto
OpenVAS, which we just looked at, is a general-purpose vulnerability scanner. It can find
vulnerabilities for any kind of operating system or for any server daemon. However, as
we've just seen, an OpenVAS scan can take a while to run, and it might be more than what
you need.

Nikto is a special-purpose tool with only one purpose. That is, it's meant to scan web
servers and only web servers. It's easy to install, easy to use, and capable of doing a
comprehensive scan of a web server fairly quickly. And, although it's included in Kali
Linux, you don't need Kali Linux to run it.

Nikto in Kali Linux
If you already have Kali Linux, you'll find that nikto is already installed under the
Vulnerability Analysis menu:

Vulnerability Scanning and Intrusion Detection Chapter 9

[307]

When you click on that menu item, you'll open a command-line terminal with a display of
the Nikto help screen:

Installing and updating Nikto on Linux
Nikto is in the EPEL repository for Red Hat/CentOS, and it's in the normal repository for
Ubuntu. Along with the Nikto package itself, you'll also want to install a package that
allows Nikto to scan web servers that are set up with SSL/TLS encryption.

To install on Red Hat/CentOS:

sudo yum install nikto perl-Net-SSLeay

To install on Ubuntu:

sudo apt install nikto libnet-ssleay-perl

Vulnerability Scanning and Intrusion Detection Chapter 9

[308]

The next thing you'll want to do is to update the database of vulnerability signatures. But, at
the time of writing this, there's a slight bug in the Red Hat/CentOS implementation. For
some reason, the docs directory is missing, which means that the update functions won't be
able to download the CHANGES.txt file to show you what changed with the new database
updates. To fix that on your CentOS virtual machine, use this:

sudo mkdir /usr/share/nikto/docs

Keep in mind though that this could be fixed by the time you read this.

From here on out, things will work the same on either of your virtual machines. To update
the vulnerability database, use this:

sudo nikto -update

Nikto itself doesn't require sudo privileges, but updating it does because it requires writing
to a directory where normal users can't write.

Scanning a web server with Nikto
From here on out, you no longer need sudo privileges. So, you get a break from always
having to type your password.

To do a simple scan, use the -h option to specify the target host:

nikto -h 192.168.0.9
nikto -h www.example.com

Let's look at some sample output:

+ Allowed HTTP Methods: POST, OPTIONS, GET, HEAD
+ OSVDB-396: /_vti_bin/shtml.exe: Attackers may be able to crash FrontPage
by requesting a DOS device, like shtml.exe/aux.htm -- a DoS was not
attempted.
+ /cgi-bin/guestbook.pl: May allow attackers to execute commands as the web
daemon.
+ /cgi-bin/wwwadmin.pl: Administration CGI?
+ /cgi-bin/Count.cgi: This may allow attackers to execute arbitrary
commands on the server
+ OSVDB-28260:
/_vti_bin/shtml.exe/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611:
Gives info about server settings.
+ OSVDB-3092:
/_vti_bin/_vti_aut/author.exe?method=list+documents%3a3%2e0%2e2%2e1706&serv
ice%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&lis

Vulnerability Scanning and Intrusion Detection Chapter 9

[309]

tFiles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listD
erivedT=false&listBorders=fals: We seem to have authoring access to the
FrontPage web.
+ OSVDB-250: /wwwboard/passwd.txt: The wwwboard password file is browsable.
Change wwwboard to store this file elsewhere, or upgrade to the latest
version.
+ OSVDB-3092: /stats/: This might be interesting...
+ OSVDB-3092: /test.html: This might be interesting...
+ OSVDB-3092: /webstats/: This might be interesting...
+ OSVDB-3092: /cgi-bin/wwwboard.pl: This might be interesting...
+ OSVDB-3233: /_vti_bin/shtml.exe/_vti_rpc: FrontPage may be installed.
+ 6545 items checked: 0 error(s) and 15 item(s) reported on remote host
+ End Time: 2017-12-24 10:54:21 (GMT-5) (678 seconds)

At the top, we see that there's an shtml.exe file present, that's supposedly for the
FrontPage web authoring program. I have no idea why it's there, considering that this is a
Linux server and that that's a Windows executable. Nikto is telling me that by having that
file there, someone could possibly do a Denial-of-Service (DOS) attack against me.

Next, we see that there are various scripts in the /cgi-bin directory. You can see from the
explanatory messages that that's not a good thing because it could allow attackers to
execute commands on my server.

After this, we see that there's an author.exe file in the vti_bin directory, which could
theoretically allow someone to have authoring privileges.

The final item of interest is the passwd.txt file that's in the wwwboard directory.
Apparently, this password file is browsable, which is definitely not a good thing.

Now, before you accuse me of making these problems up, I will reveal that this is a scan of
a real production website on a real hosting service. (And yes, I do have permission to scan
it.) So, these problems are real and need to be fixed.

Here are a couple of other sample messages that I got from scanning a web server that's
running WordPress:

HTTP TRACK method is active, suggesting the host is vulnerable to XST
Cookie wordpress_test_cookie created without the httponly flag

To make a long story short, both of these two problems could potentially allow an attacker
to steal user credentials. The fix, in this case, would be to see if the WordPress folk have
issued any updates that would fix the problem.

Vulnerability Scanning and Intrusion Detection Chapter 9

[310]

So, how can we protect a web server against these kinds of vulnerabilities?

As we saw in the first example, you want to ensure that you don't have any risky
executable files on your web server. In this case, we found two .exe files that
might not hurt anything on our Linux server, since Windows executable files
don't run on Linux. However, on the other hand, it could be a Linux executable
that's disguised as a Windows executable. We also found some perl scripts that
definitely would run on Linux and that could pose a problem.
In the event that someone were to plant some malicious script on your web
server, you would want to have some form of mandatory access control, such as
SELinux or AppArmor, that would keep the malicious scripts from running. (See
Chapter 7, Implementing Mandatory Access Control with SELinux and AppArmor, for
details about that.)
You might also consider installing a web application firewall, such as
ModSecurity. Space doesn't permit me to cover the details of ModSecurity, but
you'll find a book that covers it at the Packt Publishing website.
Keep your systems updated, especially if you're running a PHP-based content
management system such as WordPress. (If you keep up with the IT security
news, you'll see stories about WordPress vulnerabilities more often than you'd
like to.)

There are other scan options, which you can see by just typing nikto at the command line.
For now though, this is enough to get you started with basic web server scanning.

Summary
We've reached yet another milestone in our journey, and we saw some cool stuff. We
started with a discussion about the basics of setting up Snort as a NIDS. I then showed you
how to seriously cheat by deploying specialty Linux distros that already have Snort set up
and ready to go.

Next, I introduced you to Lynis and how you can use it to scan your system for various
vulnerabilities and compliance issues. Finally, we wrapped things up with working demos
of OpenVAS and Nikto.

In the next chapter, we'll wind up this whole journey with a look at some quick tips for
busy administrators. I'll see you there.

10
Security Tips and Tricks for the

Busy Bee
In this, our final chapter, I'd like to do a round-up of quick tips and tricks that don't
necessarily fit in with the previous chapters. Think of these tips as time savers for the busy
administrator.

We'll cover the following topics:

Quick ways to audit which system services are running
Password-protecting the GRUB2 configuration
Securely configuring and then password-protecting UEFI/BIOS
Use a security checklist when setting up your system

Auditing system services
A basic tenet of server administration, regardless of which operating system we're talking
about, is to never have anything that you don't absolutely need installed on a server. You
especially don't want any unnecessary network services running because that would give
the bad guys extra ways to get into your system. And, there's always a chance that some
evil hacker might have planted something that acts as a network service, and you'd
definitely want to know about that. In this chapter, we'll look at a few different ways to
audit your system to ensure that no unnecessary network services are running on it.

Security Tips and Tricks for the Busy Bee Chapter 10

[312]

Auditing system services with systemctl
On Linux systems that come with systemd, the systemctl command is pretty much a
universal command that does many things for you. In addition to controlling your system's
services, it can also show you the status of those services. We have the following code:

donnie@linux-0ro8:~> sudo systemctl -t service --state=active

Here's the breakdown of the preceding command:

-t service: We want to view information about the services—or, what used to
be called daemons—on the system
--state=active: This specifies that we want to view information about all the
system services that are actually running

A partial output of this command looks something like this:

UNIT LOAD ACTIVE SUB
DESCRIPTION
accounts-daemon.service loaded active running
Accounts Service
after-local.service loaded active exited
/etc/init.d/after.local Compatibility
alsa-restore.service loaded active exited
Save/Restore Sound Card State
apparmor.service loaded active exited
Load AppArmor profiles
auditd.service loaded active running
Security Auditing Service
avahi-daemon.service loaded active running
Avahi mDNS/DNS-SD Stack
cron.service loaded active running
Command Scheduler
. . .
. . .
systemd-sysctl.service loaded active exited
Apply Kernel Variables
systemd-tmpfiles-setup-dev.service loaded active exited
Create Static Device Nodes in /dev
systemd-tmpfiles-setup.service loaded active exited
Create Volatile Files and Directories
systemd-udev-root-symlink.service loaded active exited
Rule generator for /dev/root symlink
systemd-udev-trigger.service loaded active exited
udev Coldplug all Devices
systemd-udevd.service loaded active running

Security Tips and Tricks for the Busy Bee Chapter 10

[313]

udev Kernel Device Manager
systemd-update-utmp.service loaded active exited
Update UTMP about System Boot/Shutdown

You generally won't want to see quite this much information, although you might at times.
This command shows the status of every service that's running on your system. What really
interests us now is just the network services that can allow someone to connect to your
system. So, let's look at how to narrow things down a bit.

Auditing network services with netstat
The following are two reasons why you would want to keep track of what network services
are running on your system:

To ensure that no legitimate network services that you don't need are running
To ensure that you don't have any malware that's listening for network
connections from its master

The netstat command is both handy and easy to use for these instances. First, let's say that
you want to see a list of network services that are listening, waiting for someone to connect
to them:

donnie@linux-0ro8:~> netstat -lp -A inet

(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 0 0 *:ideafarm-door *:* LISTEN -
tcp 0 0 localhost:40432 *:* LISTEN
3296/SpiderOakONE
tcp 0 0 *:ssh *:* LISTEN -
tcp 0 0 localhost:ipp *:* LISTEN -
tcp 0 0 localhost:smtp *:* LISTEN -
tcp 0 0 *:db-lsp *:* LISTEN
3246/dropbox
tcp 0 0 *:37468 *:* LISTEN
3296/SpiderOakONE
tcp 0 0 localhost:17600 *:* LISTEN
3246/dropbox
tcp 0 0 localhost:17603 *:* LISTEN
3246/dropbox

Security Tips and Tricks for the Busy Bee Chapter 10

[314]

udp 0 0 *:57228 *:*
3376/plugin-contain
udp 0 0 192.168.204.1:ntp *:* -
udp 0 0 172.16.249.1:ntp *:* -
udp 0 0 linux-0ro8:ntp *:* -
udp 0 0 localhost:ntp *:* -
udp 0 0 *:ntp *:* -
udp 0 0 *:58102 *:*
5598/chromium --pas
udp 0 0 *:db-lsp-disc *:*
3246/dropbox
udp 0 0 *:43782 *:*
5598/chromium --pas
udp 0 0 *:36764 *:* -
udp 0 0 *:21327 *:*
3296/SpiderOakONE
udp 0 0 *:mdns *:*
5598/chromium --pas
udp 0 0 *:mdns *:*
5598/chromium --pas
udp 0 0 *:mdns *:*
5598/chromium --pas
udp 0 0 *:mdns *:* -
raw 0 0 *:icmp *:* 7 -
donnie@linux-0ro8:~>

The breakdown is as follows:

-lp: The l means that we want to see which network ports are listening. In other
words, we want to see which network ports are waiting for someone to connect
to them. The p means that we want to see the name and process ID number of the
program or service that is listening on each port.
-A inet: This means that we only want to see information about the network
protocols that are members of the inet family. In other words, we want to see
information about the raw, tcp, and udp network sockets, but we don't want to
see anything about the Unix sockets that only deal with interprocess
communications within the operating system.

Security Tips and Tricks for the Busy Bee Chapter 10

[315]

Since this output is from the OpenSUSE workstation that I just happen to be using at the
moment, you won't see any of the usual server-type services here. However, you do see a
few things that you likely won't want to see on your servers. For example, let's look at the
very first item:

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 0 0 *:ideafarm-door *:* LISTEN
-

The Local Address column specifies the local address and port of this listening socket.
The asterisk means that this socket is on the local network, and ideafarm-door is the name
of the network port that is listening. (By default, netstat will show you the names of ports
whenever possible, by pulling the port information out of the /etc/services file.)

Now, because I didn't know what the ideafarm-door service is, I used my favorite search
engine to find out. By plugging the term ideafarm-door into DuckDuckGo, I found the
answer:

Security Tips and Tricks for the Busy Bee Chapter 10

[316]

The top search result took me to a site named WhatPortIs. According to this, the ideafarm-
door is in reality port 902, which belongs to the VMware Server Console. Okay, that makes
sense because I do have VMware Player installed on this machine. So, that's all good.

You can check out the WhatPortIs site here: http:/ /whatportis. com/.

Next on the list is:

tcp 0 0 localhost:40432 *:* LISTEN
3296/SpiderOakONE

This item shows the local address as localhost and that the listening port is port 40432.
This time, the PID/Program Name column actually tells us what this is. SpiderOak ONE is a
cloud-based backup service that you might or might not want to see running on your
server.

Now, let's look at a few more items:

tcp 0 0 *:db-lsp *:* LISTEN 3246/dropbox
tcp 0 0 *:37468 *:* LISTEN
3296/SpiderOakONE
tcp 0 0 localhost:17600 *:* LISTEN 3246/dropbox
tcp 0 0 localhost:17603 *:* LISTEN 3246/dropbox

Here, we see that Dropbox and SpiderOak ONE are both listed with the asterisk for the
local address. So, they're both using the local network address. The name of the port for
Dropbox is db-lsp, which stands for Dropbox LAN Sync Protocol. The SpiderOak ONE port
doesn't have an official name, so it's just listed as port 37468. The bottom two lines show
that Dropbox also uses the local machine's address, on ports 17600 and 17603.

So far we've looked at nothing but TCP network sockets. Let's see how they differ from
UDP sockets:

udp 0 0 192.168.204.1:ntp *:*
-
udp 0 0 172.16.249.1:ntp *:*
-
udp 0 0 linux-0ro8:ntp *:*
-

http://whatportis.com/
http://whatportis.com/
http://whatportis.com/
http://whatportis.com/
http://whatportis.com/
http://whatportis.com/
http://whatportis.com/
http://whatportis.com/

Security Tips and Tricks for the Busy Bee Chapter 10

[317]

The first thing to note is that there's nothing under the State column. That's because with
UDP, there are no states. They actually are listening for data packets to come in, and they're
ready to send data packets out. But since that's about all that UDP sockets can do, there was
really no sense in defining different states for them.

In the first two lines, we see some strange local addresses. That's because I have both
VMware Player and VirtualBox installed on this workstation. The local addresses of these
two sockets are for the VMware and VirtualBox virtual network adapters. The last line
shows the hostname of my OpenSUSE workstation as the local address. In all three cases,
the port is the Network Time Protocol port, for time synchronization.

Let's now look at one last set of UDP items:

udp 0 0 *:58102 *:*
5598/chromium --pas
udp 0 0 *:db-lsp-disc *:*
3246/dropbox
udp 0 0 *:43782 *:*
5598/chromium --pas
udp 0 0 *:36764 *:* -
udp 0 0 *:21327 *:*
3296/SpiderOakONE
udp 0 0 *:mdns *:*
5598/chromium --pas

Here, we see that my Chromium web browser is ready to accept network packets on a few
different ports. We also see that Dropbox uses UDP to accept discovery requests from other
local machines that have Dropbox installed. I assume that port 21327 performs the same
function for SpiderOak ONE.

Of course, since this machine is my workhorse workstation, Dropbox and SpiderOak ONE
are almost indispensable to me. I installed them myself, so I've always know that they were
there. However, if you see anything like this on a server, you'll want to investigate to see if
the server admins know that these programs are installed, and then find out why they're
installed. It could be that they're performing a legitimate function, and it could be that
they're not.

Security Tips and Tricks for the Busy Bee Chapter 10

[318]

A difference between Dropbox and SpiderOak ONE is that with Dropbox,
your files don't get encrypted until they've been uploaded to the Dropbox
servers. So, the Dropbox folk have the encryption keys to your files. On
the other hand, SpiderOak ONE encrypts your files on your local machine,
and the encryption keys never leave your possession. So, if you really do
need a cloud-based backup service and you're dealing with sensitive files,
something like SpiderOak ONE would definitely be better than Dropbox.
(And no, the SpiderOak ONE folk aren't paying me to say that.)

If you want to see port numbers and IP addresses instead of network names, add the
n option. We have the following code:

donnie@linux-0ro8:~> netstat -lpn -A inet

(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 0 0 0.0.0.0:902 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:40432 0.0.0.0:* LISTEN
3296/SpiderOakONE
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:17500 0.0.0.0:* LISTEN
3246/dropbox
tcp 0 0 0.0.0.0:37468 0.0.0.0:* LISTEN
3296/SpiderOakONE
tcp 0 0 127.0.0.1:17600 0.0.0.0:* LISTEN
3246/dropbox
tcp 0 0 127.0.0.1:17603 0.0.0.0:* LISTEN
3246/dropbox
udp 0 0 192.168.204.1:123 0.0.0.0:* -
udp 0 0 172.16.249.1:123 0.0.0.0:* -
udp 0 0 192.168.0.222:123 0.0.0.0:* -
udp 0 0 127.0.0.1:123 0.0.0.0:* -
udp 0 0 0.0.0.0:123 0.0.0.0:* -
udp 0 0 0.0.0.0:17500 0.0.0.0:*
3246/dropbox
udp 0 0 0.0.0.0:50857 0.0.0.0:*
5598/chromium --pas
udp 0 0 0.0.0.0:43782 0.0.0.0:*
5598/chromium --pas
udp 0 0 0.0.0.0:44023 0.0.0.0:*
10212/plugin-contai

Security Tips and Tricks for the Busy Bee Chapter 10

[319]

udp 0 0 0.0.0.0:36764 0.0.0.0:* -
udp 0 0 0.0.0.0:21327 0.0.0.0:*
3296/SpiderOakONE
udp 0 0 0.0.0.0:5353 0.0.0.0:*
5598/chromium --pas
udp 0 0 0.0.0.0:5353 0.0.0.0:*
5598/chromium --pas
udp 0 0 0.0.0.0:5353 0.0.0.0:*
5598/chromium --pas
udp 0 0 0.0.0.0:5353 0.0.0.0:* -
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 -
donnie@linux-0ro8:~>

All you have to do to view the established TCP connections is to leave out the l option. On
my workstation, this makes for a very long list, so I'll only show a few items:

donnie@linux-0ro8:~> netstat -p -A inet
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 1 0 linux-0ro8:41670 ec2-54-88-208-223:https CLOSE_WAIT
3246/dropbox
tcp 0 0 linux-0ro8:59810 74-126-144-106.wa:https ESTABLISHED
3296/SpiderOakONE
tcp 0 0 linux-0ro8:58712 74-126-144-105.wa:https ESTABLISHED
3296/SpiderOakONE
tcp 0 0 linux-0ro8:caerpc atl14s78-in-f2.1e:https ESTABLISHED
10098/firefox
. . .
. . .

The Foreign Address column shows the address and port number of the machine at the
remote end of the connection. The first item shows that the connection with a Dropbox
server is in a CLOSE_WAIT state. This means that the Dropbox server has closed the
connection, and we're now waiting on the local machine to close the socket.

Because the names of those foreign addresses don't make much sense, let's add the n option
to see IP addresses instead:

donnie@linux-0ro8:~> netstat -np -A inet
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

Security Tips and Tricks for the Busy Bee Chapter 10

[320]

tcp 0 1 192.168.0.222:59594 37.187.24.170:443 SYN_SENT
10098/firefox
tcp 0 0 192.168.0.222:59810 74.126.144.106:443 ESTABLISHED
3296/SpiderOakONE
tcp 0 0 192.168.0.222:58712 74.126.144.105:443 ESTABLISHED
3296/SpiderOakONE
tcp 0 0 192.168.0.222:38606 34.240.121.144:443 ESTABLISHED
10098/firefox
. . .
. . .

This time we see something new. The first item shows a SYN_SENT state for the Firefox
connection. This means that the local machine is trying to establish a connection to the
foreign IP address. Also, under Local Address, we see the static IP address for my
OpenSUSE workstation.

If I had space to display the entire netstat output here, you'd see nothing but tcp under
the Proto column. That's because the UDP protocol doesn't establish connections in the
same way that the TCP protocol does.

Something to keep in mind is that rootkits can replace legitimate Linux
utilities with their own trojaned versions. For example, a rootkit could
have its own trojaned version of netstat that would show all network
processes except for those that are associated with the rootkit. That's why
you want something like Rootkit Hunter in your toolbox.

If you need more information about netstat, see the netstat man page.

Auditing network services with Nmap
The netstat tool is very good, and it can give you lots of good information about what's
going on with your network services. The slight downside is that you have to log in to
every individual host on your network in order to use it.

If you'd like to remotely audit your network to see what services are running on each
computer, without having to log in to each and every one, then you need a tool like Nmap.
It's available for all the major operating systems, so even if you're stuck having to use
Windows on your workstation, you're in luck. An up-to-date version is built into Kali
Linux, if that's what you're using. It's also in the repositories of every major Linux distro,
but the version that's in the Linux repositories is usually quite old. So if you're using
something other than Kali, your best bet is just to download Nmap from its creator's
website.

Security Tips and Tricks for the Busy Bee Chapter 10

[321]

You can download Nmap for all of the major operating systems
from https:/ /nmap. org/ download. html.

In all cases, you'll also find instructions for installation.

You'll use Nmap the same way on all operating systems, with only one exception. On Linux
and Mac machines, you'll preface certain Nmap commands with sudo, and on Windows
machines, you won't. Since I just happen to be working on my trusty OpenSUSE
workstation, I'll show you how it works on Linux. Let's start by doing a SYN packet scan:

donnie@linux-0ro8:~> sudo nmap -sS 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-24 19:32 EST
Nmap scan report for 192.168.0.37
Host is up (0.00016s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
515/tcp open printer
631/tcp open ipp
5900/tcp open vnc
MAC Address: 00:0A:95:8B:E0:C0 (Apple)

Nmap done: 1 IP address (1 host up) scanned in 57.41 seconds
donnie@linux-0ro8:~>

Here's the breakdown:

-sS: The lower-case s denotes the type of scan that we want to perform. The
uppercase S denotes that we're doing an SYN packet scan. (More on that in a
moment.)
192.168.0.37: In this case, I'm only scanning a single machine. But, I could also
scan either a group of machines, or an entire network.
Not shown: 996 closed ports: The fact that it's showing all of these closed
ports instead of filtered ports tells me that there's no firewall on this machine.
(Again, more on that in a moment.)

Next, we see a list of ports that are open. (And, more on that in a moment.)

The MAC address of this machine indicates that it's an Apple product of some
sort. In a moment, I'll show you how to get more details about what kind of Apple
product that it might be.

https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html

Security Tips and Tricks for the Busy Bee Chapter 10

[322]

Let's now look at this more in detail.

Port states
An Nmap scan will show the target machine's ports in one of three states:

filtered: This means that the port is blocked by a firewall
open: This means that the port is not blocked by a firewall and that the service
that's associated with that port is running
closed: This means that the port is not blocked by a firewall, and that the service
that's associated with that port is not running

So, in our scan of the Apple machine, we see that the Secure Shell service is ready to accept
connections on port 22, that the print service is ready to accept connections on ports 515
and 631, and that the Virtual Network Computing (VNC) service is ready to accept
connections on port 5900. All of these ports would be of interest to a security-minded
administrator. If Secure Shell is running, it would be interesting to know if it's configured
securely. The fact that the print service is running means that this machine is set up to use
the Internet Printing Protocol (IPP). It would be interesting to know why we're using IPP
instead of just regular network printing, and it would also be interesting to know if there
are any security concerns with this version of IPP. And of course, we already know that
VNC isn't a secure protocol, so we would want to know why it's even running at all. We
also saw that no ports are listed as filtered, so we would also want to know why there's
no firewall on this machine.

One little secret that I'll finally reveal, is that this machine is the same one that I used for the
OpenVAS scan demos. So, we already have some of the needed information. The OpenVAS
scan told us that Secure Shell on this machine uses weak encryption algorithms and that
there's a security vulnerability with the print service. In just a bit, I'll show you how to get
some of that information with Nmap.

Security Tips and Tricks for the Busy Bee Chapter 10

[323]

Scan types
There are lots of different scanning options, each with its own purpose. The SYN packet
scan that we're using here is considered a stealthy type of scan because it generates less
network traffic and fewer system log entries than certain other types of scans. With this
type of scan, Nmap sends a SYN packet to a port on the target machine, as if it were trying
to create a TCP connection to that machine. If the target machine responds with a SYN/ACK
packet, it means that the port is in an open state and ready to create the TCP connection. If
the target machine responds with an RST packet, it means that the port is in a closed state.
If there's no response at all, it means that the port is filtered, blocked by a firewall. As a
normal Linux administrator, this is one of the types of scans that you would do most of the
time.

The -sS scan shows you the state of TCP ports, but it doesn't show you the state of UDP
ports. To see the UDP ports, use the -sU option:

donnie@linux-0ro8:~> sudo nmap -sU 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-28 12:41 EST
Nmap scan report for 192.168.0.37
Host is up (0.00018s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
123/udp open ntp
631/udp open|filtered ipp
3283/udp open|filtered netassistant
5353/udp open zeroconf
MAC Address: 00:0A:95:8B:E0:C0 (Apple)

Nmap done: 1 IP address (1 host up) scanned in 119.91 seconds
donnie@linux-0ro8:~>

Here, you see something a bit different. You see two ports listed as open|filtered. That's
because, due to the way that UDP ports respond to Nmap scans, Nmap can't always tell
whether a UDP port is open or filtered. In this case, we know that these two ports are
probably open because we've already seen that their corresponding TCP ports are open.

ACK packet scans can also be useful, but not to see the state of the target machine's network
services. Rather, it's a good option for when you need to see if there might be a firewall
blocking the way between you and the target machine. An ACK scan command looks like
this:

sudo nmap -sA 192.168.0.37

Security Tips and Tricks for the Busy Bee Chapter 10

[324]

You're not limited to scanning just a single machine at a time. You can scan either a group
of machines or an entire subnet at once:

sudo nmap -sS 192.168.0.1-128
sudo nmap -sS 192.168.0.0/24

The first command scans only the first 128 hosts on this network segment. The second
command scans all 254 hosts on a subnet that's using a 24 bit netmask.

A discovery scan is useful for when you need to just see what devices are on the network:

sudo nmap -sn 192.168.0.0/24

With the -sn option, Nmap will first detect whether you're scanning the local subnet or a
remote subnet. If the subnet is local, Nmap will send out an Address Resolution Protocol
(ARP) broadcast that requests the IPv4 addresses of every device on the subnet. That's a
reliable way of discovering devices because ARP isn't something that will ever be blocked
by a device's firewall. (I mean, without ARP, the network would cease to function.)
However, ARP broadcasts can't go across a router, which means that you can't use ARP to
discover hosts on a remote subnet. So, if Nmap detects that you're doing a discovery scan
on a remote subnet, it will send out ping packets instead of ARP broadcasts. Using ping
packets for discovery isn't as reliable as using ARP because some network devices can be
configured to ignore ping packets. Anyway, here's an example from my own home
network:

donnie@linux-0ro8:~> sudo nmap -sn 192.168.0.0/24

Starting Nmap 6.47 (http://nmap.org) at 2017-12-25 14:48 EST
Nmap scan report for 192.168.0.1
Host is up (0.00043s latency).
MAC Address: 00:18:01:02:3A:57 (Actiontec Electronics)
Nmap scan report for 192.168.0.3
Host is up (0.0044s latency).
MAC Address: 44:E4:D9:34:34:80 (Cisco Systems)
Nmap scan report for 192.168.0.5
Host is up (0.00026s latency).
MAC Address: 1C:1B:0D:0A:2A:76 (Unknown)
Nmap scan report for 192.168.0.6
Host is up (0.00013s latency).
MAC Address: 90:B1:1C:A3:DF:5D (Dell)
. . .
. . .

Security Tips and Tricks for the Busy Bee Chapter 10

[325]

We see four hosts in this snippet, and there are three lines of output for each host. The first
line shows the IP address, the second shows whether the host is up, and the third shows the
MAC address of the host's network adapter. The first three pairs of characters in each MAC
address denote the manufacturer of that network adapter. (For the record, that unknown
network adapter is on a recent model Gigabyte motherboard. I have no idea why it's not in
the Nmap database.)

The final scan that we'll look at does four things for us:

It identifies open, closed, and filtered TCP ports
It identifies the versions of the running services
It runs a set of vulnerability-scanning scripts that come with Nmap
It attempts to identify the operating system of the target host

The scan command that does all of these things looks like this:

sudo nmap -A 192.168.0.37

I guess that you could think of the -A option as the all option, since it really does do it all.
(Well, almost all, since it doesn't scan UDP ports.) Here are the results of the scan that I did
against my target:

donnie@linux-0ro8:~> sudo nmap -A 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-24 19:33 EST
Nmap scan report for 192.168.0.37
Host is up (0.00016s latency).
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 5.1 (protocol 1.99)
|_ssh-hostkey: ERROR: Script execution failed (use -d to debug)
|_sshv1: Server supports SSHv1
515/tcp open printer?
631/tcp open ipp CUPS 1.1
| http-methods: Potentially risky methods: PUT
|_See http://nmap.org/nsedoc/scripts/http-methods.html
| http-robots.txt: 1 disallowed entry
|_/
|_http-title: Common UNIX Printing System
5900/tcp open vnc Apple remote desktop vnc
| vnc-info:
| Protocol version: 3.889
| Security types:
|_ Mac OS X security type (30)
1 service unrecognized despite returning data. If you know the

Security Tips and Tricks for the Busy Bee Chapter 10

[326]

service/version, please submit the following fingerprint at
http://www.insecure.org/cgi-bin/servicefp-submit.cgi :
SF-Port515-TCP:V=6.47%I=7%D=12/24%Time=5A40479E%P=x86_64-suse-linux-gnu%r(
SF:GetRequest,1,"\x01");
MAC Address: 00:0A:95:8B:E0:C0 (Apple)
Device type: general purpose
Running: Apple Mac OS X 10.4.X
OS CPE: cpe:/o:apple:mac_os_x:10.4.10
OS details: Apple Mac OS X 10.4.10 - 10.4.11 (Tiger) (Darwin 8.10.0 -
8.11.1)
Network Distance: 1 hop
Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x

TRACEROUTE
HOP RTT ADDRESS
1 0.16 ms 192.168.0.37

OS and Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 213.92 seconds
donnie@linux-0ro8:~>

There are several interesting things here. First, there's the Secure Shell information:

22/tcp open ssh OpenSSH 5.1 (protocol 1.99)
|_ssh-hostkey: ERROR: Script execution failed (use -d to debug)
|_sshv1: Server supports SSHv1

Version 5.1 is a really old version of OpenSSH. (At the time of writing, the current version is
version 7.6.) What's worse is that this OpenSSH server supports version 1 of the Secure
Shell protocol. Version 1 is seriously flawed and is easily exploitable, so you never want to
see this on your network.

Next, we have amplifying information on the print service vulnerability that we found with
the OpenVAS scan:

515/tcp open printer?
631/tcp open ipp CUPS 1.1
| http-methods: Potentially risky methods: PUT
|_See http://nmap.org/nsedoc/scripts/http-methods.html
| http-robots.txt: 1 disallowed entry
|_/
|_http-title: Common UNIX Printing System

Security Tips and Tricks for the Busy Bee Chapter 10

[327]

In the 631/tcp line, we see that the associated service is ipp, which stands for Internet
Printing Protocol. This protocol is based on the same Hypertext Transfer Protocol (HTTP)
that we use to look at web pages. The two methods that HTTP uses to send data from a
client to a server are POST and PUT. What we really want is for every HTTP server to use
the POST method because the PUT method makes it very easy for someone to compromise
a server by manipulating a URL. So, if you scan a server and find that it allows using the
PUT method for any kind of HTTP communications, you have a potential problem. In this
case, the solution would be to update the operating system and hope that the updates fix
the problem. If this were a web server, you'd want to have a chat with the web server
administrators to let them know what you found.

Finally, let's see what Nmap found out about the operating system of our target machine:

Running: Apple Mac OS X 10.4.X
OS CPE: cpe:/o:apple:mac_os_x:10.4.10
OS details: Apple Mac OS X 10.4.10 - 10.4.11 (Tiger) (Darwin 8.10.0 -
8.11.1)
Network Distance: 1 hop
Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x

Wait, what? Mac OS X 10.4? Isn't that really, really ancient? Well yeah, it is. The secret that
I've been guarding for the past couple of chapters is that the target machine for my
OpenVAS and Nmap scan demos has been my ancient, collectible Apple eMac from the
year 2003. I figured that scanning it would give us some interesting results to look at, and it
would appear that I was right. (And yes, that is eMac, not iMac.)

Password-protecting the GRUB 2 bootloader
People sometimes forget passwords, even if they're administrators. And sometimes, people
buy used computers but forget to ask the seller what the password is. (Yes, I've done that.)
That's okay, though, because all of the major operating systems have ways to let you either
reset or recover a lost administrator password. That's handy, except that it does kind of
make the whole idea of having login passwords a rather moot point when someone has
physical access to the machine. Let's say that your laptop has just been stolen. If you haven't
encrypted the hard drive, it would only take a few minutes for the thief to reset the
password and to steal your data. If you have encrypted the drive, the level of protection
would depend on which operating system you're running. With standard Windows folder
encryption, the thief would be able to access the encrypted folders just by resetting the
password. With LUKS whole-disk encryption on a Linux machine, the thief wouldn't be
able to get past the point of having to enter the encryption passphrase.

Security Tips and Tricks for the Busy Bee Chapter 10

[328]

With Linux, we have a way to safeguard against unauthorized password resets, even if
we're not using whole-disk encryption. All we have to do is to password-protect the Grand
Unified Bootloader (GRUB), which would prevent a thief from booting into emergency
mode to do the password reset.

Whether or not you need the advice in this section depends on your
organization's physical security setup. That's because booting a Linux
machine into emergency mode requires physical access to the machine. It's
not something that you can do remotely. In an organization with proper
physical security, servers—especially ones that hold sensitive data—are
locked away in a room that's locked within another room. Only a very few
trusted personnel are allowed to enter, and they have to present their
credentials at both access points. So, setting a password on the bootloader
of those servers would be rather pointless, unless you're dealing with a
regulatory agency that dictates otherwise.

On the other hand, password-protecting the bootloaders of workstations
and laptops that are out in the open could be quite useful. But, that alone
won't protect your data. Someone could still boot the machine from a live
disk or a USB memory stick, mount the machine's hard drive, and obtain
the sensitive data. That's why you also want to encrypt your sensitive
data, as I showed you in Chapter 4, Encrypting and SSH Hardening.

To reset a password, all you have to do is to interrupt the boot process when the boot menu
comes up and change a couple of kernel parameters. However, resetting passwords isn't the
only thing you can do from the boot menu. If your machine has multiple operating systems
installed—for example, Windows on one partition and Linux on another partition—the boot
menu allows you to choose which operating system to boot up. With the old-style legacy
GRUB, you could prevent people from editing kernel parameters, but you couldn't prevent
them from choosing an alternate operating system on multiboot machines. With the new
GRUB 2 that's in newer versions of Linux, you can choose which users you want to be able
to boot from any particular operating system.

Now, just so you'll know what I'm talking about when I say that you can edit kernel
parameters from the GRUB 2 boot menu, let me show you how to perform a password
reset.

Security Tips and Tricks for the Busy Bee Chapter 10

[329]

Resetting the password for Red Hat/CentOS
When the boot menu comes up, interrupt the boot process by hitting the down-arrow key
once. Then, hit the up-arrow key once to select the default boot option:

Hit the E key to edit the kernel parameters. When the GRUB 2 configuration comes up,
cursor down until you see this line:

Delete the words rhgb quiet from this line and then add rd.break enforcing=0 to the
end of the line. Here's what these two new options do for you:

rd.break: This will cause the machine to boot into emergency mode, which
gives you root user privileges without you having to enter a root user password.
Even if the root user password hasn't been set, this still works.
enforcing=0: When you do a password reset on an SELinux-enabled system,
the security context for the /etc/shadow file will change to the wrong type. If
the system is in enforcing mode when you do this, SELinux will prevent you
from logging in until the shadow file gets relabeled. But, relabeling during the
boot process can take a very long time, especially with a large drive. By setting
SELinux to permissive mode, you can wait until after you've rebooted to restore
the proper security context on just the shadow file.

Security Tips and Tricks for the Busy Bee Chapter 10

[330]

When you've finished editing the kernel parameters, hit Ctrl + X to continue the boot
process. This will take you to the emergency mode with the switch_root command
prompt:

In emergency mode, the filesystem is mounted as read-only. You'll need to remount it as
read-write and enter a chroot mode before you reset the password:

mount -o remount,rw /sysroot
chroot /sysroot

After you enter these two commands, the command prompt will change to that of a normal
bash shell:

Now that you've reached this stage, you're finally ready to reset the password.

If you want to reset the root user password, or even if you want to create a root password
where none previously existed, just enter:

passwd

Then, enter the new desired password.

If the system has never had a root user password and you still don't want it to have one,
you can reset the password for an account that has full sudo privileges. For example, on my
system, the command would look like this:

passwd donnie

Next, remount the filesystem as read-only. Then, enter exit twice to resume rebooting:

mount -o remount,ro /
exit
exit

Security Tips and Tricks for the Busy Bee Chapter 10

[331]

The first thing you need to do after rebooting is to restore the proper SELinux security
context on the /etc/shadow file. Then, put SELinux back into enforcing mode:

sudo restorecon /etc/shadow
sudo setenforce 1

Here's a before and after screenshot of the context settings for my shadow file:

You can see that resetting the password changed the type of the file to unlabeled_t.
Running the restorecon command changed the type back to shadow_t.

Resetting the password for Ubuntu
The procedure for resetting a password on an Ubuntu system is quite a bit different and
quite a bit simpler. Start out the same as you did with the CentOS machine, by pressing the
down-arrow key once to interrupt the boot process. Then, press the up-arrow key once to
select the default boot option. Hit the E key to edit the kernel parameters:

Security Tips and Tricks for the Busy Bee Chapter 10

[332]

When the GRUB 2 configuration comes up, cursor down until you see the linux line:

Change the ro to rw and add init=/bin/bash:

Press Ctrl + X to continue booting. This will take you to a root shell:

Since Ubuntu doesn't normally have a password assigned to the root user, you would most
likely just reset the password of whoever had full sudo privileges. See the following
example:

passwd donnie

When you're in this mode, the normal reboot commands won't work. So, once you've
finished with the password reset operation, reboot by entering:

exec /sbin/init

The machine will now boot up for normal operation.

Preventing kernel parameter edits on Red
Hat/CentOS
Ever since the introduction of Red Hat/CentOS 7.2, setting a GRUB 2 password to prevent
kernel parameter edits is easy. All you have to do is to run one command and choose a
password:

[donnie@localhost ~]$ sudo grub2-setpassword

[sudo] password for donnie:
Enter password:
Confirm password:
[donnie@localhost ~]$

Security Tips and Tricks for the Busy Bee Chapter 10

[333]

That's all there is to it. The password hash will be stored in the
/boot/grub2/user.cfg file.

Now, when you reboot the machine and try to do a kernel parameter edit, you'll be
prompted to enter a username and password:

Note that you'll enter root as the username, even if the root user's password hasn't been set
on the system. The root user, in this case, is just the superuser for GRUB 2.

Preventing kernel parameter edits on Ubuntu
Ubuntu doesn't have that cool utility that Red Hat and CentOS have, so you'll have to set a
GRUB 2 password by hand-editing a configuration file.

In the /etc/grub.d/ directory, you'll see the files that make up the GRUB 2 configuration:

donnie@ubuntu3:/etc/grub.d$ ls -l
total 76
-rwxr-xr-x 1 root root 9791 Oct 12 16:48 00_header
-rwxr-xr-x 1 root root 6258 Mar 15 2016 05_debian_theme
-rwxr-xr-x 1 root root 12512 Oct 12 16:48 10_linux
-rwxr-xr-x 1 root root 11082 Oct 12 16:48 20_linux_xen
-rwxr-xr-x 1 root root 11692 Oct 12 16:48 30_os-prober
-rwxr-xr-x 1 root root 1418 Oct 12 16:48 30_uefi-firmware
-rwxr-xr-x 1 root root 214 Oct 12 16:48 40_custom
-rwxr-xr-x 1 root root 216 Oct 12 16:48 41_custom
-rw-r--r-- 1 root root 483 Oct 12 16:48 README
donnie@ubuntu3:/etc/grub.d$

The file you want to edit is the 40_custom file. However, before you edit the file, you'll
need to create the password hash. Do that with the grub-mkpasswd-pbkdf2 utility:

donnie@ubuntu3:/etc/grub.d$ grub-mkpasswd-pbkdf2
Enter password:
Reenter password:
PBKDF2 hash of your password is
grub.pbkdf2.sha512.10000.F1BA16B2799CBF6A6DFBA537D43222A0D5006124ECFEB29F5C
81C9769C6C3A66BF53C2B3AB71BEA784D4386E86C991F7B5D33CB6C29EB6AA12C8D11E0FFA0

Security Tips and Tricks for the Busy Bee Chapter 10

[334]

D40.371648A84CC4131C3CFFB53604ECCBA46DA75AF196E970C98483385B0BE026590C63A1B
AC23691517BC4A5D3EDF89D026B599A0D3C49F2FB666F9C12B56DB35D
donnie@ubuntu3:/etc/grub.d$

Open the file 40_custom file in your favorite editor and add a line that defines who the
superuser(s) will be. Add another line for the password hash. In my case, the file now looks
like this:

#!/bin/sh
exec tail -n +3 $0
This file provides an easy way to add custom menu entries. Simply type
the
menu entries you want to add after this comment. Be careful not to change
the 'exec tail' line above.

set superusers="donnie"

password_pbkdf2 donnie
grub.pbkdf2.sha512.10000.F1BA16B2799CBF6A6DFBA537D43222A0D5006124ECFEB29F5C
81C9769C6C3A66BF53C2B3AB71BEA784D4386E86C991F7B5D33CB6C29EB6AA12C8D11E0FFA0
D40.371648A84CC4131C3CFFB53604ECCBA46DA75AF196E970C98483385B0BE026590C63A1B
AC23691517BC4A5D3EDF89D026B599A0D3C49F2FB666F9C12B56DB35D

The string of text that begins with password_pbkdf2 is all one line that
wraps around on the printed page.

After you save the file, the last step is to generate a new grub.cfg file:

donnie@ubuntu3:/etc/grub.d$ sudo update-grub

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.4.0-104-generic
Found initrd image: /boot/initrd.img-4.4.0-104-generic
Found linux image: /boot/vmlinuz-4.4.0-101-generic
Found initrd image: /boot/initrd.img-4.4.0-101-generic
Found linux image: /boot/vmlinuz-4.4.0-98-generic
Found initrd image: /boot/initrd.img-4.4.0-98-generic
done
donnie@ubuntu3:/etc/grub.d$

Security Tips and Tricks for the Busy Bee Chapter 10

[335]

Now when I reboot this machine, I have to enter my password before editing the kernel
parameters:

There's only one problem with this. Not only does this prevent anyone except the superuser
from editing the kernel parameters, it also prevents anyone except for the superuser from
booting normally. Yes, that's right. Even for normal booting, Ubuntu will now require you
to enter the username and password of the authorized superuser. The fix is easy, although
not at all elegant.

The fix requires inserting a single word into the /boot/grub/grub.cfg file. Easy enough,
right? But, it's not an elegant solution because you're not really supposed to hand-edit the
grub.cfg file. At the top of the file, we see this:

DO NOT EDIT THIS FILE
#
It is automatically generated by grub-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub
#

This means that every time we do something that will update the grub.cfg file, any hand-
edits that we've made to the file will be lost. This includes when we do a system update that
installs a new kernel, or when we do a sudo apt autoremove that removes any old
kernels that we no longer need. The supreme irony though is that the official GRUB 2
documentation tells us to hand-edit the grub.cfg file to deal with these sorts of problems.

Anyway, to fix things so that you no longer need to enter the password to boot normally,
open the /boot/grub/grub.cfg file in your favorite text editor. Look for the first line that
begins with menuentry, which should look something like this:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os
$menuentry_id_option 'gnulinux-simple-f0f002e8-16b2-45a1-bebc-41e518ab9497'
{

Before the opening curly brace at the end of the line, add the text string, --unrestricted.
The menuentry should now look like this:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os
$menuentry_id_option 'gnulinux-simple-f0f002e8-16b2-45a1-bebc-41e518ab9497'
--unrestricted {

Security Tips and Tricks for the Busy Bee Chapter 10

[336]

Save the file and test it by rebooting the machine. You should see that the machine now
boots up normally on the default boot option. But, you'll also see that a password will still
be required to access the Advanced options for Ubuntu submenu. We'll fix that in just a bit.

Password-protecting boot options
For any given Linux system, you'll have at least two boot options. You'll have the option to
boot normally and the option to boot into recovery mode. Red Hat-type and Ubuntu-type
operating systems are unique, in that they don't overwrite the old kernel when you do an
operating system update. Instead, they install the new kernel along with the old one, and all
the installed kernels have their own boot menu entries. On Red Hat-type systems, you'll
never have more than five installed kernels because once you have five kernels installed, the
oldest kernel will automatically get deleted the next time a new kernel is available in a
system update. With Ubuntu-type systems, you'll need to manually delete the old kernels
by running sudo apt autoremove.

You might also have a dual-boot or a multiboot configuration, and you might want for only
certain users to use certain boot options. Let's say that you have a system with both
Windows and Linux installed, and you want to prevent certain users from booting into
either one or the other. You can do that by configuring GRUB 2, but you probably won't. I
mean, a password and user account are required for logging in to an operating system
anyway, so why bother?

The most realistic scenario I can think of where this would be useful would be if you have a
computer set up in a publicly accessible kiosk. You would surely not want for the general
public to boot the machine into recovery mode, and this technique would help prevent that.

This technique works mostly the same on both Red Hat-type and Ubuntu-type distros, with
only a few exceptions. The major one is that we need to disable the submenu on the Ubuntu
machine.

Disabling the submenu for Ubuntu
Theoretically, you can disable the Ubuntu submenu by placing
GRUB_DISABLE_SUBMENU=true into the /etc/default/grub file and then by running
sudo update-grub. However, I couldn't get that to work, and according to the results of
my DuckDuckGo searches, neither can anyone else. So, we'll manually edit the
/boot/grub/grub.cfg file to fix that.

Security Tips and Tricks for the Busy Bee Chapter 10

[337]

Look for the submenu line that appears just after the first menuentry item. It should look
like this:

submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-
advanced-f0f002e8-16b2-45a1-bebc-41e518ab9497' {

Comment out that line to make it look like this:

submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-
advanced-f0f002e8-16b2-45a1-bebc-41e518ab9497' {

Scroll down until you see this line:

END /etc/grub.d/10_linux

Just above this line, you'll see the closing curly brace for the submenu stanza. Comment out
that curly brace so that it looks like this:

}

Now when you reboot the machine, you'll see the whole list of boot options instead of the
just the default boot option and a submenu. However, as things now stand, only the
designated superuser can boot into anything except the default option.

Password-protecting boot option steps for both Ubuntu
and Red Hat
From here on out, the steps are the same for both the CentOS and the Ubuntu virtual
machines, except for the following:

On your Ubuntu machine, the grub.cfg file is in the /boot/grub/ directory.
On your CentOS machine, it's in the /boot/grub2/ directory.
On Ubuntu, the /boot/grub/ and /etc/grub.d/ directories are world-
readable. So, you can cd into them as a normal user.
On CentOS, the /boot/grub2/ and /etc/grub.d/ directories are restricted to
the root user. So, to cd into them, you'll need to log in to the root user's shell.
Alternatively, you can list the contents from your normal user shell with sudo
ls -l, and you can edit the files you need to edit with sudo vim
/boot/grub2/grub.cfg or sudo vim /etc/grub.d/40_custom. (Substitute
your favorite editor for vim.)
On Ubuntu, the command to create a password hash is grub-mkpasswd-
pbkdf2. On CentOS, the command is grub2-mkpasswd-pbkdf2.

Security Tips and Tricks for the Busy Bee Chapter 10

[338]

With these slight differences in mind, let's get started.

If you're working with a server that's just running with a text-mode
interface, you'll definitely want to log in remotely from a workstation that
has a GUI-type interface. If your workstation is running Windows, you
can use Cygwin, as I showed you in Chapter 1, Running Linux in a Virtual
Environment.

The reason for this is that you'll want a way to copy and paste the
password hashes into the two files that you need to edit.

The first thing you'll do is to create a password hash for your new users:

On Ubuntu:

 grub-mkpasswd-pbkdf2

On CentOS:

 grub2-mkpasswd-pbkdf2

Next, open the /etc/grub.d/40_custom file in your text editor and add a line for your
new user, along with the password hash that you just created. The line should look
something like this:

password_pbkdf2 goldie
grub.pbkdf2.sha512.10000.225205CBA2584240624D077ACB84E86C70349BBC00DF40A219
F88E5691FB222DD6E2F7765E96C63C4A8FA3B41BDBF62DA1F3B07C700D78BC5DE524DCAD9DD
88B.9655985015C3BEF29A7B8E0A6EA42599B1152580251FF99AA61FE68C1C1209ACDCBBBDA
A7A97D4FC4DA6984504923E1449253024619A82A57CECB1DCDEE53C06

Note that this is all one line that wraps around on the printed page.

What you're supposed to do next is to run a utility that will read all of the files in the
/etc/grub.d/ directory along with the /etc/default/grub file and that will then
rebuild the grub.cfg file. But, on CentOS, that utility doesn't work correctly. On Ubuntu, it
does work correctly, but it will overwrite any changes that you might have already made to
the grub.cfg file. So, we're going to cheat.

Security Tips and Tricks for the Busy Bee Chapter 10

[339]

Open the grub.cfg file in your text editor:

On Ubuntu:

 sudo vim /boot/grub/grub.cfg

On CentOS:

 sudo vim /boot/grub2/grub.cfg

Scroll down until you see the ### BEGIN /etc/grub.d/40_custom ### section. In this
section, copy and paste the line that you just added to the 40_custom file. This section
should now look something like this:

BEGIN /etc/grub.d/40_custom
This file provides an easy way to add custom menu entries. Simply type
the
menu entries you want to add after this comment. Be careful not to
change
the 'exec tail' line above.
password_pbkdf2 "goldie"
grub.pbkdf2.sha512.10000.225205CBA2584240624D077ACB84E86C70349BBC00DF40A219
F88E5691FB222DD6E2F7765E96C63C4A8FA3B41BDBF62DA1F3B07C700D78BC5DE524DCAD9DD
88B.9655985015C3BEF29A7B8E0A6EA42599B1152580251FF99AA61FE68C1C1209ACDCBBBDA
A7A97D4FC4DA6984504923E1449253024619A82A57CECB1DCDEE53C06
END /etc/grub.d/40_custom

Finally, you're ready to password-protect the individual menu entries. And here, I've
discovered yet another difference between Ubuntu and CentOS.

In all of the menu entries for CentOS, you'll see that the --unrestricted option is already
there for all menu entries. This means that by default, all users are allowed to boot every
menu option, even if you've set a superuser password:

menuentry 'CentOS Linux (3.10.0-693.11.1.el7.x86_64) 7 (Core)' --class
centos --class gnu-linux --class gnu --class os --unrestricted
$menuentry_id_option 'gnulinux-3.10.0-693.el7.x86_64-advanced-f338b70d-
ff57-404e-a349-6fd84ad1b692' {

So on CentOS, you don't have to do anything if you want all users to be able to use all
available boot options.

Security Tips and Tricks for the Busy Bee Chapter 10

[340]

Now, let's say that you have a menuentry that you want to be accessible to everybody. On
CentOS, as I just pointed out, you don't have to do anything. On Ubuntu, add --
unrestricted to the menuentry, as you did previously:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os
$menuentry_id_option 'gnulinux-simple-f0f002e8-16b2-45a1-bebc-41e518ab9497'
--unrestricted {

If you want for nobody but the superuser to boot from a particular option, add --users
"". (On CentOS, be sure to remove the --unrestricted option first.)

menuentry 'Ubuntu, with Linux 4.4.0-98-generic (recovery mode)' --class
ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option
'gnulinux-4.4.0-98-generic-recovery-f0f002e8-16b2-45a1-bebc-41e518ab9497' -
-users "" {

If you want for only the superuser and some other particular user to boot from a certain
option, add --users, followed by the username. (Again, on CentOS, remove the --
unrestricted option first.):

menuentry 'Ubuntu, with Linux 4.4.0-97-generic' --class ubuntu --class gnu-
linux --class gnu --class os $menuentry_id_option 'gnulinux-4.4.0-97-
generic-advanced-f0f002e8-16b2-45a1-bebc-41e518ab9497' --users goldie {

If you have more than one user that you want to access a boot option, add an entry for the
new user in the ### BEGIN /etc/grub.d/40_custom ### section. Then, add the new
user to the menuentry that you want for him or her to access. Separate the usernames with
a comma:

menuentry 'Ubuntu, with Linux 4.4.0-97-generic' --class ubuntu --class gnu-
linux --class gnu --class os $menuentry_id_option 'gnulinux-4.4.0-97-
generic-advanced-f0f002e8-16b2-45a1-bebc-41e518ab9497' --users goldie,frank
{

Save the file and reboot to try out the different options.

Now that we've gone through all this work, I need to remind you again that any manual
edits that you've made to the grub.cfg file will be lost any time that a new grub.cfg gets
generated. So, any time you do a system update that includes either installing or removing
a kernel, you'll need to manually edit this file again to add back the password protection.
(In fact, the only real reason I had you add the users and their passwords to the
/etc/grub.d/40_custom file is so that you'll always have that information available to
copy and paste into grub.cfg.) I wish that there were a more elegant way of doing this, but
according to the official GRUB 2 documentation, there isn't.

Security Tips and Tricks for the Busy Bee Chapter 10

[341]

You'll find the security section of the official GRUB 2 documentation
at http:/ /www. gnu. org/ software/ grub/ manual/ grub/ grub.
html#Security.

Before we leave this topic, I'd like to share my personal thoughts about GRUB 2.

It was necessary to create a new version of GRUB because the old legacy version doesn't
work with the new UEFI-based motherboards. However, there are things about GRUB 2
that are very disappointing.

In the first place, unlike legacy GRUB, GRUB 2 isn't implemented consistently across all
Linux distros. In fact, we've just seen in our demos how we have to do things differently
when we go from CentOS to Ubuntu.

Next is the fact that the GRUB 2 developers gave us some good security options, but they
haven't given us an elegant way of implementing them. I mean, really. The whole idea of
telling us to implement security features by hand-editing a file that will get overwritten
every time we do an operating system update just doesn't seem right.

And finally, there's the sad state of GRUB 2 documentation. I don't mean to sound like I'm
tooting my own horn because I know that that's unbecoming. However, I think it's safe to
say that this is the only comprehensive write-up you'll find anywhere for using the
password-protection features of GRUB 2.

Securely configuring BIOS/UEFI
This topic is different from anything we've looked at thus far because it has nothing to do
with the operating system. Rather, we're now going to talk about the computer hardware.

Every computer motherboard has either a BIOS or a UEFI chip, which stores both the
hardware configuration for the computer, and the bootstrap instructions that are needed to
start the boot process after the power is turned on. UEFI has replaced the old-style BIOS on
newer motherboards, and it has more security features than what the old BIOS had.

I can't give you any specific information about BIOS/UEFI setup because every model of the
motherboard has a different way of doing things. What I can give you is some more
generalized information.

http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security
http://www.gnu.org/software/grub/manual/grub/grub.html#Security

Security Tips and Tricks for the Busy Bee Chapter 10

[342]

When you think about BIOS/UEFI security, you might be thinking about disabling the
ability to boot from anything other than the normal system drive. In the following
screenshot, you can see that I've disabled all SATA drive ports except for the one to which
the system drive is connected:

When computers are out in the open where the general public can have easy physical access
to them, this might be a consideration. For servers that are locked away in their own secure
room with limited access, there's no real reason to worry about it, unless the security
requirements of some regulatory body dictate otherwise. For machines that are out in the
open, having whole disk encryption would prevent someone from stealing data after
booting from either an optical disk or a USB device. However, you might still have other
reasons to prevent anyone from booting the machine from these alternate boot devices.

Another consideration might be if you work in a secure environment where supersensitive
data are handled. If you're worried about unauthorized exfiltration of sensitive data, you
might consider disabling the ability to write to USB devices. This will also prevent people
from booting the machine from USB devices:

Security Tips and Tricks for the Busy Bee Chapter 10

[343]

However, there's more than just this to BIOS/UEFI security. Today's modern server CPUs
come with a variety of security features to help prevent data breaches. For example, let's
look at a list of security features that are implemented in Intel Xeon CPUs:

Identity-protection technology
Advanced Encryption Standard New Instructions
Trusted Execution Technology
Hardware-assisted virtualization technology

AMD, that plucky underdog in the CPU market, have their own new security features in
their new line of EPYC server CPUs. These features are:

Secure Memory Encryption
Secure Encrypted Virtualization

In any case, you would configure these CPU security options in your server's UEFI setup
utility.

You can read about Intel Xeon security features at: https:/ /www. intel.
com/content/ www/ us/ en/ data- security/ security- overview- general-
technology. html.

And, you can read about AMD EPYC security features at https:/ /
semiaccurate. com/ 2017/ 06/22/ amds- epyc- major- advance- security/ .

And of course, for any machines that are out in the open, it's a good idea to password-
protect the BIOS or UEFI:

If for no other reason, do it to keep people from monkeying around with your settings.

https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/

Security Tips and Tricks for the Busy Bee Chapter 10

[344]

Using a security checklist for system setup
I've previously told you about OpenSCAP, which is a really useful tool to lock down your
system with just a minimum amount of effort. OpenSCAP comes with various profiles that
you can apply to help bring your systems into compliance with the standards of different
regulatory agencies. However, there are certain things that OpenSCAP can't do for you. For
example, certain regulatory agencies require that your server's hard drive be partitioned in
a certain way, with certain directories separated out into their own partitions. If you've
already set up your server with everything under one big partition, you can't fix that just by
doing a remediation procedure with OpenSCAP. The process of locking down your server
to ensure that it's compliant with any applicable security regulations has to begin before
you even install the operating system. For this, you need the appropriate checklist.

There are a few different places where you can obtain a generic security checklist if that's all
you need. The University of Texas at Austin publishes a generic checklist for Red Hat
Enterprise 7, which you can adjust if you need to use it with CentOS 7, Oracle Linux 7, or
Scientific Linux 7. You might find that some checklist items don't apply to your situation,
and you can adjust them as required:

Security Tips and Tricks for the Busy Bee Chapter 10

[345]

For specific business fields, you'll need to get a checklist from the applicable regulatory
body. If you work in the financial sector or with a business that accepts credit card
payments, you'll need a checklist from the Payment Card Industry Security Standards
Council:

Security Tips and Tricks for the Busy Bee Chapter 10

[346]

And, for healthcare organizations here in the U.S., there's HIPAA with its requirements. For
publicly-traded companies here in the U.S., there's Sarbanes-Oxley with its requirements:

You can get the University of Texas checklist from at: https:/ / wikis.
utexas. edu/ display/ ISO/ Operating+System+Hardening+Checklists.

You can get a PCI-DSS checklist at: https:/ /www. pcisecuritystandards.
org/.

You can get a HIPAA checklist at: https:/ /www. hipaainstitute. com/
security- checklist.

And, you can get a Sarbanes-Oxley checklist at: http:/ /www. sarbanes-
oxley- 101. com/ sarbanes- oxley- checklist. htm.

Other regulatory bodies may also have their own checklists. If you know that you have to
deal with any of them, be sure to get the appropriate checklist.

Summary
Once again, we've come to the conclusion of another chapter, and we covered a lot of cool
topics. We started by looking at various ways to audit which services are running on your
systems, and we saw some examples of what you probably don't want to see. We then saw
how to use the password-protection features of GRUB 2, and we saw the little quirks that
we have to deal with when using those features. Next, we had a change of pace by looking
at how to further lock down a system by properly setting up a system's BIOS/UEFI. Finally,
we looked at why we need to properly begin preparations to set up a hardened system by
obtaining and following the proper checklist.

Not only does this conclude another chapter, it also concludes the book. But, it doesn't
conclude your journey into the land of Mastering Linux Security and Hardening. Oh, no. As
you continue this journey, you'll find that there's still more to learn, and still more that
won't fit into the confines of a 300-page book. Where you go from here mainly depends on
the particular area of IT administration in which you work. Different types of Linux servers,
whether they be web servers, DNS servers, or whatever else, have their own special security
requirements, and you'll want to follow the learning path that best fits your needs.

I've enjoyed the part of the journey on which I've been able to accompany you. I hope that
you've enjoyed it as much as I have.

https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
https://www.hipaainstitute.com/security-checklist
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm
http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Linux Device Drivers Development
John Madieu

ISBN: 978-1-78528-000-9

Use kernel facilities to develop powerful drivers
Develop drivers for widely used I2C and SPI devices and use the regmap API
Write and support devicetree from within your drivers
Program advanced drivers for network and frame buffer devices
Delve into the Linux irqdomain API and write interrupt controller drivers
Enhance your skills with regulator and PWM frameworks
Develop measurement system drivers with IIO framework
Get the best from memory management and the DMA subsystem
Access and manage GPIO subsystems and develop GPIO controller drivers

https://www.packtpub.com/networking-and-servers/linux-device-drivers-development

Other Books You May Enjoy

[348]

Mastering Linux Kernel Development
Raghu Bharadwaj

ISBN: 978-1-78588-305-7

Comprehend processes and files—the core abstraction mechanisms of the Linux
kernel that promote effective simplification and dynamism
Decipher process scheduling and understand effective capacity utilization under
general and real-time dispositions
Simplify and learn more about process communication techniques through
signals and IPC mechanisms
Capture the rudiments of memory by grasping the key concepts and principles of
physical and virtual memory management
Take a sharp and precise look at all the key aspects of interrupt management and
the clock subsystem
Understand concurrent execution on SMP platforms through kernel
synchronization and locking techniques

https://www.packtpub.com/application-development/mastering-linux-kernel-development

Other Books You May Enjoy

[349]

Leave a review – let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
a attribute
 setting 161
access control list
 creating, for group 166
 creating, for user 166
ACL
 accessing 182
 creating 181
 permissions, setting 181
 used, to access files in shared directory 181
Address Resolution Protocol (ARP) 324
AppArmor command-line utilities
 working 220
AppArmor problems
 troubleshooting 223
AppArmor profiles
 viewing 217
AppArmor
 systems administrator, benefit 216
audit rules
 creating 240
auditd daemon
 controlling 239
auditing network services
 port states 322
 scan types 323, 324, 327
 with netstat 313
 with Nmap 320
auditing system services
 about 311
 with systemctl 312
aureport
 using 244
ausearch
 using 244

authentication reports
 generating 255

B
Basic Analysis and Security Engine (BASE) 276
BIOS/UEFI
 configuring 341, 343
Boolean
 configuring 207
 viewing 205

C
chcon
 using 193
chmod
 used, for setting permissions values on

directories 152
 used, for setting permissions values on files 152
chown
 used, for changing ownership of directories 150
 used, for changing ownership of files 150
chroot directory
 setting up, for sftpusers group 147
chroot environment
 group, creating 145
 setting up, for SFTP users 145
 sshd_config file, configuring 145
ClamAV
 installing 229, 230
 scanning 235
 updating 229, 232
custom policy modules
 creating 212
 ports 215
 SELinux Boolean 215
Cygwin

[351]

 about 9, 10
 installing, on Windows host 18, 19
 used, for connecting virtual machines 18

D
Demilitarized Zone (DMZ) 278
Denial-of-Service (DOS) 309
directories
 disk encryption, on Ubuntu installation 126
 encrypting, with eCryptfs 126, 131
 home directory 126
 home directory, encrypting for new user account

128

 private directory, creating with home directory
129

 swap partition, encryption with eCryptfs 133
directory access rule violations
 searching 247
directory
 auditing 242
disk encryption
 in operating system installation 117
 on Ubuntu installation 126
Domain Name Service (DNS) 221

E
ebtables 67
eCryptfs
 directories, encrypting 126
EPEL repository
 on CentOS virtual machine 14, 15
European Institute for Computer Antivirus Research

(EICAR) 235
extended file attributes
 a attribute, setting 161
 i attribute, setting 162
 used, to protect sensitive files 160
Extra Packages for Enterprise Linux (EPEL) 14

F
file change alerts
 searching 245
file
 auditing, for changes 240

firewalld
 about 77
 commands 90, 91
 for Red Hat systems 77, 78
 ports, adding 87
 rich language rules 88, 89
 services 83, 84, 85, 86
 status, verifying 78
 zones 79, 82
Free Open Source Software (FOSS) 229, 277

G
GNU Privacy Guard (GPG)
 about 103
 combining, for encrypted backups 109
 file, signing without encryption 115
 files, encrypting 106
 keys, creating 104
 private keys, used for asymmetric encryption 110
 private keys, used for signing 110
 public keys, used for asymmetric encryption 110
 public keys, used for signing 110
 tar, combining for encrypted backups 109
Grand Unified Bootloader (GRUB) 328
GRUB 2 bootloader
 kernel parameter edits, preventing on Red

Hat/CentOS 332
 kernel parameter edits, preventing on Ubuntu

333

 password, resetting for Red Hat/CentOS 329
 password, resetting for Ubuntu 331
 password-protecting 327
 password-protecting boot options 336

H
home directory
 about 126
 encrypting, for new user account 128
Hypertext Transfer Protocol (HTTP) 327

I
i attribute
 setting 162
incorrSELinux context

[352]

 fixing 193
inherited access control list
 creating, for directory 169
input interface (iif) 94
Internet Printing Protocol (IPP) 322, 327
IPFire
 URL, for downloading 281
iptables
 advantages 67
 disadvantages 67
 filter table 68
 mangle table 68
 NAT table 68
 overview 67
 security table 68
 usage 68, 70, 71, 72, 73, 74

K
Kali Linux
 Nikto in 306
kernel parameter edits
 preventing, on Red Hat/CentOS 332
 preventing, on Ubuntu 333
keys
 creating, for password-less logins 140
 managing, for password-less logins 140

L
Linux Malware Detect (LMD) 229
Linux Unified Key Setup (LUKS)
 about 116
 encrypted partition, adding 119
 partition, configuring to mount 124
 partitions, encrypting 116
Linux
 Nikto, installing 308
 Nikto, updating 308
Long-term Support (LTS) 282
Lynis
 hardening 288
 installing, on Red Hat/CentOS 288
 installing, on Ubuntu 289
 scanning 288, 289
 URL, for downloading 289

M
maldet
 configuring 231
 installing 229, 230
 scanning 235
 updating 229, 232
members
 adding 174
 adding, while creating user accounts 175

N
netfilter 67
Network Address Translation (NAT) 68, 277
network ports
 protecting 209
Network Time Protocol (NTP) 89
nft commands
 using 95, 96, 97, 98
nftables
 about 91, 92, 93, 94
 chains 92
 on Ubuntu 100
 tables 92
Nikto
 in Kali Linux 306
 installing, on Linux 307
 updating, on Linux 307
 web server, scanning 306, 308
numerical method
 permissions, setting 153

O
Open Vulnerability Assessment Scanner

(OpenVAS) 294
OpenSCAP policies
 applying, with SCAP 258
OpenSCAP profiles
 about 268
 applying, during system installation 269
OpenSCAP
 installing 258
OpenVAS
 vulnerabilities, finding 294, 297, 299, 301, 304

[353]

P
partitions
 block encryption 116
 containerized encryption 116
 encrypting, with Linux Unified Key Setup (LUKS)

116

 file-level encryption 116
password-protecting boot options
 about 336
 steps, for Red Hat 337
 steps, for Ubuntu 337
 submenu, disabling for Ubuntu 337
permissions values
 setting, on directories 152
 setting, on files 152
predefined rules sets
 using 256
private directory
 creating, with home directory 129
profile files
 viewing 259
public key
 transferring, to remote server 142

R
Red Hat/CentOS
 password, resetting 329
restorecon
 using 195
rich language rules 88
root user login
 disabling 143
Rootkit Hunter
 installing 237
 rootkits, scanning 236, 238
 updating 237

S
SCAP Workbench
 using 264
Secure File Transfer Protocol (SFTP) 145
security checklist
 used, for system setup 344, 345, 346
Security Content Automation Protocol (SCAP) 258

security contexts
 SELinux context, fixing 193
 SELinux tools, installing 189
 setting, for directories 187
 setting, for files 187
 web content files, creating with SELinux enabled

189

security news 8, 9
Security Onion
 about 273
 using 281, 283, 284, 285, 287
security-related extended file attributes
 setting 163
SELinux considerations 236
SELinux context
 chcon, using 193
 restorecon, used 194
 SELinux type enforcement 197
 semanage, used 195
SELinux policies
 Boolean, configuring 207
 Boolean, viewing 205
 custom policy modules, creating 212
 network ports, protecting 209
 web server, protecting 208
 working 205
SELinux tools
 installing 189
SELinux
 systems administrator, benefit 186
semanage
 using 195
setroubleshoot
 graphical utility, used 200
 messages, viewing 199
 permissive mode, troubleshooting 202
 troubleshooting 198
SGID files
 finding 157
 searching 158
SGID
 bit, setting 178
 permissions, security implications 156
 usage preventing, on partition 159
 used, on regular files 155

shared directory
 creating 177
shared group directory
 creating 183
Snort
 about 273
 graphical interfaces 276
 installing 273
 obtaining 273
 obtaining, in prebuilt appliances 277, 279, 281
specific permission
 removing, by using ACL mask 170
SSH protocol 1
 ensuring 139
sticky bit
 on shared directory 178
SUID files
 finding 157
 searching 158
SUID
 permissions, security implications 156
 usage preventing, on partition 159
 used, on regular files 155
swap partition
 encrypting, with eCryptfs 133
symbolic method
 permissions, setting 153
system call rule violations
 searching 252
system calls
 auditing 243
system
 remediating 262
 scanning 260

T
tar
 using 172
threat landscape
 about 7, 8
 botnet malware 7
 cryptocoin mining software 7
 ransomware 7

U
Ubuntu
 password, resetting 331
Uncomplicated Firewall
 for Ubuntu systems 75
 usage 75, 76, 77
user group
 adding, by editing /etc/group file 176
 creating 174
 usermod, used for adding 175
user's SSH key set
 creating 141
username/password login
 disabling 144

V
VeraCrypt
 installing 134
 used, for cross-platform sharing of encrypted

containers 134
 used, in GUI mode 138
 volume, creating in console mode 135
 volume, mounting in console mode 135
Virtual Network Computing (VNC) 304, 322
Virtual Private Network (VPN) 281
VirtualBox virtual machines
 network, configuring 15, 16
VirtualBox
 about 9, 10
 EPEL repository, on CentOS virtual machine 14
 on CentOS virtual machine 15
 virtual machine snapshot, creating 16, 17
 virtual machine, installing 10, 11, 12, 13
vulnerabilities
 finding, with OpenVAS 294, 297, 299, 301, 304

W
web content files
 creating, with SELinux enabled 189
web server
 protecting 208
 scanning, with Nikto 306, 308

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Running Linux in a Virtual Environment
	The threat landscape
	So, how does this happen?

	Keeping up with security news
	Introduction to VirtualBox and Cygwin
	Installing a virtual machine in VirtualBox
	The EPEL repository on the CentOS virtual machine
	Configuring a network for VirtualBox virtual machines
	Creating a virtual machine snapshot with VirtualBox

	Using Cygwin to connect to your virtual machines
	Installing Cygwin on your Windows host

	Summary

	Chapter 2: Securing User Accounts
	The dangers of logging in as the root user
	The advantages of using sudo
	Setting up sudo privileges for full administrative users
	Method 1 – adding users to a predefined admin group
	Method 2 – creating an entry in the sudo policy file

	Setting up sudo for users with only certain delegated privileges
	Hands-on lab for assigning limited sudo privileges

	Advanced tips and tricks for using sudo
	The sudo timer
	Hands-on lab for disabling the sudo timer

	Preventing users from having root shell access
	Preventing users from using shell escapes
	Preventing users from using other dangerous programs
	Limiting the user's actions with commands
	Letting users run as other users

	Locking down users' home directories the Red Hat or CentOS way
	Locking down users' home directories the Debian/Ubuntu way
	useradd on Debian/Ubuntu
	adduser on Debian/Ubuntu
	Hands-on lab for configuring adduser

	Enforcing strong password criteria
	Installing and configuring pwquality
	Hands-on lab for setting password complexity criteria

	Setting and enforcing password and account expiration
	Configuring default expiry data for useradd – for Red Hat or CentOS only
	Setting expiry data on a per-account basis, with useradd and usermod
	Setting expiry data on a per-account basis, with chage
	Hands-on lab for setting account and password expiry data

	Preventing brute-force password attacks
	Configuring the pam_tally2 PAM module
	Hands-on lab for configuring pam_tally2

	Locking user accounts
	Using usermod to lock a user account
	Using passwd to lock user accounts
	Locking the root user account

	Setting up security banners
	Using the motd file
	Using the issue file
	Using the issue.net file

	Summary

	Chapter 3: Securing Your Server with a Firewall
	An overview of iptables
	Basic usage of iptables
	Hands-on lab for basic iptables usage

	Uncomplicated Firewall for Ubuntu systems
	Basic usage of ufw
	Hands-on lab for basic ufw usage

	firewalld for Red Hat systems
	Verifying the status of firewalld
	firewalld zones
	firewalld services
	Adding ports to a firewalld zone
	firewalld rich language rules
	Hands-on lab for firewalld commands

	nftables – a more universal type of firewall system
	nftables tables and chains
	Getting started with nftables
	Using nft commands
	Hands-on lab for nftables on Ubuntu

	Summary

	Chapter 4: Encrypting and SSH Hardening
	GNU Privacy Guard
	Creating your GPG keys
	Symmetrically encrypting your own files
	Hands-on lab – combining gpg and tar for encrypted backups

	Using private and public keys for asymmetric encryption and signing
	Signing a file without encryption

	Encrypting partitions with Linux Unified Key Setup – LUKS
	Disk encryption during operating system installation
	Adding an encrypted partition with LUKS
	Configuring the LUKS partition to mount automatically

	Encrypting directories with eCryptfs
	Home directory and disk encryption during Ubuntu installation
	Encrypting a home directory for a new user account
	Creating a private directory within an existing home directory
	Encrypting other directories with eCryptfs
	Encrypting the swap partition with eCryptfs

	Using VeraCrypt for cross-platform sharing of encrypted containers
	Getting and installing VeraCrypt
	Creating and mounting a VeraCrypt volume in console mode
	Using VeraCrypt in GUI mode

	Ensuring that SSH protocol 1 is disabled
	Creating and managing keys for password-less logins
	Creating a user's SSH key set
	Transferring the public key to the remote server

	Disabling root user login
	Disabling username/password logins
	Setting up a chroot environment for SFTP users
	Creating a group and configuring the sshd_config file
	Hands-on lab – setting up a chroot directory for sftpusers group

	Summary

	Chapter 5: Mastering Discretionary Access Control
	Using chown to change ownership of files and directories
	Using chmod to set permissions values on files and directories
	Setting permissions with the symbolic method
	Setting permissions with the numerical method

	Using SUID and SGID on regular files
	The security implications of the SUID and SGID permissions
	Finding spurious SUID or SGID files
	Hands-on lab – searching for SUID and SGID files

	Preventing SUID and SGID usage on a partition

	Using extended file attributes to protect sensitive files
	Setting the a attribute
	Setting the i attribute
	Hands-on lab – setting security-related extended file attributes

	Summary

	Chapter 6: Access Control Lists and Shared Directory Management
	Creating an access control list for either a user or a group
	Creating an inherited access control list for a directory
	Removing a specific permission by using an ACL mask
	Using the tar --acls option to prevent the loss of ACLs during a backup
	Creating a user group and adding members to it
	Adding members as we create their user accounts
	Using usermod to add an existing user to a group
	Adding users to a group by editing the /etc/group file

	Creating a shared directory
	Setting the SGID bit and the sticky bit on the shared directory
	Using ACLs to access files in the shared directory
	Setting the permissions and creating the ACL
	Charlie tries to access Vicky's file with an ACL set for Cleopatra
	Hands-on lab – creating a shared group directory

	Summary

	Chapter 7: Implementing Mandatory Access Control with SELinux and AppArmor
	How SELinux can benefit a systems administrator
	Setting security contexts for files and directories
	Installing the SELinux tools
	Creating web content files with SELinux enabled
	Fixing an incorrect SELinux context
	Using chcon
	Using restorecon
	Using semanage
	Hands-on lab – SELinux type enforcement

	Troubleshooting with setroubleshoot
	Viewing setroubleshoot messages
	Using the graphical setroubleshoot utility
	Troubleshooting in permissive mode

	Working with SELinux policies
	Viewing the Booleans
	Configuring the Booleans
	Protecting your web server
	Protecting network ports
	Creating custom policy modules
	Hands-on lab – SELinux Booleans and ports

	How AppArmor can benefit a systems administrator
	Looking at AppArmor profiles
	Working with AppArmor command-line utilities
	Troubleshooting AppArmor problems
	Summary

	Chapter 8: Scanning, Auditing, and Hardening
	Installing and updating ClamAV and maldet
	Installing ClamAV and maldet
	Configuring maldet
	Updating ClamAV and maldet

	Scanning with ClamAV and maldet
	SELinux considerations
	Scanning for rootkits with Rootkit Hunter
	Installing and updating Rootkit Hunter
	Scanning for rootkits

	Controlling the auditd daemon
	Creating audit rules
	Auditing a file for changes
	Auditing a directory
	Auditing system calls

	Using ausearch and aureport
	Searching for file change alerts
	Searching for directory access rule violations
	Searching for system call rule violations
	Generating authentication reports
	Using predefined rules sets

	Applying OpenSCAP policies with oscap
	Installing OpenSCAP
	Viewing the profile files
	Scanning the system
	Remediating the system

	Using SCAP Workbench
	More about OpenSCAP profiles
	Applying an OpenSCAP profile during system installation
	Summary

	Chapter 9: Vulnerability Scanning and Intrusion Detection
	Looking at Snort and Security Onion
	Obtaining and installing Snort
	Graphical interfaces for Snort
	Getting Snort in prebuilt appliances
	Using Security Onion

	Scanning and hardening with Lynis
	Installing Lynis on Red Hat/CentOS
	Installing Lynis on Ubuntu
	Scanning with Lynis

	Finding vulnerabilities with OpenVAS
	Web server scanning with Nikto
	Nikto in Kali Linux
	Installing and updating Nikto on Linux
	Scanning a web server with Nikto

	Summary

	Chapter 10: Security Tips and Tricks for the Busy Bee
	Auditing system services
	Auditing system services with systemctl
	Auditing network services with netstat
	Auditing network services with Nmap
	Port states
	Scan types

	Password-protecting the GRUB 2 bootloader
	Resetting the password for Red Hat/CentOS
	Resetting the password for Ubuntu
	Preventing kernel parameter edits on Red Hat/CentOS
	Preventing kernel parameter edits on Ubuntu
	Password-protecting boot options
	Disabling the submenu for Ubuntu
	Password-protecting boot option steps for both Ubuntu and Red Hat

	Securely configuring BIOS/UEFI
	Using a security checklist for system setup
	Summary

	Other Books You May Enjoy
	Leave a review – let other readers know what you think

	Index

