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Chapter 1

Sequences and Series

1.1 Introduction

This course is the third course in the calculus sequence, following MAT
167 and MAT 168. Its purpose is to prepare students for more advanced
mathematics courses, particularly those pertaining to multivariable calculus
(MAT 280) and numerical analysis (MAT 460 and 461). The course will
focus on three main areas, which we briefly discuss here.

1.1.1 Sequences and Series

Nearly all students have had to use a scientific calculator. Consider the fol-
lowing: how does a calculator efficiently evaluate many of its functions, such
as sin, cos or exp, when its hardware is only able to perform the four basic
arithmetic operations, addition, subtraction, multiplication and division?

The answer stems from the fact that it is generally not possible to eval-
uate such functions exactly; rather, one has to settle for an approximation.
However, this is no problem, because a calculator or computer can only rep-
resent real numbers to limited accuracy anyway. To approximate a given
function in a manner that is suitable for a calculator, we use infinite series,
which is a sum of infinitely many terms. For example, we can write

expx = 1 + x+
1

2
x2 +

1

6
x3 + · · · =

∞∑
k=0

1

k!
xk.

The last term in the above equation uses sigma notation to express a sum of
infinitely many terms in a concise way, when those terms can be described
by a pattern. The above series is called a power series because each of its
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8 CHAPTER 1. SEQUENCES AND SERIES

terms features a power of x. When we study infinite series, we will consider
important questions such as

• When does an infinite series sum, or converge, to a finite number?
We will see that in many cases, a sum of infinitely many terms does
not converge at all, but rather continues growing, or diverging. For
example, consider the two series

∞∑
n=1

1

n
,

∞∑
n=1

1

n1.01
.

Although the individual terms in the series may not differ by very
much, especially for larger values of n, the first series does not con-
verge, while the second one does.

• If we truncate a series after a given number of terms, how well does the
sum of the retained terms approximate the sum of the entire series?
This is particularly important when using series to evaluate functions
such as those implemented in scientific calculators. For example, sup-
pose we take the abovementioned series for expx and compute only
the first 20 terms. If x = 0.1, then the result is correct to at least 16
significant digits. However, if x = 10, then we only obtain two correct
digits.

1.1.2 Vectors and the Geometry of Space

Next, we will become acquainted with three-dimensional space, in order
to prepare you for later coursework in multivariable calculus. Our basic
tools will be vectors, which can be used to represent either a position or
direction in space. For example, if we represent three-dimensional space
using Cartesian coordinates x, y and z, then the origin is the point with
coordinates x = 0, y = 0 and z = 0, typically denoted by the ordered triple
(0, 0, 0). Then, the point in space (1, 0,−2) has coordinates x = 1, y = 0 and
z = −2, meaning that it is located 1 unit from the origin along the positive
x-axis, 0 units from the origin along the y-axis, and 2 units from the origin
along the negative z-axis. This is illustrated in Figure 1.1. We will use
vectors to facilitate the description of, and operations on, lines and planes.
This is particularly useful in computer graphics. Consider the problem of
rendering a two-dimensional image, say for a frame in a film, of a collection
of three-dimensional objects. To what point in 2-D space does any given
point in 3-D space correspond? This question is answered by computing
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Figure 1.1: The origin in three-dimensional space, and the point (1, 0,−2).

the projection of points in 3-D space onto a given plane in 2-D space that
corresponds to the “screen”. We will learn about an operation called the
dot product that is used to compute projections. Another operation, called
the cross product, is very useful for describing planes.

1.1.3 Parametric Equations and Polar Coordinates

Finally, will study curves and surfaces in space. Often, it is necessary to
describe the position of an object as a function of time. Therefore, we
will study curves that are described by parametric equations, where the
parameter is usually time. For example, in combat, the military needs to
track the position of enemy projectiles over time. Using radar data, they
can then construct parametric equations for the projectile’s position in 3-D
space, and then differentiate the equations with respect to time in order to
estimate its velocity and then its trajectory, so that it can be intercepted.

While we will work with Cartesian coordinates x, y and z for most of the
course, we will find that it is often useful to represent curves or functions
in the xy-plane using polar coordinates r and θ, where r represents distance
from the origin, and θ represents the angle that the point makes with the
origin and the positive x-axis. For example, the point x = 0, y = 1, which is
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1 unit from the origin and makes a 90-degree angle with the origin and the
positive x-axis, has polar coordinates (1, π/2). Certain curves are far more
easily described using polar coordinates. To see this, consider the equations

r = sin 2t, (x2 + y2)3/2 = 2xy.

These two equations describe the same curve, which resembles a four-leaf
clover. We will learn how to compute areas of regions enclosed by paramet-
ric curves, and lengths of parametric curves, that are expressed in either
Cartesian or polar coordinates.

1.2 Review of Calculus

We now review some basic concepts from the first two calculus courses before
we begin our study of the third. Recall that these two courses focused on
the following fundamental problems:

• computing the instantaneous rate of change of one quantity with re-
spect to another, which is a derivative, and
• computing the total change in a function over some portion of its

domain, which is a definite integral.

1.2.1 Limits

The basic problems of differential and integral calculus described in the pre-
vious paragraph can be solved by computing a sequence of approximations
to the desired quantity and then determining what value, if any, the se-
quence of approximations approaches. This value is called a limit of the
sequence. As a sequence is a function, we begin by defining, precisely, the
concept of the limit of a function.

Definition We write
lim
x→a

f(x) = L

if for any open interval I1 containing L, there is some open interval I2

containing a such that f(x) ∈ I1 whenever x ∈ I2, and x 6= a. We say that
L is the limit of f(x) as x approaches a.

We write
lim
x→a−

f(x) = L

if, for any open interval I1 containing L, there is an open interval I2 of the
form (c, a), where c < a, such that f(x) ∈ I1 whenever x ∈ I2. We say that
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L is the limit of f(x) as x approaches a from the left, or the left-hand
limit of f(x) as x approaches a.

Similarly, we write
lim
x→a+

f(x) = L

if, for any open interval I1 containing L, there is an open interval I2 of the
form (a, c), where c > a, such that f(x) ∈ I1 whenever x ∈ I2. We say
that L is the limit of f(x) as x approaches a from the right, or the
right-hand limit of f(x) as x approaches a.

We can make the definition of a limit a little more concrete by imposing
sizes on the intervals I1 and I2, as long as the interval I1 can still be of
arbitrary size. It can be shown that the following definition is equivalent to
the previous one.

Definition We write
lim
x→a

f(x) = L

if, for any ε > 0, there exists a number δ > 0 such that |f(x) − L| < ε
whenever 0 < |x− a| < δ.

Similar definitions can be given for the left-hand and right-hand limits.
Note that in either definition, the point x = a is specifically excluded

from consideration when requiring that f(x) be close to L whenever x is
close to a. This is because the concept of a limit is only intended to describe
the behavior of f(x) near x = a, as opposed to its behavior at x = a. Later
in this section we discuss the case where the two distinct behaviors coincide.

1.2.2 Continuity

In many cases, the limit of a function f(x) as x approached a could be
obtained by simply computing f(a). Intuitively, this indicates that f has to
have a graph that is one continuous curve, because any “break” or “jump”
in the graph at x = a is caused by f approaching one value as x approaches
a, only to actually assume a different value at a. This leads to the following
precise definition of what it means for a function to be continuous at a given
point.

Definition (Continuity) We say that a function f is continuous at a if

lim
x→a

f(x) = f(a).

We also say that f(x) has the Direct Subsitution Property at x = a.
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We say that a function f is continuous from the right at a if

lim
x→a+

f(x) = f(a).

Similarly, we say that f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

The preceding definition describes continuity at a single point. In de-
scribing where a function is continuous, the concept of continuity over an
interval is useful, so we define this concept as well.

Definition (Continuity on an Interval) We say that a function f is con-
tinuous on the interval (a, b) if f is continuous at every point in (a, b).
Similarly, we say that f is continuous on

1. [a, b) if f is continuous on (a, b), and continuous from the right at a.

2. (a, b] if f is continuous on (a, b), and continuous from the left at b.

3. [a, b] if f is continuous on (a, b), continuous from the right at a, and
continuous from the left at b.

1.2.3 Derivatives

The basic problem of differential calculus is computing the instantaneous
rate of change of one quantity y with respect to another quantity x. For
example, y may represent the position of an object and x may represent
time, in which case the instantaneous rate of change of y with respect to x
is interpreted as the velocity of the object.

When the two quantities x and y are related by an equation of the form
y = f(x), it is certainly convenient to describe the rate of change of y with
respect to x in terms of the function f . Because the instantaneous rate
of change is so commonplace, it is practical to assign a concise name and
notation to it, which we do now.

Definition (Derivative) The derivative of a function f(x) at x = a, de-
noted by f ′(a), is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

provided that the above limit exists. When this limit exists, we say that f is
differentiable at a.
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Remark Given a function f(x) that is differentiable at x = a, the following
numbers are all equal:

• the derivative of f at x = a, f ′(a),

• the slope of the tangent line of f at the point (a, f(a)), and

• the instantaneous rate of change of y = f(x) with respect to x at
x = a.

This can be seen from the fact that all three numbers are defined in the
same way. 2

1.2.4 Riemann Sums and the Definite Integral

There are many cases in which some quantity is defined to be the product
of two other quantities. For example, a rectangle of width w has uniform
height h, and the area A of the rectangle is given by the formula A =
wh. Unfortunately, in many applications, we cannot necessarily assume that
certain quantities such as height are constant, and therefore formulas such
as A = wh cannot be used directly. However, they can be used indirectly to
solve more general problems by employing the notation known as integral
calculus.

Suppose we wish to compute the area of a shape that is not a rectangle.
To simplify the discussion, we assume that the shape is bounded by the
vertical lines x = a and x = b, the x-axis, and the curve defined by some
continuous function y = f(x), where f(x) ≥ 0 for a ≤ x ≤ b. Then, we can
approximate this shape by n rectangles that have width ∆x = (b − a)/n
and height f(xi), where xi = a + i∆x, for i = 0, . . . , n. We obtain the
approximation

A ≈ An =

n∑
i=1

f(xi)∆x.

Intuitively, we can conclude that as n → ∞, the approximate area An will
converge to the exact area of the given region. This can be seen by observing
that as n increases, the n rectangles defined above comprise a more accurate
approximation of the region.

More generally, suppose that for each n = 1, 2, . . ., we define the quantity
Rn by choosing points a = x0 < x1 < · · · < xn = b, and computing the sum

Rn =
n∑
i=1

f(x∗i )∆xi, ∆xi = xi − xi−1, xi−1 ≤ x∗i ≤ xi.
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The sum that defines Rn is known as a Riemann sum. Note that the interval
[a, b] need not be divided into subintervals of equal width, and that f(x) can
be evaluated at arbitrary points belonging to each subinterval.

If f(x) ≥ 0 on [a, b], then Rn converges to the area under the curve
y = f(x) as n → ∞, provided that the widths of all of the subintervals
[xi−1, xi], for i = 1, . . . , n, approach zero. This behavior is ensured if we
require that

lim
n→∞

δ(n) = 0, where δ(n) = max
1≤i≤n

∆xi.

This condition is necessary because if it does not hold, then, as n→∞, the
region formed by the n rectangles will not converge to the region whose area
we wish to compute. If f assumes negative values on [a, b], then, under the
same conditions on the widths of the subintervals, Rn converges to the net
area between the graph of f and the x-axis, where area below the x-axis is
counted negatively.

We define the definite integral of f(x) from a to b by∫ b

a
f(x) dx = lim

n→∞
Rn,

where the sequence of Riemann sums {Rn}∞n=1 is defined so that δ(n) →
0 as n → ∞, as in the previous discussion. The function f(x) is called
the integrand, and the values a and b are the lower and upper limits of
integration, respectively. The process of computing an integral is called
integration.

1.2.5 Extreme Values

In many applications, it is necessary to determine where a given function
attains its minimum or maximum value. For example, a business wishes
to maximize profit, so it can construct a function that relates its profit to
variables such as payroll or maintenance costs. We now consider the basic
problem of finding a maximum or minimum value of a general function f(x)
that depends on a single independent variable x. First, we must precisely
define what it means for a function to have a maximum or minimum value.

Definition (Absolute extrema) A function f has a absolute maximum or
global maximum at c if f(c) ≥ f(x) for all x in the domain of f . The
number f(c) is called the maximum value of f on its domain. Similarly, f
has a absolute minimum or global minimum at c if f(c) ≤ f(x) for all
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x in the domain of f . The number f(c) is then called the minimum value
of f on its domain. The maximum and minimum values of f are called the
extreme values of f , and the absolute maximum and minimum are each
called an extremum of f .

Before computing the maximum or minimum value of a function, it is natural
to ask whether it is possible to determine in advance whether a function
even has a maximum or minimum, so that effort is not wasted in trying to
solve a problem that has no solution. The following result is very helpful in
answering this question.

Theorem (Extreme Value Theorem) If f is continuous on [a, b], then f has
an absolute maximum and an absolute minimum on [a, b].

Now that we can easily determine whether a function has a maximum or
minimum on a closed interval [a, b], we can develop an method for actually
finding them. It turns out that it is easier to find points at which f attains
a maximum or minimum value in a “local” sense, rather than a “global”
sense. In other words, we can best find the absolute maximum or minimum
of f by finding points at which f achieves a maximum or minimum with
respect to “nearby” points, and then determine which of these points is the
absolute maximum or minimum. The following definition makes this notion
precise.

Definition (Local extrema) A function f has a local maximum at c if
f(c) ≥ f(x) for all x in an open interval containing c. Similarly, f has a
local minimum at c if f(c) ≤ f(x) for all x in an open interval containing
c. A local maximum or local minimum is also called a local extremum.

At each point at which f has a local maximum, the function either has
a horizontal tangent line, or no tangent line due to not being differentiable.
It turns out that this is true in general, and a similar statement applies to
local minima. To state the formal result, we first introduce the following
definition, which will also be useful when describing a method for finding
local extrema.

Definition(Critical Number) A number c in the domain of a function f is
a critical number of f if f ′(c) = 0 or f ′(c) does not exist.

The following result describes the relationship between critical numbers and
local extrema.

Theorem (Fermat’s Theorem) If f has a local minimum or local maximum
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at c, then c is a critical number of f ; that is, either f ′(c) = 0 or f ′(c) does
not exist.

This theorem suggests that the maximum or minimum value of a function
f(x) can be found by solving the equation f ′(x) = 0.

1.2.6 The Mean Value Theorem

While the derivative describes the behavior of a function at a point, we often
need to understand how the derivative influences a function’s behavior on an
interval. It is often necessary to approximate a function f(x) by a function
g(x) using knowledge of f(x) and its derivatives at various points. It is
therefore natural to ask how well g(x) approximates f(x) away from these
points.

The following result, a consequence of Fermat’s Theorem, gives limited
insight into the relationship between the behavior of a function on an interval
and the value of its derivative at a point.

Theorem (Rolle’s Theorem) If f is continuous on a closed interval [a, b]
and is differentiable on the open interval (a, b), and if f(a) = f(b), then
f ′(c) = 0 for some number c in (a, b).

By applying Rolle’s Theorem to a function f , then to its derivative f ′, its
second derivative f ′′, and so on, we obtain the following more general result,
which will be useful in analyzing the accuracy of methods for approximating
functions by polynomials.

Theorem (Generalized Rolle’s Theorem) Let x0, x1, x2, . . . , xn be distinct
points in an interval [a, b]. If f is n times differentiable on (a, b), and if
f(xi) = 0 for i = 0, 1, 2, . . . , n, then f (n)(c) = 0 for some number c in (a, b).

A more fundamental consequence of Rolle’s Theorem is the Mean Value
Theorem itself, which we now state.

Theorem (Mean Value Theorem) If f is continuous on a closed interval
[a, b] and is differentiable on the open interval (a, b), then

f(b)− f(a)

b− a
= f ′(c)

for some number c in (a, b).

Remark The expression
f(b)− f(a)

b− a
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is the slope of the secant line passing through the points (a, f(a)) and
(b, f(b)). The Mean Value Theorem therefore states that under the given
assumptions, the slope of this secant line is equal to the slope of the tangent
line of f at the point (c, f(c)), where c ∈ (a, b). 2

The Mean Value Theorem has the following practical interpretation: the
average rate of change of y = f(x) with respect to x on an interval [a, b] is
equal to the instantaneous rate of change y with respect to x at some point
in (a, b).

1.2.7 The Mean Value Theorem for Integrals

Suppose that f(x) is a continuous function on an interval [a, b]. Then, by the
Fundamental Theorem of Calculus, f(x) has an antiderivative F (x) defined
on [a, b] such that F ′(x) = f(x). If we apply the Mean Value Theorem to
F (x), we obtain the following relationship between the integral of f over
[a, b] and the value of f at a point in (a, b).

Theorem (Mean Value Theorem for Integrals) If f is continuous on [a, b],
then ∫ b

a
f(x) dx = f(c)(b− a)

for some c in (a, b).

In other words, f assumes its average value over [a, b], defined by

fave =
1

b− a

∫ b

a
f(x) dx,

at some point in [a, b], just as the Mean Value Theorem states that the
derivative of a function assumes its average value over an interval at some
point in the interval.

The Mean Value Theorem for Integrals is also a special case of the fol-
lowing more general result.

Theorem (Weighted Mean Value Theorem for Integrals) If f is continuous
on [a, b], and g is a function that is integrable on [a, b] and does not change
sign on [a, b], then ∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx

for some c in (a, b).



18 CHAPTER 1. SEQUENCES AND SERIES

In the case where g(x) is a function that is easy to antidifferentiate and
f(x) is not, this theorem can be used to obtain an estimate of the integral
of f(x)g(x) over an interval.

Example Let f(x) be continuous on the interval [a, b]. Then, for any x ∈
[a, b], by the Weighted Mean Value Theorem for Integrals, we have∫ x

a
f(s)(s− a) ds = f(c)

∫ x

a
(s− a) ds = f(c)

(s− a)2

2

∣∣∣∣x
a

= f(c)
(x− a)2

2
,

where a < c < x. It is important to note that we can apply the Weighted
Mean Value Theorem because the function g(x) = (x− a) does not change
sign on [a, b]. 2

1.3 Taylor’s Theorem

In many cases, it is useful to approximate a given function f(x) by a poly-
nomial, because one can work much more easily with polynomials than with
other types of functions. As such, it is necessary to have some insight into
the accuracy of such an approximation. The following theorem, which is a
consequence of the Weighted Mean Value Theorem for Integrals, provides
this insight.

Theorem (Taylor’s Theorem) Let f be n times continuously differentiable
on an interval [a, b], and suppose that f (n+1) exists on [a, b]. Let x0 ∈ [a, b].
Then, for any point x ∈ [a, b],

f(x) = Pn(x) +Rn(x),

where

Pn(x) =
n∑
j=0

f (j)(x0)

j!
(x− x0)j

= f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n

and

Rn(x) =

∫ x

x0

f (n+1)(s)

n!
(x− s)n ds =

f (n+1)(ξ(x))

(n+ 1)!
(x− x0)n+1,

where ξ(x) is between x0 and x.
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The polynomial Pn(x) is the nth Taylor polynomial of f with center x0,
and the expression Rn(x) is called the Taylor remainder of Pn(x). When
the center x0 is zero, the nth Taylor polynomial is also known as the nth
Maclaurin polynomial.

The final form of the remainder is obtained by applying the Mean Value
Theorem for Integrals to the integral form. As Pn(x) can be used to ap-
proximate f(x), the remainder Rn(x) is also referred to as the truncation
error of Pn(x). The accuracy of the approximation on an interval can be
analyzed by using techniques for finding the extreme values of functions to
bound the (n+ 1)-st derivative on the interval.

Because approximation of functions by polynomials is employed in the
development and analysis of many techniques in numerical analysis, the
usefulness of Taylor’s Theorem cannot be overstated. In fact, it can be said
that Taylor’s Theorem is the Fundamental Theorem of Numerical Analysis,
just as the theorem describing inverse relationship between derivatives and
integrals is called the Fundamental Theorem of Calculus.

We conclude our discussion of Taylor’s Theorem with some examples that
illustrate how the nth-degree Taylor polynomial Pn(x) and the remainder
Rn(x) can be computed for a given function f(x).

Example If we set n = 1 in Taylor’s Theorem, then we have

f(x) = P1(x) +R1(x)

where
P1(x) = f(x0) + f ′(x0)(x− x0).

This polynomial is a linear function that describes the tangent line to the
graph of f at the point (x0, f(x0)).

If we set n = 0 in the theorem, then we obtain

f(x) = P0(x) +R0(x),

where
P0(x) = f(x0)

and
R0(x) = f ′(ξ(x))(x− x0),

where ξ(x) lies between x0 and x. If we use the integral form of the remain-
der,

Rn(x) =

∫ x

x0

f (n+1)(s)

n!
(x− s)n ds,
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then we have

f(x) = f(x0) +

∫ x

x0

f ′(s) ds,

which is equivalent to the Total Change Theorem and part of the Funda-
mental Theorem of Calculus. Using the Mean Value Theorem for integrals,
we can see how the first form of the remainder can be obtained from the
integral form. 2

Example Let f(x) = sinx. Then

f(x) = P3(x) +R3(x),

where

P3(x) = x− x3

3!
= x− x3

6
,

and

R3(x) =
1

4!
x4 sin ξ(x) =

1

24
x4 sin ξ(x),

where ξ(x) is between 0 and x. The polynomial P3(x) is the 3rd Maclaurin
polynomial of sinx, or the 3rd Taylor polynomial with center x0 = 0.

If x ∈ [−1, 1], then

|Rn(x)| =
∣∣∣∣ 1

24
x4 sin ξ(x)

∣∣∣∣ =

∣∣∣∣ 1

24

∣∣∣∣ |x4|| sin ξ(x)| ≤ 1

24
,

since | sinx| ≤ 1 for all x. This bound on |Rn(x)| serves as an upper bound
for the error in the approximation of sinx by P3(x) for x ∈ [−1, 1]. 2

Example Let f(x) = ex. Then

f(x) = P2(x) +R2(x),

where

P2(x) = 1 + x+
x2

2
,

and

R2(x) =
x3

6
eξ(x),

where ξ(x) is between 0 and x. The polynomial P2(x) is the 2nd Maclaurin
polynomial of ex, or the 2nd Taylor polynomial with center x0 = 0.

If x > 0, then R2(x) can become quite large, whereas its magnitude is
much smaller if x < 0. Therefore, one method of computing ex using a
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Maclaurin polynomial is to use the nth Maclaurin polynomial Pn(x) of ex

when x < 0, where n is chosen sufficiently large so that Rn(x) is small for
the given value of x. If x > 0, then we instead compute e−x using the nth
Maclaurin polynomial for e−x, which is given by

Pn(x) = 1− x+
x2

2
− x3

6
+ · · ·+ (−1)nxn

n!
,

and then obtaining an approximation to ex by taking the reciprocal of our
computed value of e−x. 2

Example Let f(x) = x2. Then, for any real number x0,

f(x) = P1(x) +R1(x),

where
P1(x) = x2

0 + 2x0(x− x0) = 2x0x− x2
0,

and
R1(x) = (x− x0)2.

Note that the remainder does not include a “mystery point” ξ(x) since the
2nd derivative of x2 is only a constant. The linear function P1(x) describes
the tangent line to the graph of f(x) at the point (x0, f(x0)). If x0 = 1,
then we have

P1(x) = 2x− 1,

and
R1(x) = (x− 1)2.

We can see that near x = 1, P1(x) is a reasonable approximation to x2, since
the error in this approximation, given by R1(x), would be small in this case.
2

1.4 Sequences

1.4.1 What is a Sequence?

A sequence is an ordered list of numbers. The ordering of the numbers in a
sequence is indicated by an index that is associated with each number. Usu-
ally, the indices are taken from the natural numbers, which are the positive
integers 1, 2, 3, . . .. We will consider infinite sequences such as

a1, a2, a3, . . . , an, . . . .
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Each number in a sequence is called a term. In the above example, a1 is the
first term, a2 is the second term, and an is the nth term.

There are many ways to describe sequences, but they all have one thing
in common: any description of a sequence should include formula for com-
puting the nth term.

Example The sequence of all even natural numbers can be described by

an = 2n, n ≥ 1, or {2n}∞n=1.

Similarly, the sequence of all odd natural numbers can be defined by

an = 2n− 1, n ≥ 1, or {2n− 1}∞n=1.

Note that in both cases, it is explicitly stated that the index of the first term
is 1; this will usually be the case, but in some contexts, it is more intuitive
to use a different number, such as 0, as the index of the first term. Note
that the second form of each sequence does not specify a variable, such as
a, to identify a given term. In this case, a different expression may be used,
such as x or α. In the {} notation, the indices can be omitted if they are
already known. 2

Example It is often convenient to define each term in a sequence in terms
of preceding terms. For example, we can define

an+1 =
an
2

+
1

an
, n ≥ 1,

provided that we include a definition of a1 to start the sequence. In this
case, the sequence begins as follows:

a1 = 1, a2 = 1.5, a3 = 1.416̄.

What happens to an as n increases?

Sequences can also be defined in terms of more than one preceding el-
ement. The best-known sequence of this type is the Fibonacci sequence,
defined by

f1 = 1, f2 = 1, fn = fn−1 + fn−2.

This sequence, whose terms increase rapidly, arose from the study of breed-
ing of rabbits. Because the definition of fn, for n > 2, involves three terms
of the sequence, we say that the Fibonacci sequence obeys a three-term
recurrence relation.
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The Fibonacci sequence can be defined using a formula for fn that is in
closed form; that is, it does not refer to any previous terms. However, as
this formula is

fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
,

it is generally preferable to use the three-term recurrence relation to compute
terms of the sequence, unless, for example, one wants to compute fn for only
a few large values of n. 2

1.4.2 Why Do We Need Sequences?

In this chapter, our primary goal is to learn how to work with infinite se-
ries, which are sums of the terms of a sequence, for various applications as
approximating functions in a manner that is feasible for calculators or com-
puters. We will see that in order to define what it means to add infinitely
many numbers, we need the concept of a sequence.

Sequences are also useful in other contexts that are unrelated to infinite
series. Many methods for solving mathematical problems on a computer are
iterative in nature; that is, they produce a sequence of approximate solutions
to a given problem that, hopefully, are getting closer to the exact solution,
in some sense. An example of this, which may be familiar to you, is Newton’s
method for finding the roots, or zeros, of a function.

1.4.3 Recognizing Sequences

The definitions of the sequences in the previous examples can be used to
compute the terms of the sequence, but sometimes, it is necessary to go the
other way, and obtain a definition of a sequence from some of its terms.

There is no completely deterministic way to derive a formula for the
terms of a given sequence, but a useful strategy is to examine how each
term differs from the previous one. This examination yields the following
clues to a sequence’s definition:

• Do the terms alternate in sign? If so, this suggests that the formula
for the nth term should include a factor of (−1)n, which is equal to 1
when n is even and −1 when n is odd.

• Do consecutive terms, or portions of them, have a constant ratio?
Selected terms may be given as fractions, and it might be observed that
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either the numerators or denominators change by being multiplied by
a factor of, for example, 3, in which case the formula for the nth term
likely includes a factor of 3n.

• Do consecutive terms, or portions of them, differ by a constant amount?
For example, it might be observed that each term is 4 more than
the previous term, which suggests that the definition of the nth term
should include 4n.

Example Consider the sequence whose first few terms are

a1 = 2, a2 = −8

4
, a3 =

32

7
, a4 = −128

10
.

The terms alternate in sign, with the even-numbered terms being negative,
so the definition of an should include the factor (−1)n+1, which is equal to
−1 when n is even. If we rewrite a1 = 2/1, we see that the denominators
differ by 3, so we can express the denominator of an as 3n− 2. Finally, the
numerators are 2, 8, 32 and 128, which are equal to 21, 23, 25 and 27. That
is, they are odd powers of 2, so use the first example above and conclude

an = (−1)n+1 22n−1

3n− 2
, n ≥ 1.

2

1.4.4 Limits of Sequences

There are two key questions that need to be asked about any given sequence:

1. As the index increases, do the terms in the sequence converge to a
particular value?

2. If so, what is that value? If not, how does the sequence behave? That
is, do its terms become infinitely large, or do they remain bounded
but continually oscillate?

Before we can attempt to answer these questions, we need to precisely define
what it means for the terms of a sequence to converge.

To help us to formulate an appropriate definition, we consider an exam-
ple. Consider the sequence

an =
n2 + n

n2 + 2n+ 1
.
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If we rewrite this sequence as

an =
n2 + 2n+ 1− (2n+ 1) + n

n2 + 2n+ 1

=
n2 + 2n+ 1

n2 + 2n+ 1
− n+ 1

n2 + 2n+ 1

= 1− n+ 1

n2 + 2n+ 1

= 1− n+ 1

(n+ 1)2

= 1− 1

n+ 1
,

we see that the terms in this sequence become closer to 1 as n increases,
because the fraction 1/(n + 1) decreases toward zero. In fact, by choosing
n large enough, we can make 1/(n + 1) as small as we want. Specifically,
suppose we want 1/(n + 1) < ε for some ε > 0. By solving this inequality
for n, we find that we need only choose n so that n > 1/ε− 1. We conclude
that an converges to 1 as n tends to infinity.

In general, we say that a sequence {an}∞n=1 converges to a limit L if,
for any ε > 0, we can find an index N such that |an − L| < ε whenever
n > N . Informally, the sequence converges to L if we can make all of its
terms, beyond some index, as close to L as we want. We write

lim
n→∞

an = L.

If the sequence {an} converges to L, we say that it is a convergent sequence.
Otherwise, we say that it is divergent.

Now, consider the sequence defined by

an =
n2 + 4n+ 3

n+ 2
.

By rewriting this sequence as

an =
n2 + 4n+ 4− 4 + 3

n+ 2

=
n2 + 4n+ 4

n+ 2
− 1

n+ 2

= n+ 2− 1

n+ 2
,
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we see that as n increases, an also increases. In fact, by choosing n large
enough, we can make an as large as we want. Therefore, not only does this
sequence diverge, but it tends toward infinity as n does.

In general, we say that

lim
n→∞

an =∞

if, for any positive number M , there is an index N such that an > M
whenever n > N . That is, we can make all terms in the sequence, beyond
some index, as large as we want. We also say that the sequence {an} diverges
to ∞.

1.4.5 Relation to Limits of Functions

Previously, we have learned much about how to compute limits of functions
at infinity. It is therefore natural to ask whether the tools used to compute
limits of functions can be applied to compute limits of sequences.

Thankfully, that is in fact the case. Specifically, if a function f(x) satis-
fies

lim
x→∞

f(x) = L,

and we define the sequence {an}∞n=1 by an = f(n) where n is a positive
integer, then we can conclude that

lim
n→∞

an = L.

It follows that for any sequence {an} for which we have a formula to define
each term an, we can apply, to a function defined using this same formula,
all of the available techniques for computing limits of functions at infinity
in order to compute the limit of the sequence, if it has one.

In particular, this result allows us to apply the limit laws to conclude that
the limit of a sum, difference, product, or quotient of convergent sequences is
equal to the sum, difference, product or quotient of their limits, respectively.
Furthermore, raising the terms of a convergent sequence to a positive power
raises its limit to that same power, if the terms are positive. We can also
apply the Squeeze Theorem to show that if the terms of a sequence {an} are
bounded above and below by two convergent sequences that have the same
limit, then {an} converges to this limit as well.

We can also use techniques for computing limits at infinity of rational
functions, as demonstrated in the following example.
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Example Consider the sequence defined by

an =
2n3 + 3n2 + 4n+ 1

n3 + 5n2 + 3n+ 2
, n ≥ 1.

This sequence is obtained by taking the values of the function

f(x) =
2x3 + 3x2 + 4x+ 1

x3 + 5x2 + 3x+ 2
, x ≥ 0.

The limit of this function as x → ∞ can be computed by dividing the
numerator and denominator by the highest power of x, which is x3. This
yields

lim
x→∞

f(x) = lim
x→∞

2 + 3
x + 4

x2
+ 1

x3

1 + 5
x + 3

x2
+ 2

x3

= 2.

We conclude that limn→∞ an = 2 as well. 2

We introduced the concept of an infinite sequence of numbers, and pre-
cisely defined what it means for such a sequence to converge to a limit, or
approach infinity. Now, we will discuss various techniques, based on these
definitions, for testing whether a sequence converges, and, if it does, finding
its limit.

1.4.6 Testing Convergence of Sequences

We have learned that techniques for computing the limit of a function f(x),
as x→∞, can be applied to compute the limit of a sequence {an} as n→∞,
through the relation an = f(n), where n is any index of a term in {an}. We
applied this approach earlier in this section to a sequence {an} in which
an was a quotient of polynomials, and divided each by the highest power
of the variable in order to compute the limit. We now illustrate the use of
some other techniques for computing limits of functions at infinity in order
to compute limits of sequences.

Example Consider the sequence

an =
√
n2 + 1−

√
n2 − 1, n ≥ 1.

To determine whether it converges, we compute the limit of the function

f(x) =
√
x2 + 1−

√
x2 − 1, x ≥ 1,
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as x→∞. By multiplying and dividing f(x) by its conjugate, we obtain

f(x) =
(√

x2 + 1−
√
x2 − 1

) √x2 + 1 +
√
x2 − 1√

x2 + 1 +
√
x2 − 1

=
(
√
x2 + 1−

√
x2 − 1)(

√
x2 + 1 +

√
x2 − 1)√

x2 + 1 +
√
x2 − 1

=
(x2 + 1)− (x2 − 1)√
x2 + 1 +

√
x2 − 1

=
2√

x2 + 1 +
√
x2 − 1

=
2

|x|
(√

1 + 1
x2

+
√

1− 1
x2

) .
As x→∞, the expressions under both radical signs approach 1, from which
we conclude that

lim
n→∞

an = lim
x→∞

f(x) = 0.

2

Example The terms of the sequence

an =
n2

en
, n ≥ 1,

are fractions in which both the numerator and denominator become infinite
as n→∞. Because of the exponential, there is no “highest power of n” that
we can divide both by in order to reveal the limit, but since the limit is the
indeterminate form∞/∞, we can use l’Hospital’s Rule on the corresponding
function f(x) = x2/ex. We have

lim
n→∞

an = lim
n→∞

n2

en
= lim

n→∞

2n

en
= lim

n→∞

2

en
= 0.

While we are actually applying l’Hospital’s Rule to the function f(x), we
can carry out the steps on an instead, because of the equivalence of the limit
of the sequence an = f(n) and the limit of the function f(x), as n and x
tend to infinity. 2

1.4.7 Alternating Sequences

An alternating sequence is a sequence in which the terms alternate signs.
That is, for each n, an+1 is the opposite sign of an. The presence of the al-
ternating sign can make convergence analysis cumbersome, so it is desirable
to be able to exclude it from consideration if possible.
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Example The sequence

an =
(−1)n

n+ 1
, n ≥ 0,

is an example of an alternating sequence. To determine its limit, we consider
the related sequence

bn = |an| =
1

n+ 1
, n ≥ 0,

since (−1)n = 1 or −1 for any integer n, and therefore satisfies |(−1)n| = 1.
It is easy seen that

lim
n→∞

bn = 0,

since the numerator is fixed at 1 and the denominator increases with n.
Since bn → 0 as n → ∞, and bn is the magnitudes of an, it follows that
an → 0 as well. 2

1.4.8 Growth Rates of Functions

When working with sequences, it is helpful to know the relative growth rates
of functions such as polynomials or exponential functions, in order to quickly
determine whether the terms of a sequence tend to zero, infinity, or a finite
nonzero number.

Example The sequence

an =
2n

n!
, n ≥ 0,

cannot be related to a function of x, because n! is only defined when n is an
integer. Instead, we will try to determine whether the terms are bounded by
those of a simpler sequence, in which case we may be able to easily conclude
that the limit is zero. We have, for n ≥ 1,

an =
2 · 2 · 2 · · · · · 2
1 · 2 · 3 · · · · · n

=

(
2 · 2 · 2 · · · · · 2

1 · 2 · 3 · · · · · (n− 1)

)
2

n
= 2

(
2 · 2 · 2 · · · · · 2

3 · 4 · 5 · · · · · (n− 1)

)
2

n
<

4

n
,

since the expression in parentheses must be less than 1. Because 1/n → 0
as n → ∞, and multiplying by 4 does not change this, we conclude that
an → 0 as well. 2

From the preceding example, we see that the factorial function n! grows
more rapidly than the exponential function 2n, since otherwise the terms
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of the sequence would not tend to zero as n → ∞. The following list of
categories of functions is ordered from most rapidly growing to least rapidly
growing:

1. Factorial functions such as n!
2. Exponential functions such as en

3. Polynomial functions such as n3

4. Logarithmic functions such as lnn, where n > 0

Relationships such as these are often used in computer science, where they
play a role in the analysis of running time or complexity of algorithms.

1.4.9 Geometric Sequences

The geometric sequence {rn}, where r is any real number, is of particular
interest because of its frequent appearance in infinite series that arise in a
number of applications. It can exhibit three types of behavior, depending
on the value of r.

• If r = 1, then rn = 1 for any n, so the limit of {rn} is trivially equal
to 1.
• If |r| < 1, then rn decreases in magnitude as n increases, and therefore

the limit is equal to 0.
• If |r| > 1, then rn increases in magnitude, so that the terms become

infinitely large. On the other hand, if r = −1, the terms oscillate
endlessly between −1 and 1. In either case, the sequence is divergent.

1.4.10 Recursively Defined Sequences

When a sequence is defined using a formula that defines an+1 in terms of an,
it is possible to compute its limit L by keeping in mind that if the sequence
{an} converges, then {an+1} converges as well, and has the same limit L. It
follows that the formula that defines an+1 in terms of an can be viewed as
an equation that is satisfied by setting both an and an+1 equal to L.

Example Consider the sequence

an+1 =
an
2

+
1

an
, a1 = 1.

We assume that this sequence converges to a value L, and substitute it for
an and an+1 above, since both expressions converge to L if the sequence is
convergent. We then have the equation

L =
L

2
+

1

L
,
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which is satisfied by either
√

2 or −
√

2. Since a1 = 1, all terms of the
sequence must be positive, so the limit is

√
2. It is interesting to note that

the original sequence can be obtained by applying Newton’s method to the
function f(x) = x2 − 2, in order to compute

√
2. 2

1.4.11 Bounded and Monotonic Sequences

In some cases, even if it is not practical to compute the limit of a sequence,
it is still helpful to know whether the sequence converges. For example, this
kind of information is valuable when analyzing a method for solving an equa-
tion that computes a sequence of approximations, and it is only necessary
to know whether this sequence is going to converge, since its convergence
would imply successful solution of the equation. We now introduce some
terminology in order to help us to classify sequences, which will then help
us to quickly determine whether certain kinds of sequences converge.

• We say that a sequence is {an}∞n=1 is non-decreasing if an+1 ≥ an for all
n ≥ 1. Similarly, we say that {an}∞n=1 is non-increasing if an+1 ≤ an
for all n ≥ 1.
• We say that a sequence is {an}∞n=1 is increasing if an+1 > an for all
n ≥ 1. Similarly, we say that {an}∞n=1 is decreasing if an+1 < an for
all n ≥ 1.
• A sequence that is either non-increasing or non-decreasing is said to

be monotonic. A sequence that is increasing or decreasing is also
monotonic. Note that an increasing sequence is also non-decreasing,
but not the other way around.
• A sequence {an}∞n=1 is bounded above if there is a number M such that
an ≤M for all n ≥ 1. On the other hand, if there is a number m such
that an ≥ m for all n ≥ 1, we say that the sequence is bounded below.
• A sequence that is both bounded above and bounded below is said to

be bounded.

The reason why these terms are helpful is because of the Monotonic
Sequence Theorem, which states that any sequence that is both bounded
and monotonic is convergent. This is because any set of numbers that is
bounded above must have a least upper bound L, also known as a supremum,
and if the sequence is increasing, its terms have no choice but to continually
increase toward L. After all, if they do not approach L, then L is not the
least upper bound, while if they exceed L, then L is not an upper bound at
all. Similar reasoning applies to the case of a decreasing sequence and its
greatest lower bound, or infinum.
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Because the notions of monotonicity and boundedness are useful in deter-
mining whether a sequence converges, it is also useful to be able to determine
whether a sequence is monotonic.

Example The sequence defined by an = 1, for n ≥ 1, is an example of a
monotonic sequence, because it is non-increasing and non-decreasing. It is
also bounded above and below, so it is convergent, trivially so, to the limit
1. 2

Example The sequence defined by an = 1/2n, for n ≥ 0, is a decreasing,
and thus monotonic, sequence. It is bounded above, by 1, and below, by 0.
Therefore it converges, and its limit is 0. 2

Example The sequence defined by an = log n, for n ≥ 1, is a monotonic
sequence, because it is increasing. It is bounded below by 0, but it is not
bounded above, and is divergent. The same properties hold for the sequence
an = 2n. 2

Example The sequence defined by an = (−1)n, for n ≥ 0, is not monotonic,
because its terms oscillate continually between −1 and 1. It is bounded
below, by −1, and above, by 1, but it is divergent. Similar properties hold
for the sequence defined by an = sinn. 2

Example Consider the sequence defined by

an = 1− 2−n, n ≥ 0.

To determine whether this sequence is increasing or decreasing, we examine
the difference between two terms and try to ascertain whether this difference
is always positive or always negative. We have

an+1−an = (1−2−(n+1))−(1−2−n) = 2−n−2−(n+1) = 2−n(1−2−1) =
2−n

2
= 2−(n+1).

This difference is always positive, so we conclude that {an} is an increasing
sequence. 2

When the terms of a sequence are fractions, it is helpful to cross-multiply
to determine monotonicity.

Example Consider the sequence defined by

an =
n+ 1

n+ 2
, n ≥ 1.
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We will show that this sequence is increasing. To accomplish this, we must
show that an+1 > an, which is equivalent to

(n+ 1) + 1

(n+ 1) + 2
>
n+ 1

n+ 2
,

or
n+ 2

n+ 3
>
n+ 1

n+ 2
.

Cross-multiplying, we obtain

(n+ 2)2 > (n+ 1)(n+ 3),

which, upon expansion, yields

n2 + 4n+ 4 > n2 + 4n+ 3,

which is true for all n. Therefore, the sequence is in fact increasing. 2

Example The sequence

an = (−1)n, n ≥ 0,

has terms that alternate between 1 and −1. That is, a0 = 1, a1 = −1, a2 =
1, a3 = −1, and so on. Now, suppose we want to construct a formula for a
sequence whose terms alternate signs in pairs. That is,

a0 = a1 = 1, a2 = a3 = −1, a4 = a5 = 1,

and so on. We present two approaches to this.

The first approach makes use of the floor function bxc. For any real
number x, bxc is defined to be the greatest integer that is less than or equal
to x. For example,

b1c = 1, bπc = 3, b14.9c = 14.

The floor function is also known as the greatest integer function, and is an
example of a step function, since its graph, shown in Figure 1.2, consists of
line segments that are arranged like steps.

To define our sequence, we use the floor function to obtain the sequence
of exponents for −1,

b0 = 0, b1 = 0, b2 = 1, b3 = 1, b4 = 2, b5 = 2,



34 CHAPTER 1. SEQUENCES AND SERIES

Figure 1.2: The graph of the floor function bxc, for −2 ≤ x ≤ 2.

and so on. This is accomplished by setting bn = bx/2c, which, for odd x,
results in a fraction, equal to 0.5, which is eliminated by taking the floor, or
rounding down. By using bn as the exponent to −1, we obtain the sequence

an = (−1)bn = (−1)bx/2c,

which has the desired terms that alternate between 1 and −1 in pairs. In
general, to obtain a sequence that alternates between 1 and −1 every n
terms, we can use the sequence with terms (−1)bx/nc.

An alternative approach uses trigonometric functions. Figure 1.3 shows
the graph of sinx for 0 ≤ x ≤ 4π. The circles on the graph indicate the
points corresponding to

x =
π

4
+
kπ

2
, k = 0, 1, . . . , 7.

Note that the values of sinx at these points alternates between ±
√

2/2 in
pairs. Therefore, we can define the sequence an by

an =
√

2 sin
(π

4
+
nπ

2

)
.

2
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Figure 1.3: Graph of sinx for 0 ≤ x ≤ 4π.

1.4.12 Summary

• Sequences are ordered lists of numbers, typically indexed by integers.
Each number in the sequence is called a term.

• Sequences can be defined by a formula that specifies each term as a
function of the index. In some cases, though, it is more convenient
to use a recurrence relation that defines each term in terms of one or
more previous terms. Any definition should indicate the index of the
first term, which is usually 1.

• If the formula for the terms of a sequence is not known, it can some-
times be inferred from the first few terms of the sequence by exami-
nation of how these terms change as the index increases. Terms that
alternate in sign suggest the use of (−1)n, where n is the index. If the
terms are fractions, it is wise to examine the numerator and denomi-
nator separately.

• A sequence converges to a value, called its limit, if all of the terms
beyond some index can be made arbitrarily close to the limit.
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• A sequence that does not converge to any value is divergent. A di-
vergent sequence may have terms that tend to infinity as the index
does.

• The limit of a convergent sequence can be computed by using tech-
niques for computing limits of functions at infinity, applied to the
function obtained from the formula for each term of the sequence.
These techniques include:

– the limit laws, such as the law that the limit of a sum is the sum
of the limits

– the Squeeze Theorem

– the technique of dividing the numerator and denominator by the
highest power of x, if both are polynomials of x

• Any techniques that can be used to compute the limit of a function
f(x) as x → ∞ can also be applied to compute limits of sequences,
when each term an of the sequence can be defined in terms of the
value of a function f(n) at the term’s index n. These techniques
include, among others, l’Hospital’s Rule, and algebraic techniques such
as multiplying and dividing by the conjugate or the highest power of
n.

• The behavior of an alternating sequence can sometimes be studied
more easily by examining the absolute value of its terms, thus filtering
out the alternation and isolating the terms’ magnitude.

• When the terms of a sequence are defined to be a fraction, it is helpful
to consider the relative growth rates of functions to determine whether
the terms converge to zero or tend to infinity. As a rule, exponen-
tial functions grow more rapidly than polynomials, which grow more
rapidly than logarithmic functions.

• A particularly useful sequence is the geometric sequence rn, for a real
number r. This sequence converges to 1 if r = 1, to 0 if |r| < 1, and
diverges otherwise.

• If a sequence {an} is defined recursively, with an+1 defined in terms of
an, the limit can be computed by setting both equal to an unknown
value L and solving for it. If there is more than one solution, the initial
term can be used to determine which is the limit.
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• A sequence {an} is increasing if its terms increase as n increases, and
decreasing if its terms decrease. A monotonic sequence is either in-
creasing or decreasing. A sequence can be shown to be monotonic by
comparing consecutive terms directly, using algebraic techniques such
as cross-multiplying.

• A sequence is bounded above if its terms never exceed a given number
M , and bounded below if its terms are never exceeded by a given
number m. A sequence that is bounded above and below is called
bounded.

• According to the Monotonic Sequence Theorem, a bounded monotonic
sequence is convergent.

1.5 Series

1.5.1 What is a Series?

An infinte series, usually referred to simply as a series, is an sum of all of
the terms of an infinite sequence. Specifically, let {an}∞n=1 be a sequence.
Then we can define a series to be the sum of the terms of {an},

a1 + a2 + a3 + · · ·+ an + · · · .

We refer to the terms of {an} as the terms of the series.
Writing a series in this manner is cumbersome, so we instead use sigma

notation to write this series as

∞∑
n=1

an.

The expression below the upper case Greek letter sigma indicates what name
is given to the index (in this case, n), and its initial value (in this case, 1).
The expression above the sigma indicates the final value of the index, or ∞
for an infinite sum.

Note that this means sigma notation can be used to represent finite
sums as well.In other words, if we wrote, for example, “10” above the sigma
instead of ∞, then we would be specifying that only the first 10 terms of
{an} should be added. That is,

10∑
n=1

an = a1 + a2 + a3 + · · ·+ a10.
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For either a finite or infinite sum, the expression to the right of the sigma is
what is to be added, for each value of the index. This means that if n is the
name assigned to the index, then every occurrence of n within the summed
expression is to be replaced with each value of the index, and the resulting
terms are summed.

Example The finite sum
4∑

n=0

2n

n+ 1

is evaluated as follows:

4∑
n=0

2n

n+ 1
=

20

0 + 1
+

21

1 + 1
+

22

2 + 1
+

23

3 + 1
+

24

4 + 1

= 1 + 1 +
4

3
+ 2 +

16

5

=
128

15
.

2

We now need to define what it means to compute the sum of infinitely
many terms. For this concept, sequences play their most important role.
Given an infinite sequence {an}∞n=1 of terms to be summed, we define a
sequence of partial sums, denoted by {sn}∞n=1, as follows:

s1 = a1

s2 = s1 + a2

= a1 + a2

s3 = s2 + a3

= a1 + a2 + a3

...

sn = sn−1 + an

= a1 + a2 + · · ·+ an−1 + an.

Then, we can view the series as a sequence of partial sums. This leads to
the following definitions.

A series
∞∑
n=1

an
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is said to be convergent if its sequence of partial sums, {sn}∞n=1, is convergent.
The limit of {sn}, if it exists, is called the sum of the series. If the sequence
of partial sums is divergent, then we say that the series is divergent.

Example Consider the series

∞∑
n=0

1

2n
.

The sequence of partial sums is

s0 = 1

s1 = s0 +
1

2

=
3

2

s2 = s1 +
1

4

=
7

4

s3 = s2 +
1

8

=
15

8
...

sn =
2n+1 − 1

2n

=
2n(2− 2−n)

2n

= 2− 1

2n
.

The partial sums converge to 2, so we say that 2 is the sum of the series. 2

1.5.2 Why Do We Need Series?

Series are applied throughout mathematics, as well as physics, computer
science, and various branches of engineering. They are particularly useful
for describing functions or solutions of equations using sums of “simple”
functions such as polynomials or basic trigonometric functions. They are
also useful for analyzing the performance of numerical methods for solving
equations.
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1.5.3 Geometric Series

The series in the preceding example is a geometric series. The general form
of a geometric series is

∞∑
n=0

arn,

where r is called the common ratio of the series, because each term in the
series, for n ≥ 1, is obtained by multiplying the previous term by r. This
type of series arises in a variety of applications, such as the analysis of
numerical methods for solving linear or differential equations.

We now try to determine whether a geometric series converges, and if
so, compute its limit. To do this, we examine the sequence of partial sums.
We have

sn+1 = a+ ar + ar2 + · · ·+ arn + arn+1,

rsn = ar + ar2 + · · ·+ arn + arn+1,

which yields the relation sn+1 = a+ rsn. We also have sn+1 = sn + arn, by
the definition of a partial sum. Equating these, and rearranging, yields

a(1− rn) = sn(1− r),

which, for r 6= 1, leads to a closed-form representation of the nth partial
sum,

sn = a
1− rn

1− r
.

We can now determine convergence of the geometric series:

• If r = 1, the nth partial sum is sn = an, and therefore the series
diverges.

• If r = −1, the numerator in sn oscillates between 0 and 2a, so the
series again diverges.

• If |r| > 1, then rn diverges, so due to its presence in the numerator of
sn, the series diverges.

• Finally, if |r| < 1, then rn → 0, and the series converges to

lim
n→∞

sn =
a

1− r
.
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We now consider several examples of geometric series.

Example The series
∞∑
n=1

en

10n−1

can be viewed as a geometric series, but we must be careful, because a
geometric series uses an initial index of zero, while the initial index for this
series is 1. Therefore, we must first rewrite the series to use an initial index
of zero before determining the values of a and r.

Since we wish to subtract 1 from the initial index, we must compensate
by replacing n by n + 1 throughout the expression to be summed. This
yields the equivalent series

∞∑
n=0

en+1

10n
= e

∞∑
n=0

en

10n
.

This is a geometric series with a = e and r = e/10. Since e ≈ 2.718281828,
we have |r| < 1, and therefore the series converges to

a

1− r
=

e

1− e
10

=
10e

10− e
.

2

Example Consider the series

∞∑
n=0

2−2n3n.

Using the laws of exponents, we rewrite this series as

∞∑
n=0

(22)−n3n =

∞∑
n=0

3n

4n
.

It follows that this is a geometric series with a = 1 and r = 3/4, which
converges to

a

1− r
=

1

1− 3
4

= 4.

2

Example The series
∞∑
n=0

(x− 2)n

2n
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is an example of a power series, since the terms are constants times powers
of (x−2). We will see much more of power series, as they are very useful for
approximating functions in a way that is practical for implementation on a
calculator or computer. This particular power series is also a geometic series
with a = 1 and r = (x − 2)/2. Therefore, it converges if |(x − 2)/2| < 1,
which is true if −2 < x− 2 < 2, or 0 < x < 4. 2

Example Geometric series can be used to convert repeating decimals into
fractions. Consider the repeating decimal 0.142857. This can be written as
the infinite series

142857

106
+

142857

1012
+

142857

1018
+ · · ·+ 142857

106n
,

which is a geometric series with a = 142857/106 and r = 10−6, where the 6
arises due to the fact that the sequence of repeating digits has 6 terms: 1,
4, 2, 8, 5 and 7. This is a convergent geometric series, and its limit is

a

1− r
=

142857

106(1− 10−6)
=

142857

106 − 1
=

142857

999999
=

1

7
.

2

Example Consider the geometric series

∞∑
n=0

1

2n
,

for which a = 1 and r = 1
2 . The sum of the first 10 terms is given by

s9 = 1 +
1

2
+

1

22
+ · · ·+ 1

29
=

1− 1
210

1− 1
2

=
1023

512
≈ 2.

Because |r| < 1, this series converges, and to the sum 1
1−r = 2. On the other

hand, changing r to 2 yields the 10th partial sum 1−210

1−2 = 1023. This series
is divergent. 2

Earlier in this section, we defined the concept of an infinite series, and
what it means for a series to converge to a finite sum, or to diverge. We
also worked with one particular type of series, a geometric series, for which
it is particularly easy to determine whether it converges, and to compute
its limit when it does exist. Now, we consider other types of series and
investigate their behavior.
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1.5.4 Telescoping Series

Consider the series
∞∑
n=1

1

n
− 1

n+ 1
.

If we write out the first few terms, we obtain

∞∑
n=1

1

n
− 1

n+ 1
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · ·

= 1 +

(
1

2
− 1

2

)
+

(
1

3
− 1

3

)
+

(
1

4
− 1

4

)
+ · · · .

We see that nearly all of the fractions cancel one another, which reveals the
partial sum

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

Because this sequence of partial sums converges, the series converges, to 1.
This is an example of a telescoping series. It turns out that many series
have this property, even though it is not immediately obvious.

Example The series
∞∑
n=1

1

n(n+ 2)

is also a telescoping series. To see this, we compute the partial fraction
decomposition of each term. This decomposition has the form

1

n(n+ 2)
=
A

n
+

B

n+ 2
.

To compute A and B, we multipy both sides by the common denominator
n(n+ 2) and obtain 1 = A(n+ 2) +Bn. Substituting n = 0 yields A = 1/2,
and substituting n = −2 yields B = −1/2. The series is now

∞∑
n=1

1

n(n+ 2)
=

1

2

( ∞∑
n=1

1

n
− 1

n+ 2

)

=
1

2

[(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
+ · · ·

]
=

1

2

[
1 +

1

2
−
(

1

3
− 1

3

)
−
(

1

4
− 1

4

)
− 1

5
− 1

6
· · ·
]
.
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It can be seen from the first four terms above that the nth partial sum is

sn =
1

2

[
1 +

1

2
− 1

n+ 1
− 1

n+ 2

]
,

which converges to the limit 3/4. 2

Not all telescoping series converge. It is essential to examine the sequence
of partial sums.

1.5.5 Harmonic Series

One series of interest is actually a divergent one, the harmonic series

∞∑
n=1

1

n
.

This series is the best-known example of a series that diverges even though
the sequence of its terms converges to zero.

To see that it diverges, we can use the fact that the terms of this series
are at least as large as those of the series

∞∑
n=1

1

2dlog2 ne
,

where, for each n, the nth term is 1 divided by the smallest power of 2 that
is greater than or equal to n. It can be shown that this series diverges by
examining the sequence of partial sums directly, and since

∑
1/n has terms

that are at least as large, it must diverge as well.
Although this series diverges, its terms are quite close to that of a series

that converges. In fact, the series

∞∑
n=1

1

n1+ε
,

for any ε > 0, is convergent.

1.5.6 Basic Convergence Tests

Because summing a series requires adding infinitely many numbers, it makes
sense, intuitively, that these numbers must get smaller as the index n→∞,
if there is to be any hope that the sum will converge to a finite number.
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This is in fact the case: if a series converges, the sequence of its terms must
converge to zero.

However, the converse is not true: if a series has terms that converge
to zero, it does not necessarily converge. The harmonic series, above, is an
example of a divergent series whose terms converge to zero. Instead, we
can use the contrapositive statement to arrive at a condition for divergence,
rather than convergence: if the terms of a series do not converge to zero,
then it diverges.

We will learn about several tests that can be used to prove that a se-
ries converges, but for now, we note that certain simple combinations or
modifications of convergent series are also convergent. Specifically, if

∞∑
n=1

an and
∞∑
n=1

bn

are convergent series, with limits Sa and Sb, respectively, then the series

∞∑
n=1

an + bn,

∞∑
n=1

an − bn,
∞∑
n=1

can,

where c is a constant, are also convergent, with limits

∞∑
n=1

an + bn = Sa + Sb,
∞∑
n=1

an − bn = Sa − Sb,
∞∑
n=1

can = cSa.

Example Using the result of previous examples, we have

∞∑
n=1

1

2n
+

1

n(n+ 2)
=

∞∑
n=1

1

2n
+
∞∑
n=1

1

n(n+ 2)

=

∞∑
n=0

1

2n+1
+

1

2

∞∑
n=1

1

n
− 1

n+ 2

=
1

2

1

1− 1
2

+
3

4

=
7

4
.

1.5.7 Summary

• An infinite series, or simply series, is the sum of the terms of a se-
quence. Sigma notation provides a concise way of describing a series,
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using only its initial index, final index (or ∞), and definition of each
term.

• The partial sum of a series is the sum of its first n terms, for any value
of the index n. A series converges if the sequence of its partial sums
converges; otherwise, it diverges.

• A geometric series is any series whose terms are of the form arn, for
n ≥ 0. The number r is called the common ratio. If |r| < 1, the series
converges to a

1−r ; otherwise, it diverges.

• A telescoping series is a series in which all but a finite number of terms
cancel. When a series has terms that are rational functions, a partial
fraction decomposition can be used to determine whether the series is
in fact a telescoping series.

• The harmonic series, with terms 1/n, is an example of a series whose
terms converge to zero, but is still divergent.

• If a series converges, then its terms must converge to zero, but the
converse is not necessarily true: a series whose terms converge to zero
may still diverge. On the other hand, if the terms of a series do not
converge to zero, then the series must diverge.

• Adding or subtracting convergent series yields a convergent series,
whose sum is obtained by adding or subtracting the sums of the indi-
vidual series. Similarly, multiplying the terms of a convergent series
by a constant multiplies its sum by the same constant.

1.6 Convergence Tests

1.6.1 The Integral Test

Previously, we have defined the sum of a convergent infinite series

∞∑
n=1

an

to be the limit of the sequence of partial sums {sn}∞n=1, defined by

sk = a1 + a2 + · · ·+ ak =

k∑
n=1

an.
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In other words, if S is the sum of the series, then

S = lim
k→∞

sk = lim
k→∞

k∑
n=1

an.

Figure 1.4 illustrates the partial sum s8 for the series

∞∑
n=1

n−3/2. (1.1)

It can be seen from the figure that this partial sum can be viewed as the
sum of the areas of rectangles, each with width 1 and height n−3/2, for
n = 1, 2, . . . , 8. If we exclude the leftmost rectangle, then the sum of the

Figure 1.4: Partial sum s8 of the series (1.1). The leftmost rectangle, shown
with dotted edges, is excluded from the approximation of the area given by
the integral (1.2). All other rectangles, shown with solid edges, represent
the partial sum s̃7 of the modified series (1.4).

areas of the remaining rectangles can be viewed as an approximation of the
area of the region bounded by the curves y = x−3/2, y = 0, x = 1, and
x = 8.
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The exact value of this area is given by the integral∫ 8

1
x−3/2 dx, (1.2)

which is defined to be the limit of a sequence of Riemann sums {Rm}∞m=1.
Each Riemann sum approximates the area of this region by the sum of the
areas of m rectangles, each of width ∆x = (8− 1)/m. Specifically, we have

Rm =
m∑
n=1

n−3/2 7

m
. (1.3)

From the definitions of the original series (1.1) and the Riemann sum (1.3),
we can see that the partial sum shown in Figure 1.4, s8, is equal to R7 +
1, since 1 is the area of the leftmost, excluded rectangle. Furthermore, the
partial sum s̃8 of the modified series

∞∑
n=2

n−3/2, (1.4)

defined by

s̃8 = 2−3/2 + · · ·+ 8−3/2 =

8∑
n=2

n−3/2,

is a lower bound for the exact area given by the integral.
This last point suggests that if we extend the interval of integration to

[1,∞), and find that the improper integral∫ ∞
1

x−3/2 dx = lim
k→∞

∫ k

1
x−3/2 dx

exists and is finite, then the modified series (1.4) must converge, because each
partial sum of the modified series is bounded above by the “partial integral”
on the interval [1, k]. If this sequence of integrals converges, it follows that
the sequence of modified partial sums must converge, and therefore the
modified series must be convergent. Because the original series (1.1) and
modified series (1.4) only differ by the inclusion of the first term 1−3/2 = 1,
we conclude that the original series must be convergent as well.

Evaluating the integral (1.2), we obtain∫ ∞
1

x−3/2 dx = lim
k→∞

∫ k

1
x−3/2 dx
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= lim
k→∞

−2x−1/2
∣∣∣k
1

= lim
k→∞

2− 2k−1/2

= 2.

It follows that the sum of the modified series (1.4) is less than 2, and therefore
the sum of the original series (1.1) must be less than 3. Unfortunately, it is
not possible to analytically compute the exact value of the sum, although
it can be approximated numerically. Nonetheless, we at least know that
in some circumstances, we can use integrals to determine whether a series
converges, as this example illustrates.

Integrals can also be used to determine that a series is divergent. Suppose
that the integral ∫ ∞

1
f(x) dx

is divergent, meaning that it is not equal to any finite value. By examining
Figure 1.5, we can see that just as the integral from 1 to k of f(x) is an
upper bound on the partial sum s̃k, that excludes the first term, this integral
is also a lower bound on the partial sum sk, that includes the first term.
Therefore, if the sequence of integrals from 1 to k diverges as k → ∞, it
follows that the sequence of partial sums {sk}∞k=1, consisting of values that
are greater than these integrals, must diverge as well.

We summarize this discussion by stating the Integral Test: Let the se-
quence {an}∞n=1 be defined by an = f(n), for n ≥ 1, where f(x) is a con-
tinuous, positive, decreasing function defined on [1,∞). If the improper
integral ∫ ∞

1
f(x) dx = lim

k→∞

∫ k

1
f(x) dx

converges to a finite value F , then the series

∞∑
n=1

an

is convergent. Furthermore, if S is the sum of this series, then S < F + a1.
On the other hand, if the integral diverges, then the series diverges.

The reason why it is important that f(x) is positive and decreasing is
that it must be ensured that the partial sums of the modified series (with the
first term excluded) are a lower bound for the value of the integral, because
otherwise, no conclusive statement can be made about the convergence of
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Figure 1.5: Partial sum s7 of the series (1.1).

the series based on the existence of the integral. It should be mentioned that
it is not absolutely necessary for f(x) to be positive and decreasing on the
entire interval [1,∞). It is sufficient that there exist some c ≥ 1 such that
f(x) is positive decreasing for all x > c. This is because the convergence of
a series is not affected by the behavior of a finite number of terms.

Example Consider the p-series

∞∑
n=1

1

np
,

where p > 0. The function f(x) = 1/xp, for x ≥ 1, is a continuous, positive,
decreasing function, so we can apply the Integral Test to determine whether
this series converges. We have∫ ∞

1

1

xp
dx = lim

k→∞

1

1− p
x1−p

∣∣∣∣k
1

= lim
k→∞

1

1− p
(k1−p − 1).

In order for the integral to converge, we must have p > 1. We conclude that
the p-series converges if p > 1, and diverges if p ≤ 1. 2
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Example Consider the series

∞∑
n=0

1

1 + n2
.

We attempt to determine whether this series converges using the Integral
Test, by evaluating the integral∫ ∞

0

1

1 + x2
dx.

Note that while the Integral Test, as stated previously, uses 1 for both the
initial index and the lower limit of integration, it can also be applied with
different values for these quantities, as long as they are consistent. We have∫ ∞

0

1

1 + x2
dx = lim

k→∞
tan−1 x

∣∣k
0

= lim
k→∞

(tan−1 k − tan−1 0) =
π

2
.

It follows from the convergence of this integral that the series is convergent.
2

1.6.2 The Comparison Test

The integral test indicates convergence or divergence of a series through
comparison with the integral of a related function, but for many series, this
is not feasible because the integral cannot be easily evaluated. A practi-
cal alternative is to compare the series to another series that is known to
converge or diverge, since there are already certain types of series whose
behavior is known.

Suppose we have two series

∞∑
n=1

an and
∞∑
n=1

bn,

whose terms are non-negative, that satisfy 0 ≤ an ≤ bn for all n ≥ 1. We
denote the partial sums of these series by pk and qk, respectively:

pk =
k∑

n=1

an, qk =
k∑

n=1

bn.

Suppose that the series
∑
bn is convergent to a sum Sb. Because of the

relationship between an and bn, and the fact that both sets of terms are
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non-negative, we must have 0 ≤ pk ≤ qk for k ≥ 1. Furthermore, the
sequences {pk} and {qk} are both increasing.

A convergent sequence is bounded, so {qk}, which converges to Sb, is
bounded. In fact, because it is also an increasing sequence, it must be
bounded above by Sb. Since pk ≤ qk, for all k ≥ 1, pk cannot exceed Sb
either. Therefore, {pk} is also a bounded increasing sequence, so by the
Monotonic Convergence Theorem, it is convergent. We conclude that

∑
an

converges.
Now, suppose that we have the opposite relationship, an ≥ bn, and that∑
bn diverges. Following similar reasoning as before, we have pk ≥ qk, and

both sequences are still increasing. If {pk} converges, it must be bounded,
which means {qk} is also bounded. But that would imply that {qk}, and
therefore

∑
bn, converge, which is a contradiction. Therefore, {pk} diverges,

from which we conclude that
∑
an diverges.

We summarize this discussion by stating the Comparison Test:

• if 0 ≤ an ≤ bn for n ≥ 1, and
∑
bn converges, then

∑
an also con-

verges.

• If 0 ≤ bn ≤ an for n ≥ 1, and
∑
bn diverges, then

∑
an also diverges.

The Comparison Test is illustrated in Figure 1.6(a).

Example Consider the series

∞∑
n=0

1

2n
,

∞∑
n=0

1

2n + 1
.

The first series is known to converge, as it is a geometric series with a = 1
and r = 1/2. The second series, due to the addition of 1 in the denominator,
has terms that are less than the corresponding terms of the first series. It
follows that this series is also convergent. 2

There are two scenarios for which the Comparison Test is useless: an ≤
bn and

∑
bn diverges, and bn ≤ an and

∑
bn converges. In both cases,

we cannot make a definitive statement about whether
∑
an converges or

diverges. However, there are pairs of series that fall into these categories
whose terms behave similarly, so it would be nice to be able to determine
the convergence or divergence of the series with “simpler” terms, and then
use the result to draw a conclusion about the behavior of the other series.

We have previously stated that if
∑
an converges, then

∑
can also con-

verges, where c is any constant. Similarly, if
∑
an diverges, then

∑
can also
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diverges, if c 6= 0. However, we have also stated that the behavior of a finite
number of terms does not affect the convergence or divergence of a series.
These facts suggest that if a series

∑
bn has terms that are not exactly mul-

tiples of the terms of another series
∑
an, but approach being multiples in

the limit as n→∞, the two series should have the same behavior.
This is in fact the case, which leads to the Limit Comparison Test:

suppose that two series
∑
an and

∑
bn have terms that satisfy

lim
n→∞

an
bn

= c,

where c is a nonzero, finite number. Then,
∑
an and

∑
bn both converge,

or both diverge. This test is illustrated in Figure 1.6(b), in which the diver-
gence of the series

∑
bn, with the larger terms, can be used to establish the

divergence of the series
∑
an, which is not possible using the Comparison

Test.

Example Consider the series

∞∑
n=1

n2 + 1

n3 + 3n2 + 2n
,

∞∑
n=1

1

n
.

The second series is divergent, but we cannot use the Comparison Test
directly on these two series, because n3 + 3n2 + 2n > n(n2 + 1) for n ≥ 1,
which means that the terms of the first series are less than those of the
second. We could try scaling the second series by a constant c > 1 and then
using the Comparison Test, but since the Comparison Test requires that a
relationship apply to all terms of both series, finding an appropriate c can
be tedious. It is easier to apply the Limit Comparison Test, which yields

lim
n→∞

1
n

n2+1
n3+3n2+2n

=
n3 + 3n2 + 2n

n(n2 + 1)
=
n3

n3

1 + 3
n + 2

n2

1 + 1
n2

= 1,

from which we can conclude that the first series also diverges. 2

1.7 Other Convergence Tests

In this section, we develop additional tests that, for many series, will en-
able us to quickly determine whether a given series converges or diverges.
Although these new tests, like the Integral and Comparison Tests, can only
tell us whether a series converges, as opposed to helping us compute its
limit, they do offer us one advantage that the previous tests do not: they
are applicable to series whose terms are not necessarily positive.
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1.7.1 The Alternating Series Test

An alternating series is a series whose terms alternate signs, so that two
consecutive terms always have opposite signs.

Example The series
∞∑
n=0

(
−1

2

)n
,

in addition to being a geometric series with a = 1 and r = −1
2 , is an

alternating series whose first few terms are

a0 = 1, a1 = −1

2
, a2 =

1

4
, a3 = −1

8
.

2

Any alternating series has terms of the form an = (−1)nbn, where bn =
|an| > 0. In the preceding example, bn = 1/2n.

Suppose that we have an alternating series with terms {(−1)nbn}∞n=0, for
which bn > 0 for n ≥ 0, such that the terms are non-increasing in magnitude:
bn+1 ≤ bn for n ≥ 0. While one would normally try to establish convergence
or divergence by examining the sequence of partial sums, because of the
alternating signs of the terms, we will instead examine alternating partial
sums.

Specifically, consider the sequence of even-numbered partial sums:

s2n = b0 − b1 + b2 + · · ·+ b2n

= (b0 − b1) + (b2 − b3) + · · ·+ b2n.

Because bn ≥ bn+1, each quantity in parentheses is a non-negative number,
which means s2n ≥ (b0 − b1) for n ≥ 0. That is, the sequence of even-
numbered partial sums is bounded below. A similar grouping of terms can
be used to show that s2n ≤ b0 for n ≥ 0, so this sequence is also bounded
above. In other words, it is bounded.

On the other hand, by the definition of a partial sum, we have

s2n = s2n−2 − b2n−1 + b2n = s2n−2 − (b2n−1 − b2n) ≤ s2n−2,

which shows that this sequence of partial sums is also non-increasing. That
is, this sequencec is monotonic. It follows from the Monotonic Sequence
Theorem that the sequence is convergent. A similar procedure can be used
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to show that not only does the sequence of odd-numbered partial sums con-
verge, but it converges to the same limit as the even-numbered partial sums,
provided that the sequence of terms converges to zero, as must be the case
for any convergent series. We conclude that the sequence of all partial sums
converges, so the alternating series is convergent.

This leads to the Alternating Series Test: if the alternating series

∞∑
n=0

(−1)nbn = b0 − b1 + b2 − b3 + · · · ,

where bn > 0 for n ≥ 0, satisfies these conditions:

bn+1 ≤ bn, n ≥ 0, and lim
n→∞

bn = 0,

then the series is convergent.

Example Consider the alternating series

∞∑
n=1

(−1)n
n

n2 + 1
.

The terms in the series converge to zero as n→∞. Furthermore, by differ-
entiating the function

f(x) =
n

n2 + 1

with respect to x, we can confirm that this function satisfies f ′(1) = 0, and
f ′(x) < 0 for x > 1. It follows that this function is non-increasing for x ≥ 1,
and therefore the terms of the series are non-increasing. We conclude that
the series passes the Alternating Series Test, and converges. 2

1.7.2 Estimating Error in Alternating Series

When computing the sum of a convergent series numerically, it is desirable
to know how many terms are required in order to approximate the sum to
within a given level of accuracy. For general series, it is difficult to estimate
the error incurred by truncating the series after a given number of terms,
although for some series, a variant of the Integral Test may be used. For
alternating series, however, it is particularly simple to estimate this error, if
the series satisfies the Alternating Series Test.

Consider the general alternating series used to develop the Alternating
Series Test. We established that the sequence of even-numbered partial sums
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is non-increasing. Similarly, the sequence of odd-numbered partial sums is
non-decreasing. Since both sequences converge to the same limit, which is
the sum s of the series, it follows that s lies between any two consecutive
partial sums sn and sn+1, for some n ≥ 0. Therefore,

|s− sn| ≤ |sn+1 − sn|.

However, sn+1 − sn = bn+1, the next term in the series. We conclude that
the error in the nth partial sum is bounded above by bn+1.

We have just proved the Alternating Series Estimation Theorem: If an
alternating series

∞∑
n=0

(−1)nbn,

where bn > 0 for n ≥ 0, satisfies these conditions:

bn+1 ≤ bn, n ≥ 0, and lim
n→∞

bn = 0,

then
|s− sn| ≤ bn+1,

where s is the sum of the series and sn is the nth partial sum.

Example Consider the convergent alternating series

∞∑
n=0

(
−1

3

)n
=

∞∑
n=0

(−1)n
1

3n
.

We wish to approximate the sum s of this series with a partial sum sn
that includes enough terms so that |s − sn| ≤ 0.001. By the Alternating
Series Estimation Theorem, we must choose n so that 1/3n+1 ≤ 0.001.
Rearranging, we obtain the condition 1000 ≤ 3n+1, or, by taking the natural
logarithm of both sides,

n ≥ ln 1000

ln 3
− 1 =

3 ln 10

ln 3
− 1 ≈ 5.29.

Therefore, we must use the first 7 terms (from n = 0 to n = 6) to approxi-
mate the sum.

In this case, we can confirm that using this many terms is necessary and
sufficient, since we can compute the sum of the series. This is a geometric
series with a = 1 and r = −1/3, so the sum is 1/(1− (−1/3)) = 3/4. Using
the first 7 terms yields an error of approximately 0.000343, while using only
the first 6 terms yields an error of approximately 0.00103. 2
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1.7.3 Absolute Convergence

Previous tests for convergence have been applicable to series whose terms
are all positive, or that alternate in sign. However, many series do not fall
into either category. For such series, we can try to determine convergence
by examining a new series obtained by taking the absolute values of each
term, and applying one of the previous tests, such as the Integral Test or
Comparison Test, to this modified series.

Specifically, given a series
∞∑
n=1

an,

suppose that we are able to determine that the modified series
∑
|an| is

convergent. We then say that the original series is absolutely convergent.
However, we wish to determine whether the original series is convergent.
Because 0 ≤ an+ |an| ≤ 2|an|, and

∑
2|an| is convergent, we can employ the

Comparison Test to conclude that
∑

(an+ |an|) is also convergent. However,
the difference of two convergent series is also convergent, from which it
follows that the series

∞∑
n=1

|an| −
∞∑
n=1

(|an|+ an) =

∞∑
n=1

an

is convergent.
This leads to the Absolute Convergence Test: an absolutely convergent

series is convergent.

Example The series
∞∑
n=0

cosnπx

n2 + 1

is an example of a Fourier series, which is useful for approximating functions,
as well as working with data from signals and images. For any given x, the
terms of this series will vary in sign, with a pattern that depends on x.
However, if we consider the series obtained by taking the absolute value of
the terms, we have

∞∑
n=0

∣∣∣∣cosnπx

n2 + 1

∣∣∣∣ ≤∑
n=0

1

n2 + 1
≤ 1 +

∞∑
n=1

1

n2
,

because | cosnπx| ≤ 1 regardless of x. Using two applications of the Com-
parison Test, based on the relationships above, we can conclude that the
original series converges. 2
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It is important to note that the converse of the Absolute Convergence Test
is not true: a convergent series is not necessarily absolutely convergent.

Example The alternating series

∞∑
n=1

(−1)n
1

n

is convergent, by the Alternating Series Test, but taking the absolute values
of the terms yields the harmonic series, which, being a p-series with p = 1,
is divergent. 2

A series that is convergent, but not absolutely convergent, is said to be
conditionally convergent.

1.7.4 The Ratio Test

Many of the convergence tests that we have seen impose a condition on
all of the terms of a series, but this is unnecessarily restrictive, because
convergence of a series is not affected by a finite number of terms. Rather,
it is the behavior of the terms as the index n→∞ that is most deterministic
of the behavior of the entire series.

For example, suppose that a series
∑
an satisfies the condition∣∣∣∣an+1

an

∣∣∣∣ = L,

for some number L < 1. It follows that as n → ∞, the terms {an} behave
approximately like a geometric series with a common ratio r that is less than
one in absolute value, because the ratio of the magnitudes of consecutive
terms is less than one, in the limit. Because such a geometric series is
convergent, and this series involves the absolute values of the terms, this
suggests that the series is absolutely convergent.

This is in fact the case, and leads to one of the most useful tests for
convergence, the Ratio Test: let

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
assuming this limit exists. If L < 1, then the series is absolutely convergent.
If L > 1, or the limit does not exist, then the series is divergent. If L = 1,
the test is inconclusive, and another test must be used instead.
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This test is particularly useful for series whose terms involve powers of
n, exponential functions, or factorials, as this example shows.

Example Applying the Ratio Test to the series

∞∑
n=0

n!

2n(n+ 1)2

yields

lim
n→∞

∣∣∣∣ (n+ 1)!

2n+1(n+ 2)2

/
n!

2n(n+ 1)2

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!

n!

2n

2n+1

(n+ 1)2

(n+ 2)2

∣∣∣∣
= lim

n→∞

∣∣∣∣∣n+ 1

2

(
n+ 1

n+ 2

)2
∣∣∣∣∣

= ∞

and therefore the series diverges. 2

1.7.5 The Root Test

A similar test to the Ratio Test is the Root Test, which is convenient for
series whose terms are raised to the nth power, where n is the index. The
basic idea behind this test is that because a geometric series

∑
rn converges

when |r| < 1, if the terms of a more general series
∑
an converge, in absolute

value, to an expression of the form Ln where L < 1, this series should
converge as well. If this is the case, then L = n

√
|an|.

With this idea in mind, the Root Test is as follows: let

L = lim
n→∞

n
√
|an|,

assuming this limit exists. If L < 1, then the series is absolutely convergent.
If L > 1, or the limit does not exist, then the series is divergent. If L = 1,
the test is inconclusive, and another test must be used instead.

Example Applying the Root Test to the series

∞∑
n=0

(
1

π
tan−1 n

)n
yields

lim
n→∞

n

√∣∣∣∣( 1

π
tan−1 n

)n∣∣∣∣ = lim
n→∞

1

π
tan−1 n =

1

π

π

2
=

1

2
< 1,

which indicates that the series converges absolutely. 2
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1.7.6 Summary

• The Integral Test can be used to determine whether a series converges.
If the terms {an}∞n=1 of a series are defined to be the values of a
continuous, positive, decreasing function f(n) where n is each positive
integer, and if f(x) is integrable on the interval [1,∞), then the series
converges, and the sum of the series, excluding the first term a1, is
bounded above by the value of the integral.

• The Integral Test can also be used to test for the divergence of a
series. If the integral of f(x) from 1 to ∞ diverges, then the series
whose terms are defined by an = f(n), for n ≥ 1, also diverges.

• The function f(x) need not be positive and decreasing for the entire
domain of integration, but it needs to be positive and decreasing for
all x > c, for some c in the domain.

• The initial index of the series and the lower limit of integration do not
have to be equal to 1, but the same value should be used for both.

• Using the Integral Test, it can be shown that the p-series, whose terms
are given by an = n−p, converges if p > 1 and diverges if p ≤ 1.

• The Comparison Test states that a series whose terms are dominated
by those a convergent series is also convergent, and that a series whose
terms dominate those of a divergent series is also divergent. In both
cases, the terms of both series must be non-negative.

• The Limit Comparison Test states that if two series have terms whose
ratio converges to a nonzero, finite limit, then the series have the same
behavior; that is, they both converge or both diverge. This test can
be useful in cases for which the Comparison Test is inconclusive.

• The Alternating Series Test states that an alternating series is con-
vergent if its terms are non-increasing in magnitude, and converge to
zero.

• If an alternating series passes the Alternating Series Test, then any
partial sum of the series deviates from the overall sum by no more
than the next term in the series.

• A series is absolutely convergent if the new series obtained by taking
the absolute values of the terms of the original series is convergent.
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• A series that is absolutely convergent is also convergent, but not neces-
sarily other way around. A convergent series that fails to be absolutely
convergent is conditionally convergent.

• The Ratio Test is one of the most useful tests for determining whether
a series converges. If the ratio |an+1/an| converges to a limit that is
less than 1, then

∑
an converges absolutely. If the limit is larger than

1, or does not exist, then the series diverges. Otherwise, the test is
inconclusive.

• The Root Test determines convergence based on the limit of the nth
root of the absolute value of the nth term, as n→∞. If the limit less
than 1, the series converges absolutely. If the limit is greater than 1,
or nonexistent, the series diverges. Otherwise, the test is inconclusive.

1.8 Power Series

Now that we have learned about how to test sequences and series for con-
vergence, and, in some cases, compute their limits when they do converge,
we are ready to take our next step toward our primary goal: to be able to
approximate functions to within a given degree of accuracy using “simple”
functions that can readily be evaluated using simple arithmetic operations,
the only ones a computer can perform. In this next step, we consider series
that depend on a variable x, like the functions we wish to approximate.

1.8.1 What is a Power Series?

A power series is a series of the form

∞∑
n=0

cn(x− a)n,

where the constants cn, for n ≥ 0, are called the coefficients, and the number
a is called the center.

When a value is substituted for the variable x, the power series reduces
to a series of constant terms that can then be tested for convergence, using
any of the tests that we have previously discussed. The result of such a test,
convergence or divergence, depends on x.
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1.8.2 Convergence of Power Series

We now illustrate, through some examples, how tests for the convergence of
general series can be used to determine the values of x for which a power
series converges.

Example Consider the power series

∞∑
n=0

xn

n!
.

Applying the Ratio Test, for any fixed x, yields

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!

/
xn

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn
n!

(n+ 1)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0,

since no matter how large |x| is, eventually n will exceed it. Therefore, this
power series is absolutely convergent for all x. 2

Example The power series

∞∑
n=0

nnxn =
∞∑
n=0

(nx)n

diverges when x 6= 0, because, by the Ratio Test,

lim
n→∞

∣∣∣∣((n+ 1)x)n+1

(nx)n

∣∣∣∣ = lim
n→∞

∣∣∣∣(1 +
1

n

)n
(n+ 1)x

∣∣∣∣ = lim
n→∞

|e(n+ 1)x| =∞.

On the other hand, if x = 0, then all terms vanish except for n = 0, and the
series (trivially) converges to 1. 2

Example Consider the power series

∞∑
n=1

xn

n
.

Applying the Ratio Test yields

lim
n→∞

∣∣∣∣ xn+1

n+ 1

/
xn

n

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn
n

n+ 1

∣∣∣∣ = |x|.

It follows that the power series converges when |x| < 1, and diverges when
|x| > 1. When x = 1, the series diverges, because it is the harmonic series,
but when x = −1, it converges, by the Alternating Series Test. 2
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1.8.3 The Radius of Convergence

In the preceding examples, we encountered three different scenarios regard-
ing convergence of a power series:

• The power series converges for all x

• The power series converges only for x = a, where a is the center of the
series

• The power series converges when |x− a| < R for some number R, and
diverges for |x− a| > R.

It can be shown that for any power series, these are the only possible out-
comes of a test for convergence. In other words, there exists an interval,
called the interval of convergence, such that for x in this interval, the power
series, when evaluated at x, is convergent.

The interval may be the entire real line (−∞,∞), a single point x = a,
or a finite interval of the form |x − a| < R, or a − R < x < a + R. In this
case, the number R is called the radius of convergence. The series diverges
for |x − a| > R, but when |x − a| = R, either convergence or divergence
is possible. We say that when the interval of convergence is the entire real
line, R =∞, and if it is the single point x = a, then R = 0.

1.8.4 Representing Functions as Power Series

We have learned that a convergent power series

∞∑
n=0

cn(x− x0)n (1.5)

is a function of x, whose domain is the series’ interval of convergence. Given
such a power series, it is very helpful to know which function it represents,
because that knowledge can provide an easier approach to evaluating or
analyzing the function than working with the power series directly.

However, the opposite task is also very useful: given a function f(x), find
the corresponding power series. We will see that in some cases, the power
series can be the only practical way to evaluate the function, so knowledge of
its power series is vital. One useful technique for obtaining the power series
of a function is to relate the function to the sum of a convergent geometric
series

∞∑
n=0

arn =
a

1− r
,
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as the following examples show.

Example Let

f(x) =
2

1 + 2x
.

If we rewrite f(x) to fit the form a/(1− r), for some a and r, we obtain

f(x) =
2

1− (−2x)
,

which, when compared to the form a/(1− r), yields a = 2 and r = −2x. It
follows that f(x) is the sum of the geometric series

∞∑
n=0

2(−2x)n,

provided that | − 2x| < 1, or |x| < 1/2. 2

The common ratio r need not be a linear function of x, as the following
example shows.

Example Let

f(x) =
1

(x− 2)2 + 4
.

Trying to fit f(x) into the form a/(1 − r) requires a 1 in the denominator,
which can be obtained by dividing the numerator and denominator by 4:

1

(x− 2)2 + 4
=

1
4

(x−2)2

4 + 1
=

1
4

1−
[
−
(
x−2

2

)2] .
It follows that a = 1/4 and r = −((x− 2)/2)2, resulting in the power series

∞∑
n=0

1

4

[
−
(
x− 2

2

)2
]n

=

∞∑
n=0

1

4
(−1)n

(
x− 2

2

)2n

=

∞∑
n=0

(−1)n

4n+1
(x− 2)2n,

which converges when | − ((x − 2)/2)2| < 1. This inequality holds if |(x −
2)/2| < 1, or |x − 2| < 2. That is, f(x) is defined by this power series
when 0 < x < 4. Note that in terms of the general form of a power series
in equation (1.5), x0 = 2, while cn = 0 whenever n is odd, because only
even powers of (x − 2) are included. On the other hand, when n is even,
cn = (−1)n/2/4n/2+1. 2
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Example A function does not have to have a constant numerator in order
to be defined using a geometric power series. Consider

f(x) =
2x

2− x
.

This can be rewritten as

x

2− x
=

2x

2

1

1− x
2

= x
1

1− x
2

.

The fraction is the sum of a geometric series with a = 1 and r = x/2. It
follows that

f(x) = x

∞∑
n=0

(x
2

)n
,

provided |r| = |x/2| < 1, or −2 < x < 2.
However, this representation of f(x) does not fit the usual form of a

power series given by equation (1.5). To obtain this form, we can rewrite
f(x) again as follows:

f(x) = 2
x

2

∞∑
n=0

(x
2

)n
= 2

∞∑
n=0

(x
2

)n+1
= 2

∞∑
n=1

(x
2

)n
= 2

∞∑
n=1

1

2n
xn =

∞∑
n=1

1

2n−1
xn,

which does fit the form in equation (1.5), with c0 = 0 and cn = 1/2n−1 for
n ≥ 1. 2

This last example shows that if f(x) can be represented by a power series,
then so can xpf(x) for any positive integer p, simply by shifting the indices
of the coefficients {cn}∞n=0 up by p.

1.8.5 Differentiation and Integration of Power Series

We have previously learned how to compute power series representations of
certain functions, by relating them to geometric series. We can obtain power
series representation for a wider variety of functions by exploiting the fact
that a convergent power series can be differentiated, or integrated, term-by-
term to obtain a new power series that has the same radius of convergence
as the original power series. The new power series is a representation of
the derivative, or antiderivative, of the function that is represented by the
original power series.

This is particularly useful when we have a function f(x) for which we
do not know how to obtain a power series representation directly. If its
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derivative f ′(x), or its antiderivative
∫
f(x) dx, is a function for which a

power series representation can easily be computed, such as the examples
from earlier in this section, then we can integrate, or differentiate, this power
series term-by-term to obtain a power series for f(x).

Example The function

f(x) =
4

(2− x)2

is the derivative of the function

g(x) =
2x

2− x
,

which, from earlier in this section, has the power series representation

2x

2− x
=
∞∑
n=1

1

2n−1
xn.

This series converges when −2 < x < 2. To obtain a power series represen-
tation of f(x), we differentiate this series term-by-term to obtain

4

(2− x)2
=
∞∑
n=1

1

2n−1
nxn−1 =

∞∑
n=0

(n+ 1)

2n
xn,

which also converges when −2 < x < 2. 2

Example The function

f(x) =
1

2
tan−1 x− 2

2

has the derivative

f ′(x) =
1

(x− 2)2 + 4
.

From earlier in this section, this function has the power series

1

(x− 2)2 + 4
=
∞∑
n=0

(−1)n

4n+1
(x− 2)2n,

whose interval of convergence is 0 < x < 4. Integrating this series term-by-
term yields

1

2
tan−1 x− 2

2
=

∞∑
n=0

(−1)n

4n+1

∫
(x− 2)2n dx =

∞∑
n=0

(−1)n

4n+1

(x− 2)2n+1

2n+ 1
+ C.
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To determine the value of C, we substitute x = 2 into the above equation.
This causes all terms in the series to vanish. We also have f(2) = 0, which
yields C = 0. 2

Example Consider the definite integral∫ 1

0

1

1 + x4
dx.

Attempting to evaluate this integral using partial fraction decomposition is
not possible without introducing complex numbers. Instead, we express the
integrand as a (geometric) power series:

1

1 + x4
=

1

1− (−x4)
=

∞∑
n=0

(−x4)n =

∞∑
n=0

(−1)nx4n.

This power series has an interval of convergence of −1 < x < 1, which
contains the interval of integration (0, 1). Integrating the power series term-
by-term from 0 to 1 yields∫ 1

0

1

1 + x4
dx =

∫ 1

0

∞∑
n=0

(−1)nx4n dx =
∞∑
n=0

(−1)n
∫ 1

0
x4n dx =

∞∑
n=0

(−1)n
x4n+1

4n+ 1

∣∣∣∣1
0

=
∞∑
n=0

(−1)n

4n+ 1
.

This is an alternating series, which, by the Alternating Series Test, converges
since, for all n ≥ 0,

1

4n+ 1
≥ 0, lim

n→∞

1

4n+ 1
= 0, and

1

4(n+ 1) + 1
<

1

4n+ 1
.

Using the Alternating Series Estimation Theorem, we can evaluate this in-
tegral numerically, to any degree of accuracy we wish, by choosing n large
enough so that 1/(4n+ 1) is sufficiently small. 2

1.8.6 Summary

• A power series is a series whose terms are constants, called coefficients,
times non-negative powers of (x − a) for some constant a, which is
called the center of the power series.

• The convergence or divergence of power series can be determined using
the same tests that are used for other series, except that the behavior
depends on x.
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• A power series either converges only at the center, converges for all x,
or converges within the interval |x− a| < R, where R is the radius of
convergence, while diverging for |x − a| > R. In the latter scenario,
when |x− a| = R, the power series can either converge or diverge.

• The interval of convergence contains all values of x for which the power
series converges.

• A function f(x) can sometimes be represented as a power series by
viewing it as the sum of a convergent geometric series. The key is
to correctly identify what function serves as the common ratio of the
series, which may require algebraic manipulation of f(x).

• The common ratio, which must appear in the denominator of f(x),
must be of the form [c(x− x0)]q, where c and x0 are constants, and q
is a positive integer.

• If f(x) can be represented by a geometric power series, then so can
cf(x), for any constant c, and so can xpf(x), for any positive integer
p.

• Given such a function f(x), the corresponding power series converges if
the common ratio is less than 1 in absolute value; that is, c|x−x0| < 1.
The radius of convergence is 1/|c|.

• A power series representation of a function f(x) can be differentiated
term-by-term to obtain a power series representation of its derivative
f ′(x). The interval of convergence of the differentiated series is the
same as that of the original series.

• A power series representation of a function f(x) can be anti-differentiated
term-by-term to obtain a power series representation of its anti-derivative∫
f(x) dx. The value of the constant of integration, C, can be deter-

mined by substituting the center of the power series for x. The interval
of convergence of the anti-differentiated series is the same as that of
the original series.

• A power series representation of a function f(x) can be integrated
term-by-term from a to b to obtain a series representation of the def-
inite integral

∫ b
a f(x) dx, provided that the interval (a, b) lies within

the interval of convergence of the power series that represents f(x).
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1.9 Taylor and Maclaurin Series

We have learned how to construct power series representations of certain
functions by relating them to geometric series, either directly, or indirectly
through differentiation or integration. However, these techniques are not
applicable to most functions. Therefore, we now consider the problem of
computing the coefficients cn, n = 0, 1, . . . , of a power series

f(x) =
∞∑
n=0

cn(x− x0)n

that represents a more general function f(x), at least for x near the center
x0.

To that end, we first note that the partial sum of such a power series,

Tn(x) =
n∑
j=0

cj(x− x0)j ,

is a polynomial of degree n. Furthermore, by substituting x = x0, we find
that

Tn(x0) = c0, T ′n(x0) = c1, T ′′n (x0) = 2c2,

and, in general,
dj

dxj
[Tn(x)]

∣∣∣∣
x=x0

= T (j)
n (x0) = j!cj .

This suggests that a function f(x), that has infinitely many derivatives at
x0, can be represented by the power series

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

for all x within the interval of convergence of the series. This is in fact the
case, and we call this series the Taylor series of f centered at x0. When
x0 = 0, this Taylor series is also known as the Maclaurin series of f .

Example The Maclaurin series for f(x) = ex is given by

ex = 1 + x+
x2

2
+ · · · =

∞∑
n=0

xn

n!
,

since f (n)(0) = e0 = 1 for all n. We have seen that this series converges for
all x, so ex can be represented by this power series for all x as well. 2
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While Taylor series have many theoretical uses, they not directly useful
for practical applications, because most functions are not infinitely differ-
entiable, and, of course, any actual computation can only include a finite
number of terms. Therefore, it is highly desirable to know how accurately
a function can be represented by its truncated Taylor series. That is, for a
given x within the interval of convergence of the Taylor series, our goal is to
estimate the error Rn(x) = f(x)− Tn(x), where Tn(x), the nth partial sum
of the Taylor series of f , is also known as the nth-degree Taylor polynomial
of f centered at x0. The error, Rn(x), is called the Taylor remainder.

We first consider the simplest Taylor polynomial, which is T0(x) = f(x0).
To obtain the error R0(x), we apply the Fundamental Theorem of Calculus,
and obtain

f(x) = f(x0) +

∫ x

x0

f ′(s) ds.

That is,

R0(x) =

∫ x

x0

f ′(s) ds.

Unfortunately, expressing the remainder as an integral does little to help us
to estimate its magnitude. However, we can apply the Mean Value Theorem
for Integrals to obtain

f(x) = f(x0) + f ′(ξ)(x− x0),

where ξ is between x0 and x.
Now, we consider the first-degree Taylor polynomial

T1(x) = f(x0) + f ′(x0)(x− x0).

This graph of this function is the tangent line of f at x0. To obtain the error
R1(x) = f(x)−T1(x), we apply the Fundamental Theorem of Calculus twice,
to represent both f and its derivative in terms of their values at x0, plus an
integral of their respective derivatives. We obtain

f(x) = f(x0) +

∫ x

x0

[
f ′(x0) +

∫ s

x0

f ′′(z) dz

]
ds

= f(x0) +

∫ x

x0

f ′(x0) ds+

∫ x

x0

∫ s

x0

f ′′(z) dz ds

= f(x0) + f ′(x0)(x− x0) +

∫ x

x0

∫ x

z
f ′′(z) ds dz

= T1(x) +

∫ x

x0

f ′′(z)

∫ x

z
ds dz
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= T1(x) +

∫ x

x0

f ′′(z)(x− z) dz.

That is,

R1(x) = f(x)− T1(x) =

∫ x

x0

f ′′(z)(x− z) dz.

To obtain a more useful representation of the remainder than this integral
form, we use the fact that x − z does not change sign on the interval of
integration from x0 to x. This allows us to apply the Weighted Mean Value
Theorem for Integrals, which states that∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx,

where c lies in [a, b], and g(x) does not change sign on (a, b). We then obtain

f(x) = T1(x) + f ′′(ξ)

∫ x

x0

x− z dz

= T1(x) + f ′′(ξ)

∫ x−x0

0
u du

= T1(x) + f ′′(ξ)
(x− x0)2

2
,

where ξ lies between x0 and x. That is,

R1(x) = f ′′(ξ)
(x− x0)2

2
.

Example Let f(x) = sinx. Then, the Taylor polynomial T1(x) is

T1(x) = sin 0 + (cos 0)(x− 0) = x.

The remainder is given by

R1(x) = −sin ξ

2
x2.

Since | sinx| ≤ 1 for all x, it follows that if |x| ≤ 10−2, then the error in
approximating sinx by x is at most

|R1(x)| ≤ (10−2)2

2
=

10−4

2
= 5× 10−5.

2
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We now consider the case of an nth-degree Taylor polynomial. We will
need the result∫ x

x0

∫ s1

x0

∫ s2

x0

· · ·
∫ sn−1

x0

dsn · · · ds3 ds2 ds1 =
(x− x0)n

n!
,

previously used for n = 1 and n = 2. This formula can be proven for an
arbitrary positive integer n using an inductive argument. We have

f(x) = f(x0) +

∫ x

x0

{
f ′(x0) +

∫ s1

x0

[
f ′′(x0) +

∫ s2

x0

(
f ′′′(x0) +

∫ s3

x0

· · ·∫ sn−1

x0

{
f (n)(x0) +

∫ sn

x0

f (n+1)(sn+1) dsn+1

}
dsn · · · ds4

)
ds3

]
ds2

}
ds1

= f(x0) + f ′(x0)

∫ x

x0

ds1 + f ′′(x0)

∫ x

x0

∫ s1

x0

ds2 ds1 +

f ′′′(x0)

∫ x

x0

∫ s1

x0

∫ s2

x0

ds3 ds2 ds1 + · · ·+ f (n)(x0)

∫ x

x0

∫ s1

x0

· · ·
∫ sn−1

x0

dsn · · · ds2 ds1 +∫ x

x0

∫ s1

x0

· · ·
∫ sn

x0

f (n+1)(sn+1) dsn+1 · · · ds2 ds1

= f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 +

1

6
f ′′′(x0)(x− x0)3 +

· · ·+ f (n)

n!
(x− x0)n +

∫ x

x0

∫ s1

x0

· · ·
∫ sn

x0

f (n+1)(sn+1) dsn+1 · · · ds2 ds1

=
n∑
j=0

f (j)(x0)

j!
(x− x0)j +

∫ x

x0

∫ x

sn+1

· · ·
∫ x

s2

f (n+1)(sn+1) ds1 · · · dsn dsn+1

=

n∑
j=0

f (j)(x0)

j!
(x− x0)j +

∫ x

x0

f (n+1)(sn+1)

∫ x

sn+1

· · ·
∫ x

s2

ds1 · · · dsn dsn+1

=

n∑
j=0

f (j)(x0)

j!
(x− x0)j +

∫ x

x0

f (n+1)(sn+1)

n!
(x− sn+1)n dsn+1

= Tn(x) +Rn(x).

The transformation of the (n+1)-fold integral between the third and fourth
steps follows from the relations

x0 ≤ sn+1 ≤ sn ≤ · · · ≤ s2 ≤ s1 ≤ x,

when x0 ≤ x. Similar relations hold when x0 ≥ x.



1.9. TAYLOR AND MACLAURIN SERIES 73

In summary, the Taylor polynomial and Taylor remainder are given by

Tn(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2
(x−x0)2+· · ·+f (n)(x0)

n!
(x−x0)n =

n∑
j=0

f (j)(x0)

j!
(x−x0)j ,

and

Rn(x) =

∫ x

x0

f (n+1)(s)

n!
(x− s)n ds.

Using the Weighted Mean Value Theorem for Integrals, as before, we obtain
the alternative form of the remainder,

Rn(x) =
f (n+1)(ξ)

n!

∫ x

x0

(x− s)n ds =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1,

where ξ lies between x0 and x. By computing an upper bound on |f (n+1)(x)|
for x near x0, we can estimate the accuracy of an approximation of f(x) near
x0 by Tn(x).

Example The 3rd-degree Taylor polynomial for f(x) = ex, centered at
x0 = 0, is given by

T3(x) = 1 + x+
x2

2
+
x3

6
,

with remainder

R3(x) =
eξ

24
x4,

where ξ lies between 0 and x. If we let x = 2.5, it follows that the error in
an approximation of ex by T3(x) is at most

|R3(2.5)| =
∣∣∣∣ eξ24

(2.5)4

∣∣∣∣ ≤ e2.5

24
(39.0625) ≈ 19.828,

which is unacceptably large.

On the other hand, if we use the 3rd-degree Taylor polynomial centered
at x0 = 2,

T3(x) = e2 + e2(x− 2) +
e2

2
(x− 2)2 +

e2

6
(x− 2)3,

with remainder

R3(x) =
eξ

24
(x− 2)4,
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where ξ lies between 2 and x, we obtain the error bound

|R3(2.5)| =
∣∣∣∣ eξ24

(0.5)4

∣∣∣∣ ≤ e2.5

24
(0.0625) ≈ 0.0317,

which implies that using the Taylor polynomial centered at x0 = 2 is far
more accurate. 2

Taylor polynomials are quite useful for approximating functions in such a
way that they can easily be evaluated by a computer or calculator, because
once the coefficients are known, the computation can be performed using
only basic arithmetic operations. However, as the preceding example shows,
a Taylor polynomial for a given function f(x) must be used judiciously,
because it can accurately approximate f(x) only when x is near the center
x0, especially when the derivatives of f are large.

Previously, we learned how to approximate a function f(x) by its Taylor
polynomial

Tn(x) =

n∑
j=0

f (j)(x0)

j!
(x− x0)j ,

for a given center x0. Because the Taylor polynomial of degree n consists of
the first n+ 1 terms of its Taylor series

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

it is helpful to be able to compute all of the coefficients of the Taylor series
of f(x), so that the coefficients of a Taylor polynomial of any degree are
available.

Computing a Taylor series in its entirety requires that the coefficients fit
a pattern that can easily be discerned from the first few terms of the series.
In particular, the derivatives of f(x) at x0 must fit an identifiable pattern,
as in the case of the Maclaurin series for the exponential function,

ex =

∞∑
n=0

1

n!
xn.

In a previous example, we used the Ratio Test to conclude that this series
converges for all x.

In addition to the task of computing the coefficients of a Taylor series,
it is also essential to determine the interval of convergence of the series. A
Taylor polynomial cannot be used to approximate a function at a point at
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which the Taylor series does not converge, because the Taylor remainder
does not converge to zero as the degree of the polynomial increases. We
now illustrate the process of computing Taylor series of functions, and their
intervals of convergence, through some examples.

Example Consider the function

f(x) =
1

1− x
.

Its derivatives are

f ′(x) =
1

(1− x)2
, f ′′(x) =

2

(1− x)3
, f (n)(x) =

n!

(1− x)n+1
.

It follows that f (n)(0) = n!, and therefore the Taylor series for f centered
at 0, also known as its Maclaurin series, is

f(x) =
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

xn,

which is simply a geometric series with a = 1 and r = x. We conclude
that this series has a radius of convergence of R = 1, and an interval of
convergence of (−1, 1). 2

Example The function f(x) = sinx has derivatives

f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f (4)(x) = sinx,

or, in general,

f (4n)(x) = sinx, f (4n+1)(x) = cosx, f (4n+2)(x) = − sinx, f (4n+3)(x) = − cosx,

for each nonnegative integer n. Substituting x = 0 yields

f (4n)(0) = 0, f (4n+1)(0) = 1, f (4n+2)(0) = 0, f (4n+3)(0) = −1,

or, more concisely,

f (2n)(0) = 0, f (2n+1)(0) = (−1)n, n ≥ 0.

It follows that the Maclaurin series for sinx includes only odd powers of x.
We have

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.
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By applying the Ratio Test, we find that this series converges for all x. That
is, R =∞ and the interval of convergence (−∞,∞). 2

Example To compute the Maclaurin series for f(x) = cosx, we can use the
information about derivatives from the previous example to obtain

f (4n)(x) = cosx, f (4n+1)(x) = − sinx, f (4n+2)(x) = − cosx, f (4n+3)(x) = sinx,

for each nonnegative integer n. Substituting x = 0 yields

f (4n)(0) = 1, f (4n+1)(0) = 0, f (4n+2)(0) = −1, f (4n+3)(0) = 0,

or, more concisely,

f (2n+1)(0) = 0, f (2n)(0) = (−1)n, n ≥ 0.

It follows that the Maclaurin series for cosx includes only even powers of x.
We have

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n.

By applying the Ratio Test, we find that this series converges for all x. That
is, R =∞ and the interval of convergence (−∞,∞). 2

Example Consider the function f(x) = (1 + x)k, where k is a real number
(not necessarily an integer). Its derivatives are

f ′(x) = k(1+x)k−1, f ′′(x) = k(k−1)(1+x)k−2, f ′′′(x) = k(k−1)(k−2)(1+x)k−3,

and, in general,

f (n)(x) = k(k − 1)(k − 2) · · · (k − n+ 1)(1 + x)k−n,

and therefore

f (n)(0) = k(k − 1)(k − 2) · · · (k − n+ 1).

It follows that the Maclaurin series for (1 + x)k is the binomial series

(1 + x)k =

∞∑
n=0

k(k − 1)(k − 2) · · · (k − n+ 1)

n!
xk =

∞∑
n=0

(
k
n

)
xk,

where (
k
n

)
=
k(k − 1)(k − 2) · · · (k − n+ 1)

n!
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is called a binomial coefficient. It is a generalization of(
k
n

)
=
k(k − 1)(k − 2) · · · (k − n+ 1)

n!
=

k!

n!(n− k)!
,

where k and n are non-negative integers. In this case, this binomial coef-
ficient represents the number of ways to choose n objects from a set of k
objects.

To determine the interval of convergence, we again use the Ratio Test,
which yields

lim
n→∞

∣∣∣∣ k(k − 1) · · · (k − n)

k(k − 1) · · · (k − n+ 1)

n!

(n+ 1)!

xn+1

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣k − nn+ 1

∣∣∣∣ |x| = lim
n→∞

∣∣∣∣∣ kn − 1

1 + 1
n

∣∣∣∣∣ |x| = |x|,
which implies that the series converges for |x| < 1. 2

Previously, we have learned how to compute Taylor series for certain
functions by computing the coefficients directly and recognizing the pattern
that they fit. However, for many functions, this approach is not feasible,
because any pattern in the coefficients is too complex to recognize. We now
illustrate how other techniques for obtaining power series can be used, some-
times in tandem, to obtain Taylor series for certain well-known functions.

Example Recall the sum of a geometric series,

∞∑
n=0

xn =
1

1− x

provided |x| < 1. That is, the radius of convergence is R = 1. Because
the power series representation of a function at a given center is unique, it
follows that the Maclaurin series for 1/(1−x) is the above geometric series.

Substituting −x2 for x yields

∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n =
1

1− (−x2)
=

1

1 + x2
.

Because |x2| < 1 implies that |x| < 1, this series has the same radius of
convergence, R = 1. Furthermore, the above series is the Maclaurin series
for 1/(1 + x2).

By anti-differentiating this series term-by-term, we can obtain a Maclau-
rin series for tan−1 x, for |x| < 1, which is an antiderivative of 1/(1 + x2):

tan−1 x =

∫ x

0

1

1 + s2
ds+ C
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=

∫ x

0

∞∑
n=0

(−1)ns2n ds+ C

=
∞∑
n=0

(−1)n
∫ x

0
s2n ds+ C

=

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C.

The unknown constant C is included because we have computed a specific
antiderivative of 1/(1 +x2), and all antiderivatives of a given function differ
from one another by a constant. To compute C, we substitute x = 0, and
because tan−1 0 = 0, we obtain the equation 0 = 0 +C, so we conclude that
C = 0 and the Maclaurin series for tan−1 x is

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.

2

Two Taylor series with the same center can trivially be added or sub-
tracted in order to obtain a Taylor series for the sum or difference of the
corresponding functions. The radius of convergence of the sum or difference
is the minimum of the radii of convergence of the two series that are being
added or subtracted.

It is also possible to multiply or divide Taylor series to obtain new Taylor
series, as the following examples show.

Example Recall the Maclaurin series for ex and cosx:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · ,

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

The Taylor series for ex cosx can be obtained by multiplying these series,
in the same way that polynomials are multiplied. This is because for each
non-negative integer n, the number of terms from each series that are needed
to compute the coefficient cn in the product is finite.

We have

ex cosx =

( ∞∑
n=0

xn

n!

)( ∞∑
m=0

(−1)m
x2m

(2m)!

)
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=
∞∑
n=0

∞∑
m=0

(−1)m
x2m+n

n!(2m)!

=
∞∑
`=0

b`/2c∑
m=0

(−1)m
x`

(`− 2m)!(2m)!

= 1 + x− 1

3
x3 − 1

6
x4 − 1

30
x5 + · · · ,

where ` = 2m+n, and, for any real number x, bxc is the “floor” of x, which
is the greatest integer that is less than or equal to x. This series converges
for all x, like the series for ex and cosx. 2

Example Recall the Maclaurin series for sinx and cosx:

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

To compute the Maclaurin series for tanx = sinx/ cosx, we can use poly-
nomial division to divide the Maclaurin series for sinx by that of cosx, even
though these series are not polynomials themselves, but sums of infinitely
many monomials.

First, we divide the leading terms of the two series. The first term of the
series for sinx is x, while the first term of the series for cosx is 1. Therefore,
the first term of the quotient of the series, and therefore the series for tanx,
is x/1 = x.

Next, we subtract x times the series for cosx from that of sinx to obtain
the remainder:

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
−
∞∑
n=0

(−1)n
x2n+1

(2n)!
=

∞∑
n=0

(−1)n+1 2n

(2n+ 1)!
x2n+1.

Then, we divide the leading term of this series, which is x3/3, by the leading
term of the series for cosx, which is 1, to obtain the second term of the
quotient, which is x3/3.

Continuing this process yields the series

tanx = x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 + · · ·
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The coefficients arise from the following pattern:

1

3
= − 1

3!
+

1

2!
,

2

15
=

1

5!
− 1

4!
+

1

3

1

2!
,

17

315
= − 1

7!
+

1

6!
− 1

3

1

4!
+

2

15

1

2!
,

62

2835
=

1

9!
− 1

8!
+

1

3

1

6!
− 2

15

1

4!
+

17

315

1

2!
.

Note that each coefficient is expressed in terms of the previous coefficients.
2

1.9.1 Summary

• If a function f(x) can be represented by a power series centered at x0,
then the coefficients are given by cn = f (n)(x0)/n!, where f (n)(x0) is
the nth derivative of f evaluated at x0.

• The power series centered at x0 that represents a function f is called
the Taylor series of f centered at x0. If x0 = 0, the Taylor series is
also called the Maclaurin series of f .

• If the Taylor series of f is truncated after the first (n + 1) terms,
the result is a polynomial of degree n, called the nth-degree Taylor
polynomial of f centered at x0.

• The difference between f(x) and its nth-degree Taylor polynomial
Tn(x), centered at x0, is called the Taylor remainder of f . It closely
resembles the term of degree n+1 in the Taylor series, except that the
(n + 1)-st derivative of f is evaluated at an unknown point between
x0 and x. By bounding this derivative between x0 and x, one can
estimate the error in approximating f(x) by Tn(x).

• One approach to computing the Taylor series of a function f(x), cen-
tered at x0, is to compute the first few coefficients, given by cn =
f (n)(x0)/n!, and trying to recognize a pattern that applies for all non-
negative integers n.

• This approach leads to the following known Maclaurin series:
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–

ex = 1 + x+
x2

2
+
x3

6
+ · · · =

∞∑
n=0

xn

n!

–

sinx = x− x3

6
+

x5

120
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

–

cosx = 1− x2

2
+
x4

24
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

–

(1 + x)k = 1 + kx+ k(k − 1)x2 + · · · =
∞∑
n=0

(
k
n

)
xk

All of these series converge for all x, except for the binomial series for
(1 + x)k, which converges for |x| < 1.

• Given a Maclaurin series for a function f(x), a Maclaurin series for
f(xp), where p is a positive integer, can be obtained by substitution
of xp for x in the series for f(x).

• A Taylor series for f(x) can be differentiated term-by-term to obtain
a Taylor series for f ′(x). The center and radius of convergence of the
series for f ′(x) are the same as that of f(x).

• A Taylor series for f(x) can be anti-differentiated term-by-term to
obtain a Taylor series for

∫ x
f(s) ds. The center and radius of conver-

gence of the series for
∫ x

f(s) ds are the same as that of f(x).

• A Taylor series for f(x) can be integrated term-by-term from a to b
to compute the integral from a to b of f(x), provided that (a, b) lies
with in the interval of convergence of the series.

• Two Taylor series, for functions f(x) and g(x), with the same center
x0 and radius of convergence R, can be multiplied to obtain a Taylor
series for f(x)g(x) whose radius of convergence is also R.

• Two Taylor series, for functions f(x) and g(x), with the same center
x0, can be divided using polynomial long division to obtain a Taylor
series for f(x)/g(x), provided that the leading coefficient c0 of the
series for g(x) is nonzero.
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1.10 Review

You should now be able to complete the following types of problems:

• Computing a formula for the terms of a sequence, given the first few
terms of the sequence. This involves detecting patterns such as an for
some constant a, or np for some integer p, or (−1)n for terms that
oscillate.

• Determining whether a sequence converges or diverges, and, if con-
vergent, computing its limit. This may require techniques such as
dividing the numerator and denominator by the highest power of n,
multiplying and dividing by the conjugate of an expression involving
square roots, or using l’Hospital’s Rule. An understanding of what
kinds of functions grow faster than others can be helpful.

• Computing the limit of a recursively defined sequence {an}, in which
an+1 is defined in terms of an. You should also be able to show that
such a sequence is convergent using the Monotonic Sequence Theorem,
which applies if the sequence is monotonic and bounded.

• Determining whether a geometric series
∑
arn converges or diverges,

by computing r and checking whether |r| < 1, and if it converges,
computing its limit a/(1− r).

• Determining whether a series diverges using the Divergence Test. A
series diverges if its terms do not converge to zero.

• Determining whether a telescoping series converges, and if it does,
computing its limit. This may require partial fraction decomposition.

• Determining whether a series converges or diverges using the Integral
Test, Comparison Test, or the Limit Comparison Test. Note that
these tests should only be applied to series whose terms are positive
and decreasing.

• Determining whether an alternating series converges, using the Alter-
nating Series Test, and if it converges, computing an error estimate
using the Alternating Series Estimation Theorem.

• Determining whether a series converges or diverges using the Ratio
Test or the Root Test.
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• Computing a Taylor series of a given function f(x) around a given
center x0, using the general formula for a Taylor series,

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

• Using a Taylor series of a given function f(x), at a given center x0,
to compute the value of a function to a given accuracy. To save time,
you can use the Alternating Series Estimation Theorem to determine
when sufficient accuracy has been achieved. This theorem states that
if s is the sum of an alternating series

s =
∞∑
n=0

(−1)nbn,

and sn is the nth partial sum, then

|s− sn| ≤ |bn+1|.

That is, the error in a partial sum is no larger than the first excluded
term. If the series is not alternating, then the Taylor remainder can
be used instead.

• Computing the Taylor series of a function by differentiating or inte-
grating a known (or more easily obtained) Taylor series term-by-term.

• Computing a definite or indefinite integral by representing the inte-
grand as a Taylor series, and integrating term-by-term. For a definite
integral, you will be asked to compute the integral to a given accuracy.

• Using Taylor series to compute the sum of a given infinite series, by
recognizing the series as the evaluation of a known Taylor series at a
specific value of x.

When trying to determine which test should be applied to a series, it is
advisable to use a thought process such as the following:

• Do the terms even converge to zero? If not, you can simply apply the
Divergence Test to conclude that the series diverges.

• Does the series fit the form of a geometric series
∑
arn?
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• Is it a telescoping series? Such a series may have terms that are ex-
pressed as a single fraction, which can then be rewritten as a difference
of two fractions using partial fraction decomposition.

• Do the terms of the series alternate in sign, due to a factor such as
(−1)n? In that case, the Alternating Series Test may apply.

• If none of the above tests apply, consider the Ratio Test or the Root
Test. The Root test is particularly useful if each term an of the series
includes an expression that is raised to the nth power. If either the
Ratio Test or Root Test is inconclusive, you should not attempt the
other test, for it will be inconclusive as well.

• Next, consider the Integral Test, if the terms of a series describe a
function that can readily be integrated.

• Next, consider the Comparison Test, unless the terms are not clearly
decreasing, in which case the Limit Comparison Test may be more
helpful.
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(a) (b)

Figure 1.6: (a) Top plot: terms of convergent series
∑
an (crosses) and∑

bn (circles), for which bn ≥ an ≥ 0. Bottom plot: partial sums of
∑
an

(crosses) and
∑
bn (circles). (b) Terms of two divergent series

∑
an (circles)

and
∑
bn (crosses) that have a ratio of 1 as n→∞.
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Chapter 2

Vectors and the Geometry of
Space

In this chapter, we will learn how to work with locations and directions in
three-dimensional space, in order to easily describe objects such as lines,
planes and curves. This will set the stage for the study of functions of two
variables, the graphs of which are surfaces in space.

2.1 Three-Dimensional Coordinate Systems

2.1.1 Points in Three-Dimensional Space

Previously, we have identified a point in the xy-plane by an ordered pair
that consists of two real numbers, an x-coordinate and y-coordinate, which
denote signed distances along the x-axis and y-axis, respectively, from the
origin, which is the point (0, 0). These axes, which are collectively referred
to as the coordinate axes, divided the plane into four quadrants.

We now generalize these concepts to three-dimensional space, or xyz-
space. In this space, a point is represented by an ordered triple (x, y, z)
that consists of three numbers, an x-coordiante, a y-coordinate, and a z-
coordinate. As in the two-dimensional xy-plane, these coordinates indicate
the signed distance along the coordinate axes, the x-axis, y-axis and z-axis,
respectively, from the origin, denoted by O, which has coordinates (0, 0, 0).
There is a one-to-one correspondence between a point in xyz-space and a
triple in R3, which is the set of all ordered triples of real numbers. This cor-
respondence is known as a three-dimensional rectangular coordinate system.

Example Figure 2.1 displays the point (2, 3, 1) in xyz-space, denoted by

87
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the letter P , along with its projections onto the coordinate planes (described
below). The origin is denoted by the letter O. 2

Figure 2.1: The point (2, 3, 1) in xyz-space, denoted by the letter P . The
origin is denoted by the letter O. The projections of P onto the coordinate
planes are indicated by the diamonds. The dashed lines are line segments
perpendicular to the coordinate planes that connect P to its projections.

2.1.2 Planes in Three-Dimensional Space

Unlike two-dimensional space, which consists of a single plane, the xy-
plane, three-dimensional space contains infinitely many planes, just as two-
dimensional space consists of infinitely many lines. Three planes are of
particular importance: the xy-plane, which contains the x- and y-axes; the
yz-plane, which contains the y- and z-axes; and the xz-plane, which contains
the x- and z-axes.

Alternatively, the xy-plane can be described as the set of all points
(x, y, z) for which z = 0. Similarly, the yz-plane is the set of all points
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of the form (0, y, z), while the xz-plane is the set of all points of the form
(x, 0, z).

Just as the x-axis and y-axis divide the xy-plane into four quadrants,
these three planes divide xyz-space into eight octants. Within each octant,
all x-coordiantes have the same sign, as do all y-coordinates, and all z-
coordinates. In particular, the first octant is the octant in which all three
coordinates are positive.

2.1.3 Plotting Points in xyz-space

Graphing in xyz-space can be difficult because, unlike graphing in the xy-
plane, depth perception is required. To simplify plotting of points, one can
make use of projections onto the coordinate planes. The projection of a point
(x, y, z) onto the xy-plane is obtained by connecting the point to the xy-
plane by a line segment that is perpendicular to the plane, and computing
the intersection of the line segment with the plane.

Later, we will learn more about how to compute projections of points
onto planes, but in this relatively simple case, it follows from our working
definition that the projection of the point (x, y, z) onto the xy-plane is the
point (x, y, 0). Similarly, the projection of this point onto the yz-plane is
the point (0, y, z), and the projection of this point onto the xz-plane is the
point (x, 0, z). Figure 2.1 illustrates these projections, and how they can be
used to plot a point in xyz-space. One can first plot the point’s projections,
which is similar to the task of plotting points in the xy-plane, and then use
line segments originating from these projections and perpendicular to the
coordinate planes to “locate” the point in xyz-space.

2.1.4 The Distance Formula

The distance between two points P1 = (x1, y1) and P2 = (x2, y2) in the
xy-plane is given by the distance formula,

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2.

Similarly, the distance between two points P1 = (x1, y1, z1) and P2 =
(x2, y2, z2) in xyz-space is given by the following generalization of the dis-
tance formula,

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

This can be proved by repeated application of the Pythagorean Theorem.
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Example The distance between P1 = (2, 3, 1) and P2 = (8,−5, 0) is

d(P1, P2) =
√

(8− 2)2 + (−5− 3)2 + (0− 1)2 =
√

36 + 64 + 1 =
√

101 ≈ 10.05.

2

2.1.5 Equations of Surfaces

In two dimensions, the solution set of a single equation involving the coor-
dinates x and/or y is a curve. In three dimensions, the solution set of an
equation involving x, y and/or z is a surface.

Example The equation z = 3 describes a plane that is parallel to the xy-
plane, and is 3 units “above” it; that is, it lies 3 units along the positive
z-axis from the xy-plane. On the other hand, the equation x = y describes a
plane consisting of all points whose x- and y-coordinates are equal. It is not
parallel to any coordinate plane, but it contains the z-axis, which consists
of all points whose x- and y-coordinates are both zero, and it intersects the
xy-plane at the line y = x. 2

The equation of a sphere with center C = (h, k, `) and radius r is

(x− h)2 + (y − k)2 + (z − `)2 = r2.

The unit sphere has center O = (0, 0, 0) and radius 1:

x2 + y2 + z2 = 1.

We now illustrate how to work with equations of spheres.

Example The equation of a sphere with center C = (−3,−1, 1) and radius
r = 10 is

(x− (−3))2 + (y − (−1))2 + (z − 1)2 = 102,

or

(x+ 3)2 + (y + 1)2 + (z − 1)2 = 100.

Expanding, we obtain

x2 + y2 + z2 + 6x+ 2y − 2z = 89,

which obscures the center and radius, but it is still possible to detect that
the equation represents a sphere, due to the fact that the x2, y2 and z2

terms have equal coefficients. 2
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Example The equation

4x2 + 4y2 + 4z2 − 8x− 16y − 16 = 0

describes a sphere, as can be seen by the equal coefficients in front of the x2,
y2 and z2. To determine the radius and center of the sphere, we complete
the square in x and y:

0 = 4x2 + 4y2 + 4z2 − 8x− 16y − 16

= 4(x2 − 2x) + 4(y2 − 4y) + 4z2 − 16

= 4(x2 − 2x+ 1− 1) + 4(y2 − 4y + 4− 4) + 4z2 − 16

= 4[(x− 1)2 − 1] + 4[(y − 2)2 − 4] + 4z2 − 16

= 4(x− 1)2 + 4(y − 2)2 + 4z2 − 36.

Rearranging, we obtain the standard form of the equation of the sphere:

(x− 1)2 + (y − 2)2 + z2 = 9,

which reveals that the center is at the point C = (1, 2, 0), and the radius is
r = 3. 2

Example The region consisting of all points that lie between the spheres
centered at (−1, 1, 2), with radii 3 and 5, can be described by the inequalities

9 < (x+ 1)2 + (y − 1)2 + (z − 2)2 < 25.

The points that lie on these spheres are excluded by these inequalities. To
include them, ≤ should be used instead of <. These inequalities use the fact
that the equation of the sphere with center (−1, 1, 2) and radius r is

(x+ 1)2 + (y − 1)2 + (z − 2)2 = r2.

2

Example The inequality

x2 + y2 + z2 > 4x

describes the set of all points outside the sphere with center (2, 0, 0) and
radius 2. To see this, we rewrite the inequality as

x2 − 4x+ y2 + z2 > 0
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and then complete the square to obtain

x2 − 4x+ 4− 4 + y2 + z2 > 0.

Factoring the perfect square that has been completed, and then rearranging,
yields

(x− 2)2 + y2 + z2 > 4.

This inequality, when changed to an equality, describes the sphere with
center (2, 0, 0) and radius 2. The inequality prescribes that the distance
between (x, y, z) and (2, 0, 0) be greater than 2, so (x, y, z) must lie outside
this sphere. 2

2.1.6 Summary

• The three-dimensional rectangular coordinate system is the one-to-one
correspondence between each point P in three-dimensional space, or
xyz-space, and an ordered triple (x, y, z) in R3. The numbers x, y and
z are the x-, y- and z-coordinates of P . The origin O is the point with
coordinates (0, 0, 0).

• The coordinate planes are: the xy-plane, the set of all points whose z-
coordinate is zero; the yz-plane, the set of all points whose x-coordinate
is zero; and the xz-plane, the set of all points whose y-coordinate is
zero.

• The projection of a point P = (x, y, z) onto the xy-plane is the point
(x, y, 0). The projection of P onto the yz-plane is the point (0, y, z).
The projection of P onto the xz-plane is the point (x, 0, z).

• The distance formula states that the distance between two points in
xyz-space is the square root of the sum of the squares of the differences
between corresponding coordinates. That is, given P1 = (x1, y1, z1)
and P2 = (x2, y2, z2), the distance between P1 and P2 is given by
d(P1, P2) =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

• The equation of a sphere with center C = (x0, y0, z0) and radius r is
(x− x0)2 + (y − y0)2 + (z − z0)2 = r2.

• An equation in which x2, y2 and z2 have the same coefficients describes
a sphere; the center and radius can be determined by completing the
square in x, y and z.
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2.2 Vectors

When an object is displaced, it is moved a certain distance, and also in some
direction. Both the distance and direction are required in order to fully
describe the object’s motion. Similarly, an object’s velocity incorporates
the rate at which it is traveling, and its direction of travel. A vector refers
to a quantity, such as displacement or velocity, that has, as properties, both
magnitude and direction.

Visually, a vector is represented by an arrow. The length of the arrow
indicates the magnitude of the vector, and the direction of the arrow is the
direction of the vector. The point at the tail of the arrow is called the initial
point of the vector, and the tip of the arrow is called the terminal point. A
typical vector is shown in Figure 2.2.

Figure 2.2: A representation of a vector by an arrow, which indicates the
length and direction of the vector.

Two arrows that are pointing in the same direction, and the same length,
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but are located at different positions, represent vectors that are indistin-
guishable from one another, because they have the same magnitude and
direction. We say that these vectors are equivalent, or equal.

We will normally denote vectors by bold lowercase letters, such as u or
v. A vector that is of particular importance is the zero vector, denoted by
0. It is a vector whose magnitude, or length, is zero. As such, it does not
have any particular direction.

2.2.1 Combining Vectors

Let u and v be two vectors that are positioned in such a way that the initial
point of v coincides with the terminal point of u. The sum of u and v is the
vector u + v whose initial point is the initial point of u, and whose terminal
point is the terminal point of v.

The vectors u, v and u + v form a triangle, which is why this definition
of the sum of two vectors is called the Triangle Law. This law is illustrated
in Figure 2.3(a). However, if the two vectors are added in reverse order, the
sum v + u turns out to be equal to u + v. That is, addition of vectors is
commutative. To see this, we note that if the initial point of u in the sum
u + v coincides with the initial point of v in the sum v + u, the two copies
of u and v form a parallelogram, with the two sums coinciding with one
of its diagonals. Therefore, commutativity of vector addition is called the
Parallelogram Law, which is illustrated in Figure 2.3(b).

Another important operation that can be performed on vectors is called
scalar multiplication. This operation entails scaling the magnitude of a vec-
tor u by a number s, which, in this context, is called a scalar. The direction
of the resulting vector, denoted by su and called a scalar multiple of u, is
the same as that of u if s > 0, and the opposite of that of u if s < 0. If
s = 0, su = 0, the zero vector.

Two vectors that have the same direction are said to be parallel. It
follows from the definition of scalar multiplication that two vectors are par-
allel if and only if one is a scalar multiple of the other. One scalar multiple
of particular importance is the negative of a vector. Given a vector u, its
negative is the vector −u obtained by scaling u by −1. Its direction is the
opposite of that of u, but its magnitude is the same.

Example Figure 2.4 displays a vector u and some examples of scalar mul-
tiples of u, including 2u, −u, and −3u. 2

The negative is used to define the operation of vector subtraction. Given
two vectors u and v, we define u−v to be the sum u+(−v). This operation
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Figure 2.3: (a) The Triangle Law. (b) The Parallelogram Law.

gives us another way of characterizing equivalent vectors: two vectors are
equivalent, or equal, if and only if their difference is the zero vector: u−v = 0
implies u = v.

2.2.2 Components

So far, we have defined vectors, and operations on them, geometrically, in
terms of vectors’ magnitude and direction. However, in many situations, it
is easier to treat vectors algebraically. This requires the introduction of a
coordinate system. In the three-dimensional rectangular coordinate system,
we identify a vector u with a point in R3 by positioning the initial point
of u at the origin, and defining the components of u to be the coordinates
(u1, u2, u3) of its terminal point. To avoid confusing a vector u with the
point (u1, u2, u3), we denote its components by 〈u1, u2, u3〉.

If two vectors are equivalent, then they have the same components. Al-
though they may have different initial points and terminal points, the differ-
ence between the coordinates of the terminal point and those of the initial
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Figure 2.4: A vector u and various scalar multiples.

point are always equal to these components. That is, if a vector v has ini-
tial point P1 = (x1, y1, z1) and terminal point P2 = (x2, y2, z2), then the
components of the vector v are

v = 〈x2 − x1, y2 − y1, z2 − z1〉.

If the initial point is the origin O = (0, 0, 0), we refer to the vector as the
position vector of the terminal point, since the components of the vector are
the same as the coordinates of the terminal point.

Example Let u be a vector with initial point U1 = (0, 0, 0) and terminal
point U2 = (2, 3, 4). Let v be a vector with initial point V1 = (1, 2,−1) and
terminal point V2 = (3, 6, 3). These vectors are equivalent, and both have
components 〈2, 3, 4〉. 2

The magnitude, or length, of a vector v = 〈v1, v2, v3〉, denoted by |v|,
is the distance between its initial and terminal points. It follows from the
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definiton of the vector’s components that

|v| =
√
v2

1 + v2
2 + v2

3.

Example Let v be a vector with initial point P1 = (−3, 4,−1) and terminal
point P2 = (1, 5, 0). Then

|v| =
√

(1− (−3))2 + (5− 4)2 + (0− (−1))2 =
√

18 ≈ 4.24.

2

We have learned what it means to add, scale and subtract vectors, but
only in a geometric sense. It is essential to be able to understand these
operations in terms of the components of vectors.

To that end, let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 be vectors. Then
the components of the sum u + v are given by

u + v = 〈u1 + v1, u2 + v2, u3 + v3〉.

We see that operating on the vectors involves applying the same operation
to corresponding components.

Similarly, given a scalar s, the vector su is given by

su = 〈su1, su2, su3〉.

It follows that
u− v = 〈u1 − v1, u2 − v2, u3 − v3〉.

Example Let u = 〈7,−8, 9〉 and v = 〈−3, 4,−6〉. Then

u + v = 〈7 + (−3),−8 + 4, 9 + (−6)〉 = 〈4,−4, 3〉,

u− v = 〈7− (−3),−8− 4, 9− (−6)〉 = 〈10,−12, 15〉,

2u = 〈2(7), 2(−8), 2(9)〉 = 〈14,−16, 18〉,

and

3u− 2v = 〈3(7)− 2(−3), 3(−8)− 2(4), 3(9)− 2(−6)〉 = 〈27,−30, 39〉.

2

We have defined these operations for vectors in three dimensions, but
they generalize in a natural to way to vectors of any length. We define V3
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to be the set of all vectors in three dimensions, and V2 to be the set of all
vectors in two dimensions.

More generally, we define Vn to be the set of all vectors in n-dimensional
space. Each vector v in Vn is identified with an ordered n-tuple (v1, v2, . . . , vn)
in Rn, where v1, v2, . . . , vn are the components of v. As in the three-
dimensional case, addition of vectors in vn is performed by adding cor-
responding components, and scalar multiplication of vectors is performed
by scaling components.

A set of vectors, together with the operations of addition and scalar
multiplication defines a vector space. A vector space has the following prop-
erties. For any vectors u, v and w, and for any scalars c and d,

1. Commutativity: u + v = v + u

2. Associativity: u + (v + w) = (u + v) + w

3. Additive identity: u + 0 = u

4. Additive inverse: u + (−u) = 0

5. Distributive property: c(u + v) = cu + cv

6. Distributive property: (c+ d)u = cu + du

7. Associativity: (cd)u = c(du)

8. Multiplicative identity: 1u = u

Another essential property of vector spaces is that they are closed under the
operations of vector addition and scalar multiplication. That is, if u and v
are vectors in Vn, and c is a scalar, then u+v and cu are also vectors in Vn.

In V3, three vectors that are of particular importance are the standard
basis vectors

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

Each of these vectors has length 1, and point in the direction of one of the
coordinate axes. They are illustrated in Figure 2.5. In two dimensions, there
are two standard basis vectors:

i = 〈1, 0〉, j = 〈0, 1〉.

In general, Vn has n standard basis vectors, usually denoted by ei, for
i = 1, 2, . . . , n, where the ith component of ei is equal to 1, and all other
components are zero.
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Figure 2.5: The standard basis vectors i, j and k
.

In general, a basis of a vector space V is a set of vectors that has as few
elements as possible, but has the property that every vector in V can be
expressed as a linear combination of members of the basis. That is, every
vector can be obtained from the vectors in the basis using addition and
scalar multiplication. In V3, we have, for any vector v = 〈v1, v2, v3〉,

v = 〈v1, v2, v3〉
= 〈v1, 0, 0〉+ 〈0, v2, 0〉+ v3〈0, 0, v3〉
= v1〈1, 0, 0〉+ v2〈0, 1, 0〉+ v3〈0, 0, 1〉
= v1i + v2j + v3k.

Similarly, for any vector v = 〈v1, v2〉 in V2, we can write

v = v1i + v2j.



100 CHAPTER 2. VECTORS AND THE GEOMETRY OF SPACE

Example Let u = 〈2,−1, 3〉 and v = 〈−4, 5, 0〉. Then we can write

u = 2i− j + 3k, v = −4i + 5j,

and then

u + v = 2i− j + 3k− 4i + 5j = (2− 4)i + (−1 + 5)j + 3k = −2i + 4j + 3k.

2

A vector has both magnitude and direction, but often we are only inter-
ested in the direction of a nonzero vector v. It is helpful to “filter out” the
magnitude by normalizing it so that its magnitude is 1. This is accomplished
by dividing by its magnitude, which yields a unit vector u that has the
same direction of v. Specifically,

u =
1

|v|
v.

Then

|u| =
∣∣∣∣ 1

|v|
v

∣∣∣∣ =
|v|
|v|

= 1.

Example Let v = 〈3,−4, 5〉. Then

|v| =
√

32 + (−4)2 + 52 =
√

50 = 5
√

2,

and the unit vector u with the same direction as v is

u =

√
2

10
〈3,−4, 5〉 =

〈
3
√

2

10
,−2
√

2

5
,

√
2

2

〉
.

2

Example Consider the vector w = 〈2, 4,−3〉. We wish to compute a vector
z that is in the opposite direction of w, and has magnitude 5. First, we
need to identify the magnitude and direction of w. The magnitude is given
by

|w| =
√

22 + 42 + (−3)2 =
√

29.

Then, a unit vector in the same direction of w is

u =

〈
2√
29
,

4√
29
,− 3√

29

〉
.
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It follows that a unit vector in the opposite direction of w is

−u =

〈
− 2√

29
,− 4√

29
,

3√
29

〉
.

We conclude that a vector in the opposite direction of w, with magnitude
5, is

z = −5u = − 5

|w|
w =

〈
− 10√

29
,− 20√

29
,

15√
29

〉
.

2

Example Let v be a vector in the xy-plane with initial point (0, 0), and
magnitude

√
2, that makes an angle of 3π/4 with the positive x-axis. To

find the components of v, we note that these components are equal to the
coordinates of its terminal point, because its initial point is at the origin.
These coordinates are obtained from the magnitude and angle with the
positive x-axis as follows:

v =
√

2

〈
cos

3π

4
, sin

3π

4

〉
=
√

2

〈√
2

2
,

√
2

2

〉
= 〈1, 1〉.

2

Example Suppose that a plane is steered northeast, at an air speed of 400
mph, while the wind is blowing westward at 100 mph. To compute the
ground speed of the plane, which accounts for both the steering and the
wind, we need to add the velocity vectors corresponding to the plane and
the wind. This yields a resultant velocity vector, whose magnitude is the
ground speed.

To perform the addition of the velocity vectors, we need their compo-
nents. For the plane’s vector, the magnitude is 400, and its direction is
identified by an angle of π/4 radians with the positive x-axis, corresponding
to northeast. It follows that the components of this vector are

v = 400
〈

cos
π

4
, sin

π

4

〉
= 400

〈√
2

2
,

√
2

2

〉
= 〈200

√
2, 200

√
2〉.

Similarly, the wind’s velocity vector, which makes an angle of π radians
with the positive x-axis, corresponding to west, is

w = 100〈cosπ, sinπ〉 = 100〈−1, 0〉 = 〈−100, 0〉.
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We now perform the addition to obtain the plane’s true course:

c = v + w = 〈200
√

2, 200
√

2〉+ 〈−100, 0〉 = 〈200
√

2− 100, 200
√

2〉.

To obtain the ground speed, we compute its magnitude, and obtain

|c| =
√

(200
√

2− 100)2 + (200
√

2)2 = 100

√
(2
√

2− 1)2 + (2
√

2)2 = 100

√
17− 4

√
2 ≈ 336.796.

We conclude that the ground speed of the plane is approximately 336.796
mph, which is slower than the plane’s air speed, because the wind is largely
blowing against the direction in which the plane is steered. On the other
hand, if the wind were to blow to the north, the ground speed of the plane
would be faster than its air speed. 2

Example Suppose a box is being pulled along the ground with a force of
50 newtons, applied at an angle of 60◦ from the horizontal. Then, the force
vector F has a magnitude of 50, and a direction

〈cos 60◦, sin 60◦〉 =

〈
1

2
,

√
3

2

〉
.

It follows that F can be written as a sum of horizontal and vertical compo-
nents,

F = 50

〈
1

2
,

√
3

2

〉
= 50

〈
1

2
, 0

〉
+50

〈
0,

√
3

2

〉
= 〈25, 0〉+〈0, 25

√
3〉 = 25i+25

√
3j.

2

2.2.3 Summary

• A vector is a quantity that has both a magnitude and a direction.
It can be represented, geometrically, by an arrow that points in the
vector’s direction, and has a length equal to the vector’s magnitude.
The tip of the arrow is called the vector’s terminal point, and the tail
of the arrow is its initial point.

• The zero vector is a vector whose magnitude is zero. It is the only
vector that has no specific direction.

• Geometrically, the sum of two vectors u and v is the vector u + v
obtained by placing the terminal point of u at the initial point of v,
and defining the sum to be the vector with u’s initial point and v’s
terminal point. This is called the Triangle Law.
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• Vector addition is commutative: u + v = v + u. This is called the
Parallelogram Law.

• Given a number s and vector u, the vector su is a scalar multiple of
u and s is called a scalar. It has the same direction as u, and its
magnitude is s times the magnitude of u.

• The negative of a vector u, denoted by −u, is defined by (−1)u. It
has the opposite direction of u, and the same magnitude.

• The difference of two vectors u and v, denoted by u− v, is defined to
be u + (−v).

• The components u1, u2 and u3 of a vector u = 〈u1, u2, u3〉 are defined
to be the rectangular coordinates of its terminal point (u1, u2, u3),
when its initial point is the origin.

• The magnitude of a vector v = 〈v1, v2, v3〉 is equal to the distance
between its initial point and terminal point, which is

√
v2

1 + v2
2 + v2

3.

• The components of the sum of two vectors are the sums of correspond-
ing components of the two vectors.

• The components of a vector multiplied by a scalar are the components
multiplied by the same scalar.

• The standard basis vectors i, j, and k are vectors of magnitude 1 that
point in the directions of the positive x-, y- and z-axes, respectively.
Any vector in three-dimensional space can be expressed as a linear
combination of these vectors.

• A unit vector is a vector of magnitude 1. A nonzero vector can be
normalized by dividing it by its magnitude, to obtain a unit vector in
the same direction.

2.3 The Dot Product

One of the most fundamental problems concerning vectors is that of com-
puting the angle between two given vectors. It has numerous applications
in mathematics and other sciences. In physics, it plays a role in the de-
composition of forces into component forces that act in various directions.
In computer science, it is useful for creating two-dimensional visualizations
of three-dimensional objects. In computational mathematics, it is a vital
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ingredient in algorithms for data fitting, approximation of functions, and
other essential problems.

Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 be two vectors with a common
initial point. Then u, v and u− v form a triangle, as shown in Figure 2.6.
By the Law of Cosines,

Figure 2.6: By the Triangle Law, the vectors u, v and u−v form a triangle.
The angle between u and v is θ.

|u− v|2 = |u|2 + |v|2 − 2|u||v| cos θ,

where θ is the angle between u and v. Using the formula for the magnitude
of a vector, we obtain

(u1−v1)2+(u2−v2)2+(u3−v3)2 = (u2
1+u2

2+u2
3)+(v2

1+v2
2+v2

3)−2|u||v| cos θ.

Simplifying yields

u1v1 + u2v2 + u3v3 = |u||v| cos θ.
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We therefore define the dot product, also known as the inner product, of
u and v to be the number u · v given by

u · v = u1v1 + u2v2 + u3v3.

An equivalent definition, typically used in physics, is

u · v = |u||v| cos θ,

where θ is the angle between u and v.

Example Let u = 〈1,−1, 2〉 and v = 〈−2, 1, 3〉. Then

u · v = 1(−2) + (−1)(1) + 2(3) = −2− 1 + 6 = 3.

To obtain the angle θ between u and v, we compute

cos θ =
u · v
|u||v|

=
3√

6
√

14
=

3

2
√

21
,

which yields θ ≈ 1.237 radians, or 70.893 degrees. 2

Example Let u and v be vectors such that |u| = 3, |v| = 4, and the angle
between them is π/3 radians, or 60 degrees. Then

u · v = 3(4) cos
π

3
= 12

1

2
= 6.

2

2.3.1 Properties

The dot product has the following properties, which can be proved from the
definition.

1. u · u = |u|2

2. Commutativity: u · v = v · u

3. Distributive property: u · (v + w) = u · v + u ·w

4. (cu) · v = c(u · v) = u · (cv), for any scalar c

5. 0 · u = 0
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Example By the first, second and third properties, the length of a sum of
vectors u + v can be expressed in terms of inner products as follows:

|u + v|2 = (u + v) · (u + v)

= u · u + v · u + u · v + v · v
= |u|2 + 2u · v + |v|2.

2

2.3.2 Orthogonality

Suppose that two nonzero vectors u and v have an angle between them that
is θ = π/2. That is, u and v are perpendicular, or orthogonal. Then, we
have

u · v = |u||v| cos
π

2
= 0.

On the other hand, if u · v = 0, then we must have cos θ = 0, where θ is the
angle between them, which implies that θ = π/2, and therefore u and v are
orthogonal. In summary, u · v = 0 if and only if u and v are orthogonal.

Example Let u = 〈α, β〉 be any nonzero vector in V2. Then a vector that
has the same length as u, and is orthogonal to u is v = 〈β,−α〉. To verify
this, we compute

u · v = 〈α, β〉 · 〈β,−α〉 = αβ + β(−α) = 0.

By the fourth property of the dot product, w = 〈−β, α〉 also satisfies |w| =
|u|, and is orthogonal to u. 2

2.3.3 Projections

When a three-dimensional object is to be displayed on a two-dimensional
surface, it is necessary to determine where each point in the object appears
within that surface. When a force is applied to an object from a partic-
ular direction, for example to push the object along a horizontal surface,
it is helpful to decompose the force into component forces that each act
from orthogonal directions, such as vertical, corresponding to gravity, and
horizontal, corresponding to the direction of displacement.

These are examples of applications in which it is necessary to project a
given vector u = 〈u1, u2, u3〉 onto another vector v = 〈v1, v2, v3〉. Projection
requires solving this problem: what vector, in the direction of v, is the best
approximation of u?
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In other words, we wish to find the vector w = cv, where c is an unknown
scalar, that minimizes |u − w|, the distance between u and w. Using the
propeties of the dot product, we obtain

|u−w|2 = (u− cv) · (u− cv)

= |u|2 − 2cv · u + c2|v|2.

Differentiating with respect to c, we obtain the equation

−2v · u + 2c|v|2 = 0.

It follows that w = cv is the best approximation to u if

c =
v · u
|v|2

.

We therefore define the vector projection of u onto v by

w = projvu = cv =
v · u
|v|2

v.

This projection can also be written as

projvu =
v · u
|v|

v

|v|
= (q · u)q = (compvu)q

where
q =

v

|v|
is the unit vector in the direction of v, and

compvu = q · u =
v · u
|v|

is called the scalar projection of u onto v. Note that the absolute value of
the scalar projection is also the magnitude of the vector projection.

The scalar projection can also be written as

compvu = q · u = |q||u| cos θ = |u| cos θ,

where θ is the angle between u and v, which is also the angle between u
and q. Furthermore, since the vector projection of u onto v is the best
approximation of u by a vector in the direction of v, the “error” in this
approximation is orthogonal to v. That is,

v · (u− projvu) = v · u− v · u
|v|2

v · v = v · u− v · u = 0,
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by the properties of the dot product.

Example Let u = 〈2, 4〉 and v = 〈1, 1〉. Then the unit vector in the direction
of v is

q =
〈1, 1〉√

2
=

〈
1√
2
,

1√
2

〉
.

It follows that

compvu = q · u =

〈
1√
2
,

1√
2

〉
· 〈2, 4〉 =

6√
2

= 3
√

2,

and

projvu = (compvu)q = 3
√

2

〈
1√
2
,

1√
2

〉
= 〈3, 3〉 .

This projection is shown in Figure 2.7. 2

Example Let u = 〈3, 4, 5〉 and v = 〈1, 1, 1〉. Then the unit vector in the
direction of v is

q =
〈1, 1, 1〉√

3
=

〈
1√
3
,

1√
3
,

1√
3

〉
.

It follows that

compvu = q · u =

〈
1√
3
,

1√
3
,

1√
3

〉
· 〈3, 4, 5〉 =

12√
3

= 4
√

3,

and

projvu = (compvu)q = 4
√

3

〈
1√
3
,

1√
3
,

1√
3

〉
= 〈4, 4, 4〉.

This projection is shown in Figure 2.8. 2

Example Suppose that a box is pulled 10 m along the ground by a constant
force of 50 N that is applied at an angle of 30◦ above the horizontal. Then,
the horizontal force can be obtained by computing the vector projection
of the force vector F = 50〈cos 30◦, sin 30◦〉 onto the displacement vector
D = 10〈1, 0〉:

compDF =
50
〈√

3
2 ,

1
2

〉
· 10〈1, 0〉

|10〈1, 0〉|
= 25

√
3,

projDF = compDF
D

|D|
= 25

√
3

10〈1, 0〉
|10〈1, 0〉

= 25
√

3〈1, 0〉.

Since the displacement vector and the horizontal force vector have the
same direction, it follows that the total work done, which is defined to be
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the product of force and distance when the force is applied in the direction
of displacement, is equal to the product of the magnitudes of the horizontal
force and displacement vectors, which is

W = |projDF||D| = (25
√

3)(10) = 250
√

3.

More generally, the amount of work done by a force F to displace an object
along the displacement vector D is given by

W = (projDF) ·D =
(F ·D)D

|D|2
·D =

(F ·D)(D ·D)

D ·D
= F ·D.

This is a natural generalization of the basic formula for work, W = FD,
where F is the amount of force applied to the object along the direction of
displacement, and D is the distance that the object is moved. 2

2.3.4 Summary

• The dot product, or inner product, of two vectors, is the sum of the
products of corresponding components. Equivalently, it is the product
of their magnitudes, times the cosine of the angle between them.

• The dot product of a vector with itself is the square of its magnitude.

• The dot product of two vectors is commutative; that is, the order of
the vectors in the product does not matter.

• Multiplying a vector by a constant multiplies its dot product with any
other vector by the same constant.

• The dot product of a vector with the zero vector is zero.

• Two nonzero vectors are perpendicular, or orthogonal, if and only if
their dot product is equal to zero.

• The scalar projection of a vector u onto a vector v is q ·u, where q is
the unit vector in the direction of v.

• The vector projection of u onto v is the scalar projection of u onto v
times q, where q is the unit vector in the direction of v.

• The vector projection of u onto v is the best approximation of u in
the direction of v, in the sense that the difference between u and its
vector projection onto v is orthogonal to v.
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• The work done by a force that is applied at an angle to the displace-
ment vector can be computed by projecting the force vector onto the
displacement vector, and then multiplying the magnitudes of the force
and displacement vectors.

2.4 The Cross Product

In three-dimensional space, or xyz-space, the set of solutions of an equation
in x, y and z defines a surface. When the equation is linear, such as

y = 3, x = y, or 2x+ 3y − z = 0,

the solutions define a plane. On the other hand, a plane can also be defined
in terms of any two vectors contained with in it. For example, the xy-plane
is the set of all displacement vectors of the form v = xi + yj, where x and y
are real numbers. That is, any vector in the xy-plane is a linear combination
of i and j.

This definition of a plane, however, does not readily lend itself to an
equation that characterizes it. To obtain such an equation, it is helpful to
note that a plane can be viewed as the set of all vectors that are orthogonal
to a particular direction. Therefore, given two vectors u = 〈u1, u2, u3〉 and
v = 〈v1, v2, v3〉 that define a plane, we need to be able to compute a vector
w = 〈w1, w2, w3〉 that is orthogonal to both of them. Then, by the properties
of the dot product, any vector z = cu+dv, which is contained in this plane,
satisfies

w · z = w · (cu + dv) = cw · u + dw · v = 0,

so w is orthogonal to the entire plane.

To compute w, we note that because u ·w and v ·w = 0, its components
satisfy the equations

u1w1 + u2w2 + u3w3 = 0,

v1w1 + v2w2 + v3w3 = 0.

For simplicity, we assume u1 6= 0. To eliminate w1 from the second equation,
we subtract v1/u1 times the first equation from the second to obtain

u1w1 + u2w2 + u3w3 = 0,(
v2 −

v1

u1
u2

)
w2 +

(
v3 −

v1

u1
u3

)
w3 = 0.
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Multiplying the second equation by u1 yields

u1w1 + u2w2 + u3w3 = 0,

(u1v2 − u2v1)w2 + (u1v3 − u3v1)w3 = 0.

By viewing the second equation as a dot product being equal to zero, and
Using the fact that the vector 〈−β, α〉 is orthogonal to the vector 〈α, β〉, we
obtain

w2 = u3v1 − u1v3, w3 = u1v2 − u2v1.

Substituting these values into the first equation yields

w1 = −u2

u1
(u3v1 − u1v3)− u3

u1
(u1v2 − u2v1) = u2v3 − u3v2.

We conclude that the vector

w = 〈u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1〉

is orthogonal to both u and v. We define w to be the cross product of u
and v, and write

w = u× v.

We note that the above system of equations has infinitely many solutions.
We have chosen the particular solution denoted by w because its components
can be computed without having to divide by any of the components of u
and v, thus avoiding any requirement that any of these components be
nonzero. This condition uniquely determines the magnitude of w, but not
its direction; this ambiguity will be resolved shortly.

Example Let u = 〈2,−1, 1〉 and v = 〈1, 2, 1〉. Then

u× v = 〈(−1)1− 2(1), 1(1)− 2(1), 2(2)− (−1)(1)〉 = 〈−3,−1, 5〉.

The vectors u, v and u× v are shown in Figure 2.9. 2

Example Consider the plane that contains the three points P1 = (1, 1, 0),
P2 = (−1, 3, 1), and P3 = (−1,−1,−1). We wish to compute the vector
w that is orthogonal to all vectors contained in this plane. This can be
accomplished by computing vectors u and v with initial and terminal points
taken from the three points P1, P2, and P3.

Specifically, we define

u = ~P1P2 = 〈−1− 1, 3− 1, 1− 0〉 = 〈−2, 2, 1〉,
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v = ~P1P3 = 〈−1− 1,−1− 1,−1− 0〉 = 〈−2,−2,−1〉.

Then, we have

w = u× v

= 〈−2, 2, 1〉 × 〈−2,−2,−1〉
= 〈2(−1)− 1(−2), 1(−2)− (−2)(−1),−2(−2)− 2(−2)〉
= 〈0,−4, 8〉.

These vectors are shown in Figure 2.10. 2

Another way to derive the cross product is in terms of the determinant
of the matrix

A =

 i j k
u1 u2 u3

v1 v2 v3

 ,
where, as before, i, j and k are the standard basis vectors. We have

w = u× v = det(A).

This definition follows from Cramer’s rule, which expresses the solution to
a system of linear equations in terms of determinants.

We now compute the magnitude of the cross product. We have

|w|2 = w2
1 + w2

2 + w2
3

= (u2v3 − u3v2)2 + (u3v1 − u1v3)2 + (u1v2 − u2v1)2

= u2
2v

2
3 − 2u2u3v2v3 + u2

3v
2
2 + u2

3v
2
1 − 2u1u3v1v3 + u2

1v
2
3 + u2

1v
2
2 − 2u1u2v1v2 + u2

2v
2
1

= u2
2v

2
3 − 2u2u3v2v3 + u2

3v
2
2 + u2

3v
2
1 − 2u1u3v1v3 + u2

1v
2
3 + u2

1v
2
2 − 2u1u2v1v2 + u2

2v
2
1 +

(u2
1v

2
1 + u2

2v
2
2 + u2

3v
2
3)− (u2

1v
2
1 + u2

2v
2
2 + u2

3v
2
3)

= (u2
1 + u2

2 + u2
3)(v2

1 + v2
2 + v2

3)−
(2u2v2u3v3 + 2u1v1u3v3 + 2u1v1u2v2 + u2

1v
2
1 + u2

2v
2
2 + u2

3v
2
3)

= |u|2|v|2 − (u · v)2

= |u|2|v|2 − |u|2|v|2 cos2 θ

= |u|2|v|2(1− cos2 θ)

= |u|2|v|2 sin2 θ.

where θ is the angle between u and v, with 0 ≤ θ ≤ π. We conclude

|u× v| = |u||v| sin θ.
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The direction of u × v is not uniquely determined by the fact that it
is orthogonal to both u and v, for its negative also has this property. The
proper direction is determined by the right-hand rule. This rule states that
if the fingers of the right hand are curled in the direction of rotation from
u to v, through an angle less than 180◦, then the thumb is pointing in the
direction of u× v.

2.4.1 Parallel Vectors

We have learned that the Cross Product can be used to compute a vector w
in V3 that is orthogonal to two given vectors u and v that, together, define
a plane in xyz-space. However, two given vectors do not necessarily define a
plane; it is required that they not be parallel. If u and v are parallel, then,
by the definition of the cross product, we obtain

w = u× v = 0.

This is consistent with the fact that |u × v| = |u||v| sin θ, where θ is the
angle between u and v. If u and v are parallel, then this angle is either 0 or
π radians, and in either case, the sine of that angle is zero.

Example The vectors u = 〈2, 1, 2〉 and v = 〈−4,−2,−4〉 are parallel, as
v = −2u. That is, v has twice the magnitude of u, and the opposite
direction. It follows that u× v = 0. 2

2.4.2 Properties

The following properties are useful for performing complex vector operations
that involve the cross product.

1. Anticommutativity: v × u = −(u× v)

2. Scalar multiplication: (cu)× v = u× (cv)

3. Distribution over addition: w×(u+v) = w×u+w×v, (u+v)×w =
u×w + v ×w.

4. w · (u× v) = (w × u) · v
5. w × (u× v) = (w · v)u− (w · u)v

2.4.3 Areas

The magnitude of the cross product has useful geometric applications. Con-
sider a parallelogram with vectors u and v as adjacent sides, such that the
angle θ between them, that is internal to the parallelogram, is not more than
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90 degrees. The area of this parallelogram is the product of the lengths of
its base and its height. If we choose u to be its base, then, by right triangle
trigonometry, its height is given by |v| sin θ, where sin θ > 0 due to the fact
that 0 < θ < 90◦.

It follows that the area A of the parallelogram is

A = |u||v| sin θ = |u× v|.

That is, the magnitude of the cross product of u and v yields the area of a
parallelogram with adjacent sides u and v. We have assumed that the angle
between them is no more than 90 degrees, but if this is not the case, we can
obtain the same result by instead defining the parallelogram in terms of −u
and v, in view of the fact that | − u| = |u|.

This same formula can be used to compute the area of a triangle with
adjacent sides defined by u and v. The area A of such a triangle is given by

A =
1

2
|u× v|,

since a parallelogram consists of two triangles of equal area that share a
side.

Example We will compute the area of the triangle whose vertices are the
points P1 = (1, 1, 0), P2 = (3, 0, 4) and P3 = (0, 5, 2). This triangle is half of
a parallelogram with adjacent sides

u = ~P1P2 = 〈2,−1, 4〉, v = ~P1P3 = 〈−1, 4, 2〉.

The area of this parallelogram is

|u×v| = |〈−1(2)−4(4), 4(−1)−2(2), 2(4)−(−1)(−1)〉| = |〈−18,−8, 7〉| =
√

437 ≈ 23.345.

Therefore, the area of the triangle is
√

545/2 ≈ 10.452.
Alternatively, we can compute the angle θ between u and v, using the

dot product:

cos θ =
u · v
|u||v|

=
1√

26
√

21
=

1√
546

.

This yields θ = cos−1(1/
√

546) ≈ 1.528 radians, or 87.547◦. Then, we
compute

|u×v| = |u||v| sin θ =
√

21
√

26
√

1− cos2 θ =
√

546

√
1− 1

546
=
√

546

√
545

546
=
√

545,

where we have used the identity cos2 θ + sin2 θ = 1. 2
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2.4.4 Volumes

The cross product and dot product can be used together to compute the
volume of a parallelepiped. Let u, v and w be three vectors that do not lie
within the same plane. Then, they define three sides of a parallelepiped, in
which any two of them define a parallelogram that serves as one of its six
faces.

The volume of the parallelepiped is the area of the base parallelogram
times the height. Let the parallelogram defined by u and v be the base.
We know that its area is |u × v|. To obtain the height, we first note that
the height must be measured along a direction that is perpendicular to the
base; that is, it should be in the direction of z or −z.

Then, by right-triangle trigonometry, the height is |w|| cos θ|, where θ is
the angle between w and z. It follows that the volume V of the parallelepiped
is

V = |z||w|| cos θ| = |w · z| = |w · (u× v)|.

We refer to this combination of the dot and cross products as the triple
product of u, v and w.

Example Consider the parallelepiped, shown in Figure 2.11, defined by the
vectors

u = 〈3, 1, 1〉, v = 〈1, 5, 1〉, w = 〈0, 1, 2〉.

To compute its volume, we define the base to be the parallelogram with
edges u and v. Then, we compute

z = u× v = 〈1(1)− 1(5), 1(1)− 3(1), 3(5)− 1(1)〉 = 〈−4,−2, 14〉.

Finally, we obtain the volume by the triple product

|w · (u× v)| = |w · z| = |〈0, 1, 2〉 · 〈−4,−2, 14〉| = 26.

2

2.4.5 Summary

• The cross product of two nonzero vectors u and v is a vector w = u×v
that is orthogonal to both u and v.

• The magnitude of u× v is |u||v| sin θ, where θ is the angle between u
and v, with 0 ≤ θ ≤ π.
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• The direction of u× v is determined by the direction of the thumb of
the right hand, when the fingers are rotated from u to v through the
angle θ between u and v, with 0 ≤ θ ≤ π.

• A vector that is orthogonal to all vectors in a given plane can be
computed from any three points in the plane by first subtracting the
coordinates of the points to obtain two vectors in the plane, and then
computing their cross product.

• The cross product of two parallel vectors is the zero vector.

• The magnitude of the cross product of two vectors is the area of a
parallelogram with the two vectors defining adjacent sides.

• The triple product of three vectors u, v and w, given by |w · (u×v)|,
is the volume of the parallelepiped defined by u, v and w.

2.5 Equations of Lines and Planes

2.5.1 Equations of Lines

A line can be viewed, conceptually, as the set of all points in space that
satisfy two criteria:

1. They contain a particular point, which we identify by a position vector
r0.

2. The vector between r0 and any position vector r on the line is parallel
to a given vector v.

The vector with initial point r0 and terminal point r is given by s = r− r0.
This vector must be parallel to v, which implies that s = tv for some scalar
t. It follows that any position vector r, corresponding to a point P on the
line with coordinates equal to the components of r, has the form

r = r0 + tv,

where t is a scalar that is called a parameter. The parameter t is allowed to
assume any value, so that any point P on the line can be obtained from this
equation, which is called the vector equation of the line. Such an equation
is illustrated in Figure 2.12.

Let r = 〈x, y, z〉 be the position vector of any point P = (x, y, z) on
a line, and let r0 = 〈x0, y0, z0〉 be the position vector of a particular point
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P0 = (x0, y0, z0) on the line. Furthermore, let v = 〈a, b, c〉 be the vector that
indicates the direction of the line. By writing the vector equation of the line
in terms of components, we obtain the parametric equations of the line,

x = x0 + at, y = y0 + bt, z = z0 + ct.

The components a, b and c of v are called the direction numbers of the line.

Example Let r0 = 〈1, 2, 0〉 and v = 〈1,−3, 2〉. Then the vector equation of
the line containing r0 and parallel to v is

r = 〈1, 2, 0〉+ t〈1,−3, 2〉 = 〈1 + t, 2− 3t, 2t〉.

The corresponding parametric equations are

x = 1 + t, y = 2− 3t, z = 2t.

The direction numbers of the line are 1, −3 and 2. 2

The direction numbers can be used to describe the line using equations
that do not require the parameter t. If all of the direction numbers are
nonzero, we can solve each of the parametric equations for t. This yields
three expressions for t that can be equated, resulting in the symmetric equa-
tions

x− x0

a
=
y − y0

b
=
z − z0

c
.

If any of the direction numbers are equal to zero, then t can still be elimi-
nated using those parametric equations with nonzero direction numbers.

Example To obtain the symmetric equations of the line from the previous
example, we solve each of the parametric equations and obtain

t = x− 1, t =
y − 2

−3
, t =

z

2
.

Setting the three expressions for t equal to each other yields the symmetric
equations

x− 1

1
=
y − 2

−3
=
z

2
.

On the other hand, the symmetric equations for the line whose parametric
equations are

x = 2t+ 3, y = −1, z = −4t+ 5,

and whose direction numbers are 2, 0 and −4, are

x− 3

2
=
z − 5

−4
, y = −1.
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2

Example Consider the line with parametric equations

x = 7t− 6, y = −3t+ 4, z = 2t+ 9.

To determine the point at which this line intersects the xy-plane, we note
that this plane consists of all points (x, y, z) in space such that z = 0. We
therefore set z = 0 in the third parametric equation to obtain the equation
0 = 2t+9, which we then solve for t to obtain t = −9/2. We then substitute
t = −9/2 into the parametric equations for x and y to obtain the intersection
point

x = 7

(
−9

2

)
− 6 = −75

2
, y = −3

(
−9

2

)
+ 4 =

35

2
, z = 0.

2

The vector equation of a line can also be used to describe a (finite)
line segment, as opposed to an entire line, which extends infinitely in both
directions. Let r0 be the initial point of the line segment, and r1 be the
terminal point. Then, let v = r1 − r0. It follows that

r = r0 + tv, 0 ≤ t ≤ 1,

describes a point on the line segment. When t = 0, we have r = r0, whereas
when t = 1, r = r0 + (r1 − r0) = r1. When 0 < t < 1, r is the position
vector of a point P in the interior of the segment. Using the definition of v,
the equation of the line segment becomes

r = (1− t)r0 + tr1, 0 ≤ t ≤ 1.

Given any two lines in space, there are three ways in which they can
interact:

• They can intersect at a point P . To determine if this is the case, we can
equate the formulas for corresponding components (x, y, and z) and
try to find a set of parameter values, one for each line, that satisfies all
of the resulting equations. If this is the case, then the lines intersect
at a point whose coordinates can be obtained by substituting one of
these parameter values into the appropriate parametric equations.

• They can be parallel. This is the case if and only if the vectors that
describe the directions of the lines are parallel. That is, these vectors
must be (nonzero) scalar multiples of one another.
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• They are skew. This is the case if the lines do not intersect, and are
not parallel. Intuitively, one example of skew lines are lines that are
contained in parallel planes, but have different direction numbers.

Example Consider the lines with parametric equations

x = 3t− 4, y = 2t+ 6, z = −t+ 10,

x = 5s+ 2, y = 3s− 1, z = −2s+ 7.

We use different letters for the parameters of the two lines, because they are
independent of one another. To compute the intersection point, if it exists,
we set the two expressions for x equal to each other to obtain the equation

3t− 4 = 5s+ 2.

Similarly, we set the expressions for y and z equal to one another to obtain
the additional equations

2t+ 6 = 3s− 1, −t+ 10 = −2s− 3.

We must find values of s and t that satisfy all three equations. To
do this, we consider the first two equations. Solving the second equation,
2t+ 6 = 3s− 1, for t yields

t =
3s

2
− 7

2
.

Substituting this expression for t into the first equation, and solving for s,
yields s = −33. Substituting this value of s in the above expression for t
yields t = −53.

We then substitute both of these values into the third equation, and find
that it is not satisfied, as we obtain the falsehood −13 = −3. Therefore,
the lines are skew. If the parameter values s = −33 and t = −53, obtained
from the first two equations, had satisfied the third equation, then the lines
would have intersected. In that case, the value of t could be substituted into
the equations for the first line to obtain the coordinates of the intersection
point. 2

Example The lines whose parametric equations are

x = 3t− 4, y = 2t+ 6, z = −t+ 10,

x = 6t+ 2, y = 4s− 1, z = −2s+ 7,
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are parallel. To see this, we note that the first line has direction numbers
3, 2 and −1, while the second line has direction numbers 6, 4 and −2. The
direction numbers of the second line are twice those of the first. Because all
of the ratios of corresponding direction numbers are the same, the lines are
parallel. 2

2.5.2 Systems of Linear Equations

The process of determining whether two non-parallel lines are intersect, or
whether they are skew, entails solving a system of three linear equations
for two unknowns, which are the parameters from the equations of the two
lines. Therefore, it is helpful to examine such systems of equations and learn
about techniques for solving them.

First, we consider a system of only two linear equations, with two un-
knowns s and t:

as+ bt = u,

cs+ dt = v.

The numbers a, b, c and d are called the coefficients of the system, and the
numbers u and v are the right-hand side values, since, by convention, the
coefficients and unknowns are normally written on the left-hand side of the
equal sign.

We now attempt to solve this system for s and t. We assume that
a 6= 0, for otherwise, we can interchange the equations, provided that c 6= 0.
The case of a = c = 0 will be discussed later. We then multiply the first
equation by c/a, and subtract it from the second equation to obtain the
modified system

as+ bt = u,(
c− c

a
a
)
s+

(
d− c

a
b
)
t = v − c

a
u.

Multiplying the second equation by a yields

as+ bt = u,

(ad− bc)t = av − cu.

If ad−bc 6= 0, then the solution of the system can be obtained by solving the
second equation for t, and then substituting this value into the first equation
to solve for s. This yields

t =
av − cu
ad− bc

, s =
u− bt
a

=
u(ad− bc)− b(av − cu)

a(ad− bc)
=
du− bv
ad− bc

.
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We see that if ad − bc 6= 0, then the system of equations has a unique
solution. However, what if ad − bc = 0? In that case, the second equation
becomes 0 = av − cu. This leads to two possibilities:

• If av−cu 6= 0, then the second equation is a contradiction, because the
left side is zero while the right side is nonzero. It follows that there is
no solution to the system of equations, and we say that the equations
are inconsistent.

• If av − cu = 0, then the second equation is the identity 0 = 0. That
is, it is satisfied regardless of the values of s and t. These unknowns
are only constrained by the first equation as+ bt = u, which actually
has infinitely many solutions, because for any value of t, we can solve
for s and obtain s = (u− bt)/a.

To this point, we have assumed that either a or c is nonzero. If both
are zero, then we have similar outcomes, for then the system of equations
reduces to

bt = u,

dt = v.

Each equation can easily be solved for t to obtain t = u/b or t = v/d,
assuming that b and d are nonzero. If the two values of t are equal, then
the system has infinitely many solutions, because s can assume any value.
Otherwise, the system is inconsistent, and there is no solution.

Now, suppose that b = 0 in the above system. If u = 0, then the first
equation reduces to the identity 0 = 0, and the second equation can be used
to determine t, assuming that d 6= 0. However, if u 6= 0, then we obtain the
contradiction 0 = u for some nonzero u, and therefore the system has no
solution. The only scenario that remains is if a, b, c and d are all zero. If
both u and v are zero, then any value of s and t satisfies this trivial system;
otherwise, one or both equations is a contradiction.

To summarize, there are three possible outcomes of a system of two
equations and two unknowns:

• There is a unique solution for s and t, which is the case if and only if
ad− bc 6= 0.

• There are infinitely many solutions.

• There is no solution.
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It is interesting to note that if we write the system in matrix-vector form

As = u,

where

A =

[
a b
c d

]
, s =

[
s
t

]
, u =

[
u
v

]
,

then the determinant of the matrix A is given by

det(A) = ad− bc.

That is, the system of equations has a unique solution if and only if the
determinant of its coefficient matrix is nonzero, which is also true for systems
of n equations and n unknowns, for any positive integer n. Furthermore, we
can express the previously stated formulas for the solutions s and t as

s =
1

ad− bc

[
du− bv
av − cu

]
=

1

ad− bc

[
d −b
−c a

] [
u
v

]
= A−1u,

where A−1 is the inverse of A. This is the generalization of the reciprocal
of a nonzero number to a matrix with nonzero determinant, which is said
to be invertible.

When computing the intersection point of two lines in three-dimensional
space, if one exists, we need to solve three equations with only two unknowns.
Generally, such systems are inconsistent, which is interpreted as the lines
being skew. However, to be sure, we can use the following procedure:

1. Attempt to compute the solution of the system of the first two equa-
tions, corresponding to the x- and y-coordinates.

2. If the first two equations have a unique solution (that is, ad− bc 6= 0),
then substitute the computed values of s and t into the third equation.
If the equation is satisfied, then the lines intersect; otherwise, they are
skew.

3. If the first two equations are inconsistent (that is, av − cu 6= 0), then
the lines are skew.

4. If the first two equations have infinitely many solutions, then the lines
are guaranteed to intersect. The simplest course of action is to return
to step 1 and repeat the process with a different set of two equations
chosen from the original system of three. Because the lines are not
parallel, the new system is guaranteed to have a unique solution, and
there is no need to verify the solution by substituting the computed
values of s and t into the remaining equation.
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We now illustrate this procedure with some examples.

Example Consider the lines with parametric equations

x = 2s+ 3, y = 4s+ 3, z = s+ 1,

x = 4t+ 5, y = 5t+ 6, z = 2t+ 9.

These lines are not parallel, because the direction numbers are not all pro-
portional. To determine whether they intersect, we set the expressions for
the x- and y-coordinates equal to one another:

2s+ 3 = 4t+ 5, 4s+ 3 = 5t+ 6,

to obtain the system of equations

2s− 4t = 2,

4s− 5t = 3.

In the notation of the general system of two equations discussed previously,
a = 2, b = −4, c = 4, d = −5, u = 2, and v = 3. We have

ad− bc = 2(−5)− (−4)(4) = −10− (−16) = 6 6= 0,

so this system has a unique solution. Using the formulas for s and t above,
we obtain

s =
du− bv
ad− bc

=
(−5)(2)− (−4)(3)

6
=

1

3
, t =

av − cu
ad− bc

=
2(3)− 4(2)

6
= −1

3
.

Substituting these values into the equation for the z-coordinate, which is
s− 2t = 8, we obtain

1

3
− 2

(
−1

3

)
=

1

3
+

2

3
= 1 6= 8,

so the equation is not satisfied. We conclude that the lines are skew. 2

Example Consider the lines with parametric equations

x = 2s+ 3, y = 3s+ 4, z = 4s+ 3,

x = 4t+ 5, y = 6t+ 7, z = 5t+ 9.
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These lines are not parallel, because the direction numbers are not all pro-
portional. To determine whether they intersect, we set the expressions for
the x- and y-coordinates equal to one another:

2s+ 3 = 4t+ 5, 3s+ 4 = 6t+ 7,

to obtain the system of equations

2s− 4t = 2,

3s− 6t = 3.

In the notation of the general system of two equations discussed previously,
a = 2, b = −4, c = 3, d = −6, u = 2, and v = 3. We have

ad− bc = 2(−6)− (−4)(3) = −12− (−12) = 0,

so this system does not have a unique solution. However, we also have

av − cu = 2(3)− 3(2) = 0,

so the system actually has infinitely many solutions. Therefore, we instead
work with the equations for the x- and z-coordinates, which yields the new
system

2s− 4t = 2,

4s− 5t = 6.

In this system, a = 2, b = −4, c = 4, d = −5, u = 2 and v = 6. We have

ad− bc = 2(−5)− (−4)(4) = −10− (−16) = 6 6= 0,

so this system has a unique solution. Using the formulas for s and t above,
we obtain

s =
du− bv
ad− bc

=
(−5)(2)− (−4)(6)

6
=

7

3
, t =

av − cu
ad− bc

=
2(6)− 4(2)

6
=

2

3
.

We conclude that the lines intersect when s = 7/3 and t = 2/3. Substituting
s = 7/3 into the equation for the first line, we obtain the coordinates of the
intersection point,

x = 2
7

3
+ 3 =

23

3
, y = 3

7

3
+ 4 = 11, z = 4

7

3
+ 3 =

37

3
.

2
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Example Consider the lines with parametric equations

x = 2s+ 3, y = s+ 1, z = 4s+ 3,

x = 4t+ 5, y = 2t+ 9, z = 5t+ 6.

These lines are not parallel, because the direction numbers are not all pro-
portional.

To determine whether they intersect, we set the expressions for the x-
and y-coordinates equal to one another:

2s+ 3 = 4t+ 5, s+ 1 = 2t+ 9,

to obtain the system of equations

2s− 4t = 2,

s− 2t = 8.

We see that the coefficients in the equations are proprtional. That is, the
coefficients in the first equation are double of the corresponding coefficients
of the second.

However, the quantities on the right-hand side of the equations do not
have the same ratio. Therefore, these equations are inconsistent, meaning
that they do not have a solution. We immediately conclude that the lines
are skew. 2

Example Consider the lines with parametric equations

x = 2s+ 3, y = 3s+ 4, z = 4s+ 3,

x = 4t+ 5, y = 6t+ 7, z = 5t+ 9.

These lines are not parallel, because the direction numbers are not all pro-
portional.

To determine whether they intersect, we set the expressions for the x-
and y-coordinates equal to one another:

2s+ 3 = 4t+ 5, 3s+ 4 = 6t+ 7,

to obtain the system of equations

2s− 4t = 2,

3s− 6t = 3.
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The coefficients, and right-hand side quantities, of these equations are all
proportional. That is, we can obtain the second equation by multiplying the
first by 3/2. In other words, these equations are dependent on one another,
and therefore do not have a unique solution. In fact, they have infinitely
many solutions.

We instead work with the equations for the x- and z-coordinates, which
yields the new system

2s− 4t = 2,

4s− 5t = 6.

These equations are guaranteed to be independent, and thus have a unique
solution, since the lines are already known to not be parallel.

By doubling the first equation, which yields 4s−8t = 4, and subtracting
it from the second, we obtain 3t = 2, and therefore t = 2/3. Substituting
this value into the first equation yields the equation 2s− 4(2/3) = 2, which
has the solution s = 7/3.

We conclude that the lines intersect when s = 7/3 and t = 2/3. Substi-
tuting s = 7/3 into the equation for the first line, we obtain the coordinates
of the intersection point,

x = 2
7

3
+ 3 =

23

3
, y = 3

7

3
+ 4 = 11, z = 4

7

3
+ 3 =

37

3
.

2

2.5.3 Equations of Planes

Previously, we learned how to describe lines using various types of equations.
Now, we will do the same with planes. Suppose that we are given three points
r0, r1 and r2 that are not co-linear. Then, these points define a plane, and
the vectors v1 = r1 − r0 and v2 = r2 − r0 are vectors contained within the
plane, that are also not parallel to one another.

A plane consists of all vectors that are orthogonal to a given direction
n, which is said to be normal to the plane, and passes through a given point
r0. The normal vector n can be obtained by computing

n = v1 × v2.

Let r be any point in the plane. Then the vector u = r − r0 is orthogonal
to n. That is,

n · u = n · (r− r0) = 0.
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This equation is called the vector equation of the plane.

If we write

n = 〈a, b, c〉, r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉,

then the vector equation can be rewritten as

ax+ by + cz + d = 0,

where d = −n · r0 = −(ax0 + by0 + cz0). This is a linear equation in the
unknowns x, y, and z.

Example Consider the plane containing the points P0 = (1, 4, 1), P1 =
(5, 1,−1) and P2 = (4, 4, 4), which we identify with the position vectors

r0 = 〈1, 4, 1〉, r1 = 〈5, 1,−1〉, r2 = 〈4, 4, 4〉.

We wish to find a linear equation that describes this plane. First, we need
to compute a vector n that is normal to the plane, which can be obtained
by computing the cross product of two vectors v1 and v2 that are contained
within the plane. We have

n = v1 × v2

= (r1 − r0)× (r2 − r0)

= 〈4,−3,−2〉 × 〈3, 0, 3〉
= 〈−3(3)− (−2)0,−2(3)− 4(3), 4(0)− (−3)(3)〉
= 〈−9,−18, 9〉.

It follows that the vector equation of the plane is

n · (r− r0) = 〈−9,−18, 9〉 · (〈x, y, z〉 − 〈1, 4, 1〉 = 0,

which can also be written as

−9x− 18y + 9z + 72 = 0,

since

n · r0 = −72.

2
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2.5.4 Intersecting Planes

The angle between planes is defined to be the angle between their normal
vectors. If this angle is either 0 or π, then the normal vectors are parallel,
and we say that the planes are parallel. Otherwise, the planes intersect, and
this intersection is a line.

To determine the line formed by this intersection, we need to solve the
system of equations consisting of the equations of the two planes. Because
this system of equations has three unknowns, but there are only two equa-
tions, there will be infinitely many points that satisfy the system, and the
set of all such solutions constitutes a line.

Let the equations of two planes be given by

a1x+ b1y + c1z + d1 = 0, a2x+ b2y + c2z + d2 = 0,

and let the corresponding normal vectors be

n1 = 〈a1, b1, c1〉, n2 = 〈a2, b2, c2〉.

To solve this system of equations, we first check whether the equations are
independent if we were to set z = 0. That is, we must check whether

a1b2 − b1a2 = 0,

or, equivalently, whether a1 and b1 are proportional to a2 and b2. If they are
not proportional, then we can set z = 0 to obtain the system of equations

a1x+ b1y = −d1,

a2x+ b2y = −d2,

which is now guaranteed to have a unique solution. This gives us a point on
the line that is common to both planes. If a1b2 − b1a2 = 0, then we cannot
necessarily substitute z = 0, for the resulting system of equations might be
inconsistent. Instead, we can set y = 0, in which case the resulting system
of equations, for the unknowns x and z, will have a unique solution.

To determine the direction of the line of intersection, we note that any
vector in a plane is orthogonal to its normal vector. Because this line belongs
to both planes, a vector in the direction of the line is orthogonal to both
normal vectors n1 and n2. It follows that a vector v in the direction of the
line of intersection can be found by computing

v = n1 × n2.
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This direction, and the previously computed point on the line, can be used
to obtain the parametric or symmetric equations of the line.

Example Consider two planes defined by the equations

x+ 3y − 2z + 10 = 0, 2x− 4y + 3z − 5 = 0.

These planes are not parallel, because their normal vectors n1 = 〈1, 3,−2〉
and n2 = 〈2,−4, 3〉 are not parallel. Their intersection is a line that is
parallel to the vector

v = n1×n2 = 〈1, 3,−2〉×〈2,−4, 3〉 = 〈3(3)−(−2)(−4), (−2)(2)−1(3), 1(−4)−3(2)〉 = 〈1,−7,−10〉.

To write down the equation of the line of intersection, we need to compute
the coordinates of a point on the line. Substituting z = 0 into the equations
of the plane yields the system

x+ 3y = −10,

2x− 4y = 5.

This system has a unique solution, because the coefficients of the equations
are not proportional. Subtracting twice the first equation from the second
yields the simpler equation −10y = 25, so y = −5/2. Substituting this value
into the first equation yields x = −10− 3(−5/2) = −5/2. We conclude that
the line can be described using the parametric equations

x = −5/2 + t, y = −5/2− 7t, z = −10t.

We can also describe the line using the symmetric equations

x+ 5/2

1
=
y + 5/2

−7
=

z

−10
.

2

2.5.5 Distance from a Point to a Plane

Let p1 = 〈x1, y1, z1〉 be a position vector corresponding to a point P =
(x1, y1, z1). Let (r − r0) · n = 0 be the equation of a plane, where r0 =
〈x0, y0, z0〉 is the position vector for a point R0 = 〈x0, y0, z0〉 in the plane,
and n is the plane’s normal vector. We consider the problem of computing
the distance D between the point P1 and this plane.

Intuitively, it makes sense to define this distance as the distance from
P1 to some point P2 contained within the plane. However, we need to
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determine what a suitable point P2 would be. We choose P2 to be the best
approximation of P1 by a point in the plane, just as the vector projection of a
vector v onto a vector u was previously defined to be the best approximation
of v by a vector that is parallel to u.

The key characteristic of the best approximation of the point P1 by a
point P2 in the plane is that the error in this approximation, that is, the
vector between P1 and P2, should be orthogonal to the plane. That is, this
vector should be parallel to n, the normal to the plane. To determine the
length of this vector, we form a triangle with the points p1, p2 and r0, where
p2 is the position vector for the point P2.

Because p1 − p2 is parallel to n, which is orthogonal to p2 − r0, this
triangle is a right triangle, with the hypotenuse defined by p1−r0. Therefore,
we can use right triangle trigonometry to determine that the distance D is
given by

D = |v1| cos θ

where v1 = p1 − r0 and θ is the angle between v1 and n, with n chosen so
that 0 ≤ θ < π/2. It follows that

D =
|v1 · n|
|n|

.

It is interesting to note that from this formula, we can see that D is also
the absolute value of the scalar projection of v1 onto n, or, equivalently, the
magnitude of the vector projection of v1 onto n.

If n = 〈a, b, c〉, and we write the equation of the plane in the form
ax+ by + cz + d = 0, then we can express this distance as

D =
|a(x1 − x0) + b(y1 − y0) + c(z1 − z0)|√

a2 + b2 + c2
=
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
,

because the equations of the plane, (r− r0) ·n = 0 and ax+ by+ cz+d = 0,
are related by d = −r0 · n = −(ax0 + by0 + cz0).

Example We wish to compute the distance D between the point P1 =
(4, 5, 6) and the plane described by the linear equation

2x+ 3y − 4z + 15 = 0.

The normal vector for this plane is n = 〈a, b, c〉 = 〈2, 3,−4〉. It follows that
the distance D is given by

D =
|2(4) + 3(5)− 4(6) + 15|√

22 + 32 + (−4)2
=

14√
29
≈ 2.6.
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2

The formula for the distance between a point and a plane can be used
to compute the distance between two parallel planes. The idea is to identify
one point in the first plane, and then compute the distance between this
point and the second plane. Because the planes are parallel, this distance
will be the same, regardless of which point from the first plane is chosen.

2.5.6 Summary

• The vector equation of a line is of the form r = r0 + tv, where r0

is the position vector of a particular point on the line, t is a scalar
parameter, v is a vector that describes the direction of the line, and
r is the position vector of the point on the line corresponding to the
value of t.
• The parametric equations of the line are the components of the vector

equation, and have the form x = x0 + at, y = y0 + bt, and z = z0 + ct.
The components a, b and c of v are called the direction numbers of
the line.
• The symmetric equations of a line are obtained by eliminating the

parameter t from the parametric equations. The expressions (x −
x0)/a, (y − y0)/b, and (z − z0)/b, for which the direction numbers are
nonzero, are equated.

• The line segment between r0 and r1 can be described by the equation
r = (1− t)r0 + tr1, where 0 ≤ t ≤ 1.

• If the expressions for x, y and z in the parametric equations of two
lines are equal for the same values of the parameters, then the lines
intersect at the point obtained by substituting the common parameters
into the appropriate parametric equations.

• If two lines have direction vectors that are parallel, then the lines are
also parallel.

• If two lines do not intersect, and are not parallel, then they are skew.

• A system of two linear equations with two unknowns can have a unique
solution, no solution, or infinitely many solutions. It has a unique
solution if the determinant of the system is nonzero.

• To determine whether two non-parallel lines intersect, one can try
to find a solution to a system of three equations in two unknowns,
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obtained by equating the parametric equations of corresponding com-
ponents. The unknowns correspond to the parameters of the two lines.

• If the system of any two of the three equations is inconsistent, then
the lines are skew.

• If the system of any two of the three equations has a unique solution,
then the lines intersect if that solution satisfies the remaining equation,
and the lines are skew if it does not.

• If the system of any two of the three equations has infinitely many so-
lutions, then the lines intersect, and the parameters of the intersection
point can be obtained by computing the solution of any other pair of
equations, which is guaranteed to be unique.

• The vector equation of a plane is n · (r− r0) = 0, where n is a vector
that is normal to the plane, r is any position vector in the plane, and
r0 is a given position vector in the plane. The normal vector n can
be obtained by computing the cross product of any two non-parallel
vectors in the plane.

• Two planes are parallel if and only if their normal vectors are parallel.

• If two planes are not parallel, their intersection is a line. The direction
of the line is a vector that is orthogonal to the planes’ normal vectors.
A point on the line can be found by finding a solution of the system
of equations consisting of the equations of the planes, which can be
accomplished by setting one of the coordinates equal to zero.

• The distance between a point p and a plane n · (r − r0) = 0 is the
absolute value of the dot product of the unit (normalized) normal
vector n/|n| and the vector between p and r0.

2.6 Review

You should now be able to complete the following types of problems:

• Determining the center and radius of a sphere, given the equation of
the sphere, by completing the square.

• Using inequalities to describe a region in three-dimensional space,
given a verbal description of the region.
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• Normalizing and scaling vectors in order to obtain a vector of a spec-
ified length and direction.

• Computing the resultant of given velocity vectors by vector addition,
and computing the actual speed of an object, which is the magnitude of
the resultant, as well as the actual direction. This involves computing
the components of a vector v in the xy-plane from its magnitude and
direction, using the formula

v = 〈r cos θ, r sin θ〉,

where r = |v| and θ is the angle that v makes with the positive x-axis.
To compute the angle of a vector v = 〈x, y〉 from its components, use
the relationship

tan θ =
y

x
, x 6= 0,

keeping in mind that if x < 0, it is necessary to add π to the angle
obtained by computing tan−1(y/x) on your calculator. If x = 0 and
y > 0, the angle is π/2, whereas if x = 0 and y < 0, the angle is −π/2.

• Computing the angle θ between two vectors u and v, using the relation
u · v = |u||v| cos θ.

• Computing the scalar projection of u onto v, defined by

compvu =
v · u
|v|

,

and the vector projection of u onto v, defined by

projvu =
v · u
|v|2

v.

Note that if we first compute the unit vector w in the direction of v,

w =
v

|v|
,

then these projections can be defined using the simpler formulas

compvu = w · u, projvu = (w · u)w.

• Computing the work done by a force F applied to an object to move
it along a displacement vector D, which can be defined in terms of its
initial and terminal points. The work is given by

W = F ·D = |F||D| cos θ,
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where θ is the angle between F and D, because |F| cos θ is the mag-
nitude of the force applied to the object along its direction of motion,
|D| is the distance that the object is moved, and work is the product
of force and distance.

• Computing a unit vector u that is orthogonal to given vectors v and
w. This vector can be obtained by computing the cross product v×w,
and then normalizing this vector (that is, dividing by its magnitude)
to obtain a unit vector.

• Computing the area of a parallelogram, given two vectors that define
adjacent edges. This is accomplished by computing the magnitude of
the cross product of the vectors.

• Computing the area of a triangle, given its vertices. This is accom-
plished by computing vectors between pairs of vertices, and then com-
puting the magnitude of their cross product. This yields the area of
the parallelogram defined by these vectors, which is twice the area of
the triangle.

• Computing the volume of a parallelepiped defined by three given vec-
tors u, v and w. This is accomplished by computing the absolute
value of the triple product, |u · (v ×w)|.

• Determining whether two given lines are parallel, intersecting or skew.
The lines are parallel if their direction numbers are proportional. Oth-
erwise, equate corresponding parametric equations and determine if
the resulting system of three equations has a solution. This is accom-
plished by trying to solve any two of the equations, written in the
form

as+ bt = u,

cs+ dt = v,

for the parameters of the lines, s and t. If there is no solution (which
is true if the coefficients a, b and c, d are proportional but the right-
hand side values u and v are not), the lines are skew. If there is a
unique solution, which is true if these coefficients are not proportional,
then the lines intersect if this solution satisfies the remaining equation;
otherwise they are skew. If the two chosen equations have infinitely
many solutions (that is, if the coefficients and right-hand side values
are all proportional), then choose two other equations and repeat the
process.
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• Computing an equation of the plane containing three given points.
This is accomplished by computing vectors between pairs of points,
and taking their cross product to obtain a normal vector n. Then, the
vector equation of the plane has the form n · (r− r0) = 0, where r0 is
the position vector for any of the three points, and r = 〈x, y, z〉 is the
position vector for any point in the plane.

• Computing an equation of the line of intersection of two non-parallel
planes. This is accomplished by first computing the direction numbers
of the line, which can be obtained by computing the cross product of
the normal vectors of the planes. Then, it is necessary to compute a
point that is in both planes by finding a solution of their equations.
This can be accomplished by setting one of the coordinates x, y or z
equal to zero in both equations, and solving for the other two coordi-
nates. If a solution cannot be found, then choose a different coordinate
to set to zero.

• Computing the distance between a point and a plane. If the equation
of the plane is ax+ by + cz + d = 0, and the point is P = (x1, y1, z1),
then the distance D is given by

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
.

Equivalently, if the plane is described by a vector equation n · (r− r0),
and the point P is identified by a position vector r1 = 〈x1, y1, z1〉, then

D =
|n · (r1 − r0)|

|n|
.
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Figure 2.7: The vector projection (black vector) of u = 〈2, 4〉 (blue vector)
onto v = 〈1, 1〉 (red vector).
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Figure 2.8: The vector projection of u = 〈3, 4, 5〉 onto v = 〈1, 1, 1〉.
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Figure 2.9: The cross product of u = 〈2,−1, 1〉 and v = 〈1, 2, 2〉 is the vector
u× v = 〈−3,−1, 5〉.
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Figure 2.10: The vector w = u × v is orthogonal to the plane determined
by the points P1, P2, and P3.
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Figure 2.11: A parallelepiped defined by the vectors u = 〈3, 1, 1〉, v =
〈1, 5, 1〉, and w = 〈0, 1, 2〉. The height, which is measured along the direction
of z = u× v, is indicated by the scalar h.
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Figure 2.12: The line described by the vector equation r = r0 + tv, where
r0 = 〈2, 1, 3〉 and v = 〈−2, 1, 1〉. The position vector r shown is 〈−2, 3, 5〉.
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Chapter 3

Parametric Curves and Polar
Coordinates

3.1 Parametric Curves

There are many useful curves that cannot be described by an equation of the
form y = f(x), because f is a function and therefore requires that only one
y-value be associated with every x-value. For example, a complete circle
cannot be described by such an equation. In such cases, we can instead
describe the curve by parametric equations

x = f(t), y = g(t),

where the variable t is called a parameter, and the curve defined by these
equations is called a parametric curve. For example, a circle of radius r can
be defined by the parametric equations

x = r cos t, y = r sin t.

The parameter t is typically restricted to some interval [a, b]. The point
x = f(a), y = g(a) is then called the initial point of the curve, and the point
x = f(b), y = g(b) is called the terminal point of the curve.

Because any functions f(t) and g(t) can be chosen to define the x-
coordinates and y-coordinates, respectively, of points on the curve, there
is no requirement that each x-value is associated with only y-value, as with
a curve defined by the equation y = f(x). It follows that any curve in the
plane can be defined using parametric equations.

Example Construct parametric equations of the form

x = f(t), y = g(t)

143
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that describe the unit circle.

Solution The unit circle is a circle of radius 1 with center at the origin
(0, 0). It is described by the equation

x2 + y2 = 1.

Choosing f(t) = cos t and g(t) = sin t, where 0 ≤ t ≤ 2π, we find that x and
y satisfy this equation and describe the entire circle. If we let t denote time,
and let (x, y) = (f(t), g(t)) denote the position of a particle at time t, then
the particle begins at the point (1, 0) (corresponding to t = 0) and moves
once around the circle in the counterclockwise direction, at constant speed.

An alternative description of this circle is given by the parametric equa-
tions

x = sin et, y = cos et, lnπ ≤ t ≤ ln 3π.

In this case, a particle whose motion is described by these equations starts
at the point (0,−1) and travels once around the circle in the clockwise
direction, at steadily increasing speed. 2

Example Describe the differences between the following sets of parametric
equations that represent the curve y = x3, where −∞ < t <∞:

1. x = t, y = t3

2. x = t2, y = t6

3. x = sin t, y = sin3 t.

Solution

1. These equations describe the entire curve y = x3. A particle whose
motion is described by these equations traces the curve from left to
right, at constant speed in the x-direction.

2. These equations describe the portion of the curve in the right-half
plane x ≥ 0. A particle whose motion is described by these equations
traces the curve from right to left as t increases from −∞, until t = 0,
at which point the particle turns around and retraces the curve from
left to right, at constant speed in the x-direction.

3. These equations describe the portion of the curve for which−1 ≤ x ≤ 1
and −1 ≤ y ≤ 1. A particle whose motion is described by these
equations traces the curve from left to right until reaching the point
(1, 1), at which point it turns around and retraces the curve from right
to left until reaching the point (−1,−1). This process continues forever
as t increases.
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2

Example Find parametric equations for the astroid x2/3 + y2/3 = 1.

Solution Writing the equation for the astroid as

(x1/3)2 + (y1/3)2 = 1,

we see that x1/3 and y1/3 can only assume values between −1 and 1. There-
fore, we can use the identity sin2 θ + cos2 θ = 1 and let x1/3 = cos t and
y1/3 = sin t, which yields the equations

x = cos3 t, y = sin3 t,

where 0 ≤ t ≤ 2π. 2

Example Find parametric equations for the ellipse

4x2 + 9y2 = 36.

Solution Rewriting the equation as

(2x)2 + (3y)2 = 62,

we see that 2x and 3y can only assume values between −6 and 6. Equating
2x = 6 cos t and 3y = 6 sin t yields the equations

x = 3 cos t, y = 2 sin t,

where 0 ≤ t < 2π. 2

Example Sketch the curve described by the parametric equations

x = sin t, y = sin 2t,

where 0 ≤ t ≤ 2π.

Solution The curve can be sketched by choosing several values of t in the
interval [0, 2π] and computing the corresponding values of x and y for each
value of t. In Figure 3.1, the curve is plotted by using MatlabTM to compute
x and y for t = 0, 0.01, 0.02, . . . all the way up to 2π, plotting the resulting
points, and then connecting the points to obtain a smooth curve. 2

Example Given a curve defined by the parametric equations

x = 3t+ 2, y = t− 1,
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Figure 3.1: Curve defined by the parametric equations x = sin t, y = sin 2t.

eliminate the parameter t and obtain a Cartesian equation for the curve.

Solution By a Cartesian equation, we mean an equation of the form y =
f(x) or x = f(y). In this case, we can obtain either type of equation since
both x and y are one-to-one functions of t. We choose to obtain an equation
of the form y = f(x). Solving the equation x = 3t+ 2 for t, we obtain

t =
x− 2

3
.

Substituting this expression for t into the equation y = t− 1, we obtain the
equation

y = f(x) =
x− 2

3
− 1 =

x− 5

3
.

2

Example Given a curve defined by the parametric equations

x =
√
t+ 1, y = et,
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where t ≥ 0, eliminate the parameter t and obtain a Cartesian equation for
the curve.

Solution Since x is a one-to-one function of t, we can solve the equation
x =
√
t+ 1 for t and obtain

t = x2 − 1,

where x ≥ 1. Substituting this relation into the equation y = et, we obtain
the Cartesian equation

y = ex
2−1.

Since y is also a one-to-one function of t, we have the relation

t = ln y,

where y ≥ 1. We can substitute this relation into the equation x =
√
t+ 1

to obtain the alternative representation of the curve,

x =
√

ln y + 1.

2

3.1.1 Summary

• A parametric curve in the xy-plane is a curve that is described by
parametric equations x = f(t) and y = g(t), which define the x- and
y-coordinates of each point on the curve as functions of a parameter
t, where t belongs to an interval [a, b].

• The initial point of the curve is (f(a), g(a)), and the terminal point is
(f(b), g(b)).

• Any curve can be described by parametric equations, because para-
metric equations do not require that each x-value is associated with
only one y-value, unlike an equation of the form y = f(x).

• A curve defined by an equation of the form [f(x)]2 + [g(y)]2 = r2 can
be converted to parametric equations by equating f(x) = r cos t and
g(y) = r sin t, and solving for x and y.

• Parametric equations x = f(t), y = g(t) can be converted to an equa-
tion of the form y = f(x) by solving x = f(t) for t, if possible, and
substituting the resulting expression for t into the equation y = g(t).
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3.2 Calculus with Parametric Curves

3.2.1 Arc Length

In this section, we will learn how to use calculus to compute the length of a
curve that is described by an equation of the form y = f(x), for some given
function f(x). Just as we learned how to compute the area under such a
curve as the limit of a sum of areas of simpler regions (namely, rectangles),
we can compute the length of the curve by interpreting the length as a limit
of a sum of lengths of the simplest curves known, which are line segments.

Suppose that we wish to compute the length of the curve y = f(x)
between x = a and x = b. We can approximate this length by dividing
the interval [a, b] into subintervals of length ∆x = (b − a)/n, just as we
did when we were trying to compute the approximate area under y = f(x).
Consider any subinterval [xi−1, xi]. Then, if ∆x is chosen to be sufficiently
small, the length of the curve y = f(x) between x = xi−1 and x = xi can
be well approximated by the length of the line segment between the points
(xi−1, f(xi−1)) and (xi, f(xi)). This line segment is the hypotenuse of a right
triangle with legs of length ∆x and |f(xi)−f(xi−1)|, and therefore the length
Li of the curve y = f(x) between x = xi−1 and x = xi is approximately

Li ≈
√

∆x2 + (f(xi)− f(xi−1))2 = ∆x

√
1 +

(
f(xi)− f(xi−1)

∆x

)2

. (3.1)

It follows that the length L of the curve between x = a and x = b is
approximated by

L ≈
n∑
i=1

Li =

n∑
i=1

√
1 +

(
f(xi)− f(xi−1)

∆x

)2

∆x =

n∑
i=1

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

∆x.

(3.2)
As n, the number of line segments, approaches ∞, ∆x approaches zero,

so the length of each subinterval [xi−1, xi] tends to zero. It follows from the
definition of the derivative that

lim
∆x→0

f(xi)− f(xi−1)

xi − xi−1
= lim

∆x→0

f(xi−1 + ∆x)− f(xi−1)

∆x
= f ′(xi−1) (3.3)

and therefore the sum converges to the definite integral

L = lim
n→∞

n∑
i=1

Li =

∫ b

a

√
1 + [f ′(x)]2 dx. (3.4)
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The value of this integral is called the arc length of the curve y = f(x) from
x = a to x = b. Similarly, if a curve is defined by the equation x = f(y)
from y = c to y = d, the arc length of the curve is given by the definite
integral ∫ d

c

√
1 + [f ′(y)]2 dy. (3.5)

Example 1 Compute the arc length of the curve y = 2x + 3, where 0 ≤
x ≤ 2.

Solution Since the curve is just a line segment, we can simply use the
distance formula to compute the arc length, since the arc length is the
distance between the endpoints of the segment. The endpoints are (0, 3)
and (2, 7), and therefore the arc length is√

(2− 0)2 + (7− 3)2 =
√

22 + 42 =
√

20 = 2
√

5. (3.6)

Using the arc length formula, we have y′ = 2, and therefore the arc length
is given by the integral∫ 2

0

√
1 + 22 dx =

∫ 2

0

√
5 dx =

√
5x
∣∣∣2
0

= 2
√

5. (3.7)

2

Example 2 Compute the arc length of the curve y = sinx from x = 0 to
x = π.

Solution Since y′ = cosx, the arc length is given by the integral∫ π

0

√
1 + cos2 x dx. (3.8)

Unfortunately, this integral cannot be evaluated using the Fundamental The-
orem of Calculus. Using an approximation method such as the Composite
Simpson’s Rule, the value of the integral is seen to be approximately 3.8202.
2

Example 3 Compute the arc length of the astroid described by the equa-
tion x2/3 + y2/3 = 1.

Solution We consider only the portion of the astroid in the upper quadrant
x ≥ 0, y ≥ 0, which has endpoints (0, 1) and (1, 0). In this quadrant, the
astroid can be described by the equation

y = (1− x2/3)3/2. (3.9)
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It follows that the arc length L of this segment of the astroid is given by the
integral

L =

∫ 1

0

√
1 + (y′)2 dx

=

∫ 1

0

√
1 + ((3/2)(1− x2/3)1/2(−(2/3)x−1/3)2 dx

=

∫ 1

0

√
1 + (−(1− x2/3)1/2x−1/3)2 dx

=

∫ 1

0

√
1 + (1− x2/3)x−2/3 dx

=

∫ 1

0

√
1 + (x−2/3 − 1) dx

=

∫ 1

0

√
x−2/3 dx

=

∫ 1

0
x−1/3 dx

=
3

2
x2/3

∣∣∣∣1
0

=
3

2
. (3.10)

2

Example 4 Prove that the shortest distance between two given points is a
straight line.

Solution For simplicity, we assume that the two points lie on the same
horizontal line; specifically, the points are (a, k) and (b, k). Let y = f(x)
describe a curve connecting the two points. Then, the arc length of the
curve is given by ∫ b

a

√
1 + [f ′(x)]2 dx. (3.11)

Since the integrand
√

1 + [f ′(x)]2 is always positive, we can minimize the
arc length by choosing f(x) so that the integrand itself is minimized. This
is the case when f ′(x) = 0; i.e., f(x) is constant. Therefore the arc length
is minimized when f(x) = k and the corresponding curve is a straight line
connecting the two points. 2
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In some cases, it is desirable to compute the arc length of a curve y =
f(x) as a function of its endpoints. For example, if the left endpoint of the
curve is fixed at the point (a, f(a)) and we wish to know the arc length along
this curve from the left endpoint to any other point (x, f(x)), then we can
obtain this length as a function of x from the integral

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt. (3.12)

The function s(x) is known as the arc length function.

3.2.2 Arc Length of Parametrically Defined Curves

We have learned how to compute the arc length of a curve described by an
equation of the form y = f(x), where a ≤ x ≤ b. The arc length L of such
a curve is given by the definite integral

L =

∫ b

a

√
1 + [f ′(x)]2 dx.

Now, suppose that this curve can also be defined by parametric equations

x = g(t), y = h(t), (3.13)

where c ≤ t ≤ d. It follows that

y = h(t) = f(g(t)),

and therefore, by the Chain Rule,

dy

dt
= h′(t) = f ′(g(t))g′(t) = f ′(g(t))

dx

dt
= f ′(x)

dx

dt
.

In the integral defining the arc length of the curve, we make the substi-
tution x = g(t) and obtain

L =

∫ b

a

√
1 + [f ′(x)]2 dx

=

∫ d

c

√
1 + [f ′(g(t))]2 g′(t) dt

=

∫ d

c

√
[g′(t)]2 + [f ′(g(t))g′(t)]2 dt

=

∫ d

c

√
[g′(t)]2 + [h′(t)]2 dt

=

∫ d

c

√(
dx

dt

)2

+

(
dy

dt

)2

dt.



152CHAPTER 3. PARAMETRIC CURVES AND POLAR COORDINATES

It turns out that this formula for the arc length applies to any curve that
is defined by parametric equations of the form (3.13), as long as x and y
are differentiable functions of the parameter t. To derive the formula in the
general case, one can proceed as in the case of a curve defined by an equation
of the form y = f(x), and define the arc length as the limit as n → ∞ of
the sum of the lengths of n line segments whose endpoints lie on the curve.

Example Compute the length of the curve

x = 2 cos2 θ, y = 2 cos θ sin θ,

where 0 ≤ θ ≤ π.

Solution This curve is plotted in Figure 3.2; it is a circle of radius 1 centered
at the point (1, 0). It follows that its length, which we will denote by L, is
the circumference of the circle, which is 2π. Using the arc length formula,
we can obtain the same result as follows:

L =

∫ π

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=

∫ π

0

√
(−4 cos θ sin θ)2 +

(
2 cos2 θ − 2 sin2 θ

)2
dθ

= 2

∫ π

0

√
(2 cos θ sin θ)2 +

(
cos2 θ − sin2 θ

)2
dθ

= 2

∫ π

0

√
4 cos2 θ sin2 θ + cos4 θ − 2 cos2 θ sin2 θ + sin4 θ dθ

= 2

∫ π

0

√
cos4 θ + 2 cos2 θ sin2 θ + sin4 θ dθ

= 2

∫ π

0

√
(cos2 θ + sin2 θ)2 dθ

= 2

∫ π

0

√
12 dθ

= 2

∫ π

0
dθ

= 2π.

Note: Double-angle and half-angle formulas could have been used in this
example, but little would have been gained except during the differentiation
stage, so I chose not to use them. 2

Example Compute the length of the curve

x = t sin t, y = t cos t
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Figure 3.2: Curve defined by x = cos2 θ, y = 2 cos θ sin θ

from t = 0 to t = 2π.

Solution The length L is given by the integral

L =

∫ 2π

0

√
(sin t+ t cos t)2 + (cos t− t sin t)2 dt

=

∫ 2π

0

√
sin2 t+ 2 sin t cos t+ t2 cos2 t+ cos2 t− 2 sin t cos t+ t2 sin2 t dt

=

∫ 2π

0

√
(sin2 t+ cos2 t) + t2(cos2 t+ sin2 t) dt

=

∫ 2π

0

√
1 + t2 dt

=

∫ tan−1(2π)

0

√
1 + tan2 θ sec2 θ dθ
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=

∫ tan−1(2π)

0
sec3 θ dθ

=
1

2
[sec θ tan θ + ln | sec θ + tan θ|]

∣∣∣∣tan−1(2π)

0

=
1

2

[√
1 + tan2 θ tan θ + ln |

√
1 + tan2 θ + tan θ|

]∣∣∣∣tan−1(2π)

0

=
1

2

[√
1 + (2π)2(2π) + ln |

√
1 + (2π)2 + 2π|

]
≈ 21.2563.

The integral of sec3 θ is obtained using integration by parts, with u = sec θ
and dv = sec2 θ dθ. The curve is displayed in Figure 3.3. 2

Figure 3.3: Curve defined by x = t sin t, y = t cos t

Example Find the distance traveled by a particle with position x = sin2 t,
y = cos2 t, as t varies within the interval [0, 3π]. Compare with the length
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of the curve.

Solution The distance traveled, D, can be computed using the arc length
formula:

D =

∫ 3π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 3π

0

√
(2 sin t cos t)2 + (−2 cos t sin t)2 dt

=

∫ 3π

0

√
8 sin2 t cos2 t dt

= 2
√

2

∫ 3π

0
| sin t cos t| dt

=
√

2

∫ 3π

0
| sin 2t| dt

= 6
√

2

∫ π/2

0
sin 2t dt

= 6
√

2
1

2
(− cos 2t)

∣∣∣∣ 0π/2
= 6

√
2.

In the sixth step, we used the fact that the net area under sin 2t from
t = π/2 + kπ to t = (k + 1)π, where k is an integer, is the negative of
the area under sin 2t from t = 0 to t = π/2, as shown in Figure 3.4. Because
we need to compute the area under | sin 2t|, these areas must be negated to
obtain the correct distance.

The length of the curve is
√

2, because the curve is traced once as t
increases from 0 to π/2, and then retraced repeatedly every π/2 units in t.
Therefore, from t = 0 to t = 3π, the curve is traced six times. 2

3.2.3 Tangents of Parametric Curves

When a curve is described by an equation of the form y = f(x), we know that
the slope of the tangent line of the curve at the point (x0, y0) = (x0, f(x0))
is given by

dy

dx
= f ′(x).

However, if the curve is defined by parametric equations

x = f(t), y = g(t),
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Figure 3.4: Graph of sin 2t for 0 ≤ t ≤ 3π.

then we may not have a description of the curve as a function of x in order
to compute the slope of the tangent line in this way. Instead, we apply the
Chain Rule to obtain

dy

dt
=
dy

dx

dx

dt
.

Solving for dy/dx yields

dy

dx
=

dy
dt
dx
dt

.

This allows us to express dy/dx as a function of the parameter t.

Example The slope of the tangent to the spiraling curve defined by

x = t sin t, y = t cos t
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which is shown in Figure 3.3, is given by

dy

dx
=

dy
dt
dx
dt

=
cos t− t sin t

sin t+ t cos t
.

At the point (π/2, 0), which corresponds to t = π/2, the slope of the tangent
is

m =
cos π2 −

π
2 sin π

2

sin π
2 + π

2 cos π2
=

0− π
2 · 1

1 + π
2 · 0

= −π
2
.

From the point-slope form of the equation of a line, we see the equation of
the tangent line of the curve at this point is given by

y − 0 = −π
2

(
x− π

2

)
.

2

We know that a curve defined by the equation y = f(x) has a horizontal
tangent if dy/dx = 0, and a vertical tangent if f ′(x) has a vertical asymptote.
For parametric curves, we also can identify a horizontal tangent by deter-
mining where dy/dx = 0. This is the case whenever dy/dt = 0, provided
that dx/dt = 0, thus excluding the case where dy/dx is the indeterminate
form 0/0. Similarly, the tangent line is vertical whenever dx/dt = 0, but
dy/dt 6= 0.

Example Consider the unit circle, which can be parametrized by the equa-
tions

x = cos t, y = sin t, 0 ≤ t < 2π.

The slope of the tangent at any point on the circle is given by

dy

dx
=

dy
dt
dx
dt

=
cos t

− sin t
= − cot t.

A horizontal tangent occurs whenever cos t = 0, and sin t 6= 0. This is
the case whenever t = π/2 or t = 3π/2. Substituting these parameter values
into the parametric equations, we see that the circle has two horizontal
tangents, at the points (0, 1) and (0,−1).

A vertical tangent occurs whenever sin t = 0, and cos t 6= 0. This is the
case whenever t = 0 or t = π. Substituting these parameter values into the
parametric equations, we see that the circle has two vertical tangents, at the
points (1, 0) and (−1, 0). 2
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It is important to note that unlike a curve defined by y = f(x), a point
on the curve may have more than one tangent line, because a parametric
curve is allowed to intersect itself.

Example Consider the curve defined by the parametric equations

x = t2, y = (t2 − 4) sin t.

This curve has two tangents at the point (π2, 0). To see this, we first note
that x = t2 = π when t = ±

√
π. Substituting these values into the equation

for y, we obtain y = 0, since sin t = 0 when t = ±π. Therefore, there are
two distinct parameter values corresponding to this point on the curve.

Next, we must compute dy/dx for both values of t. We have

dy

dx
=

dy
dt
dx
dt

=
(t2 − 4) cos t+ 2t sin t

2t
= sin t+

t2 − 4

t
cos t.

Substituting t = −π yields

dy

dx
= sin(−π) +

(−π)2 − 4

−π
cos(−π) =

π2 − 4

π
≈ 1.8684.

On the other hand, substituting t = π yields

dy

dx
= sinπ +

π2 − 4

π
cosπ = −π

2 − 4

π
≈ −1.8684.

The curve is illustrated in Figure 3.5. 2

In order to graph curves, it is helpful to know where the curve is concave
up or concave down. For a curve defined by y = f(x), this is determined by
computing its second derivative d2y/dx2 = f ′′(x) and checking its sign. For
a parametric curve, we can compute d2y/dx2 in the same way as dy/dx, by
using the Chain Rule. First, we note that

d2y

dx2
=

d

dx

(
dy

dx

)
.

Then, from the Chain Rule,

d

dt

(
dy

dx

)
=

d

dx

(
dy

dx

)
dx

dt
=
d2y

dx2

dx

dt
.

Solving for d2y/dx2 yields

d2y

dx2
=

d
dx

(
dy
dx

)
dx
dt

.
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Figure 3.5: Graph of the parametric curve x = t2, y = (t2 − 4) sin t.

To use this formula, one first computes dy/dx in terms of dy/dt and dx/dt, as
described above. Then, dy/dx is a function of t, which can be differentiated
with respect to t in the usual way, before being divided by dx/dt to obtain
d2y/dx2.

It is possible to obtain a formula for d2y/dx2 that uses only derivatives
of x and y with respect to t. By applying the Quotient Rule to differentiate
dy/dx with respect to t, we obtain

d2y

dx2
=

dx
dt
d2y
dt2
− dy

dt
d2x
dt2(

dx
dt

)3 ,

although the first formula may be easier to remember.

Example Consider the astroid, defined by the parametric equations

x = cos3 t, y = sin3 t, 0 ≤ t < 2π.
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This curve is illustrated in Figure 3.6. To determine where the curve is
concave up or concave down, we first compute dy/dx as a function of t:

dy

dx
=

dy
dt
dx
dt

=
3 sin2 t cos t

−3 cos2 t sin t
= − tan t.

Next, we use this to compute d2y/dx2:

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

=
− sec2 t

−3 cos2 t sin t
=

1

3 cos4 t sin t
.

We conclude that the astroid is concave up whenever sin t > 0, which is the
case when y > 0. It is concave down whenever sin t < 0, which is the case
whenever y < 0. 2

Figure 3.6: Graph of the astroid x = cos3 t, y = sin3 t, for 0 ≤ t < 2π.

Example A string is wound around a circle and then unwound while being
held taut. The curve traced by the point P at the end of the string is called
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the involute of the circle. If the circle has radius r and center O and the
initial position of P is (r, 0), and if the parameter θ is chosen as in the figure
(see page 495 of the text), show that parametric equations of the involute
are

x = r(cos θ + θ sin θ), y = r(sin θ − θ cos θ).

Solution For any angle θ, the position vector for the point P is the sum of
two vectors u and v, where u is the position vector u for the point T on the
circle corresponding to θ, and v is the vector from T to P . The magnitude
of u is r, the radius of the circle, so its components are u = 〈r cos θ, r sin θ〉.

The magnitude of v is the length of the portion of the string that has
been unwound, which is the length of the arc of the circle that begins at
the point (r, 0) and ends after sweeping counterclockwise (for increasing θ)
through θ radians; this length is rθ.

Because the string is held taut, it is tangent to the circle at T , so v and
u are perpendicular; in fact, the angle made by v with the positive x-axis,
when v is translated so that its initial point is at the origin, is always 90
degrees, or π/2 radians, less than that of u. That is,

v =
〈
rθ cos

(
θ − π

2

)
, rθ sin

(
θ − π

2

)〉
.

Using the identities

cos(A−B) = cosA cosB+sinA sinB, sin(A−B) = sinA cosB−cosA sinB,

with A = θ and B = π/2, we obtain cos(θ − π/2) = sin θ and sin(θ −
π/2) = − cos θ. By adding the components of u and v, we obtain the
desired parametric equations for the involute. 2

3.2.4 Areas Under Parametric Curves

Recall that the area A of the region bounded by the curve y = F (x), the
vertical lines x = a and x = b, and the x-axis is given by the integral

A =

∫ b

a
F (x) dx.

Now, suppose that the curve y = F (x) is also defined by the parametric
equations x = f(t), y = g(t), for α ≤ t ≤ β. Furthermore, suppose that
f(α) = a and f(α) = b. If the curve is traversed only once as t increases
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from α to β, then the area can also be computed by integrating with respect
to t as follows:

A =

∫ b

a
F (x) dx =

∫ β

α
g(t)f ′(t) dt.

On the other hand, if t = α corresponds to the right endpoint of the curve,
and t = β corresponds to the left endpoint, then limits of integration must
be reversed:

A =

∫ α

β
g(t)f ′(t) dt = −

∫ β

α
g(t)f ′(t) dt.

Example The upper half-circle with center (0, 0) and radius 1 can be defined
by the parametric equations x = cos t, y = sin t, for 0 ≤ t ≤ π. Because
t = 0 corresponds to the right endpoint of this curve, and t = π corresponds
to the left endpoint, the area bounded by the upper half-circle and the x-axis
is given by

A =

∫ 0

π
sin t(− sin t) dt =

∫ 0

π
− sin2 t dt =

∫ π

0
sin2 t dt =

∫ π

0

1− cos 2t

2
dt =

t

2
− sin 2t

4

∣∣∣∣π
0

=
π

2
,

which, as expected, is half of the area of the circle. 2

Example Use the parametric equations of an ellipse, x = a cos θ, y = b sin θ,
0 ≤ θ ≤ 2π, to find the area that it encloses.

Solution Because of the symmetry of the ellipse, we can compute the area
by first computing the are of the region bounded by the given curve, for
0 ≤ θ ≤ π/2, and the lines x = 0 and y = 0, and then multiply the result
by 4. The area A of this region is given by the integral

A =

∫ a

0
y dx.

Substituting x = a cos θ, which yields dx = −a sin θ, and substituting y =
b sin θ, we obtain an integral for the area in terms of θ,

A =

∫ 0

π/2
(b sin θ)(−a sin θ) dθ = ab

∫ π/2

0
sin2 θ dθ.

The limits θ = 0 and θ = π/2 arise from the fact that when θ = 0, x =
a cos 0 = a, and when θ = π/2, x = a cos π2 = 0. In the last step, we
interchanged the limits of integration, which changed the sign of the integral.
Using the identity sin2 θ = (1− cos 2θ)/2, we obtain

A = ab

∫ π/2

0

[
1

2
− 1

2
cos 2θ

]
dθ = ab

[
θ

2
− 1

4
sin 2θ

]∣∣∣∣π/2
0

=
π

4
ab.
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Multiplying by 4 yields the area of the entire ellipse, πab. 2

Example Find the area of the region bounded by the curve x = cos t, y = et,
0 ≤ t ≤ π/2, and the lines y = 1 and x = 0. The region is shown in Figure
3.7.

Figure 3.7: The region bounded by the lines x = 0, y = 1, and the curve
x = cos t, y = et, for 0 ≤ t ≤ π/2.

Solution First, we note that as t increases from 0 to π/2, x decreases from
1 to 0, while y increases from 1 to eπ/2 ≈ 4.81. It follows that if we wish to
compute the area by integrating y with respect to x, the limits of integration
should be x = 0 and x = 1. Furthermore, because the region is bounded
below by y = 1, we can compute the area of the prescribed region by first
computing the area of the region bounded by x = cos t, y = et, y = 0 and
x = 0. Then, we can subtract the area of the rectangle bounded by the lines
x = 0, x = 1, y = 0 and y = 1, which is 1.
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We then have

A =

∫ 1

0
y dx− 1 =

∫ 0

π/2
et(− sin t) dt− 1 =

∫ π/2

0
et sin t dt.

Using integration by parts with u = et and dv = sin t dt, and a second time
with u = et, dv = cos t dt, yields∫ π/2

0
et sin t dt = −et cos t dt

∣∣π/2
0

+

∫ π/2

0
et cos t dt

= 1 + et sin t
∣∣π/2
0
−
∫ π/2

0
et sin t dt

=
1

2
+

1

2
eπ/2.

In the last step, we moved the integral on the right side to the left side,
because they are the same except for their sign, and then we divided by 2
to obtain the result. Subtracting 1 from this integral yields A = 1

2e
π/2 − 1

2
for the area of the region.

Another way to compute the area is to integrate x with respect to y. In
this case, the limits of integration are y = 1 and y = eπ/2. We then have

A =

∫ exp(π/2)

1
x dy =

∫ π/2

0
et cos t dt.

Using integration by parts as before yields the area. 2

3.2.5 Summary

• The arc length of a curve defined by the equation y = f(x), for a ≤
x ≤ b, is the integral of

√
1 + [f ′(x)]2 from a to b.

• Often, this integral cannot be computed analytically using known in-
tegration rules, so the arc length must instead be approximated nu-
merically using a technique such as the Composite Simpson’s Rule.

• If a curve is defined by parametric equations x = g(t), y = h(t) for c ≤
t ≤ d, the arc length of the curve is the integral of

√
(dx/dt)2 + (dy/dt)2 =√

[g′(t)]2 + [h′(t)]2 from c to d.

• The slope of the tangent line of a parametric curve defined by paramet-
ric equations x = f(t), y = g(t) is given by dy/dx = (dy/dt)/(dx/dt).
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• A parametric curve has a horizontal tangent wherever dy/dt = 0 and
dx/dt 6= 0. It has a vertical tangent wherever dx/dt = 0 and dy/dt 6= 0.

• The concavity of a parametric curve at a point can be determined
by computing d2y/dx2 = d(dy/dx)/dt/(dx/dt), where dy/dt is best
represented as a function of t, not x. The curve is concave up when
d2y/dx2 is positive, and concave down if it is negative.

• A parametric curve x = f(t), y = g(t) can have two tangents at a point
(x0, y0) on its graph, if there are two distinct values of the parameter
t, t1 and t2, such that f(t1) = f(t2) = x0 and g(t1) = g(t2) = y0.

• The area of the region bounded by the parametric curve x = f(t),
y = g(t), the x-axis, the line x = a, and the line x = b, where f(α) = a
and g(β) = b, is the integral from α to β of g(t)f ′(t) dt, provided that
the curve is only traversed once as t increases from α to β.

3.3 Polar Coordinates

Throughout this course, we have denoted a point in the plane by an ordered
pair (x, y), where the numbers x and y denote the directed (i.e., signed
positive or negative) distance between the point and each of two perpen-
dicular lines, the x-axis and the y-axis. The elements of this ordered pair
are called coordinates, and the coordinates used in this particular method
of identifying points in the plane are called Cartesian coordinates.

In this section, we introduce an alternative coordinate system known as
the polar coordinate system. In this system, a point in the plane is identified
by an ordered pair (r, θ), where:

• r is the directed distance from a point designated as the pole, and

• θ is the angle, in radians, that a ray between the pole and the point
makes with a ray designated as the polar axis.

The coordinates r and θ are called polar coodinates.
The pole is the point (0, 0) in Cartesian coordinates, and has polar coor-

dinates (0, θ) for any value of θ. The polar axis corresponds to the positive
x-axis. An angle θ is considered positive if measured in the counterclock-
wise direction from the polar axis, and negative if measured in the clockwise
direction.

Example Sketch the region in the plane consisting of points whose polar
coordinates satisfy 2 < r < 3, 5π/3 ≤ θ ≤ 7π/3.
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Solution A sketch of the region described by the given inequalities is ob-
tained by first sketching two concentric circles, of radii 2 and 3, and the rays
extending from the origin at angles 5π/3 and 7π/3. The region is illustrated
in Figure 3.8. 2

Figure 3.8: Region satisfying 2 < r < 3 and 5π/3 ≤ θ ≤ 7π/3.

3.3.1 Conversion Between Cartesian and Polar Coordinates

Using these conventions, the Cartesian coordinates of a point can easily be
obtained from the polar coordinates using the relations

x = r cos θ, y = r sin θ.

Since sin θ and cos θ are not one-to-one, and since r is allowed to assume
negative values, it follows that each point in the plane has infinitely many
representations in polar coordinates.
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Example Compute the Cartesian coordinates of the following points whose
polar coordinates are given.

1. (1, π/4)

2. (−1, 5π/4)

3. (1, 9π/4)

Solution Using the relations

x = r cos θ, y = r sin θ,

we have:

1. x = 1 · cos(π/4) =
√

2/2, y = 1 · sin(π/4) =
√

22

2. x = − cos(5π/4) = −(−
√

2/2) =
√

2/2, y = − sin(π/4) = −(−
√

22) =√
2/2

3. x = 1 · cos(9π/4) = cos(π/4) =
√

2/2, y = 1 · sin(9π/4) = sin(π/4) =√
2/2

2

The polar coordinates of a point can be obtained from the Cartesian
coordinates as follows:

r = x2 + y2, tan θ =
y

x
.

It should be noted that because tan θ is not one-to-one on the interval 0 ≤
θ < 2π, it is necessary to consider the signs of x and y in order to make sure
that the proper value of θ is used to represent the point (x, y). Otherwise,
the point (r, θ) may lie in the wrong quadrant of the plane.

Example Compute the polar coordinates of the following points whose
Cartesian coordinates are given.

1. (−
√

3/2, 1/2)

2. (−1,−1)

Solution Using the relations

r2 = x2 + y2, tan θ =
y

x
,

we have:
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1.

r2 = (−
√

3/2)2 + (1/2)2 = 3/4 + 1/4 = 1, tan θ = − 1√
3
.

It follows that r = 1. Because the x-coordinate of the point is nega-
tive, we should seek a value of θ that lies in the interval (π/2, 3π/2).
However, the range of the inverse tangent function lies in the interval
(−π/2, π/2), and therefore θ = tan−1(−1/

√
3) = −π/6. Since tangent

has a period of π, it follows that

tan(θ + π) = tan θ

for any θ; in other words, its values repeat after every π units. Since

tan(5π/6) = tan(−π/6 + π) = tan(−π/6) = − 1√
3
,

it follows that θ = 5π/6 satisfies the relation tan θ = y/x, and since
5π/6 lies in the interval (π/2, 3π/2), it is a correct value of θ for this
point.

2.

r2 = (−1)2 + (−1)2 = 2, tan θ =
−1

−1
= 1.

It follows that r =
√

2. Because the x-coordinate of the point is neg-
ative, we should seek a value of θ that lies in the interval (π/2, 3π/2).
However, we have tan−1(1) = π/4, which is not in that interval. Since

tan(5π/4) = tan(π/4 + π) = tan(π/4) = 1,

it follows that θ = 5π/4 satisfies the relation tan θ = y/x, and since
5π/4 lies in the interval (π/2, 3π/2), it is a correct value of θ for this
point.

2

3.3.2 Polar Equations

A polar equation is an equation of the form r = f(θ). Such an equation
defines a curve in the plane by assigning a distance from the pole to each
angle θ via the function f(θ). For example, the simple polar equation r = k,
where k is a constant, describes a circle of radius k. The graph of a polar
equation is the set of all points in the plane that can be described using polar
coordinates that satisfy the equation. This definition is worded as such in
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order to take into account that each point in the plane can have infinitely
many representations in polar coordinates.

Example Sketch the curve described by the polar equation

r = cos 2θ, 0 ≤ θ ≤ 2π.

Solution This curve can be sketched by evaluating r = cos 2θ at several
values of θ. For each such value, the point (r, θ) = (cos 2θ, θ) can be plotted
by traversing r units along the ray that makes the angle θ with the polar axis
(which is the x-axis), if r is positive; otherwise, use the ray that makes the
angle θ+π with the polar axis. The curve r = cos 2θ is illustrated in Figure
3.9. The circles indicate the points corresponding to θ = 0, π/4, π/2, 3π/4,
π, 5π/4, 3π/2, 7π/4, and 2π. 2

Figure 3.9: Curve described by the polar equation r = cos 2θ, where 0 ≤
θ ≤ 2π.
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Example Sketch the curve described by the polar equation

r = sin θ, 0 ≤ θ ≤ 2π.

Solution Figure 3.10 displays the curve, which can be plotted using the
same approach as in the previous example. The circles indicate the points
corresponding to θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, and 2π. The
circle is traced twice, once for 0 ≤ θ ≤ π, and again for π ≤ θ ≤ 2π. 2

Figure 3.10: Curve described by the polar equation r = sin θ, where 0 ≤
θ ≤ 2π.

Example Identify the curve r = 3 sin θ by finding a Cartesian equation for
the curve.

Solution Multiplying both sides by r yields r2 = 3r sin θ. Using the rela-
tions y = r sin θ and x2 + y2 = r2, we obtain the Cartesian equation

x2 + y2 = 3y.
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Moving the 3y to the left side and completing the square yields

x2 + y3 − 3y +
9

4
=

9

4
,

which, upon factoring, becomes

x2 +

(
y − 3

2

)2

=

(
3

2

)2

.

This is the equation of a circle with center (0, 3/2) and radius 3/2. 2

Example Identify the curve r = csc θ by finding a Cartesian equation for
the curve.

Solution Applying csc θ = 1/ sin θ and multiplying both sides by sin θ yields
r sin θ = 1, which, in Cartesian coordinates, becomes y = 1. This curve is a
horizontal line that lies one unit above the x-axis. 2

Example Find a polar equation for the curve represented by the Cartesian
equation x2 + y2 = 2cx.

Solution Using the relations x2 + y2 = r2 and x = r cos θ, we obtain the
polar equation r2 = 2cr cos θ, which can then be divided through by r to
obtain a polar equation in standard form, r = 2c cos θ. This curve is a circle
with center (c, 0) with radius c. 2

3.3.3 Tangents to Polar Curves

We now determine the slope of a tangent line of a polar curve. If the curve
can be described by an equation of the form y = F (x) for some differentiable
function F , then, by the Chain Rule,

dy

dθ
= F ′(x)

dx

dθ
,

but since F ′(x) = dy/dx, it follows that

dy

dx
=
dy/dθ

dx/dθ
.

Expressing x and y in polar coordinates and applying the Product Rule
yields

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.
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It can be shown that this result also holds for curves that cannot be described
by an equation of the form y = F (x).

We make the following observations about tangents to polar curves,
based on the above expression for their slope:

• Horizontal tangents occur when dy/dθ = 0, provided that dx/dθ 6= 0.

• Vertical tangents occur when dx/dθ = 0, provided that dy/dθ 6= 0.

• At the pole, when r = 0, the slope of the tangent is given by

dy

dx
=

dr
dθ sin θ
dr
dθ cos θ

= tan θ

provided dr/dθ 6= 0.

Example Given the curve defined by the polar equation r = sin θ, where
0 ≤ θ ≤ π, determine the values of θ at which the tangent to the curve is
either horizontal or vertical.

Solution As we learned in the previous example, this curve is a circle with
center (0, 1/2) and radius 1/2. The curve is displayed in Figure 3.10. Using
the formula for the slope of the tangent, we have, by double-angle formulas,

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
(cos θ) sin θ + (sin θ) cos θ

(cos θ) cos θ − (sin θ) sin θ

=
2 sin θ cos θ

cos2 θ − sin2 θ

=
sin 2θ

cos 2θ
= tan 2θ.

Alternatively, we can use the relations

x = r cos θ, y = r sin θ

to compute dy/dθ and dx/dθ directly. In this case, we have

x = sin θ cos θ, y = sin2 θ
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or, from double-angle and half-angle formulas,

x =
sin 2θ

2
, y =

1− cos 2θ

2

and therefore
dy

dθ
= sin 2θ,

dx

dθ
= cos 2θ,

which yields dy/dx = tan 2θ as before.

The tangent is horizontal when dy/dθ = 0 and dx/dθ 6= 0. This occurs
when θ = 0, π/2, or π. The tangent is vertical when dx/dθ = 0 and dy/dθ 6=
0. This occurs when θ = π/4 and θ = 3π/4. 2

Example Let P be any point (except the origin) on the curve r = f(θ). If
ψ is the angle between the tangent line at P and the radial line OP , show
that

tanψ =
r

dr/dθ

[Hint: Observe that ψ = φ− θ in the figure on page 504 in the text.]

Solution We have

tanψ = tan(φ− θ) =
tanφ− tan θ

1 + tanφ tan θ
.

Because φ is the angle that the tangent line makes with the positive x-axis,

tanφ =
dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

It follows that if we write r′ = dr/dθ, then

tanψ =
r′ sin θ+r cos θ
r′ cos θ−r sin θ −

sin θ
cos θ

1 + r′ sin θ+r cos θ
r′ cos θ−r sin θ

sin θ
cos θ

,

we can simplify by putting all fractions over a common denominator. Be-
cause the common denominators are both equal to cos θ(r′ cos θ − r sin θ),
they cancel, and we obtain

tanψ =
(r′ sin θ + r cos θ) cos θ − (r′ cos θ − r sin θ) sin θ

(r′ cos θ − r sin θ) cos θ + (r′ sin θ + r cos θ) sin θ
.

Expanding, and using sin2 θ + cos2 θ = 1, we obtain tanψ = r/r′. 2



174CHAPTER 3. PARAMETRIC CURVES AND POLAR COORDINATES

3.3.4 Summary

• A point can be represented by polar coordinates (r, θ), where r is the
distance between the point and the origin, or pole, and θ is the angle
that a line segment from the pole to the point makes with the positive
x-axis.

• To convert from polar coordinates to Cartesian coordinates (x, y), one
can use the formulas x = r cos θ and y = r sin θ.

• To convert from Cartesian coordinates to polar coordinates, one can
use r =

√
x2 + y2, and θ = tan−1(y/x) if x < 0. If x < 0, then

θ = tan−1(y/x) + π. If x = 0, θ = π/2 if y > 0, and −π/2 if y < 0.

• To graph a curve defined by a polar equation of the form r = f(θ),
one can compute r for various values of θ, and use polar coordinates
to plot the corresponding points on the curve.

• To compute the slope of the tangent to a polar curve r = f(θ), one
can differentiate x = f(θ) cos θ and y = f(θ) sin θ with respect to θ,
and then use the relation dy/dx = (dy/dθ)/(dx/dθ).

3.4 Areas and Lengths in Polar Coordinates

In this section, we learn how to compute areas of regions and lengths of
curves, for regions and curves that are most easily described using polar
equations instead of Cartesian equations.

3.4.1 Area

Consider a region bounded by a curve with polar equation r = f(θ) and
the rays θ = a and θ = b. The area of such a region would be difficult to
compute if working in Cartesian coordinates, but can be obtained in polar
coordinates using the formula for the area of a sector of a circle of radius r
and central angle θ,

A =
1

2
r2θ.

To compute the area of such a region, we can divide the interval [a, b] into
subintervals of uniform width ∆θ = (b − a)/n. Then, we can approximate
the region with n circular sectors. The subinterval has endpoints [θi−1, θi],
where θi = a+ i∆θ, and the corresponding sector has central angle ∆θ and
radius f(θ∗i ), where θi−1 ≤ θai st ≤ θi.
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It follows that the area of the region can be approximated by the sum

A ≈
n∑
i=1

1

2
[f(θ∗i )]

2∆θ.

This sum is a Riemann sum, and therefore, as n → ∞, the sum converges
to the definite integral

A =

∫ b

a

1

2
[f(θ)]2dθ.

Similarly, the area of a region bounded by the rays θ = a and θ = b, as well
as the curves r = f(θ) and r = g(θ), where f(θ) ≥ g(θ) ≥ 0 for a ≤ θ ≤ b,
is given by the integral

A =
1

2

∫ b

a
[f(θ)]2 − [g(θ)]2 dθ.

Example Compute the area A of the region bounded by the curve r = θ
and the rays θ = 0 and θ = 3π/2.

Solution We have

A =
1

2

∫ 3π/2

0
θ2 dθ

=
1

2

θ3

3

∣∣∣∣3π/2
0

=
27π3

48

=
9π3

16
.

The curve is illustrated in Figure 3.11. 2

Example Compute the area A of the region bounded by the curve r =√
sin θ cos θ and the rays θ = 0 and θ = π/4.

Solution We have

A =
1

2

∫ π/4

0
(
√

sin θ cos θ)2 dθ

=
1

2

∫ π/4

0
sin θ cos θ dθ
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Figure 3.11: Curve r = θ, 0 ≤ θ ≤ 3π/2

=
1

2

∫ π/4

0

sin 2θ

2
dθ

=
− cos 2θ

8

∣∣∣∣π/4
0

=
1

8
[− cos 2(π/4)− (− cos 2(0))]

=
1

8
[− cosπ/2 + cos 0]

=
1

8
.

The curve is illustrated in Figure 3.12. 2

Example Find the area of the region (see page 508 in the text) bounded
by the curve r = 4 + 3 sin θ and the line x = 0.

Solution Points on the line x = 0 correspond to θ = −π/2 (for y < 0) and
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Figure 3.12: Curve r =
√

sin θ cos θ, 0 ≤ θ ≤ π/4

θ = π/2 (for y > 0). It follows that the area A of the region is given by the
integral

A =
1

2

∫ π/2

−π/2
(4 + 3 sin θ)2 dθ

=
1

2

∫ π/2

−π/2
16 + 24 sin θ + 9 sin2 θ dθ

=
1

2

∫ π/2

−π/2
16 + 24 sin θ + 9

1− cos 2θ

2
dθ

=
1

2

[
16θ − 24 cos θ +

9

2

(
θ − sin 2θ

2

)]∣∣∣∣π/2
−π/2

=
1

2

[
16π +

9

2
π

]
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=
41π

4
.

2

Example Find the area of the region enclosed by one loop of the curve
r = sin 2θ.

Solution We have r = 0 when θ = 0 and θ = π/2, so the interval 0 ≤ θ ≤
π/2 corresponds to one loop of the curve. Therefore, the area of the region
enclosed by this loop is

1

2

∫ π/2

0
sin2 2θ dθ =

1

2

∫ π/2

0

1− cos 4θ

2
dθ =

1

4

[
θ − sin 4θ

2

]∣∣∣∣π/2
0

=
π

8
,

where a double-angle identity was used to rewrite sin2 2θ in such a way that
it can be integrated. 2

Example Find the area of the region

that lies inside the curve r = 3 cos θ and outside the curve r = 1 + cos θ.

Solution These curves intersect when 3 cos θ = 1 + cos θ, or cos θ = 1/2,
which is the case when θ = ±π/3. Therefore, the area A of the region
between them is given by

A =
1

2

∫ π/3

−π/3
[3 cos θ]2 − [1 + cos θ]2 dθ

=
1

2

∫ π/3

−π/3
9 cos2 θ − (1 + 2 cos θ + cos2 θ) dθ

=
1

2

∫ π/3

−π/3
8 cos2 θ − 1− 2 cos θ dθ

=
1

2

∫ π/3

−π/3
8

1 + cos 2θ

2
− 1− 2 cos θ dθ

=
1

2

∫ π/3

−π/3
3 + 4 cos 2θ − 2 cos θ dθ

=
1

2

[
3θ + 4

sin 2θ

2
− 2 sin θ

]∣∣∣∣π/3
−π/3

= π.

2
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Example Find the area of the region that lies inside both of the curves
r = sin θ and r = cos θ.

Solution These curves intersect when θ = π/4. Therefore, if we divide the
region that lies inside both curves with the ray θ = π/4, we can obtain its
area A by computing

A =
1

2

∫ π/4

0
sin2 θ dθ +

1

2

∫ π/2

π/4
cos2θ dθ

=
1

2

∫ π/4

0

1− cos 2θ

2
dθ +

1

2

∫ π/2

π/4

1 + cos 2θ

2
dθ

=

[
θ

2
− sin 2θ

4

]∣∣∣∣π/4
0

+

[
θ

2
+

sin 2θ

4

]∣∣∣∣π/2
π/4

=
π

8
− 1

4
+
π

8
− 1

4

=
1

8
(π − 2).

2

3.4.2 Arc Length

Recall that the arc length of a curve represented by parametric equations

x = f(θ), y = g(θ)

is given by

L =

∫ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ,

where θ is the parameter, and the curve is defined for a ≤ θ ≤ b. Ideally we
would like to be able to compute the arc length of a curve directly from its
polar equation, instead of always having to convert to Cartesian coordinates.

Since Cartesian coordinates and polar coordinates are related by the
equations x = r cos θ, y = r sin θ, it follows from the Product Rule that

dx

dθ
=
dr

dθ
cos θ − r sin θ,

dy

dθ
=
dr

dθ
sin θ + r cos θ.

We then have(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
dr

dθ
cos θ − r sin θ

)2

+

(
dr

dθ
sin θ + r cos θ

)2
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=

(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
sin θ cos θ + r2 sin2 θ +(

dr

dθ

)2

sin2 θ + 2r
dr

dθ
sin θ cos θ + r2 cos2 θ

=

(
dr

dθ

)2

cos2 θ +

(
dr

dθ

)2

sin2 θ + r2 sin2 θ + r2 cos2 θ

=

(
dr

dθ

)2

+ r2.

It follows that the arc length of a curve can be obtained directly from its
polar equation, using the formula

L =

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ.

Example Compute the arc length L of the curve r = cos θ, where 0 ≤ θ ≤
π/2.

Solution We have dr/dθ = − sin θ, and therefore

L =

∫ π/2

0

√
r2 +

(
dr

dθ

)2

dθ

=

∫ π/2

0

√
cos2 θ + (− sin θ)2 dθ

=

∫ π/2

0

√
cos2 θ + sin2 θ dθ

=

∫ π/2

0
1 dθ

=
π

2
.

The curve is illustrated in Figure 3.13. 2

3.4.3 Summary

• The area of the region bounded by the polar curve r = f(θ), the ray
θ = a, and the ray θ = b is half of the integral of r2 from a to b.

• The arc length of a polar curve r = f(θ), where a ≤ θ ≤ b, is the
integral of

√
r2 + (dr/dθ)2 from a to b.
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Figure 3.13: Curve r = cos θ, 0 ≤ θ ≤ π/2

3.5 Review

You should now be able to complete the following types of problems:

• Eliminating the parameter from the parametric equations x = g(t),
y = h(t) of a given curve, and describing the curve using a Cartesian
equation of the form y = f(x). This requires solving x = g(t) for t,
and substituting this solution into y = h(t) to obtain y = h(g−1(x)).

• Computing the arc length of a curve y = f(x), for a ≤ x ≤ b. This
requires evaluting the integral∫ b

a

√
1 + [f ′(x)]2 dx.

Evaluating this integral may require the use of a trigonometric substi-
tution of the form x = a tan θ, for the purpose of integrating a function
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involving
√
a2 + x2. This substitution uses the identity tan2 θ + 1 =

sec2 θ. Alternatively, evaluating the integral may require recognizing
perfect squares of the form (a − b)2 = a2 − 2ab + b2 or (a + b)2 =
a2 + 2ab+ b2.

• Computing the arc length of a curve x = f(t), y = g(t), for a ≤ t ≤ b.
This requires evaluating the integral∫ b

a

√
[f ′(t)]2 + [g′(t)]2 dt.

See the comments above for tips on how to evaluate such an integral.

• Computing the equation of the tangent line at a point on a parametric
curve. This requires computing the slope dy/dx = (dy/dt)/(dx/dt),
and then using the point-slope form y − y0 = m(x − x0), where m is
the slope and (x0, y0) is a point on the line. It will also be necessary to
determine the value of the parameter t that corresponds to the given
point.

• Determining whether a given parametric curve is concave up or con-
cave down at a given point. This involves computing

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

,

where dy/dx = (dy/dt)/(dx/dt) is computed as a function of t, so that
it can readily be differentiated with respect to t.

• Computing the area of a region bounded by a parametric curve, as
well as horizontal and vertical lines. This requires using one of the
formulas∫ b

a
y dx =

∫ β

α
g(t)f ′(t) dt,

∫ d

c
x dy =

∫ β

α
f(t)g′(t) dt,

where x = f(t), y = g(t), α ≤ t ≤ β describes the curve, and f(α) = a,
f(β) = b, g(α) = c, and g(β) = d, with a ≤ b and c ≤ d. The choice
of formula depends on whether the region is bounded by two vertical
lines, in which case the first formula should be used, or two horizontal
lines, in which case the second formula should be used.
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• Converting points from Cartesian to polar coordinates, using the rela-
tions r2 = x2 + y2 and tan θ = y/x. Note that if x < 0, then the angle
obtained from tan−1(y/x) must be corrected by adding π radians to
it. Also, if x = 0 and y > 0, then θ = π/2, and if x = 0 and y < 0,
then θ = −π/2.

• Determining where a curve described by a given polar equation r =
f(θ) has horizontal or vertical tangents. This requires computing

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

If the numerator is zero but the denominator is nonzero, then the
tangent is horizontal. If the denominator is zero but the numerator is
nonzero, then the tangent is vertical.

• Computing the arc length of a curve described by a polar equation
r = f(θ), a ≤ θ ≤ b. This requires evaluating the integral

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ,

which may involve the techniques described for other problems involv-
ing arc length.

• Computing the area of a region bounded by a polar curve r = f(θ)
and the rays θ = a and θ = b. This requires evaluating the integral∫ b

a

1

2
[f(θ)]2 dθ.
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convergence, absolute, 57

convergence, conditional, 58
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linear equation, 127
linear equations, 120

Maclaurin polynomial, 19
Maclaurin series, 69
Monotonic Sequence Theorem, 31

natural numbers, 21

octant, 89
octant, first, 89
ordered triple, 87

p-series, 50
Parallelogram Law, 94
parameter, 116, 143
parametric curve, 143
parametric curve, initial point, 143
parametric curve, terminal point, 143
parametric equation, 117
parametric equations, 143
partial fraction decomposition, 43
partial sum, 38
polar axis, 165
polar equation, 168
pole, 165
power series, 42, 61
projection, 89
projection, scalar, 107
projection, vector, 107

Ratio Test, 58
recurrence relation, 22
Riemann sum, 14
right-hand rule, 113
Root Test, 59

scalar, 94
scalar multiple, 94
scalar multiplication, 94
sequence, 21

sequence, bounded, 31
sequence, decreasing, 31
sequence, increasing, 31
sequence, monotonic, 31
sequence, non-decreasing, 31
sequence, non-increasing, 31
series, alternating, 54
series, Fourier, 57
series, harmonic, 44
series, telescoping, 43
sigma notation, 37
Squeeze Theorem, 26
step function, 33
sum, series, 39
supremum, 31
symmetric equations, 117

Taylor polynomial, 19, 70
Taylor remainder, 19, 70
Taylor series, 69
term, 22
term, series, 37
Triangle Law, 94
triple product, 115

unit sphere, 90

vector, 93
vector equation, line, 116
vector equation, plane, 127
vector space, 98
vector space, closure, 98
vector, component, 95
vector, displacement, 108
vector, equal, 94
vector, initial point, 93
vector, length, 96
vector, magnitude, 96
vector, negative, 94
vector, normal, 127
vector, normalization, 100
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vector, orthogonal, 106
vector, perpendicular, 106
vector, position, 96
vector, resultant, 101
vector, subtraction, 94
vector, sum, 94
vector, terminal point, 93
vector, zero, 94


