

Prueba de evaluación de Bachillerato para el acceso a la Universidad (EBAU)

Curso 2018-2019

MATEMÁTICAS II

El examen presenta dos opciones: A y B. Elige una de ellas y responde razonadamente a los cuatro ejercicios de que consta dicha opción.

OPCIÓN A

1. Dado el sistema
$$\begin{cases} x + y + az = a \\ x + (a-1)y + az = 2 \\ -x + z = 2 \end{cases}$$

a) Estudia y clasifica el sistema según los valores de a ∈ IR.

(1.5 puntos)

b) Resuélvelo, si es posible, para el caso a = 2.

(1 punto)

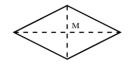
- 2. Dada la función $f(x) = \frac{e^{-x}}{x+1}$
 - a) Estudia su dominio de definición y calcula sus asíntotas.

(1 punto)

- b) Halla, si existen: máximos y mínimos e intervalos de crecimiento y decrecimiento. (1 punto)
- c) Haz un esbozo de su gráfica.

(0.5 puntos)

- 3. Sean A(3, 1, 0) y B(1, 3, 0) los vértices opuestos de un rombo situado en el plano π : z = 0.
 - a) Calcula un vector director $\overrightarrow{v_r}$ y la ecuación de la recta r a la que pertenecen los otros dos vértices del rombo C y D. (1.5 puntos)



b) Determina dichos vértices C y D sabiendo que están a una distancia de $\sqrt{2}$ unidades del punto medio M. (1 punto)

Características de un rombo: Lados iguales paralelos dos a dos. Diagonales perpendiculares que se cortan en el centro de ambas.

 Alicia tiene dos cajones. En uno tiene las camisetas y en el otro las faldas. La tabla muestra el número de todas las prendas que guarda en los dos cajones agrupadas en tres tipos: lisas, dibujos o rayas.

	Lisas	Dibujos	Rayas
Camisetas	10	5	10
Faldas	5	15	5

Se elige al azar una prenda de cada cajón. Calcula la probabilidad de que:

a) Las dos sean de rayas.

(0.75 puntos)

b) Las dos sean del mismo tipo.

(1 punto)

c) Al menos una de ellas no sea de rayas.

(0.75 puntos)

Prueba de evaluación de Bachillerato para el acceso a la Universidad (EBAU) Curso 2018-2019

OPCIÓN B

1. Sea la matriz
$$A = \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix}$$
 $x \in \mathbb{R}$

- a) Estudia para qué valores de x se cumple $A^3 I = O$ (I matriz identidad y O matriz nula). (1 punto)
- b) Calcula A^{12} para los valores de x que verifican la condición anterior. (0.75 puntos)
- c) Para x = 0 y sabiendo que ese valor verifica la condición del primer apartado, calcula, si existe, la inversa de A. (0.75 puntos)
- 2. Dadas las curvas $y = \frac{x^2}{2}$; $y = \frac{4}{x}$.
 - a) Calcula sus puntos de corte.

(0.5 puntos)

b) Esboza una gráfica de las curvas en el intervalo [1, 3].

(1 punto)

c) Calcula el área que delimitan entre ellas en el intervalo [1, 3].

(1 punto)

- 3. Dados el plano π : x + y = 1 y la recta r que pasa por el punto A(1, 1, 1) con vector director $\overrightarrow{v_r} = (0,1,1)$. Calcula:
 - a) El punto P intersección del plano π y de la recta r.

(1.25 puntos)

b) El punto A' simétrico de A respecto al plano π .

(1.25 puntos)

- 4. Las calificaciones de un examen en una clase siguen una distribución normal de media μ = 20 y desviación típica σ = 10: Calcula:
 - a) La probabilidad de que un alumno obtenga una calificación entre 15 y 25. (1.25 puntos)
 - b) La calificación que sólo superan o igualan el 20% de los alumnos. (1.25 puntos)

Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica

 $F(x) = P(Z \le x)$; F(-0.8416) = 0.2; F(0.8416) = 0.8; F(0.4) = 0.6554; F(0.5) = 0.6915; F(0.6) = 0.7257

(1.5 puntos)

(1 punto)

SOLUCIONES:

OPCIÓN A

1. Dado el sistema
$$\begin{cases} x + y + az = a \\ x + (a-1)y + az = 2 \\ -x + z = 2 \end{cases}$$

a) Estudia y clasifica el sistema según los valores de a \in IR.

b) Resuélvelo, si es posible, para el caso a = 2.

UNA FORMA DE HACERLO.

a) Simplificando el sistema con el método de Gauss.

$$\begin{pmatrix}
1 & 1 & a & a \\
1 & a-1 & a & 2 \\
-1 & 0 & 1 & 2
\end{pmatrix} \Rightarrow \begin{cases}
\text{Fila } 2^{a} - \text{Fila } 1^{a} \\
1 & a-1 & a & 2 \\
-1 & -1 & -a & -a \\
0 & a-2 & 0 & 2-a
\end{cases} \begin{cases}
\text{Fila } 3^{a} + \text{Fila } 1^{a} \\
-1 & 0 & 1 & 2 \\
1 & 1 & a & a \\
0 & 1 & a+1 & a+2
\end{cases} \Rightarrow$$

$$\begin{pmatrix}
1 & 1 & a & a \\
0 & a-2 & 0 & 2-a \\
0 & 1 & a+1 & a+2
\end{pmatrix} \Rightarrow \{\text{Fila } 3^{a} \leftrightarrow \text{Fila } 2^{a}\} \Rightarrow$$

$$\begin{pmatrix}
1 & 1 & a & a \\
0 & 1 & a+1 & a+2 \\
0 & a-2 & 0 & 2-a \\
0 & a-2 & 0 & -(a+2)(a-2) \\
0 & 0 & -(a+1)(a-2) & -(a+2)(a-2)+2-a
\end{cases}$$

$$\begin{pmatrix}
1 & 1 & a & a \\
0 & a-2 & 0 & 2-a \\
0 & -a+2 & -(a+1)(a-2) & -(a+2)(a-2)+2-a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & a & a \\
0 & a-2 & 0 & 2-a \\
0 & -a+2 & -(a+1)(a-2) & -(a+2)(a-2)+2-a
\end{pmatrix}$$

Se distinguen tres casos diferentes.

CASO 1.
$$a \neq -1$$
; $a \neq 2$

En este caso el rango de la matriz de los coeficientes y de la matriz ampliada es 3 al igual que el número de incógnitas. El sistema es COMPATIBLE DETERMINADO. Tiene una única solución.

CASO 2.
$$a = -1$$

En este caso el sistema equivalente queda

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ -(1)(-3) + 2 + 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

El sistema

$$\begin{cases} x + y - z = -1 \\ y = 1 \text{ es INCOMPATIBLE. No tiene solución.} \\ 0 = 6 \end{cases}$$

CASO 3. a = 2

En este caso el sistema equivalente queda

$$\begin{pmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

El sistema

$$\begin{cases} x + y + 2z = 2 \\ y + 3z = 4 \text{ es COMPATIBLE INDETERMINADO. Tiene infinitas soluciones.} \\ 0 = 0 \end{cases}$$

b) Para a = 2 el sistema es compatible indeterminado y el sistema equivalente asociado

$$\begin{cases} x + y + 2z = 2 \\ y + 3z = 4 \Rightarrow \begin{cases} x + y = -2z + 2 \\ y = 4 - 3z \end{cases} \Rightarrow \begin{cases} x + 4 - 3z = -2z + 2 \\ y = 3z - 4 \end{cases} \Rightarrow \begin{cases} x = z - 2 \\ y = 3z - 4 \end{cases}$$

La solución es x = z - 2; y = 3z - 4; z = z

OTRA FORMA DE HACERLO.

a) Consideramos la matriz de los coeficientes

$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a - 1 & a \\ -1 & 0 & 1 \end{pmatrix} \text{ con determinante}$$

$$|A| = \begin{vmatrix} 1 & 1 & a \\ 1 & a - 1 & a \\ -1 & 0 & 1 \end{vmatrix} = A - 1 - A + a(a - 1) - 1 = -1 + a^2 - a - 1 = a^2 - a - 2$$

$$\text{Lo igualamos a cero y } a^2 - a - 2 = 0 \Rightarrow a = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm 3}{2} = \begin{cases} x = \frac{1 + 3}{2} = 2 \\ x = \frac{1 - 3}{2} = -1 \end{cases}$$

Lo igualamos a cero y
$$a^2 - a - 2 = 0 \Rightarrow a = \frac{1 \pm \sqrt{1+8}}{2} = \frac{1 \pm 3}{2} = \begin{cases} x = \frac{1+3}{2} = 2 \\ x = \frac{1-3}{2} = -1 \end{cases}$$

Se distinguen tres casos diferentes.

CASO 1.
$$a \neq -1$$
; $a \neq 2$

En este caso el rango de la matriz de los coeficientes y de la matriz ampliada es 3 al igual que el número de incógnitas. El sistema es COMPATIBLE DETERMINADO. Tiene una única solución.

CASO 2. a = -1

En este caso el sistema queda

$$\begin{cases} x + y - z = -1 \\ x - 2y - z = 2 \\ -x + z = 2 \end{cases} \Rightarrow \begin{cases} \text{Ecuación } 2^{\mathbf{a}} - \text{Ecuación } 1^{\mathbf{a}} \\ x - 2y - z = 2 \\ -x - y + z = 1 \\ \hline -3y \quad 0 = 3 \end{cases} \end{cases} \begin{cases} \text{Ecuación } 3^{\mathbf{a}} + \text{Ecuación } 1^{\mathbf{a}} \\ -x + z = 2 \\ \hline x + y - z = -1 \\ \hline y = 1 \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \\ y = -1 \end{cases} \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \\ y = -1 \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \\ y = 1 \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \\ y = 1 \end{cases} \Rightarrow \begin{cases} x + y - z = -1 \end{cases} \Rightarrow \begin{cases} x + y - z$$

CASO 3. a = 2

En este caso el sistema queda

$$\begin{cases} x + y + 2z = 2 \\ x + y + 2z = 2 \Rightarrow \begin{cases} \text{Ecuación } 2^{\text{a}} = \text{Ecuación } 1^{\text{a}} \\ -x + z = 2 \end{cases} \Rightarrow \begin{cases} x + y + 2z = 2 \\ -x + z = 2 \end{cases}$$

es COMPATIBLE INDETERMINADO. Tiene infinitas soluciones.

b) Para a = 2 el sistema gueda

$$\begin{cases} x+y+2z=2 \\ -x + z=2 \end{cases} \Rightarrow \begin{cases} x+y=2-2z \\ x=z-2 \end{cases} \Rightarrow \begin{cases} z-2+y=2-2z \\ x=z-2 \end{cases} \begin{cases} y=-3z+4 \\ x=z-2 \end{cases}$$

La solución es x = z - 2; y = -3z + 4; z = z

- 2. Dada la función $f(x) = \frac{e^{-x}}{x+1}$
- a) Estudia su dominio de definición y calcula sus asíntotas. (1 punto)
- b) Halla, si existen: máximos y mínimos e intervalos de crecimiento y decrecimiento. (1 punto)
- c) Haz un esbozo de su gráfica.

(0.5 puntos)

a) Veamos cuando se anula el denominador

$$x+1=0 \Rightarrow x=-1$$

El dominio es $\mathbb{R} - \{-1\}$

Asíntotas verticales. x = a

Dado el dominio la asíntota vertical es x = -1

Asíntotas verticales. y = b

Calculamos los límites:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{-x}}{x+1} = \lim_{x \to +\infty} \frac{1}{e^{x}(x+1)} = \frac{1}{\infty} = 0$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^{-x}}{x+1} = \frac{+\infty}{-\infty} = \text{Indeterminación (aplico L'Hôpital)} = \lim_{x \to -\infty} \frac{-e^{-x}}{1} = -\infty$$

La asíntota horizontal es y = 0

Asíntotas oblicuas. y = mx + n

Solo es necesario comprobar en $-\infty$.

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\frac{e^{-x}}{x+1}}{x} = \lim_{x \to -\infty} \frac{e^{-x}}{x^2 + x} = \frac{\infty}{\infty} = \text{Indeterminación} = \lim_{x \to -\infty} \frac{-e^{-x}}{2x+1} = \frac{\infty}{\infty} = \text{Indeterminación} = \lim_{x \to -\infty} \frac{e^{-x}}{2} = \infty$$

No hay asíntotas oblicuas.

b) Calculemos la derivada

$$f(x) = \frac{e^{-x}}{x+1} \Rightarrow f'(x) = \frac{-e^{-x}(x+1) - e^{-x}}{(x+1)^2} = \frac{e^{-x}(-x-2)}{(x+1)^2}$$

Igualamos a cero

$$f'(x) = 0 \Rightarrow \frac{e^{-x}(-x-2)}{(x+1)^2} = 0 \Rightarrow x = -2$$

La recta real se divide en 2 partes, antes de -2 y después de -2.

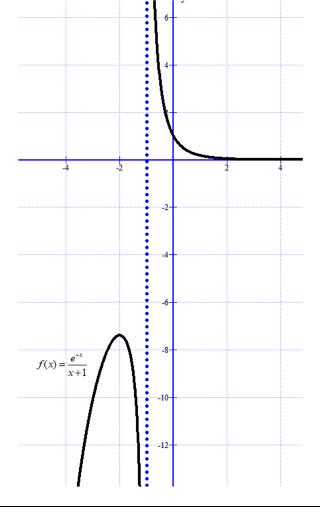
En
$$(-\infty, -2)$$
 tomamos el valor $x = -3 \rightarrow f'(-3) = \frac{e^3(3-2)}{(-3+1)^2} > 0 \rightarrow \text{La función crece.}$

En
$$\left(-2,+\infty\right)$$
 tomamos el valor $\mathbf{x}=\mathbf{0} \Rightarrow f'(\mathbf{0}) = \frac{e^0\left(0-2\right)}{\left(0+1\right)^2} < \mathbf{0} \Rightarrow \mathbf{La}$ función decrece.

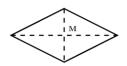
La función crece en $(-\infty, -2)$ y decrece en $(-2, +\infty)$. Por lo que tiene un máximo en x = -2

 c) Para hacer el esbozo de la gráfica solo nos falta hacer una tabla de valores

$$\begin{array}{c|cc}
x & y = \frac{e^{-x}}{x+1} \\
\hline
-3 & \frac{e^3}{-2} = -10 \\
-2 & -e^2 = -7,38 \\
0 & 1 \\
1 & \frac{e^{-1}}{2} = 0,18
\end{array}$$

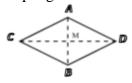


- 3. Sean A(3, 1, 0) y B(1, 3, 0) los vértices opuestos de un rombo situado en el plano π : z = 0.
 - a) Calcula un vector director v_r y la ecuación de la recta r a la que pertenecen los otros dos vértices del rombo C y D. (1.5 puntos) b) Determina dichos vértices C y D sabiendo que están a una distancia de $\sqrt{2}$ unidades del punto medio M. (1 punto)



Características de un rombo: Lados iguales paralelos dos a dos. Diagonales perpendiculares que se cortan en el centro de ambas.

a) Supongamos los vértices



La recta que pasa por A y B tiene vector director $\overrightarrow{AB} = (1,3,0) - (3,1,0) = (-2,2,0)$ y el punto M es el punto medio del segmento AB, por lo que

$$M = \frac{A+B}{2} = \frac{(3,1,0)+(1,3,0)}{2} = (2,2,0)$$
.

El vector $\overrightarrow{v_r}$ es perpendicular a $\overrightarrow{AB} = (-2, 2, 0)$ y puede ser $\overrightarrow{v_r} = (1, 1, 0)$ ya que la recta está en el plano π : z = 0.

La ecuación de la recta que une C y D es la que pasa por M y tiene vector director $\overrightarrow{v_r} = (1,1,0)$

$$\overrightarrow{v_r} = (1,1,0)$$
Pasa por el punto M(2,2,0)
$$\Rightarrow r : \begin{cases} x = 2+t \\ y = 2+t \\ z = 0 \end{cases}$$

b) Los puntos C y D son de la recta y tienen coordenadas $C(2+\alpha,2+\alpha,0)$ y

 $D(2+\lambda,2+\lambda,0)$. Cumplen dos condiciones:

Primera: M es el punto medio del segmento CD

$$M = \frac{C+D}{2} \Rightarrow (2,2,0) = \frac{(2+\alpha,2+\alpha,0)+(2+\lambda,2+\lambda,0)}{2}$$

$$(4,4,0) = (4 + \alpha + \lambda, 4 + \alpha + \lambda, 0)$$

$$4 = 4 + \alpha + \lambda$$

$$0 = \alpha + \lambda$$

$$\alpha = -\lambda$$

Segunda: distancia de C a M es $\sqrt{2}$

$$d(C,M) = \sqrt{2} \Rightarrow |\overrightarrow{CM}| = \sqrt{2} \Rightarrow |(2,2,0) - (2+\alpha,2+\alpha,0)| = \sqrt{2}$$

$$|(-\alpha, -\alpha, 0)| = \sqrt{2} \Rightarrow \sqrt{\alpha^2 + \alpha^2} = \sqrt{2} \Rightarrow 2\alpha^2 = 2 \Rightarrow \alpha = \pm 1$$

Tomamos $\alpha = -\lambda$ y $\alpha = 1$. Si tomamos $\alpha = -1$ solo se intercambian las letras C por D. Los puntos C y D tienen coordenadas $C(2+\alpha,2+\alpha,0)=(3,3,0)$ y D(1,1,0)

4. Alicia tiene dos cajones. En uno tiene las camisetas y en el otro las faldas. La tabla muestra el número de todas las prendas que guarda en los dos cajones agrupadas en tres tipos: lisas, dibujos o rayas.

	Lisas	Dibujos	Rayas
Camisetas	10	5	10
Faldas	5	15	5

Se elige al azar una prenda de cada cajón. Calcula la probabilidad de que:

- a) Las dos sean de rayas.
- b) Las dos sean del mismo tipo.
- c) Al menos una de ellas no sea de rayas.

(0.75 puntos)

(1 punto)

(0.75 puntos)

a)
$$P(\text{Camiseta de rayas y falda de rayas}) = P(\text{Camiseta de rayas}) \cdot P(F\text{alda de rayas}) = \frac{10}{25} \cdot \frac{5}{25} = \frac{50}{625} = \boxed{0,08}$$

- b) P(Las dos del mismo tipo) = P(Las dos lisas) + P(Las dos dibujos) + P(Las dos rayas) = $= P(\text{camiseta lisa}) \cdot P(\text{falda lisa}) + P(\text{camiseta dibujo}) \cdot P(\text{falda dibujo}) + P(\text{camiseta rayas}) P(\text{falda dibujo}) =$ $= \frac{10}{25} \cdot \frac{5}{25} + \frac{5}{25} \cdot \frac{15}{25} + \frac{10}{25} \cdot \frac{5}{25} = \frac{50 + 75 + 50}{625} = \frac{175}{625} = \frac{7}{25} = \boxed{0,28}$
- c) $P(Al \text{ menos una no es de rayas})=1-P(Las dos son de rayas})=1-0.08=0.92$

Aunque también se puede hacer directamente.

P(Al menos una no es de rayas)=

- =P(Solo la camiseta es de rayas o Solo la falda es de rayas o ninguna es de rayas)=
- =P(camiseta de rayas y falda no de rayas)+P(camiseta no de rayas y falda de rayas)+
- +P(camiseta no es de rayas y falda no es de rayas)=
- =P(camiseta de rayas) · P(falda no de rayas)+P(camiseta no de rayas) · P(falda de rayas)+
- +P(camiseta no es de rayas) · P(falda no es de rayas)=

$$= \frac{10}{25} \cdot \frac{20}{25} + \frac{15}{25} \cdot \frac{5}{25} + \frac{15}{25} \cdot \frac{20}{25} = \frac{200 + 75 + 300}{625} = \frac{575}{625} = \boxed{0,92}$$

OPCIÓN B

- 1. Sea la matriz $A = \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix}$ $x \in \mathbb{R}$
- a) Estudia para qué valores de x se cumple $A^3 I = O$ (I matriz identidad y O matriz nula). (1 punto)
- b) Calcula A^{12} para los valores de x que verifican la condición anterior. (0.75 puntos)
- c) Para x = 0 y sabiendo que ese valor verifica la condición del primer apartado, calcula, si existe, la inversa de A. (0.75 puntos)
 - a) Calculemos primero el valor de A³.

$$A^{2} = \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix} \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix} = \begin{pmatrix} x^{2} & -1 & -x - x \\ -x & 0 & 1 \\ -1 & x & x^{2} \end{pmatrix} = \begin{pmatrix} x^{2} & -1 & -2x \\ -x & 0 & 1 \\ -1 & x & x^{2} \end{pmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{pmatrix} x^{2} & -1 & -2x \\ -x & 0 & 1 \\ -1 & x & x^{2} \end{pmatrix} \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix} = \begin{pmatrix} x^{3} + 1 & -2x & -x^{2} - 2x^{2} \\ -x^{2} & 1 & x + x \\ -x - x & x^{2} & 1 + x^{3} \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} x^{3} + 1 & -2x & -3x^{2} \\ -x^{2} & 1 & 2x \\ -2x & x^{2} & x^{3} + 1 \end{pmatrix}$$

Resolvamos ahora la ecuación $A^3 - I = O$

$$A^{3} - I = O \Rightarrow \begin{pmatrix} x^{3} + 1 & -2x & -3x^{2} \\ -x^{2} & 1 & 2x \\ -2x & x^{2} & x^{3} + 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} x^3 & -2x & -3x^2 \\ -x^2 & 0 & 2x \\ -2x & x^2 & x^3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{vmatrix} x^{3} = 0 \\ -2x = 0 \\ -3x^{2} = 0 \end{vmatrix}$$

$$-x^{2} = 0$$

$$0 = 0 \Rightarrow x = 0$$

$$2x = 0$$

$$-2x = 0$$

$$x^{2} = 0$$

$$x^{3} = 0$$

b) Para x = 0 utilizando lo realizado en el apartado anterior tenemos las primeras potencias.

$$A^{1} = A = \begin{pmatrix} x & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & x \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$A^{2} = \begin{pmatrix} x^{2} & -1 & -2x \\ -x & 0 & 1 \\ -1 & x & x^{2} \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$
$$A^{3} = \begin{pmatrix} x^{3} + 1 & -2x & -3x^{2} \\ -x^{2} & 1 & 2x \\ -2x & x^{2} & x^{3} + 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ahora seguimos calculando la potencia pedida

$$A^{12} = A^{3} \cdot A^{3} \cdot A^{3} \cdot A^{3} = I \cdot I \cdot I \cdot I = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c) Alser
$$A^3 = I \Rightarrow A \cdot A^2 = I \Rightarrow A^2 = A^{-1}$$

$$A^{-1} = A^2 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

OTRA FORMA DE HACERLO.

Con la fórmula:

$$A^{-1} = \frac{Adj(A^t)}{|A|}$$

$$A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow A' = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} y |A| = \begin{vmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1$$

$$A^{-1} = \frac{Adj(A')}{|A|} =$$

- 2. Dadas las curvas $y = \frac{x^2}{2}$; $y = \frac{4}{x}$.
- a) Calcula sus puntos de corte.

(0.5 puntos)

b) Esboza una gráfica de las curvas en el intervalo [1, 3].

(1 punto)

c) Calcula el área que delimitan entre ellas en el intervalo [1, 3].

(1 punto)

a) Resolvamos el sistema.

$$y = \frac{x^2}{2}$$

$$y = \frac{4}{x}$$

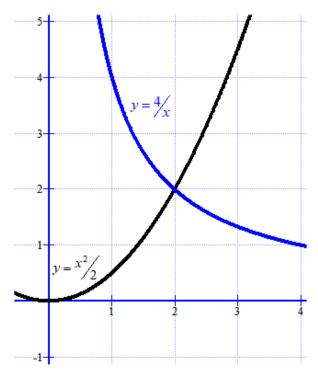
$$\Rightarrow \frac{x^2}{2} = \frac{4}{x} \Rightarrow x^3 = 8 \Rightarrow x = \sqrt[3]{8} = 2$$

$$x = 2 \Rightarrow y = \frac{4}{x} = \frac{4}{2} = 2$$

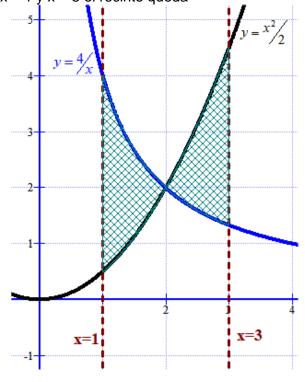
El punto de corte entre las curvas es P(2,2).

b) Haciendo una tabla de valores.

x	$y = \frac{x^2}{2}$	x	$y = \frac{4}{x}$
0	0	0	No existe
1	0,5	1	4
2	2	2	2
3	4,5	3	1,33



c) Si añadimos las rectas x = 1 y x = 3 el recinto queda



El área de este recinto se calcula con la integral definida siguiente

- 3. Dados el plano $\pi: x+y=1$ y la recta r que pasa por el punto A(1, 1, 1) con vector director $\overrightarrow{v_r} = (0,1,1)$. Calcula:
- a) El punto P intersección del plano π y de la recta r.

(1.25 puntos)

b) El punto A' simétrico de A respecto al plano π .

(1.25 puntos)

a) Hallemos la ecuación de la recta r.

$$\overrightarrow{v_r} = (0,1,1)$$
Pasa por A(1,1,1)
$$\Rightarrow r \equiv y = 1+t$$

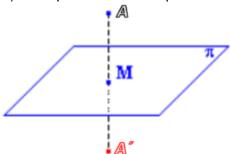
$$z = 1+t$$

Resolvamos el sistema formado por la ecuación del plano y de la recta.

$$\begin{array}{c}
\pi: x+y=1 \\
x=1 \\
r \equiv y=1+t \\
z=1+t
\end{array}
\Rightarrow
\begin{cases}
x=1 \\
y=1-1=0 \\
z=1-1=0
\end{cases}$$

El punto de intersección es P(1,0,0)

b) Nos piden obtener el punto simétrico como aparece en el dibujo.



Hallo primero la ecuación de la recta s que pasa por A, A´ y M. Para ello tengo su vector director que es el vector normal del plano $\overrightarrow{v_s} = \overrightarrow{n} = (1,1,0)$ y un punto A(1,1,1).

$$\overrightarrow{v_s} = (1,1,0)$$
Pasa por $A(1,1,1)$ $\Rightarrow s = \begin{cases} x = 1 + t \\ y = 1 + t \\ z = 1 \end{cases}$

Determinemos las coordenadas del punto M intersección del plano $\pi: x + y = 1$ y la recta s.

$$\pi: x + y = 1$$

$$s = \begin{cases} x = 1 + t \\ y = 1 + t \\ z = 1 \end{cases} \Rightarrow 1 + t + 1 + t = 1 \Rightarrow 2t = -1 \Rightarrow t = -\frac{1}{2} \Rightarrow \begin{cases} x = 1 - \frac{1}{2} = \frac{1}{2} \\ y = 1 - \frac{1}{2} = \frac{1}{2} \Rightarrow M\left(\frac{1}{2}, \frac{1}{2}, 1\right) \\ z = 1 \end{cases}$$

Como M es el punto medio del segmento AA´ se cumple

$$M = \frac{A + A'}{2} \Rightarrow 2M = A + A' \Rightarrow A' = 2M - A$$

$$A' = 2\left(\frac{1}{2}, \frac{1}{2}, 1\right) - (1, 1, 1) = (1, 1, 2) - (1, 1, 1) = (0, 0, 1)$$

El simétrico de A(1,1,1) respecto del plano $\pi: x+y=1$ es el punto A' (0,0,1)

- 4. Las calificaciones de un examen en una clase siguen una distribución normal de media μ = 20 y desviación típica σ = 10: Calcula:
- a) La probabilidad de que un alumno obtenga una calificación entre 15 y 25. (1.25 puntos)
- b) La calificación que sólo superan o igualan el 20% de los alumnos. (1.25 puntos)

Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica 1.

$$F(x) = P(Z \le x); F(-0.8416) = 0.2; F(0.8416) = 0.8; F(0.4) = 0.6554; F(0.5) = 0.6915; F(0.6) = 0.7257$$

X=Calificación de un examen. X=N(20,10).

a)
$$P(15 < X < 25) = \{Tipificamos\} = P\left(\frac{15 - 20}{10} < \frac{X - 20}{10} < \frac{25 - 20}{10}\right) =$$

$$= P(-0, 5 < Z < 0, 5) = P(Z < 0, 5) - P(Z < -0, 5) =$$

$$= P(Z < 0, 5) - (1 - P(Z < 0, 5)) = 0,6915 - (1 - 0,6915) = \boxed{0,3829}$$

b)
$$P(X > x) = 0,20$$

$$P\left(\frac{X - 20}{10} > \frac{x - 20}{10}\right) = 0,2$$

$$P\left(Z > \frac{x - 20}{10}\right) = 0,2$$

$$1 - P\left(Z < \frac{x - 20}{10}\right) = 0,2$$

$$P\left(Z < \frac{x - 20}{10}\right) = 1 - 0,2 = 0,8$$

Buscando en la tabla de la normal N(0,1) el valor 0,8

$$P\left(Z < \frac{x - 20}{10}\right) = 0.8 \Rightarrow \frac{x - 20}{10} = 0.8416 \Rightarrow x - 20 = 8,416 \Rightarrow x = 28,416$$

La puntuación pedida es de 28,416 puntos.