

Mastering	Microservices	with	Java	9
	

Second	Edition
	

	

	

	

	

Build	domain-driven	microservice-based	applications	with	Spring,	Spring	Cloud,	and
Angular

	

	

	

	

	

	

	

Sourabh	Sharma

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Mastering	Microservices	with	Java	9

Second	Edition
Copyright	©	2017	Packt	Publishing

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted
in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of
brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	June	2016

Second	edition:	December	2017

Production	reference:	1051217

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-144-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

	

Sourabh	Sharma

Copy	Editor

Safis	Editing

Reviewer

	

Guido	Grazioli

Project	Coordinator

	

Vaidehi	Sawant

Commissioning	Editor

	

Aaron	Lazar

Proofreader

	

Safis	Editing

Acquisition	Editor

	

Denim	Pinto

Indexer

	

Aishwarya	Gangawane

Content	Development	Editor

	

Zeeyan	Pinheiro

Production	Coordinator

	

Melwyn	D'sa

Technical	Editor

	

Romy	Dias

	

About	the	Author
Sourabh	Sharma	has	over	15	years	of	experience	in	product/application	development.	His	expertise
lies	in	designing,	developing,	deploying,	and	testing	N-tier	web	applications	and	leading	teams.	He
loves	to	troubleshoot	complex	problems	and	look	for	the	best	solutions.

Throughout	his	career,	he	has	successfully	delivered	various	on-premise	and	cloud
applications/products	to	some	of	the	fortune	500	companies	that	has	amazed	stakeholders,	including
happy	satisfied	customers.

Sourabh	believes	in	the	continuous	process	of	learning	and	has	been	continuously	updating	his	skill	set
—from	standalone	application	development	to	microservices	development,	from	JDK	1.2	to	Java	9,
from	IE	5	dependent	frontend	code	to	cross-browser	development,	and	from	on-premise	deployment	to
cloud	deployment.	He	has	effectively	managed	delivering	single	products	to	bouquets	of	applications.

About	the	Reviewer
Guido	Grazioli	has	worked	as	an	application	developer,	software	architect,	and	systems	integrator	for	a
wide	variety	of	business	applications	across	several	domains.	He	is	a	hybrid	software	engineer	with
deep	knowledge	of	the	Java	platform	and	tooling	as	well	as	Linux	systems.	He	is	particularly	interested
in	SOAs,	EIPs,	continuous	integration	and	delivery,	and	service	orchestration	in	the	cloud.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.	Did	you	know	that
Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files	available?	You	can
upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a
discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and
advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help
us	improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at	https://www.amazon.com/dp/1787
281442.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

https://www.amazon.com/dp/1787281442
https://www.amazon.com/dp/1787288099

Table	of	Contents
Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	 A	Solution	Approach
Evolution	of	microservices

Monolithic	architecture	overview

Limitation	of	monolithic	architecture	versus	its	solution	with	microservices

Traditional	monolithic	design

Monolithic	design	with	services

Services	design

One	dimension	scalability

Release	rollback	in	case	of	failure

Problems	in	adopting	new	technologies

Alignment	with	Agile	practices

Ease	of	development	–	could	be	done	better

Microservices	build	pipeline

Deployment	using	a	container	such	as	Docker

Containers

Docker

Docker's	architecture

Deployment

Summary

2.	 Setting	Up	the	Development	Environment
NetBeans	IDE	installation	and	setup

Spring	Boot	configuration

Spring	Boot	overview

Adding	Spring	Boot	to	our	main	project

Sample	REST	program

Writing	the	REST	controller	class

The	@RestController	annotation

The	@RequestMapping	annotation

The	@RequestParam	annotation

The	@PathVariable	annotation

Making	a	sample	REST	application	executable

Adding	a	Jetty-embedded	server

Setting	up	the	application	build

Running	the	Maven	tool

Executing	with	the	Java	command

REST	API	testing	using	the	Postman	Chrome	extension

Some	more	positive	test	scenarios

Negative	test	scenarios

Summary

3.	 Domain-Driven	Design
Domain-driven	design	fundamentals

Fundamentals	of	DDD

Ubiquitous	language

Multilayered	architecture

Presentation	layer

Application	layer

Domain	layer

Infrastructure	layer

Artifacts	of	domain-driven	design

Entities

Value	objects

FAQs

Services

Aggregates

Repository

Factory

Modules

Strategic	design	and	principles

Bounded	context

Continuous	integration

Context	map

Shared	kernel

Customer-supplier

Conformist

Anticorruption	layer

Separate	ways

Open	Host	Service

Distillation

Sample	domain	service

Entity	implementation

Repository	implementation

Service	implementation

Summary

4.	 Implementing	a	Microservice
OTRS	overview

Developing	and	implementing	microservices

Restaurant	microservice

OTRS	implementation

Controller	class

API	versioning

Service	classes

Repository	classes

Entity	classes

Registration	and	discovery	service	(Eureka	service)

Eureka	client

Booking	and	user	services

Execution

Testing

References

Summary

5.	 Deployment	and	Testing
Mandatory	services	for	good	microservices

Service	discovery	and	registration

Edge	servers

Load	balancing

Circuit	breakers

Monitoring

An	overview	of	microservice	architecture	using	Netflix	OSS

Load	balancing

Server-side	load	balancing

Client-side	load	balancing

Circuit	breakers	and	monitoring

Using	Hystrix's	fallback	methods

Monitoring

Setting	up	the	Hystrix	dashboard

Creating	Turbine	services

Building	and	running	the	OTRS	application

Microservice	deployment	using	containers

Installation	and	configuration

Docker	machine	with	4	GB

Building	Docker	images	with	Maven

Running	Docker	using	Maven

Integration	testing	with	Docker

Pushing	the	image	to	a	registry

Managing	Docker	containers

References

Summary

6.	 Reactive	Microservices
An	overview	of	the	reactive	microservice	architecture

Responsive

Resilient

Elastic

Message	driven

Implementing	reactive	microservices

Producing	an	event

Consuming	the	event

References

Summary

7.	 Securing	Microservices
Enabling	Secure	Socket	Layer

Authentication	and	authorization

OAuth	2.0

Usage	of	OAuth

OAuth	2.0	specification	-	concise	details

OAuth	2.0	roles

Resource	owner

Resource	server

Client

Authorization	server

OAuth	2.0	client	registration

Client	types

Client	profiles

Client	identifier

Client	authentication

OAuth	2.0	protocol	endpoints

Authorization	endpoint

Token	endpoint

Redirection	endpoint

OAuth	2.0	grant	types

Authorization	code	grant

Implicit	grant

Resource	owner	password	credentials	grant

Client	credentials	grant

OAuth	implementation	using	Spring	Security

Authorization	code	grant

Implicit	grant

Resource	owner	password	credential	grant

Client	credentials	grant

References

Summary

8.	 Consuming	Services	Using	a	Microservice	Web	Application
AngularJS	framework	overview

MVC

MVVM

Modules

Providers	and	services

Scopes

Controllers

Filters

Directives

UI-Router

Development	of	OTRS	features

Home	page/restaurant	list	page

index.html

app.js

restaurants.js

restaurants.html

Search	restaurants

Restaurant	details	with	reservation	option

restaurant.html

Login	page

login.html

login.js

Reservation	confirmation

Setting	up	the	web	application

References

Summary

9.	 Best	Practices	and	Common	Principles
Overview	and	mindset

Best	practices	and	principles

Nanoservice,	size,	and	monolithic

Continuous	integration	and	deployment

System/end-to-end	test	automation

Self-monitoring	and	logging

A	separate	data	store	for	each	microservice

Transaction	boundaries

Microservices	frameworks	and	tools

Netflix	Open	Source	Software	(OSS)

Build	-	Nebula

Deployment	and	delivery	-	Spinnaker	with	Aminator

Service	registration	and	discovery	-	Eureka

Service	communication	-	Ribbon

Circuit	breaker	-	Hystrix

Edge	(proxy)	server	-	Zuul

Operational	monitoring	-	Atlas

Reliability	monitoring	service	-	Simian	Army

AWS	resource	monitoring	-	Edda

On-host	performance	monitoring	-	Vector

Distributed	configuration	management	-	Archaius

Scheduler	for	Apache	Mesos	-	Fenzo

Cost	and	cloud	utilization	-	Ice

Other	security	tools	-	Scumblr	and	FIDO

Scumblr

Fully	Integrated	Defence	Operation	(FIDO)

References

Summary

10.	 Troubleshooting	Guide
Logging	and	the	ELK	stack

A	brief	overview

Elasticsearch

Logstash

Kibana

ELK	stack	setup

Installing	Elasticsearch

Installing	Logstash

Installing	Kibana

Running	the	ELK	stack	using	Docker	Compose

Pushing	logs	to	the	ELK	stack

Tips	for	ELK	stack	implementation

Use	of	correlation	ID	for	service	calls

Let's	see	how	we	can	tackle	this	problem

Use	of	Zipkin	and	Sleuth	for	tracking

Dependencies	and	versions

Cyclic	dependencies	and	their	impact

Analyzing	dependencies	while	designing	the	system

Maintaining	different	versions

Let's	explore	more

References

Summary

11.	 Migrating	a	Monolithic	Application	to	Microservice-Based	Application
Do	you	need	to	migrate?

Cloud	versus	on-premise	versus	both	cloud	and	on-premise

Cloud	only	solution

On-premise	only	solution

Both	cloud	and	on-premise	solution

Approaches	and	keys	to	successful	migration

Incremental	migration

Process	automation	and	tools	setup

Pilot	project

Standalone	user	interface	applications

Migrating	modules	to	microservices

How	to	accommodate	a	new	functionality	during	migration

References

Summary

Preface
Microservices	are	the	next	big	thing	in	designing	scalable,	easy-to-maintain	applications.	They	not	only
makes	application	development	easier,	but	also	offer	great	flexibility	to	utilize	various	resources
optimally.	If	you	want	to	build	an	enterprise-ready	implementation	of	a	microservice	architecture,	then
this	is	the	book	for	you!

Starting	off	by	understanding	the	core	concepts	and	framework,	you	will	then	focus	on	the	high-level
design	of	large	software	projects.	You	will	gradually	move	on	to	setting	up	the	development
environment	and	configuring	it	before	implementing	continuous	integration	to	deploy	your	microservice
architecture.	Using	Spring	Security,	you	will	secure	microservices	and	test	them	effectively	using	REST
Java	clients	and	other	tools	such	as	RxJava	2.0.	We'll	show	you	the	best	patterns,	practices,	and
common	principles	of	microservice	design,	and	you'll	learn	to	troubleshoot	and	debug	the	issues	faced
during	development.	We'll	show	you	how	to	design	and	implement	reactive	microservices.	Finally,	we'll
show	you	how	to	migrate	a	monolithic	application	to	a	microservice-based	application.

By	the	end	of	the	book,	you	will	know	how	to	build	smaller,	lighter,	and	faster	services	that	can	be
implemented	easily	in	a	production	environment.

What	this	book	covers
Chapter	1,	A	Solution	Approach,	covers	the	high-level	design	of	large	software	projects	and	helps	you
understand	the	common	problems	faced	in	a	production	environment	and	the	solutions	to	these
problems.

Chapter	2,	Setting	up	the	Development	Environment,	shows	how	to	set	up	the	development	environment
and	configure	Spring	Boot	effectively.	You	will	also	learn	how	to	build	a	sample	REST	service.

Chapter	3,	Domain-Driven	Design,	teaches	you	the	fundamentals	of	domain-driven	design	and	how	is	it
used	practically	by	design	sample	services.

Chapter	4,	Implementing	Microservices,	shows	you	how	to	code	the	service	and	then	write	the	unit	test
for	the	developed	code.

Chapter	5,	Deployment	and	Testing,	covers	how	to	deploy	microservices	and	develop	them	on	Docker.
You	will	also	learn	to	write	the	Java	test	client	for	microservices.

Chapter	6,	Reactive	Microservices,	shows	how	to	design	and	implement	reactive	microservices.

Chapter	7,	Securing	Microservices,	covers	the	different	security	methods	and	the	different	ways	to
implement	OAuth.	You	will	also	understand	Spring	Security	implementation.

Chapter	8,	Consuming	Microservices	Using	Web	Application,	explains	how	to	develop	a	web	application
(UI)	using	the	Knockout.	You	will	require	Bootstrap	JS	libraries	to	build	a	prototype	of	a	web
application	that	will	consume	microservices	to	show	data	and	flow	of	sample	project—a	small	utility
project.

Chapter	9,	Best	Practices	and	Common	Principles,	talks	about	microservice	design	principles.	You	will
learn	an	effective	way	of	developing	microservices	and	how	Netflix	has	implemented	microservices.

Chapter	10,	Troubleshooting	Guide,	explains	the	common	problems	encountered	during	the	development
of	microservices	and	their	solutions.	This	will	help	you	follow	the	book	smoothly	and	would	make
learning	swift.

Chapter	11,	Migrating	a	Monolithic	Application	to	a	Microservice-Based	Application,	shows	you	how	to
migrate	a	monolithic	application	to	a	microservice-based	application.

What	you	need	for	this	book
For	this	book,	you	can	use	any	operating	system	(Linux,	Windows,	or	Mac)	with	a	minimum	of	2	GB
RAM.	You	will	also	require	NetBeans	with	Java,	Maven,	Spring	Boot,	Spring	Cloud,	Eureka	Server,
Docker,	and	a	CI/CD	application.	For	Docker	containers,	you	may	need	a	separate	VM	or	a	cloud	host
with	preferably	16	GB	or	more	of	RAM.

Who	this	book	is	for
This	book	is	for	Java	developers	who	are	familiar	with	microservice	architectures	and	now	wants	to
take	a	deeper	dive	into	effectively	implementing	microservices	at	an	enterprise	level.	A	reasonable
knowledge	of	core	microservice	elements	and	applications	is	expected.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"The	produceBookingOrderEvent	method	is
added,	which	takes	the	booking	object."

A	block	of	code	is	set	as	follows:

angular.module('otrsApp.restaurants',	[

		'ui.router',	

		'ui.bootstrap',	

		'ngStorage',	

		'ngResource'	

])	

Any	command-line	input	or	output	is	written	as	follows:

npm	install	--no-optional	gulp

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"On	the	Tools	dialog,	select	Create	package.json,
Create	bower.json,	and	Create	gulpfile.js."

Tips	and	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book--what	you
liked	or	disliked.	Reader	feedback	is	important	to	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.	To	send	us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book's
title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested
in	either	writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the
most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the
files	e-mailed	directly	to	you.	You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Mastering-Micros
ervices-with-Java-9-Second-Edition.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Microservices-with-Java-9-Second-Edition
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you
find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code--we	would	be	grateful	if	you
could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub
.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will
be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the
name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we
will	do	our	best	to	address	the	problem.

A	Solution	Approach
As	a	prerequisite,	you	should	have	a	basic	understanding	of	microservices	and	software	architecture
style.	Having	a	basic	understanding	could	help	you	to	understand	the	concepts	and	this	book	thoroughly.

After	reading	this	book,	you	could	implement	microservices	for	on-premise	or	cloud	production
deployment	and	learn	the	complete	life-cycle	from	design,	development,	testing,	and	deployment	with
continuous	integration	and	deployment.	This	book	is	specifically	written	for	practical	use	and	to	ignite
your	mind	as	a	solution	architect.	Your	learning	will	help	you	to	develop	and	ship	products	for	any	type
of	premise,	including	SaaS,	PaaS,	and	so	on.	We'll	primarily	use	the	Java	and	Java-based	framework
tools	such	as	Spring	Boot	and	Jetty,	and	we	will	use	Docker	as	a	container.

In	this	chapter,	you	will	learn	the	eternal	existence	of	microservices,	and	how	it	has	evolved.	It
highlights	the	large	problems	that	on-premise	and	cloud-based	products	face	and	how	microservices
deals	with	it.	It	also	explains	the	common	problems	encountered	during	the	development	of	SaaS,
enterprise,	or	large	applications	and	their	solutions.

In	this	chapter,	we	will	learn	the	following	topics:

Microservices	and	a	brief	background
Monolithic	architecture
Limitation	of	monolithic	architecture
The	benefits	and	flexibility	that	microservices	offer
Microservices	deployment	on	containers	such	as	Docker

Evolution	of	microservices
Martin	Fowler	explains:

The	term	microservice	was	discussed	at	a	workshop	of	software	architects	near	Venice	in	May	2011	to
describe	what	the	participants	saw	as	a	common	architectural	style	that	many	of	them	had	been	recently
exploring.	In	May	2012,	the	same	group	decided	on	µServices	as	the	most	appropriate	name.

Let's	get	some	background	on	the	way	it	has	evolved	over	the	years.	Enterprise	architecture	evolved
more	from	historic	mainframe	computing,	through	client-server	architecture	(two-tier	to	n-tier)	to
Service-Oriented	Architecture	(SOA).

The	transformation	from	SOA	to	microservices	is	not	a	standard	defined	by	an	industry	organization,
but	a	practical	approach	practiced	by	many	organizations.	SOA	eventually	evolved	to	become
microservices.

Adrian	Cockcroft,	a	former	Netflix	Architect,	describes	it	as:

Fine	grain	SOA.	So	microservice	is	SOA	with	emphasis	on	small	ephemeral	components.

Similarly,	the	following	quote	from	Mike	Gancarz,	a	member	that	designed	the	X	Windows	system,
which	defines	one	of	the	paramount	precepts	of	Unix	philosophy,	suits	the	microservice	paradigm	as
well:

Small	is	beautiful.

Microservices	shares	many	common	characteristics	with	SOA,	such	as	the	focus	on	services	and	how
one	service	decouples	from	another.	SOA	evolved	around	monolithic	application	integration	by
exposing	API	that	was	mostly	Simple	Object	Access	Protocol	(SOAP)	based.	Therefore,	middleware
such	as	Enterprise	Service	Bus	(ESB)	is	very	important	for	SOA.	Microservices	are	less	complex,	and
even	though	they	may	use	the	message	bus	it	is	only	used	for	message	transport	and	it	does	not	contain
any	logic.	It	is	simply	based	on	smart	endpoints.

Tony	Pujals	defined	microservices	beautifully:

In	my	mental	model,	I	think	of	self-contained	(as	in	containers)	lightweight	processes	communicating
over	HTTP,	created	and	deployed	with	relatively	small	effort	and	ceremony,	providing	narrowly-focused
APIs	to	their	consumers.

Though	Tony	only	talks	about	the	HTTP,	event-driven	microservices	may	use	the	different	protocol	for
communication.	You	can	make	use	of	Kafka	for	implementing	the	event-driven	microservices.	Kafka
uses	the	wire	protocol,	a	binary	protocol	over	TCP.

Monolithic	architecture	overview
Microservices	is	not	something	new,	it	has	been	around	for	many	years.	For	example,	Stubby,	a	general
purpose	infrastructure	based	on	Remote	Procedure	Call	(RPC)	was	used	in	Google	data	centers	in	the
early	2000s	to	connect	a	number	of	service	with	and	across	data	centers.	Its	recent	rise	is	owing	to	its
popularity	and	visibility.	Before	microservices	became	popular,	there	was	primarily	monolithic
architecture	that	was	being	used	for	developing	on-premise	and	cloud	applications.

Monolithic	architecture	allows	the	development	of	different	components	such	as	presentation,
application	logic,	business	logic,	and	Data	Access	Objects	(DAO),	and	then	you	either	bundle	them
together	in	Enterprise	Archive	(EAR)	or	Web	Archive	(WAR),	or	store	them	in	a	single	directory
hierarchy	(for	example,	Rails,	NodeJS,	and	so	on).

Many	famous	applications	such	as	Netflix	have	been	developed	using	microservices	architecture.
Moreover,	eBay,	Amazon,	and	Groupon	have	evolved	from	monolithic	architecture	to	a	microservices
architecture.

Now	that	you	have	had	an	insight	into	the	background	and	history	of	microservices,	let's	discuss	the
limitations	of	a	traditional	approach,	namely	monolithic	application	development,	and	compare	how
microservices	would	address	them.

Limitation	of	monolithic	architecture	versus
its	solution	with	microservices
As	we	know,	change	is	eternal.	Humans	always	look	for	better	solutions.	This	is	how	microservices
became	what	it	is	today	and	it	may	evolve	further	in	the	future.	Today,	organizations	are	using	Agile
methodologies	to	develop	applications--it	is	a	fast-paced	development	environment	and	it	is	also	on	a
much	larger	scale	after	the	invention	of	cloud	and	distributed	technologies.	Many	argue	that	monolithic
architecture	could	also	serve	a	similar	purpose	and	be	aligned	with	Agile	methodologies,	but
microservices	still	provides	a	better	solution	to	many	aspects	of	production-ready	applications.

To	understand	the	design	differences	between	monolithic	and	microservices,	let's	take	an	example	of	a
restaurant	table-booking	application.	This	application	may	have	many	services	such	as	customers,
bookings,	analytics	and	so	on,	as	well	as	regular	components	such	as	presentation	and	database.

We'll	explore	three	different	designs	here;	traditional	monolithic	design,	monolithic	design	with
services,	and	microservices	design.

Traditional	monolithic	design
The	following	diagram	explains	the	traditional	monolithic	application	design.	This	design	was	widely
used	before	SOA	became	popular:

Traditional	monolithic	application	design

In	traditional	monolithic	design,	everything	is	bundled	in	the	same	archive	such	as	Presentation	code,
Application	Logic	and	Business	Logic	code,	and	DAO	and	related	code	that	interacts	with	the
database	files	or	another	source.

Monolithic	design	with	services
After	SOA,	applications	started	being	developed	based	on	services,	where	each	component	provides	the
services	to	other	components	or	external	entities.	The	following	diagram	depicts	the	monolithic
application	with	different	services;	here	services	are	being	used	with	a	Presentation	component.	All
services,	the	Presentation	component,	or	any	other	components	are	bundled	together:

Services	design
The	following	third	design	depicts	the	microservices.	Here,	each	component	represents	autonomy.	Each
component	could	be	developed,	built,	tested,	and	deployed	independently.	Here,	even	the	application
User	Interface	(UI)	component	could	also	be	a	client	and	consume	the	microservices.	For	the	purpose
of	our	example,	the	layer	designed	is	used	within	µService.

The	API	Gateway	provides	the	interface	where	different	clients	can	access	the	individual	services	and
solve	the	following	problems:

What	do	you	do	when	you	want	to	send	different	responses	to	different	clients	for	the	same	service?	For
example,	a	booking	service	could	send	different	responses	to	a	mobile	client	(minimal	information)	and
a	desktop	client	(detailed	information)	providing	different	details,	and	something	different	again	to	a
third-party	client.

A	response	may	require	fetching	information	from	two	or	more	services:

After	observing	all	the	sample	design	diagrams,	which	are	very	high-level	designs,	you	might	find	out
that	in	monolithic	design,	the	components	are	bundled	together	and	tightly	coupled.

All	the	services	are	part	of	the	same	bundle.	Similarly,	in	the	second	design	figure,	you	can	see	a	variant
of	the	first	figure	where	all	services	could	have	their	own	layers	and	form	different	APIs,	but,	as	shown
in	the	figure,	these	are	also	all	bundled	together.

Conversely,	in	microservices,	design	components	are	not	bundled	together	and	have	loose	coupling.
Each	service	has	its	own	layers	and	DB,	and	is	bundled	in	a	separate	archive.	All	these	deployed
services	provide	their	specific	APIs	such	as	Customers,	Bookings,	or	Customer.	These	APIs	are	ready	to
consume.	Even	the	UI	is	also	deployed	separately	and	designed	using	µService.	For	this	reason,	it
provides	various	advantages	over	its	monolithic	counterpart.	I	would	still	remind	you	that	there	are
some	exceptional	cases	where	monolithic	application	development	is	highly	successful,	such	as	Etsy,
and	peer-to-peer	e-commerce	web	applications.

Now	let	us	discuss	the	limitations	you'd	face	while	working	with	Monolithic	applications.

One	dimension	scalability
Monolithic	applications	that	are	large	when	scaled,	scale	everything	as	all	the	components	are	bundled
together.	For	example,	in	the	case	of	a	restaurant	table	reservation	application,	even	if	you	would	like	to
scale	the	table-booking	service,	it	would	scale	the	whole	application;	it	cannot	scale	the	table-booking
service	separately.	It	does	not	utilize	the	resources	optimally.

In	addition,	this	scaling	is	one-dimensional.	Running	more	copies	of	the	application	provides	the	scale
with	increasing	transaction	volume.	An	operation	team	could	adjust	the	number	of	application	copies
that	were	using	a	load-balancer	based	on	the	load	in	a	server	farm	or	a	cloud.	Each	of	these	copies
would	access	the	same	data	source,	therefore	increasing	the	memory	consumption,	and	the	resulting	I/O
operations	make	caching	less	effective.

Microservices	gives	the	flexibility	to	scale	only	those	services	where	scale	is	required	and	it	allows
optimal	utilization	of	the	resources.	As	we	mentioned	previously,	when	it	is	needed,	you	can	scale	just
the	table-booking	service	without	affecting	any	of	the	other	components.	It	also	allows	two-dimensional
scaling;	here	we	can	not	only	increase	the	transaction	volume,	but	also	the	data	volume	using	caching
(Platform	scale).

A	development	team	can	then	focus	on	the	delivery	and	shipping	of	new	features,	instead	of	worrying
about	the	scaling	issues	(Product	scale).

Microservices	could	help	you	scale	platform,	people,	and	product	dimensions	as	we	have	seen
previously.	People	scaling	here	refers	to	an	increase	or	decrease	in	team	size	depending	on
microservices'	specific	development	and	focus	needs.

Microservice	development	using	RESTful	web-service	development	makes	it	scalable	in	the	sense	that
the	server-end	of	REST	is	stateless;	this	means	that	there	is	not	much	communication	between	servers,
which	makes	it	horizontally	scalable.

Release	rollback	in	case	of	failure
Since	monolithic	applications	are	either	bundled	in	the	same	archive	or	contained	in	a	single	directory,
they	prevent	the	deployment	of	code	modularity.	For	example,	many	of	you	may	have	experienced	the
pain	of	delaying	rolling	out	the	whole	release	due	to	the	failure	of	one	feature.

To	resolve	these	situations,	microservices	gives	us	the	flexibility	to	rollback	only	those	features	that
have	failed.	It's	a	very	flexible	and	productive	approach.	For	example,	let's	assume	you	are	the	member
of	an	online	shopping	portal	development	team	and	want	to	develop	an	application	based	on
microservices.	You	can	divide	your	application	based	on	different	domains	such	as	products,	payments,
cart,	and	so	on,	and	package	all	these	components	as	separate	packages.	Once	you	have	deployed	all
these	packages	separately,	these	would	act	as	single	components	that	can	be	developed,	tested,	and
deployed	independently,	and	called	µService.

Now,	let's	see	how	that	helps	you.	Let's	say	that	after	a	production	release	launching	new	features,
enhancements,	and	bug	fixes,	you	find	flaws	in	the	payment	service	that	need	an	immediate	fix.	Since
the	architecture	you	have	used	is	based	on	microservices,	you	can	rollback	the	payment	service	instead
of	rolling	back	the	whole	release,	if	your	application	architecture	allows,	or	apply	the	fixes	to	the
microservices	payment	service	without	affecting	the	other	services.	This	not	only	allows	you	to	handle
failure	properly,	but	it	also	helps	to	deliver	the	features/fixes	swiftly	to	a	customer.

Problems	in	adopting	new	technologies
Monolithic	applications	are	mostly	developed	and	enhanced	based	on	the	technologies	primarily	used
during	the	initial	development	of	a	project	or	a	product.	It	makes	it	very	difficult	to	introduce	new
technology	at	a	later	stage	of	the	development	or	once	the	product	is	in	a	mature	state	(for	example,
after	a	few	years).	In	addition,	different	modules	in	the	same	project,	that	depend	on	different	versions
of	the	same	library,	make	this	more	challenging.

Technology	is	improving	year	on	year.	For	example,	your	system	might	be	designed	in	Java	and	then,	a
few	years	later,	you	want	to	develop	a	new	service	in	Ruby	on	Rails	or	NodeJS	because	of	a	business
need	or	to	utilize	the	advantages	of	new	technologies.	It	would	be	very	difficult	to	utilize	the	new
technology	in	an	existing	monolithic	application.

It	is	not	just	about	code-level	integration,	but	also	about	testing	and	deployment.	It	is	possible	to	adopt	a
new	technology	by	re-writing	the	entire	application,	but	it	is	time-consuming	and	a	risky	thing	to	do.

On	the	other	hand,	because	of	its	component-based	development	and	design,	microservices	gives	us	the
flexibility	to	use	any	technology,	new	or	old,	for	its	development.	It	does	not	restrict	you	to	using
specific	technologies,	it	gives	a	new	paradigm	to	your	development	and	engineering	activities.	You	can
use	Ruby	on	Rails,	NodeJS,	or	any	other	technology	at	any	time.

So,	how	is	it	achieved?	Well,	it's	very	simple.	Microservices-based	application	code	does	not	bundle
into	a	single	archive	and	is	not	stored	in	a	single	directory.	Each	µService	has	its	own	archive	and	is
deployed	separately.	A	new	service	could	be	developed	in	an	isolated	environment	and	could	be	tested
and	deployed	without	any	technical	issues.	As	you	know,	microservices	also	owns	its	own	separate
processes;	it	serves	its	purpose	without	any	conflict	such	as	shared	resources	with	tight	coupling,	and
processes	remain	independent.

Since	a	microservice	is	by	definition	a	small,	self-contained	function,	it	provides	a	low-risk	opportunity
to	try	a	new	technology.	That	is	definitely	not	the	case	where	monolithic	systems	are	concerned.

You	can	also	make	your	microservice	available	as	open	source	software	so	it	can	be	used	by	others,	and
if	required	it	may	interoperate	with	a	closed	source	proprietary	one,	which	is	not	possible	with
monolithic	applications.

Alignment	with	Agile	practices
There	is	no	question	that	monolithic	applications	can	be	developed	using	Agile	practices,	and	these	are
being	developed.	Continuous	Integration	(CI)	and	Continuous	Deployment	(CD)	could	be	used,	but
the	question	is—does	it	use	Agile	practices	effectively?	Let's	examine	the	following	points:

For	example,	when	there	is	a	high	probability	of	having	stories	dependent	on	each	other,	and	there
could	be	various	scenarios,	a	story	could	not	be	taken	up	until	the	dependent	story	is	complete
The	build	takes	more	time	as	the	code	size	increases
The	frequent	deployment	of	a	large	monolithic	application	is	a	difficult	task	to	achieve
You	would	have	to	redeploy	the	whole	application	even	if	you	updated	a	single	component
Redeployment	may	cause	problems	to	already	running	components,	for	example,	a	job	scheduler
may	change	whether	components	impact	it	or	not
The	risk	of	redeployment	may	increase	if	a	single	changed	component	does	not	work	properly	or	if
it	needs	more	fixes
UI	developers	always	need	more	redeployment,	which	is	quite	risky	and	time-consuming	for	large
monolithic	applications

The	preceding	issues	can	be	tackled	very	easily	by	microservices,	for	example,	UI	developers	may	have
their	own	UI	component	that	can	be	developed,	built,	tested,	and	deployed	separately.	Similarly,	other
microservices	might	also	be	deployable	independently	and,	because	of	their	autonomous	characteristics,
the	risk	of	system	failure	is	reduced.	Another	advantage	for	development	purposes	is	that	UI	developers
can	make	use	of	the	JSON	object	and	mock	Ajax	calls	to	develop	the	UI,	which	can	be	taken	up	in	an
isolated	manner.	After	development	completes,	developers	can	consume	the	actual	APIs	and	test	the
functionality.	To	summarize,	you	could	say	that	microservices	development	is	swift	and	it	aligns	well
with	the	incremental	needs	of	businesses.

Ease	of	development	–	could	be	done
better
Generally,	large	monolithic	application	code	is	the	toughest	to	understand	for	developers,	and	it	takes
time	before	a	new	developer	can	become	productive.	Even	loading	the	large	monolithic	application	into
IDE	is	troublesome,	and	it	makes	IDE	slower	and	the	developer	less	productive.

A	change	in	a	large	monolithic	application	is	difficult	to	implement	and	takes	more	time	due	to	a	large
code	base,	and	there	will	be	a	high	risk	of	bugs	if	impact	analysis	is	not	done	properly	and	thoroughly.
Therefore,	it	becomes	a	prerequisite	for	developers	to	do	thorough	impact	analysis	before	implementing
changes.

In	monolithic	applications,	dependencies	build	up	over	time	as	all	components	are	bundled	together.
Therefore,	the	risk	associated	with	code	change	rises	exponentially	as	code	changes	(number	of
modified	lines	of	code)	grows.

When	a	code	base	is	huge	and	more	than	100	developers	are	working	on	it,	it	becomes	very	difficult	to
build	products	and	implement	new	features	because	of	the	previously	mentioned	reason.	You	need	to
make	sure	that	everything	is	in	place,	and	that	everything	is	coordinated.	A	well-designed	and
documented	API	helps	a	lot	in	such	cases.

Netflix,	the	on-demand	internet	streaming	provider,	had	problems	getting	their	application	developed,
with	around	100	people	working	on	it.	Then,	they	used	a	cloud	and	broke	up	the	application	into
separate	pieces.	These	ended	up	being	microservices.	Microservices	grew	from	the	desire	for	speed	and
agility	and	to	deploy	teams	independently.

Micro-components	are	made	loosely	coupled	thanks	to	their	exposed	API,	which	can	be	continuously
integration	tested.	With	microservices'	continuous	release	cycle,	changes	are	small	and	developers	can
rapidly	exploit	them	with	a	regression	test,	then	go	over	them	and	fix	the	eventual	defects	found,
reducing	the	risk	of	a	deployment.	This	results	in	higher	velocity	with	a	lower	associated	risk.

Owing	to	the	separation	of	functionality	and	single	responsibility	principle,	microservices	makes	teams
very	productive.	You	can	find	a	number	of	examples	online	where	large	projects	have	been	developed
with	minimum	team	sizes	such	as	eight	to	ten	developers.

Developers	can	have	better	focus	with	smaller	code	and	resultant	better	feature	implementation	that
leads	to	a	higher	empathic	relationship	with	the	users	of	the	product.	This	conduces	better	motivation
and	clarity	in	feature	implementation.	An	empathic	relationship	with	users	allows	a	shorter	feedback
loop	and	better	and	speedy	prioritization	of	the	feature	pipeline.	A	shorter	feedback	loop	also	makes
defect	detection	faster.

Each	microservices	team	works	independently	and	new	features	or	ideas	can	be	implemented	without
being	coordinated	with	larger	audiences.	The	implementation	of	end-point	failures	handling	is	also

easily	achieved	in	the	microservices	design.

Recently,	at	one	of	the	conferences,	a	team	demonstrated	how	they	had	developed	a	microservices-
based	transport-tracking	application	including	iOS	and	Android	applications	within	10	weeks,	which
had	Uber-type	tracking	features.	A	big	consulting	firm	gave	a	seven	months	estimation	for	the	same
application	to	its	client.	It	shows	how	microservices	is	aligned	with	Agile	methodologies	and	CI/CD.

Microservices	build	pipeline
Microservices	could	also	be	built	and	tested	using	the	popular	CI/CD	tools	such	as	Jenkins,	TeamCity,
and	so	on.	It	is	very	similar	to	how	a	build	is	done	in	a	monolithic	application.	In	microservices,	each
microservice	is	treated	like	a	small	application.

For	example,	once	you	commit	the	code	in	the	repository	(SCM),	CI/CD	tools	trigger	the	build	process:

Cleaning	code
Code	compilation
Unit	test	execution
Contract/Acceptance	test	execution
Building	the	application	archives/container	images
Publishing	the	archives/container	images	to	repository	management
Deployment	on	various	Delivery	environments	such	as	Dev,	QA,	Stage,	and	so	on
Integration	and	Functional	test	execution
Any	other	steps

Then,	release-build	triggers	that	change	the	SNAPSHOT	or	RELEASE	version	in	pom.xml	(in	case	of
Maven)	build	the	artifacts	as	described	in	the	normal	build	trigger.	Publish	the	artifacts	to	the	artifacts
repository.	Tag	this	version	in	the	repository.	If	you	use	the	container	image	then	build	the	container
image	as	a	part	of	the	build.

Deployment	using	a	container	such	as
Docker
Owing	to	the	design	of	microservices,	you	need	to	have	an	environment	that	provides	flexibility,	agility,
and	smoothness	for	continuous	integration	and	deployment	as	well	as	for	shipment.	Microservices
deployments	need	speed,	isolation	management,	and	an	Agile	life-cycle.

Products	and	software	can	also	be	shipped	using	the	concept	of	an	intermodal-container	model.	An
intermodal-container	is	a	large	standardized	container,	designed	for	intermodal	freight	transport.	It
allows	cargo	to	use	different	modes	of	transport—truck,	rail,	or	ship	without	unloading	and	reloading.
This	is	an	efficient	and	secure	way	of	storing	and	transporting	stuff.	It	resolves	the	problem	of	shipping,
which	previously	had	been	a	time	consuming,	labor-intensive	process,	and	repeated	handling	often
broke	fragile	goods.

Shipping	containers	encapsulate	their	content.	Similarly,	software	containers	are	starting	to	be	used	to
encapsulate	their	contents	(products,	applications,	dependencies,	and	so	on).

Previously,	Virtual	Machines	(VMs)	were	used	to	create	software	images	that	could	be	deployed
where	needed.	Later,	containers	such	as	Docker	became	more	popular	as	they	were	compatible	with
both	traditional	virtual	stations	systems	and	cloud	environments.	For	example,	it	is	not	practical	to
deploy	more	than	a	couple	of	VMs	on	a	developer's	laptop.	Building	and	booting	a	VM	is	usually	I/O
intensive	and	consequently	slow.

Containers
A	container	(for	example,	Linux	containers)	provides	a	lightweight	runtime	environment	consisting	of
the	core	features	of	virtual	machines	and	the	isolated	services	of	operating	systems.	This	makes	the
packaging	and	execution	of	microservices	easy	and	smooth.

As	the	following	diagram	shows,	a	container	runs	as	an	application	(microservice)	within	the
Operating	System.	The	OS	sits	on	top	of	the	hardware	and	each	OS	could	have	multiple	containers,
with	a	container	running	the	application.

A	container	makes	use	of	an	operating	system's	kernel	interfaces,	such	as	cnames	and	namespaces,	that
allow	multiple	containers	to	share	the	same	kernel	while	running	in	complete	isolation	to	one	another.
This	gives	the	advantage	of	not	having	to	complete	an	OS	installation	for	each	usage;	the	result	being
that	it	removes	the	overhead.	It	also	makes	optimal	use	of	the	Hardware:

Layer	diagram	for	containers

Docker
Container	technology	is	one	of	the	fastest	growing	technologies	today,	and	Docker	leads	this	segment.
Docker	is	an	open	source	project	and	it	was	launched	in	2013.	10,000	developers	tried	it	after	its
interactive	tutorial	launched	in	August	2013.	It	was	downloaded	2.75	million	times	by	the	time	of	the
launch	of	its	1.0	release	in	June	2013.	Many	large	companies	have	signed	the	partnership	agreement
with	Docker,	such	as	Microsoft,	Red	Hat,	HP,	OpenStack,	and	service	providers	such	as	Amazon	Web
Services,	IBM,	and	Google.

As	we	mentioned	earlier,	Docker	also	makes	use	of	the	Linux	kernel	features,	such	as	cgroups	and
namespaces,	to	ensure	resource	isolation	and	packaging	of	the	application	with	its	dependencies.	This
packaging	of	dependencies	enables	an	application	to	run	as	expected	across	different	Linux	operating
systems/distributions,	supporting	a	level	of	portability.	Furthermore,	this	portability	allows	developers
to	develop	an	application	in	any	language	and	then	easily	deploy	it	from	a	laptop	to	a	test	or	production
server.

Docker	runs	natively	on	Linux.	However,	you	can	also	run	Docker	on	Windows	and
MacOS	using	VirtualBox	and	boot2docker.

Containers	are	comprised	of	just	the	application	and	its	dependencies	including	the	basic	operating
system.	This	makes	it	lightweight	and	efficient	in	terms	of	resource	utilization.	Developers	and	system
administrators	get	interested	in	container's	portability	and	efficient	resource	utilization.

Everything	in	a	Docker	container	executes	natively	on	the	host	and	uses	the	host	kernel	directly.	Each
container	has	its	own	user	namespace.

Docker's	architecture
As	specified	on	Docker	documentation,	Docker	architecture	uses	client-server	architecture.	As	shown	in
the	following	figure	(sourced	from	Docker's	website:	https://docs.docker.com/engine/docker-overview/),	the
Docker	client	is	primarily	a	user	interface	that	is	used	by	an	end	user;	clients	communicate	back	and
forth	with	a	Docker	daemon.	The	Docker	daemon	does	the	heavy	lifting	of	the	building,	running,	and
distributing	of	your	Docker	containers.	The	Docker	client	and	the	daemon	can	run	on	the	same	system
or	different	machines.

The	Docker	client	and	daemon	communicate	via	sockets	or	through	a	RESTful	API.	Docker	registers
are	public	or	private	Docker	image	repositories	from	which	you	upload	or	download	images,	for
example,	Docker	Hub	(hub.docker.com)	is	a	public	Docker	registry.

Docker's	architecture

The	primary	components	of	Docker	are:

Docker	image:	A	Docker	image	is	a	read-only	template.	For	example,	an	image	could	contain	an
Ubuntu	operating	system	with	Apache	web	server	and	your	web	application	installed.	Docker
images	are	a	build	component	of	Docker	and	images	are	used	to	create	Docker	containers.	Docker
provides	a	simple	way	to	build	new	images	or	update	existing	images.	You	can	also	use	images
created	by	others	and/or	extend	them.
Docker	container:	A	Docker	container	is	created	from	a	Docker	image.	Docker	works	so	that	the
container	can	only	see	its	own	processes,	and	have	its	own	filesystem	layered	onto	a	host
filesystem	and	a	networking	stack,	which	pipes	to	the	host-networking	stack.	Docker	Containers
can	be	run,	started,	stopped,	moved,	or	deleted.

https://docs.docker.com/engine/docker-overview/
https://hub.docker.com/

Deployment
Microservices	deployment	with	Docker	deals	with	three	parts:

Application	packaging,	for	example,	JAR
Building	Docker	image	with	a	JAR	and	dependencies	using	a	Docker	instruction	file,	the
Dockerfile,	and	command	docker	build.	It	helps	to	repeatedly	create	the	image
Docker	container	execution	from	this	newly	built	image	using	command	docker	run

The	preceding	information	will	help	you	to	understand	the	basics	of	Docker.	You	will	learn	more	about
Docker	and	its	practical	usage	in	Chapter	5,	Deployment	and	Testing.	Source	and	reference,	refer	to:	https:
//docs.docker.com.

https://docs.docker.com

Summary
In	this	chapter,	you	have	learned	or	recapped	the	high-level	design	of	large	software	projects,	from
traditional	monolithic	to	microservices	applications.	You	were	also	introduced	to	a	brief	history	of
microservices,	the	limitation	of	monolithic	applications,	and	the	benefits	and	flexibility	that
microservices	offer.	I	hope	this	chapter	helped	you	to	understand	the	common	problems	faced	in	a
production	environment	by	monolithic	applications	and	how	microservices	can	resolve	such	problem.
You	were	also	introduced	to	lightweight	and	efficient	Docker	containers	and	saw	how	containerization
is	an	excellent	way	to	simplify	microservices	deployment.

In	the	next	chapter,	you	will	get	to	know	about	setting	up	the	development	environment	from	IDE,	and
other	development	tools,	to	different	libraries.	We	will	deal	with	creating	basic	projects	and	setting	up
Spring	Boot	configuration	to	build	and	develop	our	first	microservice.	We	will	be	using	Java	9	as	the
language	and	Spring	Boot	for	our	project.

Setting	Up	the	Development	Environment
This	chapter	focuses	on	the	development	environment	setup	and	configurations.	If	you	are	familiar	with
the	tools	and	libraries,	you	could	skip	this	chapter	and	continue	with	Chapter	3,	Domain-Driven	Design,
where	you	could	explore	the	domain-driven	design	(DDD).

This	chapter	will	cover	the	following	topics:

NetBeans	IDE	installation	and	setup
Spring	Boot	configuration
Sample	REST	program	with	Java	9	modules
Building	setup
REST	API	testing	using	the	Postman	extension	of	Chrome

This	book	will	use	only	the	open	source	tools	and	frameworks	for	examples	and	code.	This	book	will
also	use	Java	9	as	its	programming	language,	and	the	application	framework	will	be	based	on	the	Spring
Framework.	This	book	makes	use	of	Spring	Boot	to	develop	microservices.

NetBeans'	Integrated	Development	Environment	(IDE)	provides	state	of	the	art	support	for	both	Java
and	JavaScript,	and	is	sufficient	for	our	needs.	It	has	evolved	a	lot	over	the	years	and	has	built-in
support	for	most	of	the	technologies	used	by	this	book,	such	as	Maven,	Spring	Boot,	and	so	on.
Therefore,	I	would	recommend	that	you	use	NetBeans	IDE.	You	are,	however,	free	to	use	any	IDE.

We	will	use	Spring	Boot	to	develop	the	REST	services	and	microservices.	Opting	for	the	most	popular
of	Spring	Frameworks,	Spring	Boot,	or	its	subset	Spring	Cloud,	in	this	book	was	a	conscious	decision.
Because	of	this,	we	don't	need	to	write	applications	from	scratch	and	it	provides	the	default
configuration	for	most	of	the	technologies	used	in	cloud	applications.	A	Spring	Boot	overview	is
provided	in	Spring	Boot's	configuration	section.	If	you	are	new	to	Spring	Boot,	this	would	definitely
help	you.

We	will	use	Maven	as	our	build	tool.	As	with	the	IDE,	you	can	use	whichever	build	tool	you	want,	for
example,	Gradle	or	Ant	with	Ivy.	We	will	use	the	embedded	Jetty	as	our	web	server,	but	another
alternative	is	to	use	an	embedded	Tomcat	web	server.	We	will	also	use	the	Postman	extension	of
Chrome	for	testing	our	REST	services.

We	will	start	with	Spring	Boot	configurations.	If	you	are	new	to	NetBeans	or	are	facing	issues	in	setting
up	the	environment,	you	can	refer	to	the	following	section.

NetBeans	IDE	installation	and	setup
NetBeans	IDE	is	free	and	open	source	and	has	a	big	community	of	users.	You	can	download	the
NetBeans	IDE	from	its	official	website,	https://netbeans.org/downloads/.

At	the	time	of	writing	this	book,	NetBeans	for	Java	9	was	available	only	as	a	nightly	build
(downloadable	from	http://bits.netbeans.org/download/trunk/nightly/latest/).	As	shown	in	the	following
screenshot,	download	all	the	supported	NetBeans	bundles	as	we'll	use	Javascript	too:

NetBeans	bundles

GlassFish	Server	and	Apache	Tomcat	are	optional.	The	required	packs	and	runtimes	are	denoted	as
Already	Installed	(as	NetBeans	was	already	installed	on	my	system):

https://netbeans.org/downloads/
http://bits.netbeans.org/download/trunk/nightly/latest/

NetBeans	packs	and	runtimes

After	downloading	the	installation,	execute	the	installer	file.	Accept	the	license	agreement	as	shown	in
the	following	screenshot,	and	follow	the	rest	of	the	steps	to	install	the	NetBeans	IDE:

The	NetBeans	license	dialog

JDK	8	or	a	later	version	is	required	for	installing	and	running	the	All	NetBeans	bundles.
This	book	uses	Java	9,	therefore,	we	would	use	JDK	9.	You	can	download	standalone	JDK
9	from	http://www.oracle.com/technetwork/java/javase/downloads/index.html.	I	had	to	use	the	JDK	9
early	access	build	because	JDK	9	was	not	released	at	time	of	writing	the	book.	It	was
available	at	http://jdk.java.net/9/.

Once	the	NetBeans	IDE	is	installed,	start	the	NetBeans	IDE.	The	NetBeans	IDE	should	look	as	follows:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://jdk.java.net/9/

The	NetBeans	start	page

Maven	and	Gradle	are	both	Java	build	tools.	They	add	dependent	libraries	to	your	project,	compile	your
code,	set	properties,	build	archives,	and	do	many	more	related	activities.	Spring	Boot	or	the	Spring
Cloud	support	both	Maven	and	Gradle	build	tools.	However,	in	this	book,	we'll	use	the	Maven	build
tool.	Feel	free	to	use	Gradle	if	you	prefer.

Maven	is	already	available	in	the	NetBeans	IDE.	Now,	we	can	start	a	new	Maven	project	to	build	our
first	REST	application.

Here	are	the	steps	for	creating	a	new	empty	Maven	project:

1.	 Click	on	New	Project	(Ctrl	+	Shift	+	N)	under	the	File	menu.	It	will	open	the	New	Project	wizard.
2.	 Select	Maven	from	the	Categories	list.	Then,	select	POM	Project	from	the	Projects	list,	as	shown	in

following	screenshot.	Then,	click	on	the	Next	button.

New	Project	Wizard

3.	 Now,	enter	the	project	name	as	6392_chapter2.	Also,	enter	the	other	properties	as	shown	in	the
following	screenshot.	Click	on	Finish	once	all	the	mandatory	fields	are	filled	in:

NetBeans	Maven	project	properties

Aggelos	Karalias	has	developed	a	helpful	plugin	for	the	NetBeans	IDE	offering
autocomplete	support	for	Spring	Boot	configuration	properties	available	at	https://github.c
om/keevosh/nb-springboot-configuration-support.	You	can	download	it	from	his	project	page	at	htt
p://keevosh.github.io/nb-springboot-configuration-support/.You	could	also	use	the	Spring	Tool
Suite	IDE	(https://spring.io/tools)	from	Pivotal	instead	of	the	NetBeans	IDE.	It's	a
customized	all-in-one	Eclipse-based	distribution	that	makes	application	development	easy.

After	finishing	all	the	preceding	steps,	NetBeans	will	display	a	newly	created	Maven	project.
You	will	use	this	project	for	creating	the	sample	rest	application	using	Spring	Boot.

4.	 To	use	Java	9	as	a	source,	set	Source/Binary	Format	to	9,	as	shown	in	the	following	screenshot:

https://github.com/keevosh/nb-springboot-configuration-support
http://keevosh.github.io/nb-springboot-configuration-support/
https://spring.io/tools

NetBeans	Maven	project	properties	-	Sources

5.	 Go	to	Build	|	Compile	and	make	sure	that	Java	Platform	is	set	as	JDK	9	(Default)	as	follows:

NetBeans	Maven	project	properties	-	Complile

6.	 Similarly,	you	can	add	two	new	modules	named	lib	and	rest	in	the	Modules	folder	by	opening	the
right-click	menu	and	then	selecting	the	Create	New	Module	option.	This	time	you	should	select
Maven	from	the	Categories	list	and	Java	Application	from	Projects	list	in	New	Project	dialog	box.

Spring	Boot	configuration
Spring	Boot	is	an	obvious	choice	to	develop	state-of-the-art	production-ready	applications	specific	to
Spring.	Its	website	(https://projects.spring.io/spring-boot/)	also	states	its	real	advantages:

Takes	an	opinionated	view	of	building	production-ready	Spring	applications.	Spring	Boot	favors
convention	over	configuration	and	is	designed	to	get	you	up	and	running	as	quickly	as	possible.

https://projects.spring.io/spring-boot/

Spring	Boot	overview
Spring	Boot	is	an	amazing	Spring	tool	created	by	Pivotal	and	it	was	released	in	April	2014	(GA).	It	was
developed	based	on	the	request	of	SPR-9888	(https://jira.spring.io/browse/SPR-9888)	with	the	title
Improved	support	for	'containerless'	web	application	architectures.

You	must	be	wondering,	why	containerless?	Because,	today's	cloud	environment	or	PaaS	provides	most
of	the	features	offered	by	container-based	web	architectures,	such	as	reliability,	management,	or	scaling.
Therefore,	Spring	Boot	focuses	on	making	itself	an	ultralight	container.

Spring	Boot	is	preconfigured	to	make	production-ready	web	applications	very	easily.	Spring	Initializr	(
http://start.spring.io)	is	a	page	where	you	can	select	build	tools	such	as	Maven	or	Gradle,	and
project	metadata	such	as	group,	artifact,	and	dependencies.	Once	you	feed	the	required	fields	you	can
just	click	on	the	Generate	Project	button,	which	will	give	you	the	Spring	Boot	project	that	you	can	use
for	your	production	application.

On	this	page,	the	default	Packaging	option	is	Jar.	We'll	also	use	JAR	packaging	for	our	microservices
development.	The	reason	is	very	simple:	it	makes	microservices	development	easier.	Just	think	how
difficult	it	would	be	to	manage	and	create	an	infrastructure	where	each	microservice	runs	on	its	own
server	instance.

Josh	Long	shared	in	his	talk	in	one	of	the	Spring	IOs:

"It	is	better	to	make	Jar,	not	War."

Later,	we	will	use	Spring	Cloud,	which	is	a	wrapper	on	top	of	Spring	Boot.

We	would	develop	a	sample	REST	application	that	would	use	the	Java	9	module	feature.	We	will	create
two	modules—lib	and	rest.	The	lib	module	will	provide	the	models	or	any	supported	classes	to	the	rest
module.	The	rest	module	will	include	all	the	classes	that	are	required	to	develop	the	REST	application
and	it	will	also	consume	the	model	classes	defined	in	the	lib	module.

Both	the	lib	and	rest	modules	are	maven	modules	and	their	parent	module	is	our	main	project	6392_chapter2.

The	module-info.java	file	is	an	important	class	that	governs	the	access	of	its	classes.	We'll	make	use	of
requires,	opens,	and	exports	to	use	the	spring	modules	and	establish	the	provider-consumer	relationship
between	the	lib	and	rest	modules	of	our	REST	application.

https://jira.spring.io/browse/SPR-9888
http://start.spring.io

Adding	Spring	Boot	to	our	main	project
We	will	use	the	Java	9	to	develop	microservices.	Therefore,	we'll	use	the	latest	Spring	Framework	and
Spring	Boot	project.	At	the	time	of	writing,	Spring	Boot	2.0.0	build	snapshot	release	version	was
available.

You	can	use	the	latest	released	version.	Spring	Boot	2.0.0	build	snapshot	uses	Spring	5	(5.0.0	build
snapshot	release).

Let's	take	a	look	at	the	following	steps	and	learn	about	adding	Spring	Boot	to	our	main	project:

1.	 Open	the	pom.xml	file	(available	under	6392_chapter2	|	Project	Files)	to	add	Spring	Boot	to	your	sample
project:

<?xml	version="1.0"	encoding="UTF-8"?>	

<project	xmlns="http://maven.apache.org/POM/4.0.0"	

									xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

									xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/xsd/maven-4.0.0.xsd">	

				<modelVersion>4.0.0</modelVersion>	

	

				<groupId>com.packtpub.mmj</groupId>	

				<artifactId>6392_chapter2</artifactId>	

				<version>1.0-SNAPSHOT</version>	

				<packaging>pom</packaging>	

	

				<modules>	

								<module>lib</module>	

								<module>rest</module>	

				</modules>	

	

				<properties>	

								<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>	

								<spring-boot-version>2.0.0.BUILD-SNAPSHOT</spring-boot-version>	

								<spring-version>5.0.0.BUILD-SNAPSHOT</spring-version>	

								<maven.compiler.source>9</maven.compiler.source>	

								<maven.compiler.target>9</maven.compiler.target>	

								<start-class>com.packtpub.mmj.rest.RestSampleApp</start-class>	

				</properties>	

				<parent>	

								<groupId>org.springframework.boot</groupId>	

								<artifactId>spring-boot-starter-parent</artifactId>	

								<version>2.0.0.BUILD-SNAPSHOT</version>	

				</parent>	

				<dependencyManagement>	

								<dependencies>	

												<dependency>	

																<groupId>com.packtpub.mmj</groupId>	

																<artifactId>rest</artifactId>	

																<version>${project.version}</version>	

												</dependency>	

												<dependency>	

																<groupId>com.packtpub.mmj</groupId>	

																<artifactId>lib</artifactId>	

																<version>${project.version}</version>	

												</dependency>	

								</dependencies>	

				</dependencyManagement>	

	

				<build>	

								<plugins>	

												<plugin>	

																<groupId>org.springframework.boot</groupId>	

																<artifactId>spring-boot-maven-plugin</artifactId>	

																<version>2.0.0.BUILD-SNAPSHOT</version>	

																<executions>	

																				<execution>	

																								<goals>	

																												<goal>repackage</goal>	

																								</goals>	

																								<configuration>	

																												<classifier>exec</classifier>	

																												<mainClass>${start-class}</mainClass>	

																								</configuration>	

																				</execution>	

																</executions>	

												</plugin>	

												<plugin>	

																<groupId>org.apache.maven.plugins</groupId>	

																<artifactId>maven-compiler-plugin</artifactId>	

																<version>3.6.1</version>	

																<configuration>	

																				<source>1.9</source>	

																				<target>1.9</target>	

																				<showDeprecation>true</showDeprecation>	

																				<showWarnings>true</showWarnings>	

																</configuration>	

												</plugin>	

								</plugins>	

				</build>	

				<repositories>	

								<repository>	

												<id>spring-snapshots</id>	

												<name>Spring	Snapshots</name>	

												<url>https://repo.spring.io/snapshot</url>	

												<snapshots>	

																<enabled>true</enabled>	

												</snapshots>	

								</repository>	

								<repository>	

												<id>spring-milestones</id>	

												<name>Spring	Milestones</name>	

												<url>https://repo.spring.io/milestone</url>	

												<snapshots>	

																<enabled>false</enabled>	

												</snapshots>	

								</repository>	

				</repositories>	

	

				<pluginRepositories>	

								<pluginRepository>	

												<id>spring-snapshots</id>	

												<name>Spring	Snapshots</name>	

												<url>https://repo.spring.io/snapshot</url>	

												<snapshots>	

																<enabled>true</enabled>	

												</snapshots>	

								</pluginRepository>	

								<pluginRepository>	

												<id>spring-milestones</id>	

												<name>Spring	Milestones</name>	

												<url>https://repo.spring.io/milestone</url>	

												<snapshots>	

																<enabled>false</enabled>	

												</snapshots>	

								</pluginRepository>	

				</pluginRepositories>	

</project>	

You	can	observe	that	we	have	defined	our	two	modules	lib	and	rest	in	parent	project	pom.xml.

2.	 If	you	are	adding	these	dependencies	for	the	first	time,	you	need	to	download	the	dependencies	by
right-clicking	on	the	Dependencies	folder	under	the	6392_chapter2	project	in	the	Projects	pane,	as	shown
in	the	following	screenshot:

Download	Maven	Dependencies	in	NetBeans

3.	 Similarly,	to	resolve	the	project	problems,	right-click	on	the	NetBeans	project	6392_chapter2	and	opt
for	the	Resolve	Project	Problems....	It	will	open	the	dialog	shown	as	follows.	Click	on	the
Resolve...	button	to	resolve	the	issues:

Resolve	project	problems	dialog

4.	 If	you	are	using	Maven	behind	the	proxy,	then	update	the	proxies	in	settings.xml	in	Maven	home
directory.	If	you	are	using	the	Maven	bundled	with	NetBeans	then	use	<NetBeans	Installation
Directory>\java\maven\conf\settings.xml.	You	may	need	to	restart	the	NetBeans	IDE.

The	preceding	steps	will	download	all	the	required	dependencies	from	a	remote	Maven	repository	if	the
declared	dependencies	and	transitive	dependencies	are	not	available	in	a	local	Maven	repository.	If	you
are	downloading	the	dependencies	for	the	first	time,	then	it	may	take	a	bit	of	time,	depending	on	your
internet	speed.

Sample	REST	program
We	will	use	a	simple	approach	to	building	a	standalone	application.	It	packages	everything	into	a	single
executable	JAR	file,	driven	by	a	main()	method.	Along	the	way,	you	use	Spring's	support	for	embedding
the	Jetty	servlet	container	as	the	HTTP	runtime,	instead	of	deploying	it	to	an	external	instance.
Therefore,	we	would	create	the	executable	JAR	file	in	place	of	the	war	that	needs	to	be	deployed	on
external	web	servers,	which	is	a	part	of	the	rest	module.	We'll	define	the	domain	models	in	the	lib
module	and	API	related	classes	in	the	rest	module.

The	following	are	pom.xml	of	the	lib	and	rest	modules.

The	pom.xml	file	of	the	lib	module:

	

<?xml	version="1.0"	encoding="UTF-8"?>	

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/xsd/maven-4.0.0.xsd">	

				<modelVersion>4.0.0</modelVersion>	

				<parent>	

								<groupId>com.packtpub.mmj</groupId>	

								<artifactId>6392_chapter2</artifactId>	

								<version>1.0-SNAPSHOT</version>	

				</parent>	

				<artifactId>lib</artifactId>	

</project>	

The	pom.xml	of	the	rest	module:

	

				<modelVersion>4.0.0</modelVersion>	

				<parent>	

								<groupId>com.packtpub.mmj</groupId>	

								<artifactId>6392_chapter2</artifactId>	

								<version>1.0-SNAPSHOT</version>	

				</parent>	

				<artifactId>rest</artifactId>	

		<dependencies>	

								<dependency>	

												<groupId>com.packtpub.mmj</groupId>	

												<artifactId>lib</artifactId>	

								</dependency>	

								<dependency>	

												<groupId>org.springframework.boot</groupId>	

												<artifactId>spring-boot-starter-web</artifactId>	

				...	

				...		

Here,	the	spring-boot-starter-web	dependency	is	used	for	developing	the	standalone	executable	REST
service.

We'll	add	the	following	module-info.java	classes	in	the	lib	and	rest	modules	in	their	default	package,
respectively.

The	module-info.java	file	in	the	lib	module:

module	com.packtpub.mmj.lib	{	

				exports	com.packtpub.mmj.lib.model	to	com.packtpub.mmj.rest;	

				opens	com.packtpub.mmj.lib.model;	

}	

Here,	we	are	exporting	the	com.packtpub.mmj.lib.model	package	to	com.packtpub.mmj.rest,	which	allows	access
of	the	lib	model	classes	to	the	rest	module	classes.

The	module-info.java	file	in	the	lib	module:

module	com.packtpub.mmj.rest	{	

	

				requires	spring.core;	

				requires	spring.beans;	

				requires	spring.context;	

				requires	spring.aop;	

				requires	spring.web;	

				requires	spring.expression;	

	

				requires	spring.boot;	

				requires	spring.boot.autoconfigure;	

	

				requires	com.packtpub.mmj.lib;	

	

				exports	com.packtpub.mmj.rest;	

				exports	com.packtpub.mmj.rest.resources;	

	

				opens	com.packtpub.mmj.rest;	

				opens	com.packtpub.mmj.rest.resources;	

}	

Here,	we're	adding	all	the	required	spring	and	lib	packages	using	the	requires	statement,	which	enables
the	rest	module	classes	to	use	classes	defined	in	the	spring	and	lib	modules.	Also,	we're	exporting	the
com.packt.mmj.rest	and	com.packt.mmj.rest.resources	packages.

Now,	as	you	are	ready	with	Spring	Boot	in	NetBeans	IDE,	you	could	create	your	sample	web	service.
You	will	create	a	Math	API	that	performs	simple	calculations	and	generates	the	result	as	JSON.

Let's	discuss	how	we	can	call	and	get	responses	from	REST	services.

The	service	will	handle	the	GET	requests	for	/calculation/sqrt	or	/calculation/power	and	so	on.	The	GET
request	should	return	a	200	OK	response	with	JSON	in	the	body	that	represents	the	square	root	of	a	given
number.	It	should	look	something	like	this:

{	

		"function":	"sqrt",	

		"input":	[

				"144"	

],	

		"output":	[

				"12.0"	

]	

}	

The	input	field	is	the	input	parameter	for	the	square	root	function,	and	the	content	is	the	textual
representation	of	the	result.

You	could	create	a	resource	representation	class	to	model	the	representation	by	using	Plain	Old	Java
Object	(POJO)	with	fields,	constructors,	setters,	and	getters	for	the	input,	output,	and	function	data.
Since	it	is	a	model,	we'll	create	it	in	the	lib	module:

package	com.packtpub.mmj.lib.model;	

	

import	java.util.List;	

	

public	class	Calculation	{	

	

				String	function;	

				private	List<String>	input;	

				private	List<String>	output;	

	

				public	Calculation(List<String>	input,	List<String>	output,	String	function)	{	

								this.function	=	function;	

								this.input	=	input;	

								this.output	=	output;	

				}	

	

				public	List<String>	getInput()	{	

								return	input;	

				}	

	

				public	void	setInput(List<String>	input)	{	

								this.input	=	input;	

				}	

	

				public	List<String>	getOutput()	{	

								return	output;	

				}	

	

				public	void	setOutput(List<String>	output)	{	

								this.output	=	output;	

				}	

	

				public	String	getFunction()	{	

								return	function;	

				}	

	

				public	void	setFunction(String	function)	{	

								this.function	=	function;	

				}	

	

}	

Writing	the	REST	controller	class
Roy	Fielding	defined	and	introduced	the	term	Representational	State	Transfer	(REST)	in	his	doctoral
dissertation.	REST	is	a	style	of	software	architecture	for	a	distributed	hypermedia	system	such	as
WWW.	RESTful	refers	to	those	systems	that	conform	to	REST	architecture	properties,	principles,	and
constraints.

Now,	you'll	create	a	REST	controller	to	handle	the	Calculation	resource.	The	controller	handles	the	HTTP
requests	in	the	Spring	RESTful	web	service	implementation.

The	@RestController	annotation
@RestController	is	a	class-level	annotation	used	for	the	resource	class	introduced	in	Spring	4.	It	is	a
combination	of	@Controller	and	@ResponseBody,	and	because	of	it,	a	class	returns	a	domain	object	instead	of	a
view.

In	the	following	code,	you	can	see	that	the	CalculationController	class	handles	GET	requests	for	/calculation
by	returning	a	new	instance	of	the	calculation	class.

We	will	implement	two	URIs	for	a	Calculation	resource—the	square	root	(Math.sqrt()	function)	as	the
/calculations/sqrt	URI,	and	power	(Math.pow()	function)	as	the	/calculation/power	URI.

The	@RequestMapping	annotation
The	@RequestMapping	annotation	is	used	at	class	level	to	map	the	/calculation	URI	to	the	CalculationController
class,	that	is,	it	ensures	that	the	HTTP	request	to	/calculation	is	mapped	to	the	CalculationController	class.
Based	on	the	path	defined	using	the	annotation	@RequestMapping	of	the	URI	(postfix	of	/calculation,	for
example,	/calculation/sqrt/144),	it	would	be	mapped	to	respective	methods.	Here,	the	request	mapping
/calculation/sqrt	is	mapped	to	the	sqrt()	method	and	/calculation/power	is	mapped	to	the	pow()	method.

You	might	have	also	observed	that	we	have	not	defined	what	request	method	(GET/POST/PUT,	and	so	on)
these	methods	would	use.	The	@RequestMapping	annotation	maps	all	the	HTTP	request	methods	by	default.
You	could	use	specific	methods	by	using	the	method	property	of	RequestMapping.	For	example,	you	could
write	a	@RequestMethod	annotation	in	the	following	way	to	use	the	POST	method:

@RequestMapping(value	=	"/power",	method	=	POST)	

For	passing	the	parameters	along	the	way,	the	sample	demonstrates	both	request	parameters	and	path
parameters	using	annotations	@RequestParam	and	@PathVariable,	respectively.

The	@RequestParam	annotation
@RequestParam	is	responsible	for	binding	the	query	parameter	to	the	parameter	of	the	controller's	method.
For	example,	the	QueryParam	base	and	exponent	are	bound	to	parameters	b	and	e	of	method	pow()	of
CalculationController	respectively.	Both	of	the	query	parameters	of	the	pow()	method	are	required	since	we
are	not	using	any	default	value	for	them.	Default	values	for	query	parameters	could	be	set	using	the
defaultValue	property	of	@RequestParam,	for	example,	@RequestParam(value="base",	defaultValue="2").	Here,	if	the
user	does	not	pass	the	query	parameter	base,	then	the	default	value	2	would	be	used	for	the	base.

If	no	defaultValue	is	defined,	and	the	user	doesn't	provide	the	request	parameter,	then	RestController	returns
the	HTTP	status	code	400	with	the	message	Required	String	parameter	'base'	is	not	present.	It	always	uses	the
reference	of	the	first	required	parameter	if	more	than	one	of	the	request	parameters	is	missing:

{	

		"timestamp":	1464678493402,	

		"status":	400,	

		"error":	"Bad	Request",	

		"exception":	"org.springframework.web.bind.MissingServletRequestParameterException",	

		"message":	"Required	String	parameter	'base'	is	not	present",	

		"path":	"/calculation/power/"	

}	

The	@PathVariable	annotation
@PathVariable	helps	you	to	create	the	dynamic	URIs.	@PathVariable	annotation	allows	you	to	map	Java
parameters	to	a	path	parameter.	It	works	with	@RequestMapping	where	the	placeholder	is	created	in	URI
then	the	same	placeholder	name	is	used	either	as	a	PathVariable	or	a	method	parameter,	as	you	can	see	in
the	CalculationController	class'	method	sqrt().	Here,	the	value	placeholder	is	created	inside	the
@RequestMapping	and	the	same	value	is	assigned	to	the	value	of	the	@PathVariable.

The	sqrt()	method	takes	the	parameter	in	the	URI	in	place	of	the	request	parameter,	for	example
http://localhost:8080/calculation/sqrt/144.	Here,	the	144	value	is	passed	as	the	path	parameter	and	this	URL
should	return	the	square	root	of	144,	that	is	12.

To	use	the	basic	check	in	place,	we	use	the	regular	expression	"^-?+\\d+\\.?+\\d*$"	to	allow	only	valid
numbers	in	parameters.	If	non-numeric	values	are	passed,	the	respective	method	adds	an	error	message
to	the	output	key	of	the	JSON:

CalculationController	also	uses	the	regular	expression	.+	in	the	path	variable	(path	parameter)
to	allow	the	decimal	point(.)	in	numeric	values:	/path/{variable:.+}.	Spring	ignores	anything
after	the	last	dot.	Spring	default	behavior	takes	it	as	a	file	extension.

There	are	other	alternatives,	such	as	adding	a	slash	at	the	end	(/path/{variable}/),	or
overriding	the	configurePathMatch()method	of	WebMvcConfigurerAdapter	by	setting	the
useRegisteredSuffixPatternMatch	to	true,	using	PathMatchConfigurer	(available	in	Spring	4.0.1+).

Code	of	CalculationController	resource,	where	we	have	implemented	to	REST	endpoints:

package	com.packtpub.mmj.rest.resources;	

	

import	com.packtpub.mmj.lib.model.Calculation;	

import	java.util.ArrayList;	

import	java.util.List;	

import	org.springframework.web.bind.annotation.PathVariable;	

import	org.springframework.web.bind.annotation.RequestMapping;	

import	static	org.springframework.web.bind.annotation.RequestMethod.GET;	

import	org.springframework.web.bind.annotation.RequestParam;	

import	org.springframework.web.bind.annotation.RestController;	

	

/**	

	*	

	*	@author	sousharm	

	*/	

@RestController	

@RequestMapping("calculation")	

public	class	CalculationController	{	

	

				private	static	final	String	PATTERN	=	"^-?+\\d+\\.?+\\d*$";	

	

				/**	

					*	

					*	@param	b	

					*	@param	e	

					*	@return	

					*/	

				@RequestMapping("/power")	

				public	Calculation	pow(@RequestParam(value	=	"base")	String	b,	@RequestParam(value	=	"exponent")	String	e)	{	

								List<String>	input	=	new	ArrayList();	

								input.add(b);	

								input.add(e);	

								List<String>	output	=	new	ArrayList();	

								String	powValue;	

								if	(b	!=	null	&&	e	!=	null	&&	b.matches(PATTERN)	&&	e.matches(PATTERN))	{	

												powValue	=	String.valueOf(Math.pow(Double.valueOf(b),	Double.valueOf(e)));	

								}	else	{	

												powValue	=	"Base	or/and	Exponent	is/are	not	set	to	numeric	value.";	

								}	

								output.add(powValue);	

								return	new	Calculation(input,	output,	"power");	

				}	

	

				/**	

					*	

					*	@param	aValue	

					*	@return	

					*/	

				@RequestMapping(value	=	"/sqrt/{value:.+}",	method	=	GET)	

				public	Calculation	sqrt(@PathVariable(value	=	"value")	String	aValue)	{	

								List<String>	input	=	new	ArrayList();	

								input.add(aValue);	

								List<String>	output	=	new	ArrayList();	

								String	sqrtValue;	

								if	(aValue	!=	null	&&	aValue.matches(PATTERN))	{	

												sqrtValue	=	String.valueOf(Math.sqrt(Double.valueOf(aValue)));	

								}	else	{	

												sqrtValue	=	"Input	value	is	not	set	to	numeric	value.";	

								}	

								output.add(sqrtValue);	

								return	new	Calculation(input,	output,	"sqrt");	

				}	

}	

Here,	we	are	exposing	only	the	power	and	sqrt	functions	for	the	Calculation	resource	using	URI
/calculation/power	and	/calculation/sqrt.

Here,	we	are	using	sqrt	and	power	as	a	part	of	the	URI,	which	we	have	used	for
demonstration	purposes	only.	Ideally,	these	should	have	been	passed	as	the	value	of	a
request	parameter	function,	or	something	similar	based	on	endpoint	design	formation.

One	interesting	thing	here	is	that	due	to	Spring's	HTTP	message	converter	support,	the	Calculation	object
gets	converted	to	JSON	automatically.	You	don't	need	to	do	this	conversion	manually.	If	Jackson	2	is	on
the	classpath,	Spring's	MappingJackson2HttpMessageConverter	converts	the	Calculation	object	to	JSON.

Making	a	sample	REST	application
executable
Create	a	RestSampleApp	class	with	the	annotation	SpringBootApplication.	The	main()	method	uses	Spring	Boot's
SpringApplication.run()	method	to	launch	an	application.

We	will	annotate	the	RestSampleApp	class	with	the	@SpringBootApplication	annotation	that	adds	all	of	the
following	tags	implicitly:

The	@Configuration	annotation	tags	the	class	as	a	source	of	bean	definitions	for	the	application
context.
The	@EnableAutoConfiguration	annotation	indicates	that	Spring	Boot	is	to	start	adding	beans	based	on
classpath	settings,	other	beans,	and	various	property	settings.
The	@EnableWebMvc	annotation	is	added	if	Spring	Boot	finds	spring-webmvc	on	the	classpath.	It	treats	the
application	as	a	web	application	and	activates	key	behaviors	such	as	setting	up	DispatcherServlet.
The	@ComponentScan	annotation	tells	Spring	to	look	for	other	components,	configurations,	and	services
in	the	given	package:

package	com.packtpub.mmj.rest;	

	

import	org.springframework.boot.SpringApplication;	

import	org.springframework.boot.autoconfigure.SpringBootApplication;	

	

@SpringBootApplication	

public	class	RestSampleApp	{	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(RestSampleApp.class,	args);	

				}	

}	

This	web	application	is	100	percent	pure	Java	and	you	don't	have	to	deal	with	configuring	any	plumbing
or	infrastructure	using	XML;	instead,	it	uses	the	Java	annotation	that	is	made	even	simpler	by	Spring
Boot.	Therefore,	there	wasn't	a	single	line	of	XML	except	pom.xml	for	Maven.	There	wasn't	even	a	web.xml
file.

Adding	a	Jetty-embedded	server
Spring	Boot	by	default	provides	Apache	Tomcat	as	an	embedded	application	container.	This	book	will
use	the	Jetty-embedded	application	container	in	the	place	of	Apache	Tomcat.	Therefore,	we	need	to	add
a	Jetty	application	container	dependency	to	support	the	Jetty	web	server.

Jetty	also	allows	you	to	read	keys	or	trust	stores	using	classpaths,	that	is,	you	don't	need	to	keep	these
stores	outside	the	JAR	files.	If	you	use	Tomcat	with	SSL	then	you	will	need	to	access	the	key	store	or
trust	store	directly	from	the	filesystem,	but	you	can't	do	that	using	the	classpath.	The	result	is	that	you
can't	read	a	key	store	or	a	trust	store	within	a	JAR	file	because	Tomcat	requires	that	the	key	store	(and
trust	store	if	you're	using	one)	is	directly	accessible	on	the	filesystem.	This	may	change	post	writing	of
this	book.

This	limitation	doesn't	apply	to	Jetty,	which	allows	the	reading	of	keys	or	trust	stores	within	a	JAR	file.
A	relative	section	on	pom.xml	of	module	rest:

<dependencies>	

<dependency>	

							<groupId>org.springframework.boot</groupId>	

											<artifactId>spring-boot-starter-web</artifactId>	

											<exclusions>	

													<exclusion>	

<groupId>org.springframework.boot</groupId>	

<artifactId>spring-boot-starter-tomcat</artifactId>	

																</exclusion>	

												</exclusions>	

</dependency>	

<dependency>	

<groupId>org.springframework.boot</groupId>	

<artifactId>spring-boot-starter-jetty</artifactId>	

</dependency>	

</dependencies>

Setting	up	the	application	build
Whatever	the	pom.xml	files,	whatever	we	have	used	until	now	is	enough	to	execute	our	sample	REST
service.	This	service	would	package	the	code	into	a	JAR	file.	To	make	this	JAR	executable	we	need	to
opt	for	the	following	options:

Running	the	Maven	tool
Executing	with	the	Java	command

The	following	sections	will	cover	them	in	detail.

Running	the	Maven	tool
This	method	may	not	work	because	Java	9,	Spring	Boot	2,	and	Spring	Framework	5	are	all	in	either	in
early	or	snapshot	release.	In	case	it	does	not	work,	please	use	a	project	using	Java	commands.

Here,	we	use	the	Maven	tool	to	execute	the	generated	JAR	file,	the	steps	for	this	are	as	follows:

1.	 Right-click	on	the	pom.xml	file.
2.	 Select	Run	Maven	|	Goals...	from	the	pop-up	menu.	It	will	open	the	dialog.	Type	spring-boot:run	in

the	Goals	field.	We	have	used	the	released	version	of	Spring	Boot	in	the	code.	However,	if	you	are
using	the	snapshot	release,	you	can	check	the	Update	Snapshots	checkbox.	To	use	it	in	the	future,
type	spring-boot-run	in	the	Remember	as	field.

3.	 Next	time,	you	could	directly	click	Run	Maven	|	Goals	|	spring-boot-run	to	execute	the	project:

Run	Maven	dialog

4.	 Click	OK	to	execute	the	project.

Executing	with	the	Java	command
Please	make	sure	that	Java	and	JAVA_HOME	is	set	to	Java	9	before	executing	the	following	commands.
Take	a	look	at	the	following	steps:

1.	 To	build	the	JAR	file,	perform	the	mvn	clean	package	command	from	the	Command	Prompt	from	the
parent	project	root	directory	(6392_chapter2).	Here,	clean	and	package	are	Maven	goals:

mvn	clean	package

2.	 It	creates	the	JAR	files	in	a	respective	target	directory.	We'll	execute	the	JAR	files	generated	in	the
6392_chapter2\rest\target	directory.	A	JAR	file	can	be	executed	using	the	following	command:

java	-jar	rest\target\rest-1.0-SNAPSHOT-exec.jar

Please	make	sure	you	execute	the	JAR	file	having	a	postfix	exec	as	shown	in	the	preceding
command.

REST	API	testing	using	the	Postman
Chrome	extension
This	book	uses	the	Postman	-	REST	Client	extension	for	Chrome	to	test	our	REST	service.	I	use	the
5.0.1	version	of	Postman.	You	can	use	the	Postman	Chrome	application	or	any	other	REST	Client	to	test
your	sample	REST	application,	as	shown	in	the	following	screenshot:

Postman	-	Rest	Client	Chrome	extension

Let's	test	our	first	REST	resource	once	you	have	the	Postman	-	REST	Client	installed.	We	start	the
Postman	-	REST	Client	from	either	the	Start	menu	or	from	a	shortcut.

By	default,	the	embedded	web	server	starts	on	port	8080.	Therefore,	we	need	to	use	the
http://localhost:8080/<resource>	URL	for	accessing	the	sample	REST	application.	For
example:	http://localhost:8080/calculation/sqrt/144.

Once	it's	started,	you	can	type	the	Calculation	REST	URL	for	sqrt	and	value	144	as	the	path	parameter.
You	can	see	it	in	the	following	screenshot.	This	URL	is	entered	in	the	URL	(enter	request	URL	here)
input	field	of	the	Postman	extension.	By	default,	the	request	method	is	GET.	We	use	the	default	value	for
the	request	method,	as	we	have	also	written	our	RESTful	service	to	serve	the	request	GET	method.

Once	you	are	ready	with	your	input	data	as	mentioned	earlier,	you	can	submit
the	request	by	clicking	the	Send	button.	You	can	see	in	the	following	screenshot	that
the	response	code	200	is	returned	by	your	sample	REST	service.	You	can	find	the	Status	label	in	the
following	screenshot	to	see	the	200	OK	code.	A	successful	request
also	returns	the	JSON	data	of	the	Calculation	resource,	shown	in	the	Pretty	tab
in	the	screenshot.	The	returned	JSON	shows	the	sqrt	method	value	of	the	function	key.
It	also	displays	144	and	12.0	as	the	input	and	output	lists,	respectively:

Calculation	(sqrt)	resource	test	with	Postman

Similarly,	we	also	test	our	sample	REST	service	for	calculating	the	power	function.	We	input	the
following	data	in	the	Postman	extension:

URL:	http://localhost:8080/calculation/power?base=2&exponent=4
Request	method:	GET

Here,	we	are	passing	the	request	parameters	base	and	exponent	with	values	of	2	and	4,	respectively.	It
returns	the	following	JSON:

{	

				"function":	"power",	

				"input":	[

								"2",	

								"4"	

],	

				"output":	[

								"16.0"	

]	

}	

It	returns	the	preceding	JSON	with	a	response	status	of	200,	as	shown	in	the	following	screenshot:

http://localhost:8080/calculation/power?base=2&exponent=4

Calculation	(power)	resource	test	with	Postman

Some	more	positive	test	scenarios
In	the	following	table,	all	the	URLs	start	with	http://localhost:8080:

URL Output	JSON

/calculation/sqrt/12344.234

{			

				"function":			"sqrt",			

				"input":			[

								"12344.234"			

],			

				"output":			[

								"111.1046083652699"			

]			

}			

The	/calculation/sqrt/-9344.34	of	the	Math.sqrt	function's	special	scenario:

If	the	argument	is	NaN	or	less	than	zero,	then	the	result	is	NaN

{			

				"function":			"sqrt",			

				"input":			[

								"-9344.34"			

],			

				"output":			[

								"NaN"			

]			

}			

/calculation/power?base=2.09&exponent=4.5

{			

				"function":			"power",			

				"input":			[

								"2.09",			

								"4.5"			

],			

				"output":			[

								"27.58406626826615"			

]			

}			

/calculation/power?base=-92.9&exponent=-4

{			

				"function":			"power",			

				"input":			[

								"-92.9",			

								"-4"			

],			

				"output":			[

								"1.3425706351762353E-8"			

]			

}			

Negative	test	scenarios
Similarly,	you	could	also	perform	some	negative	scenarios	as	shown	in	the	following	table.	In	this	table,
all	the	URLs	start	with	http://localhost:8080:

URL Output	JSON

/calculation/power?base=2a&exponent=4

{			

				"function":			"power",			

				"input":			[

								"2a",			

								"4"			

],			

				"output":			[

								"Base			or/and	Exponent	is/are	not	set	to	numeric	value."			

]			

}			

/calculation/power?base=2&exponent=4b

{			

				"function":			"power",			

				"input":			[

								"2",			

								"4b"			

],			

				"output":			[

								"Base			or/and	Exponent	is/are	not	set	to	numeric	value."			

]			

}			

/calculation/power?base=2.0a&exponent=a4

{			

				"function":			"power",			

				"input":			[

								"2.0a",			

								"a4"			

],			

				"output":			[

								"Base			or/and	Exponent	is/are	not	set	to	numeric	value."			

]			

}			

/calculation/sqrt/144a

{			

				"function":			"sqrt",			

				"input":			[

								"144a"			

],			

				"output":			[

								"Input			value	is	not	set	to	numeric	value."			

]			

}			

/calculation/sqrt/144.33$

{			

				"function":			"sqrt",			

				"input":			[

								"144.33$"			

],			

				"output":			[

								"Input			value	is	not	set	to	numeric	value."			

]			

}			

Summary
In	this	chapter,	you	have	explored	various	aspects	of	setting	up	a	development	environment,	Maven
configuration,	Spring	Boot	configuration,	and	so	on.

You	have	also	learned	how	to	make	use	of	Spring	Boot	to	develop	a	sample	REST	service	application.
We	learned	how	powerful	Spring	Boot	is—it	eases	development	so	much	that	you	only	have	to	worry
about	the	actual	code,	and	not	about	the	boilerplate	code	or	configurations	that	you	write.	We	have	also
packaged	our	code	into	a	JAR	file	with	an	embedded	application	container	Jetty.	It	allows	it	to	run	and
access	the	web	application	without	worrying	about	the	deployment.

In	the	next	chapter,	you	will	learn	the	domain-driven	design	(DDD)	using	a	sample	project	that	can	be
used	across	the	rest	of	the	chapters.	We'll	use	the	sample	project	online	table	reservation	system
(OTRS)	to	go	through	various	phases	of	microservices	development	and	understand	the	DDD.	After
completing	Chapter	3,	Domain-Driven	Design,	you	will	learn	the	fundamentals	of	DDD.

You	will	understand	how	to	practically	use	the	DDD	by	design	sample	services.	You	will	also	learn	to
design	the	domain	models	and	REST	services	on	top	of	it.	The	following	are	a	few	links	that	you	can
take	a	look	at	to	learn	more	about	the	tools	we	used	here:

Spring	Boot:	http://projects.spring.io/spring-boot/
Download	NetBeans:	https://netbeans.org/downloads
Representational	State	Transfer	(REST):	Chapter	5	(https://www.ics.uci.edu/~fielding/pubs/dissertati
on/top.htm)	of	Roy	Thomas	Fielding's	Ph.D.	dissertation	Architectural	Styles	and	the	Design	of
Network-based	Software	Architectures
REST:	https://en.wikipedia.org/wiki/Representational_state_transfer
Maven:	https://maven.apache.org/
Gradle:	http://gradle.org/

http://projects.spring.io/spring-boot/
https://netbeans.org/downloads
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://en.wikipedia.org/wiki/Representational_state_transfer
https://maven.apache.org/
http://gradle.org/

Domain-Driven	Design
This	chapter	sets	the	tone	for	the	rest	of	the	chapters	by	referring	to	one	sample	project.	The	sample
project	will	be	used	to	explain	different	microservices	concepts	from	here	onward.	This	chapter	uses
this	sample	project	to	drive	through	different	combinations	of	functional	and	domain	services,	or
applications	to	explain	domain-driven	design	(DDD).	It	will	help	you	to	learn	the	fundamentals	of
DDD	and	its	practical	usage.	You	will	also	learn	the	concepts	of	designing	domain	models	using	REST
services.

This	chapter	covers	the	following	topics:

Fundamentals	of	DDD
How	to	design	an	application	using	DDD
Domain	models
A	sample	domain	model	design	based	on	DDD

A	good	software	design	is	as	much	the	key	to	the	success	of	a	product	or	services	as	the	functionalities
offered	by	it.	It	carries	equal	weight	to	the	success	of	product;	for	example,	Amazon.com	provides	the
shopping	platform,	but	its	architecture	design	makes	it	different	from	other	similar	sites	and	contributes
to	its	success.	It	shows	how	important	a	software	or	architecture	design	is	for	the	success	of	a
product/service.	DDD	is	one	of	the	software	design	practices,	and	we'll	explore	it	with	various	theories
and	practical	examples.

DDD	is	a	key	design	practice	that	helps	to	design	the	microservices	of	the	product	that	you	are
developing.	Therefore,	we'll	first	explore	DDD	before	jumping	into	microservices	development.	After
studying	this	chapter,	you	will	understand	the	importance	of	DDD	for	microservices	development.

Domain-driven	design	fundamentals
An	enterprise,	or	cloud	application,	solves	business	problems	and	other	real-world	problems.	These
problems	cannot	be	resolved	without	knowledge	of	the	domain.	For	example,	you	cannot	provide	a
software	solution	for	a	financial	system	such	as	online	stock	trading	if	you	don't	understand	the	stock
exchanges	and	their	functioning.	Therefore,	having	domain	knowledge	is	a	must	for	solving	problems.
Now,	if	you	want	to	offer	a	solution	using	software	or	applications,	you	need	to	design	it	with	the	help
of	domain	knowledge.	When	we	combine	the	domain	and	software	design,	it	offers	a	software	design
methodology	known	as	DDD.

When	we	develop	software	to	implement	real-world	scenarios	offering	the	functionalities	of	a	domain,
we	create	a	model	of	the	domain.	A	model	is	an	abstraction,	or	a	blueprint,	of	the	domain.

Eric	Evans	coined	the	term	DDD	in	his	book	Domain-Driven	Design:	Tackling	Complexity
in	the	Heart	of	Software,	published	in	2004.

Designing	this	model	is	not	rocket	science,	but	it	does	take	a	lot	of	effort,	refining,	and	input	from
domain	experts.	It	is	the	collective	job	of	software	designers,	domain	experts,	and	developers.	They
organize	information,	divide	it	into	smaller	parts,	group	them	logically,	and	create	modules.	Each
module	can	be	taken	up	individually,	and	can	be	divided	using	a	similar	approach.	This	process	can	be
followed	until	we	reach	the	unit	level,	or	when	we	cannot	divide	it	any	further.	A	complex	project	may
have	more	of	such	iterations;	similarly,	a	simple	project	could	have	just	a	single	iteration	of	it.

Once	a	model	is	defined	and	well	documented,	it	can	move	onto	the	next	stage	-	code	design.	So,	here
we	have	a	software	design—a	domain	model	and	code	design,	and	code	implementation	of	the	domain
model.	The	domain	model	provides	a	high	level	of	the	architecture	of	a	solution	(software/application),
and	the	code	implementation	gives	the	domain	model	a	life,	as	a	working	model.

DDD	makes	design	and	development	work	together.	It	provides	the	ability	to	develop	software
continuously,	while	keeping	the	design	up	to	date	based	on	feedback	received	from	the	development.	It
solves	one	of	the	limitations	offered	by	Agile	and	Waterfall	methodologies,	making	software
maintainable,	including	design	and	code,	as	well	as	keeping	application	minimum	viable.

Design-driven	development	involves	a	developer	from	the	initial	stage,	and	all	meetings	where	software
designers	discuss	the	domain	with	domain	experts	in	the	modeling	process.	It	gives	developers	the	right
platform	to	understand	the	domain,	and	provides	the	opportunity	to	share	early	feedback	of	the	domain
model	implementation.	It	removes	the	bottleneck	that	appears	in	later	stages	when	stockholders	wait	for
deliverables.

Fundamentals	of	DDD
To	understand	domain-driven	design,	we	can	broadly	categorize	these	three	concepts:

Ubiquitous	language	and	unified	model	language	(UML)
Multilayer	architecture
Artifacts	(components)

The	following	sections	explain	the	usage	and	importance	of	ubiquitous	language	and	multilayer
architecture.	There	will	also	be	an	explanation	of	the	different	artifacts	to	be	used	in	the	model-driven
design.

Ubiquitous	language
Ubiquitous	language	is	a	common	language	to	communicate	within	a	project.	As	we	have	seen,
designing	a	model	is	the	collective	effort	of	software	designers,	domain	experts,	and	developers;
therefore,	it	requires	a	common	language	to	communicate	with.	DDD	makes	it	necessary	to	use
ubiquitous	language.	Domain	models	use	ubiquitous	language	in	their	diagrams,	descriptions,
presentations,	speeches,	and	meetings.	It	removes	the	misunderstanding,	misinterpretation,	and
communication	gap	among	them.	Therefore,	it	must	be	included	in	all	diagrams,	description,
presentations,	meetings,	and	so	on—in	short,	in	everything.

Unified	Modeling	Language	(UML)	is	widely	used	and	very	popular	when	creating	models.	It	also	has
a	few	limitations;	for	example,	when	you	have	thousands	of	classes	drawn	from	a	paper,	it's	difficult	to
represent	class	relationships	and	simultaneously	understand	their	abstraction	while	taking	a	meaning
from	it.	Also,	UML	diagrams	do	not	represent	the	concepts	of	a	model	and	what	objects	are	supposed	to
do.	Therefore,	UML	should	always	be	used	with	other	documents,	code,	or	any	other	reference	for
effective	communication.

Other	ways	to	communicate	the	domain	model	include	the	use	of	documents,	code,	and	so	on.

Multilayered	architecture
Multilayered	architecture	is	a	common	solution	for	DDD.	It	contains	four	layers:

1.	 Presentation	layer	or	User	Interface	(UI).
2.	 Application	layer.
3.	 Domain	layer.
4.	 Infrastructure	layer.

Layered	architecture

You	can	see	here	that	only	the	Domain	layer	is	responsible	for	the	domain	model,	and	others	are	related
to	other	components	such	as	UI,	application	logic,	and	so	on.	This	layered	architecture	is	very
important.	It	keeps	domain-related	code	separate	from	other	layers.

In	this	multilayered	architecture,	each	layer	contains	its	respective	code,	and	it	helps	to	achieve	loose
coupling	and	avoids	mixing	code	from	different	layers.	It	also	helps	the	product/service's	long-term
maintainability	and	the	ease	of	enhancements,	as	the	change	of	one-layer	code	does	not	impact	on	other
components	if	the	change	is	intended	for	the	respective	layer	only.	Each	layer	can	be	switched	with
another	implementation	easily	with	multi-tier	architecture.

Presentation	layer
This	layer	represents	the	UI,	and	provides	the	user	interface	for	the	interaction	and	information	display.
This	layer	could	be	a	web	application,	mobile	application,	or	a	third-party	application	consuming	your
services.

Application	layer
This	layer	is	responsible	for	application	logic.	It	maintains	and	coordinates	the	overall	flow	of	the
product/service.	It	does	not	contain	business	logic	or	UI.	It	may	hold	the	state	of	application	objects,
like	tasks	in	progress.	For	example,	your	product	REST	services	would	be	part	of	this	application	layer.

Domain	layer
The	domain	layer	is	a	very	important	layer,	as	it	contains	the	domain	information	and	business	logic.	It
holds	the	state	of	the	business	object.	It	persists	the	state	of	the	business	objects,	and	communicates
these	persisted	states	to	the	infrastructure	layer.

Infrastructure	layer
This	layer	provides	support	to	all	the	other	layers	and	is	responsible	for	communication	among	the	other
layers.	It	contains	the	supporting	libraries	that	are	used	by	the	other	layers.	It	also	implements	the
persistence	of	business	objects.

To	understand	the	interaction	of	the	different	layers,	let	us	use	an	example	of	table	booking	at	a
restaurant.	The	end	user	places	a	request	for	a	table	booking	using	UI.	The	UI	passes	the	request	to	the
application	layer.	The	application	layer	fetches	the	domain	objects,	such	as	the	restaurant,	the	table,	a
date,	and	so	on,	from	the	domain	layer.	The	domain	layer	fetches	these	existing	persisted	objects	from
the	infrastructure,	and	invokes	relevant	methods	to	make	the	booking	and	persist	them	back	to	the
infrastructure	layer.	Once	domain	objects	are	persisted,	the	application	layer	shows	the	booking
confirmation	to	the	end	user.

Artifacts	of	domain-driven	design
There	are	seven	different	artifacts	used	in	DDD	to	express,	create,	and	retrieve	domain	models:

Entities
Value	objects
Services
Aggregates
Repository
Factory
Module

Entities
Entities	are	certain	types	of	objects	that	are	identifiable	and	remain	the	same	throughout	the	states	of	the
products/services.	These	objects	are	not	identified	by	their	attributes,	but	by	their	identity	and	thread	of
continuity.	These	type	of	objects	are	known	as	entities.

It	sounds	pretty	simple,	but	it	carries	complexity.	You	need	to	understand	how	we	can	define	the
entities.	Let's	take	an	example	of	a	table	booking	system,	where	we	have	a	restaurant	class	with	attributes
such	as	restaurant	name,	address,	phone	number,	establishment	data,	and	so	on.	We	can	take	two
instances	of	the	restaurant	class	that	are	not	identifiable	using	the	restaurant	name,	as	there	could	be
other	restaurants	with	the	same	name.	Similarly,	if	we	go	by	any	other	single	attribute,	we	will	not	find
any	attributes	that	can	singularly	identify	a	unique	restaurant.	If	two	restaurants	have	all	the	same
attribute	values,	they	are	therefore	the	same	and	are	interchangeable	with	each	other.	Still,	they	are	not
the	same	entities,	as	both	have	different	references	(memory	addresses).

Conversely,	let's	take	a	class	of	US	citizens.	Each	citizen	has	his	or	her	own	social	security	number.	This
number	is	not	only	unique,	but	remains	unchanged	throughout	the	life	of	the	citizen	and	assures
continuity.	This	citizen	object	would	exist	in	the	memory,	would	be	serialized,	and	would	be	removed
from	the	memory	and	stored	in	the	database.	It	even	exists	after	the	person	is	deceased.	It	will	be	kept	in
the	system	for	as	long	as	the	system	exists.	A	citizen's	social	security	number	remains	the	same
irrespective	of	its	representation.

Therefore,	creating	entities	in	a	product	means	creating	an	identity.	So,	now	give	an	identity	to	any
restaurant	in	the	previous	example,	then	either	use	a	combination	of	attributes	such	as	restaurant	name,
establishment	date,	and	street,	or	add	an	identifier	such	as	restaurant_id	to	identify	it.	The	basic	rule	is
that	two	identifiers	cannot	be	the	same.	Therefore,	when	we	introduce	an	identifier	for	an	entity,	we
need	to	be	sure	of	it.

There	are	different	ways	to	create	a	unique	identity	for	objects,	described	as	follows:

Using	the	primary	key	in	a	table.
Using	an	automated	generated	ID	by	a	domain	module.	A	domain	program	generates	the
identifier	and	assigns	it	to	objects	that	are	being	persisted	among	different	layers.
A	few	real-life	objects	carry	user-defined	identifiers	themselves.	For	example,	each	country	has
its	own	country	codes	for	dialing	ISD	calls.
Composite	key.	This	is	a	combination	of	attributes	that	can	also	be	used	for	creating	an	identifier,
as	explained	for	the	preceding	restaurant	object.

Entities	are	very	important	for	domain	models.	Therefore,	they	should	be	defined	from	the
initial	stage	of	the	modeling	process.

When	an	object	can	be	identified	by	its	identifier	and	not	by	its	attributes,	a	class	representing	these
objects	should	have	a	simple	definition,	and	care	should	be	taken	with	the	life	cycle	continuity	and

identity.	It's	imperative	to	identify	objects	in	this	class	that	have	the	same	attribute	values.	A	defined
system	should	return	a	unique	result	for	each	object	if	queried.	Designers	should	ensure	that	the	model
defines	what	it	means	to	be	the	same	thing.

Value	objects
Value	objects	(VOs)	simplify	the	design.	Entities	have	traits	such	as	identity,	a	thread	of	continuity,	and
attributes	that	do	not	define	their	identity.	In	contrast	to	entities,	value	objects	have	only	attributes	and
no	conceptual	identity.	A	best	practice	is	to	keep	value	objects	as	immutable	objects.	If	possible,	you
should	even	keep	entity	objects	immutable	too.

Entity	concepts	may	bias	you	to	keep	all	objects	as	entities,	as	a	uniquely	identifiable	object	in	the
memory	or	database	with	life	cycle	continuity,	but	there	has	to	be	one	instance	for	each	object.	Now,
let's	say	you	are	creating	customers	as	entity	objects.	Each	customer	object	would	represent	the
restaurant	guest,	and	this	cannot	be	used	for	booking	orders	for	other	guests.	This	may	create	millions	of
customer	entity	objects	in	the	memory	if	millions	of	customers	are	using	the	system.	Not	only	are	there
millions	of	uniquely	identifiable	objects	that	exist	in	the	system,	but	each	object	is	being	tracked.
Tracking	as	well	as	creating	an	identity	is	complex.	A	highly	credible	system	is	required	to	create	and
track	these	objects,	which	is	not	only	very	complex,	but	also	resource	heavy.	It	may	result	in	system
performance	degradation.	Therefore,	it	is	important	to	use	value	objects	instead	of	using	entities.	The
reasons	are	explained	in	the	next	few	paragraphs.

Applications	don't	always	need	to	have	to	be	trackable	and	have	an	identifiable	customer	object.	There
are	cases	when	you	just	need	to	have	some	or	all	attributes	of	the	domain	element.	These	are	the	cases
when	value	objects	can	be	used	by	the	application.	It	makes	things	simple	and	improves	the
performance.

Value	objects	can	easily	be	created	and	destroyed,	owing	to	the	absence	of	identity.	This	simplifies	the
design—it	makes	value	objects	available	for	garbage	collection	if	no	other	object	has	referenced	them.

Let's	discuss	the	value	object's	immutability.	Value	objects	should	be	designed	and	coded	as	immutable.
Once	they	are	created,	they	should	never	be	modified	during	their	life-cycle.	If	you	need	a	different
value	of	the	VO,	or	any	of	its	objects,	then	simply	create	a	new	value	object,	but	don't	modify	the
original	value	object.	Here,	immutability	carries	all	the	significance	from	object-oriented
programming	(OOP).	A	value	object	can	be	shared	and	used	without	impacting	on	its	integrity	if,	and
only	if,	it	is	immutable.

FAQs
Can	a	value	object	contain	another	value	object?
Yes,	it	can
Can	a	value	object	refer	to	another	value	object	or	entity?
Yes,	it	can
Can	I	create	a	value	object	using	the	attributes	of	different	value	objects	or	entities?
Yes,	you	can

Services
While	creating	the	domain	model,	you	may	encounter	various	situations	where	behavior	may	not	be
related	to	any	object	specifically.	These	behaviors	can	be	accommodated	in	service	objects.

Service	objects	are	part	of	domain	layer	that	does	not	have	any	internal	state.	The	sole	purpose	of
service	objects	is	to	provide	behavior	to	the	domain	that	does	not	belong	to	a	single	entity	or	value
object.

Ubiquitous	language	helps	you	to	identify	different	objects,	identities,	or	value	objects	with	different
attributes	and	behaviors	during	the	process	of	domain	modeling.	During	the	course	of	creating	the
domain	model,	you	may	find	different	behaviors	or	methods	that	do	not	belong	to	any	specific	object.
Such	behaviors	are	important,	and	so	cannot	be	neglected.	Neither	can	you	add	them	to	entities	or	value
objects.	It	would	spoil	the	object	to	add	behavior	that	does	not	belong	to	it.	Keep	in	mind,	that	behavior
may	impact	on	various	objects.	The	use	of	object-oriented	programming	makes	it	possible	to	attach	to
some	objects;	this	is	known	as	a	service.

Services	are	common	in	technical	frameworks.	These	are	also	used	in	domain	layers	in	DDD.	A	service
object	does	not	have	any	internal	state;	the	only	purpose	of	it	is	to	provide	a	behavior	to	the	domain.
Service	objects	provide	behaviors	that	cannot	be	related	to	specific	entities	or	value	objects.	Service
objects	may	provide	one	or	more	related	behaviors	to	one	or	more	entities	or	value	objects.	It	is	a
practice	to	define	the	services	explicitly	in	the	domain	model.

While	creating	the	services,	you	need	to	tick	all	of	the	following	points:

Service	objects'	behavior	performs	on	entities	and	value	objects,	but	it	does	not	belong	to	entities
or	value	objects
Service	objects'	behavior	state	is	not	maintained,	and	hence,	they	are	stateless
Services	are	part	of	the	domain	model

Services	may	also	exist	in	other	layers.	It	is	very	important	to	keep	domain-layer	services	isolated.	It
removes	the	complexities	and	keeps	the	design	decoupled.

Let's	take	an	example	where	a	restaurant	owner	wants	to	see	the	report	of	his	monthly	table	bookings.	In
this	case,	he	will	log	in	as	an	admin	and	click	the	Display	Report	button	after	providing	the	required
input	fields,	such	as	duration.

Application	layers	pass	the	request	to	the	domain	layer	that	owns	the	report	and	templates	objects,	with
some	parameters	such	as	report	ID,	and	so	on.	Reports	get	created	using	the	template,	and	data	is
fetched	from	either	the	database	or	other	sources.	Then	the	application	layer	passes	through	all	the
parameters,	including	the	report	ID	to	the	business	layer.	Here,	a	template	needs	to	be	fetched	from	the
database	or	another	source	to	generate	the	report	based	on	the	ID.	This	operation	does	not	belong	to
either	the	report	object	or	the	template	object.	Therefore,	a	service	object	is	used	that	performs	this
operation	to	retrieve	the	required	template	from	the	database.

Aggregates
Aggregate	domain	pattern	is	related	to	the	object's	life	cycle,	and	defines	ownership	and	boundaries.

When	you	reserve	a	table	at	your	favorite	restaurant	online	using	an	application,	you	don't	need	to
worry	about	the	internal	system	and	process	that	takes	place	to	book	your	reservation,	including
searching	for	available	restaurants,	then	for	available	tables	on	the	given	date,	time,	and	so	on	and	so
forth.	Therefore,	you	can	say	that	a	reservation	application	is	an	aggregate	of	several	other	objects,	and
works	as	a	root	for	all	the	other	objects	for	a	table	reservation	system.

This	root	should	be	an	entity	that	binds	collections	of	objects	together.	It	is	also	called	the	aggregate
root.	This	root	object	does	not	pass	any	reference	of	inside	objects	to	external	worlds,	and	protects	the
changes	performed	within	internal	objects.

We	need	to	understand	why	aggregators	are	required.	A	domain	model	can	contain	large	numbers	of
domain	objects.	The	bigger	the	application	functionalities	and	size	and	the	more	complex	its	design,	the
greater	number	of	objects	present.	A	relationship	exists	between	these	objects.	Some	may	have	a	many-
to-many	relationship,	a	few	may	have	a	one-to-many	relationship,	and	others	may	have	a	one-to-one
relationship.	These	relationships	are	enforced	by	the	model	implementation	in	the	code,	or	in	the
database	that	ensures	that	these	relationships	among	the	objects	are	kept	intact.	Relationships	are	not
just	unidirectional;	they	can	also	be	bidirectional.	They	can	also	increase	in	complexity.

The	designer's	job	is	to	simplify	these	relationships	in	the	model.	Some	relationships	may	exist	in	a	real
domain,	but	may	not	be	required	in	the	domain	model.	Designers	need	to	ensure	that	such	relationships
do	not	exist	in	the	domain	model.	Similarly,	multiplicity	can	be	reduced	by	these	constraints.	One
constraint	may	do	the	job	where	many	objects	satisfy	the	relationship.	It	is	also	possible	that	a
bidirectional	relationship	could	be	converted	into	a	unidirectional	relationship.

No	matter	how	much	simplification	you	input,	you	may	still	end	up	with	relationships	in	the	model.
These	relationships	need	to	be	maintained	in	the	code.	When	one	object	is	removed,	the	code	should
remove	all	the	references	to	this	object	from	other	places.	For	example,	a	record	removal	from	one	table
needs	to	be	addressed	wherever	it	has	references	in	the	form	of	foreign	keys	and	such,	to	keep	the	data
consistent	and	maintain	its	integrity.	Also,	invariants	(rules)	need	to	be	forced	and	maintained	whenever
data	changes.

Relationships,	constraints,	and	invariants	bring	a	complexity	that	requires	an	efficient	handling	in	code.
We	find	the	solution	by	using	the	aggregate	represented	by	the	single	entity	known	as	the	root,	which	is
associated	with	the	group	of	objects	that	maintains	consistency	with	regards	to	data	changes.

This	root	is	the	only	object	that	is	accessible	from	outside,	so	this	root	element	works	as	a	boundary
gate	that	separates	the	internal	objects	from	the	external	world.	Roots	can	refer	to	one	or	more	inside
objects,	and	these	inside	objects	can	have	references	to	other	inside	objects	that	may	or	may	not	have
relationships	with	the	root.	However,	outside	objects	can	also	refer	to	the	root,	and	not	to	any	inside
objects.

An	aggregate	ensures	data	integrity	and	enforces	the	invariant.	Outside	objects	cannot	make	any	change
to	inside	objects;	they	can	only	change	the	root.	However,	they	can	use	the	root	to	make	a	change	inside
the	object	by	calling	exposed	operations.	The	root	should	pass	the	value	of	inside	objects	to	outside
objects	if	required.

If	an	aggregate	object	is	stored	in	the	database,	then	the	query	should	only	return	the	aggregate	object.
Traversal	associations	should	be	used	to	return	the	object	when	it	is	internally	linked	to	the	aggregate
root.	These	internal	objects	may	also	have	references	to	other	aggregates.

An	aggregate	root	entity	holds	its	global	identity,	and	holds	local	identities	inside	their	entities.

A	simple	example	of	an	aggregate	in	the	table	booking	system	is	the	customer.	Customers	can	be
exposed	to	external	objects,	and	their	root	object	contains	their	internal	object	address	and	contact
information.

When	requested,	the	value	object	of	internal	objects,	such	as	address,	can	be	passed	to	external	objects:

The	customer	as	an	aggregate

Repository
In	a	domain	model,	at	a	given	point	in	time,	many	domain	objects	may	exist.	Each	object	may	have	its
own	life-cycle,	from	the	creation	of	objects	to	their	removal	or	persistence.	Whenever	any	domain
operation	needs	a	domain	object,	it	should	retrieve	the	reference	of	the	requested	object	efficiently.	It
would	be	very	difficult	if	you	didn't	maintain	all	of	the	available	domain	objects	in	a	central	object.	A
central	object	carries	the	references	of	all	the	objects,	and	is	responsible	for	returning	the	requested
object	reference.	This	central	object	is	known	as	the	repository.

The	repository	is	a	point	that	interacts	with	infrastructures	such	as	the	database	or	file	system.	A
repository	object	is	the	part	of	the	domain	model	that	interacts	with	storage	such	as	the	database,
external	sources,	and	so	on,	to	retrieve	the	persisted	objects.	When	a	request	is	received	by	the
repository	for	an	object's	reference,	it	returns	the	existing	object's	reference.	If	the	requested	object	does
not	exist	in	the	repository,	then	it	retrieves	the	object	from	storage.	For	example,	if	you	need	a	customer,
you	would	query	the	repository	object	to	provide	the	customer	with	ID	31.	The	repository	would	provide
the	requested	customer	object	if	it	is	already	available	in	the	repository,	and	if	not,	it	would	query	the
persisted	stores	such	as	the	database,	fetch	it,	and	provide	its	reference.

The	main	advantage	of	using	the	repository	is	having	a	consistent	way	to	retrieve	objects	where	the
requestor	does	not	need	to	interact	directly	with	the	storage	such	as	the	database.

A	repository	may	query	objects	from	various	storage	types,	such	as	one	or	more	databases,	filesystems,
or	factory	repositories,	and	so	on.	In	such	cases,	a	repository	may	have	strategies	that	also	point	to
different	sources	for	different	object	types	or	categories:

Repository	object	flow

As	shown	in	the	repository	object	flow	diagram,	the	repository	interacts	with	the	infrastructure	layer,
and	this	interface	is	part	of	the	domain	layer.	The	requestor	may	belong	to	a	domain	layer,	or	an
application	layer.	The	repository	helps	the	system	to	manage	the	life	cycle	of	domain	objects.

Factory
A	factory	is	required	when	a	simple	constructor	is	not	enough	to	create	the	object.	It	helps	to	create
complex	objects,	or	an	aggregate	that	involves	the	creation	of	other	related	objects.

A	factory	is	also	a	part	of	the	life	cycle	of	domain	objects,	as	it	is	responsible	for	creating	them.
Factories	and	repositories	are	in	some	way	related	to	each	other,	as	both	refer	to	domain	objects.	The
factory	refers	to	newly	created	objects,	whereas	the	repository	returns	the	already	existing	objects	either
from	the	memory,	or	from	external	storage.

Let's	see	how	control	flows,	by	using	a	user	creation	process	application.	Let's	say	that	a	user	signs	up
with	a	username	user1.	This	user	creation	first	interacts	with	the	factory,	which	creates	the	name	user1
and	then	caches	it	in	the	domain	using	the	repository,	which	also	stores	it	in	the	storage	for	persistence.

When	the	same	user	logs	in	again,	the	call	moves	to	the	repository	for	a	reference.	This	uses	the	storage
to	load	the	reference	and	pass	it	to	the	requestor.

The	requestor	may	then	use	this	user1	object	to	book	the	table	in	a	specified	restaurant,	and	at	a	specified
time.	These	values	are	passed	as	parameters,	and	a	table	booking	record	is	created	in	storage	using	the
repository:

Repository	object	flow

The	factory	may	use	one	of	the	object-oriented	programming	patterns,	such	as	the	factory	or	abstract
factory	pattern,	for	object	creation.

Modules
Modules	are	the	best	way	to	separate	related	business	objects.	These	are	best	suited	to	large	projects
where	the	size	of	domain	objects	is	bigger.	For	the	end	user,	it	makes	sense	to	divide	the	domain	model
into	modules	and	set	the	relationship	between	these	modules.	Once	you	understand	the	modules	and
their	relationship,	you	start	to	see	the	bigger	picture	of	the	domain	model,	thus	it's	easier	to	drill	down
further	and	understand	the	model.

Modules	also	help	in	code	that	is	highly	cohesive,	or	that	maintains	low	coupling.	Ubiquitous	language
can	be	used	to	name	these	modules.	For	the	table	booking	system,	we	could	have	different	modules,
such	as	user-management,	restaurants	and	tables,	analytics	and	reports,	and	reviews,	and	so	on.

Strategic	design	and	principles
An	enterprise	model	is	usually	very	large	and	complex.	It	may	be	distributed	among	different
departments	in	an	organization.	Each	department	may	have	a	separate	leadership	team,	so	working	and
designing	together	can	create	difficulty	and	coordination	issues.	In	such	scenarios,	maintaining	the
integrity	of	the	domain	model	is	not	an	easy	task.

In	such	cases,	working	on	a	unified	model	is	not	the	solution,	and	large	enterprise	models	need	to	be
divided	into	different	submodels.	These	submodels	contain	the	predefined	accurate	relationship	and
contract	in	minute	detail.	Each	submodel	has	to	maintain	the	defined	contracts	without	any	exception.

There	are	various	principles	that	could	be	followed	to	maintain	the	integrity	of	the	domain	model,	and
these	are	listed	as	follows:

Bounded	context
Continuous	integration
Context	map

Shared	kernel
Customer-supplier
Conformist
Anticorruption	layer
Separate	ways
Open	Host	Service
Distillation

Bounded	context
When	you	have	different	submodels,	it	is	difficult	to	maintain	the	code	when	all	submodels	are
combined.	You	need	to	have	a	small	model	that	can	be	assigned	to	a	single	team.	You	might	need	to
collect	the	related	elements	and	group	them.	Context	keeps	and	maintains	the	meaning	of	the	domain
term	defined	for	its	respective	submodel	by	applying	this	set	of	conditions.

These	domain	terms	define	the	scope	of	the	model	that	creates	the	boundaries	of	the	context.

Bounded	context	seems	very	similar	to	the	module	that	you	learned	about	in	the	previous	section.	In
fact,	the	module	is	part	of	the	bounded	context	that	defines	the	logical	frame	where	a	submodel	takes
place	and	is	developed.	Whereas,	the	module	organizes	the	elements	of	the	domain	model,	and	is	visible
in	the	design	document	and	the	code.

Now,	as	a	designer,	you	would	have	to	keep	each	submodel	well-defined	and	consistent.	In	this	way,
you	can	refactor	each	model	independently	without	affecting	the	other	submodels.	This	gives	the
software	designer	the	flexibility	to	refine	and	improve	it	at	any	point	in	time.

Now,	let's	examine	the	table	reservation	example	we've	been	using.	When	you	started	designing	the
system,	you	would	have	seen	that	the	guest	would	visit	the	application,	and	would	request	a	table
reservation	at	a	selected	restaurant,	date,	and	time.	Then,	there	is	the	backend	system	that	informs	the
restaurant	about	the	booking	information,	and	similarly,	the	restaurant	would	keep	their	system	updated
in	regard	to	table	bookings,	given	that	tables	can	also	be	booked	by	the	restaurant	themselves.	So,	when
you	look	at	the	system's	finer	points,	you	can	see	two	domain	models:

The	online	table	reservation	system
The	offline	restaurant	management	system

Both	have	their	own	bounded	context	and	you	need	to	make	sure	that	the	interface	between	them	works
fine.

Continuous	integration
When	you	are	developing,	the	code	is	scattered	among	many	teams	and	various	technologies.	This	code
may	be	organized	into	different	modules,	and	has	applicable	bounded	context	for	respective	submodels.

This	sort	of	development	may	bring	with	it	a	certain	level	of	complexity	with	regard	to	duplicate	code,	a
code	break,	or	maybe	broken-bounded	context.	It	happens	not	only	because	of	the	large	size	of	code	and
domain	model,	but	also	because	of	other	factors,	such	as	changes	in	team	members,	new	members,	or
not	having	a	well-documented	model,	to	name	just	a	few	of	them.

When	systems	are	designed	and	developed	using	DDD	and	Agile	methodologies,	domain	models	are
not	designed	fully	before	coding	starts,	and	the	domain	model	and	its	elements	evolve	over	a	period	of
time	with	continuous	improvements	and	refinement	happening	gradually.

Therefore,	integration	continues,	and	this	is	currently	one	of	the	key	reasons	for	development	today,	so
it	plays	a	very	important	role.	In	continuous	integration,	the	code	is	merged	frequently	to	avoid	any
breaks	and	issues	with	the	domain	model.	Merged	code	not	only	gets	deployed,	but	it	is	also	tested	on	a
regular	basis.	There	are	various	continuous	integration	tools	available	in	the	market	that	merge,	build,
and	deploy	the	code	at	scheduled	times.	These	days,	organizations	put	more	emphasis	on	the	automation
of	continuous	integration.	Hudson,	TeamCity,	and	Jenkins	CI	are	a	few	of	the	popular	tools	available
today	for	continuous	integration.	Hudson	and	Jenkins	CI	are	open	source	tools,	and	TeamCity	is	a
proprietary	tool.

Having	a	test	suite	attached	to	each	build	confirms	the	consistency	and	integrity	of	the	model.	A	test
suite	defines	the	model	from	a	physical	point	of	view,	whereas	UML	does	it	logically.	It	informs	you	of
any	error	or	unexpected	outcome	that	requires	a	code	change.	It	also	helps	to	identify	errors	and
anomalies	in	a	domain	model	early	on.

Context	map
The	context	map	helps	you	to	understand	the	overall	picture	of	a	large	enterprise	application.	It	shows
how	many	bounded	contexts	are	present	in	the	enterprise	model,	and	how	they	are	interrelated.
Therefore,	we	can	say	that	any	diagram	or	document	that	explains	the	bounded	contexts	and
relationship	between	them	is	called	a	context	map.

Context	maps	help	all	team	members,	whether	they	are	on	the	same	team	or	in	a	different	team,	to
understand	the	high-level	enterprise	model	in	the	form	of	various	parts	(bounded	context	or	submodels)
and	relationships.

This	gives	individuals	a	clearer	picture	about	the	tasks	one	performs,	and	may	allow	him	or	her	to	raise
any	concern/question	about	the	model's	integrity:

Context	map	example

The	context	map	example	diagram	is	a	sample	of	a	context	map.	Here,	Table1	and	Table2	both	appear
in	the	Table	Reservation	Context	and	also	in	the	Restaurant	Ledger	Context.	The	interesting	thing	is
that	Table1	and	Table2	have	their	own	respective	concept	in	each	bounded	context.	Here,	ubiquitous
language	is	used	to	name	the	bounded	context	as	table	reservation	and	restaurant	ledger.

In	the	following	section,	we	will	explore	a	few	patterns	that	can	be	used	to	define	the	communication
between	different	contexts	in	the	context	map.

Shared	kernel
As	the	name	suggests,	one	part	of	the	bounded	context	is	shared	with	the	other's	bounded	context.	As
you	can	see	in	the	following	figure,	the	Restaurant	entity	is	being	shared	between	the	Table
Reservation	Context	and	the	Restaurant	Ledger	Context:

Shared	kernel

Customer-supplier
The	customer-supplier	pattern	represents	the	relationship	between	two	bounded	contexts,	when	the
output	of	one	bounded	context	is	required	for	the	other	bounded	context.	That	is,	one	supplies	the
information	to	the	other	(known	as	the	customer),	who	consumes	the	information.

In	a	real-world	example,	a	car	dealer	could	not	sell	cars	until	the	car	manufacturer	delivers	them.	Hence,
in	this	domain	model,	the	car	manufacturer	is	the	supplier	and	the	dealer	is	the	customer.	This
relationship	establishes	a	customer-supplier	relationship,	because	the	output	(car)	of	one	bounded
context	(car-manufacturer)	is	required	by	the	other	bounded	context	(dealer).

Here,	both	customer	and	supplier	teams	should	meet	regularly	to	establish	a	contract	and	form	the	right
protocol	to	communicate	with	each	other.

Conformist
This	pattern	is	similar	to	that	of	the	customer	and	the	supplier,	where	one	needs	to	provide	the	contract
and	information	while	the	other	needs	to	use	it.	Here,	instead	of	bounded	context,	actual	teams	are
involved	in	having	an	upstream/downstream	relationship.

Moreover,	upstream	teams	do	not	provide	for	the	needs	of	the	downstream	team,	because	of	their	lack
of	motivation.	Therefore,	it	is	possible	that	the	downstream	team	may	need	to	plan	and	work	on	items
that	will	never	be	available.	To	resolve	such	cases,	the	customer	team	could	develop	their	own	models	if
the	supplier	provides	information	that	is	not	worth	enough.	If	the	supplier	provided	information	that	is
really	of	worth	or	of	partial	worth,	then	the	customer	can	use	the	interface	or	translators	that	can	be	used
to	consume	the	supplier-provided	information	with	the	customer's	own	models.

Anticorruption	layer
The	anticorruption	layer	remains	part	of	a	domain	and	it	is	used	when	a	system	needs	data	from
external	systems,	or	from	their	own	legacy	systems.	Here,	anticorruption	is	the	layer	that	interacts	with
external	systems	and	uses	external	system	data	in	the	domain	model	without	affecting	the	integrity	and
originality	of	the	domain	model.

For	the	most	part,	a	service	can	be	used	as	an	anticorruption	layer	that	may	use	a	facade	pattern	with	an
adapter	and	translator	to	consume	external	domain	data	within	the	internal	model.	Therefore,	your
system	would	always	use	the	service	to	retrieve	the	data.	The	service	layer	can	be	designed	using	the
facade	pattern.	This	would	make	sure	that	it	would	work	with	the	domain	model	to	provide	the	required
data	in	a	given	format.	The	service	could	then	also	use	the	adapter	and	translator	patterns	that	would
make	sure	that,	whatever	format	and	hierarchy	the	data	is	sent	in,	by	external	sources,	the	service	would
be	provided	in	the	desired	format	and	the	hierarchy	would	use	adapters	and	translators.

Separate	ways
When	you	have	a	large	enterprise	application	and	a	domain	where	different	domains	have	no	common
elements,	and	it's	made	of	large	submodels	that	can	work	independently,	this	still	works	as	a	single
application	for	an	end	user.

In	such	cases,	a	designer	could	create	separate	models	that	have	no	relationship,	and	develop	a	small
application	on	top	of	them.	These	small	applications	become	a	single	application	when	merged	together.

An	employer's	intranet	application	that	offers	various	small	applications,	such	as	those	that	are	HR-
related,	issue	trackers,	transport,	or	intra-company	social	networks,	is	one	such	application	where	a
designer	could	use	the	separate	ways	pattern.

It	would	be	very	challenging	and	complex	to	integrate	applications	that	were	developed	using	separate
models.	Therefore,	you	should	take	care	before	implementing	this	pattern.

Open	Host	Service
A	translation	layer	is	used	when	two	submodels	interact	with	each	other.	This	translation	layer	is	used
when	you	integrate	models	with	an	external	system.	This	works	fine	when	you	have	one	submodel	that
uses	this	external	system.	The	Open	Host	Service	is	required	when	this	external	system	is	being	used	by
many	submodels	to	remove	the	extra	and	duplicated	code,	because	then	you	need	to	write	a	translation
layer	for	each	submodels	external	system.

An	Open	Host	Service	provides	the	services	of	an	external	system	using	a	wrapper	to	all	sub-models.

Distillation
As	you	know,	distillation	is	the	process	of	purifying	liquid.	Similarly,	in	DDD,	distillation	is	the
process	that	filters	out	the	information	that	is	not	required,	and	keeps	only	the	meaningful	information.
It	helps	you	to	identify	the	core	domain	and	the	essential	concepts	for	your	business	domain.	It	helps
you	to	filter	out	the	generic	concepts	until	you	get	the	core	domain	concept.

Core	domain	should	be	designed,	developed,	and	implemented	with	the	highest	attention	to	detail,	using
the	developers	and	designers,	as	it	is	crucial	to	the	success	of	the	whole	system.

In	our	table	reservation	system	example,	which	is	not	a	large	or	complex	domain	application,	it	is	not
difficult	to	identify	the	core	domain.	The	core	domain	here	exists	to	share	the	real-time	accurate	vacant
tables	in	the	restaurants,	and	allows	the	user	to	reserve	them	in	a	hassle-free	process.

Sample	domain	service
Let	us	create	a	sample	domain	service	based	on	our	table	reservation	system.	As	discussed	in	this
chapter,	the	importance	of	an	efficient	domain	layer	is	the	key	to	successful	products	or	services.
Projects	developed	based	on	the	domain	layer	are	more	maintainable,	highly	cohesive,	and	decoupled.
They	provide	high	scalability	in	terms	of	business	requirement	changes,	and	have	a	low	impact	on	the
design	of	other	layers.

Domain-driven	development	is	based	on	domain,	hence	it	is	not	recommended	that	you	use	a	top-down
approach	where	the	UI	would	be	developed	first,	followed	by	the	rest	of	the	layers,	and	finally	the
persistence	layer.	Nor	should	you	use	a	bottom-up	approach,	where	the	persistence	layer	like	the	DB	is
designed	first,	followed	by	the	rest	of	the	layers,	with	the	UI	last.

Having	a	domain	model	developed	first,	using	the	patterns	described	in	this	book,	gives	clarity	to	all
team	members	functionality-wise,	and	an	advantage	to	the	software	designer	to	build	a	flexible,
maintainable,	and	consistent	system	that	helps	the	organization	to	launch	a	world-class	product	with
fewer	maintenance	costs.

Here,	you	will	create	a	restaurant	service	that	provides	the	feature	to	add	and	retrieve	restaurants.	Based
on	implementation,	you	can	add	other	functionalities,	such	as	finding	restaurants	based	on	cuisine	or
ratings.

Start	with	the	entity.	Here,	the	restaurant	is	our	entity,	as	each	restaurant	is	unique	and	has	an	identifier.
You	can	use	an	interface,	or	set	of	interfaces,	to	implement	the	entity	in	our	table	reservation	system.
Ideally,	if	you	go	by	the	interface	segregation	principle,	you	will	use	a	set	of	interfaces	rather	than	a
single	interface.

The	Interface	Segregation	Principle	(ISP)	states	that	clients	should	not	be	forced	to
depend	upon	interfaces	that	they	do	not	use.

Entity	implementation
For	the	first	interface,	you	could	have	an	abstract	class	or	interface	that	is	required	by	all	the	entities.
For	example,	if	we	consider	ID	and	name,	attributes	would	be	common	for	all	entities.

Therefore,	you	could	use	the	abstract	class	Entity	as	an	abstraction	of	the	entity	in	your	domain	layer:

public	abstract	class	Entity<T>	{	

	

				T	id;	

				String	name;	

				...	(getter/setter	and	other	relevant	code)}	

Based	on	that,	you	can	also	have	another	abstract	class	that	inherits	Entity,	an	abstract	class:

public	abstract	class	BaseEntity<T>	extends	Entity<T>	{	

	

				private	final	boolean	isModified;				

				public	BaseEntity(T	id,	String	name)	{	

								super.id	=	id;	

								super.name	=	name;	

								isModified	=	false;	

				}	

				...	(getter/setter	and	other	relevant	code)	

}	

Based	on	the	preceding	abstractions,	we	could	create	the	Restaurant	entity	for	restaurant	management.

Now,	since	we	are	developing	the	table	reservation	system,	Table	is	another	important	entity	in	terms	of
the	domain	model.	So,	if	we	go	by	the	aggregate	pattern,	Restaurant	would	work	as	a	root,	and	the	Table
entity	would	be	internal	to	the	Restaurant	entity.	Therefore,	the	Table	entity	would	always	be	accessible
using	the	Restaurant	entity.

You	can	create	the	Table	entity	using	the	following	implementation,	and	you	can	add	attributes	as	you
wish.	For	demonstration	purposes	only,	basic	attributes	are	used:

public	class	Table	extends	BaseEntity<BigInteger>	{	

	

				private	int	capacity;	

	

				public	Table(String	name,	BigInteger	id,	int	capacity)	{	

								super(id,	name);	

								this.capacity	=	capacity;	

				}	

	

				public	void	setCapacity(int	capacity)	{	

								this.capacity	=	capacity;	

				}	

	

				public	int	getCapacity()	{	

								return	capacity;	

				}	

}	

Now,	we	can	implement	the	aggregator	Restaurant	class	shown	as	follows.	Here,	only	basic	attributes	are
used.	You	could	add	as	many	as	you	want,	and	you	may	also	add	other	features:

public	class	Restaurant	extends	BaseEntity<String>	{	

	

				private	List<Table>	tables	=	new	ArrayList<>();	

				public	Restaurant(String	name,	String	id,	List<Table>	tables)	{	

								super(id,	name);	

								this.tables	=	tables;	

				}	

	

				public	void	setTables(List<Table>	tables)	{	

								this.tables	=	tables;	

				}	

	

				public	List<Table>	getTables()	{	

								return	tables;	

				}	

	

				@Override	

				public	String	toString()	{	

								return	new	StringBuilder("{id:	").append(id).append(",	name:	")	

																.append(name).append(",	tables:	").append(tables).append("}").toString();	

				}	

}	

Repository	implementation
Now	we	can	implement	the	repository	pattern,	as	learned	in	this	chapter.	To	start	with,	you	will	first
create	the	two	interfaces	Repository	and	ReadOnlyRepository.	The	ReadOnlyRepository	interface	will	be	used	to
provide	an	abstraction	for	read-only	operations,	whereas	Repository	abstraction	will	be	used	to	perform
all	types	of	operations:

public	interface	ReadOnlyRepository<TE,	T>	{	

	

				boolean	contains(T	id);	

	

				Entity	get(T	id);	

	

				Collection<TE>	getAll();	

}	

Based	on	this	interface,	we	could	create	the	abstraction	of	the	Repository,	which	would	execute	additional
operations	such	as	adding,	removing,	and	updating:

public	interface	Repository<TE,	T>	extends	ReadOnlyRepository<TE,	T>	{	

	

				void	add(TE	entity);	

	

				void	remove(T	id);	

	

				void	update(TE	entity);	

}	

The	Repository	abstraction,	as	defined	previously,	could	be	implemented,	in	a	way	that	suits	you,	to
persist	your	objects.	The	change	in	persistence	code,	which	is	a	part	of	the	infrastructure	layer,	won't
impact	on	your	domain	layer	code,	as	the	contract	and	abstraction	are	defined	by	the	domain	layer.	The
domain	layer	uses	the	abstraction	classes	and	interfaces	that	remove	the	use	of	direct	concrete	class,	and
provides	the	loose	coupling.	For	demonstration	purposes,	we	could	simply	use	the	map	that	remains	in
the	memory	to	persist	the	objects:

public	interface	RestaurantRepository<Restaurant,	String>	extends	Repository<Restaurant,	String>	{	

	

				boolean	ContainsName(String	name);	

}	

	

public	class	InMemRestaurantRepository	implements	RestaurantRepository<Restaurant,	String>	{	

	

				private	Map<String,	Restaurant>	entities;	

	

				public	InMemRestaurantRepository()	{	

								entities	=	new	HashMap();	

				}	

	

				@Override	

				public	boolean	ContainsName(String	name)	{	

								return	entities.containsKey(name);	

				}	

	

				@Override	

				public	void	add(Restaurant	entity)	{	

								entities.put(entity.getName(),	entity);	

				}	

	

				@Override	

				public	void	remove(String	id)	{	

								if	(entities.containsKey(id))	{	

												entities.remove(id);	

								}	

				}	

	

				@Override	

				public	void	update(Restaurant	entity)	{	

								if	(entities.containsKey(entity.getName()))	{	

												entities.put(entity.getName(),	entity);	

								}	

				}	

	

				@Override	

				public	boolean	contains(String	id)	{	

								throw	new	UnsupportedOperationException("Not	supported	yet.");	

					//To	change	body	of	generated	methods,	choose	Tools	|	Templates.	

				}	

	

				@Override	

				public	Entity	get(String	id)	{	

								throw	new	UnsupportedOperationException("Not	supported	yet.");	

					//To	change	body	of	generated	methods,	choose	Tools	|	Templates.	

				}	

	

				@Override	

				public	Collection<Restaurant>	getAll()	{	

								return	entities.values();	

				}	

	

}	

Service	implementation
In	the	same	way	as	the	preceding	approach,	you	could	divide	the	abstraction	of	domain	service	into	two
parts—main	service	abstraction	and	read-only	service	abstraction:

public	abstract	class	ReadOnlyBaseService<TE,	T>	{	

	

				private	final	Repository<TE,	T>	repository;	

	

				ReadOnlyBaseService(ReadOnlyRepository<TE,	T>	repository)	{	

								this.repository	=	repository;	

				}	

				...	

}	

Now,	we	could	use	this	ReadOnlyBaseService	to	create	the	BaseService.	Here,	we	are	using	the	dependency
inject	pattern	via	a	constructor	to	map	the	concrete	objects	with	abstraction:

public	abstract	class	BaseService<TE,	T>	extends	ReadOnlyBaseService<TE,	T>	{	

				private	final	Repository<TE,	T>	_repository;	

	

				BaseService(Repository<TE,	T>	repository)	{	

								super(repository);	

								_repository	=	repository;	

				}	

	

				public	void	add(TE	entity)	throws	Exception	{	

								_repository.add(entity);	

				}	

	

				public	Collection<TE>	getAll()	{	

								return	_repository.getAll();	

				}	

}	

Now,	after	defining	the	service	abstraction	services,	we	could	implement	the	RestaurantService	in	the
following	way:

public	class	RestaurantService	extends	BaseService<Restaurant,	BigInteger>	{	

	

				private	final	RestaurantRepository<Restaurant,	String>	restaurantRepository;	

	

				public	RestaurantService(RestaurantRepository	repository)	{	

								super(repository);	

								restaurantRepository	=	repository;	

				}	

	

				public	void	add(Restaurant	restaurant)	throws	Exception	{	

								if	(restaurantRepository.ContainsName(restaurant.getName()))	{	

												throw	new	Exception(String.format("There	is	already	a	product	with	the	name	-	%s",	restaurant.getName()));	

								}	

	

								if	(restaurant.getName()	==	null	||	"".equals(restaurant.getName()))	{	

												throw	new	Exception("Restaurant	name	cannot	be	null	or	empty	string.");	

								}	

								super.add(restaurant);	

				}	

				@Override	

				public	Collection<Restaurant>	getAll()	{	

								return	super.getAll();	

				}	

}	

Similarly,	you	could	write	the	implementation	for	other	entities.	This	code	is	a	basic	implementation,

and	you	might	add	various	implementations	and	behaviors	in	the	production	code.

We	can	write	an	application	class	that	would	execute	and	test	the	sample	domain	model	code	that	we
have	just	written.

The	RestaurantApp.java	file	will	look	something	like	this:

public	class	RestaurantApp	{	

	

				public	static	void	main(String[]	args)	{	

								try	{	

												//	Initialize	the	RestaurantService	

												RestaurantService	restaurantService	=	new	RestaurantService(new	InMemRestaurantRepository());	

	

												//	Data	Creation	for	Restaurants	

												Table	table1	=	new	Table("Table	1",	BigInteger.ONE,	6);	

												Table	table2	=	new	Table("Table	2",	BigInteger.valueOf(2),	4);	

												Table	table3	=	new	Table("Table	3",	BigInteger.valueOf(3),	2);	

												List<Table>	tableList	=	new	ArrayList();	

												tableList.add(table1);	

												tableList.add(table2);	

												tableList.add(table3);	

												Restaurant	restaurant1	=	new	Restaurant("Big-O	Restaurant",	"1",	tableList);	

	

												//	Adding	the	created	restaurant	using	Service	

												restaurantService.add(restaurant1);	

	

												//	Note:	To	raise	an	exception	give	Same	restaurant	name	to	one	of	the	below	restaurant	

												Restaurant	restaurant2	=	new	Restaurant("Pizza	Shops",	"2",	null);	

												restaurantService.add(restaurant2);	

	

												Restaurant	restaurant3	=	new	Restaurant("La	Pasta",	"3",	null);	

												restaurantService.add(restaurant3);	

	

												//	Retrieving	all	restaurants	using	Service	

												Collection<Restaurant>	restaurants	=	restaurantService.getAll();	

	

												//	Print	the	retrieved	restaurants	on	console	

												System.out.println("Restaurants	List:");	

												restaurants.stream().forEach((restaurant)	->	{	

																System.out.println(String.format("Restaurant:	%s",	restaurant));	

												});	

								}	catch	(Exception	ex)	{	

												System.out.println(String.format("Exception:	%s",	ex.getMessage()));	

												//	Exception	Handling	Code	

								}	

				}	

}	

	

To	execute	this	program,	either	execute	directly	from	IDE,	or	run	using	Maven.	It	prints	the	following
output:

Scanning	for	projects...	

																																																																									

--	

Building	6392_chapter3	1.0-SNAPSHOT	

--	

	

---	exec-maven-plugin:1.5.0:java	(default-cli)	@	6392_chapter3	---	

Restaurants	List:	

Restaurant:	{id:	3,	name:	La	Pasta,	tables:	null}	

Restaurant:	{id:	2,	name:	Pizza	Shops,	tables:	null}	

Restaurant:	{id:	1,	name:	Big-O	Restaurant,	tables:	[{id:	1,	name:	Table	1,	capacity:	6},	{id:	2,	name:	Table	2,	capacity:	4},	{id:	3,	name:	Table	3,	capacity:	2}]}	

--	

BUILD	SUCCESS	

--	

Summary
In	this	chapter,	you	have	learned	the	fundamentals	of	DDD.	You	have	also	explored	multilayered
architecture	and	different	patterns	that	can	be	used	to	develop	software	using	DDD.	By	this	time,	you
should	be	aware	that	the	domain	model	design	is	very	important	for	the	success	of	the	software.	To
conclude,	we	demonstrated	one	domain	service	implementation	using	the	restaurant	table	reservation
system.

In	the	next	chapter,	you	will	learn	how	to	use	the	design	to	implement	the	sample	project.	The
explanation	of	the	design	of	this	sample	project	is	derived	from	the	last	chapter,	and	the	DDD	will	be
used	to	build	the	microservices.	This	chapter	not	only	covers	the	coding,	but	also	the	different	aspects	of
the	microservices,	such	as	build,	unit	testing,	and	packaging.	By	the	end	of	the	next	chapter,	the	sample
microservice	project	will	be	ready	for	deployment	and	consumption.

Implementing	a	Microservice
This	chapter	takes	you	from	the	design	stage	to	the	implementation	of	our	sample	project—an	online
table	reservation	system	(OTRS).	Here,	you	will	use	the	same	design	explained	in	the	last	chapter	and
enhance	it	to	build	the	microservices.	At	the	end	of	this	chapter,	you	will	have	not	only	learned	how	to
implement	the	design,	but	also	learned	the	different	aspects	of	microservices—building,	testing,	and
packaging.	Although	the	focus	is	on	building	and	implementing	the	Restaurant	microservices,	you	can
use	the	same	approach	to	build	and	implement	other	microservices	used	in	the	OTRS.

In	this	chapter,	we	will	cover	the	following	topics:

OTRS	overview
Developing	and	implementing	the	microservice
Testing

We	will	use	the	domain-driven	design	key	concepts	demonstrated	in	the	last	chapter.	In	the	last	chapter,
you	saw	how	domain-driven	design	is	used	to	develop	the	domain	model	using	core	Java.	Now,	we	will
move	from	a	sample	domain	implementation	to	a	Spring	Framework-driven	implementation.	You'll
make	use	of	Spring	Boot	to	implement	the	domain-driven	design	concepts	and	transform	them	from
core	Java	to	a	Spring	Framework-based	model.

In	addition,	we'll	also	use	Spring	Cloud,	which	provides	a	cloud-ready	solution	that	is	available	through
Spring	Boot.	Spring	Boot	will	allow	you	to	use	an	embedded	application	container	relying	on	Tomcat	or
Jetty	inside	your	service,	which	is	packaged	as	a	JAR	or	as	a	WAR.	This	JAR	is	executed	as	a	separate
process,	a	microservice	that	will	serve	and	provide	the	response	to	all	requests	and	point	to	endpoints
defined	in	the	service.

Spring	Cloud	can	also	be	integrated	easily	with	Netflix	Eureka,	a	service	registry	and	discovery
component.	The	OTRS	will	use	it	for	registration	and	the	discovery	of	microservices.

OTRS	overview
Based	on	microservice	principles,	we	need	to	have	separate	microservices	for	each	functionality.	After
looking	at	OTRS,	we	can	easily	divide	it	into	three	main	microservices—Restaurant	service,	Booking
service,	and	User	service.	There	are	other	microservices	that	can	be	defined	in	the	OTRS.	Our	focus	is
on	these	three	microservices.	The	idea	is	to	make	them	independent,	including	having	their	own
separate	databases.

We	can	summarize	the	functionalities	of	these	services,	as	follows:

Restaurant	service:	This	service	provides	the	functionality	for	the	restaurant	resource—create,
read,	update,	delete	(CRUD)	operation	and	searching	based	on	criteria.	It	provides	the	association
between	restaurants	and	tables.	Restaurant	would	also	provide	access	to	the	Table	entity.
User	service:	This	service,	as	the	name	suggests,	allows	the	end	user	to	perform	CRUD	operations
on	User	entities.
Booking	service:	This	makes	use	of	the	Restaurant	service	and	User	service	to	perform	CRUD
operations	on	booking.	It	will	use	restaurant	searching	and	its	associated	table	lookup	and
allocation	based	on	table	availability	for	a	specified	time	duration.	It	creates	the	relationship
between	the	restaurant/table	and	the	user:

Registration,	and	discovery	of	the	different	microservices

The	preceding	diagram	shows	how	each	microservice	works	independently.	This	is	the	reason
microservices	can	be	developed,	enhanced,	and	maintained	separately,	without	affecting	others.	These
services	can	each	have	their	own	layered	architecture	and	database.	There	is	no	restriction	to	use	the
same	technologies,	frameworks,	and	languages	to	develop	these	services.	At	any	given	point	in	time,
you	can	also	introduce	new	microservices.	For	example,	for	accounting	purposes,	we	can	introduce	an
accounting	service	that	can	be	exposed	to	restaurants	for	bookkeeping.	Similarly,	analytics	and
reporting	are	other	services	that	can	be	integrated	and	exposed.

For	demonstration	purposes,	we	will	only	implement	the	three	services	shown	in	the	preceding	diagram.

Developing	and	implementing
microservices
We	will	use	the	domain-driven	implementation	and	approach	described	in	the	last	chapter	to	implement
the	microservices	using	Spring	Cloud.	Let's	revisit	the	key	artifacts:

Entities:	These	are	categories	of	objects	that	are	identifiable	and	remain	the	same	throughout	the
states	of	the	product/services.	These	objects	are	not	defined	by	their	attributes,	but	by	their
identities	and	threads	of	continuity.	Entities	have	traits	such	as	identity,	a	thread	of	continuity,	and
attributes	that	do	not	define	their	identity.
Value	objects	(VOs)	just	have	the	attributes	and	no	conceptual	identity.	A	best	practice	is	to	keep
VOs	as	immutable	objects.	In	the	Spring	Framework,	entities	are	pure	POJOs;	therefore,	we'll	also
use	them	as	VOs.
Service	objects:	These	are	common	in	technical	frameworks.	These	are	also	used	in	the	domain
layer	in	domain-driven	design.	A	service	object	does	not	have	an	internal	state;	the	only	purpose	of
it	is	to	provide	the	behavior	to	the	domain.	Service	objects	provide	behaviors	that	cannot	be	related
with	specific	entities	or	VOs.	Service	objects	may	provide	one	or	more	related	behaviors	to	one	or
more	entities	or	VOs.	It	is	best	practice	to	define	the	services	explicitly	in	the	domain	model.
Repository	objects:	A	repository	object	is	a	part	of	the	domain	model	that	interacts	with	storage,
such	as	databases,	external	sources,	and	so	on,	to	retrieve	the	persisted	objects.	When	a	request	is
received	by	the	repository	for	an	object	reference,	it	returns	the	existing	object	reference.	If	the
requested	object	does	not	exist	in	the	repository,	then	it	retrieves	the	object	from	storage.

Downloading	the	example	code:	detailed	steps	to	download	the	code	bundle	are
mentioned	in	the	preface	of	this	book.	Please	have	a	look.	The	code	bundle	for	the	book	is
also	hosted	on	GitHub	at:	https://github.com/PacktPublishing/Mastering-Microservices-with-Java.
We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos	available	at:	ht
tps://github.com/PacktPublishing/.	Check	them	out!

Each	OTRS	microservice	API	represents	a	RESTful	web	service.	The	OTRS	API	uses	HTTP	verbs	such
as	GET,	POST,	and	so	on,	and	a	RESTful	endpoint	structure.	Request	and	response	payloads	are	formatted
as	JSON.	If	required,	XML	can	also	be	used.

https://github.com/PacktPublishing/Mastering-Microservices-with-Java-9-Second-Edition
https://github.com/PacktPublishing/

Restaurant	microservice
The	Restaurant	microservices	will	be	exposed	to	the	external	world	using	REST	endpoints	for
consumption.	We'll	find	the	following	endpoints	in	the	Restaurant	microservice	example.	One	can	add
as	many	endpoints	as	per	the	requirements:

1.	 Endpoint	for	retrieving	restaurant	by	ID:

2.	 Endpoint	for	retrieving	all	the	restaurants	that	matches	the	value	of	query	parameter	Name:

3.	 Endpoint	for	creating	new	restaurant:

Similarly,	we	can	add	various	endpoints	and	their	implementations.	For	demonstration	purposes,	we'll
implement	the	preceding	endpoints	using	Spring	Cloud.

OTRS	implementation
We'll	create	the	multi-module	Maven	project	for	implementing	OTRS.	The	following	stack	would	be
used	to	develop	the	OTRS	application.	Please	note	that	at	the	time	of	writing	this	book,	only	the
snapshot	build	of	Spring	Boot	and	Cloud	was	available.	Therefore,	in	the	final	release,	one	or	two
things	may	change:

Java	version	1.9
Spring	Boot	2.0.0.M1
Spring	Cloud	Finchley.M2
Maven	Compiler	Plugin	3.6.1	(for	Java	1.9)

All	preceding	points	are	mentioned	in	the	root	pom.xml,	along	with	the	following	OTRS	modules:

eureka-service

restaurant-service

user-service

booking-service

The	root	pom.xml	file	will	look	something	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>	

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/xsd/maven-4.0.0.xsd">	

				<modelVersion>4.0.0</modelVersion>	

	

				<groupId>com.packtpub.mmj</groupId>	

				<artifactId>6392_chapter4</artifactId>	

				<version>PACKT-SNAPSHOT</version>	

				<name>6392_chapter4</name>	

				<description>Master	Microservices	with	Java	Ed	2,	Chapter	4	-	Implementing	Microservices</description>	

	

				<packaging>pom</packaging>	

				<properties>	

								<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>	

								<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>	

								<java.version>1.9</java.version>	

								<maven.compiler.source>1.9</maven.compiler.source>	

								<maven.compiler.target>1.9</maven.compiler.target>	

				</properties>	

	

				<parent>	

								<groupId>org.springframework.boot</groupId>	

								<artifactId>spring-boot-starter-parent</artifactId>	

								<version>2.0.0.M1</version>	

				</parent>	

				<dependencyManagement>	

								<dependencies>	

												<dependency>	

																<groupId>org.springframework.cloud</groupId>	

																<artifactId>spring-cloud-dependencies</artifactId>	

																<version>Finchley.M2</version>	

																<type>pom</type>	

																<scope>import</scope>	

												</dependency>	

								</dependencies>	

				</dependencyManagement>	

	

				<modules>	

								<module>eureka-service</module>	

								<module>restaurant-service</module>	

								<module>booking-service</module>	

								<module>user-service</module>	

				</modules>	

	

				<!--	Build	step	is	required	to	include	the	spring	boot	artifacts	in	generated	jars	-->	

				<build>	

								<finalName>${project.artifactId}</finalName>	

								<plugins>	

												<plugin>	

																<groupId>org.springframework.boot</groupId>	

																<artifactId>spring-boot-maven-plugin</artifactId>	

												</plugin>	

												<plugin>	

																<groupId>org.apache.maven.plugins</groupId>	

																<artifactId>maven-compiler-plugin</artifactId>	

																<version>3.6.1</version>	

																<configuration>	

																				<source>1.9</source>	

																				<target>1.9</target>	

																				<showDeprecation>true</showDeprecation>	

																				<showWarnings>true</showWarnings>	

																</configuration>	

												</plugin>	

								</plugins>	

				</build>	

	

				<!--	Added	repository	additionally	as	Finchley.M2	was	not	available	in	central	repository	-->	

				<repositories>	

								<repository>	

												<id>Spring	Milestones</id>	

												<url>https://repo.spring.io/libs-milestone</url>	

												<snapshots>	

																<enabled>false</enabled>	

												</snapshots>	

								</repository>	

				</repositories>	

	

				<pluginRepositories>	

								<pluginRepository>	

												<id>Spring	Milestones</id>	

												<url>https://repo.spring.io/libs-milestone</url>	

												<snapshots>	

																<enabled>false</enabled>	

												</snapshots>	

								</pluginRepository>	

				</pluginRepositories>	

</project>	

We	are	developing	the	REST-based	microservices.	We'll	implement	the	restaurant	module.	The	booking
and	user	modules	are	developed	on	similar	lines.

Controller	class
The	RestaurantController	class	uses	the	@RestController	annotation	to	build	the	Restaurant	service	endpoints.
We	have	already	gone	through	the	details	of	@RestController	in	Chapter	2,	Setting	Up	the	Development
Environment.	The
@RestController	is	a	class-level	annotation	that	is	used	for	resource	classes.	It	is
a	combination	of	the	@Controller	and	@ResponseBody	annotation.	It	returns	the	domain	object.

API	versioning
As	we	move	forward,	I	would	like	to	share	with	you	that	we	are	using	the	v1	prefix	on	our	REST
endpoint.	That	represents	the	version	of	the	API.	I	would	also	like	to	brief	you	on	the	importance	of	API
versioning.	Versioning	APIs	is	important,	because	APIs	change	over	time.	Your	knowledge	and
experience	improves	with	time,	which	leads	to	changes	to	your	API.	A	change	of	API	may	break
existing	client	integrations.

Therefore,	there	are	various	ways	of	managing	API	versions.	One	of	these	is	using	the	version	in	the
path,	or	some	people	use	the	HTTP	header.	The	HTTP	header	can	be	a	custom	request	header	or	an
accept	header	to	represent	the	calling	API	version.	Please	refer	to	RESTful	Java	Patterns	and	Best
Practices	by	Bhakti	Mehta,	Packt	Publishing,	https://www.packtpub.com/application-development/restful-java-pa
tterns-and-best-practices,	for	more	information:

@RestController	

@RequestMapping("/v1/restaurants")	

public	class	RestaurantController	{	

	

				protected	Logger	logger	=	Logger.getLogger(RestaurantController.class.getName());	

	

				protected	RestaurantService	restaurantService;	

	

				@Autowired	

				public	RestaurantController(RestaurantService	restaurantService)	{	

								this.restaurantService	=	restaurantService;	

				}	

	

				/**	

					*	Fetch	restaurants	with	the	specified	name.	A	partial	case-insensitive	

					*	match	is	supported.	So	<code>http://.../restaurants/rest</code>	will	find	

					*	any	restaurants	with	upper	or	lower	case	'rest'	in	their	name.	

					*	

					*	@param	name	

					*	@return	A	non-null,	non-empty	collection	of	restaurants.	

					*/	

				@RequestMapping(method	=	RequestMethod.GET)	

				public	ResponseEntity<Collection<Restaurant>>	findByName(@RequestParam("name")	String	name)	{	

									

logger.info(String.format("restaurant-service	findByName()	invoked:{}	for	{}	",	restaurantService.getClass().getName(),	name));	

								name	=	name.trim().toLowerCase();	

								Collection<Restaurant>	restaurants;	

								try	{	

												restaurants	=	restaurantService.findByName(name);	

								}	catch	(Exception	ex)	{	

												logger.log(Level.WARNING,	"Exception	raised	findByName	REST	Call",	ex);	

												return	new	ResponseEntity<	Collection<	Restaurant>>(HttpStatus.INTERNAL_SERVER_ERROR);	

								}	

								return	restaurants.size()	>	0	?	new	ResponseEntity<	Collection<	Restaurant>>(restaurants,	HttpStatus.OK)	

																:	new	ResponseEntity<	Collection<	Restaurant>>(HttpStatus.NO_CONTENT);	

				}	

	

				/**	

					*	Fetch	restaurants	with	the	given	id.	

					*	<code>http://.../v1/restaurants/{restaurant_id}</code>	will	return	

					*	restaurant	with	given	id.	

					*	

					*	@param	retaurant_id	

					*	@return	A	non-null,	non-empty	collection	of	restaurants.	

					*/	

				@RequestMapping(value	=	"/{restaurant_id}",	method	=	RequestMethod.GET)	

				public	ResponseEntity<Entity>	findById(@PathVariable("restaurant_id")	String	id)	{	

	

							logger.info(String.format("restaurant-service	findById()	invoked:{}	for	{}	",	restaurantService.getClass().getName(),	id));	

								id	=	id.trim();	

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices

								Entity	restaurant;	

								try	{	

												restaurant	=	restaurantService.findById(id);	

								}	catch	(Exception	ex)	{	

												logger.log(Level.SEVERE,	"Exception	raised	findById	REST	Call",	ex);	

												return	new	ResponseEntity<Entity>(HttpStatus.INTERNAL_SERVER_ERROR);	

								}	

								return	restaurant	!=	null	?	new	ResponseEntity<Entity>(restaurant,	HttpStatus.OK)	

																:	new	ResponseEntity<Entity>(HttpStatus.NO_CONTENT);	

				}	

	

				/**	

					*	Add	restaurant	with	the	specified	information.	

					*	

					*	@param	Restaurant	

					*	@return	A	non-null	restaurant.	

					*	@throws	RestaurantNotFoundException	If	there	are	no	matches	at	all.	

					*/	

				@RequestMapping(method	=	RequestMethod.POST)	

				public	ResponseEntity<Restaurant>	add(@RequestBody	RestaurantVO	restaurantVO)	{	

	

								logger.info(String.format("restaurant-service	add()	invoked:	%s	for	%s",	restaurantService.getClass().getName(),	restaurantVO.getName());	

									

								Restaurant	restaurant	=	new	Restaurant(null,	null,	null);	

								BeanUtils.copyProperties(restaurantVO,	restaurant);	

								try	{	

												restaurantService.add(restaurant);	

								}	catch	(Exception	ex)	{	

												logger.log(Level.WARNING,	"Exception	raised	add	Restaurant	REST	Call	"+	ex);	

												return	new	ResponseEntity<Restaurant>(HttpStatus.UNPROCESSABLE_ENTITY);	

								}	

								return	new	ResponseEntity<Restaurant>(HttpStatus.CREATED);	

				}	

}	

Service	classes
The	RestaurantController	class	uses	the	RestaurantService	interface.	RestaurantService	is	an	interface	that
defines	CRUD	and	some	search	operations,	and	is	defined	as	follows:

public	interface	RestaurantService	{	

	

				public	void	add(Restaurant	restaurant)	throws	Exception;	

	

				public	void	update(Restaurant	restaurant)	throws	Exception;	

	

				public	void	delete(String	id)	throws	Exception;	

	

				public	Entity	findById(String	restaurantId)	throws	Exception;	

	

				public	Collection<Restaurant>	findByName(String	name)	throws	Exception;	

	

				public	Collection<Restaurant>	findByCriteria(Map<String,	ArrayList<String>>	name)	throws	Exception;	

}

Now,	we	can	implement	the	RestaurantService	we	have	just	defined.	It	also	extends	the	BaseService	class
you	created	in	the	last	chapter.	We	use	the	@Service	Spring	annotation	to	define	it	as	a	service:

@Service("restaurantService")	

public	class	RestaurantServiceImpl	extends	BaseService<Restaurant,	String>	

								implements	RestaurantService	{	

	

				private	RestaurantRepository<Restaurant,	String>	restaurantRepository;	

	

				@Autowired	

				public	RestaurantServiceImpl(RestaurantRepository<Restaurant,	String>	restaurantRepository)	{	

								super(restaurantRepository);	

								this.restaurantRepository	=	restaurantRepository;	

				}	

	

				public	void	add(Restaurant	restaurant)	throws	Exception	{	

								if	(restaurant.getName()	==	null	||	"".equals(restaurant.getName()))	{	

												throw	new	Exception("Restaurant	name	cannot	be	null	or	empty	string.");	

								}	

	

								if	(restaurantRepository.containsName(restaurant.getName()))	{	

												throw	new	Exception(String.format("There	is	already	a	product	with	the	name	-	%s",	restaurant.getName()));	

								}	

	

								super.add(restaurant);	

				}	

	

				@Override	

				public	Collection<Restaurant>	findByName(String	name)	throws	Exception	{	

								return	restaurantRepository.findByName(name);	

				}	

	

				@Override	

				public	void	update(Restaurant	restaurant)	throws	Exception	{	

								restaurantRepository.update(restaurant);	

				}	

	

				@Override	

				public	void	delete(String	id)	throws	Exception	{	

								restaurantRepository.remove(id);	

				}	

	

				@Override	

				public	Entity	findById(String	restaurantId)	throws	Exception	{	

								return	restaurantRepository.get(restaurantId);	

				}	

	

				@Override	

				public	Collection<Restaurant>	findByCriteria(Map<String,	ArrayList<String>>	name)	throws	Exception	{	

								throw	new	UnsupportedOperationException("Not	supported	yet.");	//To	change	body	of	generated	methods,	choose	Tools	|	Templates.	

				}	

}	

Repository	classes
The	RestaurantRepository	interface	defines	two	new	methods:	the	containsName	and	findByName	methods.	It	also
extends	the	Repository	interface:

public	interface	RestaurantRepository<Restaurant,	String>	extends	Repository<Restaurant,	String>	{	

	

				boolean	containsName(String	name)	throws	Exception;	

	

				Collection<Restaurant>	findByName(String	name)	throws	Exception;	

}	

The	Repository	interface	defines	three	methods:	add,	remove,	and	update.	It	also	extends	the	ReadOnlyRepository
interface:

public	interface	Repository<TE,	T>	extends	ReadOnlyRepository<TE,	T>	{	

	

				void	add(TE	entity);	

	

				void	remove(T	id);	

	

				void	update(TE	entity);	

}	

The	ReadOnlyRepository	interface	definition	contains	the	get	and	getAll	methods,	which	return	Boolean
values,	entity,	and	collection	of	entity,	respectively.	It	is	useful	if	you	want	to	expose	only	a	read-only
abstraction	of	the	repository:

public	interface	ReadOnlyRepository<TE,	T>	{	

	

				boolean	contains(T	id);	

	

				Entity	get(T	id);	

	

				Collection<TE>	getAll();	

}	

The	Spring	Framework	makes	use	of	the	@Repository	annotation	to	define	the	repository	bean	that
implements	the	repository.	In	the	case	of	RestaurantRepository,	you	can	see	that	a	map	is	used	in	place	of
the	actual	database	implementation.	This	keeps	all	entities	saved	in	memory	only.	Therefore,	when	we
start	the	service,	we	find	only	two	restaurants	in	memory.	We	can	use	JPA	for	database	persistence.	This
is	the	general	practice	for	production-ready	implementations:

@Repository("restaurantRepository")	

public	class	InMemRestaurantRepository	implements	RestaurantRepository<Restaurant,	String>	{	

				private	Map<String,	Restaurant>	entities;	

	

				public	InMemRestaurantRepository()	{	

								entities	=	new	HashMap();	

								Restaurant	restaurant	=	new	Restaurant("Big-O	Restaurant",	"1",	null);	

								entities.put("1",	restaurant);	

								restaurant	=	new	Restaurant("O	Restaurant",	"2",	null);	

								entities.put("2",	restaurant);	

				}	

	

				@Override	

				public	boolean	containsName(String	name)	{	

								try	{	

												return	this.findByName(name).size()	>	0;	

								}	catch	(Exception	ex)	{	

												//Exception	Handler	

								}	

								return	false;	

				}	

	

				@Override	

				public	void	add(Restaurant	entity)	{	

								entities.put(entity.getId(),	entity);	

				}	

	

				@Override	

				public	void	remove(String	id)	{	

								if	(entities.containsKey(id))	{	

												entities.remove(id);	

								}	

				}	

	

				@Override	

				public	void	update(Restaurant	entity)	{	

								if	(entities.containsKey(entity.getId()))	{	

												entities.put(entity.getId(),	entity);	

								}	

				}	

	

				@Override	

				public	Collection<Restaurant>	findByName(String	name)	throws	Exception	{	

								Collection<Restaurant>	restaurants	=	new	ArrayList<>();	

								int	noOfChars	=	name.length();	

								entities.forEach((k,	v)	->	{	

												if	(v.getName().toLowerCase().contains(name.subSequence(0,	noOfChars)))	{	

																restaurants.add(v);	

												}	

								});	

								return	restaurants;	

				}	

	

				@Override	

				public	boolean	contains(String	id)	{	

								throw	new	UnsupportedOperationException("Not	supported	yet.");		

				}	

	

				@Override	

				public	Entity	get(String	id)	{	

								return	entities.get(id);	

				}	

	

				@Override	

				public	Collection<Restaurant>	getAll()	{	

								return	entities.values();	

				}	

}	

Entity	classes
The	Restaurant	entity,	which	extends	BaseEntity,	is	defined	as	follows:

public	class	Restaurant	extends	BaseEntity<String>	{	

	

				private	List<Table>	tables	=	new	ArrayList<>();	

	

				public	Restaurant(String	name,	String	id,	List<Table>	tables)	{	

								super(id,	name);	

								this.tables	=	tables;	

				}	

	

				public	void	setTables(List<Table>	tables)	{	

								this.tables	=	tables;	

				}	

	

				public	List<Table>	getTables()	{	

								return	tables;	

				}	

	

				@Override	

				public	String	toString()	{	

								return	String.format("{id:	%s,	name:	%s,	address:	%s,	tables:	%s}",	this.getId(),	

																									this.getName(),	this.getAddress(),	this.getTables());	

				}	

	

}	

Since	we	are	using	POJO	classes	for	our	entity	definitions,	we	do	not	need	to	create	a	VO
in	many	cases.	The	idea	is	that	the	state	of	the	object	should	not	be	persisted	across.

The	Table	entity,	which	extends	BaseEntity,	is	defined	as	follows:

public	class	Table	extends	BaseEntity<BigInteger>	{	

	

				private	int	capacity;	

	

				public	Table(String	name,	BigInteger	id,	int	capacity)	{	

								super(id,	name);	

								this.capacity	=	capacity;	

				}	

	

				public	void	setCapacity(int	capacity)	{	

								this.capacity	=	capacity;	

				}	

	

				public	int	getCapacity()	{	

								return	capacity;	

				}	

	

				@Override	

				public	String	toString()	{	

								return	String.format("{id:	%s,	name:	%s,	capacity:	%s}",	

																									this.getId(),	this.getName(),	this.getCapacity());				}	

	

}	

The	Entity	abstract	class	is	defined	as	follows:

public	abstract	class	Entity<T>	{	

	

				T	id;	

				String	name;	

	

				public	T	getId()	{	

								return	id;	

				}	

	

				public	void	setId(T	id)	{	

								this.id	=	id;	

				}	

	

				public	String	getName()	{	

								return	name;	

				}	

	

				public	void	setName(String	name)	{	

								this.name	=	name;	

				}	

	

}	

The	BaseEntity	abstract	class	is	defined	as	follows.	It	extends	the	Entity
abstract	class:

public	abstract	class	BaseEntity<T>	extends	Entity<T>	{	

	

				private	T	id;	

				private	boolean	isModified;	

				private	String	name;	

	

				public	BaseEntity(T	id,	String	name)	{	

								this.id	=	id;	

								this.name	=	name;	

				}	

	

				public	T	getId()	{	

								return	id;	

				}	

	

				public	void	setId(T	id)	{	

								this.id	=	id;	

				}	

	

				public	boolean	isIsModified()	{	

								return	isModified;	

				}	

	

				public	void	setIsModified(boolean	isModified)	{	

								this.isModified	=	isModified;	

				}	

	

				public	String	getName()	{	

								return	name;	

				}	

	

				public	void	setName(String	name)	{	

								this.name	=	name;	

				}	

	

}	

We	are	done	with	the	Restaurant	service	implementation.	Now,	we'll	develop	the	Eureka	module
(service).

Registration	and	discovery	service	(Eureka
service)
We	need	a	place	where	all	microservices	get	registered	and	can	be	referenced—a	service	discovery	and
registration	application.	Spring	Cloud	provides	the	state-of-the-art	service	registry	and	discovery
application	Netflix	Eureka.	We'll	make	use	of	it	for	our	sample	project	OTRS.

Once	you	have	configured	the	Eureka	service	as	described	in	this	section,	it	will	be	available	for	all
incoming	requests	to	list	it	on	the	Eureka	service.	The	Eureka	service	registers/lists	all	microservices
that	have	been	configured	by	the	Eureka	client.	Once	you	start	your	service,	it	pings	the	Eureka	service
configured	in	your	application.yml	and	once	a	connection	is	established,	the	Eureka	service	registers	the
service.

It	also	enables	the	discovery	of	microservices	through	a	uniform	way	to	connect	to	other	microservices.
You	don't	need	any	IP,	hostname,	or	port	to	find	the	service,	you	just	need	to	provide	the	service	ID	to	it.
Service	IDs	are	configured	in	the	application.yml	of	the	respective	microservices.

In	the	following	three	steps,	we	can	create	a	Eureka	service	(service	registration	and	discovery	service):

1.	 Maven	dependency:	It	needs	a	Spring	Cloud	dependency,	as	shown	here,	and	a	startup	class	with
the	@EnableEurekaApplication	annotation	in	pom.xml:

<dependency>	

						<groupId>org.springframework.cloud</groupId>	

						<artifactId>spring-cloud-starter-config</artifactId>	

</dependency>	

<dependency>	

						<groupId>org.springframework.cloud</groupId>	

						<artifactId>spring-cloud-netflix-eureka-server</artifactId>	

</dependency>	

2.	 Startup	class:	The	startup	class	App	will	run	the	Eureka	service	seamlessly	by	just	using	the
@EnableEurekaApplication	class	annotation:

package	com.packtpub.mmj.eureka.service;	

	

import	org.springframework.boot.SpringApplication;	

import	org.springframework.boot.autoconfigure.SpringBootApplication;	

import	org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;	

	

@SpringBootApplication	

@EnableEurekaServer	

public	class	App	{	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(App.class,	args);	

				}	

}	

Use	<start-class>com.packtpub.mmj.eureka.service.App</start-class>	under	the	<properties>	tag	in
the	pom.xml	project.

3.	 Spring	configuration:The	Eureka	service	also	needs	the	following	Spring	configuration	for	the
Eureka	server	configuration	(src/main/resources/application.yml):

server:	

		port:	8761		#	HTTP	port	

	

eureka:	

		instance:	

				hostname:	localhost	

		client:	

				registerWithEureka:	false	

				fetchRegistry:	false	

				serviceUrl:	

								defaultZone:	${vcap.services.${PREFIX:}eureka.credentials.uri:http://user:password@localhost:8761}/eureka/	

		server:	

				waitTimeInMsWhenSyncEmpty:	0	

				enableSelfPreservation:	false	

	

Eureka	client
Similar	to	the	Eureka	server,	each	OTRS	service	should	also	contain	the	Eureka	client	configuration,	so
that	a	connection	between	the	Eureka	server	and	the	client	can	be	established.	Without	this,	the
registration	and	discovery	of	services	is	not	possible.

Your	services	can	use	the	following	Spring	configuration	to	configure	the	Eureka	client.	Add	the
following	configuration	in	the	Restaurant,	Booking,	and	User	services	(restaurant-
service\src\main\resources\application.yml):

eureka:	

		client:	

				serviceUrl:	

						defaultZone:	http://localhost:8761/eureka/	

Booking	and	user	services
We	can	use	the	RestaurantService	implementation	to	develop	the	Booking	and	User	services.	The	User
service	can	offer	the	endpoint	related	to	the	User	resource	with	respect	to	CRUD	operations.	The
Booking	service	can	offer	the	endpoints	related	to	the	booking	resource	with	respect	to	CRUD
operations	and	the	availability	of	table	slots.	You	can	find	the	sample	code	of	these	services	on	the	Packt
website	or	on	Packt	Publishing	GitHub	repository.

Execution
To	see	how	our	code	works,	we	need	to	first	build	it	and	then	execute	it.	We'll	use	a	Maven	clean
package	to	build	the	service	JARs.

Now,	to	execute	these	service	JARs,	simply	execute	the	following	command	from	the	project	home
directory:

java	-jar	<service>/target/<service_jar_file>	

Here	are	some	examples:

java	-jar	restaurant-service/target/restaurant-service.jar	

java	-jar	eureka-service/target/eureka-service.jar	

We	will	execute	our	services	in	the	following	order	from	the	project	home	directory.	The	Eureka	service
should	be	started	first;	the	order	of	the	last	three	microservices	can	be	changed:

java	-jar	eureka-service/target/eureka-service.jar

java	-jar	restaurant-service/target/restaurant-service.jar

java	-jar	booking-service/target/booking-service.jar

java	-jar	user-service/target/user-service.jar

Testing
To	enable	testing,	add	the	following	dependency	in	the	pom.xml	file:

<dependency>	

				<groupId>org.springframework.boot</groupId>	

				<artifactId>spring-boot-starter-test</artifactId>	

</dependency>	

To	test	the	RestaurantController,	the	following	files	have	been	added:

The	RestaurantControllerIntegrationTests	class,	which	uses	the
@SpringApplicationConfiguration	annotation	to	pick	the	same	configuration	that	Spring	Boot	uses:

@RunWith(SpringJUnit4ClassRunner.class)	

@SpringApplicationConfiguration(classes	=	RestaurantApp.class)	

public	class	RestaurantControllerIntegrationTests	extends	

								AbstractRestaurantControllerTests	{	

	

}

An	abstract	class	to	write	our	tests:

public	abstract	class	AbstractRestaurantControllerTests	{	

	

				protected	static	final	String	RESTAURANT	=	"1";	

				protected	static	final	String	RESTAURANT_NAME	=	"Big-O	Restaurant";	

	

				@Autowired	

				RestaurantController	restaurantController;	

	

				@Test	

				public	void	validResturantById()	{	

								Logger.getGlobal().info("Start	validResturantById	test");	

								ResponseEntity<Entity>	restaurant	=	restaurantController.findById(RESTAURANT);	

	

								Assert.assertEquals(HttpStatus.OK,	restaurant.getStatusCode());	

								Assert.assertTrue(restaurant.hasBody());	

								Assert.assertNotNull(restaurant.getBody());	

								Assert.assertEquals(RESTAURANT,	restaurant.getBody().getId());	

								Assert.assertEquals(RESTAURANT_NAME,	restaurant.getBody().getName());	

								Logger.getGlobal().info("End	validResturantById	test");	

				}	

	

				@Test	

				public	void	validResturantByName()	{	

								Logger.getGlobal().info("Start	validResturantByName	test");	

								ResponseEntity<Collection<Restaurant>>	restaurants	=	restaurantController.findByName(RESTAURANT_NAME);	

								Logger.getGlobal().info("In	validAccount	test");	

	

								Assert.assertEquals(HttpStatus.OK,	restaurants.getStatusCode());	

								Assert.assertTrue(restaurants.hasBody());	

								Assert.assertNotNull(restaurants.getBody());	

								Assert.assertFalse(restaurants.getBody().isEmpty());	

								Restaurant	restaurant	=	(Restaurant)	restaurants.getBody().toArray()[0];	

								Assert.assertEquals(RESTAURANT,	restaurant.getId());	

								Assert.assertEquals(RESTAURANT_NAME,	restaurant.getName());	

								Logger.getGlobal().info("End	validResturantByName	test");	

				}	

	

				@Test	

				public	void	validAdd()	{	

								Logger.getGlobal().info("Start	validAdd	test");	

								RestaurantVO	restaurant	=	new	RestaurantVO();	

								restaurant.setId("999");	

								restaurant.setName("Test	Restaurant");	

	

								ResponseEntity<Restaurant>	restaurants	=	restaurantController.add(restaurant);	

								Assert.assertEquals(HttpStatus.CREATED,	restaurants.getStatusCode());	

								Logger.getGlobal().info("End	validAdd	test");	

				}	

}	

Finally,	the	RestaurantControllerTests	class,	which	extends	the	previously	created	abstract	class	and
also	creates	the	RestaurantService	and	RestaurantRepository	implementations:

public	class	RestaurantControllerTests	extends	AbstractRestaurantControllerTests	{	

	

				protected	static	final	Restaurant	restaurantStaticInstance	=	new	Restaurant(RESTAURANT,	

												RESTAURANT_NAME,	null);	

	

				protected	static	class	TestRestaurantRepository	implements	RestaurantRepository<Restaurant,	String>	{	

	

								private	Map<String,	Restaurant>	entities;	

	

								public	TestRestaurantRepository()	{	

												entities	=	new	HashMap();	

												Restaurant	restaurant	=	new	Restaurant("Big-O	Restaurant",	"1",	null);	

												entities.put("1",	restaurant);	

												restaurant	=	new	Restaurant("O	Restaurant",	"2",	null);	

												entities.put("2",	restaurant);	

								}	

	

								@Override	

								public	boolean	containsName(String	name)	{	

												try	{	

																return	this.findByName(name).size()	>	0;	

												}	catch	(Exception	ex)	{	

																//Exception	Handler	

												}	

												return	false;	

								}	

	

								@Override	

								public	void	add(Restaurant	entity)	{	

												entities.put(entity.getId(),	entity);	

								}	

	

								@Override	

								public	void	remove(String	id)	{	

												if	(entities.containsKey(id))	{	

																entities.remove(id);	

												}	

								}	

	

								@Override	

								public	void	update(Restaurant	entity)	{	

												if	(entities.containsKey(entity.getId()))	{	

																entities.put(entity.getId(),	entity);	

												}	

								}	

	

								@Override	

								public	Collection<Restaurant>	findByName(String	name)	throws	Exception	{	

												Collection<Restaurant>	restaurants	=	new	ArrayList();	

												int	noOfChars	=	name.length();	

												entities.forEach((k,	v)	->	{	

																if	(v.getName().toLowerCase().contains(name.subSequence(0,	noOfChars)))	{	

																				restaurants.add(v);	

																}	

												});	

												return	restaurants;	

								}	

	

								@Override	

								public	boolean	contains(String	id)	{	

												throw	new	UnsupportedOperationException("Not	supported	yet.");

								}	

	

								@Override	

								public	Entity	get(String	id)	{	

												return	entities.get(id);	

								}	

								@Override	

								public	Collection<Restaurant>	getAll()	{	

												return	entities.values();	

								}	

				}	

	

				protected	TestRestaurantRepository	testRestaurantRepository	=	new	TestRestaurantRepository();	

				protected	RestaurantService	restaurantService	=	new	RestaurantServiceImpl(testRestaurantRepository);	

	

				@Before	

				public	void	setup()	{	

								restaurantController	=	new	RestaurantController(restaurantService);	

	

				}	

}	

References
RESTful	Java	Patterns	and	Best	Practices	by	Bhakti	Mehta,	Packt	Publishing:	https://www.packtpub.c
om/application-development/restful-java-patterns-and-best-practices

Spring	Cloud:	http://cloud.spring.io/
Netflix	Eureka:	https://github.com/netflix/eureka

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices
http://cloud.spring.io/
https://github.com/netflix/eureka

Summary
In	this	chapter,	we	have	learned	how	the	domain-driven	design	model	can	be	used	in	a	microservice.
After	running	the	demo	application,	we	can	see	how	each	microservice	can	be	developed,	deployed,	and
tested	independently.	You	can	create	microservices	using	Spring	Cloud	very	easily.	We	have	also
explored	how	one	can	use	the	Eureka	registry	and	discovery	component	with	Spring	Cloud.

In	the	next	chapter,	we	will	learn	to	deploy	microservices	in	containers	such	as	Docker.	We	will	also
understand	microservice	testing	using	REST	Java	clients	and	other	tools.

Deployment	and	Testing
In	this	chapter,	we'll	continue	from	where	we	left	off	in	Chapter	4,	Implementing	a	Microservice.	We'll
add	a	few	more	services	to	groom	our	online	table	reservation	system	(OTRS)	application	that	only
depends	on	three	functional	services	(Restaurant,	User,	and	Booking	services)	and	Eureka	(service
discovery	and	registration)	to	create	a	fully	functional	microservice	stack.	This	stack	will	have	gateway
(Zuul),	load	balancing	(Ribbon	with	Zuul	and	Eureka),	and	monitoring	(Hystrix,	Turbine,	and	the
Hystrix	dashboard).	You	want	to	have	composite	APIs	and	see	how	one	microservice	talks	to	others.
This	chapter	will	also	explain	how	to	containerize	microservices	using	Docker	and	how	to	run	multiple
containers	together	using	docker-compose.	On	top	of	this,	we'll	also	add	the	integration	tests.

In	this	chapter,	we	will	cover	the	following	topics:

An	overview	of	microservice	architecture	using	Netflix	OSS
Edge	servers
Load	balancing	microservices
Circuit	breakers	and	monitoring
Microservice	deployment	using	containers
Microservice	integration	testing	using	Docker	containers

Mandatory	services	for	good	microservices
There	are	a	few	patterns/services	that	should	be	in	place	for	implementing	microservice-based	design.
This	list	consists	of	the	following:

Service	discovery	and	registration
Edge	or	proxy	server
Load	balancing
Circuit	breaker
Monitoring

We'll	implement	these	services	in	this	chapter	to	complete	our	OTRS	system.	Following	is	a	brief
overview.	We'll	discuss	these	patterns/services	in	detail	later.

Service	discovery	and	registration
The	Netflix	Eureka	server	is	used	for	service	discovery	and	registration.	We	created	the	Eureka	service
in	the	last	chapter.	It	not	only	allows	you	to	register	and	discover	services,	but	also	provides	load
balancing	using	Ribbon.

Edge	servers
An	edge	server	provides	a	single	point	of	access	to	allow	the	external	world	to	interact	with	your
system.	All	of	your	APIs	and	frontends	are	only	accessible	using	this	server.	Therefore,	these	are	also
referred	to	as	gateway	or	proxy	servers.	These	are	configured	to	route	requests	to	different
microservices	or	frontend	applications.	We'll	use	the	Netflix	Zuul	server	as	an	edge	server	in	the	OTRS
application.

Load	balancing
Netflix	Ribbon	is	used	for	load	balancing.	It	is	integrated	with	the	Zuul	and	Eureka	services	to	provide
load	balancing	for	both	internal	and	external	calls.

Circuit	breakers
A	fault	or	break	should	not	prevent	your	whole	system	from	working.	Also,	the	repeated	failure	of	a
service	or	an	API	should	be	handled	properly.	Circuit	breakers	provide	these	features.	Netflix	Hystrix	is
used	as	a	circuit	breaker	and	helps	to	keep	the	system	up.

Monitoring
The	Hystrix	dashboard	is	used	with	Netflix	Turbine	for	microservice	monitoring.	It	provides	a
dashboard	to	check	the	health	of	running	microservices.

An	overview	of	microservice	architecture
using	Netflix	OSS
Netflix	are	pioneers	in	microservice	architecture.	They	were	the	first	to	successfully	implement
microservice	architecture	on	a	large	scale.	They	also	helped	increase	its	popularity	and	contributed
immensely	to	microservices	by	open	sourcing	most	of	their	microservice	tools	with	Netflix	Open
Source	Software	Center	(OSS).

According	to	the	Netflix	blog,	when	Netflix	was	developing	their	platform,	they	used	Apache
Cassandra	for	data	storage,	which	is	an	open	source	tool	from	Apache.	They	started	contributing	to
Cassandra	with	fixes	and	optimization	extensions.	This	led	to	Netflix	seeing	the	benefits	of	releasing
Netflix	projects	with	the	name	OSS.

Spring	took	the	opportunity	to	integrate	many	Netflix	OSS	projects,	such	as	Zuul,	Ribbon,	Hystrix,	the
Eureka	server,	and	Turbine,	into	Spring	Cloud.	This	is	one	of	the	reasons	Spring	Cloud	provides	a
ready-made	platform	for	developing	production-ready	microservices.

Now,	let's	take	a	look	at	a	few	important	Netflix	tools	and	how	they	fit	into	microservice	architecture:

Microservice	architecture	diagram

As	you	can	see	in	the	preceding	diagram,	for	each	of	the	microservice	practices,	we	have	a	Netflix	tool

associated	with	it.	We	can	go	through	the	following	mapping	to	understand	it.	Detailed	information	is
covered	in	the	respective	sections	of	this	chapter	except	concerning	Eureka,	which	is	elaborated	on	in
the	last	chapter:

Edge	server:	We	use	the	Netflix	Zuul	server	as	an	edge	server.
Load	balancing:	Netflix	Ribbon	is	used	for	load	balancing.
Circuit	breaker:	Netflix	Hystrix	is	used	as	a	circuit	breaker	and	helps	to	keep	the	system	up.
Service	discovery	and	registration:	The	Netflix	Eureka	server	is	used	for	service	discovery	and
registration.
Monitoring	dashboard:	The	Hystrix	dashboard	is	used	with	Netflix	Turbine	for	microservice
monitoring.	It	provides	a	dashboard	to	check	the	health	of	running	microservices.

Load	balancing
Load	balancing	is	required	to	service	requests	in	a	manner	that	maximizes	speed	and	capacity
utilization,	and	it	makes	sure	that	no	server	is	overloaded	with	requests.	The	load	balancer	also	redirects
requests	to	the	remaining	host	servers	if	a	server	goes	down.	In	microservice	architecture,	a
microservice	can	serve	internal	or	external	requests.	Based	on	this,	we	can	have	two	types	of	load
balancing—client-side	and	server-side	load	balancing.

Server-side	load	balancing
We'll	discuss	server-side	load	balancing;	before	that,	we'll	discuss	routing.	It	is	important	to	define	the
routing	mechanism	for	our	OTRS	application	from	the	microservice	architecture	point	of	view.	For
example,	/	(root)	could	be	mapped	to	our	UI	application.	Similarly,	/restaurantapi	and	/userapi	could	be
mapped	to	the	Restaurant	service	and	User	service	respectively.	The	edge	server	also	performs	routing
with	load	balancing.

We'll	use	the	Netflix	Zuul	server	as	our	edge	server.	Zuul	is	a	JVM-based	router	and	server-side	load
balancer.	Zuul	supports	any	JVM	language	for	writing	rules	and	filters	and	has	built-in	support	for	Java
and	Groovy.

Netflix	Zuul,	by	default,	has	discovery	client	(Eureka	client)	support.	Zuul	also	makes	use	of	Ribbon
and	Eureka	for	load	balancing.

The	external	world	(the	UI	and	other	clients)	calls	the	edge	server,	which	uses	the	routes	defined	in
application.yml	to	call	internal	services	and	provide	the	response.	Your	guess	is	right	if	you	think	it	acts	as
a	proxy	server,	carries	gateway	responsibility	for	internal	networks,	and	calls	internal	services	for
defined	and	configured	routes.

Normally,	it	is	recommended	to	have	a	single	edge	server	for	all	requests.	However,	a	few	companies
use	a	single	edge	server	per	client	to	scale.	For	example,	Netflix	uses	a	dedicated	edge	server	for	each
device	type.

An	edge	server	will	also	be	used	in	the	next	chapter,	when	we	configure	and	implement	microservice
security.

Configuring	and	using	the	edge	server	is	pretty	simple	in	Spring	Cloud.	You	need	to	perform	the
following	steps:

1.	 Define	the	Zuul	server	dependency	in	the	pom.xml	file:

<dependency>	

						<groupId>org.springframework.cloud</groupId>	

						<artifactId>spring-cloud-starter-zuul</artifactId>	

</dependency>	

2.	 Use	the	@EnableZuulProxy	annotation	in	your	application	class.	It	also	internally	uses	the
@EnableDiscoveryClient	annotation;	therefore,	it	is	also	registered	to	the	Eureka	server	automatically.
You	can	find	the	registered	Zuul	server	in	the	figure	in	Client-side	load	balancing	section.

3.	 Update	the	Zuul	configuration	in	the	application.yml	file,	as	follows:

zuul:ignoredServices:	This	skips	the	automatic	addition	of	services.	We	can	define	service	ID	patterns
here.	The	*	denotes	that	we	are	ignoring	all	services.	In	the	following	sample,	all	services	are
ignored	except	restaurant-service.
Zuul.routes:	This	contains	the	path	attribute	that	defines	the	URI's	pattern.	Here,	/restaurantapi	is

mapped	to	restaurant-service	using	the	serviceId	attribute.	The	serviceId	attribute	represents	the
service	in	the	Eureka	server.	You	can	use	a	URL	in	place	of	a	service,	if	the	Eureka	server	is	not
used.	We	have	also	used	the	stripPrefix	attribute	to	strip	the	prefix	(/restaurantapi),	and	the	resultant
/restaurantapi/v1/restaurants/1	call	converts	to	/v1/restaurants/1	while	calling	the	service:

application.yml	

info:	

				component:	Zuul	Server	

#	Spring	properties	

spring:	

		application:	

					name:	zuul-server		#	Service	registers	under	this	name	

	

endpoints:	

				restart:	

								enabled:	true	

				shutdown:	

								enabled:	true	

				health:	

								sensitive:	false	

	

zuul:	

				ignoredServices:	"*"	

				routes:	

								restaurantapi:	

												path:	/restaurantapi/**	

												serviceId:	restaurant-service	

												stripPrefix:	true	

	

server:	

				port:	8765	

	

#	Discovery	Server	Access	

eureka:	

		instance:	

				leaseRenewalIntervalInSeconds:	3	

				metadataMap:	

						instanceId:	${vcap.application.instance_id:${spring.application.name}:${spring.application.instance_id:${random.value}}}	

				serviceUrl:	

						defaultZone:	http://localhost:8761/eureka/	

				fetchRegistry:	false	

Please	note	that	Eureka	applications	only	register	a	single	instance	of	any	service	for	each	host.	You
need	to	use	the	following	value	for	metadataMap.instanceid	to	register	multiple	instances	of	the	same
application	on	one	host	for	load	balancing	to	work:

${spring.application.name}:${vcap.application.instance_id:${spring.application.instance_id:${random.value}}}

Let's	see	a	working	edge	server.	First,	we'll	call	the	Restaurant	service	deployed	on	port	3402,	as	follows:

Direct	Restaurant	service	call

Then,	we'll	call	the	same	service	using	the	edge	server	that	is	deployed	on	port	8765.	You	can	see	that	the
/restaurantapi	prefix	is	used	for	calling	/v1/restaurants?name=o,	and	it	gives	the	same	result:

Restaurant	Service	call	using	the	edge	server

Client-side	load	balancing
Microservices	need	interprocess	communication	so	that	services	can	communicate	with	each	other.
Spring	Cloud	uses	Netflix	Ribbon,	a	client-side	load	balancer	that	plays	this	critical	role	and	can	handle
both	HTTP	and	TCP.	Ribbon	is	cloud-enabled	and	provides	built-in	failure	resiliency.	Ribbon	also
allows	you	to	use	multiple	and	pluggable	load	balancing	rules.	It	integrates	clients	with	load	balancers.

In	the	last	chapter,	we	added	the	Eureka	server.	Ribbon	is	integrated	with	the	Eureka	server	in	Spring
Cloud	by	default.	This	integration	provides	the	following	features:

You	don't	need	to	hardcode	remote	server	URLs	for	discovery	when	the	Eureka	server	is	used.	This
is	a	prominent	advantage,	although	you	can	still	use	the	configured	server	list	(listOfServers)	in	the
application.yml	file	if	required.
The	server	list	gets	populated	from	the	Eureka	server.	The	Eureka	server	overrides	ribbonServerList
with	the	DiscoveryEnabledNIWSServerList	interface.
The	request	to	find	out	whether	the	server	is	up	is	delegated	to	Eureka.	The
DiscoveryEnabledNIWSServerList	interface	is	used	in	place	of	Ribbon's	IPing.

There	are	different	clients	available	in	Spring	Cloud	that	use	Ribbon,	such	as	RestTemplate	or	FeignClient.
These	clients	allow	microservices	to	communicate	with	each	other.	Clients	use	instance	IDs	in	place	of
hostnames	and	ports	for	making	an	HTTP	call	to	service	instances	when	the	Eureka	server	is	used.	The
client	passes	the	service	ID	to	Ribbon	and	it	then	uses	the	load	balancer	to	pick	the	instance	from	the
Eureka	server.

If	there	are	multiple	instances	of	services	available	in	Eureka,	as	shown	in	the	following	screenshot,
Ribbon	picks	only	one	for	the	request,	based	on	load	balancing	algorithms:

Multiple	service	registration	-	Restaurant	service

We	can	use	the	DiscoveryClient	to	find	all	of	the	available	service	instances	in	the	Eureka	server,	as	shown
in	the	following	code.	The	getLocalServiceInstance()	method	of	the	DiscoveryClientSample	class	returns	all	of
the	local	service	instances	available	in	the	Eureka	server.

This	is	the	DiscoveryClient	sample:

@Component	

class	DiscoveryClientSample	implements	CommandLineRunner	{	

	

				@Autowired	

				private	DiscoveryClient;	

	

				@Override	

				public	void	run(String...	strings)	throws	Exception	{	

								//	print	the	Discovery	Client	Description	

								System.out.println(discoveryClient.description());	

								//	Get	restaurant-service	instances	and	prints	its	info	

								discoveryClient.getInstances("restaurant-service").forEach((ServiceInstance	serviceInstance)	->	{	

												System.out.println(new	StringBuilder("Instance	-->	").append(serviceInstance.getServiceId())	

																				.append("\nServer:	").append(serviceInstance.getHost()).append(":").append(serviceInstance.getPort())	

																				.append("\nURI:	").append(serviceInstance.getUri()).append("\n\n\n"));	

								});	

				}	

}	

When	executed,	this	code	prints	the	following	information.	It	shows	two	instances	of	the	Restaurant
service:

Spring	Cloud	Eureka	Discovery	Client	

Instance:	RESTAURANT-SERVICE	

Server:	SOUSHARM-IN:3402	

URI:	http://SOUSHARM-IN:3402	

Instance	-->	RESTAURANT-SERVICE	

Server:	SOUSHARM-IN:3368	

URI:	http://SOUSHARM-IN:3368	

The	following	samples	showcase	how	these	clients	can	be	used.	You	can	see	that	in	both	clients,	the
service	name	restaurant-service	is	used	in	place	of	a	service	hostname	and	port.	These	clients	call
/v1/restaurants	to	get	a	list	of	restaurants	containing	the	name	given	in	the	name	query	parameter.

This	is	theRestTemplate	sample:

@Component

class	RestTemplateExample	implements	CommandLineRunner	{

		@Autowired

		private	RestTemplate	restTemplate;

		@Override

		public	void	run(String...	strings)	throws	Exception	{

				System.out.println("\n\n\n	start	RestTemplate	client...");

				ResponseEntity<Collection<Restaurant>>	exchange

				=	this.restTemplate.exchange(

				"http://restaurant-service/v1/restaurants?name=o",

				HttpMethod.GET,

				null,

				new	ParameterizedTypeReference<Collection<Restaurant>>()	{

				},

				(Object)	"restaurants");

				exchange.getBody().forEach((Restaurant	restaurant)	->	{

						System.out.println("\n\n\n["	+	restaurant.getId()	+	"	"	+		restaurant.getName()	+	"]");

						});

			}

}

This	is	theFeignClient	sample:

@FeignClient("restaurant-service")

interface	RestaurantClient	{

		@RequestMapping(method	=	RequestMethod.GET,	value	=		"/v1/restaurants")

		Collection<Restaurant>	getRestaurants(@RequestParam("name")	String	name);

		}

@Component

class	FeignSample	implements	CommandLineRunner	{

		@Autowired

		private	RestaurantClient	restaurantClient;

		@Override

		public	void	run(String...	strings)	throws	Exception	{

				this.restaurantClient.getRestaurants("o").forEach((Restaurant					restaurant)	->	{

						System.out.println("\n\n\n["	+	restaurant.getId()	+	"	"	+		restaurant.getName()	+	"]");

						});

				}

}	

All	preceding	examples	will	print	the	following	output:

[1	Big-O	Restaurant]	

[2	O	Restaurant]	

For	demonstration	purposes,	we	have	added	all	clients—discovery	client,	RestTemplate	client,	and
FeignClient	added	in	the	edge	application	main	class	Java	file.	Since	we	have	all	of	these	clients
implementing	the	CommandLineRunner	interface,	this	gets	executed	immediately	after	the	edge	application
service	starts.

Circuit	breakers	and	monitoring
In	general	terms,	a	circuit	breaker	is	an	automatic	device	for	stopping	the	flow	of	current	in	an	electric
circuit	as	a	safety	measure.

The	same	concept	is	used	for	microservice	development,	known	as	the	circuit	breaker	design	pattern.
It	tracks	the	availability	of	external	services	such	as	the	Eureka	server,	API	services	such	as	restaurant-
service,	and	so	on,	and	prevents	service	consumers	from	performing	any	action	on	any	service	that	is	not
available.

It	is	another	important	aspect	of	microservice	architecture,	a	safety	measure
(failsafe	mechanism)	when	the	service	does	not	respond	to	a	call	made	by	the	service	consumer,	which
is	called	a	circuit	breaker.

We'll	use	Netflix	Hystrix	as	a	circuit	breaker.	It	calls	the	internal	fallback	method	in	the	service
consumer	when	failures	occur	(for	example,	due	to	a	communication	error	or	timeout).	It	executes
embedded	within	its	consumer	of	service.	In	the	next	section,	you	will	find	the	code	that	implements
this	feature.

Hystrix	opens	the	circuit	and	failfast	when	the	service	fails	to	respond	repeatedly,	until	the	service	is
available	again.	When	calls	to	a	particular	service	reach	a	certain	threshold	(the	default	threshold	is	20
failures	in	five	seconds),	the	circuit	opens	and	the	call	is	not	made.	You	must	be	wondering,	if	Hystrix
opens	the	circuit,	then	how	does	it	know	that	the	service	is	available?	It	exceptionally	allows	some
requests	to	call	the	service.

Using	Hystrix's	fallback	methods
There	are	five	steps	for	implementing	fallback	methods.	For	this	purpose,	we'll	create	another	service,
api-service,	in	the	same	way	as	we	have	created	other	services.	The	api-service	service	will	consume	the
other	services	such	as	restaurant-service	and	so	on,	and	will	be	configured	in	the	edge	server	for	exposing
the	OTRS	API	to	external	use.	The	five	steps	are	as	follows:

1.	 Enable	the	circuit	breaker:	The	main	class	of	microservice	that	consumes	other	services	should
be	annotated	with	@EnableCircuitBreaker.	Therefore,	we'll	annotate
src\main\java\com\packtpub\mmj\api\service\ApiApp.java:

@SpringBootApplication	

@EnableCircuitBreaker	

@ComponentScan({"com.packtpub.mmj.user.service",	"com.packtpub.mmj.common"})	

public	class	ApiApp	{	

2.	 Configure	the	fallback	method:	The	annotation	@HystrixCommand	is	used	to	configure	the
fallbackMethod.	We'll	annotate	controller	methods	to	configure	the	fallback	methods.	This	is	the	file:
src\main\java\com\packtpub\mmj\api\service\restaurant\RestaurantServiceAPI.java:

@HystrixCommand(fallbackMethod	=	"defaultRestaurant")	

				@RequestMapping("/restaurants/{restaurant-id}")	

				@HystrixCommand(fallbackMethod	=	"defaultRestaurant")	

				public	ResponseEntity<Restaurant>	getRestaurant(

												@PathVariable("restaurant-id")	int	restaurantId)	{	

								MDC.put("restaurantId",	restaurantId);	

								String	url	=	"http://restaurant-service/v1/restaurants/"	+	restaurantId;	

								LOG.debug("GetRestaurant	from	URL:	{}",	url);	

	

								ResponseEntity<Restaurant>	result	=	restTemplate.getForEntity(url,	Restaurant.class);	

								LOG.info("GetRestaurant	http-status:	{}",	result.getStatusCode());	

								LOG.debug("GetRestaurant	body:	{}",	result.getBody());	

	

								return	serviceHelper.createOkResponse(result.getBody());	

				}		

3.	 Define	the	fallback	method:	A	method	that	handles	the	failure	and	performs	the	steps	for	safety.
Here,	we	have	just	added	a	sample;	this	can	be	modified	based	on	the	way	we	want	to	handle	the
failure:

public	ResponseEntity<Restaurant>	defaultRestaurant(

@PathVariable	int	restaurantId)	{	

		return	serviceHelper.createResponse(null,	HttpStatus.BAD_GATEWAY);	

		}	

4.	 Maven	dependencies:	We	need	to	add	the	following	dependencies	in	pom.xml	for	an	API	service	or
in	a	project	in	which	we	want	to	failsafe	API	calls:

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-hystrix</artifactId>	

</dependency>	

5.	 Configuring	Hystrix	in	application.yml:	We	will	add	the	following	Hystrix	properties	in	our
application.yml	file:

							hystrix:	

		threadpool:	

				default:	

						#	Maximum	number	of	concurrent	requests	when	using	thread	pools	(Default:	10)	

						coreSize:	100	

						#	Maximum	LinkedBlockingQueue	size	-	-1	for	using	SynchronousQueue	(Default:	-1)	

						maxQueueSize:	-1	

						#	Queue	size	rejection	threshold	(Default:	5)	

						queueSizeRejectionThreshold:	5	

		command:	

				default:	

						circuitBreaker:	

								sleepWindowInMilliseconds:	30000	

								requestVolumeThreshold:	2	

						execution:	

								isolation:	

#										strategy:	SEMAPHORE,	no	thread	pool	but	timeout	handling	stops	to	work	

										strategy:	THREAD	

										thread:	

												timeoutInMilliseconds:	6000

These	steps	should	be	enough	to	failsafe	the	service	calls	and	return	a	more	appropriate	response	to	the
service	consumer.

Monitoring
Hystrix	provides	a	dashboard	with	a	web	UI	that	provides	nice	graphics	of	circuit	breakers:

Default	Hystrix	dashboard

Netflix	Turbine	is	a	web	application	that	connects	to	the	instances	of	your	Hystrix	applications	in	a
cluster	and	aggregates	information,	which	it	does	in	real	time	(updated	every	0.5	seconds).	Turbine
provides	information	using	a	stream	that	is	known	as	a	Turbine	stream.

If	you	combine	Hystrix	with	Netflix	Turbine,	then	you	can	get	all	of	the	information	from	the	Eureka
server	on	the	Hystrix	dashboard.	This	gives	you	a	landscape	view	of	all	of	the	information	about	the
circuit	breakers.

To	use	Turbine	with	Hystrix,	just	type	in	the	Turbine	URL	http://localhost:8989/turbine.stream	(port	8989	is
configured	for	the	Turbine	server	in	application.yml)	in	the	first	textbox	shown	in	the	preceding
screenshot,	and	click	on	Monitor	Stream.

Netflix	Hystrix	and	Turbine	use	RabbitMQ,	an	open	source	message	queuing	software.	RabbitMQ
works	on	Advance	Messaging	Queue	Protocol	(AMQP).	It	is	a	software	in	which	queues	can	be
defined	and	used	by	connected	applications	to	exchange	messages.	A	message	can	include	any	kind	of
information.	A	message	can	be	stored	in	the	RabbitMQ	queue	until	a	receiver	application	connects	and
consumes	the	message	(taking	the	message	off	the	queue).

Hystrix	uses	RabbitMQ	to	send	metrics	data	feed	to	Turbine.

Before	we	configure	Hystrix	and	Turbine,	please	install	the	RabbitMQ	application	on	your
platform.	Hystrix	and	Turbine	use	RabbitMQ	to	communicate	between	themselves.

Setting	up	the	Hystrix	dashboard
We'll	create	another	project	in	the	IDE	for	the	Hystrix	dashboard	in	the	same	way	as	we	created	other
services.	Inside	this	new	project,	we'll	add	the	new	Maven	dependency,	dashboard-server,	for	the	Hystrix
server.	Configuring	and	using	the	Hystrix	dashboard	is	pretty	simple	in	Spring	Cloud.

When	you	run	the	Hystrix	dashboard	application,	it	will	look	like	the	default	Hystrix	dashboard
screenshot	shown	earlier.	You	just	need	to	follow	these	steps:

1.	 Define	the	Hystrix	dashboard	dependency	in	the	pom.xml	file:

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>	

</dependency>	

2.	 The	@EnableHystrixDashboard	annotation	in	the	main	Java	class	does	everything	for	you	to	use	it.	We'll
also	use	the	@Controller	to	forward	the	request	from	the	root	URI	to	the	Hystrix	dashboard	UI	URI
(/hystrix),	as	shown	here:

@SpringBootApplication	

@Controller	

@EnableHystrixDashboard	

public	class	DashboardApp	extends	SpringBootServletInitializer	{	

	

				@RequestMapping("/")	

				public	String	home()	{	

								return	"forward:/hystrix";	

				}	

	

				@Override	

				protected	SpringApplicationBuilder	configure(SpringApplicationBuilder	application)	{	

								return	application.sources(DashboardApp.class).web(true);	

				}	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(DashboardApp.class,	args);	

				}	

}	

3.	 Update	the	dashboard	application	configuration	in	application.yml,	as	shown	here:

#	Hystrix	Dashboard	properties	

spring:	

				application:	

								name:	dashboard-server	

	

endpoints:	

				restart:	

								enabled:	true	

				shutdown:	

								enabled:	true	

	

server:	

				port:	7979	

	

eureka:	

				instance:	

								leaseRenewalIntervalInSeconds:	3	

								metadataMap:	

												instanceId:	${vcap.application.instance_id:${spring.application.name}:${spring.application.instance_id:${random.value}}}	

	

				client:	

								#	Default	values	comes	from	org.springframework.cloud.netflix.eurek.EurekaClientConfigBean	

								registryFetchIntervalSeconds:	5	

								instanceInfoReplicationIntervalSeconds:	5	

								initialInstanceInfoReplicationIntervalSeconds:	5	

								serviceUrl:	

												defaultZone:	http://localhost:8761/eureka/	

								fetchRegistry:	false	

	

logging:	

				level:	

								ROOT:	WARN	

								org.springframework.web:	WARN	

Creating	Turbine	services
Turbine	aggregates	all	/hystrix.stream	endpoints	into	a	combined	/turbine.stream	for	use	in	the	Hystrix
dashboard,	which	is	more	helpful	as	it	allows	to	see	the	overall	health	of	the	system	in	a	single
dashboard	rather	than	monitoring	the	individual	services	using	/hystrix.stream.	We'll	create	another
service	project	in	the	IDE	like	the	others.	Then,	we'll	add	Maven	dependencies	for	Turbine	in	pom.xml.

Now,	we	will	configure	the	Turbine	server	using	the	following	steps:

1.	 Define	the	Turbine	Server	dependency	in	pom.xml:

<dependency>	

				<groupId>	org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-turbine-stream</artifactId>	

</dependency>	

<dependency>	

					<groupId>org.springframework.cloud</groupId>	

					<artifactId>spring-cloud-starter-stream-rabbit</artifactId>	

</dependency>	

<dependency>	

					<groupId>org.springframework.boot</groupId>	

					<artifactId>spring-boot-starter-actuator</artifactId>	

</dependency>	

	

2.	 Use	the	@EnableTurbineStream	annotation	in	your	application	class,	as
shown	here.	We	are	also	defining	a	bean	that	will	return	the	RabbitMQ	ConnectionFactory:

@SpringBootApplication	

@EnableTurbineStream	

@EnableEurekaClient	

public	class	TurbineApp	{	

	

				private	static	final	Logger	LOG	=	LoggerFactory.getLogger(TurbineApp.class);	

	

				@Value("${app.rabbitmq.host:localhost}")	

				String	rabbitMQHost;	

	

				@Bean	

				public	ConnectionFactory	connectionFactory()	{	

								LOG.info("Creating	RabbitMQHost	ConnectionFactory	for	host:	{}",	rabbitMQHost);	

								CachingConnectionFactory	cachingConnectionFactory	=	new	CachingConnectionFactory(rabbitMQHost);	

								return	cachingConnectionFactory;	

				}	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(TurbineApp.class,	args);	

				}	

}	

3.	 Update	the	Turbine	configuration	in	application.yml,	as	shown	here:

server:port:	The	main	port	used	by	the	the	Turbine	HTTP
management:port:	Port	of	Turbine	actuator	endpoints:

application.yml	

spring:	

				application:	

								name:	turbine-server	

	

server:	

				port:	8989	

	

management:	

				port:	8990	

	

turbine:	

				aggregator:	

								clusterConfig:	USER-SERVICE,RESTAURANT-SERVICE	

				appConfig:	user-service,restaurant-service		

	

eureka:	

				instance:	

								leaseRenewalIntervalInSeconds:	10	

								metadataMap:	

												instanceId:	${vcap.application.instance_id:${spring.application.name}:${spring.application.instance_id:${random.value}}}	

				client:	

								serviceUrl:	

												defaultZone:	${vcap.services.${PREFIX:}eureka.credentials.uri:http://user:password@localhost:8761}/eureka/	

								fetchRegistry:	true	

	

logging:	

				level:	

								root:	INFO	

								com.netflix.discovery:	'OFF'	

								org.springframework.integration:	DEBUG	

Earlier,	we	have	added	the	User	and	Restaurant	services	in	a	cluster	using	the
turbine.aggregator.clusterConfig	property.	Here,	values	are	in	uppercase	because	Eureka
returns	the	service	names	in	capital	letters.	Also,	the	turbine.appConfig	property	contains	the
list	of	the	Eureka	service	IDs	that	will	be	used	by	the	Turbine	to	look	up	instances.	Please
be	aware	that	the	preceding	steps	always	create	the	respective	servers	with	default
configurations.	If	required,	you	can	override	the	default	configuration	with	specific
settings.

Building	and	running	the	OTRS	application
Build	all	of	the	projects	using	mvn	clean	install	using	the	following	file:	..\Chapter5	\pom.xml.

The	output	should	look	like	this:

6392_chapter5	SUCCESS	[3.037s]	

online-table-reservation:common	SUCCESS	[5.899s]	

online-table-reservation:zuul-server	SUCCESS	[4.517s]	

online-table-reservation:restaurant-service	SUCCESS	[49.250s]	

online-table-reservation:eureka-server	SUCCESS	[2.850s]	online-table-reservation:dashboard-server	

online-table-reservation:turbine-server	SUCCESS	[3.670s]	

online-table-reservation:user-service	SUCCESS	[47.983s]	

online-table-reservation:api-service	SUCCESS	[3.065s]	

online-table-reservation:booking-service	SUCCESS	[26.496s]	

Then,	on	command	prompt,	go	to	<path	to	source>/6392_chapter5	and	run	the	following	commands:

java	-jar	eureka-server/target/eureka-server.jar	

java	-jar	turbine-server/target/turbine-server.jar	

java	-jar	dashboard-server/target/dashboard-server.jar	

java	-jar	restaurant-service/target/restaurant-service.jar	

java	-jar	user-service/target/user-service.jar	

java	-jar	booking-service/target/booking-service.jar	

java	-jar	api-service/target/api-service.jar	

Note:	Before	starting	the	Zuul	service,	please	make	sure	that	all	of	the	services	are	up	in	the	Eureka
dashboard:	http://localhost:8761/:

java	-jar	zuul-server/target/zuul-server.jar	

Again,	check	the	Eureka	dashboard	that	all	applications	should	be	up.	Then,	perform	the	testing.

Microservice	deployment	using	containers
You	might	have	got	the	point	about	Docker	after	reading	Chapter	1,	A	Solution	Approach.

A	Docker	container	provides	a	lightweight	runtime	environment,	consisting	of	the	core	features	of	a
virtual	machine	and	the	isolated	services	of	operating	systems,	known	as	a	Docker	image.	Docker
makes	the	packaging	and	execution	of	microservices	easier	and	smoother.	Each	operating	system	can
have	multiple	Dockers,	and	each	Docker	can	run	single	application.

Installation	and	configuration
Docker	needs	a	virtualized	server	if	you	are	not	using	a	Linux	OS.	You	can	install	VirtualBox	or	similar
tools	such	as	Docker	Toolbox	to	make	it	work	for	you.	The	Docker	installation	page	gives	more	details
about	it	and	lets	you	know	how	to	do	it.	So,	leave	it	to	the	Docker	installation	guide	available	on
Docker's	website.

You	can	install	Docker,	based	on	your	platform,	by	following	the	instructions	given	at:	https://docs.docker
.com/engine/installation/.

DockerToolbox-1.9.1f	was	the	latest	version	available	at	the	time	of	writing.	This	is	the	version	we
used.

https://docs.docker.com/engine/installation/

Docker	machine	with	4	GB
Default	machines	are	created	with	2	GB	of	memory.	We'll	recreate	a	Docker	machine	with	4	GB	of
memory:

	docker-machine	rm	default

	docker-machine	create	-d	virtualbox	--virtualbox-memory	4096	default

		

Building	Docker	images	with	Maven
There	are	various	Docker	Maven	plugins	that	can	be	used:

https://github.com/rhuss/docker-maven-plugin

https://github.com/alexec/docker-maven-plugin

https://github.com/spotify/docker-maven-plugin

You	can	use	any	of	these,	based	on	your	choice.	I	found	the	Docker	Maven	plugin	by	@rhuss	to	be	best
suited	for	us.	It	is	updated	regularly	and	has	many	extra	features	when	compared	to	the	others.

We	need	to	introduce	the	Docker	Spring	profile	in	application.yml	before	we	start	discussing	the
configuration	of	docker-maven-plugin.	It	will	make	our	job	easier	when	building	services	for	various
platforms.	We	need	to	configure	the	following	four	properties:

We'll	use	the	Spring	profile	identified	as	Docker.
There	won't	be	any	conflict	of	ports	among	embedded	Tomcat,	since	services	will	be	executed	in
their	own	respective	containers.	We	can	now	use	port	8080.
We	will	prefer	to	use	an	IP	address	to	register	our	services	in	Eureka.	Therefore,	the	Eureka
instance	property	preferIpAddress	will	be	set	to	true.
Finally,	we'll	use	the	Eureka	server	hostname	in	serviceUrl:defaultZone.

To	add	a	Spring	profile	in	your	project,	add	the	following	lines	in	application.yml	after	the	existing
content:

#	For	deployment	in	Docker	containers	

spring:	

		profiles:	docker	

	

server:	

		port:	8080	

	

eureka:	

		instance:	

				preferIpAddress:	true	

		client:	

				serviceUrl:	

						defaultZone:	http://eureka:8761/eureka/	

The	mvn	-P	docker	clean	package	command	will	generate	the	service	JAR	with	Tomcat's	8080	port	and	will	get
registered	on	the	Eureka	Server	with	the	hostname	eureka.

Now,	let's	configure	the	docker-maven-plugin	to	build	the	image	with	our	restaurant	microservice.	This
plugin	has	to	create	a	Dockerfile	first.	The	Dockerfile	is	configured	in	two	places—in	the	pom.xml	and
docker-assembly.xml	files.	We'll	use	the	following	plugin	configuration	in	pom.xml:

<properties>	

<!--	For	Docker	hub	leave	empty;	use	"localhost:5000/"	for	a	local	Docker	Registry	-->	

		<docker.registry.name>localhost:5000/</docker.registry.name>	

		<docker.repository.name>${docker.registry.name}sourabhh	/${project.artifactId}</docker.repository.name>	

</properties>	

https://github.com/rhuss/docker-maven-plugin
https://github.com/alexec/docker-maven-plugin
https://github.com/spotify/docker-maven-plugin

...	

<plugin>	

		<groupId>org.jolokia</groupId>	

		<artifactId>docker-maven-plugin</artifactId>	

		<version>0.13.7</version>	

		<configuration>	

				<images>	

							

				</images>	

		</configuration>	

</plugin>	

Create	a	Dockerfile	before	the	Docker	Maven	plugin	configuration	that	extends	the	JRE	8	(java:8-jre)
base	image.	This	exposes	ports	8080	and	8081.

Next,	we'll	configure	the	docker-assembly.xml	file,	which	tells	the	plugin	which	files	should	be	put	into	the
container.	It	will	be	placed	under	the	src/main/docker	directory:

<assembly	xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

		xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2	http://maven.apache.org/xsd/assembly-1.1.2.xsd">	

		<id>${project.artifactId}</id>	

		<files>	

				<file>	

						<source>{basedir}/target/${project.build.finalName}.jar</source>	

						<outputDirectory>/</outputDirectory>	

				</file>	

				<file>	

						<source>src/main/resources/docker-config.yml</source>	

						<outputDirectory>/</outputDirectory>	

				</file>	

		</files>	

</assembly>	

The	preceding	assembly,	adds	the	service	JAR	and	the	docker-config.yml	file	in	the	generated	Dockerfile.
This	Dockerfile	is	located	under	target/docker/.	On	opening	this	file,	you	will	find	the	content	to	be
similar	to	this:

FROM	java:8-jre	

MAINTAINER	sourabhh	

EXPOSE	8080	

COPY	maven	/maven/	

CMD	java	-jar	\	

		/maven/restaurant-service.jar	server	\	

		/maven/docker-config.yml	

The	preceding	file	can	be	found	in	the	restaurant-service\target\docker\sousharm\restaurant-service\PACKT-

SNAPSHOT\build	directory.	The	build	directory	also	contains	the	maven	directory,	which	contains	everything
mentioned	in	the	docker-assembly.xml	file.

Let's	build	the	Docker	image:

mvn	docker:build

		

Once	this	command	completes,	we	can	validate	the	image	in	the	local	repository	using	Docker	images,
or	by	running	the	following	command:

docker	run	-it	-p	8080:8080	sourabhh/restaurant-service:PACKT-SNAPSHOT

		

Use	-it	to	execute	this	command	in	the	foreground,	in	place	of	-d.

Running	Docker	using	Maven
To	execute	a	Docker	image	with	Maven,	we	need	to	add	the	following	configuration	in	the	pom.xml	file.
The	<run>	block,	to	be	put	where	we	marked	the	To	Do	under	the	image	block	of	docker-maven-plugin	section
in	the	pom.xml	file:

<properties>	

		<docker.host.address>localhost</docker.host.address>	

		<docker.port>8080</docker.port>	

</properties>	

...	

<run>	

		<namingStrategy>alias</namingStrategy>	

		<ports>	

				<port>${docker.port}:8080</port>	

		</ports>	

		<wait>	

				<url>http://${docker.host.address}:${docker.port}/v1/restaurants/1</url>	

				<time>100000</time>	

		</wait>	

		<log>	

				<prefix>${project.artifactId}</prefix>	

				<color>cyan</color>	

		</log>	

</run>	

Here,	we	have	defined	the	parameters	for	running	our	Restaurant	service	container.	We	have	mapped
Docker	container	ports	8080	and	8081	to	the	host	system's	ports,	which	allows	us	to	access	the	service.
Similarly,	we	have	also	bound	the	container's	log	directory	to	the	host	system's	<home>/logs	directory.

The	Docker	Maven	plugin	can	detect	whether	the	container	has	finished	starting	up	by	polling	the	ping
URL	of	the	admin	backend	until	it	receives	an	answer.

Please	note	that	the	Docker	host	is	not	localhost	if	you	are	using	DockerToolbox	or	boot2docker	on
Windows	or	MacOS	X.	You	can	check	the	Docker	image	IP	by	executing	docker-machine	ip	default.	It	is
also	shown	while	starting	up.

The	Docker	container	is	ready	to	start.	Use	the	following	command	to	start	it	using	Maven:

mvn	docker:start

Integration	testing	with	Docker
Starting	and	stopping	a	Docker	container	can	be	done	by	binding	the	following	executions	to	the	docker-
maven-plugin	life	cycle	phase	in	pom.xml:

<execution>	

		<id>start</id>	

		<phase>pre-integration-test</phase>	

		<goals>	

				<goal>build</goal>	

				<goal>start</goal>	

		</goals>	

</execution>	

<execution>	

		<id>stop</id>	

		<phase>post-integration-test</phase>	

		<goals>	

				<goal>stop</goal>	

		</goals>	

</execution>	

We	will	now	configure	the	Failsafe	plugin	to	perform	integration	testing	with	Docker.	This	allows	us	to
execute	the	integration	tests.	We	are	passing	the	service	URL	in	the	service.url	tag,	so	that	our
integration	test	can	use	it	to	perform	integration	testing.

We'll	use	the	DockerIntegrationTest	marker	to	mark	our	Docker	integration	tests.	It	is	defined	as	follows:

package	com.packtpub.mmj.restaurant.resources.docker;	

	

public	interface	DockerIT	{	

				//	Marker	for	Docker	integration	Tests	

}	

Look	at	the	following	integration	plugin	code.	You	can	see	that	DockerIT	is	configured	for	the	inclusion	of
integration	tests	(Failsafe	plugin),	whereas	it	is	used	for	excluding	in	unit	tests	(Surefire	plugin):

<plugin>	

																<groupId>org.apache.maven.plugins</groupId>	

																<artifactId>maven-failsafe-plugin</artifactId>	

																<configuration>	

																				<phase>integration-test</phase>	

																				<groups>com.packtpub.mmj.restaurant.resources.docker.DockerIT</groups>	

																				<systemPropertyVariables>	

																								<service.url>http://${docker.host.address}:${docker.port}/</service.url>	

																				</systemPropertyVariables>	

																</configuration>	

																<executions>	

																				<execution>	

																								<goals>	

																												<goal>integration-test</goal>	

																												<goal>verify</goal>	

																								</goals>	

																				</execution>	

																</executions>	

							</plugin>	

							<plugin>	

																<groupId>org.apache.maven.plugins</groupId>	

																<artifactId>maven-surefire-plugin</artifactId>	

																<configuration>													<excludedGroups>com.packtpub.mmj.restaurant.resources.docker.DockerIT</excludedGroups>	

																</configuration>	

</plugin>	

	

A	simple	integration	test	looks	like	this:

@Category(DockerIT.class)	

public	class	RestaurantAppDockerIT	{	

	

				@Test	

				public	void	testConnection()	throws	IOException	{	

								String	baseUrl	=	System.getProperty("service.url");	

								URL	serviceUrl	=	new	URL(baseUrl	+	"v1/restaurants/1");	

								HttpURLConnection	connection	=	(HttpURLConnection)	serviceUrl.openConnection();	

								int	responseCode	=	connection.getResponseCode();	

								assertEquals(200,	responseCode);	

				}	

}	

You	can	use	the	following	command	to	perform	integration	testing	using	Maven	(please	make	sure	to
run	mvn	clean	install	from	the	root	of	the	project	directory	before	running	integration	tests):

mvn	integration-test

		

Pushing	the	image	to	a	registry
Add	the	following	tags	under	docker-maven-plugin	to	publish	the	Docker	image	to	the	Docker	hub:

<execution>	

		<id>push-to-docker-registry</id>	

		<phase>deploy</phase>	

		<goals>	

				<goal>push</goal>	

		</goals>	

</execution>	

You	can	skip	JAR	publishing	by	using	the	following	configuration	for	maven-deploy-plugin:

<plugin>	

		<groupId>org.apache.maven.plugins</groupId>	

		<artifactId>maven-deploy-plugin</artifactId>	

		<version>2.7</version>	

		<configuration>	

				<skip>true</skip>	

		</configuration>	

</plugin>	

Publishing	a	Docker	image	in	the	Docker	hub	also	requires	a	username	and	password:

mvn	-Ddocker.username=<username>	-Ddocker.password=<password>	deploy

You	can	also	push	a	Docker	image	to	your	own	Docker	registry.	To	do	this,	add
the	docker.registry.name	tag,	as	shown	in	the	following	code.	For	example,
if	your	Docker	registry	is	available	at	xyz.domain.com	on	port	4994,	then	define
it	by	adding	the	following	line	of	code:

<docker.registry.name>xyz.domain.com:4994</docker.registry.name>	

This	does	the	job	and	we	can	not	only	deploy,	but	also	test	our	Dockerized	service.

Managing	Docker	containers
Each	microservice	will	have	its	own	Docker	container.	Therefore,	we'll	use	Docker	Compose	to	manage	our
containers.

Docker	Compose	will	help	us	to	specify	the	number	of	containers	and	how	these	will	be	executed.	We
can	specify	the	Docker	image,	ports,	and	each	container's	links	to	other	Docker	containers.

We'll	create	a	file	called	docker-compose.yml	in	our	root	project	directory	and	add	all	of	the	microservice
containers	to	it.	We'll	first	specify	the	Eureka	server,	as	follows:

eureka:	

		image:	localhost:5000/sourabhh/eureka-server	

		ports:	

				-	"8761:8761"	

Here,	image	represents	the	published	Docker	image	for	the	Eureka	server	and	ports	represents	the
mapping	between	the	host	being	used	for	executing	the	Docker	image	and	the	Docker	host.

This	will	start	the	Eureka	server	and	publish	the	specified	ports	for	external	access.

Now	our	services	can	use	these	containers	(dependent	containers	such	as	Eureka).	Let's	see	how
restaurant-service	can	be	linked	to	dependent	containers.	It	is	simple;	just	use	the	links	directive:

restaurant-service:	

		image:	localhost:5000/sourabhh/restaurant-service	

		ports:	

				-	"8080:8080"	

		links:	

				-	eureka	

The	preceding	links	declaration	will	update	the	/etc/hosts	file	in	the	restaurant-service	container	with	one
line	per	service	that	the	restaurant-service	depends	on	(let's	assume	the	security	container	is	also	linked),
for	example:

192.168.0.22		security	

192.168.0.31		eureka	

If	you	don't	have	a	Docker	local	registry	set	up,	then	please	do	this	first	for	issueless	or
smoother	execution.

Build	the	docker	local	registry	by	running	the	following	command:

docker	run	-d	-p	5000:5000	--restart=always	--name	registry	registry:2

Then,	perform	push	and	pull	commands	for	the	local	images:

docker	push	localhost:5000/sourabhh/restaurant-service:PACKT-	SNAPSHOT

docker-compose	pull

Finally,	execute	docker-compose:
docker-compose	up	-d

Once	all	of	the	microservice	containers	(service	and	server)	are	configured,	we	can	start	all	Docker
containers	with	a	single	command:

docker-compose	up	-d

This	will	start	up	all	Docker	containers	configured	in	Docker	Composer.	The	following	command	will
list	them:

docker-compose	ps

Name																																										Command

																State											Ports

onlinetablereservation5_eureka_1									/bin/sh	-c	java	-jar									...															Up						0.0.0.0:8761->8761/tcp

				

onlinetablereservation5_restaurant-service_1		/bin/sh	-c	java	-jar							...			Up						0.0.0.0:8080->8080/tcp

		

You	can	also	check	Docker	image	logs	using	the	following	command:

docker-compose	logs

[36mrestaurant-service_1	|	←[0m2015-12-23	08:20:46.819		INFO	7	---	[pool-3-thread-1]	com.netflix.discovery.DiscoveryClient				:	DiscoveryClient_RESTAURANT-SERVICE/172.17

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce	-	Re-registering	apps/RESTAURANT-SERVICE

[36mrestaurant-service_1	|	←[0m2015-12-23	08:20:46.820		INFO	7	---	[pool-3-thread-1]	com.netflix.discovery.DiscoveryClient				:	DiscoveryClient_RESTAURANT-SERVICE/172.17

0.4:restaurant-service:93d93a7bd1768dcb3d86c858e520d3ce:	registering	service...

[36mrestaurant-service_1	|	←[0m2015-12-23	08:20:46.917		INFO	7	---	[pool-3-thread-1]	com.netflix.discovery.DiscoveryClient				:	DiscoveryClient_RESTAURANT-SERVICE/172.17

		

References
The	following	links	will	give	you	more	information:

Netflix	Ribbon:	https://github.com/Netflix/ribbon
Netflix	Zuul:	https://github.com/Netflix/zuul
RabbitMQ:	https://www.rabbitmq.com/download.html
Hystrix:	https://github.com/Netflix/Hystrix
Turbine:	https://github.com/Netflix/Turbine
Docker:	https://www.docker.com/

https://github.com/Netflix/ribbon
https://github.com/Netflix/zuul
https://www.rabbitmq.com/download.html
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Turbine
https://www.docker.com/

Summary
In	this	chapter,	we	have	learned	about	various	microservice	management	features:	load	balancing,	edge
(gateway)	servers,	circuit	breakers,	and	monitoring.	You	should	now	know	how	to	implement	load
balancing	and	routing	after	going	through	this	chapter.	We	have	also	learned	how	edge	servers	can	be
set	up	and	configured.	The	failsafe	mechanism	is	another	important	part	that	you	have	learned	in	this
chapter.	Deployment	can	be	made	simple	by	using	Docker	or	any	other	container.	Docker	was
demonstrated	and	integrated	using	Maven	Build.

From	a	testing	point	of	view,	we	performed	the	integration	testing	on	the	Docker	image	of	the	service.
We	also	explored	the	way	we	can	write	clients	such	as	RestTemplate	and	Netflix	Feign.

In	the	next	chapter,	we	will	learn	to	secure	the	microservices	with	respect	to	authentication	and
authorization.	We	will	also	explore	the	other	aspects	of	microservice	securities.

Reactive	Microservices
In	this	chapter,	we'll	implement	reactive	microservices	using	Spring	Boot,	Spring	Stream,	Apache
Kafka,	and	Apache	Avro.	We'll	make	use	of	the	existing	Booking	microservice	to	implement	the
message	producer,	or	in	other	words,	generate	the	event.	We'll	also	create	a	new	microservice	(Billing)
for	consuming	the	messages	produced	by	the	updated	Booking	microservice,	or	we	can	say,	for
consuming	the	event	generated	by	the	Booking	microservice.	We'll	also	discuss	the	tradeoffs	between
REST-based	microservice	and	event-based	microservice.

In	this	chapter,	we	will	cover	the	following	topics:

An	overview	of	the	reactive	microservice	architecture
Producing	an	event
Consuming	the	event

An	overview	of	the	reactive	microservice
architecture
So	far,	the	microservices	we	have	developed	are	based	on	REST.	We	have	used	REST	for	both	internal
(inter-microservice,	where	one	microservice	communicates	with	another	microservice	in	the	same
system)	and	external	(through	the	public	API)	communication.	At	present,	REST	fits	best	for	the	public
API.	Are	there	other	alternatives	for	inter-microservices	communication?	Is	it	the	best	approach	to
implement	the	REST	for	inter-microservices	communication?	We'll	discuss	all	this	in	this	section.

You	can	build	microservices	that	are	purely	asynchronous.	You	can	build	microservice-based	systems
that	would	communicate	based	on	events.	There	is	a	tradeoff	between	REST	and	event-based
microservices.	REST	provides	synchronous	communication,	whereas	reactive	microservices	are	based
on	asynchronous	communication	(asynchronous	message	passing).

We	can	use	asynchronous	communication	for	inter-microservice	communication.	Based	on	the
requirement	and	functionality,	we	can	choose	REST	or	asynchronous	message	passing.	Consider	the
example	case	of	a	user	placing	an	order,	which	makes	a	very	good	case	for	implementing	reactive
microservices.	On	successful	order	placement,	the	inventory	service	would	recalculate	the	available
items;	account	service	would	maintain	the	transaction,	correspondence	service	would	send	the	messages
(SMS,	emails,	and	so	on)	to	all	involved	users	such	as	a	customer	and	a	supplier.	In	this	case,	more	than
one	microservice	may	perform	distinct	operations	(inventory,	accounts,	messaging,	and	so	on)	based	on
an	operation	(order	placement)	performed	in	one	microservice.	Now,	just	think	if	all	these
communications	were	synchronous.	Instead,	reactive	communication,	with	asynchronous	message
passing,	provides	efficient	use	of	hardware	resources,	non-blocking,	low	latency,	and	high	throughput
operations.

We	can	primarily	divide	the	microservice	implementations	into	two	groups—REST-based	microservices
and	event-based/message-driven	microservices.	Reactive	microservices	are	event-based.

Reactive	manifesto

Reactive	microservices	are	based	on	the	Reactive	Manifesto	(https://www.reactivemanifesto.org/).	The
Reactive	Manifesto	comprises	of	four	principles,	which	we	will	now	discuss.

https://www.reactivemanifesto.org/

Responsive
Responsiveness	is	the	characteristic	of	serving	a	request	in	a	timely	manner.	It	is	measured	by	the
latency.	The	producer	should	provide	the	response	in	time	and	the	consumer	should	receive	the	response
in	time.	A	failure	in	the	chain	of	operations	performed	for	a	request	should	not	cause	a	delay	in	response
or	failure.	Therefore,	it	is	very	important	for	availability	of	services.

Resilient
A	resilient	system	is	a	robust	system.	The	resilient	principle	is	in	line	with	the	responsive	principle.	A
microservice,	despite	failures,	should	provide	the	response,	and	if	one	instance	of	the	microservice	gets
down,	the	request	should	be	served	by	another	node	of	the	same	microservice.	A	resilient	microservice
system	is	capable	of	handling	all	kinds	of	failures.	All	services	should	be	monitored	for	detecting
failures	and	all	failures	should	be	handled.	We	have	used	the	service	discovery	eureka	for	monitoring
and	Hystrix	for	circuit	breaker	pattern	implementation	in	the	last	chapter.

Elastic
A	reactive	system	is	elastic	if	it	reacts	to	the	load	by	utilizing	the	hardware	and	other	resources
optimally.	It	can	bring	up	new	instances	of	a	microservice	or	microservices	if	the	demand	increases	and
vice	versa.	On	special	sales	days,	such	as	Black	Friday,	Christmas,	Diwali,	and	so	on,	a	reactive
shopping	application	would	instantiate	a	greater	number	of	microservice	nodes	in	order	to	share	the	load
of	increased	requests.	On	normal	days,	the	shopping	application	may	not	require	a	bigger	number	of
resources	than	on	average,	hence	it	can	reduce	the	number	of	nodes.	Therefore,	for	effectively	using	the
hardware,	a	reactive	system	should	be	elastic	in	nature.

Message	driven
A	reactive	system	would	sit	idle	if	it	has	nothing	to	do;	it	would	not	use	the	resources	unnecessarily	if	it
was	not	supposed	to	do	anything.	An	event	or	a	message	may	make	a	reactive	microservice	active	and
then	start	working	(reacting)	on	the	received	event/message	(request).	Ideally,	communication	should	be
asynchronous	and	non-blocking	by	nature.	A	reactive	system	uses	messages	for	communication—
asynchronous	message	passing.	In	this	chapter,	we'll	use	the	Apache	Kafka	for	messaging.

Ideally,	a	reactive	programming	language	is	the	best	way	to	implement	the	reactive	microservices.	A
reactive	programming	language	provides	asynchronous	and	non-blocking	calls.	Java	could	also	be	used
for	developing	the	reactive	microservices	with	the	use	of	Java	streaming	feature.	Kafka	would	be	used
for	messaging	with	Kafka's	Java	libraries	and	plugins.	We	have	already	implemented	service	discovery
and	registry	service	(Eureka	Server-monitoring),	the	proxy	server	(Zuul)	with	Eureka	for	elasticity,	and
Hystrix	with	Eureka	for	Circuit	Breaker	(resilient	and	responsive).	In	the	next	section,	we	will
implement	the	message-driven	microservices.

Implementing	reactive	microservices
Reactive	microservice	performs	operations	in	response	to	events.	We'll	make	changes	in	our	code	to
produce	and	consume	events	for	our	sample	implementation.	Although	we'll	create	a	single	event,	a
microservice	can	have	multiple	producers	or	consumer	events.	Also,	a	microservice	can	have	both
producer	and	consumer	events.	We'll	make	use	of	the	existing	functionality	in	the	Booking	microservice
that	creates	the	new	booking	(POST	/v1/booking).	This	will	be	our	event	source	and	would	make	use	of
Apache	Kafka	for	sending	this	event.	Other	microservices	can	consume	this	event	by	listening	to	the
event.	On	successful	booking	call,	the	Booking	microservice	will	produce	the	Kafka	topic	(event)
amp.bookingOrdered.	We'll	create	a	new	microservice	Billing	(in	the	same	way	in	which	we	created	the	other
microservices	like	Booking)	for	consuming	this	event	(amp.bookingOrdered).

Producing	an	event
An	object	would	be	sent	to	Kafka	once	an	event	is	produced.	Similarly,	Kafka	would	send	this	produced
object	to	all	listeners	(microservices).	In	short,	the	produced	object	travels	over	the	network.	Therefore,
we	need	serialization	support	for	these	objects.	We'll	make	use	of	Apache	Avro	for	data	serialization.	It
defines	the	data	structure	(schema)	in	the	JSON	format	and	also	provides	a	plugin	for	both	Maven	and
Gradle	to	generate	Java	classes	using	JSON	schema.	Avro	works	well	with	Kafka	because	both	Avro
and	Kafka	are	Apache	products	and	align	well	with	each	other	for	integration.

Let's	start	with	defining	the	schema	that	represents	the	object	sent	over	the	network	when	a	new
booking	is	created.	As	shared	earlier	for	producing	the	event,	we'll	make	use	of	the	existing	Booking
microservice.	We'll	create	the	Avro	schema	file	bookingOrder.avro	in	src/main/resources/avro	directory	in
Booking	microservice.

The	bookingOrder.avro	file	will	look	something	like	this:

{"namespace":	"com.packtpub.mmj.booking.domain.valueobject.avro",	

	"type":	"record",	

	"name":	"BookingOrder",	

	"fields":	[

					{"name":	"id",	"type":	"string"},	

					{"name":	"name",	"type":	"string",	"default":	""},	

					{"name":	"userId",	"type":	"string",	"default":	""},	

					{"name":	"restaurantId",	"type":	"string",	"default":	""},	

					{"name":	"tableId",	"type":	"string",	"default":	""},	

					{"name":	"date",	"type":	["null",	"string"],	"default":	null},	

					{"name":	"time",	"type":	["null",	"string"],	"default":	null}	

]	

}		

Here,	namespace	represents	the	package	type	which	is	record	represents	the	class,	name	represents	the	name
of	the	class,	and	fields	represent	the	properties	of	the	class.	When	we	generate	the	Java	class	using	this
schema,	it	would	create	the	new	Java	class	BookingOrder.java	in	the
com.packtpub.mmj.booking.domain.valueobject.avro	package,	with	all	properties	defined	in	fields.

In	fields	too,	we	have	name	and	type	that	represent	the	name	and	type	of	the	property.	For	all	fields,	we
have	used	the	input	type	as	string.	You	could	also	use	other	primitive	types	such	as	boolean,	int,	and	double.
Also,	you	can	use	complex	types	such	as	record	(used	in	the	preceding	code	snippet),	enum,	array,	and	map.
The	default	type	represents	the	default	value	of	the	property.

The	preceding	schema	would	be	used	to	generate	the	Java	code.	We'll	make	use	of	the	avro-maven-plugin	to
generate	the	Java	source	files	from	the	preceding	Avro	schema.	We'll	add	this	plugin	in	the	plugins
section	of	the	child	pom	files	(service's	pom.xml):

<plugin>	

				<groupId>org.apache.avro</groupId>	

				<artifactId>avro-maven-plugin</artifactId>	

				<version>1.8.2</version>	

				<executions>	

								<execution>	

												<phase>generate-sources</phase>	

												<goals>	

																<goal>schema</goal>	

												</goals>	

												<configuration>	

															<sourceDirectory>${project.basedir}/src/main/resources/avro/</sourceDirectory>	

															<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>	

												</configuration>	

								</execution>	

				</executions>	

</plugin>	

You	can	see	that	in	the	configuration	section,	sourceDirectory	and	outputDirectory	are	configured.	Therefore,
when	we	run	mvn	package,	it	would	create	the	BookingOrder.java	file	in	the
com.packtpub.mmj.booking.domain.valueobject.avro	package	located	inside	the	configured	outputDirectory.

Now	that	our	Avro	schema	and	the	generated	Java	source	is	available	to	us,	we'll	add	Maven
dependencies	that	are	required	for	producing	the	event.

Adding	dependency	in	the	Booking	microservice	pom.xml	file:

...	

<dependency>	

				<groupId>org.apache.avro</groupId>	

				<artifactId>avro</artifactId>	

				<version>1.8.2</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-stream</artifactId>	

				<version>2.0.0.M1</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-stream-kafka</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.apache.kafka</groupId>	

				<artifactId>kafka-clients</artifactId>	

				<version>0.11.0.1</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-stream-schema</artifactId>	

</dependency>	

...	

Here,	we	have	added	the	three	main	dependencies:	avro,	spring-cloud-stream,	and	kafka-clients.	Also,	we
have	added	stream	integration	with	Kafka	(spring-cloud-starter-stream-kafka)	and	stream	support	schema
(spring-cloud-stream-schema).

Now,	since	our	dependencies	are	in	place,	we	can	start	writing	producer	implementation.	Booking
microservice	would	send	the	amp.bookingOrdered	event	to	the	Kafka	stream.	We'll	declare	the	message
channel	for	this	purpose.	It	can	be	done	either	using	Source.OUTPUT	with	the	@InboundChannelAdapter	annotation
or	by	declaring	the	Java	interface.	We'll	use	the	interface	approach	because	it	is	easier	to	understand	and
correlate.

We'll	create	the	BookingMessageChannels.java	message	channel	in	the
com.packtpub.mmj.booking.domain.service.message	package.	Here,	we	can	add	all	the	message	channels	that	are
required.	Since	we	are	using	the	single	event	for	sample	implementation,	we	have	to	just	declare	the
bookingOrderOutput.

The	BookingMessageChannels.java	file	will	look	something	like	this:

package	com.packtpub.mmj.booking.domain.message;	

	

import	org.springframework.cloud.stream.annotation.Output;	

import	org.springframework.messaging.MessageChannel;	

	

public	interface	BookingMessageChannels	{	

	

				public	final	static	String	BOOKING_ORDER_OUTPUT	=	"bookingOrderOutput";	

	

				@Output(BOOKING_ORDER_OUTPUT)	

				MessageChannel	bookingOrderOutput();	

}	

Here,	we	have	just	defined	the	name	of	the	message	channel,	bookingOrderOutput,	using	the	@Output
annotation.	We	also	need	to	configure	this	message	channel	in	application.yaml.	We'll	use	this	name	to
define	the	Kafka	topic	in	the	application.yaml	file:

spring:	

		cloud:	

				stream:	

								bindings:	

												bookingOrderOutput:	

																destination:	amp.bookingOrdered	

Here,	the	Kafka	topic	name	amp.bookingOrdered	is	given	that	is	bound	to	the	bookingOrderOutput	message
channel.	(Kafka	topic	name	could	be	any	string.	We	prefix	amp	to	denote	asynchronous	message	passing;
you	can	use	Kafka	topic	name	with	or	without	prefix.)

We	also	need	a	message	converter	that	would	send	the	BookingOrder	object	to	Kafka.	For	this	purpose,
we'll	create	an	@Bean	annotation	that	would	return	the	Spring	MessageConverter	in	the	Booking	service	main
class.

The	@Bean	annotation	in	BookingApp.class	file	will	look	something	like	this:

...	

@Bean	

public	MessageConverter	bookingOrderMessageConverter()	throws	IOException	{	

				LOG.info("avro	message	converter	bean	initialized.");	

				AvroSchemaMessageConverter	avroSchemaMessageConverter	=	new	AvroSchemaMessageConverter(MimeType.valueOf("application/bookingOrder.v1+avro"));	

				avroSchemaMessageConverter.setSchemaLocation(new	ClassPathResource("avro/bookingOrder.avsc"));	

				return	avroSchemaMessageConverter;	

}	

...	

You	may	add	more	beans	based	on	required	schemas	for	respective	schemas.	We	have	not	yet
configured	the	Kafka	server	in	application.yaml,	which	is	set	to	localhost.	Let's	do	it.

Configuring	the	Kafka	server	in	the	application.yaml	file:

spring:	

		cloud:	

				stream:	

								kafka:	

												binder:	

																zkNodes:	localhost	

												binder:	

																brokers:	localhost	

Here,	we	have	configured	localhost	for	both	zkNodes	and	brokers;	you	can	change	it	to	the	host	where
Kafka	is	hosted.

We	are	ready	for	sending	the	amp.bookingOrdered	Kafka	topic	to	the	Kafka	server.	For	simplicity,	we'll
directly	add	a	produceBookingOrderEvent	method	that	takes	the	Booking	class	as	a	parameter	in	the
BookingServiceImpl.java	class	(you	need	to	add	the	same	method	signature	in	BookingService.java).	Let's	see
the	code	first.

The	BookingServiceImpl.java	file	is	as	follows:

...	

@EnableBinding(BookingMessageChannels.class)	

public	class	BookingServiceImpl	extends	BaseService<Booking,	String>	

								implements	BookingService	{	

...	

...	

private	BookingMessageChannels	bookingMessageChannels;	

	

@Autowired	

public	void	setBookingMessageChannels(BookingMessageChannels	bookingMessageChannels)	{	

				this.bookingMessageChannels	=	bookingMessageChannels;	

}	

	

@Override	

public	void	add(Booking	booking)	throws	Exception	{	

				...	

				...	

				super.add(booking);	

				produceBookingOrderEvent(booking);	

}	

...	

...					

@Override	

public	void	produceBookingOrderEvent(Booking	booking)	throws	Exception	{	

				final	BookingOrder.Builder	boBuilder	=	BookingOrder.newBuilder();	

				boBuilder.setId(booking.getId());	

				boBuilder.setName(booking.getName());	

				boBuilder.setRestaurantId(booking.getRestaurantId());	

				boBuilder.setTableId(booking.getTableId());	

				boBuilder.setUserId(booking.getUserId());	

				boBuilder.setDate(booking.getDate().toString());	

				boBuilder.setTime(booking.getTime().toString());	

				BookingOrder	bo	=	boBuilder.build();	

				final	Message<BookingOrder>	message	=	MessageBuilder.withPayload(bo).build();	

				bookingMessageChannels.bookingOrderOutput().send(message);	

				LOG.info("sending	bookingOrder:	{}",	booking);	

}	

...	

Here,	we	have	declared	the	bookingMessageChannel	object	that	is	autowired	using	the	setter	method.	The
Spring	cloud	stream	annotation	@EnableBinding	binds	the	bookingOrderOutput	message	channel	declared	in	the
BookingMessageChannels	class.

The	produceBookingOrderEvent	method	is	added,	which	takes	the	booking	object.	Inside	the
produceBookingOrderEvent	method,	the	BookingOrder	object	properties	are	set	using	the	booking	object.	Then	the
message	is	built	using	the	bookingOrder	object.	At	the	end,	the	message	is	sent	to	Kafka	using
bookingMessageChannels.

The	produceBookingOrderEvent	method	is	called	after	the	booking	is	successfully	persisted	in	DB.

To	test	this	functionality,	you	can	run	the	Booking	microservice	with	the	following	command:

java	-jar	booking-service/target/booking-service.jar

Ensure	that	the	Kafka	and	Zookeeper	applications	are	running	properly	on	hosts	and	ports	defined	in	the

application.yaml	file	for	performing	successful	testing.

Then,	fire	a	post	request	(http://<host>:<port>/v1/booking)	for	a	booking	through	any	REST	client	with	the
following	payload:

{	

																"id":	"999999999999",		

																"name":	"Test	Booking	888",		

																"userId":	"3",		

																"restaurantId":	"1",		

																"tableId":	"1",		

																"date":	"2017-10-02",		

																"time":	"20:20:20.963543300"	

}	

	

It	would	produce	the	amp.bookingOrdered	Kafka	topic	(event)	as	shown	in	following	logs	published	on	the
Booking	microservice	console:

2017-10-02	20:22:17.538		INFO	4940	---	[nio-7052-exec-1]	c.p.m.b.d.service.BookingServiceImpl					:	sending	bookingOrder:	{id:	999999999999,	name:	Test	Booking	888,	userId:	3,	restaurantId:	1,	tableId:	1,	date:	2017-10-02,	time:	20:20:20.963543300}	

Similarly,	the	Kafka	console	would	display	the	following	message	that	confirms	that	the	message	is
received	successfully	by	Kafka:

[2017-10-02	20:22:17,646]	INFO	Updated	PartitionLeaderEpoch.	New:	{epoch:0,	offset:0},	Current:	{epoch:-1,	offset-1}	for	Partition:	amp.bookingOrdered-0.	

	

We	can	now	move	to	code	the	consumer	of	the	previously	generated	event.

Consuming	the	event
First,	we'll	add	the	new	module	billing-service	in	the	parent	pom.xml	file	and	create	the	Billing
microservice	the	way	other	microservices	are	created	in	Chapter	5,	Deployment	and	Testing.	Most	of	the
reactive	code	we	have	written	for	the	Booking	microservice	will	be	reused	for	a	Billing	microservice,
such	as	Avro	schema	and	pom.xml	entries.

We'll	add	the	Avro	schema	in	Billing	microservice	in	same	way	we	have	added	it	in	Booking
microservice.	Since	schema	namespace	(package	name)	would	be	the	same	booking	package	in	Billing
microservice,	we	need	to	add	value	com.packtpub.mmj.booking	in	the	scanBasePackages	property	of
@SpringBootApplication	annotation	in	BillingApp.java.	It	would	allow	the	spring	context	to	scan	booking
package	also.

We'll	add	following	dependencies	in	the	Billing	microservice	pom.xml,	which	is	the	same	as	we	have
added	in	Booking	microservice.

The	pom.xml	file	for	Billing	microservice	is	as	follows:

...	

...	

<dependency>	

				<groupId>org.apache.avro</groupId>	

				<artifactId>avro</artifactId>	

				<version>1.8.2</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-stream</artifactId>	

				<version>2.0.0.M1</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-stream-kafka</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.apache.kafka</groupId>	

				<artifactId>kafka-clients</artifactId>	

				<version>0.11.0.1</version>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-stream-schema</artifactId>	

</dependency>	

...	

...	

You	can	refer	to	the	booking	service	dependency	paragraph	for	the	reason	behind	the	addition	of	these
dependencies.

Next,	we'll	add	the	message	channel	in	the	Billing	microservice,	as	shown	here:

package	com.packtpub.mmj.billing.domain.message;	

	

import	org.springframework.cloud.stream.annotation.Input;	

import	org.springframework.messaging.MessageChannel;	

	

public	interface	BillingMessageChannels	{	

	

				public	final	static	String	BOOKING_ORDER_INPUT	=	"bookingOrderInput";	

	

				@Input(BOOKING_ORDER_INPUT)	

				MessageChannel	bookingOrderInput();	

}	

Here,	we	are	adding	the	input	message	channel	opposite	to	the	message	channel	in	the	booking	service
where	we	have	added	the	output	message	channel.	Note	that	bookingOrderInput	is	an	input	message
channel	marked	with	the	@input	annotation.

Next,	we	want	to	configure	the	bookingOrderInput	channel	to	the	Kafka	topic	amp.BookingOrdered.	We'll
modify	the	application.yaml	for	this	purpose:

	spring:	

		...	

		...	

		cloud:	

				stream:	

								bindings:	

												bookingOrderInput:	

																destination:	amp.bookingOrdered	

																consumer:	

																				resetOffsets:	true	

																group:	

																				${bookingConsumerGroup}	

bookingConsumerGroup:	"booking-service"	

Here,	the	Kafka	topic	is	added	to	the	bookingOrderInput	channel	using	the	destination	property.	We'll	also
configure	Kafka	in	the	Billing	microservice	(application.yaml)	the	way	we	have	configured	it	in	the
Booking	microservice:

								kafka:	

												binder:																

																zkNodes:	localhost	

												binder:	

																brokers:	localhost	

Now,	we'll	add	the	event	listener	that	would	listen	to	the	stream	bound	to	the	bookingOrderInput	message
channel	using	the	@StreamListener	annotation	available	in	the	Spring	Cloud	Steam	library.

The	EventListener.java	file	is	as	follows:

package	com.packtpub.mmj.billing.domain.message;	

	

import	com.packtpub.mmj.billing.domain.service.TweetMapper;	

import	com.packtpub.mmj.billing.domain.service.TweetReceiver;	

import	com.packtpub.mmj.billing.domain.service.WebSocketTweetReceiver;	

import	com.packtpub.mmj.billing.domain.valueobject.TweetInput;	

import	com.packtpub.mmj.booking.domain.valueobject.avro.BookingOrder;	

import	com.packtpub.mmj.booking.domain.valueobject.avro.TweetDto;	

import	org.slf4j.Logger;	

import	org.slf4j.LoggerFactory;	

import	org.springframework.beans.factory.annotation.Autowired;	

import	org.springframework.cloud.stream.annotation.StreamListener;	

	

public	class	EventListener	{	

	

				private	static	final	Logger	LOG	=	LoggerFactory.getLogger(WebSocketTweetReceiver.class);	

	

				@StreamListener(BillingMessageChannels.BOOKING_ORDER_INPUT)	

				public	void	consumeBookingOrder(BookingOrder	bookingOrder)	{	

								LOG.info("Received	BookingOrder:	{}",	bookingOrder);	

				}	

}	

Here,	you	can	also	add	other	event	listeners.	For	example,	we'll	simply	log	the	received	object.	You	may
add	an	additional	functionality	based	on	the	requirement;	you	can	even	produce	a	new	event	again	for
further	processing	if	required.	For	example,	you	can	produce	the	event	to	a	restaurant	for	which	a	new
booking	is	requested,	and	so	on,	through	a	service	that	manages	restaurant	communication.

Finally,	we	can	enable	the	binding	of	the	bookingOrderInput	message	channel	to	stream	using	the
@EnableBinding	annotation	of	the	Spring	Cloud	Stream	library	and	create	the	bean	of	the	EventListener	class
created	in	BillingApp.java	(the	main	class	of	the	billing-service	module)	as	shown	here:

The	BillingApp.java	will	look	something	like	this:

@SpringBootApplication(scanBasePackages	=	{"com.packtpub.mmj.billing",	"com.packtpub.mmj.booking"})	

@EnableBinding({BillingMessageChannels.class})	

public	class	BillingApp	{	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(BillingApp.class,	args);	

				}	

	

				@Bean	

				public	EventListener	eventListener()	{	

								return	new	EventListener();	

				}	

}	

Now,	you	can	start	the	Billing	microservice	and	raise	a	new	POST/v1/booking	REST	call.	You	can	find	the
received	object	in	the	Billing	microservice	log,	as	shown	here:

2017-10-02	20:22:17.728		INFO	6748	---	[-C-1]	c.p.m.b.d.s.WebSocketTweetReceiver							:	Received	BookingOrder:	{"id":	"999999999999",	"name":	"Test	Booking	888",	"userId":	"3",	"restaurantId":	"1",	"tableId":	"1",	"date":	"2017-10-02",	"time":	"20:20:20.963543300"}	

	

References
The	following	links	will	give	you	more	information:

Apache	Kafka:	https://kafka.apache.org/
Apache	Avro:	https://avro.apache.org/
Avro	Specs:	https://avro.apache.org/docs/current/spec.html
Spring	Cloud	Stream:	https://cloud.spring.io/spring-cloud-stream/

https://kafka.apache.org/
https://avro.apache.org/
https://avro.apache.org/docs/current/spec.html
https://cloud.spring.io/spring-cloud-stream/

Summary
In	this	chapter,	you	learned	about	reactive	microservices	or	event-based	microservices.	These	services
work	on	messages/events	rather	than	REST	calls	over	HTTP.	They	provide	asynchronous
communication	among	services,	which	provide	non-blocking	communication	and	allow	better	usage	of
resources	and	failure	handling.

We	have	made	use	of	Apache	Avro	and	Apache	Kafka	with	Spring	Cloud	Stream	libraries	for
implementing	the	reactive	microservices.	We	have	added	the	code	in	the	existing	booking-service	module
for	producing	the	amp.bookingOrdered	messages	under	the	Kafka	topic	and	added	new	module	billing-service
for	consuming	the	same	event.

You	may	want	to	add	a	new	event	for	producers	and	consumers.	You	can	add	multiple	consumers	for	an
event	or	create	a	chain	of	events	as	exercise.

In	the	next	chapter,	you	will	learn	to	secure	the	microservices	with	respect	to	authentication	and
authorization.	We	will	also	explore	the	other	aspects	of	microservice	securities.

Securing	Microservices
As	you	know,	microservices	are	the	components	that	we	deploy	in	on-premises	or	cloud	infrastructures.
Microservices	may	offer	APIs	or	web	applications.	Our	sample	application,	OTRS,	offers	APIs.	This
chapter	will	focus	on	how	to	secure	these	APIs	using	Spring	Security	and	Spring	OAuth2.	We'll	also
focus	on	OAuth	2.0	fundamentals,	using	OAuth	2.0	to	secure	the	OTRS	APIs.	For	more	understanding
on	securing	REST	APIs,	you	can	refer	to	the	RESTful	Java	Web	Services	Security,	Packt	Publishing
book.	You	can	also	refer	to	the	Spring	Security,	Packt	Publishing	video	for	more	information	on	Spring
Security.	We'll	also	learn	about	cross-origin	request	site	filters	and	cross-site	scripting	blockers.

In	this	chapter,	we	will	cover	the	following	topics:

Enabling	Secure	Socket	Layer	(SSL)
Authentication	and	authorization
OAuth	2.0

Enabling	Secure	Socket	Layer
So	far,	we	have	used	the	Hyper	Text	Transfer	Protocol	(HTTP).	HTTP	transfers	data	in	plain	text,	but
data	transfer	over	the	internet	in	plain	text	is	not	a	good	idea	at	all.	It	makes	hacker's	jobs	easy	and
allows	them	to	get	your	private	information,	such	as	your	user	ID,	passwords,	and	credit	card	details
easily	using	a	packet	sniffer.

We	definitely	don't	want	to	compromise	user	data,	so	we	will	provide	the	most	secure	way	to	access	our
web	application.	Therefore,	we	need	to	encrypt	the	information	that	is	exchanged	between	the	end	user
and	our	application.	We'll	use	Secure	Socket	Layer	(SSL)	or	Transport	Security	Layer	(TSL)	to
encrypt	the	data.

SSL	is	a	protocol	designed	to	provide	security	(encryption)	for	network	communications.	HTTP
associates	with	SSL	to	provide	the	secure	implementation	of	HTTP,	known	as	Hyper	Text	Transfer
Protocol	Secure,	or	Hyper	Text	Transfer	Protocol	over	SSL	(HTTPS).	HTTPS	makes	sure	that	the
privacy	and	integrity	of	the	exchanged	data	is	protected.	It	also	ensures	the	authenticity	of	websites
visited.	This	security	centers	around	the	distribution	of	signed	digital	certificates	between	the	server
hosting	the	application,	the	end	user's	machine,	and	a	third-party	trust	store	server.	Let's	see	how	this
process	takes	place:

1.	 The	end	user	sends	the	request	to	the	web	application,	for	example	http://twitter.com,	using	a	web
browser

2.	 On	receiving	the	request,	the	server	redirects	the	browser	to	https://twitter.com	using	the	HTTP	code
302

3.	 The	end	user's	browser	connects	to	https://twitter.com	and,	in	response,	the	server	provides	the
certificate	containing	the	digital	signature	to	the	end	user's	browser

4.	 The	end	user's	browser	receives	this	certificate	and	checks	it	against	a	list	of	trusted	certificate
authority	(CA)	for	verification

5.	 Once	the	certificate	gets	verified	all	the	way	to	the	root	CA,	an	encrypted	communication	is
established	between	the	end	user's	browser	and	the	application	hosting	server:

http://twitter.com
https://twitter.com
https://twitter.com

Secure	HTTP	communication

Although	SSL	ensures	security	in	terms	of	encryption	and	web	application	authenticity,	it
does	not	safeguard	against	phishing	and	other	attacks.	Professional	hackers	can	decrypt
information	sent	using	HTTPS.

Now,	after	going	over	the	basics	of	SSL,	let's	implement	it	for	our	sample	OTRS	project.	We	don't	need
to	implement	SSL	for	all	microservices.	All	microservices	will	be	accessed	using	our	proxy	or	Edge
server;	Zuul-Server	by	the	external	environment,	except	our	new	microservice,	security-service,	which
we	will	introduce	in	this	chapter	for	authentication	and	authorization.

First,	we'll	set	up	SSL	in	an	Edge	server.	We	need	to	have	the	keystore	that	is	required	for	enabling	SSL
in	embedded	Tomcat.	We'll	use	the	self-signed	certificate	for	demonstration.	We'll	use	Java	keytool	to
generate	the	keystore	using	the	following	command.	You	can	use	any	other	tool	also:

keytool	-genkey	-keyalg	RSA	-alias	selfsigned	-keystore	keystore.jks	-ext	san=dns:localhost	-storepass	password	-validity	365	-keysize	2048

It	asks	for	information	such	as	name,	address	details,	organization,	and	so	on	(see	the	following
screenshot):

The	keytool	generates	keys

Be	aware	of	the	following	points	to	ensure	the	proper	functioning	of	self-signed	certificates:

Use	-ext	to	define	Subject	Alternative	Names	(SANs).	You	can	also	use	an	IP	(for	example,
san=ip:190.19.0.11).	Earlier,	use	of	the	hostname	of	the	machine,	where	application	deployment	takes
place,	was	being	used	as	most	common	name	(CN).	It	prevents	the
java.security.cert.CertificateException	from	returning	No	name	matching	localhost	found.
You	can	use	a	browser	or	OpenSSL	to	download	the	certificate.	Add	the	newly	generated
certificate	to	the	cacerts	keystore,	located	at	jre/lib/security/cacerts	inside	the	active	JDK/JRE	home
directory,	by	using	the	keytool	-importcert	command.	Note	that	changeit	is	the	default	password	for
the	cacerts	keystore.	Run	the	following	command:

keytool	-importcert	-file	path/to/.crt	-alias	<cert	alias>	-		keystore	<JRE/JAVA_HOME>/jre/lib/security/cacerts	-storepass	changeit

Self-signed	certificates	can	be	used	only	for	development	and	testing	purposes.	The	use	of
these	certificates	in	a	production	environment	does	not	provide	the	required	security.
Always	use	the	certificates	provided	and	signed	by	trusted	signing	authorities	in
production	environments.	Store	your	private	keys	safely.

Now,	after	putting	the	generated	keystore.jks	in	the	src/main/resources	directory	of	the	OTRS	project,	along
with	application.yml,	we	can	update	this	information	in	the	Edge	server	application.yml,	as	follows:

server:	

				ssl:	

								key-store:	classpath:keystore.jks	

								key-store-password:	password	

								key-password:	password	

				port:	8765	

Rebuild	the	Zuul-Server	JAR	to	use	the	HTTPS.

The	keystore	file	can	be	stored	in	the	preceding	class	path	in	Tomcat	version	7.0.66+	and
8.0.28+.	For	older	versions,	you	can	use	the	path	of	the	keystore	file	for	the	server:ssl:key-
store	value.

Similarly,	you	can	configure	SSL	for	other	microservices.

Authentication	and	authorization
Providing	authentication	and	authorization	is	de	facto	for	web	applications.	We'll	discuss	authentication
and	authorization	in	this	section.	The	new	paradigm	that	has	evolved	over	the	past	few	years	is	OAuth.
We'll	learn	and	use	OAuth	2.0	for	implementation.	OAuth	is	an	open	authorization	mechanism,
implemented	in	every	major	web	application.	Web	applications	can	access	each	other's	data	by
implementing	the	OAuth	standard.	It	has	become	the	most	popular	way	to	authenticate	oneself	for
various	web	applications.	For	example,	on	https://www.quora.com/,	you	can	register	and	log	in	using	your
Google	or	Twitter	login	IDs.	It	is	also	more	user	friendly,	as	client	applications	(for	example,	https://www.
quora.com/)	don't	need	to	store	the	user's	passwords.	The	end	user	does	not	need	to	remember	one	more
user	ID	and	password.

OAuth	2.0	example	usage

https://www.quora.com/
https://www.quora.com/

OAuth	2.0
The	Internet	Engineering	Task	Force	(IETF)	governs	the	standards	and	specifications	of	OAuth.
OAuth	1.0a	was	the	most	recent	version	before	OAuth	2.0	that	was	having	a	fix	for	the	session-fixation
security	flaw	in	OAuth	1.0.	OAuth	1.0	and	1.0a	are	very	different	from	OAuth	2.0.	OAuth	1.0	relies	on
security	certificates	and	channel	binding,	whereas	OAuth	2.0	does	not	support	security	certification	and
channel	binding.	It	works	completely	on	Transport	Layer	Security	(TLS).	Therefore,	OAuth	2.0	does
not	provide	backward	compatibility.

Usage	of	OAuth
The	various	uses	of	OAuth	are	as	follows:

As	discussed,	it	can	be	used	for	authentication.	You	might	have	seen	it	in	various	applications,
displaying	messages	such	as	sign	in	using	Facebook	or	a	sign	in	using	Twitter.
Applications	can	use	it	to	read	data	from	other	applications,	such	as	by	integrating	a	Facebook
widget	into	the	application,	or	having	a	Twitter	feed	on	your	blog.
Or,	the	opposite	of	the	previous	point	can	be	true:	you	enable	other	applications	to	access	the	end
user's	data.

OAuth	2.0	specification	-	concise	details
We'll	try	to	discuss	and	understand	the	OAuth	2.0	specifications	in	a	concise	manner.	Let's	first	see	how
signing	in	using	Twitter	works.

Please	note	that	the	process	mentioned	here	was	used	at	the	time	of	writing,	and	may	change	in	the
future.	However,	this	process	describes	one	of	the	OAuth	2.0	processes	properly:

1.	 The	user	visits	the	Quora	home	page,	which	shows	various	login	options.	We'll	explore	the	process
of	the	Continue	with	Twitter	link.

2.	 When	the	user	clicks	on	the	Continue	with	Twitter	link,	Quora	opens	a	new	window	(in	Chrome)
that	redirects	the	user	to	the	www.twitter.com	application.	During	this	process,	few	web	applications
redirect	the	user	to	the	same	opened	tab/window.

3.	 In	this	new	window/tab,	the	user	signs	in	to	www.twitter.com	with	their	credentials.
4.	 If	the	user	has	not	already	authorized	the	Quora	application	to	use	their	data,	Twitter	asks	for	the

user's	permission	to	authorize	Quora	to	access	the	user's	information.	If	the	user	has	already
authorized	Quora,	then	this	step	is	skipped.

5.	 After	proper	authentication,	Twitter	redirects	the	user	to	Quora's	redirect	URI	with	an
authentication	code.

6.	 Quora	sends	the	client	ID,	client	secret	token,	and	authentication	code	(sent	by	Twitter	in	step	five)
to	Twitter	when	the	Quora	redirect	URI	is	entered	in	the	browser.

7.	 After	validating	these	parameters,	Twitter	sends	the	access	token	to	Quora.
8.	 The	user	is	logged	in	to	Quora	on	successful	retrieval	of	the	access	token.
9.	 Quora	may	use	this	access	token	to	retrieve	user	information	from	Twitter.

You	must	be	wondering	how	Twitter	got	Quora's	redirect	URI,	client	ID,	and	secret	token.	Quora	works
as	a	client	application	and	Twitter	as	an	authorization	server.	Quora,	as	a	client,	is	registered	on	Twitter
by	using	Twitter's	OAuth	implementation	to	use	resource	owner	(end	user)	information.	Quora	provides
a	redirect	URI	at	the	time	of	registration.	Twitter	provides	the	client	ID	and	secret	token	to	Quora.	In
OAuth	2.0,	user	information	is	known	as	user	resources.	Twitter	provides	a	resource	server	and	an
authorization	server.	We'll	discuss	more	of	these	OAuth	terms	in	the	following	sections.

http://www.twitter.com
http://www.twitter.com

OAuth	2.0	example	process	for	signing	in	with	Twitter

OAuth	2.0	roles
There	are	four	roles	defined	in	the	OAuth	2.0	specifications:

Resource	owner
Resource	server
Client
Authorization	server

OAuth	2.0	roles

Resource	owner
For	the	example	of	a	Quora	sign	in	using	Twitter,	the	Twitter	user	was	the	resource	owner.	The	resource
owner	is	an	entity	that	owns	the	protected	resources	(for	example,	user	handle,	tweets,	and	so	on)	that
are	to	be	shared.	This	entity	can	be	an	application	or	a	person.	We	call	this	entity	the	resource	owner
because	it	can	only	grant	access	to	its	resources.	The	specifications	also	define	that	when	the	resource
owner	is	a	person,	they	are	referred	to	as	an	end	user.

Resource	server
The	resource	server	hosts	the	protected	resources.	It	should	be	capable	of	serving	the	access	requests	to
these	resources	using	access	tokens.	For	the	example	of	a	Quora	sign	in	using	Twitter,	Twitter	is	the
resource	server.

Client
For	the	example	of	the	Quora	sign	in	using	Twitter,	Quora	is	the	client.	The	client	is	the	application	that
makes	access	requests	for	protected	resources	to	the	resource	server	on	behalf	of	the	resource	owner.

Authorization	server
The	authorization	server	provides	different	tokens	to	the	client	application,	such	as	access	tokens	or
refresh	tokens,	only	after	the	resource	owner	authenticates	themselves.

OAuth	2.0	does	not	provide	any	specifications	for	interactions	between	the	resource	server	and	the
authorization	server.	Therefore,	the	authorization	server	and	resource	server	can	be	on	the	same	server,
or	can	be	on	a	separate	one.

A	single	authorization	server	can	also	be	used	to	issue	access	tokens	for	multiple	resource	servers.

OAuth	2.0	client	registration
The	client	that	communicates	with	the	authorization	server	to	obtain	the	access	key	for	a	resource
should	first	be	registered	with	the	authorization	server.	The	OAuth	2.0	specification	does	not	specify	the
way	a	client	registers	with	the	authorization	server.	Registration	does	not	require	direct	communication
between	the	client	and	the	authorization	server.	Registration	can	be	done	using	self-issued	or	third-
party-issued	assertions.	The	authorization	server	obtains	the	required	client	properties	using	one	of	these
assertions.	Let's	see	what	the	client	properties	are:

Client	type	(discussed	in	the	next	section).
Client	redirect	URI,	as	we	discussed	in	the	example	of	a	Quora	sign	in	using	Twitter.	This	is	one	of
the	endpoints	used	for	OAuth	2.0.	We	will	discuss	other	endpoints	in	the	Endpoints	section.
Any	other	information	required	by	the	authorization	server,	for	example,	client	name,	description,
logo	image,	contact	details,	acceptance	of	legal	terms	and	conditions,	and	so	on.

Client	types
There	are	two	types	of	client	described	by	the	specification,	based	on	their	ability	to	maintain	the
confidentiality	of	client	credentials:	confidential	and	public.	Client	credentials	are	secret	tokens	issued
by	the	authorization	server	to	clients	in	order	to	communicate	with	them.	The	client	types	are	described
as	follows:

Confidential	client	type:	This	is	a	client	application	that	keeps	passwords	and	other	credentials
securely	or	maintains	them	confidentially.	In	the	example	of	a	Quora	sign	in	using	Twitter,	the
Quora	application	server	is	secure	and	has	restricted	access	implementation.	Therefore,	it	is	of	the
confidential	client	type.	Only	the	Quora	application	administrator	has	access	to	client	credentials.
Public	client	type:	These	are	client	applications	that	do	not	keep	passwords	and	other	credentials
securely	or	maintain	them	confidentially.	Any	native	app	on	mobile	or	desktop,	or	an	app	that	runs
on	a	browser,	are	perfect	examples	of	the	public	client	type,	as	these	keep	client	credentials
embedded	inside	them.	Hackers	can	crack	these	apps	and	the	client	credentials	can	be	revealed.

A	client	can	be	a	distributed	component-based	application,	for	example,	it	could	have	both	a	web
browser	component	and	a	server-side	component.	In	this	case,	both	components	will	have	different
client	types	and	security	contexts.	Such	a	client	should	register	each	component	as	a	separate	client	if
the	authorization	server	does	not	support	such	clients.

Client	profiles
Based	on	the	OAuth	2.0	client	types,	a	client	can	have	the	following	profiles:

Web	application:	The	Quora	web	application	used	in	the	example	of	a	Quora	sign-in	using	Twitter
is	a	perfect	example	of	an	OAuth	2.0	web	application	client	profile.	Quora	is	a	confidential	client
running	on	a	web	server.	The	resource	owner	(end	user)	accesses	the	Quora	application	(OAuth	2.0
client)	on	the	browser	(user	agent)	using	a	HTML	user	interface	on	their	device	(desktop/tablet/cell
phone).	The	resource	owner	cannot	access	the	client	(Quora	OAuth	2.0	client)	credentials	and
access	tokens,	as	these	are	stored	on	the	web	server.	You	can	see	this	behavior	in	the	diagram	of	the
OAuth	2.0	sample	flow.	See	steps	six	to	eight	in	the	following	figure:

OAuth	2.0	client	web	application	profile

User	agent-based	application:	User	agent-based	applications	are	of	the	public	client	type.	Here
though,	the	application	resides	in	the	web	server,	but	the	resource	owner	downloads	it	on	the	user
agent	(for	example,	a	web	browser)	and	then	executes	the	application.	Here,	the	downloaded
application	that	resides	in	the	user	agent	on	the	resource	owner's	device	communicates	with	the
authorization	server.	The	resource	owner	can	access	the	client	credentials	and	access	tokens.	A
gaming	application	is	a	good	example	of	such	an	application	profile.	The	user	agent	application
flow	is	shown	as	follows:

OAuth	2.0	client	user	agent	application	profile

Native	application:	Native	applications	are	similar	to	user	agent-based	applications,	except	these
are	installed	on	the	resource	owner's	device	and	executed	natively,	instead	of	being	downloaded
from	the	web	server	and	then	executed	inside	the	user	agent.	Many	native	clients	(mobile
applications)	you	download	on	your	mobile	are	of	the	native	application	type.	Here,	the	platform
makes	sure	that	other	applications	on	the	device	do	not	access	the	credentials	and	access	tokens	of
other	applications.	In	addition,	native	applications	should	not	share	client	credentials	and	OAuth
tokens	with	servers	that	communicate	with	native	applications,	as	shown	in	the	following	figure:

OAuth	2.0	client	native	application	profile

Client	identifier
It	is	the	authorization	server's	responsibility	to	provide	a	unique	identifier	to	the	registered	client.	This
client	identifier	is	a	string	representation	of	the	information	provided	by	the	registered	client.	The
authorization	server	needs	to	make	sure	that	this	identifier	is	unique.	The	authorization	server	should
not	use	it	on	its	own	for	authentication.

The	OAuth	2.0	specification	does	not	specify	the	size	of	the	client	identifier.	The	authorization	server
can	set	the	size,	and	it	should	document	the	size	of	the	client	identifier	it	issues.

Client	authentication
The	authorization	server	should	authenticate	the	client	based	on	their	client	type.	The	authorization
server	should	determine	the	authentication	method	that	suits	and	meets	security	requirements.	It	should
only	use	one	authentication	method	in	each	request.

Typically,	the	authorization	server	uses	a	set	of	client	credentials,	such	as	the	client	password	and	some
key	tokens,	to	authenticate	confidential	clients.

The	authorization	server	may	establish	a	client	authentication	method	with	public	clients.	However,	it
must	not	rely	on	this	authentication	method	to	identify	the	client,	for	security	reasons.

A	client	possessing	a	client	password	can	use	basic	HTTP	authentication.	OAuth	2.0	does	not
recommend	sending	client	credentials	in	the	request	body,	but	recommends	using	TLS	and	brute	force
attack	protection	on	endpoints	required	for	authentication.

OAuth	2.0	protocol	endpoints
An	endpoint	is	nothing	but	a	URI	we	use	for	REST	or	web	components,	such	as	Servlet	or	JSP.	OAuth
2.0	defines	three	types	of	endpoints.	Two	are	authorization	server	endpoints	and	one	is	a	client	endpoint:

Authorization	endpoint	(authorization	server	endpoint)
Token	endpoint	(authorization	server	endpoint)
Redirection	endpoint	(client	endpoint)

Authorization	endpoint
This	endpoint	is	responsible	for	verifying	the	identity	of	the	resource	owner	and,	once	verified,
obtaining	the	authorization	grant.	We'll	discuss	the	authorization	grant	in	the	next	section.

The	authorization	server	requires	TLS	for	the	authorization	endpoint.	The	endpoint	URI	must	not
include	the	fragment	component.	The	authorization	endpoint	must	support	the	HTTP	GET	method.

The	specification	does	not	specify	the	following:

The	way	the	authorization	server	authenticates	the	client.
How	the	client	will	receive	the	authorization	endpoint	URI.	Normally,	documentation	contains	the
authorization	endpoint	URI,	or	the	client	obtains	it	at	the	time	of	registration.

Token	endpoint
The	client	calls	the	token	endpoint	to	receive	the	access	token	by	sending	the	authorization	grant	or
refresh	token.	The	token	endpoint	is	used	by	all	authorization	grants	except	the	implicit	grant.

Like	the	authorization	endpoint,	the	token	endpoint	also	requires	TLS.	The	client	must	use	the	HTTP
POST	method	to	make	the	request	to	the	token	endpoint.

Like	the	authorization	endpoint,	the	specification	does	not	specify	how	the	client	will	receive	the	token
endpoint	URI.

Redirection	endpoint
The	authorization	server	redirects	the	resource	owner's	user	agent	(for	example,	a	web	browser)	back	to
the	client	using	the	redirection	endpoint,	once	the	authorization	endpoint's	interactions	are	completed
between	the	resource	owner	and	the	authorization	server.	The	client	provides	the	redirection	endpoint	at
the	time	of	registration.	The	redirection	endpoint	must	be	an	absolute	URI	and	not	contain	a	fragment
component.	The	OAuth	2.0	endpoints	are	as	follows:

OAuth	2.0	endpoints

OAuth	2.0	grant	types
The	client	requests	an	access	token	from	the	authorization	server,	based	on	the	obtained	authorization
from	the	resource	owner.	The	resource	owner	gives	authorization	in	the	form	of	an	authorization	grant.
OAuth	2.0	defines	four	types	of	authorization	grant:

Authorization	code	grant
Implicit	grant
Resource	owner	password	credentials	grant
Client	credentials	grant

OAuth	2.0	also	provides	an	extension	mechanism	to	define	additional	grant	types.	You	can	explore	this
in	the	official	OAuth	2.0	specifications.

Authorization	code	grant
The	first	sample	flow	that	we	discussed	in	the	OAuth	2.0	example	flow	for	signing	in	with	Twitter
depicts	an	authorization	code	grant.	We'll	add	a	few	more	steps	for	the	complete	flow.	As	you	know,
after	the	eighth	step,	the	end	user	logs	in	to	the	Quora	application.	Let's	assume	the	user	is	logging	in	to
Quora	for	the	first	time	and	requests	their	Quora	profile	page:

1.	 After	logging	in,	the	Quora	user	clicks	on	their	Quora	profile	page.
2.	 The	OAuth	client	Quora	requests	the	Quora	user's	(resource	owner)	resources	(for	example,

Twitter	profile	photo,	and	so	on)	from	the	Twitter	resource	server	and	sends	the	access	token
received	in	the	previous	step.

3.	 The	Twitter	resource	server	verifies	the	access	token	using	the	Twitter	authorization	server.
4.	 After	successful	validation	of	the	access	token,	the	Twitter	resource	server	provides	the	requested

resources	to	Quora	(OAuth	client).
5.	 Quora	uses	these	resources	and	displays	the	Quora	profile	page	of	the	end	user.

Authorization	code	requests	and	responses

If	you	look	at	all	of	the	steps	(a	total	of	13)	of	the	authorization	code	flow,	as	shown	in	the	following
figure,	you	can	see	that	there	are	a	total	of	two	requests	made	by	the	client	to	the	authorization	server,
and	the	authorization	server	provides	two	responses:	one	request-response	for	the	authentication	token
and	one	request-response	for	the	access	token.

Let's	discuss	the	parameters	used	for	each	of	these	requests	and	responses:

OAuth	2.0	authorization	code	grant	flow

The	authorization	request	(step	four)	to	the	authorization	endpoint	URI:

Parameter Required/optional Description

response_type Required Code	(this	value	must	be	used).

client_id Required It	represents	the	ID	issued	by	the	authorization	server	to	the	client	at	the
time	of	registration.

redirect_uri Optional It	represents	the	redirect	URI	given	by	the	client	at	the	time	of	registration.

scope Optional The	scope	of	the	request.	If	not	provided,	then	the	authorization	server
provides	the	scope	based	on	the	defined	policy.

The	client	uses	this	parameter	to	maintain	the	client	state	between	the

state Recommended requests	and	callback	(from	the	authorization	server).	The	specification
recommends	it	to	protect	against	cross-site	request	forgery	attacks.

	

Authorization	response	(step	five):

Parameter Required/optional Description

code Required

Code	(authorization	code)	generated	by	the	authorization	server.

Code	should	be	expired	after	it	is	generated;	the	maximum	recommended
lifetime	is	10	minutes.

The	client	must	not	use	the	code	more	than	once.

If	the	client	uses	it	more	than	once,	then	the	request	must	be	denied	and	all
previous	tokens	issued	based	on	the	code	should	be	revoked.

Code	is	bound	to	the	client	ID	and	redirect	URI.

state Required It	represents	the	ID	issued	by	the	authorization	server	to	the	client	at	the
time	of	registration.

Token	request	(step	seven)	to	token	endpoint	URI:

Parameter Required/optional Description

grant_type Required authorization_code	(this	value	must	be	used).

code Required Code	(authorization	code)	received	from	the	authorization	server.

redirect_uri Required Required	if	it	was	included	in	the	authorization	code	request	and	the	values
should	match.

client_id Required It	represents	the	ID	issued	by	the	authorization	server	to	the	client	at	the
time	of	registration.

	

Token	response	(step	8):

Parameter Required/optional Description

access_token Required The	access	token	issued	by	the	authorization	server.

token_type Required The	token	type	defined	by	the	authorization	server.	Based	on	this,	the	client
can	utilize	the	access	token.	For	example,	Bearer	or	Mac.

refresh_token Optional This	token	can	be	used	by	the	client	to	get	a	new	access	token	using	the
same	authorization	grant.

expires_in Recommended

Denotes	the	lifetime	of	the	access	token	in	seconds.	A	value	of	600	denotes
10	minutes	of	lifetime	for	the	access	token.	If	this	parameter	is	not
provided	in	the	response,	then	the	document	should	highlight	the	lifetime
of	the	access	token.

scope Optional/Required

Optional	if	identical	to	the	scope	requested	by	the	client.

Required	if	the	access	token	scope	is	different	from	the	one	the	client
provided	in	their	request	to	inform	the	client	about	the	actual	scope	of	the
access	token	granted.

If	the	client	does	not	provide	the	scope	while	requesting	the	access	token,
then	the	authorization	server	should	provide	the	default	scope,	or	deny	the
request,	indicating	the	invalid	scope.

	

Error	response:

Parameter Required/optional Description

error Required One	of	the	error	codes	defined	in	the	specification,	for	example,
unauthorized_client	or	invalid_scope.

error_description Optional Short	description	of	the	error.

error_uri Optional The	URI	of	the	error	page	describing	the	error.

	

An	additional	error	parameter	state	is	also	sent	in	the	error	response	if	the	state	was	passed	in	the	client
authorization	request.

Implicit	grant
There	are	no	authorization	code	steps	involved	in	the	implicit	grant	flow.	It	provides	the	implicit	grant
for	authorization	code.	Except	the	authorization	code	step,	everything	is	the	same	if	you	compare	the
implicit	grant	flow	against	the	authorization	code	grant	flow.	Therefore,	it	is	called	implicit	grant.	Let's
find	out	its	flow:

1.	 The	client	application	(for	example,	Quora)	sends	the	access	token	request	to	the	resource	server
(for	example,	Facebook,	Twitter,	and	so	on)	with	the	client	ID,	redirect	URI,	and	so	on.

2.	 The	user	may	need	to	authenticate	if	not	already	authenticated.	On	successful	authentication	and
other	input	validation,	the	resource	server	sends	the	access	token.

3.	 The	OAuth	client	requests	the	user's	(resource	owner)	resources	(for	example,	Twitter	profile
photo,	and	so	on)	from	the	resource	server	and	sends	the	access	token	received	in	the	previous	step.

4.	 The	resource	server	verifies	the	access	token	using	the	authorization	server.
5.	 After	successful	validation	of	the	access	token,	the	resource	server	provides	the	requested

resources	to	the	client	application	(OAuth	client).
6.	 The	client	application	uses	these	resources.

Implicit	grant	requests	and	responses

If	you	looked	at	all	of	the	steps	(a	total	of	six)	of	the	implicit	grant	flow,	you	can	see	that	there	are	a
total	of	two	requests	made	by	the	client	to	the	authorization	server,	and	the	authorization	server	provides
two	responses:	one	request-response	for	the	access	token	and	one	request-response	for	the	access	token
validation.

Let's	discuss	the	parameters	used	for	each	of	these	requests	and	responses.

Authorization	request	to	the	authorization	endpoint	URI:

Parameter Required/optional Description

response_type Required Token	(this	value	must	be	used).

client_id Required It	represents	the	ID	issued	by	the	authorization	server	to	the	client	at	the
time	of	registration.

redirect_uri Optional It	represents	the	redirect	URI	given	by	the	client	at	the	time	of	registration.

scope Optional The	scope	of	the	request.	If	not	provided,	then	the	authorization	server
provides	the	scope	based	on	the	defined	policy.

state Recommended
The	client	uses	this	parameter	to	maintain	the	client	state	between	the
requests	and	the	callback	(from	the	authorization	server).	The	specification
recommends	it	to	protect	against	cross-site	request	forgery	attacks.

	

Access	token	response:

Parameter Required/optional Description

access_token Required The	access	token	issued	by	the	authorization	server.

token_type Required
The	token	type	defined	by	the	authorization	server.	Based	on	this,	the	client
can	utilize	the	access	token.
For	example,	Bearer	or	Mac.

refresh_token Optional This	token	can	be	used	by	the	client	to	get	a	new	access	token	using	the
same	authorization	grant.

expires_in Recommended

Denotes	the	lifetime	of	the	access	token	in	seconds.	A	value	of	600	denotes
10	minutes	of	lifetime	for	the	access	token.	If	this	parameter	is	not
provided	in	the	response,	then	the	document	should	highlight	the	lifetime
of	the	access	token.

scope Optional/Required

Optional	if	identical	to	the	scope	requested	by	the	client.

Required	if	the	access	token	scope	is	different	from	the	one	the	client
provided	in	the	request	to	inform	the	client	about	the	actual	scope	of	the
access	token	granted.

If	the	client	does	not	provide	the	scope	while	requesting	the	access	token,
then	the	authorization	server	should	provide	the	default	scope,	or	deny	the
request,	indicating	the	invalid	scope.

state Optional/Requried Required	if	the	state	was	passed	in	the	client	authorization	request.

	

Error	response:

Parameter Required/optional Description

error Required One	of	the	error	codes	defined	in	the	specification,	for	example,
unauthorized_client	or	invalid_scope.

error_description Optional Short	description	of	the	error.

error_uri Optional The	URI	of	the	error	page	describing	the	error.

	

An	additional	error	parameter	state	is	also	sent	in	the	error	response	if	the	state	was	passed	in	the	client
authorization	request.

Resource	owner	password	credentials
grant
This	flow	is	normally	used	on	mobile	or	desktops	applications.	In	this	grant	flow,	only	two	requests	are
made:	one	for	requesting	an	access	token	and	another	for	access	token	verification,	similar	to	implicit
grant	flow.	The	only	difference	is	the	resource	owner's	username	and	password	are	sent	along	with	the
access	token	request.	(In	implicit	grant,	which	is	normally	on	a	browser,	redirects	the	user	to
authenticate	itself.)	Let's	find	out	its	flow:

1.	 The	client	application	(for	example,	Quora)	sends	the	access	token	request	to	the	resource	server
(for	example,	Facebook,	Twitter,	and	so	on)	with	client	ID,	resource	owner's	username	and
password,	and	so	on.	On	successful	parameter	validation,	the	resource	server	sends	the	access
token.

2.	 The	OAuth	client	requests	the	user's	(resource	owner)	resources	(for	example,	Twitter	profile
photo,	and	so	on)	from	the	resource	server	and	sends	the	access	token	received	in	the	previous	step.

3.	 The	resource	server	verifies	the	access	token	using	the	authorization	server.
4.	 After	successful	validation	of	the	access	token,	the	resource	server	provides	the	requested

resources	to	the	client	application	(OAuth	client).
5.	 The	client	application	uses	these	resources.

The	resource	owner's	password	credentials	grant	requests	and	responses.

As	seen	in	the	previous	section,	in	all	of	the	steps	(a	total	of	five)	of	the	resource	owner	password
credential	grant	flow,	you	can	see	that	there	are	a	total	of	two	requests	made	by	the	client	to	the
authorization	server,	and	the	authorization	server	provides	two	responses:	one	request-response	for	the
access	token	and	one	request-response	for	resource	owner	resources.

Let's	discuss	the	parameters	used	for	each	of	these	requests	and	responses.

Access	token	request	to	the	token	endpoint	URI:

Parameter Required/optional Description

grant_type Required Password	(this	value	must	be	used).

username Required Username	of	the	resource	owner.

password Required Password	of	the	resource	owner.

scope

Optional
The	scope	of	the	request.	If	not	provided,	then	the	authorization	server
provides	the	scope	based	on	the	defined	policy.

	

Access	token	response	(step	one):

Parameter Required/optional Description

access_token Required The	access	token	issued	by	the	authorization	server.

token_type Required
The	token	type	defined	by	the	authorization	server.	Based	on	this,	the	client
can	utilize	the	access	token.
For	example,	Bearer	or	Mac.

refresh_token Optional This	token	can	be	used	by	the	client	to	get	a	new	access	token	using	the
same	authorization	grant.

expires_in Recommended

Denotes	the	lifetime	of	the	access	token	in	seconds.	A	value	of	600	denotes
10	minutes	of	lifetime	for	the	access	token.	If	this	parameter	is	not
provided	in	the	response,	then	the	document	should	highlight	the	lifetime
of	the	access	token.

Optional
parameter Optional Additional	parameter.

Client	credentials	grant
As	the	name	suggests,	here,	the	client's	credentials	are	used	instead	of	the	user's	(resource	owner's).
Except	client	credentials,	it	is	very	similar	to	the	resource	owner	password	credentials	grant	flow:

1.	 The	client	application	(for	example,	Quora)	sends	the	access	token	request	to	the	resource	server
(for	example,	Facebook,	Twitter,	and	so	one)	with	the	grant	type	and	scope.	The	client	ID	and
secrets	are	added	to	the	authorization	header.	On	successful	validation,	the	resource	server	sends
the	access	token.

2.	 The	OAuth	client	requests	the	user's	(resource	owner)	resources	(for	example,	Twitter	profile
photo,	and	so	on)	from	the	resource	server	and	sends	the	access	token	received	in	the	previous	step.

3.	 The	resource	server	verifies	the	access	token	using	the	authorization	server.
4.	 After	successful	validation	of	the	access	token,	the	resource	server	provides	the	requested

resources	to	the	client	application	(OAuth	client).
5.	 The	client	application	uses	these	resources.

Client	credentials	grant	requests	and	responses.

If	you	looked	at	all	of	the	steps	(a	total	of	five)	of	the	client	credentials	grant	flow,	you	can
see	that	there	are	a	total	of	two	requests	made	by	the	client	to	the	authorization	server,	and	the
authorization	server	provides	two	responses:	one	request-response	for	the	access	token	and	one	request-
response	for	the	resource	that	involves	access	token	verification.

Let's	discuss	the	parameters	used	for	each	of	these	requests	and	responses.

Access	token	request	to	the	token	endpoint	URI:

Parameter Required/optional Description

grant_type Required client_credentials	(this	value	must	be	used).

scope Optional The	scope	of	the	request.	If	not	provided,	then	the	authorization	server
provides	the	scope	based	on	the	defined	policy.

Access	token	response:

Parameter Required/optional Description

access_token Required The	access	token	issued	by	the	authorization	server.

token_type Required The	token	type	defined	by	the	authorization	server.	Based	on	this,	the	client
can	utilize	the	access	token.	For	example,	Bearer	or	Mac.

expires_in Recommended

Denotes	the	lifetime	of	the	access	token	in	seconds.	A	value	of	600	denotes
10	minutes	of	lifetime	for	the	access	token.	If	this	parameter	is	not	provided
in	the	response,	then	the	document	should	highlight	the	lifetime	of	the
access	token.

OAuth	implementation	using	Spring
Security
OAuth	2.0	is	a	way	of	securing	APIs.	Spring	Security	provides	Spring	Cloud	Security	and	Spring	Cloud
OAuth2	components	for	implementing	the	grant	flows	we	discussed	earlier.

We'll	create	one	more	service,	a	security-service,	which	will	control	authentication	and	authorization.

Create	a	new	Maven	project	and	follow	these	steps:

1.	 Add	the	Spring	Security	and	Spring	Security	OAuth	2	dependencies	in	pom.xml:

	<dependency>	

			<groupId>org.springframework.cloud</groupId>	

			<artifactId>spring-cloud-starter-security</artifactId>	

</dependency>	

<dependency>	

			<groupId>org.springframework.cloud</groupId>	

			<artifactId>spring-cloud-starter-oauth2</artifactId>	

</dependency>	

2.	 Use	the	@EnableResourceServer	annotation	in	your	application	class.	This	will	allow	this	application	to
work	as	a	resource	server.	The	@EnableAuthorizationServer	annotation	is	another	annotation	we	will	use
to	enable	the	authorization	server	as	per	OAuth	2.0	specifications:

@SpringBootApplication	

@RestController	

@EnableResourceServer	

public	class	SecurityApp	{	

	

				@RequestMapping("/user")	

				public	Principal	user(Principal	user)	{	

								return	user;	

				}	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(SecurityApp.class,	args);	

				}	

	

				@Configuration	

				@EnableAuthorizationServer	

				protected	static	class	OAuth2Config	extends	AuthorizationServerConfigurerAdapter	{	

	

								@Autowired	

								private	AuthenticationManager	authenticationManager;	

	

								@Override	

								public	void	configure(AuthorizationServerEndpointsConfigurer	endpointsConfigurer)	throws	Exception	{	

												endpointsConfigurer.authenticationManager(authenticationManager);	

								}	

	

								@Override	

								public	void	configure(ClientDetailsServiceConfigurer	clientDetailsServiceConfigurer)	throws	Exception	{	

		//	Using	hardcoded	inmemory	mechanism	because	it	is	just	an	example	

												clientDetailsServiceConfigurer.inMemory()	

													.withClient("acme")	

													.secret("acmesecret")	

													.authorizedGrantTypes("authorization_code",	"refresh_token",	"implicit",	"password",	"client_credentials")	

													.scopes("webshop");	

								}	

				}	

}

3.	 Update	the	security-service	configuration	in	application.yml,	as	shown	in	the	following	code:

server.contextPath:	This	denotes	the	context	path
security.user.password:	We'll	use	the	hardcoded	password	for	this	demonstration.	You	can	reconfigure
it	for	real	use:

application.yml	

info:	

				component:	

								Security	Server	

	

server:	

				port:	9001	

				ssl:	

								key-store:	classpath:keystore.jks	

								key-store-password:	password	

								key-password:	password	

				contextPath:	/auth	

	

security:	

				user:	

								password:	password	

	

logging:	

				level:	

								org.springframework.security:	DEBUG	

Now	that	we	have	our	security	server	in	place,	we'll	expose	our	APIs	using	the	new	api-service
microservice,	which	will	be	used	for	communicating	with	external	applications	and	UIs.

We'll	modify	the	Zuul-Server	module	to	make	it	a	resource	server	also.	This	can	be	done	by	following
these	steps:

1.	 Add	the	Spring	Security	and	Spring	Security	OAuth	2	dependencies
to	pom.xml.	Here,	the	last	two	dependencies	are	required	for	enabling	the	Zuul-Server	as	a	resource
server:

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-zuul</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-eureka</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-feign</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-netflix-hystrix-stream</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-bus-amqp</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-stream-rabbit</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.boot</groupId>	

				<artifactId>spring-boot-starter-web</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-security</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-oauth2</artifactId>									</dependency>

2.	 Use	the	@EnableResourceServer	annotation	in	your	application	class.	This	will	allow	this	application	to
work	as	a	resource	server:

@SpringBootApplication	

@EnableZuulProxy	

@EnableEurekaClient	

@EnableCircuitBreaker	

@Configuration	

@EnableFeignClients	

@EnableResourceServer	

public	class	EdgeApp	{	

	

				private	static	final	Logger	LOG	=	LoggerFactory.getLogger(EdgeApp.class);	

	

				static	{	

								//	for	localhost	testing	only	

								LOG.warn("Will	now	disable	hostname	check	in	SSL,	only	to	be	used	during	development");	

								HttpsURLConnection.setDefaultHostnameVerifier((hostname,	sslSession)	->	true);	

				}	

	

				@Value("${app.rabbitmq.host:localhost}")	

				String	rabbitMqHost;	

	

				@Bean	

				public	ConnectionFactory	connectionFactory()	{	

								LOG.info("Create	RabbitMqCF	for	host:	{}",	rabbitMqHost);	

								CachingConnectionFactory	connectionFactory	=	new	CachingConnectionFactory(rabbitMqHost);	

								return	connectionFactory;	

				}	

	

				public	static	void	main(String[]	args)	{	

								SpringApplication.run(EdgeApp.class,	args);	

				}	

}	

3.	 Update	the	Zuul-Server	configuration	in	application.yml,	as	shown	in	the	following	code.	The
application.yml	file	will	look	something	like	this:

info:	

				component:	Zuul	Server	

	

spring:	

		application:	

					name:	zuul-server		#	Service	registers	under	this	name	

		#	Added	to	fix	-		java.lang.IllegalArgumentException:	error	at	::0	can't	find	referenced	pointcut	hystrixCommandAnnotationPointcut	

		aop:	

						auto:	false	

	

zuul:	

				ignoredServices:	"*"	

				routes:	

								restaurantapi:	

												path:	/api/**	

												serviceId:	api-service	

												stripPrefix:	true	

													

server:	

				ssl:	

								key-store:	classpath:keystore.jks	

								key-store-password:	password	

								key-password:	password	

				port:	8765	

				compression:	

								enabled:	true	

	

security:	

		oauth2:	

				resource:	

					userInfoUri:	https://localhost:9001/auth/user	

	

management:	

		security:	

				enabled:	false	

##	Other	properties	like	Eureka,	Logging	and	so	on	

Here,	the	security.oauth2.resource.userInfoUri	property	denotes	the	security	service	user	URI.	APIs	are
exposed	to	the	external	world	using	route	configuration	that	points	to	API	services.

Now	that	we	have	our	security	server	in	place,	we	are	exposing	our	APIs	using	the	api-service
microservice,	which	will	be	used	for	communicating	with	external	applications	and	UIs.

Now,	let's	test	and	explore	how	it	works	for	different	OAuth	2.0	grant	types.

We'll	make	use	of	the	Postman	extension	to	the	Chrome	browser	to	test	the	different	flows.

Authorization	code	grant
We	will	enter	the	following	URL	in	our	browser.	A	request	for	an	authorization	code	is	as	follows:

https://localhost:9001/auth/oauth/authorize?response_type=code&client_id=client&redirect_uri=http://localhost:7771/1&scope=apiAccess&state=1234

Here,	we	provide	the	client	ID	(by	default,	we	have	the	hardcoded	client	registered	in	our	security
service),	redirect	URI,	scope	(hardcoded	apiAccess	value	in	security	service),	and	state.	You	must	be
wondering	about	the	state	parameter.	It	contains	the	random	number	that	we	revalidate	in	response	to
prevent	cross-site	request	forgery.

If	the	resource	owner	(user)	is	not	already	authenticated,	it	will	ask	for	the	username	and	password.
Provide	the	username	as	username	and	the	password	as	password;	we	have	hardcoded	these	values	in	the
security	service.

Once	the	login	is	successful,	it	will	ask	you	to	provide	your	(resource	owner)	approval:

OAuth	2.0	authorization	code	grant	-	resource	grant	approval

Select	Approve	and	click	on	Authorize.	This	action	will	redirect	the	application	to	http://localhost:7771/1?
code=o8t4fi&state=1234.

As	you	can	see,	it	has	returned	the	authorization	code	and	state.

Now,	we'll	use	this	code	to	retrieve	the	access	code,	using	the	Postman	Chrome	extension.	First,	we'll
add	the	authorization	header	using	Username	as	client	and	Password	as	clientsecret,	as	shown	in	the
following	screenshot:

OAuth	2.0	authorization	code	grant	-	access	token	request	-	adding	the	authentication

This	will	add	the	Authorization	header	to	the	request	with	the	value	Basic	Y2xpZW50OmNsaWVudHNlY3JldA==,
which	is	a	base-64	encoding	of	the	'client	client-secret'.

Now,	we'll	add	a	few	other	parameters	to	the	request,	as	shown	in	the	following	screenshot,	and	then
submit	the	request:

OAuth	2.0	authorization	code	grant	-	access	token	request	and	response

This	returns	the	following	response,	as	per	the	OAuth	2.0	specification:

{

		"access_token":	"6a233475-a5db-476d-8e31-d0aeb2d003e9",

		"token_type":	"bearer",	

		"refresh_token":	"8d91b9be-7f2b-44d5-b14b-dbbdccd848b8",	

		"expires_in":	43199,	

		"scope":	"apiAccess"	

}	

Now,	we	can	use	this	information	to	access	the	resources	owned	by	the	resource	owner.	For	example,	if
https://localhost:8765/api/restaurant/1	represents	the	restaurant	with	the	ID	of	1,	then	it	should	return	the
respective	restaurant	details.

Without	the	access	token,	if	we	enter	the	URL,	it	returns	the	error	Unauthorized	with	the	message	Full
authentication	is	required	to	access	this	resource.

Now,	let's	access	this	URL	with	the	access	token,	as	shown	in	the	following	screenshot:

OAuth	2.0	authorization	code	grant	-	using	the	access	token	for	API	access

As	you	can	see,	we	have	added	the	Authorization	header	with	the	access	token.

Now,	we	will	explore	implicit	grant	implementation.

Implicit	grant
Implicit	grants	are	very	similar	to	authorization	code	grants,	except	for	the	code	grant	step.	If	you
remove	the	first	step—the	code	grant	step	(where	the	client	application	receives	the	authorization	token
from	the	authorization	server)—from	the	authorization	code	grant,	the	rest	of	the	steps	are	the	same.
Let's	check	it	out.

Enter	the	following	URL	and	parameters	in	the	browser	and	press	Enter.	Also,	make	sure	to	add	basic
authentication,	with	the	client	as	username	and	the	password	as	password	if	asked:

https://localhost:9001/auth/oauth/authorize?response_type=token&redirect_uri=https://localhost:8765&scope=apiAccess&state=553344&client_id=client

Here,	we	are	calling	the	authorization	endpoint	with	the	following	request	parameters:	response	type,
client	ID,	redirect	URI,	scope,	and	state.

When	the	request	is	successful,	the	browser	will	be	redirected	to	the	following	URL	with	new	request
parameters	and	values:

https://localhost:8765/#access_token=6a233475-a5db-476d-8e31-d0aeb2d003e9&token_type=bearer&state=553344&expires_in=19592

Here,	we	receive	the	access_token,	token_type,	state,	and	expiry	duration	for	the	token.	Now,	we	can	make
use	of	this	access	token	to	access	the	APIs,	as	used	in	the	authorization	code	grant.

Resource	owner	password	credential	grant
In	this	grant,	we	provide	username	and	password	as	parameters	when	requesting	the	access	token,	along	with
the	grant_type,	client,	and	scope	parameters.	We	also	need	to	use	the	client	ID	and	secret	to	authenticate
the	request.	These	grant	flows	use	client	applications	in	place	of	browsers,	and	are	normally	used	in
mobile	and	desktop	applications.

In	the	following	Postman	tool	screenshot,	the	authorization	header	has	already	been	added	using	basic
authentication	with	client_id	and	password:

OAuth	2.0	resource	owner	password	credentials	grant	-	access	token	request	and	response

Once	the	access	token	is	received	by	the	client,	it	can	be	used	in	a	similar	way	to	how	it	is	used	in	the
authorization	code	grant.

Client	credentials	grant
In	this	flow,	the	client	provides	their	own	credentials	and	retrieves	the	access	token.	It	does	not	use	the
resource	owner's	credentials	and	permissions.

As	you	can	see	in	the	following	screenshot,	we	directly	enter	the	token	endpoint	with	only	two
parameters:	grant_type	and	scope.	The	authorization	header	is	added	using	client_id	and	client	secret:

OAuth	2.0	client	credentials	grant	-	access	token	request	and	response

You	can	use	the	access	token	similarly	as	it	is	explained	for	the	authorization	code	grant.

References
For	more	information,	you	can	refer	to	these	links:

RESTful	Java	Web	Services	Security,	René	Enríquez,	Andrés	Salazar	C,	Packt	Publishing:	https://w
ww.packtpub.com/application-development/restful-java-web-services-security

Spring	Security	[Video],	Packt	Publishing:	https://www.packtpub.com/application-development/spring-securi
ty-video

The	OAuth	2.0	Authorization	Framework:	https://tools.ietf.org/html/rfc6749
Spring	Security:	http://projects.spring.io/spring-security
Spring	OAuth2:	http://projects.spring.io/spring-security-oauth/

https://www.packtpub.com/application-development/restful-java-web-services-security
https://www.packtpub.com/application-development/spring-security-video
https://tools.ietf.org/html/rfc6749
http://projects.spring.io/spring-security
http://projects.spring.io/spring-security-oauth/

Summary
In	this	chapter,	we	have	learned	how	important	it	is	to	have	the	TLS	layer	or	HTTPS	in	place	for	all	web
traffic.	We	have	added	a	self-signed	certificate	to	our	sample	application.	I	would	like	to	reiterate	that,
for	a	production	application,	you	must	use	the	certificates	offered	by	certificate-signing	authorities.	We
have	also	explored	the	fundamentals	of	OAuth	2.0	and	various	OAuth	2.0	grant	flows.	Different	OAuth
2.0	grant	flows	are	implemented	using	Spring	Security	and	OAuth	2.0.	In	the	next	chapter,	we'll
implement	the	UI	for	the	sample	OTRS	project	and	explore	how	all	of	the	components	work	together.

Consuming	Services	Using	a	Microservice
Web	Application
Now,	after	developing	the	microservices,	it	would	be	interesting	to	see	how	the	services	offered	by	the
online	table	reservation	system	(OTRS)	could	be	consumed	by	web	or	mobile	applications.	We	will
develop	the	web	application	(UI)	using	AngularJS/Bootstrap	to	build	the	prototype	of	the	web
application.	This	sample	application	will	display	the	data	and	flow	of	this	sample	project—a	small
utility	project.	This	web	application	will	also	be	a	sample	project	and	will	run	independently.	Earlier,
web	applications	were	being	developed	in	single	web	archives	(files	with	.war	extensions)	that	contained
both	UI	and	server-side	code.	The	reason	for	doing	so	was	pretty	simple,	as	UI	was	also	developed
using	Java	with	JSPs,	servlets,	JSF,	and	so	on.	Nowadays,	UIs	are	being	developed	independently	using
JavaScript.	Therefore,	these	UI	apps	also	deploy	as	a	single	microservice.	In	this	chapter,	we'll	explore
how	these	independent	UI	applications	are	being	developed.	We	will	develop	and	implement	the	OTRS
sample	app	without	login	and	authorization	flow.	We'll	deploy	a	very	limited	functionality
implementation	and	cover	the	high-level	AngularJS	concepts.	For	more	information	on	AngularJS,	you
can	refer	to	AngularJS	by	Example,	Chandermani,	Packt	Publishing.

In	this	chapter,	we	will	cover	the	following	topics:

AngularJS	framework	overview
Development	of	OTRS	features
Setting	up	a	web	application	(UI)

AngularJS	framework	overview
Now,	since	we	are	ready	with	our	HTML5	web	application	setup,	we	can	go	through	the	basics	of
AngularJS.	This	will	help	us	to	understand	the	AngularJS	code.	This	section	depicts	the	high	level	of
understanding	that	you	can	utilize	to	understand	the	sample	application	and	explore	further	using
AngularJS	documentation	or	by	referring	to	other	Packt	Publishing	resources.

AngularJS	is	a	client-side	JavaScript	framework.	It	is	flexible	enough	to	be	used	as	a	model-view-
controller	(MVC)	or	a	model-view-viewmodel	(MVVM).	It	also	provides	built-in	services	such
as	$http	or	$log	using	a	dependency	injection	pattern.

MVC
MVC	is	a	well-known	design	pattern.	Struts	and	Spring	MVC	are	popular	examples.	Let's	see	how	they
fit	in	the	JavaScript	world:

Model:	Models	are	JavaScript	objects	that	contain	the	application	data.	They	also	represent	the
state	of	the	application.
View:	View	is	a	presentation	layer	that	consists	of	HTML	files.	Here,	you	can	show	the	data	from
models	and	provide	the	interactive	interface	to	the	user.
Controller:	You	can	define	the	controller	in	JavaScript	and	it	contains	the	application	logic.

MVVM
MVVM	is	an	architecture	design	pattern	that	specifically	targets	the	UI	development.	MVVM	is
designed	to	make	two-way	data	binding	easier.	Two-way	data	binding	provides	the	synchronization
between	the	model	and	the	view.	When	the	model	(data)	changes,	it	reflects	immediately	on	the	view.
Similarly,	when	the	user	changes	the	data	on	the	view,	it	reflects	on	the	model:

Model:	This	is	very	similar	to	MVC	and	contains	the	business	logic	and	data.
View:	Like	MVC,	it	contains	the	presentation	logic	or	user	interface.
View	model:	A	view	model	contains	the	data	binding	between	the	view	and	the	model.	Therefore,
it	is	an	interface	between	the	view	and	the	model.

Modules
A	module	is	the	first	thing	we	define	for	any	AngularJS	application.	A	module	is	a	container	that
contains	the	different	parts	of	the	application,	such	as	controllers,	services,	filters,	and	so	on.	An
AngularJS	application	can	be	written	in	a	single	module	or	multiple	modules.	An	AngularJS	module
can	also	contain	other	modules.

Many	other	JavaScript	frameworks	use	the	main	method	for	instantiating	and	wiring	the	different	parts	of
the	application.	AngularJS	does	not	have	the	main	method.	It	uses	the	module	as	an	entry	point	due	to	the
following	reasons:

Modularity:	You	can	divide	and	create	your	application	feature-wise	or	with	reusable	components.
Simplicity:	You	might	have	come	across	complex	and	large	application	code,	which	makes
maintenance	and	enhancement	a	headache.	No	more:	AngularJS	makes	code	simple,	readable,	and
easy	to	understand.
Testing:	It	makes	unit	testing	and	end-to-end	testing	easier	as	you	can	override	configuration	and
load	only	the	modules	that	are	required.

Each	AngularJS	application	needs	to	have	a	single	module	for	bootstrapping	the	AngularJS	application.
Bootstrapping	our	application	requires	the	following	three	parts:

Application	module:	A	JavaScript	file	(app.js)	that	contains	the	AngularJS	module,	as	shown:

var	otrsApp	=	AngularJS.module('otrsApp',	[])	

//	[]	contains	the	reference	to	other	modules	

Loading	Angular	library	and	application	module:	An	index.html	file	containing	the	reference	to
the	JavaScript	file	with	other	AngularJS	libraries:

<script	type="text/javascript"	src="bower_components/angular/angular.min.js"></script>	

<script	type="text/javascript"	src="scripts/app.js"></script>

Application	DOM	configuration:	This	tells	the	AngularJS	location	of	the	DOM	element	where
bootstrapping	should	take	place.	It	can	be	done	in	one	of	two	ways:

1.	 An	index.html	file	that	also	contains	a	HTML	element	(typically	<html>)	with	the	ng-app	(AngularJS
directive)	attribute	having	the	value	given	in	app.js.	AngularJS	directives	are	prefixed	with	ng
(AngularJS):	<html	lang="en"	ng-app="otrsApp"	class="no-js">.

2.	 Or,	use	this	command	if	you	are	loading	the	JavaScript	files	asynchronously:
AngularJS.bootstrap(document.documentElement,	['otrsApp']);.

An	AngularJS	module	has	two	important	parts,	config()	and	run(),	apart	from	other	components	such	as
controllers,	services,	filters,	and	so	on:

config()	is	used	for	registering	and	configuring	the	modules	and	it	only	entertains	the	providers	and
constants	using	$injector.	$injector	is	an	AngularJS	service.	We'll	cover	providers	and	$injector	in	the

next	section.	You	cannot	use	instances	here.	It	prevents	the	use	of	services	before	it	is	fully
configured.
run()	is	used	for	executing	the	code	after	$injector	is	created	using	the	preceding	config()	method.
This	only	entertains	the	instances	and	constants.	You	cannot	use	providers	here	to	avoid
configuration	at	runtime.

Providers	and	services
Let's	have	a	look	at	the	following	code:

.controller('otrsAppCtrl',	function	($injector)	{	

var	log	=	$injector.get('$log');	

$log	is	a	built-in	AngularJS	service	that	provides	the	logging	API.	Here,	we	are	using	another	built-in
service,	$injector,	that	allows	us	to	use	the	$log	service.	$injector	is	an	argument	in	the	controller.
AngularJS	uses	function	definitions	and	regex	to	provide	the	$injector	service	to	a	caller,	also	known	as
the	controller.	These	are	examples	of	how	AngularJS	effectively	uses	the	dependency	injection	pattern.

AngularJS	heavily	uses	the	dependency	injection	pattern,	using	the	injector	service	($injector)	to
instantiate	and	wire	most	of	the	objects	we	use	in	our	AngularJS	applications.	This	injector	creates	two
types	of	objects—services	and	specialized	objects.

For	simplification,	you	can	say	that	we	(developers)	define	services.	On	the	contrary,	specialized	objects
are	AngularJS	items	such	as	controllers,	filters,	directives,	and	so	on.

AngularJS	provides	five	recipe	types	that	tell	the	injector	how	to	create	service	objects—provider,
value,	factory,	service,	and	constant.

The	provider	is	the	core	and	most	complex	recipe	type.	Other	recipes	are	synthetic	sugar	on	it.	We
generally	avoid	using	the	provider	except	when	we	need	to	create	reusable	code	that	requires
global	configuration.
The	value	and	constant	recipe	types	work	as	their	names	suggest.	Neither	of	them	can	have
dependencies.	Moreover,	the	difference	between	them	lies	with	their	usage.	You	cannot	use	value
service	objects	in	the	configuration	phase.
Factory	and	service	are	the	most	used	service	types.	They	are	of	a	similar	type.	We	use	the	factory
recipe	when	we	want	to	produce	JavaScript	primitives	and	functions.	On	the	other	hand,	the
service	is	used	when	we	want	to	produce	custom-defined	types.

As	we	now	have	some	understanding	of	services,	we	can	say	that	there	are	two	common	uses	of
services—organizing	code	and	sharing	code	across	applications.	Services	are	singleton	objects,	which
are	lazily	instantiated	by	the	AngularJS	service	factory.	We	have	already	seen	a	few	of	the	built-in
AngularJS	services	such	as	$injector,	$log,	and	so	on.	AngularJS	services	are	prefixed	with	the	$	symbol.

Scopes
In	AngularJS	applications,	two	types	of	scopes	are	widely	used—$rootScope	and	$scope:

$rootScope	is	the	topmost	object	in	the	scope	hierarchy	and	has	the	global	scope	associated	with	it.
That	means	that	any	variable	you	attach	to	it	will	be	available	everywhere,	and	therefore,	the	use	of
$rootScope	should	be	a	carefully	considered	decision.
Controllers	have	$scope	as	an	argument	in	the	callback	function.	It	is	used	for	binding	data	from	the
controller	to	the	view.	Its	scope	is	limited	to	the	use	of	the	controller	it	is	associated	with.

Controllers
The	controller	is	defined	by	the	JavaScript	constructor	function	as	having	$scope	as	an	argument.	The
controller's	main	purpose	is	to	tie	the	data	to	the	view.	The	controller	function	is	also	used	for	writing
business	logic—setting	up	the	initial	state	of	the	$scope	object	and	adding	the	behavior	to	$scope.	The
controller	signature	looks	like	the	following:

RestModule.controller('RestaurantsCtrl',	function	($scope,	restaurantService)	{	

Here,	the	controller	is	a	part	of	the	RestModule,	the	name	of	the	controller	is	RestaurantCtrl,	and	$scope	and
restaurantService	are	passed	as	arguments.

Filters
The	purpose	of	filters	is	to	format	the	value	of	a	given	expression.	In	the	following	code,	we	have
defined	the	datetime1	filter	that	takes	the	date	as	an	argument	and	changes	the	value	to	the	dd	MMM	yyyy	HH:mm
format,	such	as	04	Apr	2016	04:13	PM:

.filter('datetime1',	function	($filter)	{	

				return	function	(argDateTime)	{	

								if	(argDateTime)	{	

												return	$filter('date')(new	Date(argDateTime),	'dd	MMM	yyyy	HH:mm	a');	

								}	

								return	"";	

				};	

});

Directives
As	we	saw	in	the	Modules	section,	AngularJS	directives	are	HTML	attributes	with	an	ng	prefix.	Some	of
the	popular	directives	are:

ng-app:	This	directive	defines	the	AngularJS	application
ng-model:	This	directive	binds	the	HTML	form	input	to	data
ng-bind:	This	directive	binds	the	data	to	the	HTML	view
ng-submit:	This	directive	submits	the	HTML	form
ng-repeat:	This	directive	iterates	the	collection:

<div	ng-app="">	

				<p>Search:	<input	type="text"	ng-model="searchValue"></p>	

				<p	ng-bind="searchedTerm"></p>	

</div>

UI-Router
In	single-page	applications	(SPAs),	the	page	only	loads	once	and	the	user	navigates	through	different
links	without	a	page	refresh.	It	is	all	possible	because	of	routing.	Routing	is	a	way	to	make	SPA
navigation	feel	like	a	normal	site.	Therefore,	routing	is	very	important	for	SPA.

The	AngularUI	team	built	UI-Router,	an	AngularJS	routing	framework.	UI-Router	is	not	a	part	of	core
AngularJS.	UI-Router	not	only	changes	the	route	URL,	but	it	also	changes	the	state	of	the	application
when	the	user	clicks	on	any	link	in	the	SPA.	Because	UI-Router	can	also	make	state	changes,	you	can
change	the	view	of	the	page	without	changing	the	URL.	This	is	possible	because	of	the	application	state
management	by	the	UI-Router.

If	we	consider	the	SPA	as	a	state	machine,	then	the	state	is	a	current	state	of	the	application.	We	will	use
the	ui-sref	attribute	in	a	HTML	link	tag	when	we	create	the	route	link.	The	href	attribute	in	the	link	will
be	generated	from	this	and	point	to	certain	states	of	the	application	that	are	created	in	app.js.

We	use	the	ui-view	attribute	in	the	HTML	div	to	use	the	UI-Router.	For	example,
<div	ui-view></div>.

Development	of	OTRS	features
As	you	know,	we	are	developing	the	SPA.	Therefore,	once	the	application	loads,	you	can	perform	all	of
the	operations	without	a	page	refresh.	All	interactions	with	the	server	are	performed	using	AJAX	calls.
Now,	we'll	make	use	of	the	AngularJS	concepts	that	we	covered	in	the	first	section.	We'll	cover	the
following	scenarios:

A	page	that	will	display	a	list	of	restaurants.	This	will	also	be	our	home	page.
Search	restaurants.
Restaurant	details	with	reservation	options.
Login	(not	from	the	server,	but	used	for	displaying	the	flow).
Reservation	confirmation.

For	the	home	page,	we	will	create	an	index.html	file	and	a	template	that	will	contain	the	restaurant
listings	in	the	middle	section,	or	the	content	area.

Home	page/restaurant	list	page
The	home	page	is	the	main	page	of	any	web	application.	To	design	the	home	page,	we	are	going	to	use
the	Angular-UI	Bootstrap	rather	than	the	actual	Bootstrap.	Angular-UI	is	an	Angular	version	of
Bootstrap.	The	home	page	will	be	divided	into	three	sections:

The	header	section	will	contain	the	application	name,	the	search	restaurants	form,	and	the	user
name	at	the	top-right	corner.
The	content	or	middle	section	will	contain	the	restaurant	listings,	which	will	have	the	restaurant
name	as	the	link.	This	link	will	point	to	the	restaurant	details	and	reservation	page.
The	footer	section	will	contain	the	application	name	with	the	copyright	mark.

You	must	be	interested	in	viewing	the	home	page	before	designing	or	implementing	it.	Therefore,	let	us
first	see	how	it	will	look	once	we	have	our	content	ready:

OTRS	home	page	with	restaurants	listing

Now,	to	design	our	home	page,	we	need	to	add	the	following	four	files:

index.html:	Our	main	HTML	file
app.js:	Our	main	AngularJS	module
restaurants.js:	The	restaurants	module	that	also	contains	the	restaurant	Angular	service
restaurants.html:	The	HTML	template	that	will	display	the	list
of	restaurants

index.html
First,	we'll	add	./app/index.html	to	our	project	workspace.	The	contents	of	the	index.html	file	will	be	as
explained	here	onwards.

I	have	added	comments	in	between	the	code	to	make	the	code	more	readable	and	easier	to
understand.

The	index.html	file	is	divided	into	many	parts.	We'll	discuss	a	few	of	the	key	parts	here.	First,	we	will	see
how	to	address	old	versions	of	Internet	Explorer.	If	you	want	to	target	the	Internet	Explorer	browser
versions	greater	than	eight	or	IE	version	nine	onwards,	then	we	need	to	add	the	following	block	of	code
that	will	prevent	JavaScript	from	rendering	and	give	the	no-js	output	to	the	end	user:

<!--[if	lt	IE	7]>						<html	lang="en"	ng-app="otrsApp"	class="no-js	lt-ie9	lt-ie8	lt-ie7">	<![endif]-->	

<!--[if	IE	7]>									<html	lang="en"	ng-app="otrsApp"	class="no-js	lt-ie9	lt-ie8">	<![endif]-->	

<!--[if	IE	8]>									<html	lang="en"	ng-app="otrsApp"	class="no-js	lt-ie9">	<![endif]-->	

<!--[if	gt	IE	8]><!-->	<html	lang="en"	ng-app="otrsApp"	class="no-js">	<!--<![endif]-->	

Then,	after	adding	a	few	meta	tags	and	the	title	of	the	application,	we'll	also	define	the	important	meta	tag
viewport.	The	viewport	is	used	for	responsive	UI	designs.

The	width	property	defined	in	the	content	attribute	controls	the	size	of	the	viewport.	It	can	be	set	to	a
specific	number	of	pixels,	such	as	width	=	600,	or	to	the	special	device-width	value	that	is	the	width	of	the
screen	in	CSS	pixels	at	a	scale	of	100%.

The	initial-scale	property	controls	the	zoom	level	when	the	page	is	first	loaded.	The	maximum-scale,
minimum-scale,	and	user-scalable	properties	control	how	users	are	allowed	to	zoom	the	page	in	or	out:

<meta	name="viewport"	content="width=device-width,	initial-scale=1">	

In	the	next	few	lines,	we'll	define	the	style	sheets	of	our	application.	We	are	adding	normalize.css	and
main.css	from	HTML5	boilerplate	code.	We	are	also	adding	our	application's	customer	CSS	app.css.
Finally,	we	are	adding	the	Bootstrap	3	CSS.	Apart	from	the	customer	app.css,	other	CSS	is	referenced	in
it.	There	is	no	change	in	these	CSS	files:

<link	rel="stylesheet"	href="bower_components/html5-boilerplate/dist/css/normalize.css">	

<link	rel="stylesheet"	href="bower_components/html5-boilerplate/dist/css/main.css">	

<link	rel="stylesheet"	href="public/css/app.css">	

<link	data-require="bootstrap-css@*"	data-server="3.0.0"	rel="stylesheet"	href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"	/>	

Then,	we'll	define	the	scripts	using	the	script	tag.	We	are	adding	the	modernizer,	Angular,	Angular-
route,	and	app.js,	our	own	developed	custom	JavaScript	file.
We	have	already	discussed	Angular	and	Angular-UI.	app.js	will	be	discussed	in
the	next	section.

The	modernizer	allows	web	developers	to	use	new	CSS3	and	HTML5	features	while	maintaining	a	fine
level	of	control	over	browsers	that	don't	support	them.	Basically,	the	modernizer	performs	the	next

generation	feature	detection	(checking	the	availability	of	those	features)	while	the	page	loads	in	the
browser	and	reports	the	results.	Based	on	these	results,	you	can	detect	what	the	latest	features	available
in	the	browser	are,	and	based	on	that,	you	can	provide	an	interface	to	the	end	user.	If	the	browser	does
not	support	a	few	of	the	features,	then	an	alternate	flow	or	UI	is	provided	to	the	end	user.

We	are	also	adding	the	Bootstrap	templates,	which	are	written	in	JavaScript,	using	the	ui-bootstrap-tpls
javascript	file:

<script	src="bower_components/html5-boilerplate/dist/js/vendor/modernizr-2.8.3.min.js"></script>	

<script	src="bower_components/angular/angular.min.js"></script>	

<script	src="bower_components/angular-route/angular-route.min.js"></script>	

<script	src="app.js"></script>	

<script	data-require="ui-bootstrap@0.5.0"	data-semver="0.5.0"	src="http://angular-ui.github.io/bootstrap/ui-bootstrap-tpls-0.6.0.js"></script>	

We	can	also	add	style	to	the	head	tag,	as	shown	in	the	following	code.	This	style	allows	drop-down
menus	to	work:

<style>	

				div.navbar-collapse.collapse	{	

						display:	block;	

						overflow:	hidden;	

						max-height:	0px;	

						-webkit-transition:	max-height	.3s	ease;	

						-moz-transition:	max-height	.3s	ease;	

						-o-transition:	max-height	.3s	ease;	

						transition:	max-height	.3s	ease;	

						}	

				div.navbar-collapse.collapse.in	{	

						max-height:	2000px;	

						}	

</style>	

In	the	body	tag,	we	are	defining	the	controller	of	the	application	using	the
ng-controller	attribute.	While	the	page	loads,	it	tells	the	controller	the	name	of	the	application	to	Angular,
shown	as	follows:

<body	ng-controller="otrsAppCtrl">	

Then,	we	define	the	header	section	of	the	home	page.	In	the	header	section,	we'll	define	the	application
title,	Online	Table	Reservation	System.	Also,	we'll	define	the	search	form	that	will	search	the	restaurants:

<!--	BEGIN	HEADER	-->	

								<nav	class="navbar	navbar-default"	role="navigation">	

	

												<div	class="navbar-header">	

																	

																				Online	Table	Reservation	System	

																	

												</div>	

												<div	class="collapse	navbar-collapse"	ng-class="!navCollapsed	&&	'in'"	ng-click="navCollapsed	=	true">	

																<form	class="navbar-form	navbar-left"	role="search"	ng-submit="search()">	

																				<div	class="form-group">	

																								<input	type="text"	id="searchedValue"	ng-model="searchedValue"	class="form-control"	placeholder="Search	Restaurants">	

																				</div>	

																				<button	type="submit"	class="btn	btn-default"	ng-click="">Go</button>	

																</form>	

								<!--	END	HEADER	-->	

Then,	the	next	section,	the	middle	section,	includes	where	we	actually	bind	the	different	views,	marked
with	actual	content	comments.	The	ui-view	attribute	in	div	gets	its	content	dynamically	from	Angular,
such	as	restaurant	details,	restaurant	lists,	and	so	on.	We	have	also	added	a	warning	dialog	and	spinner

to	the	middle	section	that	will	be	visible	as	and	when	required:

<div	class="clearfix"></div>	

				<!--	BEGIN	CONTAINER	-->	

				<div	class="page-container	container">	

								<!--	BEGIN	CONTENT	-->	

								<div	class="page-content-wrapper">	

												<div	class="page-content">	

																<!--	BEGIN	ACTUAL	CONTENT	-->	

																<div	ui-view	class="fade-in-up"></div>	

																<!--	END	ACTUAL	CONTENT	-->	

												</div>	

								</div>	

								<!--	END	CONTENT	-->	

				</div>	

				<!--	loading	spinner	-->	

				<div	id="loadingSpinnerId"	ng-show="isSpinnerShown()"	style="top:0;	left:45%;	position:absolute;	z-index:999">	

								<script	type="text/ng-template"	id="alert.html">	

												<div	class="alert	alert-warning"	role="alert">	

												<div	ng-transclude></div>	

												</div>	

								</script>	

								<uib-alert	type="warning"	template-url="alert.html">Loading...</uib-alert>	

				</div>	

								<!--	END	CONTAINER	-->	

The	final	section	of	the	index.html	is	the	footer.	Here,	we	are	just	adding	the	static	content	and	copyright
text.	You	can	add	whatever	content	you	want	here:

								<!--	BEGIN	FOOTER	-->	

								<div	class="page-footer">	

												<hr/><div	style="padding:	0	39%">©	2016	Online	Table	Reservation	System</div>	

								</div>	

								<!--	END	FOOTER	-->	

				</body>	

</html>	

app.js
app.js	is	our	main	application	file.	Because	we	have	defined	it	in	index.html,
it	gets	loaded	as	soon	as	our	index.html	is	called.

We	need	to	take	care	that	we	do	not	mix	route	(URI)	with	REST	endpoints.	Routes
represent	the	state/view	of	the	SPA.

As	we	are	using	the	edge	server	(proxy	server),	everything	will	be	accessible	from	it	including	our
REST	endpoints.	External	applications	including	the	UI	will	use	the	edge	server	host	to	access	the
application.	You	can	configure	it	in	a	global	constants	file	and	then	use	it	wherever	it	is	required.	This
will	allow	you	to	configure	the	REST	host	at	a	single	place	and	use	it	at	other	places:

'use	strict';	

/*	

This	call	initializes	our	application	and	registers	all	the	modules,	which	are	passed	as	an	array	in	the	second	argument.	

*/	

var	otrsApp	=	angular.module('otrsApp',	[

				'ui.router',	

				'templates',	

				'ui.bootstrap',	

				'ngStorage',	

				'otrsApp.httperror',	

				'otrsApp.login',	

				'otrsApp.restaurants'	

])	

/*	

		Then	we	have	defined	the	default	route	/restaurants	

*/	

								.config([

												'$stateProvider',	'$urlRouterProvider',	

												function	($stateProvider,	$urlRouterProvider)	{	

																$urlRouterProvider.otherwise('/restaurants');	

												}])	

/*	

			This	functions	controls	the	flow	of	the	application	and	handles	the	events.	

*/	

								.controller('otrsAppCtrl',	function	($scope,	$injector,	restaurantService)	{	

												var	controller	=	this;	

	

												var	AjaxHandler	=	$injector.get('AjaxHandler');	

												var	$rootScope	=	$injector.get('$rootScope');	

												var	log	=	$injector.get('$log');	

												var	sessionStorage	=	$injector.get('$sessionStorage');	

												$scope.showSpinner	=	false;	

/*	

			This	function	gets	called	when	the	user	searches	any	restaurant.	It	uses	the	Angular	restaurant	service	that	we'll	define	in	the	next	section	to	search	the	given	search	string.	

*/	

												$scope.search	=	function	()	{	

																$scope.restaurantService	=	restaurantService;	

																restaurantService.async().then(function	()	{	

																				$scope.restaurants	=	restaurantService.search($scope.searchedValue);	

																});	

												}	

/*	

			When	the	state	is	changed,	the	new	controller	controls	the	flows	based	on	the	view	and	configuration	and	the	existing	controller	is	destroyed.	

*/	

												$scope.$on('$destroy',	function	destroyed()	{	

																log.debug('otrsAppCtrl	destroyed');	

																controller	=	null;	

																$scope	=	null;	

												});	

	

												$rootScope.fromState;	

												$rootScope.fromStateParams;	

												$rootScope.$on('$stateChangeSuccess',	function	(event,	toState,	toParams,	fromState,	fromStateParams)	{	

																$rootScope.fromState	=	fromState;	

																$rootScope.fromStateParams	=	fromStateParams;	

												});	

	

												//	utility	method	

												$scope.isLoggedIn	=	function	()	{	

																if	(sessionStorage.session)	{	

																				return	true;	

																}	else	{	

																				return	false;	

																}	

												};	

	

												/*	spinner	status	*/	

												$scope.isSpinnerShown	=	function	()	{	

																return	AjaxHandler.getSpinnerStatus();	

												};	

	

								})	

/*	

			This	function	gets	executed	when	this	object	loads.	Here	we	are	setting	the	user	object	which	is	defined	for	the	root	scope.	

*/	

								.run(['$rootScope',	'$injector',	'$state',	function	($rootScope,	$injector,	$state)	{	

																$rootScope.restaurants	=	null;	

																//	self	reference	

																var	controller	=	this;	

																//	inject	external	references	

																var	log	=	$injector.get('$log');	

																var	$sessionStorage	=	$injector.get('$sessionStorage');	

																var	AjaxHandler	=	$injector.get('AjaxHandler');	

	

																if	(sessionStorage.currentUser)	{	

																				$rootScope.currentUser	=	$sessionStorage.currentUser;	

																}	else	{	

																				$rootScope.currentUser	=	"Guest";	

																				$sessionStorage.currentUser	=	""	

																}	

												}])	

restaurants.js
restaurants.js	represents	an	Angular	service	for	our	application	that	we'll	use	for	the	restaurants.	We
know	that	there	are	two	common	uses	of	services—organizing	code	and	sharing	code	across
applications.	Therefore,	we	have	created	a	restaurants	service	that	will	be	used	among	different	modules
such	as	search,	list,	details,	and	so	on.

Services	are	singleton	objects,	which	are	lazily	instantiated	by	the	AngularJS	service
factory.

The	following	section	initializes	the	restaurants	service	module	and	loads	the	required	dependencies:

angular.module('otrsApp.restaurants',	[

				'ui.router',	

				'ui.bootstrap',	

				'ngStorage',	

				'ngResource'	

])	

In	the	configuration,	we	are	defining	the	routes	and	state	of	the	otrsApp.restaurants	module	using	UI-
Router.

First,	we	define	the	restaurants	state	by	passing	the	JSON	object	containing	the	URL	that	points	to	the
router	URI,	the	template	URL	that	points	to	the	HTML	template	that	displays	the	restaurants	state,	and
the	controller	that	will	handle	the	events	on	the	restaurants	view.

On	top	of	the	restaurants	view	(route	-	/restaurants),	a	nested	restaurants.profile	state	is	also	defined	that
will	represent	the	specific	restaurant.	For	example,	/restaurant/1	would	open	and	display	the	restaurant
profile	(details)	page	of	a	restaurant	that	is	represented	by	Id	1.	This	state	is	called	when	a	link	is	clicked
in	the	restaurants	template.	In	this	ui-sref="restaurants.profile({id:	rest.id})",	rest	represents	the	restaurant
object	retrieved	from	the	restaurants	view.

Notice	that	the	state	name	is	'restaurants.profile',	which	tells	the	AngularJS	UI-Router	that	the	profile	is
a	nested	state	of	the	restaurants	state:

								.config([

												'$stateProvider',	'$urlRouterProvider',	

												function	($stateProvider,	$urlRouterProvider)	{	

																$stateProvider.state('restaurants',	{	

																				url:	'/restaurants',	

																				templateUrl:	'restaurants/restaurants.html',	

																				controller:	'RestaurantsCtrl'	

																})	

																								//	Restaurant	show	page	

																								.state('restaurants.profile',	{	

																												url:	'/:id',	

																												views:	{	

																																'@':	{	

																																				templateUrl:	'restaurants/restaurant.html',	

																																				controller:	'RestaurantCtrl'	

																																}	

																												}	

																								});	

												}])	

In	the	next	code	section,	we	are	defining	the	restaurant	service	using	the	Angular	factory	service	type.
This	restaurant	service	on	load	fetches	the	list	of	restaurants	from	the	server	using	a	REST	call.	It
provides	a	list	and	searches	restaurant	operations	and	restaurant	data:

								.factory('restaurantService',	function	($injector,	$q)	{	

												var	log	=	$injector.get('$log');	

												var	ajaxHandler	=	$injector.get('AjaxHandler');	

												var	deffered	=	$q.defer();	

												var	restaurantService	=	{};	

												restaurantService.restaurants	=	[];	

												restaurantService.orignalRestaurants	=	[];	

												restaurantService.async	=	function	()	{	

																ajaxHandler.startSpinner();	

																if	(restaurantService.restaurants.length	===	0)	{	

																				ajaxHandler.get('/api/restaurant')	

																												.success(function	(data,	status,	headers,	config)	{	

																																log.debug('Getting	restaurants');	

																																sessionStorage.apiActive	=	true;	

																																log.debug("if	Restaurants	-->	"	+	restaurantService.restaurants.length);	

																																restaurantService.restaurants	=	data;	

																																ajaxHandler.stopSpinner();	

																																deffered.resolve();	

																												})	

																												.error(function	(error,	status,	headers,	config)	{	

																																restaurantService.restaurants	=	mockdata;	

																																ajaxHandler.stopSpinner();	

																																deffered.resolve();	

																												});	

																				return	deffered.promise;	

																}	else	{	

																				deffered.resolve();	

																				ajaxHandler.stopSpinner();	

																				return	deffered.promise;	

																}	

												};	

												restaurantService.list	=	function	()	{	

																return	restaurantService.restaurants;	

												};	

												restaurantService.add	=	function	()	{	

																console.log("called	add");	

																restaurantService.restaurants.push(

																								{	

																												id:	103,	

																												name:	'Chi	Cha\'s	Noodles',	

																												address:	'13	W.	St.,	Eastern	Park,	New	County,	Paris',	

																								});	

												};	

												restaurantService.search	=	function	(searchedValue)	{	

																ajaxHandler.startSpinner();	

																if	(!searchedValue)	{	

																				if	(restaurantService.orignalRestaurants.length	>	0)	{	

																								restaurantService.restaurants	=	restaurantService.orignalRestaurants;	

																				}	

																				deffered.resolve();	

																				ajaxHandler.stopSpinner();	

																				return	deffered.promise;	

																}	else	{	

																				ajaxHandler.get('/api/restaurant?name='	+	searchedValue)	

																												.success(function	(data,	status,	headers,	config)	{	

																																log.debug('Getting	restaurants');	

																																sessionStorage.apiActive	=	true;	

																																log.debug("if	Restaurants	-->	"	+	restaurantService.restaurants.length);	

																																if	(restaurantService.orignalRestaurants.length	<	1)	{	

																																				restaurantService.orignalRestaurants	=	restaurantService.restaurants;	

																																}	

																																restaurantService.restaurants	=	data;	

																																ajaxHandler.stopSpinner();	

																																deffered.resolve();	

																												})	

																												.error(function	(error,	status,	headers,	config)	{	

																																if	(restaurantService.orignalRestaurants.length	<	1)	{	

																																				restaurantService.orignalRestaurants	=	restaurantService.restaurants;	

																																}	

																																restaurantService.restaurants	=	[];	

																																restaurantService.restaurants.push(

																																								{	

																																												id:	104,	

																																												name:	'Gibsons	-	Chicago	Rush	St.',	

																																												address:	'1028	N.	Rush	St.,	Rush	&	Division,	Cook	County,	Paris'	

																																								});	

																																restaurantService.restaurants.push(

																																								{	

																																												id:	105,	

																																												name:	'Harry	Caray\'s	Italian	Steakhouse',	

																																												address:	'33	W.	Kinzie	St.,	River	North,	Cook	County,	Paris',	

																																								});	

																																ajaxHandler.stopSpinner();	

																																deffered.resolve();	

																												});	

																				return	deffered.promise;	

																}	

												};	

												return	restaurantService;	

								})	

In	the	next	section	of	the	restaurants.js	module,	we'll	add	two	controllers	that	we	defined	for	the
restaurants	and	restaurants.profile	states	in	the	routing	configuration.	These	two	controllers	are
RestaurantsCtrl	and	RestaurantCtrl,	and	they	handle	the	restaurants	state	and	the	restaurants.profiles	state
respectively.

The	RestaurantsCtrl	controller	is	pretty	simple,	in	that	it	loads	the	restaurants	data	using	the	restaurants
service	list	method:

								.controller('RestaurantsCtrl',	function	($scope,	restaurantService)	{	

												$scope.restaurantService	=	restaurantService;	

												restaurantService.async().then(function	()	{	

																$scope.restaurants	=	restaurantService.list();	

												});	

								})	

The	RestaurantCtrl	controller	is	responsible	for	showing	the	restaurant	details	of	a	given	ID.	This	is	also
responsible	for	performing	the	reservation	operations	on	the	displayed	restaurant.	This	control	will	be
used	when	we	design	the	restaurant	details	page	with	reservation	options:

								.controller('RestaurantCtrl',	function	($scope,	$state,	$stateParams,	$injector,	restaurantService)	{	

												var	$sessionStorage	=	$injector.get('$sessionStorage');	

												$scope.format	=	'dd	MMMM	yyyy';	

												$scope.today	=	$scope.dt	=	new	Date();	

												$scope.dateOptions	=	{	

																formatYear:	'yy',	

																maxDate:	new	Date().setDate($scope.today.getDate()	+	180),	

																minDate:	$scope.today.getDate(),	

																startingDay:	1	

												};	

	

												$scope.popup1	=	{	

																opened:	false	

												};	

												$scope.altInputFormats	=	['M!/d!/yyyy'];	

												$scope.open1	=	function	()	{	

																$scope.popup1.opened	=	true;	

												};	

												$scope.hstep	=	1;	

												$scope.mstep	=	30;	

	

												if	($sessionStorage.reservationData)	{	

																$scope.restaurant	=	$sessionStorage.reservationData.restaurant;	

																$scope.dt	=	new	Date($sessionStorage.reservationData.tm);	

																$scope.tm	=	$scope.dt;	

												}	else	{	

																$scope.dt.setDate($scope.today.getDate()	+	1);	

																$scope.tm	=	$scope.dt;	

																$scope.tm.setHours(19);	

																$scope.tm.setMinutes(30);	

																restaurantService.async().then(function	()	{	

																				angular.forEach(restaurantService.list(),	function	(value,	key)	{	

																								if	(value.id	===	parseInt($stateParams.id))	{	

																												$scope.restaurant	=	value;	

																								}	

																				});	

																});	

												}	

												$scope.book	=	function	()	{	

																var	tempHour	=	$scope.tm.getHours();	

																var	tempMinute	=	$scope.tm.getMinutes();	

																$scope.tm	=	$scope.dt;	

																$scope.tm.setHours(tempHour);	

																$scope.tm.setMinutes(tempMinute);	

																if	($sessionStorage.currentUser)	{	

																				console.log("$scope.tm	-->	"	+	$scope.tm);	

																				alert("Booking	Confirmed!!!");	

																				$sessionStorage.reservationData	=	null;	

																				$state.go("restaurants");	

																}	else	{	

																				$sessionStorage.reservationData	=	{};	

																				$sessionStorage.reservationData.restaurant	=	$scope.restaurant;	

																				$sessionStorage.reservationData.tm	=	$scope.tm;	

																				$state.go("login");	

																}	

												}	

								})	

We	have	also	added	a	few	of	the	filters	in	the	restaurants.js	module	to	format	the	date	and	time.	These
filters	perform	the	following	formatting	on	the	input	data:

date1:	Returns	the	input	date	in	dd	MMM	yyyy	format,	for	example,	13-Apr-2016
time1:	Returns	the	input	time	in	HH:mm:ss	format,	for	example,	11:55:04
dateTime1:	Returns	the	input	date	and	time	in	dd	MMM	yyyy	HH:mm:ss	format,	for	example,	13-Apr-2016
11:55:04

In	the	following	code	snippet,	we've	applied	these	three	filters:

								.filter('date1',	function	($filter)	{	

												return	function	(argDate)	{	

																if	(argDate)	{	

																				var	d	=	$filter('date')(new	Date(argDate),	'dd	MMM	yyyy');	

																				return	d.toString();	

																}	

																return	"";	

												};	

								})	

								.filter('time1',	function	($filter)	{	

												return	function	(argTime)	{	

																if	(argTime)	{	

																				return	$filter('date')(new	Date(argTime),	'HH:mm:ss');	

																}	

																return	"";	

												};	

								})	

								.filter('datetime1',	function	($filter)	{	

												return	function	(argDateTime)	{	

																if	(argDateTime)	{	

																				return	$filter('date')(new	Date(argDateTime),	'dd	MMM	yyyy	HH:mm	a');	

																}	

																return	"";	

												};	

								});	

restaurants.html
We	need	to	add	the	templates	that	we	have	defined	for	the	restaurants.profile	state.	As	you	can	see,	in	the
template,	we	are	using	the	ng-repeat	directive	to	iterate	the	list	of	objects	returned	by
restaurantService.restaurants.	The	restaurantService	scope	variable	is	defined	in	the	controller.
'RestaurantsCtrl'	is	associated	with	this	template	in	the	restaurants	state:

<h3>Famous	Gourmet	Restaurants	in	Paris</h3>	

<div	class="row">	

				<div	class="col-md-12">	

								<table	class="table	table-bordered	table-striped">	

												<thead>	

																<tr>	

																				<th>#Id</th>	

																				<th>Name</th>	

																				<th>Address</th>	

																</tr>	

												</thead>	

												<tbody>	

																<tr	ng-repeat="rest	in	restaurantService.restaurants">	

																				<td>{{rest.id}}</td>	

																				<td><a	ui-sref="restaurants.profile({id:	rest.id})">{{rest.name}}</td>	

																				<td>{{rest.address}}</td>	

																</tr>	

												</tbody>	

								</table>	

				</div>	

</div>	

Search	restaurants
In	the	home	page	index.html,	we	have	added	the	search	form	in	the	header	section	that	allows	us	to	search
restaurants.	The	search	restaurants	functionality	will	use	the	same	files	as	described	earlier.	It	makes	use
of	app.js	(search	form	handler),	restaurants.js	(restaurant	service),	and	restaurants.html	to	display	the
searched	records:

OTRS	home	page	with	restaurants	listing

Restaurant	details	with	reservation	option
Restaurant	details	with	reservation	option	will	be	part	of	the	content	area	(middle	section	of	the	page).
This	will	contain	a	breadcrumb	at	the	top	with	restaurants	as	a	link	to	the	restaurant	listing	page,
followed	by	the	name	and	address	of	the	restaurant.	The	last	section	will	contain	the	reservation	section
containing	date	and	time	selection	boxes	and	a	reserve	button.

This	page	will	look	like	the	following	screenshot:

Restaurants	Detail	Page	with	Reservation	Option

Here,	we	will	make	use	of	the	same	restaurant	service	declared	in	restaurants.js.
The	only	change	will	be	the	template	as	described	for	the	restaurants.profile	state.	This	template	will	be
defined	using	restaurant.html.

restaurant.html
As	you	can	see,	the	breadcrumb	is	using	the	restaurants	route,	which	is	defined	using	the	ui-sref	attribute.
The	reservation	form	designed	in	this	template	calls	the	book()	function	defined	in	the	controller
RestaurantCtrl	using	the	directive	ng-submit	on	the	form	submit:

<div	class="row">	

<div	class="row">	

				<div	class="col-md-12">	

								<ol	class="breadcrumb">	

												<a	ui-sref="restaurants">Restaurants	

												<li	class="active">{{restaurant.name}}	

									

								<div	class="bs-docs-section">	

												<h1	class="page-header">{{restaurant.name}}</h1>	

												<div>	

																Address:	{{restaurant.address}}	

												</div>	

												</br></br>	

												<form	ng-submit="book()">	

																<div	class="input-append	date	form_datetime">	

																				<div	class="row">	

																								<div	class="col-md-7">	

																												<p	class="input-group">	

																																Select	Date	&	Time	for	Booking:	

																																	

																																				<input	type="text"	size=20	class="form-control"	uib-datepicker-popup="{{format}}"	ng-model="dt"	is-open="popup1.opened"	datepicker-options="dateOptions"	ng-required="true"	close-text="Close"	alt-input-formats="altInputFormats"	/>	

																																	

																																	

																																				<button	type="button"	class="btn	btn-default"	ng-click="open1()"><i	class="glyphicon	glyphicon-calendar"></i></button>	

																																	

																												<uib-timepicker	ng-model="tm"	ng-change="changed()"	hour-step="hstep"	minute-step="mstep"></uib-timepicker>	

																												</p>	

																								</div>	

																				</div></div>	

																<div	class="form-group">	

																				<button	class="btn	btn-primary"	type="submit">Reserve</button>	

																</div>	

												</form></br></br>	

								</div>	

				</div>	

</div>	

Login	page
When	a	user	clicks	on	the	Reserve	button	on	the	Restaurant	Detail	page	after	selecting	the	date	and	time
of	the	reservation,	the	Restaurant	Detail	page	checks	whether	the	user	is	already	logged	in	or	not.	If	the
user	is	not	logged	in,	then	the	Login	page	displays.	It	looks	like	the	following	screenshot:

Login	page

We	are	not	authenticating	the	user	from	the	server.	Instead,	we	are	just	populating	the	user
name	in	the	session	storage	and	root	scope	for	implementing	the	flow.

Once	the	user	logs	in,	they	are	redirected	back	to	the	same	booking	page	with	the	persisted	state.	Then,
the	user	can	proceed	with	the	reservation.	The	Login	page	uses	basically	two	files:	login.html	and
login.js.

login.html
The	login.html	template	consists	of	only	two	input	fields,	username	and	password,	with	the	Login	button
and	Cancel	link.	The	Cancel	link	resets	the	form	and	the	Login	button	submits	the	login	form.

Here,	we	are	using	LoginCtrl	with	the	ng-controller	directive.	The	Login	form	is	submitted	using	the	ng-
submit	directive	that	calls	the	submit	function	of	LoginCtrl.	Input	values	are	first	collected	using	the	ng-model
directive	and	then	submitted	using	their	respective	properties	-	_email	and	_password:

<div	ng-controller="LoginCtrl	as	loginC"	style="max-width:	300px">	

				<h3>Login</h3>	

				<div	class="form-container">	

								<form	ng-submit="loginC.submit(_email,	_password)">	

												<div	class="form-group">	

																<label	for="username"	class="sr-only">Username</label>	

																<input	type="text"	id="username"	class="form-control"	placeholder="username"	ng-model="_email"	required	autofocus	/>	

												</div>	

												<div	class="form-group">	

																<label	for="password"	class="sr-only">Password</label>	

																<input	type="password"	id="password"	class="form-control"	placeholder="password"	ng-model="_password"	/>	

												</div>	

												<div	class="form-group">	

																<button	class="btn	btn-primary"	type="submit">Login</button>	

																<button	class="btn	btn-link"	ng-click="loginC.cancel()">Cancel</button>	

												</div>	

								</form>	

				</div>	

</div>	

login.js
The	login	module	is	defined	in	the	login.js	file	that	contains	and	loads	the	dependencies	using	the	module
function.	The	login	state	is	defined	with	the	help	of	the	config	function	that	takes	the	JSON	object
containing	the	url,	controller,	and	templateUrl	properties.

Inside	the	controller,	we	define	the	cancel	and	submit	operations,	which	are	called	from	the	login.html
template:

angular.module('otrsApp.login',	[

				'ui.router',	

				'ngStorage'	

])	

								.config(function	config($stateProvider)	{	

												$stateProvider.state('login',	{	

																url:	'/login',	

																controller:	'LoginCtrl',	

																templateUrl:	'login/login.html'	

												});	

								})	

								.controller('LoginCtrl',	function	($state,	$scope,	$rootScope,	$injector)	{	

												var	$sessionStorage	=	$injector.get('$sessionStorage');	

												if	($sessionStorage.currentUser)	{	

																$state.go($rootScope.fromState.name,	$rootScope.fromStateParams);	

												}	

												var	controller	=	this;	

												var	log	=	$injector.get('$log');	

												var	http	=	$injector.get('$http');	

	

												$scope.$on('$destroy',	function	destroyed()	{	

																log.debug('LoginCtrl	destroyed');	

																controller	=	null;	

																$scope	=	null;	

												});	

												this.cancel	=	function	()	{	

																$scope.$dismiss;	

																$state.go('restaurants');	

												}	

												console.log("Current	-->	"	+	$state.current);	

												this.submit	=	function	(username,	password)	{	

																$rootScope.currentUser	=	username;	

																$sessionStorage.currentUser	=	username;	

																if	($rootScope.fromState.name)	{	

																				$state.go($rootScope.fromState.name,	$rootScope.fromStateParams);	

																}	else	{	

																				$state.go("restaurants");	

																}	

												};	

								});

Reservation	confirmation
Once	the	user	is	logged	in	and	has	clicked	on	the	Reservation	button,	the	restaurant	controller	shows	the
alert	box	with	confirmation,	as	shown	in	the	following	screenshot:

Restaurants	detail	page	with	reservation	confirmation

Setting	up	the	web	application
As	we	are	planning	to	use	the	latest	technology	stack	for	our	UI	application	development,	we	will	use
Node.js	and	npm	(Node.js	package	manager)	that	provide	the	open-source	runtime	environment	for
developing	the	server-side	JavaScript	web	application.

I	would	recommend	to	go	through	this	section	once.	It	will	introduce	you	to	JavaScript
build	tooling	and	stacks.	However,	you	can	skip	it	if	you	know	the	JavaScript	build	tools	or
do	not	want	to	explore	them.

Node.js	is	built	on	Chrome's	V8	JavaScript	engine	and	uses	an	event-driven,	non-blocking	I/O,	which
makes	it	lightweight	and	efficient.	The	default	package	manager	of	Node.js,	npm,	is	the	largest
ecosystem	of	open-source	libraries.	It	allows	the	installation	of	Node.js	programs	and	makes	it	easier	to
specify	and	link	dependencies:

1.	 First,	we	need	to	install	npm	if	it's	not	already	installed.	It	is	a	prerequisite.	You	can	check	the	link
at:	https://docs.npmjs.com/getting-started/installing-node	to	install	npm.

2.	 To	check	if	npm	is	set	up	correctly	execute	the	npm	-v	command	on	the	CLI.	It	should	return	the
installed	npm	version	in	the	output.	We	can	switch	to	NetBeans	for	creating	a	new	AngularJS	JS
HTML5	project	in	NetBeans.	At	the	time	of	writing	this	chapter,	I	have	used	NetBeans	8.1.

3.	 Navigate	to	File	|	New	Project.	A	new	project	dialog	should	appear.	Select	HTML5/JavaScript
under	the	Categories	list	and	HTML5/JS	Application	under	the	Projects	option,	as	shown	in	the
following	screenshot:

NetBeans	-	New	HTML5/JavaScript	project

4.	 Click	on	the	Next	button.	Then,	feed	the	Project	Name,	Project	Location,
and	Project	Folder	in	the	Name	and	Location	dialog	and	click	on	the

https://docs.npmjs.com/getting-started/installing-node

Next	button:

NetBeans	New	Project	-	Name	and	Location

5.	 On	the	Site	Template	dialog,	select	the	AngularJS	Seed	item	under	the	Download	Online	Template:
option	and	click	on	the	Next	button.	The	AngularJS	Seed	project	is	available	at:	https://github.com/an
gular/angular-seed:

https://github.com/angular/angular-seed

NetBeans	new	project	-	site	Ttemplate

6.	 On	the	Tools	dialog,	select	Create	package.json,	Create	bower.json,	and	Create	gulpfile.js.	We'll
use	gulp	as	our	build	tool.	Gulp	and	Grunt	are	two	of	the	most	popular	build	frameworks	for	JS.	As
a	Java	programmer,	you	can	correlate	these	tools	to	Ant.	Both	are	awesome	in	their	own	way.	If
you	want,	you	can	also	use	Gruntfile.js	as	a	build	tool:

Netbeans	New	Project	-	Tools

7.	 Now,	once	you	click	on	Finish,	you	can	see	the	HTML5/JS	application	directories	and	files.	The
directory	structure	will	look	like	the	following	screenshot:

AngularJS	seed	directory	structure

8.	 You	will	also	see	an	exclamation	mark	in	your	project	if	all	of	the	required	dependencies	are	not
configured	properly.	You	can	resolve	project	problems	by	right-clicking	on	the	project	and	then
selecting	the	Resolve	Project	Problems	option:

Resolve	Project	Problems	dialog

9.	 Ideally,	NetBeans	resolves	project	problems	if	you	click	on	the	Resolve...	button.
10.	 You	can	also	resolve	a	few	of	the	problems	by	giving	the	correct	path	for	some	of	the	JS	modules

such	as	Bower,	gulp,	and	Node:

Bower:	Required	to	manage	the	JavaScript	libraries	for	the	OTRS	application
Gulp:	A	task	runner,	required	for	building	our	projects	like	ANT
Node:	For	executing	our	server-side	OTRS	application

Bower	is	a	dependencies	management	tool	that	works	like	npm.	Npm	is	used	for	installing
the	Node.js	modules,	whereas	Bower	is	used	for	managing	your	web	application's
libraries/components.

11.	 Click	on	the	Tools	menu	and	select	Options.	Now,	set	the	path	of	Bower,	gulp,	and	Node.js,	as
shown	in	the	HTML/JS	tools	(top	bar	icon)	in	the	following	screenshot.	For	setting	up	the	Bower
path,	click	on	the	Bower	tab,	as	shown	in	the	following	screenshot,	and	update	the	path:

Setting	Bower	path

12.	 For	setting	up	the	Gulp	Path,	click	on	the	Gulp	tab,	as	shown	in	the	following	screenshot,	and
update	the	path:

Setting	Gulp	path

13.	 For	setting	up	the	Node	Path,	click	on	the	Node.js	tab,	as	shown	in	the	following	screenshot,	and
update	the	path:

Setting	Node	path

14.	 Once	this	is	done,	package.json	will	look	like	the	following.	We	have	modified	the	values	for	a	few
of	the	entries	such	as	name,	descriptions,	dependencies,	and	so	on:

{	

		"name":	"otrs-ui",	

		"private":	true,	

		"version":	"1.0.0",	

		"description":	"Online	Table	Reservation	System",	

		"main":	"index.js",	

		"license":	"MIT",	

		"dependencies":	{	

				"coffee-script":	"^1.10.0",	

				"del":	"^1.1.1",	

				"gulp-angular-templatecache":	"^1.9.1",	

				"gulp-clean":	"^0.3.2",	

				"gulp-connect":	"^3.2.3",	

				"gulp-file-include":	"^0.13.7",	

				"gulp-sass":	"^2.3.2",	

				"gulp-util":	"^3.0.8",	

				"run-sequence":	"^1.2.2"	

		},	

		"devDependencies":	{	

				"coffee-script":	"*",	

				"gulp-sass":	"*",	

				"bower":	"^1.3.1",	

				"http-server":	"^0.6.1",	

				"jasmine-core":	"^2.3.4",	

				"karma":	"~0.12",	

				"karma-chrome-launcher":	"^0.1.12",	

				"karma-firefox-launcher":	"^0.1.6",	

				"karma-jasmine":	"^0.3.5",	

				"karma-junit-reporter":	"^0.2.2",	

				"protractor":	"^2.1.0",	

				"shelljs":	"^0.2.6"	

		},	

		"scripts":	{	

				"postinstall":	"bower	install",	

				"prestart":	"npm	install",	

				"start":	"http-server	-a	localhost	-p	8000	-c-1",	

				"pretest":	"npm	install",	

				"test":	"karma	start	karma.conf.js",	

				"test-single-run":	"karma	start	karma.conf.js		--single-run",	

				"preupdate-webdriver":	"npm	install",	

				"update-webdriver":	"webdriver-manager	update",	

				"preprotractor":	"npm	run	update-webdriver",	

				"protractor":	"protractor	e2e-tests/protractor.conf.js",	

				"update-index-async":	"node	-e	\"require('shelljs/global');	sed('-i',	/\\/\\/@@NG_LOADER_START@@[\\s\\S]*\\/\\/@@NG_LOADER_END@@/,	'//@@NG_LOADER_START@@\\n'	+	sed(/sourceMappingURL=angular-loader.min.js.map/,'sourceMappingURL=bower_components/angular-loader/angular-loader.min.js.map','app/bower_components/angular-loader/angular-loader.min.js')	+	'\\n//@@NG_LOADER_END@@',	'app/index-async.html');\""	

		}	

	

}

15.	 Then,	we'll	update	bower.json,	as	shown	in	the	following	snippet:

{	

				"name":	"OTRS-UI",	

				"description":	"OTRS-UI",	

				"version":	"0.0.1",	

				"license":	"MIT",	

				"private":	true,	

				"dependencies":	{	

								"AngularJS":	"~1.5.0",	

								"AngularJS-ui-router":	"~0.2.18",	

								"AngularJS-mocks":	"~1.5.0",	

								"AngularJS-bootstrap":	"~1.2.1",	

								"AngularJS-touch":	"~1.5.0",	

								"bootstrap-sass-official":	"~3.3.6",	

								"AngularJS-route":	"~1.5.0",	

								"AngularJS-loader":	"~1.5.0",	

								"ngstorage":	"^0.3.10",	

								"AngularJS-resource":	"^1.5.0",	

								"html5-boilerplate":	"~5.2.0"	

				}	

}	

16.	 Next,	we'll	modify	the	.bowerrc	file,	as	shown	in	the	following	code,	to	specify	the	directory	where
Bower	will	store	the	components	defined	in	bower.json.	We'll	store	the	Bower	component	under	the
application	directory:

{	

		"directory":	"app/bower_components"	

}	

17.	 Next,	we'll	set	up	the	gulpfile.js.	We'll	use	CoffeeScript	to	define	the	gulp	tasks.	Therefore,	we	will
just	define	the	CoffeeScript	in	gulpfile.js	and	the	actual	task	will	be	defined	in	the	gulpfile.coffee	file.

Let's	see	the	content	of	the	gulpfile.js	file:

require('coffee-script/register');	

require('./gulpfile.coffee');	

18.	 In	this	step,	we'll	define	the	gulp	configuration.	We	are	using	CoffeeScript	to	define	the	gulp	file.	The
name	of	the	gulp	file	written	in	CoffeeScript	is	gulpfile.coffee.	The	default	task	is	defined	as
default_sequence:

default_sequence	=	['connect',	'build',	'watch']

Let's	understand	what	default_sequence	task	performs:

As	per	the	defined	default_sequence	task,	first	it	will	connect	to	the	server,	then	build	the	web
application,	and	keep	a	watch	on	the	changes.	The	watch	will	help	to	render	changes	we	make	in
the	code	and	will	be	displayed	immediately	on	the	UI.
The	most	important	tasks	in	this	script	are	connect	and	watch.	Others	are	self-explanatory.	So,	lets	dig
in	them.
gulp-connect:	This	is	a	gulp	plugin	to	run	the	web	server.	It	also	allows	for	live	reload.
gulp-watch:	This	is	a	file	watcher	that	uses	chokidar	and	emits	vinyl	objects	(objects	describe	the	file
—its	path	and	content).	In	simple	words,	we	can	say	that	gulp-watch	watches	files	for	changes	and
triggers	tasks.

The	gulpfile.coffee	will	look	something	like	this:

gulp										=	require('gulp')	

gutil									=	require('gulp-util')	

del											=	require('del');	

clean									=	require('gulp-clean')	

connect							=	require('gulp-connect')	

fileinclude			=	require('gulp-file-include')	

runSequence			=	require('run-sequence')	

templateCache	=	require('gulp-AngularJS-templatecache')	

sass										=	require('gulp-sass')	

	

paths	=	

		scripts:	

				src:	['app/src/scripts/**/*.js']	

				dest:	'public/scripts'	

		scripts2:	

				src:	['app/src/views/**/*.js']	

				dest:	'public/scripts'	

		styles:	

				src:	['app/src/styles/**/*.scss']	

				dest:	'public/styles'	

		fonts:	

				src:	['app/src/fonts/**/*']	

				dest:	'public/fonts'	

		images:	

				src:	['app/src/images/**/*']	

				dest:	'public/images'	

		templates:	

				src:	['app/src/views/**/*.html']	

				dest:	'public/scripts'	

		html:	

				src:	['app/src/*.html']	

				dest:	'public'	

		bower:	

				src:	['app/bower_components/**/*']	

				dest:	'public/bower_components'	

	

#copy	bower	modules	to	public	directory	

gulp.task	'bower',	->	

		gulp.src(paths.bower.src)	

		.pipe	gulp.dest(paths.bower.dest)	

		.pipe	connect.reload()	

	

#copy	scripts	to	public	directory	

gulp.task	'scripts',	->	

		gulp.src(paths.scripts.src)	

		.pipe	gulp.dest(paths.scripts.dest)	

		.pipe	connect.reload()	

	

#copy	scripts2	to	public	directory	

gulp.task	'scripts2',	->	

		gulp.src(paths.scripts2.src)	

		.pipe	gulp.dest(paths.scripts2.dest)	

		.pipe	connect.reload()	

	

#copy	styles	to	public	directory	

gulp.task	'styles',	->	

		gulp.src(paths.styles.src)	

		.pipe	sass()	

		.pipe	gulp.dest(paths.styles.dest)	

		.pipe	connect.reload()	

	

#copy	images	to	public	directory	

gulp.task	'images',	->	

		gulp.src(paths.images.src)	

		.pipe	gulp.dest(paths.images.dest)	

		.pipe	connect.reload()	

	

#copy	fonts	to	public	directory	

gulp.task	'fonts',	->	

		gulp.src(paths.fonts.src)	

		.pipe	gulp.dest(paths.fonts.dest)	

		.pipe	connect.reload()	

	

#copy	html	to	public	directory	

gulp.task	'html',	->	

		gulp.src(paths.html.src)	

		.pipe	gulp.dest(paths.html.dest)	

		.pipe	connect.reload()	

	

#compile	AngularJS	template	in	a	single	js	file	

gulp.task	'templates',	->	

		gulp.src(paths.templates.src)	

		.pipe(templateCache({standalone:	true}))	

		.pipe(gulp.dest(paths.templates.dest))	

	

#delete	contents	from	public	directory	

gulp.task	'clean',	(callback)	->	

		del	['./public/**/*'],	callback;	

	

#Gulp	Connect	task,	deploys	the	public	directory	

gulp.task	'connect',	->	

		connect.server	

				root:	['./public']	

				port:	1337	

				livereload:	true	

	

gulp.task	'watch',	->	

		gulp.watch	paths.scripts.src,	['scripts']	

		gulp.watch	paths.scripts2.src,	['scripts2']	

		gulp.watch	paths.styles.src,	['styles']	

		gulp.watch	paths.fonts.src,	['fonts']	

		gulp.watch	paths.html.src,	['html']	

		gulp.watch	paths.images.src,	['images']	

		gulp.watch	paths.templates.src,	['templates']	

	

gulp.task	'build',	['bower',	'scripts',	'scripts2',	'styles',	'fonts',	'images',	'templates',	'html']	

	

default_sequence	=	['connect',	'build',	'watch']	

	

gulp.task	'default',	default_sequence	

	

gutil.log	'Server	started	and	waiting	for	changes'	

19.	 Once	we	are	ready	with	the	preceding	changes,	we	will	install	gulp	using	the	following	command:	

npm	install	--no-optional	gulp

To	install	windows	build	tools,	run	the	following	command	in	Windows	environment:

npm	install	--global	--production	windows-build-tools

20.	 Also,	we'll	install	the	other	gulp	libraries	such	as	gulp-clean,	gulp-connect,	and	so	on,	using	the
following	command:

npm	install	--save	--no-optional	gulp-util	gulp-clean	gulp-connect	gulp-file-include	run-sequence	gulp-angular-templatecache	gulp-sass	del	coffee-script

21.	 Now,	we	can	install	the	Bower	dependencies	defined	in	the	bower.json	file	using	the	following
command:

bower	install	--s

If	Bower	is	not	installed,	please	install	it	with	following	command:	

npm	install	-g	bower

	The	output	for	the	preceding	command	will	be	as	shown	in	the	following	screenshot:

Sample	output	-	bower	install	--s

22.	 This	is	the	last	step	in	the	setup.	Here,	we	will	confirm	that	the	directory	structure	should	look	like
the	following.	We'll	keep	the	src	and	published	artifacts	(in	the	./public	directory)	as	separate
directories.	Therefore,	the	following	directory	structure	is	different	from	the	default	AngularJS
seed	project:

+---app	

|			+---bower_components	

|			|			+---AngularJS	

|			|			+---AngularJS-bootstrap	

|			|			+---AngularJS-loader	

|			|			+---AngularJS-mocks	

|			|			+---AngularJS-resource	

|			|			+---AngularJS-route	

|			|			+---AngularJS-touch	

|			|			+---AngularJS-ui-router	

|			|			+---bootstrap-sass-official	

|			|			+---html5-boilerplate	

|			|			+---jquery	

|			|			\---ngstorage	

|			+---components	

|			|			\---version	

|			+---node_modules	

|			+---public	

|			|			\---css	

|			\---src	

|							+---scripts	

|							+---styles	

|							+---views	

+---e2e-tests	

+---nbproject	

|			\---private	

+---node_modules	

+---public	

|			+---bower_components	

|			+---scripts	

|			+---styles	

\---test

References
The	following	are	references	to	some	good	reads:

AngularJS	by	Example,	Packt	Publishing:	(https://www.packtpub.com/web-development/angularjs-example)
Angular	Seed	Project:	(https://github.com/angular/angular-seed)
Angular	UI:	(https://angular-ui.github.io/bootstrap/)
Gulp:	(http://gulpjs.com/)

https://www.packtpub.com/web-development/angularjs-example
https://github.com/angular/angular-seed
https://angular-ui.github.io/bootstrap/
http://gulpjs.com/

Summary
In	this	chapter,	we	have	learned	about	the	new	dynamic	web	application	development.
It	has	changed	completely	over	the	years.	The	web	application	frontend	is	completely	developed	in	pure
HTML	and	JavaScript	instead	of	using	any	server-side	technologies	such	as	JSP,	servlets,	ASP,	and	so
on.	UI	application	development	with	JavaScript	now	has	its	own	development	environments	such	as
npm,	Bower,	and	so	on.	We	have	explored	the	AngularJS	framework	to	develop	our	web	application.	It
made	things	easier	by	providing	built-in	features	and	support	for	Bootstrap	and	the	$http	service	that
deals	with	the	AJAX	calls.

I	hope	you	have	grasped	the	UI	development	overview	and	the	way	modern	applications	are	developed
and	integrated	with	server-side	microservices.	In	the	next	chapter,	we	will	learn	the	best	practices	and
common	principals	of	microservice	design.	The	chapter	will	provide	details	about	microservices
development	using	industry	practices	and	examples.	It	will	also	contain	examples	of	where
microservices	implementation	goes	wrong	and	how	you	can	avoid	such	problems.

Best	Practices	and	Common	Principles
After	all	the	hard	work	put	in	by	you	toward	gaining	the	experience	of	developing	a	microservice
sample	project,	you	must	be	wondering	how	to	avoid	common	mistakes	and	improve	the	overall	process
of	developing	microservice-based	products	and	services.	We	can	follow	these	principles	or	guidelines	to
simplify	the	process	of	developing	microservices	and	avoid/reduce	the	potential	limitations.	We	will
focus	on	these	key	concepts	in	this	chapter.

This	chapter	is	spread	across	the	following	three	sections:

Overview	and	mindset
Best	practices	and	principles
Microservice	frameworks	and	tools

Overview	and	mindset
You	can	implement	microservice-based	design	on	both	new	and	existing	products	and	services.
Contrary	to	the	belief	that	it	is	easier	to	develop	and	design	a	new	system	from	scratch	rather	than
making	changes	to	an	existing	one	that	is	already	live,	each	approach	has	its	own	respective	challenges
and	advantages.

For	example,	since	there	is	no	existing	system	design	for	a	new	product	or	service,	you	have	freedom
and	flexibility	to	design	the	system	without	giving	any	thought	to	its	impact.	However,	you	don't	have
the	clarity	on	both	functional	and	system	requirements	for	a	new	system,	as	these	mature	and	take	shape
over	time.	On	the	other	hand,	for	mature	products	and	services,	you	have	detailed	knowledge	and
information	of	the	functional	and	system	requirements.	Nevertheless,	you	have	a	challenge	to	mitigate
the	risk	of	impact	that	design	change	brings	to	the	table.	Therefore,	when	it	comes	to	updating	a
production	system	from	monolithic	to	microservices,	you	will	need	to	plan	better	than	if	you	were
building	a	system
from	scratch.

Experienced	and	successful	software	design	experts	and	architects	always	evaluate	the	pros	and	cons
and	take	a	cautious	approach	to	making	any	change	to	existing	live	systems.	One	should	not	make
changes	to	existing	live	system	design	simply	because	it	may	be	cool	or	trendy.	Therefore,	if	you	would
like	to	update	the	design	of	your	existing	production	system	to	microservices,	you	need	to	evaluate	all
the	pros	and	cons	before	making	this	call.

I	believe	that	monolithic	systems	provide	a	great	platform	to	upgrade	to	a	successful	microservice-based
design.	Obviously,	we	are	not	discussing	cost	here.	You	have	ample	knowledge	of	the	existing	system
and	functionality,	which	enables	you	to	divide	the	existing	system	and	build	microservices	based	on
functionalities	and	how	those	would	interact	with	each	other.	Also,	if	your	monolithic	product	is	already
modularized	in	some	way,	then	directly	transforming	microservices	by	exposing	an	API	instead	of	an
Application	Binary	Interface	(ABI)	is	possibly	the	easiest	way	of	achieving	a	microservice
architecture.	A	successful	microservice-based	system	is	more	dependent	on	microservices	and	their
interaction	protocol	than	anything	else.

Having	said	that,	it	does	not	mean	that	you	cannot	have	a	successful	microservice-based	system	if	you
are	starting	from	scratch.	However,	it	is	recommended	to	start	a	new	project	based	on	monolithic	design
that	gives	you	perspective	and	understanding	of	the	system	and	functionality.	It	allows	you	to	find
bottlenecks	quickly	and	guides	you	to	identify	any	potential	feature	that	can	be	developed	using
microservices.	Here,	we	have	not	discussed	the	size	of	the	project,	which	is	another	important	factor.
We'll	discuss	this	in	the	next	section.

In	today's	cloud	age	and	agile	development	world,	it	takes	an	hour	between	making	any	change	and	the
change	going	live.	In	today's	competitive	environment,	every	organization	would	like	to	have	the	edge
for	quickly	delivering	features	to	the	user.	Continuous	development,	integration,	and	deployment	are
part	of	the	production	delivery	process,	a	completely	automatic	process.

It	makes	more	sense	if	you	are	offering	cloud-based	products	or	services.	Then,	a	microservice-based
system	enables	the	team	to	respond	with	agility	to	fix	any	issue	or	provide	a	new	feature	to	the	user.

Therefore,	you	need	to	evaluate	all	the	pros	and	cons	before	you	make	a	call	for	starting	a	new
microservice-based	project	from	scratch	or	planning	to	upgrade	the	design	of	an	existing	monolithic
system	to	a	microservice-based	system.	You	have	to	listen	to	and	understand	the	different	ideas	and
perspectives	shared	across	your	team,	and	you	need	to	take	a	cautious	approach.

Finally,	I	would	like	to	share	the	importance	of	having	better	processes	and	an	efficient	system	in	place
for	a	successful	production	system.	Having	a	microservice-based	system	does	not	guarantee	a
successful	production	system,	and	a	monolithic	application	does	not	mean	you	cannot	have	a	successful
production	system	in	today's	age.	Netflix,	a	microservice-based	cloud	video	rental	service,	and	Etsy,	a
monolithic	e-commerce	platform,	are	both	examples	of	successful	live	production	systems	(see	an
interesting	Twitter	discussion	link	in	the	References	section	later	in	the	chapter).	Therefore,	processes
and	agility	are	also	key	to	a	successful	production	system.

Best	practices	and	principles
As	we	have	learned	from	the	first	chapter,	microservices	are	a	lightweight	style	of	implementing
Service	Oriented	Architecture	(SOA).	On	top	of	that,	microservices	are	not	strictly	defined,	which
gives	you	the	flexibility	of	developing	microservices	the	way	you	want	and	according	to	need.	At	the
same	time,	you	need	to	make	sure	that	you	follow	a	few	of	the	standard	practices	and	principles	to	make
your	job	easier	and	implement	microservice-based	architecture	successfully.

Nanoservice,	size,	and	monolithic
Each	microservice	in	your	project	should	be	small	in	size	and	perform	one	functionality	or	feature	(for
example,	user	management),	independently	enough	to	perform	the	function	on	its	own.

The	following	two	quotes	from	Mike	Gancarz	(a	member	who	designed	the	X	Window	system),	which
defines	one	of	the	paramount	precepts	of	Unix	philosophy,	suits	the	microservice	paradigm	as	well:

"Small	is	beautiful."
"Make	each	program	do	one	thing	well."

Now,	how	do	we	define	the	size,	in	today's	age,	when	you	have	a	framework	(for	example,	Finangle)
that	reduces	the	lines	of	code	(LOC)?	In	addition,	many	modern	languages,	such	as	Python	and	Erlang,
are	less	verbose.	This	makes	it	difficult	to	decide	whether	you	want	to	make	this	code	microservice	or
not.

Apparently,	you	may	implement	a	microservice	for	a	small	number	of	LOC;	that	is	actually	not	a
microservice	but	a	nanoservice.

Arnon	Rotem-Gal-Oz	defined	a	nanoservice	as	follows:

"Nanoservice	is	an	antipattern	where	a	service	is	too	fine-grained.	A	nanoservice	is	a	service	whose
overhead	(communications,	maintenance,	and	so	on)	outweighs	its	utility."

Therefore,	it	always	makes	sense	to	design	microservices	based	on	functionality.	Domain-driven	design
makes	it	easier	to	define	functionality	at	a	domain	level.

As	discussed	previously,	the	size	of	your	project	is	a	key	factor	when	deciding	whether	to	implement
microservices	or	determining	the	number	of	microservices	you	want	to	have	for	your	project.	In	a
simple	and	small	project,	it	makes	sense	to	use	monolithic	architecture.	For	example,	based	on	the
domain	design	that	we	learned	in	Chapter	3,	Domain-Driven	Design,	you	would	get	a	clear	understanding
of	your	functional	requirements	and	it	makes	facts	available	to	draw	the	boundaries	between	various
functionalities	or	features.	For	example,	in	the	sample	project	(online	table	reservation	system;	OTRS)
we	have	implemented,	it	is	very	easy	to	develop	the	same	project	using	monolithic	design,	provided	you
don't	want	to	expose	the	APIs	to	the	customer,	or	you	don't	want	to	use	it	as	SaaS,	or	there	are	plenty	of
similar	parameters	that	you	want	to	evaluate	before	making	a	call.

You	can	migrate	the	monolithic	project	to	a	microservices	design	later,	when	the	need	arises.	Therefore,
it	is	important	that	you	should	develop	the	monolithic	project	in	modular	fashion	and	have	the	loose
coupling	at	every	level	and	layer,	and	ensure	there	are	predefined	contact	points	and	boundaries
between	different	functionalities	and	features.	In	addition,	your	data	source,	such	as	DB,	should	be
designed	accordingly.	Even	if	you	are	not	planning	to	migrate	to	a	microservice-based	system,	it	would
make	bug	fixes	and	enhancement	easier	to	implement.

Paying	attention	to	the	previous	points	will	mitigate	any	possible	difficulties	you	may	encounter	when
you	migrate	to	microservices.

Generally,	large	or	complex	projects	should	be	developed	using	microservices-based	architecture,	due	to
the	many	advantages	it	provides,	as	discussed	in	previous	chapters.

I	even	recommend	developing	your	initial	project	as	monolithic;	once	you	gain	a	better	understanding
of	project	functionalities	and	project	complexity,	then	you	can	migrate	it	to	microservices.	Ideally,	a
developed	initial	prototype	should	give	you	the	functional	boundaries	that	will	enable	you	to	make	the
right	choice.

Continuous	integration	and	deployment
You	must	have	a	continuous	integration	and	deployment	process	in	place.	It	gives	you	the	edge	to
deliver	changes	faster	and	detect	bugs	early.	Therefore,	each	service	should	have	its	own	integration	and
deployment	process.	In	addition,	it	must	be	automated.	There	are	many	tools	available,	such	as
Teamcity,	Jenkins,	and	so	on,	that	are	used	widely.	It	helps	you	to	automate	the	build	process—which
catches	build	failure	early,	especially	when	you	integrate	your	changes	with	the	mainline	(like	either	any
release	branch/tag	or	master	branch).

You	can	also	integrate	your	tests	with	each	automated	integration	and	deployment	process.	Integration
testing	tests	the	interactions	of	different	parts	of	the	system,	such	as	between	two	interfaces	(API
provider	and	consumer),	or	between	different	components,	or	modules	in	a	system,	such	as	between
DAO	and	database,	and	so	on.	Integration	testing	is	important	as	it	tests	the	interfaces	between	the
modules.	Individual	modules	are	first	tested	in	isolation.	Then,	integration	testing	is	performed	to	check
the	combined	behavior	and	validate	that	requirements	are	implemented	correctly.	Therefore,	in
microservices,	integration	testing	is	a	key	tool	to	validate	the	APIs.	We	will	cover	more	about	this	in	the
next	section.

Finally,	you	can	see	the	updated	mainline	changes	on	your	CD	(continuous	deployment)	machine	where
this	process	deploys	the	build.

The	process	does	not	end	here:	you	can	make	a	container,	such	as	Docker,	and	hand	it	over	to	your
WebOps	team,	or	have	a	separate	process	that	delivers	to	a	configured	location	or	deploys	to	a	WebOps
stage	environment.	From	here,	it	could	be	deployed	directly	to	your	production	system	once	approved
by	the	designated	authority.

System/end-to-end	test	automation
Testing	is	a	very	important	part	of	any	product	and	service	delivery.	You	do	not	want	to	deliver	buggy
applications	to	customers.	Earlier,	at	the	time	when	the	waterfall	model	was	popular,	an	organization
used	to	take	1	to	6	months	or	more	for	the	testing	stage	before	delivering	to	the	customer.	In	recent
years,	after	the	agile	process	became	popular,	more	emphasis	is	given	to	automation.	Similar	to	prior
point	testing,	automation	is	also	mandatory.

Whether	you	follow	test-driven	development	(TDD)	or	not,	we	must	have	system	or	end-to-end	test
automation	in	place.	It's	very	important	to	test	your	business	scenarios	and	that	is	also	the	case	with	end-
to-end	testing	that	may	start	from	your	REST	call	to	database	checks,	or	from	UI	app	to	database
checks.

Also,	it	is	important	to	test	your	APIs	if	you	have	public	APIs.

Doing	this	makes	sure	that	any	change	does	not	break	any	of	the	functionality	and	ensures	seamless,
bug-free	production	delivery.	As	discussed	in	the	last	section,	each	module	is	tested	in	isolation	using
unit	testing	to	check	everything	is	working	as	expected,	then	integration	testing	is	performed	between
different	modules	to	check	the	expected	combined	behavior	and	validate	the	requirements,	whether
implemented	correctly	or	not.	After	integration	tests,	functional	tests	are	executed	that	validate	the
functional	and	feature	requirements.

So,	if	unit	testing	makes	sure	individual	modules	are	working	fine	in	isolation,	integration	testing	makes
sure	that	interaction	among	different	modules	works	as	expected.	If	unit	tests	are	working	fine,	it
implies	that	the	chances	of	integration	test	failure	is	greatly	reduced.	Similarly,	integration	testing
ensures	that	functional	testing	is	likely	to	be	successful.

It	is	presumed	that	one	always	keeps	all	types	of	tests	updated,	whether	these	are	unit-level
tests	or	end-to-end	test	scenarios.

Self-monitoring	and	logging
A	microservice	should	provide	service	information	about	itself	and	the	state	of	the	various	resources	it
depends	on.	Service	information	represents	statistics	such	as	the	average,	minimum,	and	maximum	time
to	process	a	request,	the	number	of	successful	and	failed	requests,	being	able	to	track	a	request,	memory
usage,	and	so	on.

Adrian	Cockcroft	highlighted	a	few	practices	which	are	very	important	for	monitoring	microservices	at
Glue	Conference	(Glue	Con)	2015.	Most	of	them	are	valid	for	any	monitoring	system:

Spend	more	time	working	on	code	that	analyzes	the	meaning	of	metrics	than	code	that	collects,
moves,	stores,	and	displays	metrics.	This	helps	to	not	only	increase	the	productivity,	but	also
provide	important	parameters	to	fine-tune	the	microservices	and	increase	the	system	efficiency.
The	idea	is	to	develop	more	analysis	tools	rather	than	developing	more	monitoring	tools.
The	metric	to	display	latency	needs	to	be	less	than	the	human	attention	span.	That	means	less	than
10	seconds,	according	to	Adrian.
Validate	that	your	measurement	system	has	enough	accuracy	and	precision.	Collect	histograms	of
response	time.
Accurate	data	makes	decision-making	faster	and	allows	you	to	fine-tune	untill	you	reach	precision
level.	He	also	suggests	that	the	best	graph	to	show	the	response	time	is	a	histogram.
Monitoring	systems	need	to	be	more	available	and	scalable	than	the	systems	being	monitored.
The	statement	says	it	all:	you	cannot	rely	on	a	system	which	itself	is	not	stable	or	available	24/7.
Optimize	for	distributed,	ephemeral,	cloud-native,	containerized	microservices.
Fit	metrics	to	models	to	understand	relationships.

Monitoring	is	a	key	component	of	microservice	architecture.	You	may	have	a	dozen	to	thousands	of
microservices	(true	for	a	big	enterprise's	large	project)	based	on	project	size.	Even	for	scaling	and	high
availability,	organizations	create	a	clustered	or	load	balanced	pool/pod	for	each	microservice,	even
separate	pools	for	each	microservice	based	on	versions.	Ultimately,	it	increases	the	number	of	resources
you	need	to	monitor,	including	each	microservice	instance.	In	addition,	it	is	important	that	you	have	a
process	in	place	so	that	whenever	something	goes	wrong,	you	know	it	immediately,	or	better,	receive	a
warning	notification	in	advance	before	something	goes	wrong.	Therefore,	effective	and	efficient
monitoring	is	crucial	for	building	and	using	the	microservice	architecture.	Netflix	uses	security
monitoring	using	tools	such	as	Netflix	Atlas	(real-time	operational	monitoring	which	processes	1.2
billion	metrics),	Security	Monkey	(for	monitoring	security	on	AWS-based	environments),	Scumblr
(intelligence-gathering	tool)	and	FIDO	(for	analyzing	events	and	automated	incident	reporting).

Logging	is	another	important	aspect	for	microservices	that	should	not	be	ignored.	Having	effective
logging	makes	all	the	difference.	As	there	could	be	10	or	more	microservices,	managing	logging	is	a
huge	task.

For	our	sample	project,	we	have	used	Mapped	Diagnostic	Context	(MDC)	logging,	which	is
sufficient,	in	a	way,	for	individual	microservice	logging.	However,	we	also	need	logging	for	an	entire

system,	or	central	logging.	We	also	need	aggregated	statistics	of	logs.	There	are	tools	that	do	the	job,
such	as	Loggly	or	Logspout.

A	request	and	generated	correlated	events	gives	you	an	overall	view	of	the	request.	For
tracing	of	any	event	and	request,	it	is	important	to	associate	the	event	and	request	with
service	ID	and	request	ID	respectively.	You	can	also	associate	the	content	of	the	event,
such	as	message,	severity,	class	name,	and	so	on,	to	service	ID.

A	separate	data	store	for	each	microservice
If	you	remember,	the	most	important	characteristics	of	microservices	you	can	find	out	about	is	the	way
microservices	run	in	isolation	from	other	microservices,	most	commonly	as	standalone	applications.

Abiding	by	this	rule,	it	is	recommended	that	you	do	not	use	the	same	database,	or	any	other	data	store
across	multiple	microservices.	In	large	projects,	you	may	have	different	teams	working	on	the	same
project,	and	you	want	the	flexibility	to	choose	the	database	for	each	microservice	that	best	suits	the
microservice.

Now,	this	also	brings	some	challenges.

For	instance,	the	following	is	relevant	to	teams	who	may	be	working	on	different	microservices	within
the	same	project,	if	that	project	shares	the	same	database	structure.	There	is	a	possibility	that	a	change
in	one	microservice	may	impact	the	other	microservice	models.	In	such	cases,	change	in	one	may	affect
the	dependent	microservice,	so	you	also	need	to	change	the	dependent	model	structure.

To	resolve	this	issue,	microservices	should	be	developed	based	on	an	API-driven	platform.	Each
microservice	would	expose	its	APIs,	which	could	be	consumed	by	the	other	microservices.	Therefore,
you	also	need	to	develop	the	APIs,	which	is	required	for	the	integration	of	different	microservices.

Similarly,	due	to	different	data	stores,	actual	project	data	is	also	spread	across	multiple	data	stores	and	it
makes	data	management	more	complicated,	because	the	separate	storage	systems	can	more	easily	get
out	of	sync	or	become	inconsistent,	and	foreign	keys	can	change	unexpectedly.	To	resolve	such	an	issue,
you	need	to	use	master	data	management	(MDM)	tools.	MDM	tools	operate	in	the	background	and
fix	inconsistencies	if	they	find	any.	For	the	OTRS	sample	example,	it	might	check	every	database	that
stores	booking	request	IDs,	to	verify	that	the	same	IDs	exist	in	all	of	them	(in	other	words,	that	there
aren't	any	missing	or	extra	IDs	in	any	one	database).	MDM	tools	available	in	the	market	include
Informatica,	IBM	MDM	Advance	Edition,	Oracle	Siebel	UCM,	Postgres	(master	streaming	replication),
mariadb	(master/master	configuration),	and	so	on.

If	none	of	the	existing	products	suits	your	requirements,	or	you	are	not	interested	in	any	proprietary
product,	then	you	can	write	your	own.	Presently,	API-driven	development	and	platforms	reduce	such
complexities;	therefore,	it	is	important	that	microservices	should	be	developed	along	with	an	API
platform.

Transaction	boundaries
We	went	through	domain-driven	design	concepts	in	Chapter	3,	Domain-Driven	Design.	Please	review	this
if	you	have	not	grasped	it	thoroughly,	as	it	gives	you	an	understanding	of	the	state	vertically.	Since	we
are	focusing	on	microservice-based	design,	the	result	is	that	we	have	a	system	of	systems,	where	each
microservice	represents	a	system.	In	this	environment,	finding	the	state	of	a	whole	system	at	any	given
point	in	time	is	very	challenging.	If	you	are	familiar	with	distributed	applications,	then	you	may	be
comfortable	in	such	an	environment,	with	respect	to	state.

It	is	very	important	to	have	transaction	boundaries	in	place	that	describe	which	microservice	owns	a
message	at	any	given	time.	You	need	a	way	or	process	that	can	participate	in	transactions,	transacted
routes,	and	error	handlers,	idempotent	consumers,	and	compensating	actions.	It	is	not	an	easy	task	to
ensure	transactional	behavior	across	heterogeneous	systems,	but	there	are	tools	available	that	do	the	job
for	you.

For	example,	Camel	has	great	transactional	capabilities	that	help	developers	easily	create	services	with
transactional	behavior.

Microservices	frameworks	and	tools
It	is	always	better	not	to	reinvent	the	wheel.	Therefore,	we	would	like	to	explore	what	tools	are	already
available	and	provide	the	platform,	framework,	and	features	that	make	microservice	development	and
deployment	easier.

Throughout	the	book,	we	have	used	Spring	Cloud	extensively,	due	to	the	same	reason:	it	provides	all	of
the	tools	and	platforms	required	to	make	microservice	development	very	easy.	Spring	Cloud	uses
Netflix	Open	Source	Software	(OSS).	Let	us	explore	Netflix	OSS—a	complete	package.

I	have	also	added	a	brief	overview	about	how	each	tool	will	help	to	build	good	microservice
architecture.

Netflix	Open	Source	Software	(OSS)
Netflix	OSS	center	is	the	most	popular	and	widely	used	open	source	software	for	Java-based
microservice	open	source	projects.	The	world's	most	successful	video	renting	service	is	dependent	on	it.
Netflix	has	more	than	40	million	users	and	is	used	across	the	globe.	Netflix	is	a	pure	cloud-based
solution,	developed	on	microservice-based	architecture.	You	can	say	that	whenever	anybody	talks	about
microservices,	Netflix	is	the	first	name	that	comes	to	mind.	Let	us	discuss	the	wide	variety	of	tools	it
provides.	We	have	already	discussed	many	of	them	while	developing	the	sample	OTRS	application.
However,	there	are	a	few	which	we	have	not	explored.	Here,	we'll	cover	only	the	overview	of	each	tool,
instead	of	going	into	detail.	It	will	give	you	an	overall	idea	of	the	practical	characteristics	of
microservice	architecture	and	its	use	in	the	cloud.

Build	-	Nebula
Netflix	Nebula	is	a	collection	of	Gradle	plugins	that	makes	your	microservice	builds	easier	using	Gradle
(a	Maven-like	build	tool).	For	our	sample	project,	we	have	made	use	of	Maven,	therefore	we	haven't
had	the	opportunity	to	explore	Nebula	in	this	book.	However,	exploring	it	would	be	fun.	The	most
significant	Nebula	feature	for	developers	is	eliminating	the	boilerplate	code	in	Gradle	build	files,	which
allows	developers	to	focus	on	coding.

Having	a	good	build	environment,	especially	CI/CD	(continuous	integration	and
continuous	deployment)	is	a	must	for	microservice	development	and	keeping	aligned	with
agile	development.	Netflix	Nebula	makes	your	build	easier	and	more	efficient.

Deployment	and	delivery	-	Spinnaker	with
Aminator
Once	your	build	is	ready,	you	want	to	move	that	build	to	Amazon	Web	Services	(AWS)	EC2.	Aminator
creates	and	packages	images	of	builds	in	the	form	of	Amazon	Machine	Image	(AMI).	Spinnaker	then
deploys	these	AMIs	to	AWS.

Spinnaker	is	a	continuous	delivery	platform	for	releasing	code	changes	with	high	velocity	and
efficiency.	Spinnaker	also	supports	other	cloud	services,	such	as	Google	Computer	Engine	and	Cloud
Foundry.

If	you	would	like	to	deploy	your	latest	microservice	builds	to	cloud	environments	such	as
EC2,	Spinnaker	and	Aminator	help	you	to	do	that	in	an	autonomous	way.

Service	registration	and	discovery	-	Eureka
Eureka,	as	we	have	explored	in	this	book,	provides	a	service	that	is	responsible	for	microservice
registration	and	discovery.	On	top	of	that,	Eureka	is	also	used	for	load	balancing	the	middle	tier
(processes	hosting	different	microservices).	Netflix	also	uses	Eureka,	along	with	other	tools,	such	as
Cassandra	or	memcached,	to	enhance	its	overall	usability.

Service	registration	and	discovery	is	a	must	for	microservice	architecture.	Eureka	serves
this	purpose.	Please	refer	to	Chapter	4,	Implementing	a	Microservice,	for	more	information
about	Eureka.

Service	communication	-	Ribbon
Microservice	architecture	is	of	no	use	if	there	is	no	interprocess	or	service	communication.	The	Ribbon
application	provides	this	feature.	Ribbon	works	with	Eureka	for	load	balancing	and	with	Hystrix	for
fault	tolerance	or	circuit	breaker	operations.

Ribbon	also	supports	TCP	and	UDP	protocols,	apart	from	HTTP.	It	provides	these	protocol	supports	in
both	asynchronous	and	reactive	models.	It	also	provides	the	caching	and	batching	capabilities.

Since	you	will	have	many	microservices	in	your	project,	you	need	a	way	to	process
information	using	interprocess	or	service	communication.	Netflix	provides	the	Ribbon	tool
for	this	purpose.

Circuit	breaker	-	Hystrix
Hystrix	tool	is	for	circuit	breaker	operations,	that	is,	latency	and	fault	tolerance.	Therefore,	Hystrix
stops	cascading	failures.	Hystrix	performs	the	real-time	operations	for	monitoring	the	services	and
property	changes,	and	supports	concurrency.

Circuit	breaker,	or	fault	tolerance,	is	an	important	concept	for	any	project,	including
microservices.	Failure	of	one	microservice	should	not	halt	your	entire	system;	to	prevent
this,	and	provide	meaningful	information	to	the	customer	on	failure,	is	the	job	of	Netflix
Hystrix.

Edge	(proxy)	server	-	Zuul
Zuul	is	an	edge	server	or	proxy	server,	and	serves	the	requests	of	external	applications	such	as	UI	client,
Android/iOS	application,	or	any	third-party	consumer	of	APIs	offered	by	the	product	or	service.
Conceptually,	it	is	a	door	to	external	applications.

Zuul	allows	dynamic	routing	and	monitoring	of	requests.	It	also	performs	security	operations	such	as
authentication.	It	can	identify	authentication	requirements	for	each	resource	and	reject	any	request	that
does	not	satisfy	them.

You	need	an	edge	server	or	API	gateway	for	your	microservices.	Netflix	Zuul	provides	this
feature.	Please	refer	to	Chapter	5,	Deployment	and	Testing,	for	more	information.

Operational	monitoring	-	Atlas
Atlas	is	an	operational	monitoring	tool	that	provides	near-real-time	information	on	dimensional	time-
series	data.	It	captures	operational	intelligence	that	provides	a	picture	of	what	is	currently	happening
within	a	system.	It	features	in-memory	data	storage,	allowing	it	to	gather	and	report	very	large	numbers
of	metrics	very	quickly.	At	present,	it	processes	1.3	billion	metrics	for	Netflix.

Atlas	is	a	scalable	tool.	This	is	why	it	can	now	process	1.3	billion	metrics,	from	1	million	metrics	a	few
years	back.	Atlas	not	only	provides	scalability	in	terms	of	reading	the	data,	but	also	aggregating	it	as	a
part	of	graph	request.

Atlas	uses	the	Netflix	Spectator	library	for	recording	dimensional	time-series	data.

Once	you	deploy	microservices	in	a	cloud	environment,	you	need	to	have	a	monitoring
system	in	place	to	track	and	monitor	all	microservices.	Netflix	Atlas	does	this	job	for	you.

Reliability	monitoring	service	-	Simian
Army
In	Cloud,	no	single	component	can	guarantee	100%	uptime.	Therefore,	it	is	a	requirement	for	successful
microservice	architecture	to	make	the	entire	system	available	in	case	a	single	cloud	component	fails.
Netflix	has	developed	a	tool	named	Simian	Army	to	avoid	system	failure.	Simian	Army	keeps	a	cloud
environment	safe,	secure,	and	highly	available.	To	achieve	high	availability	and	security,	it	uses	various
services	(Monkeys)	in	the	cloud	for	generating	various	kinds	of	failures,	detecting	abnormal	conditions,
and	testing	the	cloud's	ability	to	survive	these	challenges.
It	uses	the	following	services	(Monkeys),	which	are	taken	from	the	Netflix	blog:

Chaos	Monkey:	Chaos	Monkey	is	a	service	which	identifies	groups	of	systems	and	randomly
terminates	one	of	the	systems	in	a	group.	The	service	operates	at	a	controlled	time	and	interval.
Chaos	Monkey	only	runs	in	business	hours	with	the	intent	that	engineers	will	be	alert	and	able	to
respond.
Janitor	Monkey:	Janitor	Monkey	is	a	service	which	runs	in	the	AWS	cloud	looking	for	unused
resources	to	clean	up.	It	can	be	extended	to	work	with	other	cloud	providers	and	cloud	resources.
The	schedule	of	service	is	configurable.	Janitor	Monkey	determines	whether	a	resource	should	be	a
cleanup	candidate,	by	applying	a	set	of	rules	on	it.	If	any	of	the	rules	determines	that	the	resource
is	a	cleanup	candidate,	Janitor	Monkey	marks	the	resource	and	schedules	a	time	to	clean	it	up.	For
exceptional	cases,	when	you	want	to	keep	an	unused	resource	longer,	before	Janitor	Monkey
deletes	a	resource,	the	owner	of	the	resource	will	receive	a	notification	a	configurable	number	of
days	ahead	of	the	cleanup	time.
Conformity	Monkey:	Conformity	Monkey	is	a	service	which	runs	in	the	AWS	cloud	looking	for
instances	that	are	not	conforming	to	predefined	rules	for	the	best	practices.	It	can	be	extended	to
work	with	other	cloud	providers	and	cloud	resources.	The	schedule	of	service	is	configurable.	If
any	of	the	rules	determines	that	the	instance	is	not	conforming,	the	monkey	sends	an	email
notification	to	the	owner	of	the	instance.	There	could	be	exceptional	cases	where	you	want	to
ignore	warnings	of	a	specific	conformity	rule	for	some	applications.
Security	Monkey:	Security	Monkey	monitors	policy	changes	and	alerts	on	insecure	configurations
in	an	AWS	account.	The	main	purpose	of	Security	Monkey	is	security,	though	it	also	proves	a
useful	tool	for	tracking	down	potential	problems,	as	it	is	essentially	a	change-tracking	system.

Successful	microservice	architecture	makes	sure	that	your	system	is	always	up,	and	failure	of	a	single
cloud	component	should	not	fail	the	entire	system.	Simian	Army	uses	many	services	to	achieve	high
availability.

AWS	resource	monitoring	-	Edda
In	a	cloud	environment,	nothing	is	static.	For	example,	virtual	host	instances	change	frequently,	an	IP
address	could	be	reused	by	various	applications,	or	a	firewall	or	related	changes	may	take	place.

Edda	is	a	service	that	keeps	track	of	these	dynamic	AWS	resources.	Netflix	named	it	Edda	(meaning	a
tale	of	Norse	mythology),	as	it	records	the	tales	of	cloud	management	and	deployments.	Edda	uses	the
AWS	APIs	to	poll	AWS	resources	and	records	the	results.	These	records	allow	you	to	search	and	see
how	the	cloud	has	changed	over	time.	For	instance,	if	any	host	of	the	API	server	is	causing	any	issue,
then	you	need	to	find	out	what	that	host	is	and	which	team	is	responsible	for	it.

These	are	the	features	it	offers:

Dynamic	querying:	Edda	provides	the	REST	APIs,	and	it	supports	the	matrix	arguments	and
provides	fields	selectors	that	let	you	retrieve	only	the	desired	data.
History/changes:	Edda	maintains	the	history	of	all	AWS	resources.	This	information	helps	you
when	you	analyze	the	causes	and	impact	of	outage.	Edda	can	also	provide	the	different	view	of
current	and	historical	information	about	resources.	It	stores	the	information	in	MongoDB	at	the
time	of	writing.
Configuration:	Edda	supports	many	configuration	options.	In	general,	you	can	poll	information
from	multiple	accounts	and	multiple	regions	and	can	use	the	combination	of	account	and	regions
that	account	points.	Similarly,	it	provides	different	configurations	for	AWS,	Crawler,	Elector,	and
MongoDB.

If	you	are	using	the	AWS	for	hosting	your	microservice-based	product,	then	Edda	serves	the	purpose	of
monitoring	the	AWS	resources.

On-host	performance	monitoring	-	Vector
Vector	is	a	static	web	application	and	runs	inside	a	web	browser.	It	allows	it	to	monitor	the	performance
of	those	hosts	where	Performance	Co-Pilot	(PCP)	is	installed.	Vector	supports	PCP	version	3.10+.
PCP	collects	metrics	and	makes	them	available	to	Vector.

It	provides	high-resolution	right	metrics	available	on	demand.	This	helps	engineers	to	understand	how	a
system	behaves	and	correctly	troubleshoot	performance	issues.

Vector	is	a	monitoring	tool	that	helps	you	to	monitor	the	performance	of	a	remote	host.

Distributed	configuration	management	-
Archaius
Archaius	is	a	distributed	configuration	management	tool	that	allows	you	to	do	the	following:

Use	dynamic	and	typed	properties.
Perform	thread-safe	configuration	operations.
Check	for	property	changes	using	a	polling	framework.
Use	a	callback	mechanism	in	an	ordered	hierarchy	of	configurations.
Inspect	and	perform	operations	on	properties	using	JConsole,	as	Archaius	provides	the	JMX
MBean.
A	good	configuration	management	tool	is	required	when	you	have	a	microservice-based	product.
Archaius	helps	to	configure	different	types	of	properties	in	a	distributed	environment.

Scheduler	for	Apache	Mesos	-	Fenzo
Fenzo	is	a	scheduler	library	for	Apache	Mesos	frameworks	written	in	Java.	Apache	Mesos	frameworks
match	and	assign	resources	to	pending	tasks.	The	following	are	its	key	features:

It	supports	long-running	service	style	tasks	and	for	batch
It	can	auto-scale	the	execution	host	cluster,	based	on	resource	demands
It	supports	plugins	that	you	can	create	based	on	requirements
You	can	monitor	resource-allocation	failures,	which	allows	you	to	debug	the	root	cause

Cost	and	cloud	utilization	-	Ice
Ice	provides	a	bird's-eye	view	of	cloud	resources	from	a	cost	and	usage	perspective.	It	provides	the
latest	information	about	provisioned	cloud	resource	allocation	to	different	teams	that	adds	value	for
optimal	utilization	of	the	cloud	resources.

Ice	is	a	grail	project.	Users	interact	with	the	Ice	UI	component	that	displays	the	information	sent	via	the
Ice	reader	component.	The	reader	fetches	information	from	the	data	generated	by	the	Ice	processor
component.	The	Ice	processor	component	reads	data	information	from	a	detailed	cloud	billing	file	and
converts	it	into	data	that	is	readable	by	the	Ice	reader	component.

Other	security	tools	-	Scumblr	and	FIDO
Along	with	Security	Monkey,	Netflix	OSS	also	makes	use	of	Scumblr	and	Fully	Integrated	Defense
Operation	(FIDO)	tools.

To	keep	track	of	and	protect	your	microservices	from	regular	threats	and	attacks,	you	need
an	automated	way	to	secure	and	monitor	your	microservices.	Netflix	Scumblr	and	FIDO
do	this	job	for	you.

Scumblr
Scumblr	is	a	Ruby	on	Rails	based	web	application	that	allows	you	to	perform	periodic	searches	and
store/take	action	on	the	identified	results.	Basically,	it	gathers	intelligence	that	leverages	internet-wide
targeted	searches	to	surface	specific	security	issues	for	investigation.

Scumblr	makes	use	of	the	Workflowable	gem	to	allow	flexible	workflows	to	be	set	up	for	different
types	of	results.	Scumblr	searches	utilize	plugins	called	Search	Providers.	It	checks	anomalies	such	as
the	following.	Since	it	is	extensible,	you	can	add	as	many	as	you	want:

Compromised	credentials
Vulnerability/hacking	discussion
Attack	discussion
Security-relevant	social	media	discussion

Fully	Integrated	Defence	Operation	(FIDO)
FIDO	is	a	security	orchestration	framework	for	analyzing	events	and	automating	incident	responses.	It
automates	the	incident	response	process	by	evaluating,	assessing,	and	responding	to	malware.	FIDO's
primary	purpose	is	to	handle	the	heavy	manual	effort	needed	to	evaluate	threats	coming	from	today's
security	stack	and	the	large	number	of	alerts	generated	by	them.

As	an	orchestration	platform,	FIDO	can	make	using	your	existing	security	tools	more	efficient	and
accurate	by	heavily	reducing	the	manual	effort	needed	to	detect,	notify,	and	respond	to	attacks	against	a
network.	For	more	information,	you	can	refer	to	the	following	links:

https://github.com/Netflix/Fido

https://github.com/Netflix

https://github.com/Netflix/Fido
https://github.com/Netflix

References
Monolithic	(Etsy)	versus	Microservices	(Netflix)	Twitter	discussion:	https://twitter.com/adrianco/stat
us/441169921863860225

Monitoring	Microservice	and	Containers	Presentation	by	Adrian	Cockcroft:	http://www.slideshare.ne
t/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge

Nanoservice	Antipattern:	http://arnon.me/2014/03/services-microservices-nanoservices/
Apache	Camel	for	Microservice	Architectures:	https://www.javacodegeeks.com/2014/09/apache-camel-for-mi
cro%C2%ADservice-architectures.html

Teamcity:	https://www.jetbrains.com/teamcity/
Jenkins:	https://jenkins-ci.org/
Loggly:	https://www.loggly.com/

https://twitter.com/adrianco/status/441169921863860225
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge
http://arnon.me/2014/03/services-microservices-nanoservices/%20
https://www.javacodegeeks.com/2014/09/apache-camel-for-micro%C2%ADservice-architectures.html
https://www.jetbrains.com/teamcity/
https://jenkins-ci.org/
https://www.loggly.com/

Summary
In	this	chapter,	we	have	explored	various	practices	and	principles	which	are	best-suited	for
microservice-based	products	and	services.	Microservice	architecture	is	a	result	of	cloud	environments,
which	are	being	used	widely	in	comparison	to	on-premises-based	monolithic	systems.	We	have
identified	a	few	of	the	principles	related	to	size,	agility,	and	testing,	that	have	to	be	in	place	for
successful	implementation.

We	have	also	got	an	overview	of	different	tools	used	by	Netflix	OSS	for	the	various	key	features
required	for	successful	implementation	of	microservice-architecture-based	products	and	services.
Netflix	offers	a	video	rental	service,	using	the	same	tools	successfully.

In	the	next	chapter,	readers	may	encounter	issues	and	they	may	get	stuck	on	those	problems.	The
chapter	explains	the	common	problems	encountered	during	the	development	of	microservices,	and	their
solutions.

Troubleshooting	Guide
We	have	come	so	far	and	I	am	sure	you	are	enjoying	each	and	every	moment	of	this	challenging	and
joyful	learning	journey.	I	will	not	say	that	this	book	ends	after	this	chapter,	but	rather	you	are
completing	the	first	milestone.	This	milestone	opens	the	doors	for	learning	and	implementing	a	new
paradigm	in	the	cloud	with	microservice-based	design.	I	would	like	to	reaffirm	that	integration	testing	is
an	important	way	to	test	the	interaction	between	microservices	and	APIs.	While	working	on	your
sample	application	online	table	reservation	system	(OTRS),	I	am	sure	you	have	faced	many
challenges,	especially	while	debugging	the	application.	Here,	we	will	cover	a	few	of	the	practices	and
tools	that	will	help	you	to	troubleshoot	the	deployed	application,	Docker	containers,	and	host	machines.

This	chapter	covers	the	following	three	topics:

Logging	and	the	ELK	stack
Use	of	correlation	ID	for	service	calls	using	Zipkin	and	Sleuth
Dependencies	and	versions

Logging	and	the	ELK	stack
Can	you	imagine	debugging	any	issue	without	seeing	a	log	on	the	production	system?	Simply,	no,	as	it
would	be	difficult	to	go	back	in	time.	Therefore,	we	need	logging.	Logs	also	give	us	warning	signals
about	the	system	if	they	are	designed	and	coded	that	way.	Logging	and	log	analysis	is	an	important	step
for	troubleshooting	any	issue,	and	also	for	throughput,	capacity,	and	monitoring	the	health	of	the
system.	Therefore,	having	a	very	good	logging	platform	and	strategy	will	enable	effective	debugging.
Logging	is	one	of	the	most	important	key	components	of	software	development	in	the	initial	days.

Microservices	are	generally	deployed	using	image	containers	such	as	Docker	that	provide	the	log	with
commands	that	help	you	to	read	logs	of	services	deployed	inside	the	containers.	Docker	and	Docker
Compose	provide	commands	to	stream	the	log	output	of	running	services	within	the	container	and	in	all
containers	respectively.	Please	refer	to	the	following	logs	command	of	Docker	and	Docker	Compose:

Docker	logs	command:
Usage:	docker	logs	[OPTIONS]	<CONTAINER	NAME>

Fetch	the	logs	of	a	container:
-f,	--follow	Follow	log	output

--help	Print	usage

--since=""	Show	logs	since	timestamp

-t,	--timestamps	Show	timestamps

--tail="all"	Number	of	lines	to	show	from	the	end	of	the	logs

Docker	Compose	logs	command:
Usage:	docker-compose	logs	[options]	[SERVICE...]

Options:
--no-color	Produce	monochrome	output

-f,	--follow	Follow	log	output

-t,	--timestamps	Show	timestamps

--tail	Number	of	lines	to	show	from	the	end	of	the	logs	for	each	container

[SERVICES...]	Service	representing	the	container	-	you	can	give	multiple

These	commands	help	you	to	explore	the	logs	of	microservices	and	other	processes	running	inside	the
containers.	As	you	can	see,	using	the	above	commands	would	be	a	challenging	task	when	you	have	a
higher	number	of	services.	For	example,	if	you	have	tens	or	hundreds	of	microservices,	it	would	be	very
difficult	to	track	each	microservice	log.	Similarly,	you	can	imagine,	even	without	containers,	how
difficult	it	would	be	to	monitor	logs	individually.	Therefore,	you	can	assume	the	difficulty	of	exploring
and	correlating	the	logs	of	tens	to	hundreds	of	containers.	It	is	time-consuming	and	adds	very	little
value.

Therefore,	a	log	aggregator	and	visualizing	tools	such	as	the	ELK	stack	come	to	our	rescue.	It	will	be
used	for	centralizing	logging.	We'll	explore	this	in	the	next	section.

A	brief	overview
The	Elasticsearch,	Logstash,	Kibana	(ELK)	stack	is	a	chain	of	tools	that	performs	log	aggregation,
analysis,	visualization,	and	monitoring.	The	ELK	stack	provides	a	complete	logging	platform	that
allows	you	to	analyze,	visualize,	and	monitor	all	of	your	logs,	including	all	types	of	product	logs	and
system	logs.	If	you	already	know	about	the	ELK	stack,	please	skip	to	the	next	section.	Here,	we'll
provide	a	brief	introduction	to	each	tool	in	the	ELK	Stack:

ELK	overview	(source:	elastic.co)

Elasticsearch
Elasticsearch	is	one	of	the	most	popular	enterprise	full	text	search	engines.	It	is	open	source	software.	It
is	distributable	and	supports	multi-tenancy.	A	single	Elasticsearch	server	stores	multiple	indexes	(each
index	represents	a	database),	and	a	single	query	can	search	the	data	of	multiple	indexes.	It	is	a
distributed	search	engine	and	supports	clustering.

It	is	readily	scalable	and	can	provide	near-real-time	searches	with	a	latency	of	1	second.	It	is	developed
in	Java	using	Apache	Lucene.	Apache	Lucene	is	also	free	and	open	source,	and	it	provides	the	core	of
Elasticsearch,	also	known	as	the	informational	retrieval	software	library.

Elasticsearch	APIs	are	extensive	in	nature	and	very	elaborative.	Elasticsearch	provides	a	JSON-based
schema,	less	storage,	and	represents	data	models	in	JSON.	Elasticsearch	APIs	use	JSON	documents	for
HTTP	requests	and	responses.

Logstash
Logstash	is	an	open	source	data	collection	engine	with	real-time	pipeline	capabilities.	In	simple	words,
it	collects,	parses,	processes,	and	stores	the	data.	Since	Logstash	has	data	pipeline	capabilities,	it	helps
you	to	process	any	event	data,	such	as	logs,	from	a	variety	of	systems.	Logstash	runs	as	an	agent	that
collects	the	data,	parses	it,	filters	it,	and	sends	the	output	to	a	designated	app,	such	as	Elasticsearch,	or
simple	standard	output	on	a	console.

It	also	has	a	very	good	plugin	ecosystem	(image	sourced	from	www.elastic.co):

Logstash	ecosystem

http://www.elastic.co

Kibana
Kibana	is	an	open	source	analytics	and	visualization	web	application.	It	is	designed	to	work	with
Elasticsearch.	You	use	Kibana	to	search,	view,	and	interact	with	data	stored	in	Elasticsearch	indices.

It	is	a	browser-based	web	application	that	lets	you	perform	advanced	data	analysis	and	visualize	your
data	in	a	variety	of	charts,	tables,	and	maps.	Moreover,	it	is	a	zero-configuration	application.	Therefore,
it	neither	needs	any	coding	nor	additional	infrastructure	after	installation.

ELK	stack	setup
Generally,	these	tools	are	installed	individually	and	then	configured	to	communicate	with	each	other.
The	installation	of	these	components	is	pretty	straightforward.	Download	the	installable	artifact	from
the	designated	location	and	follow	the	installation	steps,	as	shown	in	the	next	section.

The	installation	steps	provided	below	are	part	of	a	basic	setup	which	is	required	for	setting	up	the	ELK
stack	you	want	to	run.	Since	this	installation	was	done	on	my	localhost	machine,	I	have	used	the	host
localhost.	It	can	be	changed	easily	with	any	respective	hostname	that	you	want.

Installing	Elasticsearch
To	install	Elasticsearch,	we	can	use	the	Elasticsearch	Docker	image:

docker	pull	docker.elastic.co/elasticsearch/elasticsearch:5.5.1	

We	can	also	install	Elasticsearch	by	following	these	steps:

1.	 Download	the	latest	Elasticsearch	distribution	from	https://www.elastic.co/downloads/elasticsearch.
2.	 Unzip	it	to	the	desired	location	in	your	system.
3.	 Make	sure	the	latest	Java	version	is	installed	and	the	JAVA_HOME	environment	variable	is	set.
4.	 Go	to	Elasticsearch	home	and	run	bin/elasticsearch	on	Unix-based	systems	and	bin/elasticsearch.bat

on	Windows.
5.	 Open	any	browser	and	hit	http://localhost:9200/.	On	successful	installation,	it	should	provide	you

with	a	JSON	object	similar	to	the	following:

{	

		"name"	:	"Leech",	

		"cluster_name"	:	"elasticsearch",	

		"version"	:	{	

				"number"	:	"2.3.1",	

				"build_hash"	:	"bd980929010aef404e7cb0843e61d0665269fc39",	

				"build_timestamp"	:	"2016-04-04T12:25:05Z",	

				"build_snapshot"	:	false,	

				"lucene_version"	:	"5.5.0"	

		},	

		"tagline"	:	"You	Know,	for	Search"	

}

By	default,	the	GUI	is	not	installed.	You	can	install	one	by	executing	the	following	command
from	the	bin	directory;	make	sure	the	system	is	connected	to	the	internet:

		plugin	-install	mobz/elasticsearch-head

		

6.	 If	you	are	using	the	Elasticsearch	image,	then	run	the	Docker	image	(later,	we'll	use	docker-compose	to
run	the	ELK	stack	together).

7.	 Now,	you	can	access	the	GUI	interface	with	the	URL	http://localhost:9200/_plugin/head/.	You	can
replace	localhost	and	9200	with	your	respective	hostname	and	port	number.

https://www.elastic.co/downloads/elasticsearch

Installing	Logstash
To	install	Logstash,	we	can	use	the	Logstash	Docker	image:

docker	pull	docker.elastic.co/logstash/logstash:5.5.1	

We	can	also	install	Logstash	by	performing	the	following	steps:

1.	 Download	the	latest	Logstash	distribution	from	https://www.elastic.co/downloads/logstash.
2.	 Unzip	it	to	the	desired	location	in	your	system.

Prepare	a	configuration	file,	as	shown.	It	instructs	Logstash	to	read	input	from	given	files	and
passes	it	to	Elasticsearch	(see	the	following	config	file;	Elasticsearch	is	represented	by	localhost	and
the	9200	port).	It	is	the	simplest	configuration	file.	To	add	filters	and	learn	more	about	Logstash,	you
can	explore	the	Logstash	reference	documentation	available	at	https://www.elastic.co/guide/en/logstash
/current/index.html:

As	you	can	see,	the	OTRS	service	log	and	edge-server	log	are	added	as	input.	Similarly,	you
can	also	add	log	files	of	other	microservices.

input	{	

		###	OTRS	###	

		file	{	

				path	=>	"\logs\otrs-service.log"	

				type	=>	"otrs-api"	

				codec	=>	"json"	

				start_position	=>	"beginning"	

		}	

	

		###	edge	###	

		file	{	

				path	=>	"/logs/edge-server.log"	

				type	=>	"edge-server"	

				codec	=>	"json"	

		}	

}	

	

output	{	

		stdout	{	

				codec	=>	rubydebug	

		}	

		elasticsearch	{	

				hosts	=>	"localhost:9200"	

		}	

}	

3.	 Go	to	Logstash	home	and	run	bin/logstash	agent	-f	logstash.conf	on	Unix-based	systems	and
bin/logstash.bat	agent	-f	logstash.conf	on	Windows.	Here,	Logstash	is	executed	using	the	agent
command.	The	Logstash	agent	collects	data	from	the	sources	provided	in	the	input	field	in	the
configuration	file	and	sends	the	output	to	Elasticsearch.	Here,	we	have	not	used	the	filters,	because
otherwise	it	may	process	the	input	data	before	providing	it	to	Elasticsearch.

Similarly,	you	can	run	Logstash	using	the	downloaded	Docker	image	(later,	we'll	use	the	docker-compose	to
run	the	ELK	stack	together).

https://www.elastic.co/downloads/logstash
https://www.elastic.co/guide/en/logstash/current/index.html

Installing	Kibana
To	install	Kibana,	we	can	use	the	Kibana	Docker	image:

docker	pull	docker.elastic.co/kibana/kibana:5.5.1	

We	can	also	install	the	Kibana	web	application	by	performing	the	following	steps:

1.	 Download	the	latest	Kibana	distribution	from:	https://www.elastic.co/downloads/kibana.
2.	 Unzip	it	to	the	desired	location	in	your	system.

3.	 Open	the	configuration	file	config/kibana.yml	from	the	Kibana	home	directory	and	point	the
elasticsearch.url	to	the	previously	configured	Elasticsearch	instance:

			elasticsearch.url:	"http://localhost:9200"

4.	 Go	to	Kibana	home	and	run	bin/kibana	agent	-f	logstash.conf	on	Unix-based	systems	and	bin/kibana.bat
agent	-f	logstash.conf	on	Windows.

5.	 If	you	are	using	the	Kibana	Docker	image,	then	you	can	run	the	Docker	image	(later,	we'll	use
docker-compose	to	run	the	ELK	stack	together).

6.	 Now,	you	can	access	the	Kibana	app	from	your	browser	using	the	URL	http://localhost:5601/.
To	learn	more	about	Kibana,	explore	the	Kibana	reference	documentation	at	https://www.elastic.co/gu
ide/en/kibana/current/getting-started.html.

As	we	followed	the	preceding	steps,	you	may	have	noticed	that	it	requires	some	amount	of	effort.	If	you
want	to	avoid	a	manual	setup,	you	can	Dockerize	it.	If	you	don't	want	to	put	effort	into	creating	the
Docker	container	of	the	ELK	stack,	you	can	choose	one	from	Docker	Hub.	On	Docker	Hub,	there	are
many	ready-made	ELK	stack	Docker	images.	You	can	try	different	ELK	containers	and	choose	the	one
that	suits	you	the	most.	willdurand/elk	is	the	most	downloaded	container	and	is	easy	to	start,	working	well
with	Docker	Compose.

https://www.elastic.co/downloads/kibana
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Running	the	ELK	stack	using	Docker
Compose
ELK	images	available	on	elastic.co's	own	Docker	repository	have	the	XPack	package	enabled	by
default	at	the	time	of	writing	this	section.	In	the	future,	it	may	be	optional.	Based	on	XPack	availability
in	ELK	images,	you	can	modify	the	docker-compose	file	docker-compose-elk.yml:

version:	'2'	

	

services:	

		elasticsearch:	

				image:	docker.elastic.co/elasticsearch/elasticsearch:5.5.1	

				ports:	

						-	"9200:9200"	

						-	"9300:9300"	

				environment:	

						ES_JAVA_OPTS:	"-Xmx256m	-Xms256m"	

						xpack.security.enabled:	"false"	

						xpack.monitoring.enabled:	"false"	

						#	below	is	required	for	running	in	dev	mode.	For	prod	mode	remove	them	and	vm_max_map_count	kernel	setting	needs	to	be	set	to	at	least	262144	

						http.host:	"0.0.0.0"	

						transport.host:	"127.0.0.1"	

				networks:	

						-	elk	

	

		logstash:	

				image:	docker.elastic.co/logstash/logstash:5.5.1	

				#volumes:	

				#		-	~/pipeline:/usr/share/logstash/pipeline	

				#		windows	manually	copy	to	docker	cp	pipleline/logstash.conf	305321857e9f:/usr/share/logstash/pipeline.	restart	container	after	that	

				ports:	

						-	"5001:5001"	

				environment:	

						LS_JAVA_OPTS:	"-Xmx256m	-Xms256m"	

						xpack.monitoring.enabled:	"false"	

						xpack.monitoring.elasticsearch.url:	"http://192.168.99.100:9200"	

						command:	logstash	-e	'input	{	tcp	{	port	=>	5001	codec	=>	"json"	}	}	output	{	elasticsearch	{	hosts	=>	"192.168.99.100"	index	=>	"mmj"	}	}'	

				networks:	

						-	elk	

				depends_on:	

						-	elasticsearch	

	

		kibana:	

				image:	docker.elastic.co/kibana/kibana:5.5.1	

				ports:	

						-	"5601:5601"	

				environment:	

						xpack.security.enabled:	"false"	

						xpack.reporting.enabled:	"false"	

						xpack.monitoring.enabled:	"false"	

				networks:	

						-	elk	

				depends_on:	

						-	elasticsearch	

	

networks:	

		elk:	

				driver:	bridge	

	

Once	you	save	the	ELK	Docker	Compose	file,	you	can	run	the	ELK	stack	using	the	following	command
(the	command	is	run	from	the	directory	that	contains	the	Docker	Compose	file):

docker-compose	-f	docker-compose-elk.yml	up	-d	

The	output	for	the	preceding	command	is	as	shown	in	the	following	screenshot:

Running	the	ELK	stack	using	Docker	Compose

If	volume	is	not	used,	the	environment	pipeline	does	not	work.	For	a	Windows	environment	such	as
Windows	7,	where	normally	volume	is	hard	to	configure,	you	can	copy	the	pipeline	CONF	file	inside
the	container	and	restart	the	Logstash	container:

docker	cp	pipleline/logstash.conf	<logstash	container	id>:/usr/share/logstash/pipeline	

Please	restart	the	Logstash	container	after	copying	the	pipeline	CONF	file	pipeline/logstash.conf:

input	{	

		tcp	{	

				port	=>	5001	

				codec	=>	"json"	

		}	

}	

	

output	{	

		elasticsearch	{	

				hosts	=>	"elasticsearch:9200"	

		}	

}	

Pushing	logs	to	the	ELK	stack
We	are	done	making	the	ELK	stack	available	for	consumption.	Now,	Logstash	just	needs	a	log	stream
that	can	be	indexed	by	Elasticsearch.	Once	the	Elasticsearch	index	of	logs	is	created,	logs	can	be
accessed	and	processed	on	the	Kibana	dashboard.

To	push	the	logs	to	Logstash,	we	need	to	make	the	following	changes	in	our	service	code.	We	need	to
add	logback	and	logstash-logback	encoder	dependencies	in	OTRS	services.

Add	the	following	dependencies	in	the	pom.xml	file:

...	

<dependency>	

				<groupId>net.logstash.logback</groupId>	

				<artifactId>logstash-logback-encoder</artifactId>	

				<version>4.6</version>	

</dependency>	

<dependency>	

				<groupId>ch.qos.logback</groupId>	

				<artifactId>logback-core</artifactId>	

				<version>1.1.9</version>	

</dependency>	

...	

We	also	need	to	configure	the	logback	by	adding	logback.xml	to	src/main/resources.

The	logback.xml	file	will	look	something	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>	

<configuration	debug="true">	

				<appender	name="stash"	class="net.logstash.logback.appender.LogstashTcpSocketAppender">	

								<destination>192.168.99.100:5001</destination>	

								<!--	encoder	is	required	-->	

								<encoder	class="net.logstash.logback.encoder.LogstashEncoder"	/>	

								<keepAliveDuration>5	minutes</keepAliveDuration>	

				</appender>	

				<appender	name="stdout"	class="ch.qos.logback.core.ConsoleAppender">	

								<encoder>	

												<pattern>%d{HH:mm:ss.SSS}	[%thread,	%X{X-B3-TraceId:-},%X{X-B3-SpanId:-}]	%-5level	%logger{36}	-	%msg%n</pattern>	

								</encoder>	

				</appender>	

	

				<property	name="spring.application.name"	value="nameOfService"	scope="context"/>	

	

				<root	level="INFO">	

								<appender-ref	ref="stash"	/>	

								<appender-ref	ref="stdout"	/>	

				</root>	

	

				<shutdownHook	class="ch.qos.logback.core.hook.DelayingShutdownHook"/>	

</configuration>

Here,	the	destination	is	192.168.99.100:5001,	where	Logstash	is	hosted;	you	can	change	it	based	on	your
configuration.	For	the	encoder,	the	net.logstash.logback.encoder.LogstashEncoder	class	is	used.	The	value	of
the	spring.application.name	property	should	be	set	to	the	service	for	which	it	is	configured.	Simiarly,	a
shutdown	hook	is	added,	so	that	once	the	service	is	stopped,	all	resources	should	be	released	and
cleaned.

You	want	to	start	services	after	the	ELK	stack	is	available,	so	services	can	push	the	logs	to	Logstash.

Once	the	ELK	stack	and	services	are	up,	you	can	check	the	ELK	stack	to	view	the	logs.	You	want	to
wait	for	a	few	minutes	after	starting	the	ELK	stack	and	then	access	the	following	URLs	(replace	the	IP
based	on	your	configuration).

To	check	whether	Elasticsearch	is	up,	access	the	following	URL:

http://192.168.99.100:9200/		

To	check	whether	indexes	have	been	created	or	not,	access	either	of	the	following	URLs:

http://192.168.99.100:9200/_cat/indices?v	

http://192.168.99.100:9200/_aliases?pretty	

Once	the	Logstash	index	is	done	(you	may	have	a	few	service	endpoints	to	generate	some	logs),	access
Kibana:

http://192.168.99.100:5601/	

Tips	for	ELK	stack	implementation
The	following	are	some	useful	tips	for	implementing	the	ELK	stack:

To	avoid	any	data	loss	and	handle	the	sudden	spike	of	input	load,	using	a	broker	such	as	Redis	or
RabbitMQ	is	recommended	between	Logstash	and	Elasticsearch.
Use	an	odd	number	of	nodes	for	Elasticsearch	if	you	are	using	clustering	to	prevent	the	split-brain
problem.
In	Elasticsearch,	always	use	the	appropriate	field	type	for	given	data.	This	will	allow	you	to
perform	different	checks;	for	example,	the	int	field	type	will	allow	you	to	perform	("http_status:
<400")	or	("http_status:=200").	Similarly,	other	field	types	also	allow	you	to	perform	similar	checks.

Use	of	correlation	ID	for	service	calls
When	you	make	a	call	to	any	REST	endpoint	and	if	any	issue	pops	up,	it	is	difficult	to	trace	the	issue
and	its	root	origin	because	each	call	is	made	to	a	server,	and	this	call	may	call	another,	and	so	on	and	so
forth.	This	makes	it	very	difficult	to	figure	out	how	one	particular	request	was	transformed	and	what	it
was	called.	Normally,	an	issue	that	is	caused	by	one	service	can	have	domino	effect	on	other	services	or
can	fail	other	service	operation.	It	is	very	difficult	to	track	and	may	require	an	enormous	amount	of
effort.	If	it	is	monolithic,	you	know	that	you	are	looking	in	the	right	direction,	but	microservices	make	it
difficult	to	understand	what	the	source	of	the	issue	is	and	where	you	should	get	your	data.

Let's	see	how	we	can	tackle	this	problem
By	using	a	correlation	ID	that	is	passed	across	all	calls,	it	allows	you	to	track	each	request	and	track	the
route	easily.	Each	request	will	have	its	unique	correlation	ID.	Therefore,	when	we	debug	any	issue,	the
correlation	ID	is	our	starting	point.	We	can	follow	it	and,	along	the	way,	we	can	find	out	what	went
wrong.

The	correlation	ID	requires	some	extra	development	effort,	but	it's	effort	well	spent	as	it	helps	a	lot	in
the	long	run.	When	a	request	travels	between	different	microservices,	you	will	be	able	to	see	all
interactions	and	which	service	has	problems.

This	is	not	something	new	or	invented	for	microservices.	This	pattern	is	already	being	used	by	many
popular	products	such	as	Microsoft	SharePoint.

Use	of	Zipkin	and	Sleuth	for	tracking
For	the	OTRS	application,	we'll	make	use	of	Zipkin	and	Sleuth	for	tracking.	It	provides	trace	IDs	and
span	IDs	and	a	nice	UI	to	trace	the	requests.	More	importantly,	you	can	find	out	the	time	taken	by	each
request	in	Zipkin	and	it	allows	you	to	drill	down	to	find	out	the	request	that	makes	maximum	time	for
serving	the	request.

In	the	following	screenshot,	you	can	see	the	time	taken	by	the	findById	API	call	of	the	restaurant	as	well
as	the	trace	ID	of	the	same	request.	It	also	shows	the	span	ID:

Total	time	taken	and	trace	ID	of	restaurant	findById	API	call

We'll	stick	to	the	following	steps	to	configure	the	Zipkin	and	Sleuth	in	OTRS	services.

You	just	need	to	add	Sleuth	and	Sleuth-Zipkin	dependencies	to	enable	the	tracking	and	request	tracing:

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-starter-sleuth</artifactId>	

</dependency>	

<dependency>	

				<groupId>org.springframework.cloud</groupId>	

				<artifactId>spring-cloud-sleuth-zipkin</artifactId>	

</dependency>	

Access	the	Zipkin	dashboard	and	find	out	the	time	taken	by	different	requests.	Replace	the	port	if	the
default	port	is	changed.	Please	make	sure	that	services	are	up	before	making	use	of	Zipkin:

http://<zipkin	host	name>:9411/zipkin/	

Now,	if	the	ELK	stack	is	configured	and	up,	then	you	can	use	this	trace	ID	to	find	the	appropriate	logs
in	Kibana,	as	shown	in	following	screenshot.	The	X-B3-TraceId	field	is	available	in	Kibana,	which	is
used	to	filter	the	logs	based	on	trace	ID:

Kibana	dashboard	-	search	based	on	request	trace	ID

Dependencies	and	versions
Two	common	problems	that	we	face	in	product	development	are	cyclic	dependencies	and	API	versions.
We'll	discuss	them	in	terms	of	microservice-based	architecture.

Cyclic	dependencies	and	their	impact
Generally,	monolithic	architecture	has	a	typical	layer	model,	whereas	microservices	carry	the	graph
model.	Therefore,	microservices	may	have	cyclic	dependencies.

Therefore,	it	is	necessary	to	keep	a	dependency	check	on	microservice	relationships.

Let	us	have	a	look	at	the	following	two	cases:

If	you	have	a	cycle	of	dependencies	between	your	microservices,	you	are	vulnerable	to	distributed
stack	overflow	errors	when	a	certain	transaction	might	be	stuck	in	a	loop.	For	example,	when	a
restaurant	table	is	being	reserved	by	a	person.	In	this	case,	the	restaurant	needs	to	know	the	person
(findBookedUser),	and	the	person	needs	to	know	the	restaurant	at	a	given	time	(findBookedRestaurant).	If
it	is	not	designed	well,	these	services	may	call	each	other	in	a	loop.	The	result	may	be	a	stack
overflow	generated	by	JVM.
If	two	services	share	a	dependency	and	you	update	that	other	service's	API	in	a	way	that	could
affect	them,	you'll	need	to	update	all	three	at	once.	This	brings	up	questions	such	as,	which	should
you	update	first?	In	addition,	how	do	you	make	this	a	safe	transition?

Analyzing	dependencies	while	designing
the	system
Therefore,	it	is	important	while	designing	the	microservices	to	establish	the	proper	relationship	between
different	services	internally	to	avoid	any	cyclic	dependencies.
It	is	a	design	issue	and	must	be	addressed,	even	if	it	requires	a	refactoring	of	the	code.

Maintaining	different	versions
When	you	have	more	services,	it	means	different	release	cycles	for	each	of	them,	which	adds	to	this
complexity	by	introducing	different	versions	of	services,	in	that	there	will	be	different	versions	of	the
same	REST	services.	Reproducing	the	solution	to	a	problem	will	prove	to	be	very	difficult	when	it	has
gone	in	one	version	and	returns	in	a	newer	one.

Let's	explore	more
The	versioning	of	APIs	is	important	because,	over	time,	APIs	change.	Your	knowledge	and	experience
improves	with	time,	and	that	leads	to	changes	in	APIs.	Changing	APIs	may	break	existing	client
integrations.

Therefore,	there	are	various	ways	to	manage	the	API	versions.	One	of	these	is	using	the	version	in	the
path	that	we	have	used	in	this	book;	some	also	use	the	HTTP	header.	The	HTTP	header	could	be	a
custom	request	header	or	you	could	use	Accept	Header	for	representing	the	calling	API	version.	For	more
information	on	how	versions	are	handled	using	HTTP	headers,	please	refer	to	RESTful	Java	Patterns
and	Best	Practices	by	Bhakti	Mehta,	Packt	Publishing:	https://www.packtpub.com/application-development/restf
ul-java-patterns-and-best-practices.

It	is	very	important	while	troubleshooting	any	issue	that	your	microservices	are	implemented	to	produce
the	version	numbers	in	logs.	In	addition,	ideally,	you	should	avoid	any	instance	where	you	have	too
many	versions	of	any	microservice.

https://www.packtpub.com/application-development/restful-java-patterns-and-best-practices

References
This	following	links	will	have	more	information:

Elasticsearch:	https://www.elastic.co/products/elasticsearch
Logstash:	https://www.elastic.co/products/logstash
Kibana:	https://www.elastic.co/products/kibana
willdurand/elk:	ELK	Docker	image
Mastering	Elasticsearch	-	Second	Edition:	https://www.packtpub.com/web-development/mastering-elasticsear
ch-second-edition

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.packtpub.com/web-development/mastering-elasticsearch-second-edition

Summary
In	this	chapter,	we	have	explored	the	ELK	stack	overview	and	installation.	In	the	ELK	stack,
Elasticsearch	is	used	for	storing	the	logs	and	service	queries	from	Kibana.	Logstash	is	an	agent	that	runs
on	each	server	that	you	wish	to	collect	logs	from.	Logstash	reads	the	logs,	filters/transforms	them,	and
provides	them	to	Elasticsearch.	Kibana	reads/queries	the	data	from	Elasticsearch	and	presents	it	in
tabular	or	graphical	visualizations.

We	also	understand	the	utility	of	having	the	correlation	ID	while	debugging	issues.	At	the	end	of	this
chapter,	we	also	discovered	the	shortcomings	of	a	few	microservice	designs.	It	was	a	challenging	task	to
cover	all	of	the	topics	relating	to	microservices	in	this	book,	so	I	tried	to	include	as	much	relevant
information	as	possible	with	precise	sections	with	references,	which	allow	you	to	explore	more.	Now,	I
would	like	to	let	you	start	implementing	the	concepts	we	have	learned	in	this	chapter	in	your	workplace
or	in	your	personal	projects.	This	will	not	only	give	you	hands-on	experience,	but	may	also	allow	you	to
master	microservices.	In	addition,	you	will	also	be	able	to	participate	in	local	meetups	and	conferences.

Migrating	a	Monolithic	Application	to
Microservice-Based	Application
We	are	at	the	last	chapter	of	this	book	and	I	hope	you	have	enjoyed	and	mastered	the	full	stack	(except
DB)	microservice	development.	I	have	tried	to	touch	upon	all	necessary	topics	that	will	give	you	a
complete	view	of	a	microservice-based	production	application	and	allow	you	to	move	forward	with
more	exploration.	Since	you	have	learned	about	microservice	architecture	and	design,	you	can	easily
differentiate	between	a	monolithic	application	and	a	microservice-based	application,	and	you	can
identify	what	work	one	needs	to	do	to	migrate	a	monolithic	application	to	a	microservice-based
application.

In	this	chapter,	we'll	talk	about	refactoring	a	monolithic	application	to	a	microservice	based	application.
I	assume	an	existing	monolithic	application	is	already	deployed	and	being	used	by	customers.	At	the
end	of	this	chapter,	you'll	learn	about	the	different	approaches	and	strategies	one	can	use	to	make
monolithic	migration	to	microservice	easier.

This	chapter	covers	the	following	topics:

Do	you	need	to	migrate?
Approaches	and	keys	for	successful	migration

Do	you	need	to	migrate?
This	is	the	first	question	that	should	set	the	tone	for	your	migration.	Do	you	really	need	to	migrate	your
existing	application	to	a	microservice-based	architecture?	What	benefits	does	it	bring	to	the	table?	What
are	the	consequences?	How	we	can	support	the	existing	on-premise	customers?	Would	existing
customers	support	and	bear	the	cost	of	migration	to	microservices?	Do	I	need	to	write	the	code	from
scratch?	How	would	the	data	be	migrated	to	a	new	microservice-based	system?	What	would	be	the
timeline	to	this	migration?	Is	existing	team	proficient	enough	to	bring	this	change	fast?	Could	we	accept
the	new	functional	changes	during	this	migration?	Does	our	process	in	line	to	accommodate	migration?
So	on	and	so	forth.	I	believe	there	would	be	plenty	of	similar	questions	that	come	to	your	mind.	I	hope
that,	from	all	of	the	previous	chapters,	that	you	might	have	gained	good	knowledge	of	the	work	a
microservice-based	system	requires.

After	all	of	the	pros	and	cons,	your	team	would	decide	the	migration.	If	the	answer	is	yes,	this	chapter
will	help	you	on	the	way	forward	to	migration.

Cloud	versus	on-premise	versus	both	cloud
and	on-premise
What	is	your	existing	offering	to	a	cloud	solution,	an	on-premise	solution,	or	do	you	offer	both	cloud
and	on-premise	solutions	or	do	you	want	to	start	cloud	offering	along	with	on-premise	solution.	Your
approach	would	be	based	on	the	kind	of	solution	you	offer.

Cloud	only	solution
If	you	offer	cloud	solutions,	then	your	migration	task	is	easier	than	the	other	two	solutions.	Having	said
that,	it	does	not	mean	it	would	be	a	cake	walk.	You	would	have	full	control	over	migration.	You	have
the	liberty	of	not	considering	the	direct	impact	of	migration	on	customers.	Cloud	customers	simply	use
the	solution	and	are	not	bothered	how	it	has	been	implemented	or	hosted.	I	assume	that	there	is	no	API
or	SDK	change,	and	obviously,	migration	should	not	involve	any	functional	change.	Microservice
migration	only	on	the	cloud	has	the	edge	of	using	smooth	incremental	migration.	This	means	that	you
would	first	transform	the	UI	application,	then	one	API/service,	and	then	the	next,	so	on	and	so	forth.
Mind	you,	you	are	in	control.

On-premise	only	solution
On-premise	solutions	are	deployed	on	customer	infrastructure.	On	top	of	that,	you	might	have	many
clients	with	different	versions	deployed	on	their	infrastructure.	You	don't	have	full	control	of	these
deployments.	You	need	to	work	with	customers	and	a	team	effort	is	required	for	successful	migration.

Also,	before	you	approach	a	customer,	you	should	have	the	full	flesh	migration	solution	ready.	Having
different	versions	of	your	product	makes	this	extra	difficult.	I	would	recommend	offering	migration
only	of	the	latest	version	and	while	you	developed	migration,	only	security	and	break	fixes	should	be
allowed	for	customers.	Yes,	you	should	not	offer	new	functionality	at	all.

Both	cloud	and	on-premise	solution
If	your	application	has	both	cloud	and	on-premise	offering,	then	migration	of	on-premise	solution	to
microservices	could	be	in	synchronization	with	the	cloud	or	vice	versa.	This	means	that	if	you	spent
efforts	on	migrating	one,	you	can	replicate	the	same	on	the	other.	Therefore,	it	includes	challenges
mentioned	earlier	for	either	cloud	or	on-premise	migration	with	addition	to	replication	on	other
environments.	Also,	sometimes	on-premise	customers	may	have	their	own	customization.	It	also	needs
to	be	taken	care	of	while	migrating.	Here,	your	own	cloud	solution	should	be	migrated	first	to
microservices,	which	can	be	replicated	on	on-premises	later.

Migrating	a	production/solution	offering	only	on-premise	deployment,	but	you	want	of	start	cloud
deployments	also;	this	is	most	challenging.	You	are	supposed	to	migrate	your	existing	code	as	per	my
microservice	design,	while	making	sure	it	also	supports	existing	on-premise	deployments.	Sometimes,	it
could	be	a	legacy	technology	stack,	or	even	existing	code	might	have	been	written	using	some	own
proprietary	technology	like	protocols.	It	could	be	that	the	existing	design	is	not	flexible	enough	to	break
into	microservices.	This	type	of	migration	offers	the	most	challenges.	An	incremental	migration	of	on-
premise	solution	to	microservices	should	be	done,	where	you	can	first	separate	the	UI	applications	and
offer	external	APIs	that	interact	with	UI	applications.	If	APIs	are	already	in	place	or	your	application	is
already	divided	into	separate	UI	applications,	believe	me,	it	removes	tons	of	baggage	from	migration.
Then,	you	can	focus	on	migrating	the	server-side	code,	including	the	APIs	developed	for	UI
applications.	You	might	ask	why	we	can't	migrate	all	UI	applications,	APIs,	and	server	code	together.
Yes,	you	can.	But,	doing	an	incremental	migration	would	give	you	surety,	confidence,	and	quick
failures/learning.	After	all,	Agile	development	is	all	about	incremental	development.

If	your	existing	code	is	not	modular	or	contains	lots	of	legacy	code,	then	I	would	advise	you	to	first
refactor	it	and	make	it	modular.	It	would	make	your	task	easier.	Having	said	that,	it	should	be	done
module	by	module.	Break	and	refactor	whatever	code	you	can	before	migrating	it	to	pure	microservices.

We'll	discuss	a	few	approaches	that	might	help	you	to	refactor	a	large	complex	monolithic	application
into	microservices.

Approaches	and	keys	to	successful
migration
Software	modernization	has	been	done	for	many	years.	A	lot	of	work	is	done	to	perform	successful
software	modernization.	You	will	find	it	useful	to	go	through	all	of	the	best	practices	and	principles	for
successful	software	modernization	(migration).	In	this	chapter,	we	will	talk	specifically	about	software
modernization	of	the	microservice	architecture.

Incremental	migration
You	should	transform	monolithic	applications	to	microservices	in	an	incremental	manner.	You	should
not	start	the	full-fledged	migration	of	the	whole	code	all	together.	It	entangles	the	risk-reward	ratio	and
increases	the	probability	of	failure.	It	also	increases	the	probability	of	transition	time	and,	hence,	cost.
You	may	want	to	break	your	code	into	different	modules	and	then	start	transforming	each	of	the
modules	one	by	one.	It	is	quite	likely	that	you	may	want	to	rewrite	a	few	modules	from	scratch,	which
should	be	done	if	the	existing	code	is	tightly	coupled	and	too	complex	to	refactor.	But,	writing	the
complete	solution	from	scratch	is	a	big	no.	You	should	avoid	it.	It	increases	the	cost,	time	to	migration,
and	the	probability	of	failures.

Process	automation	and	tools	setup
Agile	methodologies	work	hand	in	hand	with	microservices.	You	can	use	any	Agile	processes,	such	as
Scrum	and	Kanban	with	modern	development	processes,	such	as	test-driven	development	or	peer
programing,	for	incremental	development.	Process	automation	is	a	must	for	microservice-based
environments.	You	should	have	automated	CI/CD	and	test	automation	in	place.	If	containerization	of
deliverables	is	not	yet	done	with	the	CI/CD	pipeline,	then	you	should	do	it.	It	enables	successful
integration	of	newly	developed	microservices	with	the	existing	system	or	other	new	microservices.

You	would	want	to	set	up	the	service	discovery,	service	gateway,	configuration	server,	or	any	event-
based	system	in	parallel	or	prior	to	the	start	of	your	first	microservice	transformation.

Pilot	project
Another	problem	I	have	observed	in	microservice	migration	is	starting	development	with	different
modules	altogether.	Ideally,	a	small	team	should	perform	the	pilot	project	to	transform	any	of	the
existing	modules	to	microservices.	Once	it	is	successful,	the	same	approach	can	be	replicated	to	other
modules.	If	you	start	the	migration	of	various	modules	simultaneously,	then	you	may	repeat	the	same
mistake	in	all	microservices.	It	increases	the	risk	of	failures	and	the	duration	of	transformation.

A	team	that	performs	successful	migration	offers	the	way	to	developed	modules	and	its	integration	with
existing	monolithic	applications	successfully.	If	you	successfully	developed	and	transformed	each
module	into	a	microservice	one	by	one,	at	some	point	in	time,	you	would	have	a	microservice-based
application	instead	of	a	monolithic	application.

Standalone	user	interface	applications
If	you	already	have	standalone	user	interface	applications	that	consume	APIs,	then	you	are	already	steps
away	from	a	successful	migration.	If	this	is	not	the	case,	it	should	be	the	first	step	to	separate	your	user
interface	from	the	server	code.	UI	applications	would	consume	the	APIs.	If	the	existing	application	does
not	have	the	APIs	that	should	be	consumed	by	the	UI	applications,	then	you	should	write	the	wrapper
APIs	on	top	of	the	existing	code.

Take	a	look	at	the	following	diagram	that	reflects	the	presentation	layer	before	the	migration	of	UI
applications:

Before	UI	Applications	migration

The	following	diagram	reflects	the	presentation	layer	after	the	migration	of	UI	applications:

After	UI	applications	Migration

You	can	see	that	earlier,	the	UI	was	included	inside	the	monolithic	application	along	with	business	logic
and	DAO.	After	migration,	the	UI	application	is	separated	from	the	monolithic	application	and
consumes	the	APIs	for	communicating	with	the	server	code.	REST	is	standard	for	implementing	the
APIs	that	can	be	written	on	top	of	existing	code.

Migrating	modules	to	microservices
Now,	you	have	one	server-side	monolithic	application	and	one	or	more	UI	applications.	It	gives	you
another	advantage	of	consuming	the	APIs	while	separating	the	modules	from	existing	monolithic
applications.	For	example,	after	separation	of	UI	applications,	you	might	transform	one	of	the	modules
to	a	microservice.	Once	the	UI	applications	are	successfully	tested,	API	calls	related	with	this	module
can	be	routed	to	the	newly	transformed	module	instead	of	the	existing	monolithic	API.	As	shown	in
next	diagram,	when	the	API	GET/customer/1	is	called,	the	web	Gateway	can	route	the	request	to	the	Customer
Microservice	instead	of	the	Monolithic	application.

You	can	also	perform	the	testing	on	production	before	making	the	new	microservice-based	API	live	by
comparing	the	response	from	both	monolithic	and	microservice	modules.	Once	we	have	consistently
matching	responses,	we	can	be	sure	that	the	transformation	is	done	successfully	and	API	calls	can	be
migrated	to	the	refactored	module	API.	As	shown	in	the	following	figure,	a	component	is	deployed	that
makes	another	call	to	a	new	customer	microservice	whenever	a	customer	API	is	called.	Then,	it
compares	the	responses	of	both	of	the	calls	and	stores	the	results.	These	results	can	be	analyzed	and	a
fix	should	be	delivered	for	any	inconsistency.	When	a	response	from	a	newly	transformed	microservice
matches	with	the	existing	monolithic	responses,	you	can	stop	routing	the	calls	to	existing	monolithic
applications	and	replace	it	with	new	microservice.

Following	this	approach	allows	you	to	migrate	modules	one	by	one	to	a	microservice,	and	at	one	point
in	time,	you	can	migrate	all	monolithic	modules	to	microservices.

API	routing,	comparison,	and	migration

How	to	accommodate	a	new	functionality
during	migration
A	new	functionality	should	be	avoided	in	ideal	scenarios	during	migration.	Only	important	fixes	and
security	changes	should	be	allowed.	However,	if	there	is	an	urgency	to	implement	a	new	functionality,
then	it	should	be	developed	either	in	a	separate	microservice	or	in	a	modular	way	to	existing	monolithic
code	that	makes	its	separation	from	existing	code	easier.

For	example,	if	you	really	need	a	new	feature	in	the	customer	module	that	does	not	have	any	dependency
on	other	modules,	you	can	simply	create	a	new	customer	microservice	and	use	it	for	specific	API	calls,
either	by	external	world	or	through	other	modules.	It	is	up	to	you	whether	you	use	REST	calls	or	events
for	inter-process	communication.

Similarly,	if	you	need	a	new	functionality	that	has	dependency	on	other	modules	(for	example,	a	new
customer	functionality	having	a	dependency	on	booking)	and	it	is	not	exposed	as	an	API	to	a	UI	or
service	API,	then	it	can	still	be	developed	as	a	separate	microservice,	as	shown	in	the	following
diagram.	The	customer	module	calls	a	newly	developed	microservice	and	then	it	calls	the	booking	module
for	request	processing	and	provides	the	response	back	to	the	customer	module.	Here,	for	inter-process
communication,	REST	or	events	could	be	used.

Implementing	a	new	module	as	a	microservice	that	calls	another	module

References
Read	the	following	books	for	more	information	on	code	refactoring	and	domain-driven	design:

Refactoring:	Improving	the	Design	of	Existing	Code	by	Martin	Fowler
Domain-Driven	Design	by	Eric	J.	Evans

Summary
Software	modernization	is	the	way	to	move	forward	and	in	the	current	environment	since	everything	is
moved	to	the	cloud	and	the	way	resource	power	and	capacity	is	increased,	microservices	based	on
design	look	more	appropriate	than	anything	else.	We	discussed	a	combination	of	cloud	and	on-premise
solutions	and	the	challenges	of	transforming	those	into	microservices.

We	also	discussed	why	an	incremental	development	approach	is	preferred	as	far	as	monolithic
application	migration	to	microservices	is	concerned.	We	talked	about	various	approaches	and	practices
that	are	required	for	successful	migration	to	microservices.

	Title Page
	Mastering Microservices with Java 9
	Second Edition

	Copyright
	Mastering Microservices with Java 9
	Second Edition

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?

	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	A Solution Approach
	Evolution of microservices
	Monolithic architecture overview
	Limitation of monolithic architecture versus its solution with microservices
	Traditional monolithic design
	Monolithic design with services
	Services design
	One dimension scalability
	Release rollback in case of failure
	Problems in adopting new technologies
	Alignment with Agile practices
	Ease of development – could be done better
	Microservices build pipeline
	Deployment using a container such as Docker
	Containers
	Docker
	Docker's architecture

	Deployment
	Summary

	Setting Up the Development Environment
	NetBeans IDE installation and setup
	Spring Boot configuration
	Spring Boot overview
	Adding Spring Boot to our main project

	Sample REST program
	Writing the REST controller class
	The @RestController annotation
	The @RequestMapping annotation
	The @RequestParam annotation
	The @PathVariable annotation

	Making a sample REST application executable
	Adding a Jetty-embedded server

	Setting up the application build
	Running the Maven tool
	Executing with the Java command

	REST API testing using the Postman Chrome extension
	Some more positive test scenarios
	Negative test scenarios

	Summary

	Domain-Driven Design
	Domain-driven design fundamentals
	Fundamentals of DDD
	Ubiquitous language
	Multilayered architecture
	Presentation layer
	Application layer
	Domain layer
	Infrastructure layer

	Artifacts of domain-driven design
	Entities
	Value objects
	FAQs

	Services
	Aggregates
	Repository
	Factory
	Modules

	Strategic design and principles
	Bounded context
	Continuous integration
	Context map
	Shared kernel
	Customer-supplier
	Conformist
	Anticorruption layer
	Separate ways
	Open Host Service
	Distillation

	Sample domain service
	Entity implementation
	Repository implementation
	Service implementation

	Summary

	Implementing a Microservice
	OTRS overview
	Developing and implementing microservices
	Restaurant microservice
	OTRS implementation
	Controller class
	API versioning

	Service classes
	Repository classes
	Entity classes

	Registration and discovery service (Eureka service)

	Eureka client
	Booking and user services
	Execution

	Testing
	References
	Summary

	Deployment and Testing
	Mandatory services for good microservices
	Service discovery and registration
	Edge servers
	Load balancing
	Circuit breakers
	Monitoring

	An overview of microservice architecture using Netflix OSS
	Load balancing
	Server-side load balancing
	Client-side load balancing
	Circuit breakers and monitoring
	Using Hystrix's fallback methods
	Monitoring
	Setting up the Hystrix dashboard

	Creating Turbine services

	Building and running the OTRS application
	Microservice deployment using containers
	Installation and configuration
	Docker machine with 4 GB
	Building Docker images with Maven
	Running Docker using Maven
	Integration testing with Docker
	Pushing the image to a registry
	Managing Docker containers

	References
	Summary

	Reactive Microservices
	An overview of the reactive microservice architecture
	Responsive
	Resilient
	Elastic
	Message driven

	Implementing reactive microservices
	Producing an event
	Consuming the event

	References
	Summary

	Securing Microservices
	Enabling Secure Socket Layer
	Authentication and authorization
	OAuth 2.0
	Usage of OAuth

	OAuth 2.0 specification - concise details
	OAuth 2.0 roles
	Resource owner
	Resource server
	Client
	Authorization server

	OAuth 2.0 client registration
	Client types
	Client profiles
	Client identifier
	Client authentication

	OAuth 2.0 protocol endpoints
	Authorization endpoint
	Token endpoint
	Redirection endpoint

	OAuth 2.0 grant types
	Authorization code grant
	Implicit grant
	Resource owner password credentials grant
	Client credentials grant

	OAuth implementation using Spring Security
	Authorization code grant
	Implicit grant
	Resource owner password credential grant
	Client credentials grant

	References
	Summary

	Consuming Services Using a Microservice Web Application
	AngularJS framework overview
	MVC
	MVVM
	Modules
	Providers and services
	Scopes
	Controllers
	Filters
	Directives
	UI-Router

	Development of OTRS features
	Home page/restaurant list page
	index.html
	app.js
	restaurants.js
	restaurants.html

	Search restaurants
	Restaurant details with reservation option
	restaurant.html

	Login page
	login.html
	login.js

	Reservation confirmation

	Setting up the web application
	References
	Summary

	Best Practices and Common Principles
	Overview and mindset
	Best practices and principles
	Nanoservice, size, and monolithic
	Continuous integration and deployment
	System/end-to-end test automation
	Self-monitoring and logging
	A separate data store for each microservice
	Transaction boundaries

	Microservices frameworks and tools
	Netflix Open Source Software (OSS)
	Build - Nebula
	Deployment and delivery - Spinnaker with Aminator
	Service registration and discovery - Eureka
	Service communication - Ribbon
	Circuit breaker - Hystrix
	Edge (proxy) server - Zuul
	Operational monitoring - Atlas
	Reliability monitoring service - Simian Army
	AWS resource monitoring - Edda
	On-host performance monitoring - Vector
	Distributed configuration management - Archaius
	Scheduler for Apache Mesos - Fenzo
	Cost and cloud utilization - Ice
	Other security tools - Scumblr and FIDO
	Scumblr
	Fully Integrated Defence Operation (FIDO)

	References
	Summary

	Troubleshooting Guide
	Logging and the ELK stack
	A brief overview
	Elasticsearch
	Logstash
	Kibana

	ELK stack setup
	Installing Elasticsearch
	Installing Logstash
	Installing Kibana
	Running the ELK stack using Docker Compose
	Pushing logs to the ELK stack
	Tips for ELK stack implementation

	Use of correlation ID for service calls
	Let's see how we can tackle this problem
	Use of Zipkin and Sleuth for tracking

	Dependencies and versions
	Cyclic dependencies and their impact
	Analyzing dependencies while designing the system

	Maintaining different versions
	Let's explore more

	References
	Summary

	Migrating a Monolithic Application to Microservice-Based Application
	Do you need to migrate?
	Cloud versus on-premise versus both cloud and on-premise
	Cloud only solution
	On-premise only solution
	Both cloud and on-premise solution

	Approaches and keys to successful migration
	Incremental migration
	Process automation and tools setup
	Pilot project
	Standalone user interface applications
	Migrating modules to microservices
	How to accommodate a new functionality during migration

	References
	Summary

