Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers

R.L. Bain

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers

R.L. Bain

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093

Prepared under Task No. BF15.3436

January 1992

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling 423-576-8401

Available to the public from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 703-605-6000 or 800-553-6847 or DOE Information Bridge http://www.doe.gov/bridge/home.html

Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste

MATERIAL AND ENERGY BALANCES FOR METHANOL FROM BIOMASS USING BIOMASS GASIFIERS

Richard L. Bain January 14, 1992

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401-3393

MATERIAL AND ENERGY BALANCES FOR METHANOL FROM BIOMASS USING BIOMASS GASIFIERS

The objective of the Biomass to Methanol Systems Analysis Project (BF15.3436) is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. One step in this process is the development of integrated methanol production simulation models. This report summarizes the development of simulation models based upon the Institute of Gas Technology (IGT) for methanol production "Renugas" gasifier and the Battelle Columbus Laboratory (BCL) gasifier. The IGT "Renugas" gasifier is a high-pressure, oxygen-blown, fluid-bed gasifier which has been operated at the 10 ton per day (TPD) pilot plant scale of operation on a number of biomass feeds and the BCL gasifier is a low pressure indirectly heated gasifier which has also been operated at the 10-TPD scale. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of IGT and BCL gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

The IGT model was used to perform a simulation for the Hawaii Natural Energy Institute (HNEI), assuming IGT's experiment 13-G as input data. The simulation indicated that approximately 100.5 million gallons of methanol per year can be produced from 2,000 d tons per day (dTPD) of bagasse with an IGT gasifier operating at 1526 °F and 319 psia. The BCL model was used to simulate and BCL gasifier/methanol synthesis system. The gasifier simulation included operation at 1675 °F, 20 psia, and a quench step. The simulation indicated that approximately 110.5 million gallons per year of methanol could be produced.

An addendum to this report will be issued by the end of the first quarter of 1992, in which the results of IGT gasifier operation at 1800 $^{\circ}$ F, and BCL gasifier operation with hot gas conditioning are shown.

Table of Contents

1.	Technology Description
2.	Analysis of IGT Biomass Gasification Data
3.	ASPEN Model for the IGT Gasifier System
4.	IGT Case Study
5.	Analysis of BCL Biomass Gasification Data
6.	ASPEN Model for the BCL Gasifier System
7.	BCL Case Study
8.	References
9.	Appendices
	1. IGT Gasifier Data
	2. Least Squares Fit of Gasifier Variables
	3. IGT Gasifier - Conditions and Correlations
	4. ASPEN Input Data - IGT Gasifier
	5. ASPEN Program Listig - IGT Case
	6. Hawaii Material Balance Information
	7. BCL Gasifier Data
	8. BCL Least Squares Fits
	9. BCL: Feed Analysis and Yield Correlations
	10. ASPEN Input file: BCL Recycle Case
	11. ASPEN Program Listing - BCL Case

Page

List of Figures

1.	Thermochemical Production of Methanol from Biomass
2.	Process Simulation Schematic - IGT Gasifier/
	Methanol Synthesis
3.	Process Simulation Schematic - BCL Gasifier/
	Methanol Synthesis, Part A
4.	Process Simulation Schematic - BCL Gasifier/
	Methanol Synthesis, Part B

Page

Technology Description

The thermochemical production of methanol from biomass involves the production of a synthesis gas rich in hydrogen and carbon monoxide which is then catalytically converted into methanol. Production of the synthesis gas is accomplished by thermal gasification.

The unit operations involved in methanol production from biomass are divided into the following major areas: 1) feed preparation, 2) gasification, 3) synthesis gas modification, and 4) methanol synthesis and purification. In order to understand the need for these processing steps a brief discussion of the chemistry of methanol production is required. Wood will be used as a typical biomass feedstock. Wood is a complex mixture (Graboski and Bain 1979) of organic The major types of compounds are lignin and compounds and polymers. carbohydrates (cellulose and hemicellulose) whose ratios and resulting properties are species dependent. Lignin, the cementing agent for cellulose is a complex polymer of phenylpropane units. Cellulose is a polymer formed from d(+)-glucose while the hemicellulose polymer is based on hexose and pentose sugars. Wood has low ash, nitrogen, and sulfur contents. In order to estimate yields during gasification the complex material must be reduced to a simplified chemical formula, such as $CH_{1,4}O_{0,6}$. Elements such as sulfur and nitrogen are typically present in very small amounts and do not need to be considered in terms of overall chemistry.

The combustion of wood can be ideally represented by:

$$CH_{1,4}O_{0,6} + 1.05 O_2 ----> CO_2 + 0.7 H_2O$$
 (1)

Oxygen blown gasification can be thought of as incomplete combustion or partial oxidation. Gasification using a minimum amount of oxygen can be represented by:

$$CH_{1,4}O_{0,5} + 0.2 O_2 ----> CO + 0.7 H_2$$
 (2)

In cases where no oxygen is used an "ideal" gasification reaction can be represented by:

$$CH_{1.4}O_{0.6}$$
 ----> 0.6 CO + 0.4 C + 0.7 H₂ (3)

This pyrolysis reaction is endothermic and heat is needed to make the reaction proceed. This heat is provided by the oxidation reactions shown above or by indirect heat transfer. While these ideal reactions are simple, actual gasification is more complex and intermediate compounds such as tars and methane are formed which must be further processed before the synthesis gas can be used to produce methanol.

Methanol is formed catalytically by the following reaction:

$$CO + 2 H_{2} <---> CH_{3}OH$$
 (4)

It can be seen that two molecules of hydrogen are required for each molecule of carbon monoxide. Gasification may produce a gas with a hydrogen to carbon monoxide ratio as low as one-half. In this case water is added and some of the carbon monoxide is used to produce hydrogen by the catalytic shift conversion reaction:

$$CO + H_2O ----> CO_2 + H_2$$
 (5)

The methanol synthesis reaction is an equilibrium reaction and does not proceed to completion. In order to obtain economic yields unreacted gas is recycled to the synthesis reactor. While not detrimental to process chemistry, inert gases such as methane must be purged from the system, resulting in loss of yield and an economic penalty. Concentrations of methane larger than one or two percent typically result in unacceptable economic penalties. Therefore, synthesis gases containing high levels of methane are steam reformed prior to methanol synthesis. The primary catalytic reforming reaction is:

$$CH_4 + H_2O ----> CO + 3 H_2$$
 (6)

In addition the shift conversion reaction shown above also occurs in the reformer.

Carbon dioxide also reacts with hydrogen to produce methanol, but consumes more hydrogen per mole of methanol formed than when using carbon monoxide. Most of the carbon dioxide is therefore removed from the synthesis gas prior to methanol synthesis.

With this knowledge of chemistry as a basis the unit operations can be discussed. Figure 1 shows the major routes for production of methanol from biomass on a simplified basis. These routes differ primarily in the type of gasification process chosen.

Thermochemical Routes to Methanol from Biomass

<u>3</u>

The feed preparation section of a biomass to methanol process involves wood storage and handling, size reduction, and drying. Size reduction is process specific. Drying is performed to minimize feed degradation during storage and to optimize the overall process energy balance. Drying to 10% to 15% moisture content is accomplished using waste process heat. This waste heat may come from various unit operations in an integrated methanol production facility. For a system with an indirect gasifier, this waste heat comes from hot flue gases produced during char combustion. For a direct oxidative gasifier system the waste heat comes from reformer furnace flue gases. The heat required to dry biomass from 50% moisture to 10% moisture represents about 10% of the heating value of the biomass.

Gasifiers can be divided into three major classes: 1) air gasifiers, 2) oxygen gasifiers, and 3) indirect gasifiers. This classification is based primarily upon the method of supplying the heat necessary to drive the endothermic pyrolysis reactions, the carbon-steam reaction and the carbon-carbon dioxide reaction. Gasification is an old technology for converting coal and biomass into a gas which can be used in various technical processes. Coal gasification is commercial technology used to produce substitute natural gas (Great Plains), gasoline and diesel fuel (Sasol), and methanol (Tennessee Eastman as an intermediate in acetic anhydride production and SASOL as an intermediate in formaldehyde production). Biomass gasification, electricity and heat.

Biomass gasification has not been commercially developed in this country because of the abundant supplies of natural gas, petroleum, and coal. Because of the differences between coal and biomass, coal gasifiers are not directly usable for biomass gasification. Differences in reactivity (with biomass being more reactive) change required operating temperatures, pressures, and residence times. Difference in density between coal and biomass requires modification of the solids feeding systems. The ancillary facilities, such as utilities and waste treatment can be applied to biomass gasification except that biomass gasifiers do not require as extensive clean up for sulfur or nitrogen derived compound emissions as do coal gasifiers because of the low sulfur and nitrogen content of wood. A number of gasifiers are being developed in this country, in Canada, in Europe, and in other countries to process biomass. Because of the high reactivity of biomass they are typically operated at lower temperatures than are coal gasifiers. To date, gasifier development has concentrated on production of low and medium BTU gas for use in electrical generation and as a substitute natural gas. Development has not been specific for methanol production.

Air gasifiers use the oxygen in air to provide process heat. A portion of the feed is burned, and the heat of combustion is used to gasify the remaining feed. The nitrogen present in air acts as a diluent in methanol production and leads to unattractive economics. Air gasification product can be used for electricity generation, and for ammonia synthesis.

In order to reduce the amount of inert gas in the gasifier product stream relatively pure oxygen can be used in place of air. While the use of oxygen will produce a gas suitable for downstream synthesis gas processing, oxygen is expensive and accounts for a large percentage of plant capital and operating costs. For example, oxygen costs \$40 to \$60 dollars per ton, and is typically used at the rate of 0.25 to 0.35 ton oxygen per ton of biomass in oxygen gasification. This translates to a cost of \$10 to \$21 per ton of biomass processed.

Oxygen gasifiers are operated at both low and high pressure. A low pressure oxygen (LPO) gasifer presently being evaluated for biomass gasification is the Koppers-Totzek (K-T) gasifier. The K-T gasifier (Probstein and Hicks 1982, Chem Systems 1990) is an entrained flow gasifier whose operation requires that the biomass be ground very fine, minus 30 mesh (minus ca. 0.02 inches). The required comminution adds appreciably to feed preparation costs. Operation at low pressure in the presence of oxygen produces little methane and tars. The hydrogen to carbon monoxide ratio is less than one, comparable that of indirect gasifiers. The Union Carbide Corporation Purox (Keenan 1977) process has been developed for municipal solid waste gasification. The hydrogen to carbon monoxide ratio in the produced gas is also less than one.

High pressure oxygen (HPO) gasifiers are being developed to improve on the economics of LPO gasifiers. Typically these gasifiers are fluid bed gasifiers

<u>5</u>

which are fed fairly large wood chips, e.g. minus 2 inches. Oxygen and steam are injected near or at the bottom of the reactor and react with the wood, char and synthesis gas. Fluid bed reactors have the advantage of good mixing of the feed solids, uniform bed temperature, and rapid equilibrium between solids and gases. However, operation at high pressure favors the formation of methane. Operation at high pressure reduces gasifier capital cost and downstream compression costs, but downstream processing to remove or reform tars and methane adds appreciably to capital and operating costs. The Winkler and Institute of Gas Technology (IGT) gasifiers are representative of HPO fluid bed gasifiers. The Texaco gasifier is a representative HPO entrained flow gasifier. The Winkler and Texaco gasifiers have been developed for coal. The IGT gasifier (Evans et al 1982) is designed for biomass operation and has been operated at the twelve ton per day scale.

Indirect (IND) gasifiers produce a solid carbon-rich char, see equation 3, which is reacted with air in a separate combustor to provide process heat. This heat is transferred to the gasifier by circulation of hot inert solids, or by indirect heat transfer through the walls of the gasifier or through the walls of heat exchange tubes. IND gasifiers typically produce a synthesis gas rich in carbon monoxide, and with low carbon dioxide levels. In order to produce sufficient char to provide all the heat necessary for gasification these gasifiers are normally operated at relatively low temperatures, 1300 to 1600 °F. At these temperatures synthesis gas yields are reduced and methane concentration is high. The addition of a catalyst may improve the hydrogen to carbon monoxide ratio Downstream reforming is required for methanol synthesis. substantially. Operation of developmental reactors has been directed to production of medium BTU gas, not toward methanol synthesis gas production. The Battelle-Columbus Laboratory (BCL) gasifier (Feldmann et al, 1988) and the University of Missouri-Rolla (UMR) gasifier (Flanigan et al 1988) are typical of IND gasifiers developed for biomass processing. Both of these gasifiers have been operated at the pilot scale.

The synthesis gas exiting the gasifier contains small amounts of tar and char which must be removed prior to downstream catalytic conversion operations. Typically, gasification systems use scrubbers to remove tars. While efficient in

<u>6</u>

contaminant removal scrubbers produce a dirty water stream which must be further processed. An alternative to scrubbing is hot gas cleanup. In coal gasification systems operated at high temperature tar removal is generally not required, and hot gas cleanup is directed toward removal of sulfur compounds. Hot gas cleanup systems are being developed for biomass gasifiers in Europe. The Studsvik MINO process (Rensfelt and Ekstrom 1989) in Sweden includes a catalytic tar conversion operation and has been operated at a pilot scale. In France the Cruesot Loire system (Philip 1986) uses a thermal tar conversion reactor. Research is ongoing in the United States in the area of hot gas cleanup for biomass gasifiers, but large pilot operations have not been undertaken to date.

All unit operations downstream of the gas cleanup operation are commercial technology, although potentially improved technologies are being investigated. Steam-methane and steam-naphtha reformers are the primary method of production of hydrogen by the petroleum industry and have been operated for many years. Likewise, shift conversion reactors have been operated commercially for many years as a part of steam-reformer systems. In 1989 approximately 7,345 million gallons of methanol production capacity existed worldwide (Crocco 1989) using thermal conversion operations. Eighty-six percent of this production capacity uses steam-reforming operations followed by catalytic methanol synthesis. The primary commercial methanol synthesis processes are licensed by ICI and Lurgi.

A liquid phase methanol synthesis concept is being investigated by Brookhaven National Laboratory (Mahajan etal 1989) in which a novel liquid phase catalyst is used to catalytically convert synthesis gas to methanol at low temperature (ca. 110-130 °C) and low pressure (ca. 180-360 psia). Single pass conversions of 90 percent of the limiting reactant, typically CO, with high selectivity, over 95 percent, to methanol have been reported. Another liquid phase methanol process is under development by Air Products and Chem Systems (Studer etal 1989) in which a solid catalysts is suspended in an organic solvent. The process has been tested at the PDU scale, up to 12 TPD of methanol production, for extended periods of time on CO rich gases. Thermal efficiencies are reported to be 90-94 % for the synthesis step. These single pass methanol synthesis processes will most probably be best utilized in conjunction with syngas generation processes producing low methane content syngas, or in a combined process where the unreacted methanol synthesis gas is used for electricity generation.

Technical development efforts for production of methanol from biomass are concentrated in the area of gasification. As stated before these efforts are primarily directed toward production of medium BTU gas for electrical generation or for fuel use and not for synthesis gas production. However, results obtained are directly applicable to gasification for methanol production. Gasification systems are being developed in the United States, in Canada, and in Europe. This discussion will concentrate on biomass gasifiers being developed in the United States.

Five gasifier systems are actively being developed in the United States for biomass gasification. These systems are listed below:

- Battelle Columbus Laboratories (BCL)
- Institute of Gas Technology (IGT)
- Manufacturing and Technology Conversion International Incorporated (MTCI)
- Syngas, Inc. (SGI)
- University of Missouri-Rolla (UMR)

BCL Gasifier

The BCL gasifier system (Feldmann et.al., 1988) is a dual bed IND gasifier system operated in an entrained flow mode. Heat for gasification is supplied by hot sand recirculating between a separate combustion vessel and the gasifier. Residual char remaining after gasification of the wood provides the fuel for the gasifier. The system has been operated at a 25 ton per day scale in pilot plant operation. The gasifier produces a synthesis gas with a low hydrogen to carbon ratio, high methane content and some tars. For methanol production the tars will have to be removed and the methane reformed to produce a suitable synthesis gas. The pilot system has been operated under conditions giving energy self sufficiency on a gasifier stand alone basis. It is possible that higher temperature operations are possible in an integrated plant where a portion of purge gases from the methanol synthesis loop can be used to make up shortfalls

<u>8</u>

in heat available from char combustion. At higher temperatures tar yield and methane content will both be reduced.

IGT Gasifier

The IGT gasifier (Evans et.al., 1988) is a HPO gasifier operated in the fluid bed mode. Oxygen and steam are introduced near the bottom of the fluid bed reactor. Oxygen reacts with a portion of the feed and gasification products to supply the heat required for gasification. The system is designed to produce a medium BTU gas from biomass at moderate temperatures, 1400° to 1800°F and high pressures, 100 to 350 psia. The IGT gasifier has been operated at a 12 tons per day scale. The product gas is high in methane and contains some tars. For methanol production tars will have to be removed and the gas reformed to reduce the methane concentration.

MTCI Gasifier

The MTCI gasifier (MTCI 1990) is an IND gasifier operated in the fluid bed mode at moderate temperatures, ca. 1200° to 1300°F and atmospheric pressure. Heat for the gasification reaction is supplied indirectly through heat exchange tubes placed in the fluid bed. A pulse combustion system is used to increase the rate of heat transfer from the combustion flue gas to the fluid bed. To date natural gas has been used as the fuel for combustion, but a portion of the produced gas would probably be used for commercial operations. In addition to the high heat transfer rate, operation of the system is characterized by the use of a catalytic fluidization solid which results in product gases having high hydrogen to carbon monoxide ratios. As for the previous gasifiers the product gas contains methane and tars and will require cleanup and reforming in commercial operations. Only limited pilot runs have been performed at a 0.4 ton per day scale. For methanol production tars will have to removed, and the gas reformed to produce a suitable synthesis gas, assuming operation at conditions comparable pilot operation conditions.

SGI Gasifier

The SGI gasifier (Reed et. al., 1988) is a stratified downdraft gasifier which can be operated using air or oxygen as a LPO or HPO gasifier. The system has been operated on a limited basis as a HPO gasifier at the 24 ton per day scale. Original development of the gasifier was performed by the Solar Energy Research Institute from 1981 to 1985. The technology was licensed to SynGas, Inc., in the mid 80's for commercial development. The unit operates as a moving bed gasifier with co-current flow of oxygen or air in a downward direction. The design produces a minimum of tars. The system is designed to produce a low to medium BTU fuel gas containing a low hydrogen to CO ratio, some methane, and some tars.

UMR Gasifier

The UMR gasifier (Flanigan et.al., 1988) is an IND gasifier operated as a fluid bed reactor with heat supplied via heat exchanger tubes internal to the bed. Heat is supplied by high temperature combustion flue gas. In pilot operations natural gas has been used for combustion fuel, but in commercial operation char or a portion of gasifier product gas would be used. The system has been operated at the 3.6 short ton per day scale at relatively low temperatures. Operation at low temperatures gives higher char and tar yields and lower gas yields than the other gasifiers under development. Temperature may be limited by maximum indirect heat transfer rates. The gas will have to be reformed and tar destruction will be required to make a suitable synthesis gas feed. Because of operation at low temperature the tar production in this gasifier is an order of magnitude larger than in the other gasifiers. Higher temperature or catal bed operation of the system would produce a product stream similar to that of -MTCI gasifier.

To summarize technology status, a number of gasifiers are under development which have the potential to produce a synthesis gas suitable for methanol synthesis. These gasifiers are operating in the 4 to 25 ton per day scale. All systems under development are designed to produce a low to medium BTU fuel gas. None of the systems have been operated on an integrated process basis to determine operating parameters necessary for maximum methanol production. All downstream synthesis gas operations are commercial technology in which operating conditions and yields are known.

<u>10</u>

Analysis of IGT Biomass Gasification Data

The objective of modeling the IGT gasification experimental data was to put the gasifier yield data in a form which could be used as input information in the ASPEN material and energy balance simulation. The experimental data were taken from the 1988 IGT report to Pacific Northwest Laboratories (Evans et.al., 1988). The following procedure was used convert the experimental data:

- The experimental gasifier results given by Evans were input into a Lotus Spreadsheet. The data are given in Appendix 1.
- 2. The experimental yield was modified to force a 100% material balance. The modified data are given in Appendix 1.
- 3. Yields and gas compositions were correlated using linear least squares fits as polynomial functions of temperature. The least squares results are given in Appendix 2. A summary of gasifier conditions, feed properties, and yield correlations is given in Appendix 3.
- 4. The yield correlation were then used to generate ASPEN input data. The gasifier reactor model used to represent the gasifier in the ASPEN simulation is a R-YIELD reactor in which a chemical reactor is simulated by specifying component yields. This type of reactor is used when reaction stoichiometry and kinetics are unknown but yields distribution data or correlations are available. The ASPEN input data are shown in Appendix 4.

ASPEN Model for the IGT Gasifier System

The IGT gasifier based system simulated for this study is given by Figure 2. The major process components simulated were:

- 1. Feed dryer
- 2. Gasifier with no quench
- 3. Preformer: This reactor operates much like a naphtha preformer where higher hydrocarbons are converted to methane. The preformer was simulated as a stoichiometric reactor
- 4. Reformer: In the reformer methane reacts with steam to produce hydrogen and carbon monoxide. This reactor was modelled as a RGIBBS reactor, assuming equilibrium based upon minimization of Gibbs Free Energy. The reactions included in the simulation were the steam reforming reaction, the water gas shift reaction, and the CO decomposition reaction to form carbon and carbon dioxide. A steam reforming lack of equilibrium was assumed by using a minus 15 °F approach temperature for the steam reforming reaction.
- 5. Acid gas removal and recycle: This module is not rigorously modelled in this present simulation. The product stream is cooled and separation is forced by the simulation program. This module should be changed in the future to simulate a Benfield or Catacarb unit. A portion of the recovered carbon dioxide is recycled to the preformer.
- 6. The methanol compressor is modelled as a centrifugal compressor.
- 7. Methanol synthesis: The methanol synthesis is simulated as an equilibrium reactor. The reactions used are the methanol reaction and the water gas shift reaction.

<u>12</u>

8. Methanol recovery is simulated by cooling the methanol reactor product stream, and performing a flash calculation. The raw methanol stream is removed. Methanol purification is not simulated. A portion of the remaining gas is recycled to the methanol reactor, and the rest is sent to the reformer furnace.

12

- 9. Reformer furnace: Methanol synthesis purge gas is burned using a stoichiometric reactor. The assumed approach temperature between furnace flue gas and reformer exit temperature is 100 °F. The flue gas from the reformer furnace is used to raise process steam, then fed to the dryer.
- 10. Steam Generation: Water is heated using the heat given off in the methanol synthesis reaction, and in cooling excess water from the acid gas removal operation. The amount of excess steam is dependent upon heat recovery in the acid gas plant. Future changes in the simulation will improve the accuracy of this value, and affect the amount of electricity required.
- 11. Electricity Generation: Excess steam is fed to a steam turbine for production of process electricity.

A listing of the simulation program is given in Appendix 5:

IGT Case Study

The IGT simulation model was used to perform a simulation for the Hawaii Natural Energy Institute (HNEI). For this case study HNEI requested that IGT's experiment 13-G be used as input data. Therefore, the data from this experiment were normalized to ASPEN input form. The normalization procedure is given in Appendix 6. The preliminary analysis is given below. In summary, the simulation indicates that approximately 100.5 million gallons of methanol per year can be produced from bagasse using a 2000 dTPD IGT gasifier operating at 1526°F, and 319 psia. This production rate compares to 101.5 million gallons per year predicted by Chem Systems (Chem Systems, 1990) for the same gasifier operating at 1800°F and 500 psia.

Basis: 2000 dTPD Feed

Feed Analysis defined per Hawaii System A data

- I. System Configuration:
 - a. Feed dryer
 - b. Gasifier with no quench
 - c. Preformer
 - d. Reformer
 - e. Acid gas removal
 - f. Compression
 - g. Methanol Synthesis
 - h. Purge Gas Combustion (Reformer heat input)
- II. Feed:

Total	1.333E+09 1b/yr	HHV = 0.1439E+10	Btu/hr
Carbon	0.6387E+09 1b/yr		

III. Product Streams:

- A. Methanol: Overall 2582.411 lbmol/hr = 100.45 MM gal/yr = 0.66196E+09 lb/yr 49.65 % of dry wood HHV = 64,290 Btu/lb = 0.8072E+09 Btu/hr = 56.10 % Carbon 0.2481E+09 = 38.84 % of carbon in
- B. Carbon Dioxide Overall 0.89894E+09 lb/yr Carbon 0.24534E+09 lb/yr = 38.41 %
- IV. Carbon Balance Check

lb/yr

38.8 Methano] 0.2481E+09 CO2 0.8453E+09 38.4 19.3 0.1234E+09 Flue Gas 3.7 (Assoc. CO, CO2, CH4) Assoc. MeOH 0.0236E+09 ----100.2 Total UNIT OPERATIONS Α. Dryer $T = 220^{\circ}F$ Qd = 0.008876E+09 Btu/hr = 0.62 %Qwg = 0.03265E+09 Btu/hr = 2.27 % Ocond = 0.2295E+09 Btu/hr = 15.95 % B. Storage Not used in this case C. Gasifier $T = 1526^{\circ}F$, P = 319.1 psia Qg = 0.0303E+09 Btu/hr = 2.11 % +2.7 % IGT correction = 4.81 % D. Solid Separation Ash = 0.0014E+09 = 0.10 %E. Air Compressors 3916]bmo]/hr Air 1 Air 2 50 Airx 6000 4000 Refgasl 833.11 hp 5500 Ambair _ _ _ _ _ 19466]bmo]/hr Total air compressor horsepower: $(19466/5500) * (833) = 2948 \text{ hp} \approx 3000 \text{ hp}$ Cost estimate Reference: Garrett, D.E., Chemical Engineering Economics, using figure on page 271 Use 3 compressors, 1000 hp ea, 150 psia rating, Add 1 compressor as spare

۷.

Purchase Price = \$60,000 (1987)Module factor = 2.6 No. units = 4Installed Cost (1987\$) = 60,000 * 2.6 * 4 = \$624,000Reformer Loop F. 1. Inlet Conditions $T = 1261^{\circ}F$ P = 319.1 psiaSteam Added = 6200 lbmole/hr 2. Preformer - Converts non-methane hydrocarbons $T = 1196 \cdot F$ 3. Preheater $Tout = 1404^{\circ}F$ Q = 0.04773E+09 Btu/hr A = 1595 ft² 4. Reformer $T = 1600^{\circ}F$ P = 319.1 psia Q = -0.1744E+09 Btu/hr Gas Composition Comp Mole % Mole % Dry H2 26.38 47.39 CO 12.29 22.08 C02 16.68 29.96 H20 44.33 ---CH4 0.31 0.56 H2/C0 2.15 5. CO2 recycle Product/Recycle = 2553/1258 = 2.03 Methanol Synthesis G. 1. Compressor 2 Pin = 319 psia Pout = 750 psia <u>18</u>

```
Tin = 300°F
   Tout = 514^{\circ}F
   \eta = 0.95
   Hp = 6248 \approx 6250
   Cost estimate:
   Reference: Garrett, D.E., Chemical Engineering Economics,
   from figure on page 272
   Use 3 compressors (2 + 1 spare) rated at 3200 hp ea
   Base Cost (1987\$) = \$650,000
   Number
                      = 3
   Module factor
                      = 2.6
   Stainless steel
                      = 2.5
   Pressure factor = 0.9495
   Cost ($1987) = 3 * 650,000 * 2.6 * 2.5 * .9495
                 = 12.04 \text{ MM S}
   This cost compares to 7.6 MMS in Chem Systems report for
   Pin = 500 psia.
2. Htr 5 (Recycle Preheat - to eliminate condensation in recycle
   compressor) Q = -0.0038E+09 Btu/hr
3. Recycle Compressor; 30 HP
4. Htr 6 ( Used to Balance compressor preheat)
   Q = .00456E+09 Btu/hr
   0.00456 > 0.00381
                         0.K.
5. Methanol Synthesis
   T = 445^{\circ}F, P = 750 psia
   0 = 0.1144E+09 Btu/hr
   Note: Q + Agas Cooler Q used for steam production
6. Product Cooling Q = 0.0825E+09 Btu/hr = 5.73 %
   Not used in present case
7. MeOH Separation
   Q = 0.000408E+09 = 0.03 \%
   Raw Product Liquid Composition
   Comp
                    lbmol/hr
                                      Mole %
```

```
<u>19</u>
```

H2	3.11	0.10
CO	1.33	0.005
C02	242.11	8.36
H20	63.04	2.17
CH4	2.71	0.009
MeOH	2582.42	89.21

- 8. Recycle/Purge = 4360/2147 = 2.03
- H. Reformer Combustor (Furnace)
 - 1. Air Compressor shown earlier in section II-E as ambair compressor.
 - 2. Air Preheater Q = 0.0443E+09 Btu/hr A = 472 ft²
 - 3. Feed Gas Preheater Q = 0.0111E+09A = 169 ft²
 - 4. Combustor

T = 1743 °F > 1700 °F (Assumed 100 °F approach in reformer furnace.

Excess Heat = 0.002667E+09 Btu/hr = 0.18 %

I. Steam Balance

1. Generated 18,650 lbmol/hr at 319.1 psia, 902.1°F.

2. Steam G - 5365.9 lb-mol/hr Steam - 6200 lb-mol/hr Steam02 - 1800 lb-mol/hr Steam2 - 5284 lb-mol/hr

J. Steam Turbine

Inlet: $T = 900.9^{\circ}F$ P = 319.1 psia G = 5284 lb-mol/hrExit: $T = 213.1^{\circ}F$ P = 15.0 psia

Electricity = 0.02987E+09 Btu/hr = 2.08 % = 8.75 MW Generator Loss = 0.0016E+09 Btu/hr = 0.11 % Steam Condensation = 7.30 %

K. Preliminary Electrical

Water Pump	118.4	Hp		
Air Comp	3000	•		
MeOH Comp	6250			
Recycle Comp	30			
Subtotal	9398.4	Hp =	: 7	MW

Dryer/Conveyer/Feeder Acid Gas Misc

L. Energy Balance

Methano]	56.10
Drver	0.62
Wet Gas	2.27
Condense 1	15.95
Gasifier	4.81
Ash	0.10
Water	4.06
MeOH Cool	5.73
W Turb	2.08
Gen. Loss	0.11
Comb Excess	0.05
Steam Cond	7.30
	99.31

Gas Composition, Major Streams

.

.

•

Comp 🔪 Stream	Gasifier Product	Preformer Feed	Preformer Product	Reformer Product	Methanol Feed	Methanol Product	Recycle Gas
H2	17.11	11.22	12.81	26.38	66.38	50.13	72.39
CO ·	8.75	5.74	7.10	12.28	24.16	7.71	11.13
C02	21.37	19.82	19.41	16.68	5.98	11.52	12.92
H20	43.33	57.02	54.49	44.33	1.87	0.67	0.00
CH4	8.43	5.53	6.15	0.31	1.56	2.42	0.09
C2H4	0.01	0.01					
C2H6	0.62	0.41					
MEOH							
C6H6	0.1600	0.1100					
C6H6O	0.0080	0.0054					
C7H80	0.1600	0.1000					
C10H8	0.0070	0.0045					
C14H10	0.0050	0.0033					
lb-mole/hr	14221	21680	22130	24700	14570	9400	4359
T. deg F	1526	1261	1196	1600	445	445	32
P. psia	319	319	319	319	750	750	740
H. Btu/lb-mole	-74330	-86480	-84730	-66910	-21450	-45420	-28740
H/C	1.95	1.95	1.8	2.15	2.75	6.5	6.5

.

Analysis of BCL Biomass Gasification Data

The objective of modelling the BCL gasification data was to put the gasifier yield data in a form which could be input into the ASPEN process simulator. The experimental data were taken from the 1988 BCL report to Pacific Northwest Laboratories (Feldmann etal, 1988). The following procedure was used to convert the experimental data:

- 1. The experimental results were input into a Lotus Spreadsheet and normalized to force a 100 % material balance. The data are given in appendix 7.
- Yields and gas compositions were correlated using linear least squares fits as polynomial function of temperature. The least squares results are given in Appendix 8. A summary of gasifier conditions, feed properties, and yield correlations is given in Appendix 9.
- 3. The yields correlations were then used to generate ASPEN input data. These input data a given in Appendix 10.

ASPEN Model for the BCL Gasifier

The BCL gasifier based system simulated for this study is given by Figures 3 and 4. The major process componenetsa simulated were:

- 1. Feed dryer
- 2. Gasifier with quench. The gasifier was modelled as a RYield reactor. The hot sand heating system was simulated by sand heating loop and char/tar/methanol combustion loop. Heat requirements were satidfied, but the hot sand stream was not actually mixed with the gasifier stream. A recycle gas stream was simulated in the same manner.
- 3. Reformer Compressor
- 4. Preformer/Reformer: The modules was simulated in the same manner as for the IGT case.
- 5. Acid gas removal and recycle: This module was simulated in the same manner as for the IGT case.
- 6. Methanol compressor: This module was simulated as three stage centrifugal compressor with intercooling.
- 7. Methanol synthesi/recovery: Theses modules were simulated in the same manner as for the IGT case.
- 8. Reformer furnace: This module was simulated in the same manner as for the IGT case.
- 9. Steam Generation: This module was simulated in the same manner as in the IGT case.
- 10. Electricity Generation: There was no electricity generation in this simulation.

A listing of the simulation program is given in Appendix 11:

Battelle Columbus Case Study

The BCL simulation model was used to perform a simulation of base condition yields in which the raw gas leaving the gasifier was quenched and tars removed before entering the reformer train. The preliminary analysis is given below. In summary, the simulation indicates that 110.5 million gallons of methanol per year can be produced from 2000 dTPD wood. This production rate compares with 123.8 million gallons per year estimated in 1990. The differences are caused primarily by a more detailed study of dryer and steam generation heat requirements which have indicated that a larger purge gas stream from the methanol synthesis loop is required to meet process heat duty.

I. System Configuration

- a. Dryer
- b. Gasifier with quench and product gas recycle
- c. Combustor
- d. Reformer Compressor
- e. Preformer
- f. Reformer
- g. Acid gas removal
- f. Methanol synthesis compressor
- g. Methanol synthesis
- h. Reformer furnace

II. Feed

Total 1.333E+09 lb/yr HHV = 1.437E+10 Btu/hr Carbon = 0.6784E+09 lb.yr

<u>III.</u> <u>Product</u>

A. Methanol 2840 lbmol/hr = 110.5 MM gal/yr = 0.7281E+09 lb/yr 54.6 % of dry wood HHV = 64,290 Btu/gal = 0.8878E+09 Btu/hr = 61.78 % Carbon = 0.2729E+09 lb/hr = 40.23 %

B. Carbon Dioxide Overall = 0.4966E+09 lb/yr Carbon = 0.1355E+09 lb/yr

IV. Carbon Balance Check

		i D/ yr	10
Methanol	=	0.2729E+09 =	= 40.23
Carbon Dioxide	=	0.1355E+09 =	= 19.97

7 - /....

Reformer Flue Gas = 0.0633E+09 = 9.33Combustor Flue Gas = 0.1899E+09 = 27.85 Assoc. MeOH = 0.0232E+09 = 3.43_ _ _ _ _ _ _ _ 100.81 The difference is caused by small lack of closure in gasifier carbon balance. V. Dryer Temperature = $220^{\circ}F$ Pressure = 14.7 psia Q_b = 0.00225E+09 Btu/hr = 0.16 % VI. Gasifier Temperature = 1675 F Pressure = 20 psia Gasifier Feed: 166,667 lb/hr Dry wood = 16.973 1b/hr Moisture = 66,360 lb/hr (1000°F, 25 psia) Steam = $= 6,000,000 \ lb/hr \ (1975 \ F)$ Hot solids Solids/wood = 36 lb/lb = 103,300 lb/hr (1675 F) Recycle Gas Quench Temperature = 100°F Pressure = 20 psia Water treatment rate = 310,000 gph = 5,168 gpm VII. Combustor Circulation Material - SiO₂ Heat capacity = 0.2 Btu/1b/°F Circulation Rate = 6,000,000 lb/hr Combustion feeds: 25,435 1b/hr MAF char = 1,541 lb/hr Tar Ŧ 801 1b/hr Methanol ≠ = 285,447 lb/hr Air Compressor Requirements, 25 psia, 2,677 hp Compressor Cost estimate Reference: Garrett, D.E., Chemical Engineering Economics, using figure on page 271 4 - 900 hp compressors (3 + 1 spare) Purchase Price = \$59,000 (1987\$)Module factor = 2.6No. Units = 4Installed Cost = 59,000 * 2.6 * 4 = \$613,600

VIII. <u>Reformer Compressor</u>

Modelled as a 4 stage centrifugal compressor with intercooling.

Exit Temperature = $267.6^{\circ}F$ Exit Pressure = 200 psia Intercooler Temperature drop = 75°F Efficiency = 95%Cooling Required = 0.1223E+08 Btu/hr Work Required = 8,393.53 Hp **Compressor Cost Estimate** Reference: Garrett, D.E., <u>Chemical</u> Engineering Economics, using figure on page 272 4 - 2800 hp compressors (3 + 1 spare) Purchase Price = \$600,000 (1987\$) Module factor = 2.6Stainless Steel = 2.5Pressure factor = 0.7485No. Units = 4Installed Cost = 600,000*2.6*2.5*.7485*4= \$11,676,000 IX. Reformer Loop Α. Inlet Conditions Temperature = 267.6 F Pressure = 200 psia Steam Added = 8,000 lbmol/hr Β. Preformer - Converts non-methane hydrocarbons Temperature = $1000^{\circ}F$ C. Preheater Temperature Out = 1571°F Q = 0.0937E + 09 Btu/hr $\dot{A} = 16.152 \text{ ft}^2$ D. Reformer Temperature = 1600* Pressure = 200 psia Q = -0.1112E + 09 Btu/hrGas Composition Mole % Mole % dry Comp

H2	34.04	50.24
CO	18.79	27.73
C02	14.38	21.22
H20	32.24	
CH4	0.55	0.81

E. CO, Recycle
Product/Recycle = 1410/1154 = 1.22 X. Methanol Recycle A. Methanol Compressor .= 200 psia Pin Pout = 750 psia = 425°F Tin Tout = 714.4°F Efficiency = 0.95Modelled as 3 stage centrifugal compressor with intercooling. Work Required = 11,727.3 Hp Heat Removed = 0.007599E+09 Btu/hr Cost Estimate: Reference: Garrett, D.E., Chemical Engineering Economics, using figure on page 272 No. Čomp^{*}= 4 (3 + 1 spare) @ 3940 Hp ea Base Cost $(1987 \$) = \$605,000 Module Factor = 2.6Stainless Steel = 2.5 Pressure factor = 0.9495 Cost = 605,000*4*2.6*2.5*0.9495 = \$14,935,600 Heater 5 (Recycle Preheat - to eliminate condensation in recycle Β. compressor) Q = 0.002901E+09 Btu/hr C. Recycle Compressor: 22.3 Hp D. Htr 6 (Used to balance compressor preheat) Q = 0.01326E+09 Btu/hr > .002901E+09 (ok)E. Methanol Synthesis Temperature = 445° Pressure = 750 psia Q = -0.1282E + 09 Btu/hr Q used for steam production F. Product Cooling Q = 0.0826E+09 Btu/hr Not used in present case G. Methanol Separation Q = 0.0003882E+09 Btu/hr Raw Product Liquid Composition Comp lbmole/hr Mole % H2 2.82 0.09 CO 3.09 0.10 CO2 233.45 7.46 H20 18.41 0.58 CH4 5.28 0.16 MEOH 2865.25 91.59

<u>30</u>

H. Recycle/Purge = 3247/1599 = 2.03

XI. Reformer Combustor

- A. Air Compressor Work Required = 832.3 Hp Air Rate = 5500 lb-mole/hr Exit Temperature = 135.1°F Pressure = 20 psia Cost Reference: Garrett, D.E., <u>Chemical Engineering</u> <u>Economics</u>, using figure on page 271 No. Units = 3 (2+ 1 spare) Base Cost = \$46,000 (1987 \$) Module factor = 2.6 Cost = 46,000 * 2.6 * 3 = \$358,800
- B. Air Preheater Q = 0.04198E+09 Btu/hr A = 425 ft²
- C. Feed Gas Preheater Q = 0.005309E+09 Btu/hr A = 55.4 ft²
- D. Combustor

 $T = 1730^{\circ}F > 1700^{\circ}F$ (Assumed 100°F approach temperature in reformer furnace.) Excess heat = 0.001752E+09 Btu/hr

XII. Steam Generation

11,750 lb-mol/hr at 1036*F, 200 psia

Steam Required: Gasifier: 3,684 lbmol/hr Reformer: 8,000 lbmol/hr Total: 11,684 lbmol/hr

XIII. <u>Preliminary Electrical</u>

17.61 Hp
47.60
2,677
8,394
- 11,727
832
23,695 Hp = 17.7 MW

To Be added: Dryer/Conveyer/Feeder Acid Gas Misc

Comp\Stream	Gasifier Product	Preformer Feed	Preformer Product	Reformer Product	Methanol Feed	Methanol Product	MeOH Recycle Gas
H2	15.93	11.01	12.51	34.03	60.55	35.76	58.79
CO	24.89	17.20	18.78	18.78	31.25	14.21	23.32
C02	7.16	12.12	11.91	14.37	3.73	9.99	11.62
H2O	40.30	51.64	48.83	32.24	2.20	0.23	0.01
CH4	8.80	6.09	7.94	0.55	2.21	3.81	6.16
C2H2	0.26	0.17					
C2H4	2.30	1.59					
C2H6	0.10	0.07					
C3H6	0.11	0.08					
C3H8							
MEOH					0.02	35.98	0.09
C6H6	0.06	0.00					
C10H8	0.04						
C14H10	0.03						
Lb-mole/hr	11125	16093	. 16384	18779	13707	7974	1599
T, deg F	1675	813	1000	1600	445	445	32
P, psia	20	200	200	200	750	750	740
H, Btu/lb-mole	-52973	-77542	-74467	-54061	-21578	-53171	-33244
H/C	0.64	0.64	0.67	1.81	1.94	2.51	2.52

Gas Composition, Major Streams

.

.

References

Bain, R.L. "Methanol from Biomass: Assessment of Production Costs," Hawaii Natural Energy Institute Renewable Transportation Alternatives Workshop, Honolulu, HI, Jan 9-11, 1991.

Chem Systems "Assessment of Costs and Benefits of Flexible and Alternative Fuel Use in the U.S. Transportation Sector", by Chem Systems, Tarrytown, NY, for the U.S. Department of Energy, Washington, D.C., Report No. DOE/PE--0093, 46 pp, November 1989.

Evans, R.J., Knight, R.A., Onischak, M., and S.P. Babu, "Development of Biomass Gasification to Produce Substitute Fuels, Prepared by the Institute of Gas Technology, Chicago, Illinois, for the Pacific Northwest Laboratory, Richland, WA, PNL- Report No. PNL-6518, March 1988.

Feldmann, H.F., Paisley, M.A., Appelbaum, H.R., and D.R. Taylor, "Conversion of Forest Residues to a Methane-Rich Gas in a High- Throughput Gasifier", prepared by Battelle Columbus Division, Columbus, Ohio, for the Pacific Northwest Laboratory, Richland, WA, PNL Report no. PNL-6570, May 1988.

Flanigan V.J., O.C. Sitton and W.E. Huang, "The Development of a 20-inch Indirect Fired Fluidized Bed Gasifier," University of Missouri-Rolla for Pacific Northwest Laboratory, PNL-6520, Richland, WA, March 1988.

Graboski, M. and R.L. Bain, "Properties of Biomass Relevant to Gasification," Chapter 3 of <u>A Survey of Biomass Gasification - Volume 2</u>, Solar Energy Research Institute, SERI/TR-33-239, Golden, CO, July 1979.

Keenan, J.D., "Biochemical Sources of Fuel," in <u>Energy Technology</u> <u>Handbook</u>, ed D. M. Considine, McGraw-Hill Book Co., New York, NY, pp 4-14 to 4-15, 1977.

Mahajan, D., Sapienza, R.S., and T.E O'Hare, "Bench-Scale Laboratory Result - Novel Methanol Catalyst," Thirteenth Annual EPRI Conf, Fuel Science and Conversion, EPRI, Palo Alto, CA, 1989.

Manufacturing and Technology Conversion International, Inc. "Testing of an Advanced Thermochemical Conversion Reactor System," Pacific Northwest Laboratory, Richland, WA, PNL-7245, January 1990.

Philip, R.J. "Methanol Production from Biomass," National Research Council of Canada, NRCC No. 27143, Ottawa, Ontario, Canada, pp 29-32, August 1986.

Reed, T.B., B. Levie, and M.S. Graboski, "Fundamentals, Development and Scale-up of the Air-Oxygen Stratified Downdraft Gasifier," Pacific Northwest laboratory, Richland, WA, PNL-6600, June 1988.

Rensfelt, E. and C. Ekstrom, "Fuel from Municipal Waste in an Integrated Circulating Fluid-Bed Gasification/Gas Cleaning Process," In <u>Energy form</u>

<u>Biomass and Wastes XI</u>, ed D.L. Klass, Institute of Gas Technology, Chicago, IL, pp 891-906, 1989.

Simulation Sciences, Aspen/SP Users Manual, Denver, CO, 1990.

Studer, D.W., Brown, D.M., Henderson, J.L. and T.H. Hsiung, "Status of the Development of Methanol Synthesis by the 'LPMEOH'Process", DOE Indirect Liquefaction Contractors' Review Meeting, Pittsbugh, PA 13-15 Nov, 1989.

APPENDIX 1

IGT GASIFIER DATA

.

Reference: Evans to Pre	, R. J., etal, "Dev oduce Substitute Fi	elopment of E wis", IGT for	liomess Gasif PNL, March	ication 1988.		
27-Dec-91	7					
wood u	Hype: MC = Wisconsin Man	e wood chine				
	HC = Pennsylvania (hole wood chi	05 .			
	90 red oak, re	st chestnut.	aspen black	birch		
	WC = Wisconsin who	e wood chips				
	34 % maple, 3 3	.5 % red oak,	, 19.6 % bird	:h, 12.9 % pi	ne and brush	
Item \ Test	GT-1	GT-2	GT-4	GT-5	GT-6	GT-8
					********	********
Gasifier Conditions	1500	1450	1200	1700	1500	1510
lemperature, deg r	100	7777	1000	709 7	1300	202 7
Het East Date 15/br	812	JE3.1	731 0	776.7	407 5	750.4
Noisture ut Y	2 T	0.40	0.70	10 47	10 72	11 15
Orvigen (b/1b Wi	0.2	0.25	0.34	0.17	0.24	0.22
Steam Lb/lb UV	0.7	0.71	0.60	0.77	0.86	0.65
Oxygen, 1b/1b80¥	0.2	0.28	0.38	0,19	0.27	0.25
Steam, 1b/1b BDW	0.8	0.78	0.66	0.86	0.96	0.73
Total H2D, Lb/lb BDW	0.95	0.890	0.772	0.977	1.083	0.857
Prod Gas, SCF/hr	33,440	27.154	31.218	27.662	31,155	30.371
Gas Superficial Vel,	ft/s 2.20	1.93	2.49	1.80	2.13	2.11
Feed	•••••					
Ivpe	Law		LINC	LINC	LINC	LINC
Size	Chip	Chips	Chips	Chips	Chips	Chips
Proximate Analysis						
Moisture, ut %	8.3	9.50	9.70	10.47	10.72	11.15
Volatile Matter	77.Z	76.26	76.10	75.45	75.24	74.87
Ash	0.4	0.44	0.44	0.44	0.44	0.44
Fixed Carbon (by d	iff) 13.9	13.79	13.76	13.64	13.61	13.54
-						
Total	100.0) 100.00	100.00	100.00	100.00	100,00
Ultimate Analysis						
Ash, wt % dry	1.4	0.50	0.50	0.50	0.50	0.50
Carbon	48.8	49.54	49.54	49.54	49.54	49.54
Hydrogen	6.1) 6.11	6.11	6.11	6.11	6.11
Sulfur	0.0	0.02	0.02	0.02	0.02	0.02
Nitrogen	0.0	0.10	0.10	0.10	0.10	0.10
Oxygen (by diff)	43.6	43.73	43.73	43.73	43.73	43.73
Total	100_0) 100.00	100.00	100.00	100.00	100.00
HHV, BTU/Lb	837	8476	8476	8476	8476	8476
Yield, Forced closure		· ··				
Gas, wt % of C	88.2	92.20	94.23	82.26	88.20	90.52
Tar/Oil, wt % of C	3.7	2.20	0.59	4,99	3.80	2.18
Char, wt % of C	7.9	9 5.60	5.18	12.75	8.00	7.30
Tar/oil, wt % maf fe	ed 2.2) 1.27	0.33	2.85	2.19	1.34

1

-

lter	n \ Test	GT-1	GT-2	GT-4	GT-5	GT-6	GT-8
	Char, wt % (maf)	3.%	2.76	2.54	6.32	3.93	3.64
	Gas Yield, Calc wt % Gas C Yield, wt %	119.3 91.7	123.3 90.9	133.4 97.9	108.2 81.0	118.4 89.5	119.0 90.6
	Dry Gas, SCF/lb BDW Wet Gas, SCF/lb BDW	17.97 37.17	18.58 36.62	20.91 37.43	15.68 36.20	17.06 39.92	17.73 35.49
Gas	Composition, As Reported	*********					
	H2, mole %	10.58	11.82	13.58	9.62	8.08	9.97
	Ċ0	6.09	6.38	9.92	4,07	5.36	6.63
	CO2	15.63	17.15	15.49	15.92	13.98	15.04
	CK4	7.39	(.39	2.27	0.20	2.72	0.78
	C2114	0.10	0.00	0.00	0.10	0.05	0.19
	C2H0	0.27	0.05	0.00	0.04	0.45	0.31
		0.00	0.00	0.00	0.02	0.00	0.00
		17 09	15 42	16.23	14 03	15 17	17 45
	820	42 78	41 52	34.96	48.00	45 44	30 00
	AP	0.00	0.00	4.53	0.00	5.37	4.42
	TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
	Vol, SCF/lb WW	41.12	39.32	42.65	38.19	44.92	40.47
	Vol, SCF/lb BDW	44.87	43.45	47.23	42.66	50.31	45.55
Gas	Comp, inert free, C6H6 free						
	H2, mole X	12.77	14.02	17.14	11.34	10.18	12.80
	0	7.35	7.57	12.52	4.80	6.76	8.51
	C02	18.87	20.35	19.55	18.76	17.62	19.30
	CN4	8.92	8.77	6.68	7.31	7.50	8.70
	C2H4	0.12	0.00	0.00	0.12	0.10	0.24
	C2N6	0.33	0.04	0.00	0.99	0.57	0.40
	CSH8		0.00	0.00	0.02	0.00	0.00
	NZU	21.04	47.20	44.12	20-0/	21.21	20.02
	TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
	Ave Nol Wt. lb/lb mole	21.49	21.65	21.47	21.55	21.57	21.74
	HHV, KJ/g mole	143.53	140.12	143.86	128.65	125.27	147.77
	, BTU/SCF (a 60 deg F)	172.05	167.96	172.44	154.22	150.16	177.14
		i					

·····					**********	
Item \ Test	GT-1	GT-2	GT-4	GT-5	GT-6	GT - 8

Gas Comp, dry/ inert free						
H2, mole %	26.41	27.64	30.67	26.16	23.83	25.62
C0	15.20	14.92	22.40	11.07	15.81	17.03
CO2	39.02	40.10	34.98	43.30	41.24	38.64
CH4	18.45	17.28	11.95	16.86	17.55	17.42
C2H4	0.25	0.00	0.00	0.27	0.24	Q.49
C2H6	0.67	0.07	0.00	2.28	1.33	0.80
C3H8	0.00	0.00	0.00	0,05	0.00	0.00
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
Ave Hol Vt. lb/lb mole	25.19	25.18	24.21	26.17	26.34	25.47
HHV. KJ/g mole	296.80	276.15	257.43	296.91	293.19	295.85
BTU/SCF (2 60 deg F)	355.78	331.02	308.59	355.91	351.45	354.64
Hol C/mol Gas	0.745	0.724	0.693	0.765	0.777	0.757
H2/C0	1.74	1.85	1.37	2.36	1.51	1.50
(H2*3CH4)/(CO+CH4)	2.43	2.47	1.94	2.75	2.29	2.26
(H2-CO2)/(CO+CO2)	-0.23	-0.23	-0.08	-0.32	-0.31	-0.23
the Deutle Check						
Gas Double Check	10 7	14 0	77 /	44.0	47 7	16.0
nz, LD/nr ~~	10.7	10.7	22.4	97.7	13.3	1/2 2
	120.3	5/0 7	660.0 541 /	63.2 E11 7	505 7	570 T
	10/ 7	24U_/ 0/ 7	201.4	70.5	303.7	330.5
634 634	104.J 3 E	04.7	09.7	72.4	10.3	00.7 / 7
6284 6344	2.7	0.0	0.0	18 /	1.0	4.3
C2ND	1.1	0.0	0.0	0.4	0.0	1.5
C3NO 7444	U.U E E	14 7	0.0	12.0	77	17 1
4000 M2	472.0	700 7	376 3	305 1	340 2	301 5
NE	422.0	575 5	518 7	471 8	47.L	547 5
120	0/7.0	333.5	510.5	001.0	014.4	502.5
Total	1997.1	1631.9	1774.9	1650.8	1762.9	1760.9
H2, mole/hr	9.276	8.383	11.111	6.944	6.597	7.937
co	5.373	4.570	8.169	2.970	4.406	5.312
CO2	13.790	12.286	12.756	11.618	11.491	12.050
CH4	6.502	5.281	4.345	4.514	4.882	5.418
C2H4	0.089	0.000	0.000	0.071	0.064	0.153
C2H6	0.236	0.020	0.000	0.612	0.369	0.249

R \ Test	1	GT-1	GT-2	GT-4	GT-5	GT-6	GT-8
		0.000	0.000	0.000	0.014	0.000	0.000
Céllé		0.070	0.207	0.000	0.154	0.099	0.168
N2		15.061	11.039	13.358	10.889	12.463	13.972
120		37,722	29.724	28.769	35.069	37.322	31.222

Total		88.120	71.509	78.508	72.854	77.692	76.481
ib bow/hr	•	745.5	625	660.9	648.5	619.2	666.7
Vol. SCF/ 1b bdw		44.85	43.41	45.07	42.62	47.60	43.52
N2 Free vol		38.09	38.62	39.05	37.98	41.67	37.44
N2.C6H6 Free vol		38.06	38.53	39.05	37.92	41.62	37.37
Dry Gas Vol		21.14	25.62	26,08	22.97	23.86	23.78
H2. mole %		10.53	11.72	14.15	9.53	8.49	10.38
0		6.10	6.39	10.40	4.08	5.67	6.95
CO2		15.65	17 . 18	16.25	15.95	14.79	15.75
CH4		7.38	7.38	5.53	6.20	6.28	7.08
C2H4		Q.10	0.00	0.00	0.10	0.08	0.20
:2H6		0.27	0.03	0.00	0.84	0.48	0.33
I3H8		0.00	0.00	0.00	0.02	0.00	0.00
2686		0.08	0.29	0.00	0.21	0.13	0.22
N2		17 .09	15.44	17.02	14.95	16.04	18.27
H20		42.81	41.57	36.64	48.14	48.04	40.82
TOTAL		100.00	100.00	100.00	100.00	100.00	100.00
Wet Gas		***********		***********	***********		
H2. mole X		12.71	13.91	17.05	11,23	10.13	12.73
CO		7.36	7.58	12.54	4.81	6.76	8.52
C02		18.89	20.39	19.58	18.80	17.64	19.33
CH4		8.91	8.76	6.67	7.30	7.50	8.69
C2#4		0.12	0.00	0.00	0.12	0.10	0.25
C2H6		0.32	0.03	0.00	0.99	0.57	0.40
C3H8		0.00	0.00	0.00	0.02	0.00	0.00
N20		51.68	49.32	44.16	56.73	57.30	50.08
		100_00	100.00	100.00	100.00	100.00	100.00

.

.

•

Item \ Test	GT+9	GT-10	GT-11	GT-16	GT-13	GT-14
Gasifier Conditions			***********			
Temperature, deg F	1500	1465	1500	1450	1520	1510
Pressure, psia	314.7	104.7	296.7	314.7	323.7	344.7
Wet Feed Rate, lb/hr	765.9	399.5	1029.7	768.6	742.1	826.9
Moisture, wt %	12.44	12.08	10.02	7.71	9.58	15.02
Oxygen, lb/lb WW	0.21	0.23	0.20	0.22	0.23	0.18
Steam, lb/lb WW	0.50	0.62	0.48	0.74	0.53	0.00
Oxygen, 1b/1bBDW	0.24	0.26	0.22	0.24	0.25	0.21
Steam, 1b/1b BDW	0.57	0.71	0.53	0.80	0.59	0.00
Total H2O, Lb/Lb BOW	0.713	0.843	0.645	0.885	0.692	0.177
Prod Gas, SCF/hr	25,103	17,918	34,407	30,164	27,220	27,772
Gas Superficial Vel, ft/s	1.70	3,59	2.47	1.99	1.81	1.73
Feed			*********		*********	
Туре	LINC	LINC	LORC	LINC	PUC	PMC
Size	Chips	Chips	Chips	Chips	Chips	Chips
Proximate Analysis						
Noisture, wt %	12.44	12.08	10.02	7.71	9.58	15.02
Volatile Natter	73.79	74.09	75.83	$\pi.\pi$	74.61	70.13
Ash	0.43	0.43	0.44	0.45	0.85	0.80
Fixed Carbon (by diff)	13.34	13.40	13.71	14.06	14.96	14.06
Total	100.00	100.00	100.00	100,00	100.00	100.00
Ultimate Analysis						
Ash, wt % dry	0.50	0.50	0.50	0.50	0.94	0.94
Carbon	49.54	49.54	49.54	49.54	48.51	48.51
Hydrogen	6.11	6.11	6.11	6,11	6.17	6.17
Sulfur	0.02	0.02	0.02	0.02	0.04	0.04
Nitrogen	0.10	0.10	0.10	0.10	0.12	0.12
Oxygen (by diff)	43.73	43.73	43.73	43.73	44.22	44.22
Total	100.00	100.00	100.00	100.00	100.00	100.00
HHV, BTU/Lb	8476	8476	8476	8476	8330	8330
Yield, Forced closure						
Gas, wt % of C	88.49	95.35	87.38	90,18	89.92	85.99
Tar/Oil, wt % of C	3.47	0.63	4.42	4.12	0.02	6.09
Char, wt % of C	8.05	4.02	8.20	5.70	10.07	7.92
Iar/Oil, Wt % maf feed	1.84	0.34	Z.34	2.10	0.87	3.20

Item \ Test	GT-9	GT-10	GT-11	GT-16	GT-13	GT-14
Char, wt % (maf)	4.06	2.03	4.11	2.75	4.95	3.95
a . Wastel Bala ut W	113 0	113-4	105.8	113.4	118.9	95.7
Gas C Yield, Wt %	86.7	88.4	85.1	85.0	90.1	76.9
Dry Gas, SCF/1b BDW	16.21	16.50	16.14	16.76	18.47	12.98
Wet Gas, SCF/1b BOW	31.50	34.90	30.29	35.89	\$2.00	
Gas Composition. As Reported						E 40
H2, mole %	9.81	7.52	10.37	10.52	13.84	7 20
со [`]	7.05	7.24	9.39	0.07	17.34	17 24
C02	17.64	11.89	15.01	12.09	4 93	5 23
CH4	7.96	4.87	7.30	0.17	0.02	35.0
C2H4	0.27	0.45	0.27	0.12	0.01	0.30
C2H6	0.56	0.37	0.54	0.01	0.51	0.00
C3H8	0.00	0.01	0.00	0.00	0.00	0.00
C6H6	0.44	0.60	U.43	U.24 15 30	47 44	/4 37
N2	8.64	22.85	11./1	12.40	13.10	14 53
N20	40.84	36.06	36.11	44,70	37.02	5 41
AR	6.79	8.14	0.2/	0.00	0.14	
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
	33 79	44 95	33.41	39,25	36.68	33.59
VOL, SCF/LD WW Vol, SCF/Lb BDW	37.44	51.01	37.13	42.53	40.57	39.53
Con come inert free Child free						
H2 poie X	11.66	10.99	12.71	12.47	17.18	11.82
	8.38	10.58	11.51	7.22	8.79	15.20
<u>m</u> 2	20.97	17.38	19.13	18.83	21.45	27.99
CU2	9.46	7.12	8.95	7.31	8.47	12.30
C784	0.32	0.66	0.33	0.14	0.01	0.76
0217-	0.67	0.54	0.66	0.72	0.63	1.27
C348	0.00	0.01	0.00	0.00	0.00	0.00
12/10 1/20	48.54	52.71	46.71	53.31	43.47	30.67
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
Ave Not Wt. 15/15 mole	22.36	21.83	22.04	21.59	21.63	24.90
NHV. KJ/g mole	156.20	142.80	163.56	134.45	159.41	216.82
, BTU/SCF (2 60 deg F)	187.24	171.17	196.06	161.17	191.08	259.91
	1					

Item \ Test	GT-9	GT+10	GT-11	GT-16	GT-13	GT-14
Gas Comp, dry/ inert free						
H2, mole X	22.66	23.25	23.85	26.70	30.39	17.05
co	16.29	22.38	21.60	15.46	15.55	21.92
C02	40.75	36.75	35.90	40.33	37.94	40.37
CH4	18.39	15.05	16.79	15.66	14.98	17.75
C2H4	0.62	1.39	0.62	0.30	0.02	1.10
C2H6	1.29	1.14	1.24	1.55	1,12	1.83
C3H8	0.00	0_03	0.00	0.00	0.00	0.00
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
Aver Had the that he makes	54 17	24 60	25 57	25 (9	5/ /4	27.05
AVE NOL WE, LD/LD HOLE	20.4/	20.00	23.3/	23.00 207 OF	24.4	2(.93
HRV, KJ/S BOLE	203.20	301.97	300.92	201.97	201.79	312.73
, BIU/SCF (a DU OEG F)	203.00	301.9/	307.90	243.10	336.02	3/4.8/
HOL C/MOL Gas	U./YS	U. 794	U./OU	0.752	0.706	0.859
H2/C0	1.39	1.04	1.10	1.73	1.95	0.78
(H2=3CH4)/(CO+CH4)	2.24	1.83	1.95	2.3/	2.47	1.77
(#2-002)/(00+002)	-0.32	-0.23	-0.21	-0.24	-0.14	-0.57
Gas Double Check						
H2, lb/hr	13.0	7.1	18.8	16.7	19.9	8.2
CO	130.7	95.8	238.7	135.7	142.4	147.7
CO2	514.1	247.3	623.5	556.5	546.1	427.5
CH4	84.4	36.8	106.0	78.6	78.4	68.4
C2H4	5.0	6.0	6.9	2.7	0.2	7.4
C2H6	11.1	5.2	14.7	14.6	11.0	13.2
C3H8	0.0	0.2	0.0	0.0	0.0	0.0
C6H6	22.7	22.1	30.4	21.1	7.8	48.0
N2	160.2	302.5	297.7	340.5	264.6	951.4
H20	486.9	306.9	622.8	644.4	452.7	191.7
Total	1428.1	1029.9	1959.5	1810.8	1523.1	1863.5
H2_ mole/hr	6.44R	3.522	9.325	8.284	9.871	4.067
CD	4.664	3.420	8-522	4.845	5.084	5.273
<u>60</u> 2	11-681	5.619	14,167	12.645	12.409	9.714
CH4	5.262	2.294	6.608	4,900	4.888	4 264
C2H4	0.178	0.214	0.246	0.096	0.007	0.264
C2W6	0.360	0.173	0.489	0.486	0.366	0.439
	V.207		V . TU7		·	V. 737

Item \ Test		GT-9	GT-10	GT-11	GT-16	GT-13	GT-14
C3N8		0.000	0,005	0.000	0.000	0.000	0.000
C6H6		0.291	0.283	0.389	0.270	0.100	0.615
N2		5.717	10,796	10.625	12.152	9.443	33.954
H20		27.026	17.035	34.569	35.768	25.128	10.64
Total		61.639	43.360	84.941	79.446	67.295	69.23
ib bdw/hr	*	670.6	351.2	926.5	709.3	671	702.1
Vol. SCF/ 1b bdw		34.87	46.84	34.78	42.49	38.05	37.3
N2 Free voi		32,88	41.79	31.09	37.33	34.46	24.6
N2.C6H6 Free vol		32.78	41.65	30.95	37.22	34.42	24.4
Dry Gas Vol		23,35	33.67	18.93	22.02	24.86	20.4
H2, mole %		10.46	8.12	10.98	10.43	14.67	5.8
CO		7.57	7.89	10.03	6.10	7.55	7.6
CO2		18.95	12.96	16.68	15.92	18.44	14.0
CH4		8.54	5.29	7,78	6.17	7.26	6.1
C2H4		0.29	0.49	0.29	0.12	0.01	0.3
C2H6		0.60	0.40	0.58	0.61	0.54	0.6
C3H8		0.00	0.01	0.00	0.00	0.00	0.0
C6H6		0.47	0.65	0.46	0.34	0.15	8.0
N2		9.28	24.90	12.51	15.30	14.03	49.0
¥20		43.85	39.29	40.70	45.02	37.34	15.3
TOTAL		100.00	100.00	100.00	100.00	100.00	100.0
Wet Gas							
H2, mole %		11.59	10.91	12.61	12.36	17.09	11.7
CO		8.39	10,59	11.53	7,23	8.80	15.2
CO2		21.00	17.41	19.16	18.87	21.49	28.0
CH4		9.46	7.11	8.94	7.31	8.46	12.3
C2H4		0.32	0.66	0.33	0.14	0.01	0.7
C2H6		0.66	0.54	0.66	0.72	0.63	1.2
C3H8		0.00	0.01	0.00	0.00	0.00	9.0
H2O		48.58	52.77	46.76	53.37	43.51	30.7
		100.00	100.00	100.00	100.00	100.00	100.0

ŧ

Item \ Test	GT-15	GT-17	T12-1	T12-2	T30-1a	T30-1b
Gasifier Conditions						
Temperature, deg F	1520	1530	1530	1500	1538	1562
Pressure, psia	320.7	320.7	314.7	116.7	323.7	323.7
Wet Feed Rate, lb/hr	673.4	648.8	643.9	352.9	427.5	748
Noisture, wt X	14.47	26.74	4.94	7.72	10.80	10.80
Oxygen, lb/lb WW	0.25	0.33	0.25	0.26	0.26	0.23
Steam, lb/lb WW	0.41	0.46	0.61	0.69	1.18	0.63
Oxygen, Lb/Lb80W	0.29	0.45	0.26	0.28	0.29	0.26
Steam, Lb/Lb BDW	0.48	0.63	0.64	0.75	1.32	0.71
Total H20, 1b/1b BDW	0.649	0.993	0.694	0.831	1.444	0.827
Prod Gas, SCF/hr	28,271	33,016	24,603	15,693	23,003	27,695
Gas Superficial Vel, ft/s	1,90	2.23	1.69	2.87	1.55	1.88

Feed			10.00	18.95	1000	
lype	PWL	PWG Chima	Shine -	China	China	WWL China
Size	unips	unps	unips	unips	umps	cnips
Proximate Analysis						
Noisture, wt %	14.47	26.74	4.94	7.72	10.80	10.80
Volatile Matter	70.58	60.45	79.39	77.07	74.50	74.50
Ash	0.80	0.69	0.77	0.75	0.72	0.72
Fixed Carbon (by diff)	14.15	12.12	14.90	14.46	13.98	13.98
Total	100.00	100.00	100.00	100.00	100.00	100.00
	n 04	0 04	0 82	0 82	0.82	0 82
Caphon	48 51	/2 51	48 40	48.40	49.40	49.02
lai soli	40.51	40.01	40.40	4 71	4 71	40.40
Sulfue	0.17	0.04	0.31	0.31	0.01	0.01
Nitutan	0.04	0.04	0.00	0.05	0.05	0.03
Owner (by diff)	44 22	44 22	44 23	44 23	44 23	44 23
uxygen (by diff)						
Total	100.00	100.00	100.00	100.00	100.00	100.00
HHV, BTU/Lb	8330	8330	8389	8389	8389	8389
Yield, Forced closure						
Gas, wt % of C	90.24	96.68	90.18	87.37	92.95	93.79
Tar/Oil, wt % of C	4.28	0.00	5.46	5.33	3.07	2.98
Char, wt % of C	5.48	3.32	4.36	7.30	3.98	3.23
Tar/oil, wt % maf feed	2.26	0.00	2 97	2.88	1 61	1 57

2.17 119.2 91.5 17.98 32.38	3.62 107.2 87.5 14.91	1.98 129.7 94.5	1.62 115.5 85.9
119.2 91.5 17.98 32.38	107.2 87.5 14.91	129.7 94.5	119 .5 85.9
91.5 17.98 32.38	87.5 14.91	94.5	85.9
17.98 32.38	14.91	D0 44	
32.38		20.11	17.44
	34.75	48.98	34. 71
12.05	5.90	10.88	12.30
8.00	7.72	3.59	5.58
17.06	11.52	13.86	17.32
7.37	4.58	4.79	6.56
0.03	0.65	0.04	0.04
0.22	0,56	0.17	0.20
0.00	0_01	0.00	0.00
0.27	0.24	0.18	0.81
19.18	27.64	18.63	15.59
35.82	41.18	47.86	41.60
0.00	0.00	0.00	0.00
100.00	100.00	100.00	100.00
38.21	44.47	53.81	37.03
40.20	48.19	60.33	41.51
************	***********		*********
14.96	8.18	13.40	14.71
9.93	10.70	4.42	6.67
21.18	15.97	17.07	20,72
9.15	6.35	5.90	7.85
0.04	0.90	0.05	0.05
0.27	0.78	0.21	0_24
0.00	0.01	0.00	0.00
44 47	57.10	58.95	49.76

100.00	100.00	100.00	100.00
21.98	21.99	20.66	21.59
157.12	135.36	107.31	135.22
188.34	162.25	128.63	162.09
	100.00 21.98 157.12 188.34	100.00 100.00 21.98 21.99 157.12 135.36 188.34 162.25	100.00 100.00 100.00 21.98 21.99 20.66 157.12 135.36 107.31 188.34 162.25 128.63

4

.

. .

Ite	n \ Test	GT-15	GT-17	T12-1	T12-2	T30-1a	T3D-16

Gas	Comp, dry/ inert free						
	H2, mole %	24.50	27.07	26.94	19.07	32.64	29.29
	со ⁻	20.74	13.57	17,89	24.95	10.77	13.29
	CO2	38.92	45.63	38.14	37,23	41.58	41.24
	CH4	14.42	13.43	16.48	14.80	14.37	15.62
	C2H4	0.60	0.00	0.07	2.10	0.12	0.10
	C2H6	0_81	0.31	0.49	1.81	0.51	0.48
	C3H8	0.00	0.00	0.00	0.03	0.00	0.00
					•••••		
	TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
	Ave Mol Wt, lb/lb mole	26.16	26.67	25.15	27.28	24.47	25.14
	HHV, KJ/g mole	278.29	240.12	282.94	315.51	261.40	269.15
	, BTU/SCF (2 60 deg F)	333.59	287.83	339.16	378,20	313.34	322.63
	Mol C/mol Gas	0.769	0.732	0.736	0.849	0.680	0.713
	H2/C0	1.18	1.99	1.51	0.76	3.03	2.20
	(H2*3CH4)/(CO+CH4)	1.93	2.49	2.22	1.60	3.01	2.63
	(#2-C02)/(C0+C02)	-0.24	-0.31	-0.20	-0.29	-0.17	-0.22
	Gas Double Check						
	H2, lb/hr	12.1	13.9	15.6	4.9	13.2	18.0
	0	143.9	97.3	145.4	89.5	61.0	114.2
	CO2	424.4	514.4	487.3	209.9	370.1	556.9
	CH4	57.2	55.1	76.5	30.3	46.5	76.7
	C2H4	4.2	0.0	0.5	7.5	0.7	0.8
	C2H6	6,0	2.4	4.3	7.0	3.1	4.4
	C3H8	0.0	0.0	0.0	0.2	0.0	0.0
	C6H6	28.5	11.6	13.7	7.8	8.5	46.2
	N2	589.8	915.4	348.6	320.5	316.6	319.0
	H20	403.2	515.7	418.6	306.9	522.9	547.2
	Total	1669.3	2125.8	1510.5	984.5	1342.6	1683.4
				•••••			
	H2, mole/hr	6.002	6.895	7,738	2.431	6.548	8.929
	0	5.137	3.474	5.191	3.195	2.178	4.077
	C02	9.643	11.688	11.072	4.769	8.409	12.654
	СН4	3.566	3.435	4.769	1.889	2.899	4.782
	C2H4	0.150	0.000	0.018	0.267	0.025	0.029
	C2H6	0.200	0.080	0.143	0.233	0.103	0.146

tem \ Test	; GT-15	GT-17	T12-1	T12-2	T3D-1a	T30-16
C3N8	0,000	0.000	0.000	0.005	0.000	0.000
6416	0.365	0.149	0.175	0.100	0.109	0.591
82	21.049	32.670	12.441	11,438	11.299	11.385
N20	22.380	28,625	23.235	17.035	29.024	30.373

Total	68.492	87.014	64.783	41.362	60.594	72,965
ib bdw/hr	• 576	501.7	612.1	325.7	381.3	667.2
Vol. SCF/ 1b bdw	45.11	65.80	40.15	48.18	60.29	41.49
N2 Free vol	35.62	44.31	35.16	42.67	53.48	36.77
N2.CóHó Free vol	35.45	44.21	35.09	42.62	53.41	36.52
Dry Gas Vol	25.36	25.37	25.76	34.41	35.91	23.92
H2 mole %	8.76	7.92	11.94	5.88	10.81	12.24
20 A	7.50	3.99	8.01	7.73	3,59	5.59
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14.08	13.43	17.09	11.53	13.88	17.34
CH4	5.21	3.95	7.36	4.57	4.78	6.55
C2W4	0.22	0.00	0.03	0.65	0.04	0.04
C286	0.29	0.09	0.22	0.56	0.17	0.20
C3H8	0.00	0.00	0.00	0.01	0.00	0.00
CÓNÓ	0.53	0.17	0.27	0.24	0.18	0.81
N2	30.73	37.54	19.20	27.65	18.65	15.60
N20	32,68	32.90	35.87	41.18	47.90	41-63
TOTAL	100.00	100.00	108.00	100.00	100.00	100.00
Liet Gas	*****************					
NZ. mole %	12.75	12.72	14.83	8.15	13.31	14.64
<u> </u>	10.91	6.41	9.95	10,71	4.43	6.68
C02	20-48	21.57	21.23	15.99	17.10	20.75
CH4	7.57	6.34	9.14	6.33	5.89	7.84
C2H4	0.32	0.00	0.03	0.90	0.05	0.05
C2H6	0.42	0.15	0.27	0.78	0.21	0.24
C3H8	0.00	0.00	0.00	0.02	0.00	0.00
N20	47.54	52.82	44.54	57.12	59.01	49.80
	100.00	100.00	100 00	100 00	100.00	100.00

Item \ Test	T12-3a	T12-36	T12-4a	T12-4b
Gasifier Conditions				
Temperature, deg F	1672	1413	1509	1516
Pressure, osia	317.7	317.7	83.7	98.7
Wet Feed Rate, 1b/hr	708.1	708.1	375.4	375.4
Moisture, wt %	9.14	9.14	8.98	9.59
Oxygen, lb/lb WW	0.26	0.18	0.27	0.28
Steam, Lb/Lb WW	0.69	0.68	0.72	0.73
Oxygen, lb/lbBDW	0.29	0.20	0.30	0.31
Steam, Lb/Lb SDW	0.76	0.75	0.79	0.81
Total H20, Lb/Lb BDW	0.860	0.849	0.890	0.914
Prod Gas, SCF/hr	27,472	25,373	16,813	17,439
Gas Superficial Vel, ft/s	Ž.01	1.63	4.31	3.8
Feed				
Type	· MUC	<b>MUC</b>	LINC	JUC
Size	Chips	Chips	Chine	Chins
				on the
Proximate Analysis				
Moisture, wt %	9,14	9.14	8.98	9.59
Volatile Matter	75.89	75.89	76.02	75.51
Ash	0.74	0.74	0.74	0.73
Fixed Carbon (by diff)	14.24	14.24	14.26	14.17
Total	100.00	100.00	100.00	100.00
Ultimate Analysis				
Ash, wt % dry	0.82	0.82	0.82	0.82
Carbon	48.40	48.40	48.40	48.40
flydrogen	6.31	6.31	6.31	6.31
Sulfur	0.03	0.03	0.03	0.03
Nitrogen	0.21	0.21	0.21	0.21
Oxygen (by diff)	44.23	44.23	44.23	44.23
Total	100.00	100.00	100.00	
HHV, BTU/Lb	8389	8389	8389	8389
Yield, Forced closure				
Gas, wt % of C	96.12	87.14	91.78	93,22
Tar/Oil, wt % of C	2.16	6.72	5.12	4.74
Char, wt % of C	1.72	6.14	3.10	2.04
Tar/oil, wt % maf feed	1.13	3.54	2.73	2.51

,

Item \ Test	T12-3a	T12-36	t12-4a	T12-4b
Char, wt % (maf)	0.86	3.09	1.57	1_04
Gas Yield, Calc ut %	125.7	105.2	111.4	115.1
Gas C Yield ut X	95.3	83.5	88.8	91.5
				, , ,
Dry Gas SCE/Lb BDW	19.20	14,98	16.04	16.61
Het Gas, SCF/1b BDW	36.40	33.24	36.28	37.15
	**********			
Gas Composition, As Reported				
H2. mole X	12.69	8.55	7.49	7.38
CO .	7.22	5.59	7.79	7.59
° c02	17.42	15.72	11.98	11.93
CH4	7.60	6.95	4.32	4.61
C2#4	0.00	0.28	0.65	0.50
C2N6	0.02	0.90	0.35	0.30
<b>C3H8</b>	0.00	0.00	0.01	0.01
C6H6	0.41	0.57	0.47	0.40
N2	14.34	15.13	25.80	27.29
#20	40.30	46.31	41,14	39.99
AR	0.00	0.00	0.00	0.00
			*****	
TOTAL	100.00	100.00	100.00	100.00
Vol SCE/LA UU	38.80	35.83	44.79	46.45
Vol. SCE/1b BDW	42.70	39.43	49.21	51.38
Gas Comp. inert free, CóHó free				
H2. mole X	14.89	10.14	10,16	10.21
C0	8.47	6.63	10.57	10.50
C02	20.43	18.65	16.25	16.50
CH4	8.91	8.24	5.86	6.38
C2H4	0.00	0.33	0.88	0.69
C2H6	0.02	1.07	0.47	0.41
C3H8	0.00	0.00	0_01	0.01
H20	47.27	54.93	55.80	55.30
TOTAL	100.00	100.00	100.00	100.00
Ave Hol Wt, lb/lb mole	21.62	21.90	21.70	21.72
HHV, KJ/g mole	146.26	142.50	131.25	132.18
, BTU/SCF (2 60 deg F)	175.32	170.82	157,33	158.44
• •	1			

<u>50</u>

Iten	n \ Test	T12-3a	T12-3b	T12-4a	T12-4b
					********
Gas	Comp, dry/ inert free				
	H2, mole %	28.23	22.51	22.98	22.83
	<b>co</b>	16.06	14.71	23.90	23.48
	C02	38.75	41.38	36.76	36.91
	CH4	16.91	18.29	13.26	14.26
	C2H4	0.00	0.74	1,99	1,55
	C2H6	0.04	2.37	1.07	0.93
	C388	0.00	0.00	0.03	0.03
	TOTAL	100.00	100.00	100.00	100.00
	Ave Noi Wt. 15/15 mole	24-85	26.64	26.36	26.30
	HHV. KJ/g mole	277.39	316.22	296.93	295.72
	BTU/SCE (2 60 deg E)	332.51	379.05	355.93	354.48
	Noi C/moi Gas	0.718	0.806	0_801	0.797
		1.76	1.53	0.96	0.97
	(1)2#3094)/(00+094)	2 70	2 34	1 69	1.74
	(H2-CO2)/(CO+CO2)	-0 10	-0 34	-0.23	-0.23
		••••	•••••	*	
	Gas Double Check				
	H2, lb/hr	18.4	11.4	6.6	6.8
	<b>CO</b>	146.5	104.8	96.8	97.8
	C02	555.6	463.1	233.8	241.5
	CH4	88.1	74.4	30.7	33.9
	C2H4	0.0	5.2	8.1	6.4
	C2H6	0.4	18.1	4.7	4.1
	C3H8	0.0	0.0	0.2	0.2
	C6H6	23.2	29.8	16.3	14,4
	N2	291.0	283.6	320.5	351.6
	120	525.8	558.0	328.5	331.2
	Total	1649.0	1548.4	1046.2	1087.9
	H2, mole/hr	9.127	5.655	3.274	3.373
	<b>CO</b>	5.230	3.742	3.456	3.492
	C02	12.624	10.523	5.312	5.487
	CH4	5.493	4.638	1.914	2.113
	C2H4	0.000	0.185	0.289	0.228
	C2H6	0.013	0,602	0.156	0,136

ltem \ 7est	}	T12-3a	T12-36	T12-4a	T12-4b
	*******	0.000	0.000	0.005	0.005
C6H6		0.297	0.382	0,209	0.184
112		10.385	10.121	11.438	12.548
H20		29.185	30.972	18.234	18.384
Total		72.355	66.820	44.286	45.951
lh bdw/hr	•	643.4	643.4	341.7	339.4
Vol. SCF/ 1b bdw		42.67	39.40	49.17	51.37
N2 Free vol		38,24	35_41	43.55	44.92
N2.C6H6 Free vol		38.11	35.26	43.45	44.83
Dry Gas Vol		25.66	23.06	34.48	35.38
N2 mole %		12.61	8.46	7.39	7.34
CO		7.23	5.60	7.80	7.60
m2		17.45	15.75	12.00	11.94
CH4		7.59	6.94	4.32	4.60
C2H4		0.00	0.28	0.65	0.50
C2H6		0.02	0.90	0.35	0.30
C3H8		0.00	0.00	0_01	0.01
С6н6		0.41	0.57	0.47	0.40
N2		14.35	15.15	25.83	27.31
W20		40.34	46.35	41.17	40.01
TOTAL		100.00	100.00	100.00	100.00
Wet Gas	****				
H2. mole %		14.80	10.04	10.03	10.15
с. С		8.48	6.64	10.59	10.51
CO2		20.47	18.68	16.28	16.52
CH4		8.91	8.24	5.86	6.36
C2H4		0.00	0.33	0.88	0.69
C2H6		0.02	1.07	0.48	0.41
C3H8		0.00	0.00	0.01	0.01
H20		47.32	55.00	55.86	55.34
		100.00	100.00	100.00	100.00

<u>52</u>

APPENDIX 2

## LEAST SQUARES FIT OF IGT GASIFIER VARIABLES

Hydrogen		
Regression	Output:	
Constant		-1.3528E+01
end Err of Y Fet		1.9229E+00
		4.0984E-01
x squared		2.0000E+01
NO. OT UDSERVALIONS		1 70005+01
Degrees of Freedom	·	1.70002101
Y coefficient(s)	1.7467E-02	-2.6444E-07
	1.1374E-01	3.5693E-05
Sta EFF of Coef.	121204	
+ Valua	0.153573727	-0.00740873
	0.151262835	0.007299769
• Dechability	0.439884279	0.497087863
t probability		
E Value	5,902804634	
1 Value	0.111111111	
	0.013071895	
	2.278572097	
n n	0 011344303	
F Probability	0.011340303	

11. CO

.

1.

Regressio	n Output:
Constant	-3.6349E+01
Std Frr of Y Est	1.9910E+00
P Squared	1.7282E-01
No. of Observations	2.0000E+01
Degrees of Freedom	1.7000E+01
X Coefficient(s)	4.8316E-02 -1.2257E-05
Std Err of Coef.	1.1776E-01 3.6957E-05
t Value	0.410289657 -0.33166456
• • • • • • • • • • • • • • • • • • • •	0.403258929 0.32625978
t Probability	0.343378747 0.37211379
FValue	1.775929734
10.00	0.11111111
	0.013071895
	0.847891091
F Probability	0.198249442
· · · · ·	

III. CO2

Pearession	Output:	
Regicsoren		-5,1963E+01
Constant		1 72875+00
Std Err of Y Est		1.12012-01
R Squared		1.19196-01
No. of Observations		2.0000E+01
Degrees of Freedom		1.7000E+01
Y Coefficient(S)	8.4609E-02	-2.4793E-05
Std Err of Coef.	1.0225E-01	3.2089E-05
t Value	0.827472113	-0.7726484
	0.807215849	0.754689185
t Probability	0.209771196	0.225217863
F Value	1.150177777	
	0.111111111	
	0 013071895	
	0 400478427	
	0.4070/042/	
F Probability	0.541020	

IV. CH4

v.

V1.

Regression	Output:	
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		-4.3123E+01 1.1366E+00 5.0808E-02 2.0000E+01 1.7000E+01
X Coefficient(s) Std Err of Coef.	6.4007E-02 6.7229E-02	-2.0016E-05 2.1098E-05
t Value	0.952071729	-0.94868564
t Probability	0.177272269	0.922803133
F Value	0.454980481 0.111111111 0.013071895 -0.37599196	
F Probability	0.646529332	
C2H4		
Regression Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	Output:	2.0095E+00 2.8460E-01 1.2421E-01 2.0000E+01 1.8000E+01
X Coefficient(s) Std Err of Coef.	-1.1442E-03 7.1612E-04	
t Value	-1.59778852	
t Probability	0.063937262	
F Value	2.552928155 0.222222222 0.012345679	
F Probability	0.124205188	
C2H6 . Regression	Output:	
Constant		2.6517E+01
Std Err of Y Est		1.3753E-01
R Squared		8.1572E-01
No. of Observations		2.0000E+01
Degrees of Freedom		1.7000E+01
X Coefficient(s) Std Err of Coef.	-3.0323E-02 8.1347E-03	8.6568E-06 2.5529E-06
t Value	-3.72755965	3.390956626
t Probability	0.000985775	0.001937095
F Value	37.62440422 0.11111111 0.013071895 4.75231605 1.0337E-06	
,		

VII.	C3H8		
****	Regression	1 Output:	
·	Constant	•	4.9248E-02
	etd Fee of Y Est		6.8449E-03
	B Sausred		1.4156E-01
	K Squared		2.0000E+01
	NO. OF ODSERVACIONS		1.8000E+01
	Degrees of Freedom		
	v confinient(s)	-2.9673E-05	
	A LUEITICIENCUS	1.7223E-05	
	Sta Err of Coel.		
	e Velue	-1.72285127	
	t value	1.632937739	
		0 051241018	
	t Probability	0.031241010	
VIII.	, 420		
	Regressio	n output.	2 2154F+02
	Constant		3 82055+00
	Std Err of Y Est		7 //125-01
	R Squared		3.44122-01
	No. of Observations		2.000000000
	Degrees of Freedom		1.7000E+01

X Coefficient(s) Std Err of Coef.	-1.8940E-01 5.0717E-05 2.2650E-01 7.1083E-05	
t Value	-0.83621181 0.71348290 0.81557067 0.69778619	5
t Probability	0.207372995 0.242655542	2
F Value	4,459693009	
	0.11111111	
	0.013071895	
	1.919489163	
F Probability	0.027461344	

#### IX. Tar

Redression		
Constant	· · - · •	2.2739E+01
		6.7970E-01
Sta Err of I Est		4.3102E-01
R Squared		2 0000E+01
No. of Observations		1 70005+01
Degrees of Freedom		1.70002401
v coofficient(c)	-2.0584E-02	4.5476E-06
X LOETTICIENCS/	6 0202E+02	1.2617E-05
Std Err of LOet.	4.02022 02	
* Voluo	-0.51201629	0.360446762
	0.502552864	0.354469465
. Buchabilians	0 307639255	0.361493418
t Probability	0.301037233	•••••
E Value	6,439100545	
r veroc	0.111111111	
	0.013071895	
	2 392352073	
	0 008370372	
F Probability	0.000310376	

х.	Char		
	Regressio	n Output:	
	Constant		1.2722E+01
	Std Err of Y Est		1.2802E+00
	R Squared		1.7921E-01
	No. of Observations	•	2.0000E+01
	Degrees of Freedom		1.8000E+01
	X Coefficient(s)	-6.3858E-03	
	Std Err of Coef.	3.2212E-03	
	t Value	-1.98241538 1.856189302	1
	t Probability	0.03171339	
xı.	Dry Gas		
	Regression	Output:	
	Constant		0.0000E+00
	Std Err of Y Est		4.8097E+00
	R Squared		9.0780E-03
	No. of Observations		2.0000E+01
	Degrees of Freedom		1.8000E+01
	X Coefficient(s)	3.0627E-02	-8.8818E-06
	Std Err of Coef.	1.1270E-02	7.3156E-06
	t Value	2.717485525	-1.21409508
		2.44104567	1.173450083
	t Probability	0.00732236	0.120307621
	F Value	0.164900645	
		0.222222222	
		0.012345679	•
		-0.49619202	
	F Probability	0.690104404	
XII.	Wet Gas		
	Regression	Output:	
	Constant		0.0000E+00
	Std Err of Y Est		3.9164E+00
	R Squared		7.3226E-03
	No. of Observations		2.0000E+01
	Degrees of Freedom		1.8000E+01
	X Coefficient(s)	4.5549E-02	-1.3377E-05
	Std Err of Coef.	9.1773E-03	5.9570E-06
	t Value	4.963198082	-2.24559468
		3.771229671	2.073913012
	t Probability	0.000081352	0.019043819
	F Value	0.132778899	

...

0.132778899 0.22222222 0.012345679 -0.57618809 0.717735648

F Probability

<u>57</u>

# APPENDIX 3

• •

### IGT Gasifier - Conditions and Correlations

.

.

<b>Gasifier Condi</b>	tions					
Тетр	1390-1800	deg F				
Press	84-345	psia				
H20	F 07					
Feed	5-27	Wt %				
Steam	0-1.32	LD/ LD BDW				
Uxygen	0.19 - 0.45	ID/ ID BDW				
Feed Kate	375-1030	Wet lD/hr				
H2U TOTAL	0.841 +/- 0.115		LD/LD BDW			
Average Feed C Proximate	omposition					
M. X	10.8	7				
VN	74.6	0				
A	0.6	1				
FC	13.9	2				
Ultimate.	drv		MU.	Motes	N	u
A. X	, 0.7	0 use silica	60.08	0.0116	0 003	0 17
c .	48.9	4	12.01	4.0749	1,000	12 01
н	6.1	0	1.008	6.1409	1 507	1 52
S	0.0	3	32.06	0.0009	0.000	0.01
Ň	0.1	4	14.01	0.0100	0.002	0.07
ö	44.0	Õ	16	2.7500	0.675	10 80
HHV, BTU/L	b 841	6			01012	24.54
Correlations			* * * * * * * * * * * * * *			
Variable	Units	Independent Variable	Units	A	8	C
Dry Gas	wt %	Тетр	deg F	-2.3134E+02	3.8070E-01	-9.9300E-05
Carbon conv to	wt X	Temp	deg F	-1.6987E+02	2.9376E-01	-8.0899E-05
Gas Volume	scf/lb BDW	Temp	deg F	0.0000E+00	3.0627E-02	-8.8818E-06
Char Yield	wt %(maf/maf)	Temp	deg F	1.2772E+01	-6.3860E-03	0.0000E+00
Tar/oil yield	wt % (maf)	Temp	deg F	2.2739E+01	-2.0584E-02	4.5476E-06
H2	mole X	Тепр	deg F	-1.3528E+01	1.7460E-02	-2.6444E-07
CO	mole %	Temp	deg F	-3.6349E+01	4.8316E-02	-1.2257E-05
CO2	mole X	Temp	deg F	-5.1963E+01	8.4609E-02	-2.4793E-05
H2O	mole X	Temp	deg F	2.2154E+02	-1.8940E-01	5.0717E-05
CH4	mole X	Temp	deg F	-4.3123E+01	6.4007E-02	-2.0016E-05
C2H4	mole X	Temp	deg F	2.0095E+00	-1.1442E-03	0.0000E+00
C2H6	mole %	Temp	deg F	2.6517E+01	-3.0323E-02	8.6568E-06
С3н8	mote %	Temp	deg F	4.9250E-02	-2.9673E-05	0.0000E+00

.

.

<u>59</u>

#### APPENDIX 4

4

.

.

#### ASPEN INPUT DATA - IGT GASIFIER

x

. •

Temperature			1400	1450	1500	1550	1600	1650	1700	1750	1800
		MW									
Steam	lb/hr	18.016	140,166.667	140,166.667	140,166.667	140,166.667	140,166.667	140,166.667	140,166.667	140.166.667	140.166.667
Oxygen	lb/hr	31.9988	36,138.333	38,117.500	40,096.667	42,075.833	44,055.000	46,034.167	48,013.333	49,992.500	51,971.667
H2	lb/hr	2.0158	3,195.131	3,468.716	3,750.140	4,040.455	4,340.918	4,653.034	4,978.265	5,318.881	5.678.002
СО	lb/hr	28.01055	31,041.374	34,064,700	36,908.209	39.577.625	42,078,301	44,415,580	46,591.764	48,613,809	50.492.668
CH4	lb/hr	16.04275	17,743.797	18,686.065	19,419.220	19,940.709	20,246.813	20,332.578	20,190.205	19.812.221	19,190,204
C2H4	lb/hr	28.0539	1,743.222	1,505.895	1,268.112	1,028.705	786.580	540.649	289.740	32.636	0.000
C2H6	lb/hr	30.0697	4,731.149	3,452.768	2,365.675	1,468.567	762.119	248.769	0.000	0.000	0.000
C3H8	lb/hr	44.09665	51.813	42.045	32.228	22.316	12.263	2.024	0.000	0.000	0.000
· CO2	lb/hr	44.00995	120,058.896	125,348.700	130,043.414	134,140.526	137,637.150	140,529.900	142.804.512	144.459.194	145,499,570
H20	lb/hr	18.016	153,217.469	148,368.805	144,267.373	140,913.981	138,309.090	136,452.887	135,284.957	134,828.561	135.092.552
Char	lb/hr		6,431.017	5,895.099	5,359.181	4,823.263	4,287.345	3,751.427	3,215.509	2,679.590	2,143.672
Benzene	lb/hr	78.1143	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929	270.235	177.083
Naphthalene	lb/hr	128.1747	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929	270.235	177.083
Anthracene	lb/hr	178.2351	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929	270.235	177.083
o-cresol	lb/hr	108.14065	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929	270.235	177.083
In	lb/hr		342,971.667	344,950.833	346,930.000	348,909.167	350,888.333	352,867.500	354,846.667	356,825.833	358,805,000
Out	lb/hr		342,971.667	344,950.833	346,930.000	348,909.167	350,888.333	352,867.500	354,846.667	356,825,833	358,805,000
Diff	lb/hr		(0.000)	0.000	(0.000)	0.000	0.000	(0.000)	0.000	0.000	0.000
Steam											
as steam	lb/hr		119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55
as moisture	lb/hr		20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	20326.12

Ean Buield Reactor	r			4500	4550	1600	1650	1700	1750	1800
Temp		1400	1450	1500	1220	1000	(0)0	••••		
Feed		1120 345	1101.217	1253.068	1314.919	1376.770	1438.622	1500.473	1562.324	1624.175
Oxygen lb	-mole/hr	1127.303	4451 80A	6651.896	6651.896	6651. <b>8</b> 96	6651.896	6651.896	0001.090	10/002 792
Steam lb	-mole/hr		484002 782	186002.782	186992.782	186992.782	186992.782	186992.782	186992.782	100992.102
10.87% M Feedlb	/hr ·	180992.702	100992.102	1007721102						
			70440 030	40009 170	42077 411	44056.652	46035.893	48015.134	49994.375	519/3.010
Oxvaen lb	/hr	36139.689	38118.929	40070.170	1108/0 551	119840.551	119840.551	119840.551	119840.551	119840.551
Steem Ib	/hr	119840.551	119840.551	119040.551	484002 792	186002 782	186992.782	186992.782	186992.782	186992.782
10 87Y M Feedlb	/hr	186992.782	186992.782	180992.702	100772.102	1007721102				
IU.OFA H Tecato	,					750000 085	352860 226	354848.467	356827.708	358806.949
	the	342973.022	344952.263	346931.504	348910.745	220003-202	332007.220	2210101101		
Iotal (D	7 11	_								
							4 74046-03	1 40205-02	1.4906E-02	1.5825E-02
Yield	and the second	9-3160E-03	1.0056E-02	1.0809E-02	1.1580E-02	1.2371E-02	1.51802-02	1.40276-04	1 36245-01	1.4072E-01
H2 LB	by the teed	9 05075-02	9.8752E-02	1.0638E-01	1.1343E-01	1.1992E-01	1.258/2-01	1.3130E-01	5 55235-02	5 3483E-02
CO		5 1735E-02	5.4170E-02	5.5974E-02	5.7151E-02	5.7701E-02	5.7621E-U2	3.00Y0E-U2	0 1/425-05	0 0000E+00
CH4		5 09275-03	4 3655E-03	3.6552E-03	2.9483E-03	2.2417E-03	1.5322E-03	8,10722-04	9.14025-03	0.00002+00
С2н4		4 37055-02	1 00005-02	6.8189E-03	4.2090E-03	2.1720E-03	7.0499E-04	0.0000E+00	0.00002+00	0.000000000
C2H6		1.3/932-02	1 21905-04	0 2804F-05	6.3958E-05	3.4948E-05	5.7360E-06	0.0000E+00	0.0000E+00	0.00002400
C3H8		1.510/2-04	1.21076-04	7 7/9/6-01	3 8446F-01	3.9225E-01	3.9825E-01	4.0244E-01	4.0484E-01	4.000 IE-01
C02		3.5005E-01	3.0330E-UI	3,7404E-01 / 159/E-01	4 03875-01	3.9417E-01	3.8670E-01	3.8125E-01	3.7785E-01	3.7650E-01
H20		4.4673E-U1	4.5011E-01	4.15042-01	4 392/5-02	1 2218E-02	1.0631E-02	9.0616E-03	7.5095E-03	5.9744E-03
Char		1.8751E-02	1.7090E-02	1.544/E-UZ	2 11505-02	1 72078-03	1.3749E-03	1.0510E-03	7.5733E-04	4.9353E-04
Benzene		3.4681E-03	2.9845E-03	2.554UE-05	2.1137E-03	1 72076-03	1 3749E-03	1.0510E-03	7.5733E-04	4.9353E-04
Nerhthalana		3.4681E-03	2.9845E-03	2.5340E-03	2.11596-03	1 72076-03	1 3740F-03	1.0510E-03	7.5733E-04	4.9353E-04
Naphthatene		3.4681E-03	2.9845E-03	2.5340E-05	2.11598-03	1.72776-03	1 37/05-03	1 0510E-03	7.5733E-04	4.9353E-04
Antiliacene		3.4681E-03	2.9845E-03	2.5340E-03	2.1159E-05	1.72972-03	1.00005+00	0 00005-01	9.9999E-01	9.9999E-01
o-cresol		1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.00008+00	1.00002+00	7.777E 01		
Iotal										
a . thursd at EA	Y M									
FOR WWOOD at DU	АП	166666.667								
Total H2U		146340.551	8122.810							
H20		20326.115								
as M		186002.782	I							
Wwood		100772.102								

<u>62</u>

٠

APPENDIX 5

TITLE 'GASIFIER - REFORMER - METHANOL SYNTHESIS - HNEI CASE A' ;GASIFIER - RYIELD MODEL ;REFORMER - EQUILIBRIUM MODEL. METHANOL - EQUILIBRIUM MODEL ;UPDATED: DECEMBER 5, 1991 ENG IN-UNITS OUT-UNITS SI TEMPERATURE = C PRESSURE = BAR HISTORY MSG-LEVEL PROPERTIES=4 SIMULATION=4 STREAMS=4 SYSTEM=4 MAX-TIME=600 RUN-CONTROL SIZE-RESULTS = 0SIM-OPTIONS STREAM-REPORT STREAMS ALL BASES = MOLE MOLE-FRAC FLOW-FRAC MIXED INTENSIVE-PROPS MIXED PROPS=TEMP PRES MW ENTH DENS BASE =MOLE FLOW-FRAC CISOLID BASES = MASS INTENSIVE-PROPS CISOLID PROPS=TEMP PRES ENTH DENS BASE=MASS BASES = MASS FLOW-FRAC NCPSD INTENSIVE-PROPS NCPSD PROPS=TEMP PRES ENTH DENS BASE=MASS ***** COMPONENTS AND PROPERTIES ******* SYSOPO / SYSOP3R LOOP2 PROPERTIES COMPONENTS H2 H2 CO **CO** C02 C02 H20 H20 METHANE CH4 ACETYLENE C2H2 ETHYLENE C2H4 ETHANE C2H6 PROPYLENE C3H6-2 **C3H8** / **C3H8** CH40 MEOH 02 02 N2 N2 AR AR Benzene C6H6 C6H6 ; Phenol C6H60 ; C6H60 Naphthalene C10H8 C10H8 / ; ; Anthracene / C14H10-1 C14H10-1 0-cresol C7H8O-4 1 ; C7H80-4 С С 02SI 02SI CHAR WOOD

ALIAS

<u>64</u>

H2 H2   CO CO   CO2 CO2   H2O H2O   H2O H2O   CH4 CH4   C2H2 C2H2   C2H4 C2H4   C2H6 C3H6-2   C3H8 C3H8   MEOH CH40   O2 O2   N2 N2   AR AR   C6H6 C6H60   C10H8 C10H8   C14H10-1 C14H10   C7H80-4 C7H80   C C   O2SI O2SI   O2SI O2SI   O2SI O2SI	2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
; Attr-Comps CHAR	Proxanal Ult	anal Sulfana	l Coalmis	c Gena	nal		
Attr-Comps WOOD	Proxanal Ult	anal Sulfana	l Coalmis	c Gena	nal		
; Pron-Sources							
Global ASPENPCD	Comps= CH4	H2 H2O CO2 C	0 02 C6H6	C2H2	C2H4 AR	&	
Global DIPPR	C2H6 Comps= C10H	C3H6-2 C3H8 8 C14H10-1 C	C6H60 C7 02SI	H80-4	N2 MEOH	&	
; No-prope wood opti	holov hoilhe	io / donci	tu daetu	000			
Nc-props char ent	halpy hcjibo	ie / densi	ty dnsty	gen			
;		•		-			
comp-list	wood	char					
cval dengen	1 1 440	1000					
; Prop. data							
Prop-List BO	IEC						
;	C	H	S	0	N -	BIAS	
Pval Wood Pval Char	154.8/61	122.50632	0.0 0	.0	0.0	0.0	
; ;	10.10,01		••••				
Prop-Data Prop-List MW /		EDM / DOSED		v / rp	SDOI		
PVAL C 12.011	15 / 2.2 / 0.	/ 0. / 0	.0053 0.0	0.0 0	.0 0.0	0.0 3000.	/&
1.715 Dupl 0251 50 02	4e+4 4.268 0.	0 0.0 -2.786	e+8 0.0 3	000.0	2000	/ 0	
rvai uzsi 60.08 37713	0 / 2.2 / 0. 0. 0. 0. 0.	0. 3000.	συ.υ.υ		. 3000.	/ α	
;							

<u>65</u>
		and the second	
******	****** FLOWSHEET	*****	
2 •			
FLOWSHEET DRY			
CHNG	IN = FLUE4	OUT = CASPEE	
CHNGF	IN = REFGAS	UUT = GASKET UTV CASPEE ADDAID STO2A &	
DRYER	IN = WWOOD DEC COMOUT FL	UEX GASKEF ADDATK SCOLA C	ODRYER
0111 011		OUT = WEIGAS DWOOD	OSTORE
STORE	IN = DWOOD	OUI = DWOOD2	NWG
WGCHECK	IN = WETGAS	001 = COULGAS	2 mg
FI OWSHEET GASE	ER		
02HEAT	IN = STEAMO2 OXY	00  = 5102A $0A12$	
FEEDMIX	IN = STEAMG2 DWOOD2 0XY2	001 = FEEDG	OGAS
GASIFIER	IN = FEEDG	OUI = GPROD	Qui le
SOLSEP	IN = GPROD	OUT = SOLIDI GASI	
SOLSP2	IN = GAS1	OU1 = SOLIDZ GASID	
HEAT1	IN = GAS1B AIR1	001 = 0001 = 00000000000000000000000000	WCHAR
CHCOMP2	IN = AIR2	OUT = AIRS	
HEAT2	IN = GASIC AIR3	OUI = GASID AIRSA	
CM	IN = SOLID1 AIRIB	OUT = DEC	0dec
CDECOMP	IN = DECFD	OUT = DEC	<b>~~</b>
AMIX	IN = AIRX QDEC Qmeth	OUT = COMIN	
CMIX	IN = AIR3A METH	OUT = COMOUT	Ometh
COMBUST	IN = COMIN	OUT = COMOUT	<b>4</b>
HEAT3	IN = GAS1D STEAMG	001 = 0A312 = 0121122	
FLOWSHEET LOO	P1	Out - Gasc	
Change	IN = GASIE		
INLET	IN = Gasc STEAM RUUZ	OUT = EFED2	
REAC1	IN = CFEED	OUT = HPROD2 Refin	
HTR2	IN = HPROD FEEDZ	OUT = HPROD COKE	QH3
REFORM	IN = Retin	OUT = AGAS REFGAS	
HTR3	IN = HPROD2 REFGASI	OUT = AGAS1	QH4
HTR3A	IN = AGAS	OUT = AGAS2 WWATER	
H2OCOND	IN = AGASI	OUT = WATOUT	qwat
WCOOL	IN = WWATER	OUT = OWAT1 OWAT2	•
Q1SEP	IN = QWAI	OUT = CGAS LIO	
CO2COND	IN = AGASZ	OUT = PCO2 RCO2	
CO2SEP	IN = LIQ		
FLOWSHEET LO		Out = Cgas2	
Change2	In = Ugas	OUT = GAS4	W1
COMP2	IN = UgdSZ	OUT = RECYCLE2	QH5
HTR5	IN = REUTULE	OUT = GAS4A	W1A
COMP3	IN = REUTCLEZ	OUT = GAS4B	
MIXM	$IN = GAS4 \qquad GAS4A$	OUT = GAS5	Q3
HTR6	IN = GAS4D	OUT = GASM LIQM	Q4
MEOH	IN = GASS	OUT = GASM2	Q5
COOL	IN = GASM	OUT = Gasr1 METHANOL	Q6
CONDENSE	IN = UASNZ $IN = CASD1$	OUT = PURGE RECYCLE	
MSPLII	IN = UAJAI IDUICT	-	
FLUWSHEET CUR	$\frac{10031}{10} = \Delta MR \Delta TR$	OUT = COMAIR	WAIRI
AIKLUMP	IN = FIUF2 COMAIR	OUT = FLUE3 COMAIR2	
	IN = FLUE3 PURGE	OUT = FLUE4 PURGEH	
1100116			

-

OUT = COMGASIN = COMAIR2 PURGEH MCOMB OUT = FLUEGAS IN = COMGAS QH3ADCOMB FLOWSHEET CHECK WP1 OUT = WATER2 IN = WATER PUMP1 IN = WATER2 Q3 Q4 QWAT1 OUT = WATER3 WHTR1 OUT = Psteam IN = WATER3 QH4 QFL2 WHTR2 PSTEAM3 OUT = PSTEAM2IN = PSTEAMSTEAMSEP WTURB OUT = PSTEAM4 IN = PSTEAM2 TURBINE 0H20 OUT = COOLH20IN = PSTEAM4STCOOL OFL2 OUT = FLUE2IN = FLUEgasREFCOOL ****** STREAM SPECIFICATIONS ******* Def-Subs-Attr PSD PSD in-units Length = MU intervals 10 size-limits 0/4/5/6.4/8/10.1/12.7/16/20.2/32/50.8 Def-Stream-Class Mixcinc Definition Substreams=Mixed Cisolid Ncpsd Def-Streams Mixcinc Dry Gasfer/mixcisld Loop1/Conven Loop2 Def-Streams HEAT QH4 QH5 Q3 Q4 Q5 Q6 QDRYER QSTORE QGAS Qdec Qmeth & QH3 QFL2 QWG QH20 qwat QWAT1 QWAT2 DEF-STREAMS WORK WI WIA WAIRI WPI Wchar WTURB STREAM STEAM Substream Mixed TEMP =900 PRES = 319.088 MOLE-FLOW = 6200 MOLE-FRAC H2O 1.00 Substream Mixed Temp = 900 Pres = 319.088 Mass-flow = 96666.666 Stream SteamG Mass-frac H2O 1.00 Stream SteamO2 Mixed Temp= 900 Pres = 319.088 Mole-flow = 1800 Mole-frac H20 1.00 Substream Mixed Temp = -300 Pres = 319.088 Mass-flow = 41666.666 Stream Oxy Mole-frac 02 1.0 Stream water Substream Mixed Temp = 60 P=25 Mole-flow= 18650 Mole-frac H20 1.00 Stream Refgasl Substream Mixed Temp = 80 Pres=25 Mole-flow = 4000 Mole-frac 02 0.21 / N2 0.79 Stream Ambair

```
Substream Mixed Temp=80 Pres=14.696 Mole-flow = 5500
   Mole-frac 02 0.21 / N2 0.79
Stream Airl
   Substream Mixed Temp=80 Pres = 14.696 Mass-flow=100
   Mass-frac 02 0.2329 / N2 0.7671
Stream Air2
   Substream Mixed Temp = 80 Pres = 14.696 Mole-flow = 50
   Mole-frac 02 0.21 / N2 0.79
Stream Airx
    Substream Mixed Temp = 80 Pres = 14.696 Mole-flow =6000
    Mole-frac 02 0.21 / N2 0.79
Stream Meth
   Substream Mixed Temp = 80 Pres = 14.696 Mole-flow =0.01
   Mole-frac MEOH 1.0
Stream Wwood Mixed Temp=80 Pres=14.696 Mass-flow= 150905.294
    Mass-flow H20 150905.294
    Substream NCPSD Temp=80 Pres=14.696 Mass-flow=186428.038
    Mass-flow Wood 186428.038 / Char 1e-10
Subs-attr PSD Frac=0.593 0.001 0.011 0.026 0.033 0.04 0.052 &
                    0.072 0.140 0.032
   Comp-Attr Wood Proxanal (10.60 14.8 82.1 3.1)/
                          (3.1 47.9 6.2 0.60 0.0 0.01 42.19)/
                  Ultanal
                  Sulfanal (0.004 0.003 0.003)/
                  Coalmisc (8628. 0.0 0.0 0.0 0.0)/
   Ultanal (0.0 93.68 6.0 0.0 0.0 0.05 0.27)/
                  Sulfanal (.02 .02 .01)/
                 Coalmisc (15244 0.0 0.0 0.0 0.0)/
                  *********
               Block Chng Clchng
Block Chngf Clchng
Block Dryer Flash2
  Param Temp = 220 Pres = 14.696 maxit = 100
Block Store Heater
  Param Temp=220
Block WGCHECK Heater
  Param Temp = 80 V=1
;
```

```
Block O2Heat Heatx
   Param Opt=2 Flowdir=0 Tcold=600
Block Feedmix Mixer
   Param Pres=319.088
Block Gasifier Ryield
   Properties Option=SYSOPO
   Param Temp=1526 Pres=319.088
                                               Val=1.51109E-02/
                             Comp = H2
   Massyield Ssid = Mixed
                                               Val=1.07374E-01/
             Ssid = Mixed
                             Comp = CO
                             Comp = CO2
                                               Val=4.11858E-01/
             Ssid = Mixed
                                               Val=5.92536E-02/
             Ssid = Mixed
                             Comp = CH4
                                               Val=0.0000E-00/
             Ssid = Mixed
                             Comp = C2H2
                                               Val=1.22623E-04/
             Ssid = Mixed
                             Comp = C2H4
             Ssid = Mixed
                             Comp = C2H6
                                               Val=8.28036E-03/
             Ssid = Mixed
                             Comp = C3H6-2
                                               Val=0.0000E-00/
                             Comp = C3H8
                                               Val=0.0000E-00/
             Ssid = Mixed
                             Comp = C6H6
                                               Val=5.80442E-03/
             Ssid = Mixed
                             Comp = C6H60
                                               Val=6.59455E-03/
             Ssid = Mixed
                             Comp = C10H8
                                               Val=3.87915E-04/
             Ssid = Mixed
                                              Val=3.87915E-04/
             Ssid = Mixed
                             Comp = C14H10-1
                             Comp = C7H80-4
             Ssid = Mixed
                                               Val=3.87915E-04/
                                               Val=3.41829E-01/
             Ssid = Mixed
                             Comp = H20
                                               Val=1.53194E-02/
             Ssid = Cisolid Comp = O2SI
                                               Val=2.72938E-02/
             Ssid = Ncpsd
                             Comp = Char
             Ssid = Ncpsd
                             Comp = Wood
                                               Val=0.0
Block Solsep Sep2
          Subs=Ncpsd
                        Stream=Solid1
                                        Comp=Char
                                                       Frac=1.0/
   Frac
          Subs=Mixed
                        Stream=Gas1
                                        Comp=C14H10-1 Frac=0.9995
   Flash-specs Gas1 Pres=319.088
Block Solsp2 Sep2
          Subs=Cisolid Stream=Solid2 Comp=02SI
                                                      Frac=1.0 /
   Frac
                                        Comp=C14H10-1 Frac=0.9995
          Subs=Mixed
                        Stream=Gas1b
   Flash-specs Gas1b Pres=319.088
Block Heat1 Heatx
   Param Option=1 Fdir=0 Thot=1490
Block Chcomp2 Compr
   Param Type = 1 Pres = 25 EP = 0.90
Block Heat2 Heatx
   Param Opt=1 Fdir=0 Thot=1489.9
Block Heat3 Heatx
   param opt = 1 Fdir=0 Thot = 1489
Block CM Mixer
;
```

```
<u>69</u>
```

```
Block Cdecomp Ryield
   Param Pres = 25 Temp=2000
                                       Val = 0.249712543/
  Massyield Ssid = Mixed Comp=CO2
                                       Val = 0.039009473/
             Ssid = Mixed Comp=H20
                                       Val = 0.711277984
             Ssid = Mixed Comp=N2
Block Amix Mixer
Block Cmix Mixer
Block Combust Rstoic
   Param Pres = 20 Maxit = 500 T = 2000
   Stoich 1 Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
           1 Mixed MEOH 1.0
   Conv
Block Change Clchng
Block Inlet MIXER
     PARAM
           PRES = 319.088
BLOCK REAC1 RSTOIC
     PARAM PRES = 319.088
                                -1
                                     / H2O -1 / CO 1 / CH4 1
            1 MIXED C2H2
     STOICH
                                     / H2O -1 / CO 1 / CH4 1 / H2 1
             2 MIXED C2H4
                                -1
     STOICH
                                     / H2O -1 / CO 1 / CH4 1 / H2 2
             3 MIXED C2H6
                                -1
     STOICH
                                    / H2O -1 / CO 1 / CH4 2
                                -1
                       C3H6-2
             4 MIXED
     STOICH
                                     / H2O -3 / CO 3 / CH4 3
                                -1
             5 MIXED
                       C6H6
     STOICH
                                     / H2O -10 / CO 10 / H2 14
/ H2O -14 / CO 14 / H2 19
                                -1
            6 MIXED
                       C10H8
     STOICH
                       C14H10-1 -1
            7 MIXED
     STOICH
                                     /H2 2 / CO 1
                       MEOH
                                -1
               MIXED
     STOICH
            8
                                     / H2O -5 / CO 6 / H2 8
                                -1
            9 MIXED
                       C6H60
     STOICH
                                     / H2O -6 / CO 7 / H2 10
      STOICH 10 MIXED C7H80-4
                                -1
                                1.00
          1 MIXED C2H2
      CONV
                                1.00
           2 MIXED
                     C2H4
      CONV
           3 MIXED
                                1.00
                    C2H6
      CONV
                                1.00
                    C3H6-2
      CONV 4 MIXED
                                1.00
              MIXED
                     C6H6
      CONV
           5
                                1.00
      CONV 6
             MIXED
                     C10H8
                     C14H10-1
                                1.00
          7
              MIXED
      CONV
                                1.00
      CONV 8 MIXED
                     MEOH
                                1.00
      CONV 9
                     C6H60
              MIXED
      CONV 10 MIXED C7H80-4
                                1.00
 Block Htr2 Heatx
    Param Opt=1 Fdir=0 Thot=1400
 BLOCK REFORM RGIBBS
      PARAM TEMP = 1600. PRES = 319.088 maxit=500 nr=3
      PROD H2 1 / CO 1 / H2O 1 / CH4 1 / CO2 1 / C 0
              1 CO2 -1 / H2 -1 / H2O 1 / CO 1
       STOI
 ;
                          / C 1 / CO2 1
              2 CO -2
       STOI
 ;
                          / H2O -1 / CO 1 / H2 3
       STOI
              3 CH4 -1
 ;
```

```
DELT 3 -15.
;
Block Htr3 HeatX
  Param Opt=1 Fdir=0 Thot=1300
Block Htr3A Heater
  Param Temp=450
BLOCK H2OCOND Sep2
  Frac Subs=Mixed Stream=Agas2 Comp=H2 CO CO2 CH4 H20 FRAC=1.0 1.0 1.0 1.0 &
            0.025/
       Subs=Mixed Stream=Wwater Comp=H2 CO CO2 CH4 H2O Frac=0.0 0.0 0.0 &
            0.0 0.975
   Flash-Specs Agas2 Temp=450 P=319.088 Maxit = 300 Tol=0.001 V=1/
               Wwater Temp=450 P=319.088 Maxit = 300 Tol=0.001 V=1
Block Wcool Heater
  Param Temp = 80
Block Qlsep Fsplit
  Frac Qwat1 0.75 / Qwat2 0.25
BLOCK CO2COND Sep2
   Frac Subs=Mixed Stream=Cgas Comp=H2 CO CH4 H2O CO2 FRAC=1.0 1.0 1.0 1.0 &
            0.075/
        Subs=Mixed Stream=Lig Comp=CO2 Frac=0.925
   Flash-Specs Cgas Temp=450 P=319.088/
               Liq
                     Temp=450 P=319.088
Block CO2SEP Fsplit
   Frac PC02 0.67 / RC02 0.33
Block Change2 Clchng
BLOCK COMP2 COMPR
    PARAM TYPE = 1 PRES = 750 \text{ EP} = 0.95
Block HTR5 Heater
     Param Temp=150
BLOCK COMP3 COMPR
     PARAM TYPE = 1 PRES = 750
                                  EP=0.95
BLOCK HTR6 HEATER
     PARAM TEMP = 445 PRES =750
BLOCK MEOH Rgibbs
     PARAM TEMP = 445 PRES =750 NR=3 IDEL = 1 Maxit=500
     Prod CO 1 / H2O 1 / MEOH 1 / CO2 1 / H2 1 / CH4 1
     STOI 1 CO -1 / H2 -2 / MEOH 1
     STOI 2 CO2 -1 / H2 -1 / CO 1 / H2O 1
     STOI 3 CO -1 / H2 -3 / CH4 1 / H2O 1
```

```
EXSP 3 0.1E-30
     DELT 1
              +10.0
Block Cool Heater
     Param Temp=35
BLOCK CONDENSE FLASH2
     PARAM TEMP = 32 PRES = 740
BLOCK MSPLIT FSPLIT
     FRAC PURGE 0.33 / RECYCLE 0.67
     Param npk=1 kph=1
BLOCK MIXM MIXER
     PARAM KPH = 1
Block Aircomp Compr
   Param Type = 1 Pres=20 EP=0.90
Block Hcoml Heatx
   Param Opt=1 Fdir=0 Thot=1000
Block Hcom2 Heatx
   Param Opt=1 Fdir=0 Thot=900 DPC=20
Block Mcomb Mixer
    Param Pres=20 Maxit = 500 Tol=0.001 NPK=1 kph=1
 Block Adcomb Rstoic
    Param Pres=20 Maxit=500 Test=1800 Tol=0.001
    Stoich 1 Mixed CO -1 / O2 -0.5 / CO2 1
Stoich 2 Mixed CH4 -1 / O2 -2 / CO2 1 / H2O 2
              Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
    Stoich 3
    Stoich 4 Mixed H2 -1 / 02 -0.5 / H20 1
          1 Mixed CO
                               1.00
    Conv
                               1.00
           2 Mixed CH4
    Conv
           3 Mixed MEOH
                               1.00
    Conv
           4 Mixed H2
                               1.00
    Conv
 Block Refcool Heater
    Param Temp=1700
 Block Pumpl Pump
    Param Pres=319.088 Type=1 Eff=0.9
 Block Whtrl Heater
 Block Whtr2 Heater
 Block Steamsep Fsplit
    Mole-flow Psteam2 5284.1
     Def-key ID=1 Subs=Mixed Comp=H20
```

```
Block Turbine Compr
  Param Type=3 Pres = 15.0 \text{ ES} = 9.95
Block Stcool Heater
  Param Temp = 80
****
                    Design Specifications
     ********
                     Fortran Blocks
                                     *********
Fortran Set-Air
  Properties Sysop0
  Define FA Mass-flow Stream=Solid1
                                    Substream=Ncpsd
                                                   Comp=Char
  Define FB Mass-flow Stream=Airl
                                    Substream=Mixed
                                                    Comp=02
  Define FC Mass-flow Stream=Air1
                                    Substream=Mixed
                                                    Comp=N2
       FB = 2.968741 * FA
F
       FC = 9.777148*FA
F
  Flash-specs Airl Kode=2 Temp=80 Pres=25
  Execute after solsep
```

<u>73</u>

APPENDIX 6

### HAWAII MATERIAL BALANCE INFORMATION

Feed: Bagasse					
Proximate Analysis, VM, % FC Ash	Dry 82.1 14.8 3.1				ŭ
	100.0				
Ultimate Analysis					
orenate Analysis	Drv	MAF		•	
C. %	47.90	49.43			
H	6.20	6.40			
N	0.60	0.62			
S S	0 01	0.02			
õ	42 19	43 54			
Åsh	3 10	10.01			
7.511					
	100 00	100 00			
Heating Value	100.00	100.00			
Given	19,100	kJ/ka			
Corr.	19.021	kJ/kg	(NREL CORRELATION)		
	,				
<b>Process Information</b>					
		System A		System B	•
Conditions					
Temperature C		920		750	
		1526		/ 50	
Proceuro Bane		1520		1302	
riessure, balls		210 1		145 0	
, 1919 Stoom/Ecod 16/16		0 E0		145.0	
Ovygon/Eood 1b/1b		0.00		1.2	
Eard Maisture "	, iot	0.25		0.00	
reed moisture, % v	vec	10.00		5.00	

<u>75</u>

Product Composition	System A	System B
Char Composition	60 00 *	87.4
C, %	2.04 *	5.6
H	J.04 "	0.3
0	0.21 ···	6.7
Ash	35.95	
Tar Composition	EQ 2	69.2
C, %	69.L 67	6.7
H	0./	24.1
0	24.1	
Gas Composition	17 15	33.46
H2	0 77	9.03
CO	0.//	15.84
C02	21.41 O 45	4.96
CH4	0.45	0.00
C2H4	0.01	0.00
C2H6	0.03	0.00
C3H8	0.00	0.00
C6H6		36.71
H2O	43.41	
	100.00	100.00
Yield Structure	1 05	1.68
Gas (m3/kg bagasse)	27 076	59.322
(ft3/1b bagasse)	57.070	
Carbon Conversion, %	97 415 *	75.0
To Gas	10 401 *	25.0
To Char	2 104 *	0.0
To Liquid	100 000	

* = changed from original data

<u>76</u>

# System A Analysis

Basis:			
Feed:	83,333.333	1b/hr	
Temp:	1526	deg F	
Press:	319.088	psia	
System Input:			
Dry Bagasse, 1	b/hr	83,	,333.333
Carbon, 1b/hr		39,	916.667
Hydrogen		5,	166.667
Nitrogen			500.000
Sulfur			8.333
Oxygen		35,	158.333
Ash		2,	583.333
	Check	83,	333.333
Moisture, 1b/h	r	9,	880.686
H (MW=1.0079)	)	1,	105.593
0 (MW=15.999	4)	8,	775.093
Steam, 1b/hr	•	48,	333.333
H (MW=1.0079)	) .	5,	408.229
0 (MW=15.999	<b>4</b> )	42,	925.104
Oxygèn, 1b/hr		20,	833.333
Total In, 1b/hr		162	380.685
C		39	916.667
Н		11.	680.489
N		-	500.000
S			8.333
0		107.	691.863
Ash		2,	583.333
Chi	eck	162.	380.685
			, <b> _</b>

<u>77</u>

System Ou	tput							
Gae	Comp	HW	Mole X	wt	wt X	C	н	U
uu	H2 CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 H2O	2.01580 28.01055 44.00995 16.04275 28.05390 30.06970 44.09665 78.11430 18.01520	17.15 8.77 21.41 8.45 0.01 0.63 0.00 0.17 43.41 	34.5710 245.6525 942.2530 135.5612 0.2805 18.9439 0.0000 13.2794 782.0398 2172.5815	1.5912 11.3069 43.3702 6.2396 0.0129 0.8720 0.0000 0.6112 35.9959 	0.0000 105.3378 257.1587 101.4942 0.2402 15.1340 0.0000 12.2514 0.0000  491.6164	34.5710 0.0000 34.0670 0.0403 3.8099 0.0000 1.0281 87.5059 161.0221	0.0000 140.3147 685.0943 0.0000 0.0000 0.0000 0.0000 0.0000 694.5340 1519.9430

MU	21.726	lb/lbmol
wt X C	22.628	
ut X H	7.412	
ut X 0	69.960	
check	100,000	

<u>78</u>

Product Yiel	d, based on carbor Total	conversion Carbon	Hydrogen	Oxygen		
Gas	154.201.985	34.893.154	11,428,767	107.880.064		
Char	6,919,554	4,151,732	265.711	14.531		
Tar	1,259.798	871.780	84.406	303.611		
Out	162,381.337	39,916.667	11,778.885	108,198.206		
Error, %	0.000	(0.000)	0.842	0.470		
Char Yield,	based on ash and c 7,185.906 1t	char comp p/hr				•
Gas Yield , I	based on vol and M	1W		•		
	186,989.401	ST=	32	deg F		
	176,914.179	ST=	60	deg F		
	173,573.336	ST=	70	deg F		
Tar Composit	ion					
Component	MW	wt %	wt	1b C	1b H	1b H
C10H8	128.1747	5	640.874	600.558	40.316	0.000
C14H100	178.2351	5	891.176	840.781	50.395	0.000
C7H80	108.14065	5	540.703	420.390	40.316	79.997
C6H60	95.0742	85	8,081.307	6,125.687	514.029	1,441.592
		100,000	10 154 059	7 097 415	645 056	1 521 580
		100.000	10,134.033	7,507.415	043.030	1,321.303
	ANALYSIS	MODEL				
WT % C	69-2	78.66				
WT % H	6.7	6.35				
WT % O	24.1	14.99				

Reported Tar Analysis must contain water. It is much different than reported IGT analyses

.

<u>79</u>

Case A IGT input file, oxygen case Feed 83,333.333 Dry feed 9,880.686 Associated water to gasifier Moisture 1 48,333.333 Steam 20,833.333 Oxygen _____ 162,380.685 Total 73,452.647 Associated water removed in dryer Dryer Moisture Product 1b/1b gasifier 1b/hr Component feed 1.51109E-02 2,453.723 H2 1.07374E-01 17,435.529 **CO** 4.11858E-01 66,877.716 C02 5.92536E-02 9,621.647 CH4 1.22623E-04 19.912 C2H4 8.28036E-03 1.344.570 C2H6 0.00000E+00 0.000 **C3H8** 5.80442E-03 942.526 C6H6 3.41829E-01 55,506.362 H20 3.87915E-04 62.990 C10H8 3.87915E-04 62.990 C14H100 3.87915E-04 62.990 C7H80 6.59455E-03 1,070.828 C6H60 4.26132E-02 6,919.554 Char 1.00000E+00 162,381.337 Total

<u>80</u>

Case A Air input file

Total

Air Composition				
Component	MU	Note X	ut	ut X
Oxygen	31.9988	20.66	661.095	22.04
Nitrogen	28.0134	77.01	2 157.312	74.87
Argon	39.948	0.92	36.752	1 28
CO2	44.00995	0.03	1 320	0.05
H2O	18,0152	1.38	24.861	0.86
			2.881.341	100.00
Feed				100100
Dry feed	83,333,333			
Moisture 1	9,880,686	Associated water	to gasifier	
Steam	48.333.333			
Air	• • • • • • • • • • • • • • • • • • • •			
Oxygen	20,833.333			
Nitrogen	67,984.154			
Argon	1,158.184			
CO2	41.607			
H20	783.453			
Total	232,348.084	·		
Moisture 2	73,452.647	Associated water	removed in dryer	
<b>D</b> = = + = +	11 4			
Product	lb/nr	ID/ID gasifier		
N3	3 /57 737	Teed		
n2 CO	2,473.723	1.00000E-02		
C02	44 010 707	7.704002-02		
	0 421 4/7	2.00013E-01 6 16105E-02		
C2#4	10 012	4.14103E-02 8 54075E-05		
C2H6	1 344 570	5 786985-03		
C3H8	0 000	0 000000000000		
C6H6	942.526	4 05653E-03		
H20	56 289 815	2 42265E-01		
C10H8	62.990	2.71101E-04		
C14H100	62,990	2.71101E-04		
C7H8O	62,990	2.71101E-04		
C6H6O	1.070.828	4.60872E-03		
N2	67.984.154	2.92596E-01		
Ar	1.158.184	4.98469E-03		
Char	6,919.554	2.97810E-02		

232,348.735 1.00000E+00

Basis: air at 80 deg F, 14.696 psia, 20 % RH

<u>81</u>

APPENDIX 7

	BCL Gasifier Data											
ltem/Test		71	74	75	76	77	78	79	80	81	82	
Cocifier Conditions	*						1793	1//5	1470	1548	1429	
Tomparature deg F	*	1280	1504	1562	1359	1466	1302	5 8	5 2	5.0	6.8	
Proceire nsid	*	3.8	6.2	8.2	8.4	7.8	10 70	10 00	10 00	8.12	8.12	
Noietura ut X	*	14.42	15.69	6.88	9.00	9.00	10.79	704	590	408	782	
int Unod Pate 1b/hr	*	486	588	700	916	///	1040	700	522	375	719	
av yood Pata 1b/hr	*	416	496	652	834	707	955	140	160	160	152	
litrogen Pate lb/hr	*	139	173	315	169	204	210	100	412	413	437	
Steem Pate 1h/hr	*	389	404	401	461	415	5/1	400	0 780	1,101	0.608	
Steam Pata 15/15 ADV	*	0.935	0.815	0.615	0.553	0.587	0.598	0,274	0.000	1,189	0.695	
retal H20 Pate 1b/1b RDW	*	1.103	1.000	0.689	0.651	0.686	0.519	0,000	0.700	1, 195	0.698	
Total H20 Kate, 15/15 box	* '	1.135	1.012	0.693	0.659	0.694	0.550	0.000	40 129	25 158	14.710	
TOTAL HOO, COT ( D HAT HOOD	*	23.896	21.318	14.595	13.870	14.614	11.151	14.499	19.120	23.130		
TOTAL HZU, SEFTED HAF WOOD					••••••							
Feed	*			and ant	Rod Oak	Red Oak	Red Oak	Bir+Map	Bir+Map	Bir+Map	Bir+Map	
vpe	*	Red Oak	Red Dak	Ked Uak	Red Uak	chine	chips	chips	chips	chips	chips	
Size	*	chips	chips	cnips	cmps	chipa			-			
Proximate Analysis	*			AA AA	67 70	87 78	80.47	83.99	84.48	83.63	83.30	
Volatile Matter, wt % dry	*	81.07	70.42	82.82	03.30	1 1/	2.03	0.36	0.87	0.44	0.44	
Ash	*	2.76	1.21	0.63	1.14	45 / 9	17 50	15.65	14.65	15.93	15.93	
Fived Carbon	*	16.17	28.37	16.55	15.48	12.40	11.50	12.05				
Provimate Analysis	*					0.00	10 70	10.00	10.00	8.12	8.12	
Holeture ut X	*	14.42	15.69	6.88	9.00	9.00	74 70	75 50	76 03	76.84	76.54	
Volatila Matter	*	69.38	59.37	77.12	75.88	75.88	1.19	0 72	0.05	0.40	0.40	
Ach	*	2.36	1.02	0.59	1.04	1.04	1.81	0,32	13 10	14.64	14.64	
nau Eivad Carbon	*	13.84	23.92	15.41	14.09	14.09	12.01	14.09	1.17	,4104		
rikeu calbon Hitimate Anglveis		*					2 07	0.74	0.87	. 0. 44	0.44	
ULLINGLE ANGLYDIG	*	2.76	1.21	0.63	1.14	1.14	2.03	U.30	50 1/	51 13	51.13	
ASH, WL A ULY	*	49.34	57.75	50.08	49.77	49.77	49.50	47.07	20.14	5 72	5.73	
	*	5.93	5.58	6.05	5.99	5.99	5.86	0.12	0.10	0.14	0.14	
nyarogen Nitessen	*	0.07	0.44	0.21	0.20	0.20	0.25	0.10	0.03	0.14	0.14	
Nitrogen	*	0.03	0.03	0.08	0.02	0.02	0.03	0.05	0.05	0.02	0.02	
Untorine	*	0.13	0.87	0.00	0.00	0.00	0.01	0.08	0.03	20.0	12 51	
Sulfur	-	41 74	34.12	42.95	42.88	42.88	42.32	43.46	42.80	42.01	42.71	
Oxygen (diff)	-	41+14										

<u>83</u>

.

•

								•		
					 77	78	79	80	81	82
ltem/Test	71	74	/) 							
							40.05	10 50	11.08	9.82
Product Gas	* 744	10 74	13.94	8.50	10.84	9.94	10.25	10.37	11 03	9.78
Rate, SCF/lb MAF	* (.00	10.14	13 85	8.40	10.72	9.74	10.21	10.50	11105	••••
Rate, SCF/ 1b BDW	* (.45	10.01	(0,0)						27 70	10 36
Dry N2 Free Comp	*		20 51	14 66	18.15	14.94	17.20	20.81	23.17	15.23
H2 mole %	* 13.25	20.59	20.31	4.00	46.27	49.13	48.15	44.1/	41.91	4/ 57
	* 49.52	43.98	43.80	47.10	13.03	14.21	12.75	14.78	15.42	14.27
c03	* 16.32	14.24	17.08	14.37	16 30	16.47	16.38	15.36	14.42	15.65
	* 16.10	15.90	14.41	10.39	0.00	0.00	0.00	0.00	0.00	0.00
CH4	* 0.00	0.00	0.00	0.00	0.00	4 30	4.78	4.28	4.15	4.31
CZHZ	* 3.81	4.80	3.94	4.18	4.03	0.05	0.74	0.60	0.31	0.70
C2H4	* 1.00	0.49	0.26	1.00	U.72	0.75				
C2H6	*					400.00	100.00	100.00	100.00	100.00
	+ 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100100		
	- 100.00	100100					07 /7/	27 1/2	22.576	23,431
	* 05 077	27 0/6	23.694	24.539	23.587	24.451	23.030	23.14C	142 477 77	170.256.79
MW, lb/lbmole	* 25.273	472 070 8/	150 200 31	173.419.53	173,909.87	173,636.13	176,380.20	108,097.10	7 205 91	7 266.36
HHV. Btu/lb mole	* 167,980.25	1/2,0/9.04	4 723 13	7 067.12	7.373.04	7,101.47	7,462.25	(,203.03	1,203.01	448 75
HHV. Btu/lb	* 6,646.70	7,400.00	0,723.13	457 09	458.38	457.66	464.89	443.06	420.70	440.75
HUV BHU/SCF & 60 deg F	* 442.75	453.50	419.07	477.07	120100					40.0075
hav, Blajobi u co alo	*			40.0705	10 / 737	10 8473	10.6082	10.0978	9.6894	10.28/5
a thribmola	* 10.9974	10.1734	10.0521	10.0/22	0 4/40	0 4436	0.4488	0.4363	0.4292	0.4591
C, LD/LDHOLE	* 0.4351	0.4414	0.4242	0.4431	0.4440	0 0286	0.0280	0.0266	0.0255	0.0271
C, LD/LD gas	* 0.0290	0.0268	0.0265	0.0287	0.0276	0.0200	0 2866	0.2819	0.2830	0.2663
C, LB/SCF	* 0 2220	0.2880	0.3693	0.2436	0.2992	0.2042	57 28/7	55.7244	55.0996	51.8484
C, LE/LE MAF WOOD	+ /3 7500	49.2647	73.2849	48.3842	59.4410	56.2407	27.2047	JJ.1644		
C Conv to Gas, %	~ 43.7370 +	4772011					4 3//4	1 2476	1.2470	1.2446
	+ 4 1707	1 2702	1.1690	1.1934	1.2532	1.1960	1.2440	0.0570	0 0552	0.0531
H, lb/lb mole	· 1.1303	0.0555	0 0493	0.0486	0.0531	0.0489	0.0527	0.0337	0.0072	0.0033
H, lb/lb gas	* 0.0447	0.033	0 0031	0.0031	0.0033	0.0032	0.0033	0.0055	0.0035	0.0322
H. Lb/SCF	* 0.0030	0.0034	0.0031	0 0267	0.0358	0.0313	0.0336	0.0348	0.0304	55 070/
H 15/15 MAF wood	* 0.0228	0.0362	0.0430	44 1250	59,0955	52.3849	54.7423	56.5903	03.2/4/	22.7/04
H CODY to Gas. Wt %	* 37.4196	64.1111	10.5449	44.1230	2710772	••••				
	*									
Ten Fatimata	*				0 0147	0 0184	0.0171	0.0166	0.0150	0.0174
lar Estimate	* 0.0204	0.0159	0.0148	0.0188	0.010/	0.0104	••••			
Yield, (D/(D ind) leed	*									
Eq Tar=0.040*.00002*Temp	*					0.00/50	0.00/275	0 00415	0.00376	0.004355
Comp	+ 0.0051	0.00398	0.00369	0.004705	0.00417	0.00459	0.004275	0 00415	0.00376	0.004355
C3H6, LB/lb mat wood	+ 0.0051	0 00398	0,00369	0.004705	0.00417	0.00459	0.004273	0.00415	0.00376	0.004355
Сбнб	+ 0.0051	0.00398	0.00369	0.004705	0.00417	0.00459	0.004275	0.00415	0 00376	0.004355
C10H8	* 0.0031	0.00370	0 00369	0.004705	0.00417	0.00459	0.004275	0.00412	0.005/0	•••••
C14H10	= U.0051	0.00390	0.00307						0.0400	0 0124
	*		0.0107	0 0134	0.0120	0.0133	0.0123	0.0120		0.0120
th c/ib maf wood	* 0.0147	0.0115	0.010/	0.0150	0.0046	0.0051	0.0048	0.0046	0.0042	0.0040
Ib H/Ib maf wood	* 0.0057	0.0044	0.0041	0.00JE	n n110	0.0130	0.0123	0.0119	0.0108	0.0122
LE C/LE dry wood	0.0143	6 0.0114	0.0106	0.0134	0.0117	0.0050	0.0047	0.0046	0.0042	0.0048
	* 0.0055	0.0044	0.0041	0.0052	0.0040	, 0,0000				

٠

<u>84</u>

ltem/Test	71	74	75	76	77	78	79	80	81	82
Basis: 1 lb dry wood									************	
Char estimate. Let C=86. H=4.	0=10 wt % MAF									
ib Ash	• 0.0276	0.0121	0.0063	0.0114	0.0114	0.0203	0.0036	0.0087	0.0044	0.0044
	k									
in .4	• 0.4934	0.5775	0.5008	0.4977	0.4977	0.4950	0,4985	0.5014	0.5113	0.5113
ut in Gas	• 0.2159	0.2845	0.3670	0.2408	0.2958	0.2784	0.2856	0.2794	0.2817	0.2651
ut in Tar	• 0.0143	0.0114	0.0106	0.0134	0.0119	0.0130	0.0123	0.0119	0.0108	0.0125
ut in Char	• 0.2632	0.2816	0.1232	0.2435	0.1900	0.2036	0.2006	0.2101	0.2188	0.2337
· · · · · · · · · · · · · · · · · · ·	t 012002	012010					••••			
in cher	0.0188	0.0201	0.0088	0.0174	0.0136	0.0145	0.0143	0.0150	0.0156	0.0167
	► 0.0222	0.0358	0.0427	0.0264	0.0354	0.0307	0.0335	0.0345	0.0363	0.0321
in ter 1	* 0.0055	0.0044	0 0041	0 0052	0.0046	0.0050	0.0047	0.0046	0.0042	0.0048
	• 0.1828	0 1677	0 1376	0 1328	0.1367	0.1166	0.1380	0.1617	0.1904	0.1351
i in Stoom	* 0 1363	0 1076	0 0820	0.0838	0.0831	0 0664	0.0854	0.1076	0.1343	0.0815
5 H20 1	+ 1 2177	0.0601	0.0020	0 7485	0 7427	0.5035	0 7631	0.9620	1.2005	0.7286
10 N20	1	0.7001	0.1520	0.1403	0.1427	0.3732	011031	017020	112003	011200
b in t	•									
inv Hood	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
later ¹	• 1.1034	1.0000	0.6887	0.6511	0.6860	0.5188	0.6860	0.9004	1.1893	0.6954
1	*									
b Out	ł									
ac 1	• 0.4962	0.6445	0.8651	0.5435	0.6662	0.6276	0.6363	0.6403	0.6564	0.6038
	• 0.0198	0.0157	0.0147	0.0186	0.0165	0.0180	0.0170	0.0165	0.0150	0.0173
'har ¹	• 0.3372	0.3434	0.1512	0.2978	0.2349	0.2598	0.2396	0.2559	0.2618	0.2793
120 1	* 1.2177	0.9601	0.7328	0.7485	0.7427	0.5935	0.7631	0.9620	1.2005	0.7286
losúre	* 98.46	98.19	104.45	97.42	98.48	98.69	98.22	98.65	97.46	96.09
later Conversion %	* -10.37	3.99	-6.41	-14.97	-8.27	-14.40	-11.24	-6.84	-0.94	-4.77
Water Conver. 1b/1b dry wood	* -0.1144	0.0399	-0.0442	-0.0975	-0.0567	-0.0747	-0.0771	-0.0616	-0.0112	-0.0332

.

Item/Test	83		· 85	86	87	88	89	90	91	92
Gasifier Conditions	*									
Temperature, deg F	* 1465	1395	1422	1451	1408	1436	1371	1436	1374	1388
Pressure, psig	* 4.4	4.1	3.4	2.6	2.6	2.4	2.8	2.7	3.6	4.1
Moisture, wt %	* 12.37	3.65	10.00	2.00	4.70	3.70	15.00	5.50	10.00	10.00
Wet Wood Rate, lb/hr	* 457	418	397	425	425	413	348	420	275	275
Dry wood Rate, lb/hr	* 400	403	357	417	405	398	296	397	248	248
Nitrogen Rate, lb/hr	* 119	105	226	221	222	86	101	124	124	124
Steam Rate, 1b/hr	* 430	432	467	447	422	426	436	419	429	434
Steam Rate, 1b/1b BDW	* 1.075	1.072	1.308	1.072	1.042	1.070	1.473	1.055	1.730	1.750
Total H2O Rate, Lb/Lb BDW	* 1.218	1.109	1.420	1.091	1.091	1.108	1.649	1.113	1.839	1.859
Total H20, Ub/Ub MAF wood	* 1.225	1.115	1.427	1.101	1.098	1.115	1.662	1.124	1.851	1.871
Total H2O, SCF/1b MAF wood	* 25.803	23.477	30.047	23.190	23.125	23.479	35.004	23.682	38.984	39.412
Feed	*									
Type	* Bir+Map	Bir+Map	Bir+Map	Hard Chips	S Oak					
Size	* chips	chips	chips	chips	chips	chips	chips	chips	chips	chips
Proximate Analysis	*	•	•	•	-	•	-	-		
Volatile Matter, wt % drv	* 84.42	84.50	84.09	83.41	84.16	85.65	83.47	84.33	85.07	85.07
Ash	* 0.63	0.50	0.46	0.91	0.61	0.61	0.81	0.99	0.67	0.67
Fixed Carbon	* 14.95	15.00	15.45	15.66	15.23	13.74	15.72	14.68	14.26	14.26
Proximate Analysis	*									
Moisture, wt %	* 12.37	3.65	10.00	2.00	4.70	3.70	15.00	5.50	10.00	10.00
Volatile Matter	* 73.98	81.42	75.68	81.74	80.20	82.48	70.95	79.69	76.56	76.56
Ach	* 0.55	0.48	0.41	0.89	0.58	0.59	0.69	0.94	0.60	0.60
Fixed Carbon	* 13.10	14.45	13.91	15.35	14.51	13.23	13.36	13.87	12.83	12.83
litimate Analysis	*									
Ach ut % dry	* 0.63	0.50	0.46	0.91	0.61	0.61	0.81	0.99	0.67	0.67
Cerbon	* 50.95	50.37	50.41	49.63	40.12	49.63	49.84	49.69	49.81	49.81
Hydrogen	* 5.70	5.88	6.13	6.00	6.23	6.42	5.30	6.33	6.05	6.05
Nitrogen	* 0.13	0.19	0.39	0.31	0.13	0.16	0.16	0.13	0.11	0.11
Chlorine	* 0.02	0.03	0.03	0.03	0.03	0.06	0.02	0.02	0.02	0.02
Sulfur	* 0,02	0.00	0.00	0.00	0.03	0.04	0.00	0.00	0.01	0.01
Oxygen (diff)	* 42.55	43.03	42.58	43.12	52.85	43.08	43.87	42.84	43.33	43.33

.

		84	 85	86	87	88	89	90	91 	92	
Item/Test											
	*			40.73	10 30	10.28	10.21	10.04	9.98	9.75	
Product Gas	* 8.97	10.96	8.24	10.72	10.30	10.22	10.13	9.94	9.91	9.68	
Rate, SCF/ID MAr	* 8.91	10.91	8.20	10.62	10.24						
Rate, SCF/ ID BDW	*				44 45	18 54	18.21	20.47	19.38	20.04	
Dry N2 Free Comp	* 20.92	19.81	19.19	18.41	10.03	10.34	44.51	43.51	43.80	43.01	
H2, mole %	* 42.57	42.23	43.61	46.46	47.30	13 62	15.04	14.27	14.95	14.92	
CO	* 15.30	16.11	14.82	12.65	13.20	14 45	16.61	16.12	16.42	16.58	
C02	* 15.91	15.75	17.13	17.06	17.01	0.28	0.23	0.27	0.24	0.24	
CH4	* 0.00	0.00	0.00	0.00	0.00	/ RT	4.53	4.65	4.41	4.51	
C2H2	* 4.88	4.83	4.48	4.79	4.89	0.72	0.87	0.71	0.80	· 0.70	
C2H4	* 0.42	1.27	0.77	0.63	0.81	0.72					
C2H6	* ••••					100.00	100.00	100.00	100.00	100.00	
	± 100-00	100.00	100.00	100.00	100.00	100.00	100700				
	*					97 780	23.711	23.055	23.413	23.216	
	* 23.127	23,582	23.361	23.222	23./8/	477 (01 01	176 716 40	174.277.93	173,419.49	173,817.92	
MW, lb/lbmole	* 170 824 08	173.830.25	174,553.95	177,736.95	178,315.86	1//,401.01	7 768 60	7.559.36	7,406.92	7,487.10	
HHV, Btu/lb mole	+ 7 294 34	7 371.39	7.472.04	7,653.77	7,496.37	7,504.02	7,300.00	459.35	457.09	458.14	
HHV, Btu/lb	+ /50.34	458.17	460.08	468.47	469.99	407.00	400.30	427100			
HHV, Btu/SCF & 60 deg F	490.25						10 5001	10 2287	10.3380	10.2587	
-	+ 10 1750	10.3644	10.3368	10.4509	10.6959	10.4845	0.4428	0 4437	0.4415	0.4419	
c, lb/lbmole	+ 0.792	0 4395	0.4425	0.4500	0.4497	0.4485	0.4420	0.0270	0.0272	0.0270	
C, lb/lb gas	+ 0,4302	0 0273	0.0272	0.0275	0.0282	0.0276	0.0211	0 2707	0.2719	0.2636	
C, Lb/SCF	* 0.0207	0.0006	0.2245	0.2953	0.2904	0.2841	0.2020	53 0345	54.2292	52.5732	
C. Lb/Lb MAF wood	* U.2390	50 1/38	44.3299	58.9572	71.9350	56.8910	50.2379	22.9242	24102/0		
C Conv to Gas, X	* 40./33/	37.1430					4 37/4	1 2084	1.2837	1.3014	
	* * 3057	1 3058	1.3046	1.2901	1.2675	1.2889	1.2/00	0.0563	0.0548	0.0561	
H. lb/lb mole	* 1.2073	0.0554	0.0558	0.0556	0.0533	0.0551	0.0530	0.0034	0.0034	0.0034	
H, lb/lb gas	* 0.0000	0.0034	0.0034	0.0034	0.0033	0.0034	0.0034	0.0004	0.0338	0.0334	
H. Lb/SCF	* 0.0034	0.00377	0.0283	0.0365	0.0344	0.0349	0.0344	53 741R	55,4382	54.9090	
H, 1b/1b MAF wood	* 0.0304	5758 5A	46.0101	60.2010	54.8977	54.0659	64.2930	33,1410		•	
H Conv to Gas, wt %	* 52.9/50	. 05.0555									,
	*										
	······································						0.0184	0 0173	0.0185	0.0182	
Tar Estimate	* 0.0167	0 0181	0.0176	0.0170	0.0178	0.0175	0.0100	0.0175	•••••		
Yield, lb/lb maf feed	* 0.0107	0.0101	••••								
Eq Tar=0.04600002*Temp							A AA///E	0 00/32	0.00463	0.00456	
Comp	* 0.00/175	0 00/525	0.00439	0.004245	0.00446	0.00432	0.004045	0.00432	0.00463	0.00456	
C3H6, LB/lb maf wood	* 0.004175	0.004525	0 00439	0.004245	0.00446	0.00432	0.004645	0.00432	0.00463	0.00456	
C6H6	* 0.0041/5	0.004525	0.00439	0.004245	0.00446	0.00432	0.004645	0.00432	0.00.63	0.00456	
C10H8	* 0.004175	0.004525	0.00437	0.004245	0.00446	0.00432	0.004645	0.00432	0.00405	0100.000	
C14H10	* 0.004175	U.UU4525	0.00437	0100-240				A 0435	0 017/	0 0132	
	*	0.0474	0 0127	0_0123	0.0129	0.0125	0.0134	0.0125	0.0134	0.0152	
Lb C/1b maf wood	* 0.0121	0.0151	0.0127	0.0047	0.0050	0.0048	0.0052	0.0048	0.0021	0.0051	
th H/lb maf wood	* 0.0046	0,0050	0.0049	0.0047	0.0128	0.0124	0.0133	0.0124	0.0155	0.0131	
th c/th dry wood	* 0.0120	0.0130	0.0120		0.0049	0.0048	0.0051	0.0048	0.0051	0.0030	
IN WITH dry Hood	* 0.0046	0.0050	0.0045	0.0047	0.0047						

1

<u>87</u>

.

-

•

tem/Test	83	84	85	86	87	88	89	90	91	92
asis: ( LD dry wood her ectimate, Let C=86, H=4, O	3							0.0000	0 0047	0 0067
b Ash	0.0063	0.0050	0.0046	0.0091	0.0061	0.0061	0.0081	0.0099	0.0007	0.0001
ьс *				· · · · · · ·	0 (017	0 /0/7	0 /08/	0 4040	<b>0.4981</b>	0.4981
n *	0.5095	0.5037	0.5041	0.4963	0.4012	0.4903	0.4704	0.2680	0 2701	0.2619
ut in Gas *	0.2381	0.2979	0.2235	0.2926	0.2886	0.2825	0.2003	0.2000	0.0133	0 0131
ut in Tar *	0.0120	0.0130	0.0126	0.0121	0.0128	0.0124	0.0155	0.0124	0.0133	0.2737
ut in Char *	0.2594	0.1928	0.2680	0.1915	0.0998	0.2016	0.2048	0.2100	0.2147	0.2252
*									0.0157	0.0150
in cher *	0.0185	0.0138	0.0191	0.0137	0.0071	0.0144	0.0146	0.0155	0.0155	0.0139
in ges *	0.0302	0.0375	0.0282	0.0361	0.0342	0.0347	0.0341	0.0340	0.0335	0.0332
in ter *	0.0046	0.0050	0.0049	0.0047	0.0049	0.0048	0.0051	0.0048	0.0051	0.0050
in tar 🔹 🕈	0.1932	0.1829	0.2202	0.1821	0.1844	0.1882	0.2375	0.1879	0.2662	0.2685
in An Cheem *	0.1399	0.1266	0.1680	0.1276	0.1382	0.1343	0.1836	0.1336	0.2123	0.2143
	1 2502	1.1314	1.5014	1.1405	1.2347	1.2003	1.6412	1.1943	1.8969	1.9152
B H2U *	1.2502	111374								
h in *								4 0000		1 0000
ny Nood *	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
iter *	1.2175	1.1092	1.4202	1.0911	1.0914	1.1080	1.6486	1.1154	1.8587	1.0209
ate: *										
h Out *								0 (0)	0 4117	0 5076
AS *	0.5433	0.6778	0.5050	0.6502	0.6418	0.6299	0.6329	0.0041	0.011/	0.3720
er t	0.0166	0.0180	0.0175	0.0168	0.0177	0.0172	0.0184	0.01/1	0.0104	0.0101
her *	0.3115	.0.2318	0.3199	0.2345	0.1235	0.2432	0.2491	0.204/	0.2373	1 0153
20 *	1.2502	1.1314	1.5014	1.1405	1.2347	1.2003	1.6412	1.1945	1.8909	1.9152
	95.68	97.62	96.85	97.65	96.48	99.17	95.96	98.43	98.15	97.77
										_7 07
later Conversion %	-2.69	-2.00	-5.72	-4.52	-13.14	-8.32	0.45	-7.27	-3+10	-0.0543
ston Conver 1b/1b dry wood*	-0.0327	-0.0222	-0.0813	-0.0493	-0.1434	-0.0922	0.0074	-0.0009	·U.UJOZ	-0.0303

ltem/Test		93	94	101	102	103	104	105	106	107	109
.Gasifier Conditions	*										
.Temperature, deg F	*	1290	1328	1623	1512	1507	1651	1627	1544	1650	1500
Pressure, psig	*	3.4	3.2	7.0	5.6	5.6	3.4	6.0	3.8	4.8	3.8
.Moisture, wt %	*	40.00	35.00	5.50	4.42	5.74	4.59	4.59	4.00	5.00	3.00
.Wet Wood Rate, lb/hr	*	340	518	450	390	370	420	424	306	-357	312.5
Dry wood Rate, lb/hr	*	204	337	425	373	349	401	405	294	339	303
Nitrogen Rate, Lb/hr	*	128	62	108	134	107	99	0	4	93	113
.Steam Rate. lb/hr	*	430	417	468	432	407	447	372	449	439	345
Steam Rate, lb/lb BDW	*	2.108	1.237	1.101	1.158	1.166	1.115	0.919	1.527	1.295	1.139
Total H2O Rate, lb/lb BDW	*	2.775	1.774	1.160	1.204	1.226	1.162	0.965	1.568	1.348	1.170
Total H2O, lb/lb MAF wood	*	2.793	1.785	1.174	1.211	1.242	1.167	0.970	1.579	1.355	1.206
.Total H2O, SCF/Lb MAF wood	*	58.813	37.585	24.729	25.501	26.157	24.584	20.424	33.245	28.539	25.402
.Feed	*										
Type	*	S Oak	Sawdust	Sawdust	Hard	Hard	Hard	Hard	Hard	Hard	hog
.Size	*	chips	powder	powder	chips						
.Ultimate Analysis	r	•	•	•	•	•	•				
. Volatile Hatter, wt % dry	*	81.92	80.65	83.80	85.20	84.20	85.60	85.60	85.26	85.37	70.29
Ash	*	0.65	0.57	1.21	0.59	1.26	0.45	0.45	0.67	0.52	3.00
. Fixed Carbon	*	17.43	18.78	14.99	14.21	14.54	13.95	13.95	14.07	14.11	12.82
.Proximate Analysis	*										
. Moisture, wt X	*	40.00	35.00	5.50	4.42	5.74	4.59	4.59	4.00	5.00	3.00
. Volatile Matter	*	49.15	52.42	79.19	81.43	79.37	81.67	81.67	81.85	81.10	68.18
. Ash	*	0.39	0.37	1.14	0.56	1.19	0.43	0.43	0.64	0.49	2.91
. Fixed Carbon	· •	10.46	12.21	14.17	13.58	13.71	13.31	13.31	13.51	13.40	12.44
.Ultimate Analysis	*										
. Ash, wt % dry	*	0.65	0.57	1.21	0.59	1.26	0.45	0.45	0.67	0.52	3.00
. Carbon	*	53.92	53.11	50.22	50.50	50.37	51.30	51.30	50.82	50.84	45.36
. Hydrogen	*	6.53	6.50	5.90	5.93	6.00	6.12	6.12	6.08	6.07	5.63
. Nitrogen	*	0.21	0.18	0.06	0.18	0.19	0.11	0.11	0.14	0.22	0.18
. Chlorine	*	0.04	0.04	0.02	0.01	0.01	0.03	0.03	0.03	0.03	0.03
. Sulfur	*	0.04	0.03	0.09	0.01	0.02	0.10	0.10	0.20	0.40	0.02
. Oxygen (diff)	*	38.61	39.57	42.50	42.78	42.15	41.89	41.89	42.06	41.92	45,78

· · · · · · · · · · · · · · · · · · ·	93	94	101	102	103	104	105	106	`107	109
Iten/Test								•••••		
Product Gas	*		A E	42 02	11 78	13.83	14.57	12.99	14.93	9.96
Rate, SCF/Lb MAF	* 8.82	6.31	14.47	11.02	11 63	13.77	14.50	12.90	14.85	9.66
Rate SCF/ 1b BDW	* 8.76	6.27	14.28	11.92	11.03					
Dray N2 Free Comp	*			24 00	20.87	24 87	25.48	22.47	26.39	21.54
W2 mole %	* 14.16	16.81	24.58	21.90	20.07	41 05	40.21	43.17	41.09	48.38
	* 51.75	50.92	40.75	41.90	42.12	47.00	13 41	12.54	12.55	9.07
	* 12.02	10.53	13.21	13.99	14.02	15.70	14 /5	16 65	15.65	15.19
	* 16.26	15.61	16.75	16.74	16.86	15.01	10.45	0.05	0.49	0.27
. CH4	* 0.00	0.25	0.37	0.29	0.35	0.57	0.40	1.17	3 60	4.96
. C2H2	• 1.74	4.96	4.06	4.60	4.71	4.09	3.64	9.4/	0.16	0.59
. C2H4	- 4.14	0.02	0.28	0.52	0.47	0.11	0.21	0.30	0.14	0.57
. C2H6	= 1.07	0.72							400.00	100 00
•	* 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
•	*			22 640	22 816	21.862	21.562	22.186	21.280	22.053
Nu ib/ibmole	* 24.331	23.474	21.750	22.300	475 9/3 00	148 006 57	170.142.73	175.303.26	168,393.20	179,033.91
uuv Btu/ib mole	* 178,535.45	180,020.76	172,478.48	1/5,05/.09	7 707 15	7 730 00	7,890,86	7.901.58	7,913.10	8,118.18
	* 7,337.81	7,669.10	7,937.28	7,759.78	7,707.13	//5 /7	448 45	462.05	443.84	471.89
. nnv, plu/co	* 470.57	474.49	454.61	461.41	405.40	442.43	440.43	408102		
. HNV, BLU/SCP & DO deg i	*						0 /053	0 0772	0.3603	10.1230
•	* 11 0082	10.7284	9.6245	10.0305	10.1686	9.5969	9.4072	<b>7.7</b> 332	0 620 0	0.4590
. C, Lb/lbmole	+ 0 4524	0 4570	0.4429	0.4446	0.4457	0.4390	0.4399	0.44/7	0.73/7	0 0267
. C, lb/lb gas	+ 0.4324	0.0283	0.0254	0.0264	0.0268	0.0253	0.0250	0.0202	0.0247	0 2657
c, lb/scf	* U.U290	0.0203	0 3666	0.3178	0.3157	0.3498	0.3643	0.5401	0.3003	54 9200
. C, lb/lb MAF wood	• 0.2339	77 /0/4	72 1085	62.5560	61.8916	67.8860	70.6859	66.4734	12.0/40	30.0270
C Conv to Gas, X	* 47.1527	22.4040	72.1005	0213300	••••					4 0077
	*		4 75 00	1 3301	1.3258	1.3137	1.3524	1.3330	1.3300	1.28//
H. tb/tb mote	* 1.1968	1.2288	1.3709	0.050/	0 0581	0.0601	0.0627	0.0601	0.0625	0.0584
H lb/lb gas	* 0.0492	0.0523	0.0625	0.0374	0.0035	0 0035	0.0036	0.0035	0.0035	0.0034
H Lb/SCF	* 0.0032	0.0032	0.0036	0.0035	0.0033	0 0479	0.0519	0.0456	0.0523	0.0338
u lb/lb MAE Hood	* 0.0278	0.0204	0.0518	0.0424	0.0412	77 9050	84 4807	74.5649	85.7767	58.2422
H Convito Gee Ht X	* 42.3292	31.2628	86.6569	71.1204	01.1431	(1.0750	04.4001			
. H LONV to das, wt w	*									
	*				0 0150	0 0130	0.0135	0.0151	0.0130	0.0160
vield lb/lb maf feed	* 0.0202	0.0194	0.0155	0.0100	0.0139	0.0130	•••••			
Eg Ter=0 046- 00002*Temp	*									
. Eq 181-0.040 100002	*					0 0073/5	0 003365	0.00378	0.00325	0.004
azut Latib maf wood	* 0.00505	0.00486	0.003385	0.00394	0.003965	0.003243	0.003303	0 00378	0.00325	0.004
. LOHO, LB/(D Hal Wood	* 0.00505	0.00486	0.003385	0.00394	0.003965	0.003245	0.003363	0.00378	0 00325	0.004
. Соно	* 0.00505	0.00486	0.003385	0.00394	0.003965	0.003245	0.003303	0.00370	0.00325	0.004
. C10H8	* 0.00505	0.00486	0.003385	0.00394	0.003965	0.003245	0.005365	0.00576	0.00323	0.004
. C14H10	- 0.00505	0.00100							0.000/	0.0114
•		0 01/0	0 000	0.0114	0.0115	0.0094	0.0097	0.0109	0.0094	0.0110
. lb C/lb maf wood	<b># U.U140</b>	0.0140	0.0070	4400 n	0.0044	0.0036	0.0037	0.0042	0.0036	0.0044
Lb H/lb maf wood	* 0.0056	0.0054	0.0030	0.0044	0.0113	0.0093	0.0097	0.0108	0.0093	0.0112
Lb C/Lb dry wood	0.0145	0.0140	0.0097	0.0113	0_0044	0.0036	0.0037	0.0042	0.0036	0.0043
the state about stood	* 0.0056	0.0054	0.0057	0.0044	0.0011					

<u>90</u>

em/Test	93	94	101	102	103	104	105	106	107	109
Basis: 1 lb dry wood		· · · · · · · · · · · · · · · ·								
Char estimate, Let C=86, H=4, (	0=									
lb Ash	* 0.0065	0.0057	0.0121	0.0059	0.0126	0.0045	0.0045	0.0067	0.0052	0.0300
lb C	*									•
In	* 0.5392	0.5311	0.5022	0.5050	0.5037	0.5130	0.5130	0.5082	0.5084	0.4536
Out in Gas	* 0.2542	0.1774	0.3621	0.3159	0.3117	0.3483	0.3626	0.3378	0.3664	0.2578
Out in Ter	* 0.0145	0.0140	0.0097	0.0113	0.0113	0.0093	0.0097	0.0108	0.0093	0.0112
Out in Char	* 0.2705	0.3397	0.1304	0.1778	0.1806	0.1554	0.1407	0.1595	0.1326	0.1846
H in char	* 0.0193	0.0243	0.0093	0.0127	0.0129	0.0111	0.0101	0.0114	0.0095	0.0132
H in gas	* 0.0276	0.0203	0.0511	0.0422	0.0406	0.0477	0.0517	0.0453	0.0521	0.0328
H in ter	* 0.0056	0.0054	0.0037	0.0044	0.0044	0.0036	0.0037	0.0042	0.0036	0.0043
H In	* 0.3758	0.2636	0.1888	0.1940	0.1972	0.1912	0.1692	0.2363	0.2115	0.1872
H in Steam	* 0.3232	0.2136	0.1246	0.1348	0.1393	0.1289	0.1037	0.1753	0.1464	0.1369
1b H2O	* 2.8885	1.9089	1.1139	1.2044	1.2451	1.1517	0.9272	1.5671	1.3084	1.2237
Lb in	*									
Dry Wood	* 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Water	* 2.7745	1.7745	1.1600	1.2038	1.2264	1.1621	0.9654	1.5680	1.3481	1.1700
Lb Out	*									
Gas	* 0.5619	0.3882	0.8176	0.7105	0.6995	0.7933	0.8243	0.7545	0.8331	0.5616
Tar	* 0.0201	0.0193	0.0134	0.0157	0.0157	0.0129	0.0134	0.0150	0.0129	0.0155
Char	* 0.3247	0.4054	0.1655	0.2151	0.2251	0.1873	0.1700	0.1944	0.1612	0.2472
H2O	* 2.8885	1.9089	1,1139	1.2044	1.2451	1.1517	0.9272	1.5671	1.3084	1.2237
Closure	* 100.55	98.10	97.70	97.36	98.16	99.22	98.45	98.56	98.62	94.38
Water Conversion %	* -4.11	-7.57	3.98	-0.05	-1.53	0.90	3.96	0.06	2.94	-4.59
Water Conver., lb/lb dry wood	* -0.1140	-0.1344	0.0461	-0.0006	-0.0187	0.0104	0.0382	0.0010	0.0396	-0.0537

.

.ltem/Test		110	111	112	117	118	119	120	121	122	123
	*										
. Temperature, deg F	*	1579	1350	1313	1725	1609	1684	1610	1553	1765	1512
. Pressure, psig	*	3.6	6.2	6.2	5.2	6.2	5.2	6.8	14.4	6.0	10.4
Moisture, wt %	*	9.70	5.00	5.00	7.80	7.80	0.82	5.82	5.82	0.00	4.40
. Wet Wood Rate, lb/hr	*	407.5	1207	1405	270.3	1239	434.8	1362.3	1988.4	497.9	1897
. Dry wood Rate, lb/hr	*	368	1147	1335	249	1142	431	1283	1873	498	1814
. Nitrogen Rate, lb/hr	*	101	109	109	96	0	102	· . O	· 0	. 0	0
. Steam Rate, lb/hr	*	331	346	346	370	374	367	378	423	110	34
. Steam Rate, lb/lb BDW	*	0.899	0.302	0.259	1.486	0.327	0.852	0.295	0.226	0.221	0.019
. Total H2O Rate, lb/lb BDW	*	1.007	0.354	0.312	1.571	0.412	0.860	0.356	0.287	0.221	0.064
. Total H2O, 1b/1b MAF wood	*	1.008	0.356	0.313	1.577	0.414	0.861	0.357	0.288	0.222	0.065
. Total H2O, SCF/lb MAF wood	* :	21.231	7.487	6.592	33.202	8.714	18.131	7.512	6.058	4.668	1.364
.Feed	•										
. Type	*	pine	pine	pine	pine	pine	pine	pine	pine	pine	pine
. Size	*	chips	chips	chips	chips	chips	chips	chips	chip <del>s</del>	chips	chips
.Proximate Analysis	<b>*</b> •	·	-	-							
. Volatile Matter, wt % dry	*	85.04	84.34	84.34	84.79	84.79	85.35	85.35	85.35	84.27	84.27
. Ash	*	0.13	0.44	0.44	0.32	0.32	0.07	0.07	0.07	0.44	0.44
. Fixed Carbon	*	14.83	15.22	15.22	14.89	14.89	14.58	14.58	14.58	15.29	15.29
.Proximate Analysis	*										
. Moisture, wt X	*	9.70	5.00	5.00	7.80	7.80	0.82	5.82	5.82	0.00	4.40
. Volatile Matter	*	76.79	80.12	80.12	78.18	78.18	84.65	80.38	80.38	84.27	80.56
. Ash	*	0.12	0.42	0.42	0.30	0.30	0.07	0.07	0.07	0.44	0.42
Fixed Carbon	*	15.39	14.46	14.46	15.75	13.75	14.40	15.75	13.75	15.29	14.02
.Ultimate Analysis	*	· ·-	<b>•</b> • • •	• • •		A 73	0.07	0.07	0.07	o //	o //
. Ash, wt % dry	*	0.15	0.44	0.44	0.32	0.32	0.07	0.07	U.U/	U.44 52.02	U.44 E2 02
. Carbon		51.27	22.44	22.44	22.33	22.22	72.09	22.09	72.07	52.02	22.02
. Hydrogen	*	0.19	0.30	0.30	0.42	0.42	0.29	0.29	0.29	0.13	0.13
. Nitrogen	<b> −</b>	0.15	0.14	0.14	0.14	0.14	0.10	0.10	0.10	0.23	0.23
. Chlorine	<b>≖</b>	0.02	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.01	0.01
. Sulfur	*	0.15	U.27 40 34	0.21	40 32	40 32	40.52	40 52	40 52	41.16	41.16
. Uxygen (aitt)		46.1J	40.34	40.J4 	4U.JC	40.J£	70,76	77.76			

<u>92</u>

	110	111	112	117	118	119	120	121	122	123
Product Gas	*									
Rate SCE/Lb MAF	* 13.03	9.65	9.35	16.14	12.99	14.43	14.53	11.78	15.25	10.95
Pate SCE/ 16 BDV	* 13.01	9.61	9.31	16.09	12.95	14.42	14.52	11.77	15.18	10.90
	*									
u2 mole Y	* 22.00	16.18	15.20	27.97	20.96	24.66	20.23	18.46	26.96	17.10
	* 46.43	49.46	50.72	43.29	47.69	46.67	48.71	49.41	46.34	50.63
	* 0.42	12 43	12.30	10.46	9.30	9.03	9.16	9.56	8.50	9.65
	+ 14.00	14 05	15 86	16 12	15.92	14.85	15.78	16.24	14.37	16.48
• CH4	- 14.99	0.03	0.19	0.50	0.26	0.45	0.23	0.17	0.34	0.14
. C2H2	• U.41	0.17	0.10	7 44	5 /7	/ 19	5 40	5 30	3.03	4.84
. C2H4	* 5.22	4.60	4.20	3.00	2.43	9.10	0.53	2.50	0.46	1.16
. C2H6	* 0.34	1.55	1.54	0.00	0.44	0.10	0.55	0.00	0.40	
•	* 100.00	100.24	100.00	100.00	100.00	100.00	100.24	100.00	100.00	100.00
•	* 04 704	27 044	2/ 150	20 715	22 151	21.264	22.405	22.814	20.647	23,160
. MW, LD/LDmote	- 21.701	470 /04 51	177 011 29	144 080 73	182 045 71	172 877 00	183 340 82	183.835.63	167.884.14	183,620,70
. HHV, Btu/lb mole	* 1/8,301.52	1/9,400.01	7 74/ 44	00,007.73	9 210 71	8 130 04	R 183 00	8 057 84	8 131.32	7.928.27
. HHV, Btu/lb	* 8,188.98	(,485.85	(,304.10	0,017.70	170 99	/55 44	/93 2/	484 54	442 50	483.98
. HHV, Btu/SCF @ 60 deg F	* 470.11	472.87	408.93	437.17	479.00	433.00	403.24	-024	442.20	403170
C lb/lbmole	* 9,9669	10.8317	10.8965	9.1513	10.2299	9.6245	10.3740	10.5542	9.2330	10.6947
	* 0.4576	0.4520	0.4510	0.4418	0.4618	0.4526	0.4630	0.4626	0.4472	0.4618
	* 0.0263	0.0285	0.0287	0.0241	0.0270	0.0254	0.0273	0.0278	0.0243	0.0282
. U, U/SUF	* 0 3/23	0 2755	0.2685	0.3893	0.3503	0.3661	0.3973	0.3277	0.3711	0.3087
. L, LD/LD MAP WOOD	• <u>44</u> 4771	52 3055	50 0820	73 8455	66.4383	69,1626	75.0651	61.9149	71.0278	59.0746
. C CONV TO Gas, X	* 00.0771	52.3033	JU. /UL/	1310433	0014002					
• H lb/ib mole	* 1.3070	1.2437	1.2119	1.2907	1.3151	1.2831	1.3064	1.2960	1.2796	1.2772
H Ib/ib cas	* 0.0600	0.0519	0.0502	0.0623	0.0594	0.0603	0.0583	0.0568	0.0620	0.0551
	* 0.0034	0.0033	0.0032	0.0034	0.0035	0.0034	0.0034	0.0034	0.0034	0.0034
N 15/15 MAE wood	* 0.0449	0.0316	0.0299	0.0549	0.0450	0.0488	0.0500	0.0402	0.0514	0.0369
. H Conv to Gas, wt %	* 72.4239	49.5211	46.7529	85.2531	69.9111	77.5283	79.4883	63.9270	83.5375	59.8692
	*							· · · · · · · · · · · · · · · · · · ·		
Yield, lb/lb maf feed Eq Tar=0.04600002*Temp	* 0.0144 *	0.0190	0.0197	0.0115	0.0138	0.0123	0.0138	0.0149	0.0107	0.0158
. Comp	*		0 00/075	0 003075	0 007/55	0 00708	0 003/5	0 003735	0 002675	0 00394
. C3H6, LB/lb maf wood	* 0.003605	0.00475	0.004935	0.0028/3	0.003455	0.00300	0.00345	0.003735	0.002675	0 00304
. C6H6	* 0.003605	0.00475	0.004935	0.002875	0.003455	0.00300	0.00345	0.003735	0.002075	0.00304
. C10H8	* 0.003605	0.00475	0.004935	0.0028/5	0.005455	0.00308	0.00345	0.003735	0.002075	0.00374
. C14H10	* 0.003605	.0.00475	0.004935	0.002875	0.003455	0.00308	0.00345	0.003/35	0.002075	0.00394
Ib C/lb mef wood	* 0.0104	0.0137	0.0143	0.0083	0.0100	0.0089	0.0100	0.0108	0.0077	0.0114
. U C/U mai wood	* 0.004	0.0053	0.0055	0.0032	0.0038	0.0034	0.0038	0.0042	0.0030	0.0044
. LO TYLD MAT WOOD	0.0040	0 0137	0 0142	0.0083	0,0099	0.0089	0.0100	0.0108	0.0077	0.0113
. ID C/ID GRY WOOD	+ 0.0104	0.0157	0 0055	0 0032	0.0038	0.0034	0.0038	0.0042	0.0030	0.0044
. Ib H/Ib dry wood	- 0.0040	0.0033	0.0000	0.0032	0.0000	3.0034	310030			

<u>93</u>

item/Test			112	117	118	119	120	121	122	123
Basis: 1 lb dry wood Char estimate, Let C=86, H=4, O lb Ash	• 0.0013	0.0044	0.0044	0.0032	0.0032	0.0007	0.0007	0.0007	0.0044	0.0044
lb C In Out in Gas Out in Tar	* 0.5127 * 0.3419 * 0.0104	0.5244 0.2743 0.0137	0.5244 0.2674 0.0142	0.5255 0.3881 0.0083	0.5255 0.3491 0.0099	0.5289 0.3658 0.0089 0.1542	0.5289 0.3970 0.0100 0.1219	0.5289 0.3275 0.0108 0.1907	0.5202 0.3695 0.0077 0.1430	0.5202 0.3073 0.0113 0.2016
Out in Char H in char H in gas H in tar H In	* 0.1604 * * 0.0115 * 0.0448 * 0.0040 * 0.1746 * 0.1143	0.2365 0.0169 0.0315 0.0053 0.1032 0.0496	0.0173 0.0297 0.0055 0.0985 0.0459	0.0092 0.0547 0.0032 0.2400 0.1729	0.0119 0.0449 0.0038 0.1103 0.0497	0.0110 0.0488 0.0034 0.1592 0.0960	0.0087 0.0500 0.0038 0.1028 0.0402	0.0136 0.0402 0.0042 0.0951 0.0371	0.0102 0.0512 0.0030 0.0860 0.0216	0.0144 0.0367 0.0044 0.0685 0.0131
Lb H2O Lb in Dry Wood	* 1.0211 * * * 1.0000 * 1.0068	0.4429 1.0000 0.3540	0.4104 1.0000 0.3116	1.5452 1.0000 1.5715	0.4446 1.0000 0.4124	0.8576 1.0000 0.8603	1.0000 0.3564	1.0000 0.2875	1.0000 0.2207	1.0000 0.0645
Lb Out Gas Tar Char H2O	* * * 0.7471 * 0.0144 * 0.1901 * 1.0211 * 98.30	0.6069 0.0189 0.2826 0.4429 99.81	0.5928 0.0197 0.2901 0.4104 100.10	0.8784 0.0115 0.1552 1.5452 100.73	0.7560 0.0138 0.1990 0.4446 100.07	0.8082 0.0123 0.1821 0.8576 100.00	0.8574 0.0138 0.1441 0.3596 101.37	0.7079 0.0149 0.2250 0.3314 99.36	0.8262 0.0107 0.1727 0.1931 98.52	0.6655 0.0157 0.2415 0.1167 97.64
Water Conversion X Water Conversion X Water Convers, lb/lb dry wood	* -1.42 * -0.0143	-25.14 -0.0890	-31.70 -0.0988	1.68 0.0263	-7.80 -0.0322	0.32 0.0027	-0.90 -0.0032	-15.30 -0.0440	12.50 0.0276	-80.92 -0.0522

•

.

.Item/Test		136	137	138	139	140	141	142	Avg ^	Std
.Gasifier Conditions	*						•••••			*******
. Temperature, deg F	*	1857	1839	1851	1316	1786	1687	1749		
. Pressure, psig	*	6.3	7.6	6.7	13.1	3.6	5.2	3.8		
. Moisture, wt X	*	5.92	7.71	8.01	13.67	12.30	33.85	10.00	9.2426	7,9281
. Wet Wood Rate, lb/hr	*	391	429	336	2116	300	551	447		
. Dry wood Rate, lb/hr	*	368	396	309	1827	263	364	402		
. Nitrogen Rate, lb/hr	*	88	80	86	86	87	86	84		
. Steam Rate, lb/hr	*	365	368	355	377	321	335	333		
. Steam Rate, 1b/1b BDW	*	0.992	0.929	1.149	0.206	1.221	0.920	0.828	0.9259	0.4474
. Total H2O Rate, lb/lb BDW	*	1.054	1.013	1.236	0.365	1.361	1.434	0.940	1.0387	0.5054
. Total H2O, lb/lb MAF wood	*	1.058	1.017	1.239	0.381	1.418	1.466	0.942	1.0481	0.5096
. Total H2O, SCF/lb MAF wood	*	22.283	21.424	26.095	8.025	29.859	30.865	19.848	22.0740	10.7316
. Feed	*			***********						
. Type	*	pine	pine	pine	saudust	bark	hoafuel	pine		
. Size	*	chips	chips	chips	Powder	chips	chips	chips		
.Proximate Analysis	*									
. Volatile Matter, wt % dry	*	84.39	87.08	85.70	80.45	80.23	81.02	85.70	83.44	3.17
. Ash	*	0.35	0.46	0.23	4.33	3.99	2.15	0.23	0.89	0.93
. Fixed Carbon	*	15.26	12.47	14.07	15.22	15.78	16.83	14.07	15.37	2.22
.Proximate Analysis	*									
. Moisture, wt %	*	5.92	7.71	8.01	13.67	12.30	33.85	10.00	9.24	7.93
. Volatile Matter	*	79.39	80.37	78.84	69.45	70.36	53.59	77.13	75.80	7.83
. Ash	*	0.33	0.42	0.21	3.74	3.50	1.42	0.21	0.79	0.81
. Fixed Carbon	*	14.36	11.51	12.94	13.14	13.84	11.13	12.66	13.88	1.80
.Ultimate Analysis	*									
. Ash, wt % dry	*	0.35	0.46	0.23	4.33	3.99	2.15	0.23	0.89	0.93
. Carbon	*	52.48	51.55	51.58	53.10	50.35	50.73	51.58	50.89	2.36
. Hydrogen	*	5.99	5.98	5.78	6.04	5.83	5.71	5.78	6.04	0.26
. Nitrogen	*	0.05	0.11	0.06	0.17	0.11	0.33	0.06	0.17	0.08
. Chlorine	*	0.01	0.02	0.02	0.03	0.03	0.03	0.02	0.03	0.01
. Sulfur	*	0.48	0.02	0.01	0.02	0.07	0.05	0.01	0.09	0.16
. Oxygen (diff)		40.64	41.86	42.32	36.31	39.62	41.00	42.32	41.90	2.48

Item/Test       100         Product Gas       *         Rate, SCF/lb MAF       * 20.02       21.08         Rate, SCF/lb BDW       * 19.95       20.98         Dry N2 Free Comp       *       35.57       33.31         H2, mole %       * 39.74       41.64         CO       * 10.43       9.65         CO2       * 12.54       12.93         CH4       * 0.39       0.47	21.43 21.38 33.89 42.42 8.95 12.80 0.35 1.59 0.00 100.00	9.85 9.42 13.03 54.79 12.13 14.74 0.00 3.63 1.68 	19.60 18.82 30.48 40.41 10.89 13.43 1.08 3.25 0.46 	14.84 14.52 32.25 36.03 14.75 12.33 0.48 4.16 0.00	15.97 15.93 27.86 45.30 9.19 13.83 0.44 3.38 0.00	• •	
Product Gas       *       20.02       21.08         Rate, SCF/Lb MAF       *       19.95       20.98         Rate, SCF/Lb BDW       *       19.95       20.98         Dry N2 Free Comp       *       35.57       33.31         H2, mole %       *       39.74       41.64         CO       *       10.43       9.65         CO2       *       12.54       12.93         CH4       *       0.39       0.47	21.43 21.38 33.89 42.42 8.95 12.80 0.35 1.59 0.00  100.00	9.85 9.42 13.03 54.79 12.13 14.74 0.00 3.63 1.68	19.60 18.82 30.48 40.41 10.89 13.43 1.08 3.25 0.46 	14.84 14.52 32.25 36.03 14.75 12.33 0.48 4.16 0.00	15.97 15.93 27.86 45.30 9.19 13.83 0.44 3.38 0.00	•	
Product Gas       *       20.02       21.08         Rate, SCF/lb MAF       *       19.95       20.98         Dry N2 Free Comp       *       35.57       33.31         H2, mole %       *       39.74       41.64         CO       *       10.43       9.65         CO2       *       12.54       12.93         CH4       *       0.39       0.47	21.45 21.38 33.89 42.42 8.95 12.80 0.35 1.59 0.00 	9.63 9.42 13.03 54.79 12.13 14.74 0.00 3.63 1.68	18.82 30.48 40.41 10.89 13.43 1.08 3.25 0.46 	14.52 32.25 36.03 14.75 12.33 0.48 4.16 0.00	15.93 27.86 45.30 9.19 13.83 0.44 3.38 0.00	•	
Rate, SCF/1b BDW       *       19.95       20.98         Rate, SCF/1b BDW       *       35.57       33.31         Dry N2 Free Comp       *       39.74       41.64         H2, mole %       *       39.74       41.64         CO       *       10.43       9.65         CO2       *       12.54       12.93         CH4       *       0.39       0.47	21.38 33.89 42.42 8.95 12.80 0.35 1.59 0.00  100.00	9.42 13.03 54.79 12.13 14.74 0.00 3.63 1.68 	30.48 40.41 10.89 13.43 1.08 3.25 0.46 	32.25 36.03 14.75 12.33 0.48 4.16 0.00	27.86 45.30 9.19 13.83 0.44 3.38 0.00	•	
Rate, Str/ to bow       *         Dry N2 Free Comp       *         H2, mole %       *         CO       *         CO       *         CO2       *         CH4       *         CH4       *         CH4       *         *       0.39         0.47	33.89 42.42 8.95 12.80 0.35 1.59 0.00 100.00	13.03 54.79 12.13 14.74 0.00 3.63 1.68 	30.48 40.41 10.89 13.43 1.08 3.25 0.46 	32.25 36.03 14.75 12.33 0.48 4.16 0.00	27.86 45.30 9.19 13.83 0.44 3.38 0.00	•	
Dry N2 Free Comp         * 35.57         33.31           H2, mole %         * 39.74         41.64           CO         * 10.43         9.65           CO2         * 12.54         12.93           CH4         * 0.39         0.47	33.89 42.42 8.95 12.80 0.35 1.59 0.00 	13.03 54.79 12.13 14.74 0.00 3.63 1.68	50.48 40.41 10.89 13.43 1.08 3.25 0.46 	36.03 14.75 12.33 0.48 4.16 0.00	45.30 9.19 13.83 0.44 3.38 0.00	•	
. H2, mole % * 39.74 41.64 . C0 * 10.43 9.65 . C02 * 12.54 12.93 . CH4 * 0.39 0.47	42.42 8.95 12.80 0.35 1.59 0.00 100.00	54.79 12.13 14.74 0.00 3.63 1.68 100.00	40.41 10.89 13.43 1.08 3.25 0.46  100.00	14.75 12.33 0.48 4.16 0.00	9.19 13.83 0.44 3.38 0.00	•	
. CO * 10.43 9.65 . CO2 * 12.54 12.93 . CH4 * 0.39 0.47	8.95 12.80 0.35 1.59 0.00 	12.13 14.74 0.00 3.63 1.68 100.00	10.89 13.43 1.08 3.25 0.46  100.00	14.75 12.33 0.48 4.16 0.00	13.83 0.44 3.38 0.00	·	
. CO2 * 12.54 12.93 . CH4 * 0.39 0.47	12.80 0.35 1.59 0.00 100.00	14.74 0.00 3.63 1.68 100.00	13.43 1.08 3.25 0.46  100.00	12.55 0.48 4.16 0.00	0.44 3.38 0.00		
* 12.54 12.95 • CH4 * 0.39 0.47	0.35 1.59 0.00 100.00	0.00 3.63 1.68	1.08 3.25 0.46 100.00	0.48 4.16 0.00	0.44 3.38 0.00		
* 0.39 0.47	1.59 0.00 100.00	3.63 1.68 100.00	3.25 0.46 100.00	4.16 0.00	3.38		
F282	0.00	1.68	0.46	0.00	0.00		
* 1.33 2.00	0.00	100.00	100.00	100.00	100 00		
• 0.00 0.00	100.00	100.00	100.00	100.00	400.00		
	19.095			100.00	100.00		
* 100.00	19.095				~~ *7/		
* *	17.073	24.836	20.212	20.504	20.576		
* 18.925 19.540	nre 06 -	472 393 40	166 869.63	158.585.36	165,255.73		
* 150,310.65 155,850.24 155,	577.07	112,303.40	8 255 98	7.734.41	8,031.32		
* 7,942.41 8,058.52 8,	057.48	0,940.02	130 83	417.99	435.57		
HHV, Btu/SCF a 60 deg F * 396.18 410.78	405.52	474.30	437.03		0 1077		
	R 1736	11.0839	8.9255	8.6949	y.123/		
C. 1b/1bmole 7,9454 8,5007	0 4281	0.4463	0.4416	0.4241	0.4434		
C. 1b/1b gas * 0.4198 0.4295	0.0215	0.0292	0.0235	0.0229	0.0240		
C 15/SCF * 0.0209 U.0219	0.0217	0 2878	0.4611	0.3401	0.3840		
* 0.4193 0.4615	0.4017	E1 9/57	87.9240	65.5988	74.2841		
* 79.6095 89.1214 8	9.3010	21.0421	0117210				
*			1 2345	1.3246	1.2643		
* 1.2841 1.2829	1.2704	1.1049	0.0441	0 0646	0.0614		
+ 0.0678 0.0663	0.0665	0.0445	0.0001	0.0045	0.0033		
H, LD/LD gas + 0.0034	0.0033	0.0029	0.0055	0.0033	0.0532		
H, 1b/SCF + 0.0678 0.0713	0.0718	0.0287	0.0690	0.0210	01 9414		
H, 16/16 MAF Wood	3.8576	45.4344	113.7019	88.7851	A110014		
. H Conv to Gas, wt % * 112.7208 110.0444							
•					0 0110		
. Tar Estimate	0.0090	0.0197	0.0103	0.0123	0.0110		
Yield, lb/lb maf feed . U.UUGY U.UUGY							
Eg Tar=0.04600002*Temp							
	0022/5	0 00492	0.00257	0.003065	0.002755		
C3H6 LB/Lb maf wood * 0.002215 0.002305 0	.UU2247	0 00/02	0,00257	0,003065	0.002755		
* 0.002215 0.002305 0	.002247	0.00476	0 00257	0.003065	0.002755		
• 0.002215 0.002305 0	.002245	0.00492	0.00257	0 003045	0.002755		
+ 0.002215 0.002305 0	.002245	0.00492	0.00277	0.000000	41002175		
. C14H1U *				0 0000	0 0080		
• 0.006/ 0.0067	0.0065	0.0142	0.0074	0.0089	0.0000		
lb C/lb maf wood	0.0025	0.0055	0.0029	0.0034	0.0031		
(b H/lb maf wood # 0.0020 0.0020	0 0045	0.0136	0.0071	0.0087	0.00/9		
16 C/16 dry wood 0.0064 0.0066	0.0003	0 0052	0.0027	0.0033	0.0031		
* 0.0025 0.0026	0.0023	0.0072					

<u>96</u>

ltem/Test		136	137	138	139	140	141	142	Avg	Std
Basis: 1 lb dry wood									**-********	
Char estimate, Let C=86, H=4,	0=									
lb Ash	*	0.0035	0.0046	0.0023	0.0433	0.0399	0.0215	0.0023		
lb C	*									
In	*	0.5248	0.5155	0.5158	0.5310	0.5035	0.5073	0.5158		
Out in Gas	*	0.4178	0.4594	0.4606	0.2753	0.4427	0.3328	0.3832		
Out in Tar	*	0.0064	0.0066	0.0065	0.0136	0.0071	0.0087	0.0079		
Out in Char	*	0.1006	0.0495	0.0487	0.2421	0.0537	0.1659	0.1247		
	*									
H in char	*	0.0072	0.0035	0.0035	0.0173	0.0038	0.0118	0.0089		
H in gas	*	0.0675	0.0709	0.0716	0.0274	0.0663	0.0507	0.0531		
H in ter	*	0.0025	0.0026	0.0025	0.0052	0.0027	0.0033	0.0031		
H In	*	0.1779	0.1731	0.1961	0.1012	0.2106	0.2176	0.1630		
H in Steam	*	0.1007	0.0961	0.1186	0.0512	0.1377	0.1517	0.0980		
Lb H20	*	0.9001	0.8586	1.0596	0.4577	1.2310	1.3556	0.8754		
	*									
Lb in	*									
Dry Wood	*	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Water	*	1.0543	1.0126	1.2362	0.3645	1.3612	1.4341	0.9403		
	*									
Lb Out	*									
Gas	*	0.9951	1.0696	1.0761	0.6169	1.0025	0.7848	0.8641		
Tar	*	0.0088	0.0092	0.0090	0.0188	0.0099	0.0120	0.0110		
Char	*	0.1219	0.0628	0.0596	0.3281	0.1030	0.2166	0.1490		
H2O	*	0.9001	0.8586	1.0596	0.4577	1.2310	1.3556	0.8754		
Closure	*	98.62	99.38	98.57	104.18	99.37	97.33	97.90	98.56	1.79
Water Conversion %	*	14.63	15.21	14.29	-25.57	9.56	5.47	6.90		
Water Conver., lb/lb dry wood	*	0.1543	0.1540	0.1766	-0.0932	0.1302	0.0785	0.0649		

<u>97</u>

## APPENDIX 8

## BCL LEAST SQUARES FITS

1. Dry Gas Yield, SCF/MAF lb

Regressio	n Output:	
Constant	•	28.99260129
Std Err of Y Est		0.947115477
R Squared		0.938118681
No. of Observations		37
Degrees of Freedom		34
X Coefficient(s)	-0.04332509	0.000020966
Std Err of Coef.	0.020685743	6.5312E-06
t Value	-2.09444215	3.210111277
	2.015061631	2.969444219
t Probability	0.021949226	0.0014916
F Value	257.7194211	
	0.111111111	
	0.006535948	
	8.838240047	
F Probability	1.4827E-17	

2. Gas Yield, lb/lb dry wood

Regression Output:				
Constant	•	0.155529322		
Std Err of Y Est		0.059060263		
R Squared		0.872020662		
No. of Observations		37		
Degrees of Freedom		34		
X Coefficient(s)	-0.00022057	3.7617E-07		
Std Err of Coef.	0.001289922	4.0728E-07		
t Value	-0.1709956	0.923630659		
	0.169701795	0.91114171		
t Probability	0.432622395	0.18111047		
F Value	115.8339428			
	0.11111111	1		
	0.00653594	8		
	7.64188391	9.		
F Probability	4.3112E-14	•		
Tar Yield, lb/lb dry wood				

Regress	ion output:	
Constant		0.045494068
Std Err of Y Est		0.000118381
R Souared		0.9985358
No. of Observations		37
Degrees of Freedom		35
X Coefficient(s)	-1.9759E-05	
Std Err of Coef.	1.2789E-07	
t Value	-154.495416	
	8.29468485	
t Probability	5.6747E-16	

4.	Char Yield, lb/lb dry Regression	wood Output:
	Constant	0.755025269
	Std Err of Y Est	0.046192061
	R Squared	0.65480/015
	No. of Observations	57 74
	Degrees of Freedom	34
	v coefficient(s)	-0.00030212 -3.1178E-08
	Std Err of Coef.	0.001008884 3.1854E-07
	t Value	-0.29946257 -0.0978786
		0.29706482 0.097152004
	t Probability	0.385208421 0.481502940
	F Value	32.24781398
		0.111111111
		0.006535948
		5.388529103
	F Probability	3.89882-08
5.	H2, mole %	
	Regressio	n output: 17.9961
	Constant	1.5945
	Std Err of I Est	0.9178
	R Squared	37.0000
	No. of Observation	34.0000
	Degrees of freedom	
	X Coefficient(S)	-0.02644794 0.00001893
	Std Err of Coef.	0.034824711 0.000010995
		a movisor 1 721570/57
	t Value	-0./594591 1./2/3/7457
		0.750697045 1.07205500
	t Probability	U.LLUTTIDIA CICITATI
	F Value	189.8141747
		0.11111111
		0.006535948
		8.407872216
	F Probability	2.00125-10
6.	. CO, mole %	Automatio
	Regress	133.4594
	Constant	2.4738
	Std Err of I ESL	0.3974
	K Squared	37.0000
	Degrees of Freedom	34.0000
	Degrees of recommendation	
	X Coefficient(S)	-0.10290149 0.000028/92
	Std Err of Coef.	0.054029627 0.000017059
		1 00/5782 1 487740178
	t Value	-1.9043302 1.001109110 4 8/30/2321 1 AL1333522
		0 032734507 0.050364078
	t Probability	
		11,21026844
	L ABING	0.11111111
		0.006535948
		3.51363458
	F Probability	0.000221109

7.	CO2, mole %	
	Regression	Output:
	Constant Std Ean of Y Est	1.8040
	R Squared	0.4174
	No. of Observations	37.0000
	Degrees of Freedom	34.0000
	X Coefficient(s)	0.037888569 -1.4927E-05
	Std Err of Coef.	0.039401634 0.000012441
	t Value	0.961598939 -1.19987957
	t Probability	0.171538376 0.119269716
	F Value	12.17966128
	•	0.111111111
		0.006535948
	E Brobability	3.654061655 0.000129184
	r Probability	
8.	CH4, mole %	A standard a
	Constant	-13.8203
	Std Err of Y Est	0.7822
	R Squared	0.6933
	No. of Observations	37.0000
	Degrees of Freedom	34.0000
	X Coefficient(s)	0.044178788 -1.6167E-05
	Std Err of Coef.	0.0170848 5.3943E-06
	t Value	2.585853318 -2.99706996
		2.449242287 2.796085158
	t Probability	0.00/15/811 0.002500159
	F Value	38.43244924
		0.11111111
		5,708786026
	F Probability	6.6430E-09
•	-	
У.	C2H2, mole % Regression	Output:
	Constant	-4.31140373
	Std Err of Y Est	0.056156337
	R Squared	0.710010310
	Degrees of Freedom	19
	X Coefficient(s)	0.005449933 -1.5610E-06
	Std Err of Coef.	0.001564876 4.8968E-07
		7 (00//0/00 7 (070005
	TVALUE	2.992308926 2.794416185
	t Probability	0.001384292 0.002599547
	F Value	24.02371458
		0.11111111
		0.011695906
	E Probability	4.291022394 8_9728F-06
		/

.

<u>101</u>
10. C2H4, mole %

-

	Regression	Output:	70 057/759
	Constant	-	38.2370332
	Std EFF OF I ESt	ŏ	.876167713
	No. of Observations		37
	Degrees of Freedom		34
	X Coefficient(s)	0.058434712 -	1.9868E-05
	Std Err of Coef.	0.007040842	2.2231E-06
	t Value	8.299392915 -	8.93736877
		5.806651565	6.016020731
	t Probability	3.011/2-07	1.13032-07
	F Value	120.2824517	
		0.111111111	
		0.000000099940 7 703145134	
	F Probability	2.8817E-14	
11.	C2H6, mole %		
	Regression	Output:	
	Constant		11,11368612
	Std Err of Y Est		0.134430177
	K Squared		37
	Degrees of Freedom		34
	X Coefficient(s)	-0.01166677	3.0640E-06
	Std Err of Coef.	0.00293606	9.2702E-07
	t Value	-3.97361304	3.305165152
	••••••	3.553365071	3.04535283
	t Probability	0.000190275	0.001161968
	F Value	97.87808856	
		0.111111111	
		7 363020758	
	E Probability	2.6634E-13	
	1 1100001010		
12.	H2D Conv, % Regressio	n Output:	
	Constant		0.289594752
	Std Err of Y Est		0.032742674
	R Squared		0.841575638
	No. of Observations		41
	Degrees of Freedom		
	X Coefficient(S)	-8.9048E-04	4.3384E-07
	Std Err of Coef.	5.8863E-04	1.8809E-07
	+ Value	-1.5128183	2.306574776
	1 10106	1.48503599	8 2.227133353
	t Probability	0.06876703	7 0.012969253
	E Valua	116,8675309	
	r Talue	0.111111111	
		0.005050505	

8.237266254 F Probability 8.3280E-16 APPENDIX 9

.

## FEED ANALYSIS AND YIELD CORRELATIONS

.

١

Feed				
Proximate Analysis	S			
Volatile Matte	er, wt % dry	83.44		
Ash		0.89		
Fixed Carbon		15.3/		
Proximate Analysi	S	<b>•</b> • • •		
Moisture, wt	2	9.24		
Volatile Matt	er	/5.80		
Ash		0.79		
Fixed Carbon		13.88		
Ultimate Analysis		Dry	MAF	
Ash, wt % dry		0.89	F4 95	
Carbon		50.89	51.35	
Hydrogen		6.04	6.10	
Nitrogen		0.17	0.17	
Chlorine		0.03	0.03	
Sulfur		0.09	0.09	
Oxygen (diff)		41.90	42.28	
HHV, Btu/lb		0.77/		
IGT	4	8,720		
Bole		8,00		
New		0,000		
Total Water ib/i	h dry wood	0.500		
Feed Moisture, 7		9.243		
Feed Moisture ib	/th dry wood	0.102		
Steam lb/lb drv	wood	0.398		
Total feed lb/lb	dry wood	1,500		
Plant Size dTPD		2000		
Dry wood rate	lb/hr	166.666.667		
Noisture lb/	hr	16,972,993		
Steam lh/hr		66.360.340		
Total, ib/hr		250,000.000		
Variable	Units	Α	B	С
				/ 770/- 07
HZO Conversion	LD/LD DTY WOOD	2.09392-01	-0.9040E-04	4.3304E-U/
Dry Gas	SCHID MAN WOOD	2.09935+01	-4.3323E-UZ	2.UYOOE-UJ 7.7417E-07
Gas	LD/LD dry wood	1.33335*01	1.07505.05	3.101/E-V/
Tar	LD/LD dry wood	4.34945°U2 7 55035 04	-1.9/37E-U3	-7 11795-00
Char	ID/IN GRY WOOD	7.55036-01	-3.UZ12E-04	-3.11/05-00
H2	mole %	1.79902+01	-2.04405-02	1.073UE-U3 2 97035-05
ω 	mole &	-0 52515+00	7 79905-07	-1 40275-05
		-7.363 12700	2./007E*UZ	-1 61675-05
684 6343		-/ 311/5+00	5 % OOE - 02	-1.010/E-03
1282 0211/		-4.31142700	5 9/355-03	-1 02625-05
6284 6284		-3.0230ETUI	-1 16470-02	- 1.7000E-05
uzno	mole a	1.11142401	-1.100/2*02	3.00402-00

 $X = A + BT + CT^2$ 

<u>104</u>



## ASPEN INPUT FILE: BCL RECYCLE CASE

	1300	1325	1350	1375	1400
_		/ 20255-07	5 0066E-03	5-5234E-03	5.9853E-03
H2, lb/lb total feed	4.55885-05	4.70252-03	1 09305-01	2 04475-01	2.1092E-01
co	1.8679E-01	1.92425-01	0 55415-07	0 03455-02	1.0313E-01
CO2	8.8040E-02	9.1/89E-02	7.05175-02	/ 1285E-02	4.30785-02
CH4	3.6046E-02	3.7766E-02	3.93136-02	0 /57/5-0/	1 1074E-03
C2H2	4.8608E-04	6.3477E-04	7.8800E-04	4 00745-07	2 12465-02
C2H4	1.5982E-02	1.7335E-02	1.80092-02	/ 09025-02	3 88055-03
C286	4.6650E-03	4.4820E-03	4.28992-03	4.00922-03	2 07105-03
C3H6	3.3012E-03	3.2189E-03	3.1300E-US	3.03425-03	2.07105-03
C6H6	3.3012E-03	3.2189E-03	3.1366E-US	5.05422-05	2.7/172-03
C10N8	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-05	2.9/170-03
C1680	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-05	2.9/192-03
120	4.4407E-01	4.3801E-01	4.3167E-01	4.2505E-01	4.10135-01
Ach	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03	5.91912-05
ASII Chao MAE	2.0046E-01	1.9406E-01	1.8764E-01	1.8119E-01	1./4/1E-UI
	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.000000+000
IOCAL			_		
W2 moles/ib feed	2.1524E-03	2.3328E-03	2.5283E-03	2.7400E-03	2.9692E-05
	6.6684E-03	6.8695E-03	7.0796E-03	7.2996E-03	7.5302E-05
60 ²	2.0005E-03	2.0856E-03	2.1713E-03	2.2573E-03	2.3433E-U3
	2.2469E-03	2.3541E-03	2.4630E-03	2.5734E-03	2.6852E-03
	1.8668E-05	2.4378E-05	3.0266E-05	3.6321E-05	4.2532E-05
	5-6969E-04	6.1790E-04	6.6547E-04	7.1207E-04	7.5734E-04
	1 5517E-04	1.4908E-04	1.4269E-04	1.3602E-04	1.2908E-04
	8 4523E-05	8.2415E-05	8.0307E-05	7 <b>.8199</b> E-05	7.6091E-05
C3H6	4 2261E-05	4.1207E-05	4.0153E-05	3.9099E-05	3.8046E-05
	3 10945-05	3-0319E-05	2.9543E-05	2.8768E-05	2.7992E-05
C10H8	1 85225-05	1-8060E-05	1.7598E-05	1.7136E-05	1.6674E-05
C14H1U	2 44505-02	2.4314E-02	2.3962E-02	2.3594E-02	2.3210E-02
H20					
	3.8638E-02	3.8919E-02	3.9210E-02	3.9512E-02	3.9826E-02
		E 00	£ 15	6.93	7.46
H2, mole %	5.5/	3.77	18 04	18.47	18.91
0	17.20	E 74	5 54	5.71	5.88
CO2	5.18	2.30	6 28	6.51	6.74
CH4	5.82	6.02	0.20	0.09	0.11
C2H2	0.05	0.00	1 70	1.80	1.90
C2H4	1.47	1.07	0.74	0.34	0.32
C2H6	0.40	0.30	0.30	0.20	0.19
C3H6	0.22	0.21	0.20	0.20	0.10
C6H6	0.11	U.11		0.10	0.07
C10H8	0.0	s 0.08		, 0.01	0.04
C14H10	0.05	0.05	0.04	1 EG 74	58 28
H20	63.80	) 62.47	01.1		
	100_0	100.0	100.0	00 100.0	0 100.00

<u>106</u>

Recycle Gas, Assume Có+remove	d, Sat with 1 1300	H2O at 20 ps 1325	ia, 100 deg f 1350	<b>137</b> 5	1400
MF	0.36	0.37	0.39	0.40	0.42
Dry Gas			••••		
H2, mole %	15.49	16.07	16.68	17.31	17.96
<b>C</b> 0	47.99	47.32	46.70	46.10	45 55
<b>CO2</b>	14.40	14.37	14.32	14.26	14.17
CH4	16.17	16.22	16.25	16.25	16 24
C2H2	0.13	0.17	0.20	0.23	0.24
C2H4	4.10	4.26	4.39	4.50	4 58
C2H6	1.12	1.03	0.94	0.86	0.78
C3H6	0.61	0.57	0.53	0.49	0.46
Total	100.00	100.00	100.00	100.00	100.00
p* H20 at 100 deg F =	0.9487				
f H20	0.047435				
Sat Gas Analysis					
H2, mole %	14.75	15.31	15.89	16.48	17 11
<b>CO</b>	45.71	45.08	44.48	43.92	43 30
CO2	13.71	13.69	13.64	13.58	13 50
CH4	15.40	15.45	15.47	15.48	15 47
C2H2	0.13	0.16	0.19	0.22	0.25
C2H4	3.91	4.05	4.18	4.28	4 34
C2H6	1.06	0.98	0.90	0.82	0 74
C3H6	0.58	0.54	0.50	0.47	0.44
N20	4.74	4.74	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1425	1450	1475	1500	1525
	( 10505 07	7 03535-03	7 60895-03	8.2394E-03	8.9202E-03
H2, Lb/Lb total feed	6.4850E-05	2 2/975-01	2 32335-01	2.4025E-01	2.4860E-01
<b>CO</b>	2.1//UE-01	4 40455-01	1 1/365-01	1.1802E-01	1.2160E-01
CO2	1.0690E-01	1.10055-01	/ 8540E-02	5.0388E-02	5.2227E-02
CH4	4.4890E-02	4.0/142-02	4.0347E-02	1 7868E-03	1.9624E-03
C2H2	1.2728E-03	1.44156-03	2 /7175-02	2 5718E-02	2.6615E-02
C2H4	2.2468E-02	2.30295-02	2.4/1/5-02	2 08135-03	2.7452E-03
C2H6	3.6645E-03	3.4421E-05	3.21405-03	2.46765-03	2.5603E-03
C3H6	2.8896E-03	2.80/21-05	2.72475-03	2 4/245-03	2 5603E-03
C6H6	2.8896E-03	2.8072E-05	2.72492-03	2.04202-03	2 5603E-03
C10H8	2.8896E-03	2.8072E-03	2.72492-03	2.04205-03	2 54035-03
C14H10	2.8896E-03	2.8072E-03	2.7249E-05	2.04205-03	Z 7024E-01
N20	4.1093E-01	4.0344E-01	3.9500E-01	5.0/005-01	5.01015-03
Ach	5.9191E-03	5.9191E-03	5.9191E-03	2.91912-03	1 / 1075-01
Char, MAF	1.6821E-01	1.6168E-01	1.5512E-01	1.48342-01	1.41736-01
	1,0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00
IOLAL				_	
ut males (th food	3.2171E-03	3.4851E-03	3.7746E-03	4.0874E-03	4.4251E-03
NZ, MOLES/LD TEEU	7 77225-03	8.0266E-03	8.2945E-03	8.5769E-03	8.8751E-03
8	2 42015-03	2.5143E-03	2.5985E-03	2.6816E-03	2.7629E-03
C02	2 70215-03	2 9119F-03	3.0262E-03	3.1409E-03	3.2555E-03
CH4	/ 99935-05	5 5360E-05	6.1946E-05	6.8622E-05	7.5365E-05
CZHZ	4.0003E-05	8 4228F-04	8.8106E-04	9.1672E-04	9.4871E-04
C2H4	4 31905-04	1 1440F-04	1.0691E-04	9.9167E-05	9.1312E-05
C2H6	7 70075-05	7 18755-05	6 9767E-05	6.7659E-05	6.5551E-05
C3H6	7.59632-05	2 50385-05	3.4884E-05	3.3830E-05	3.2776E-05
C6H6	3.07922-05	2 4//15-05	2 56665-05	2.4891E-05	2.4115E-05
C10H8	2.72175-05	1 \$7505-05	1 52885-05	1.4826E-05	1.4364E-05
C14H10	1.02122-05	2 220/5-02	2 19635-02	2.1515E-02	2.1051E-02
H20	2.28102-02	2.23742-02			
	4.0153E-02	4.0494E-02	4.0852E-02	4.1227E-02	4.1622E-02
W2. mole %	8.01	8.61	9.24	9.91	10.63
<b>CO</b>	19.36	19.82	20.30	20.80	21.32
m2	6.05	6.21	6.36	6.50	0.04
	6.97	,7.19	7.41	7.62	7.02
C117 C2112	0.12	0.14	0.15	0.17	0.18
C24/	1.99	2.08	2.16	2.22	2.28
6244	0.30	0.28	0.26	0.24	0.22
6200 6204	0.18	0.18	0.17	0.16	0.16
0100 6444	0.09	0.09	0.09	9.0	0.08
	0.07	0.07	0.06	, 0.06	0.06
	0.04	0.04	0.04	0.04	0.03
K20	56.81	55.30	53.76	52.19	>
	100.00	100.00	100.00	100.00	) 100.00

Recycle Gas					
	1425	1450	1475	1500	1525
MF	0.43	0.45	0.46	0.48	0.49
Dry Gas					
H2, mole %	18.64	19.34	20.06	20.81	21.59
<b>CO</b>	45.02	44.54	44.09	43.67	43 20
CO2	14.07	13.95	13.81	13.65	13 48
CH4	16.21	16.16	16.09	15.99	15 88
C2H2	0.28	0.31	0.33	0 35	0 37
C2H4	4.64	4.67	4.68	4 67	4. 47
C2H6	0.71	0.64	0.57	n 50	4.05
СЗН6	0.43	0.40	6.37	0.34	0.32
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	17.75	18.42	19.11	10 83	20 54
co	42.89	42.43	42 00	41 60	61.36
CO2	13.40	13.29	13 16	13 01	41.24
CH4	15.44	15 30	15 32	15.01	16.04
C2H2	0.27	0.20	0 31	0.77	13.13
C2H4	4.42	4 45	6.74	6.35	0.35
C2H6	8.67	0 61	4.40	4.42	4.41
C3H6	0.61	0.38	0.74	0.40	0.42
H20	4 74	4.74	/ 7/	0.33	0.30
		7./4	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1550	1575	1600	1625	1000
				4 22265-02	1 32205-02
up th/th total feed	9.6550E-03	1.0448E-02	1.1303E-02	1.22205-02	2 09306-01
	2.5743E-01	2.6678E-01	2.7669E-01	2.8/210-01	4 77406-01
ω 	1.2509E-01	1.2846E-01	1.3171E-01	1.54/9E-01	( #405E-07
	5.4059E-02	5.5879E-02	5.7680E-02	5.9455E-U2	D.11975-02
CH4	2 1301E-03	2.3163E-03	2.4932E-03	2.6690E-03	2.8428E-05
CZHZ	2 73025-02	2.8031E-02	2.8512E-02	2.8812E-02	2.8909E-02
C2H4	2 50485-03	2.2677E-03	2.0294E-03	1.7935E-03	1.5622E-03
C2H6	2.50000-05	2 39565-03	2.3133E-03	2.2309E-03	2.1486E-03
C3H6	2.47705-03	2 3956F-03	2.3133E-03	2.2309E-03	2.14868-03
C6H6	2.4//75-03	2 30565-03	2.3133E-03	2.2309E-03	2.1486E-03
C10H8	2.4//95-03	2 20545-03	2.3133E-03	2.2309E-03	2.1486E-03
C14H10	2.4//YE-03	7 41495-01	3 5246E-01	3.4296E-01	3.3317E-01
H20	3.7060E-01	5.01000-01	5 01016-03	5.9191E-03	5.9191E-03
Ash	5.9191E-03	3.91912-03	1 21065-01	1.1524E-01	1.0851E-01
Char, MAF	1.3530E-01	1.28045-01	1.21702-01		
•		4 00005 100	1 00005+00	1.0000E+00	1.0000E+00
Total	1.0000E+00	1.0000000000	1.0000000000	1100000	
			r (0775-07	4 0440E-03	6.5583E-03
H2. moles/lb feed	4.7897E-03	5.1830E-03	5.00/32-03	1 025/5-02	1.0653E-02
<u>co</u>	9.1904E-03	9.5241E-03	9.8/805-03	7 04275-03	3 1286E+03
<u>m</u> 2	2.8422E-03	2.9190E-03	2.99202-03	7 70405-07	3 81/55-03
CH4	3.3697E-03	3.4831E-03	3.5954E-05	3.7000E-03	1 00185-04
C117	8.2152E-05	8.8958E-05	9.5752E-05	1.02502-04	4 07055-07
C2H/	9.7642E-04	9.9919E-04	1.0163E-03	1.02/06-05	5 10(2E-05
6284 6284	8.3384E-05	7.5430E-05	6.7502E-05	5.9658E-05	5.1902E-05
L2N0	6 3443E-05	6.1336E-05	5.9228E-05	5.7120E-05	5.5012E-05
C3N0	3 1722E-05	3.0668E-05	2.9614E-05	2.8560E-05	2.7506E-05
COND	2 3340E-05	2.2564E-05	2.1789E-05	2.1013E-05	2.0238E-05
C10H8	1 30035-05	1.3441E-05	1.2979E-05	1.2517E-05	1.2055E-05
C14K1U	2 05725-02	2.0076E-02	1.9565E-02	1.9037E-02	1.8494E-02
H2O					
	/ 20795-02	4 2477E-02	4.2941E-02	4.3433E-02	4.3954E-02
	4.20302-02	4124112 02			
<b>.</b>	44 30	12.20	13.06	13.96	14.92
H2, mole %	21.27	27 47	23.00	23.61	24.24
00	21.00	<u> </u>	6.97	7.05	7.12
CO2	0./0	0.07	8 37	8.53	8.68
CH4	8.02	0.20	0.27	0.24	0.25
C2H2	0.20	0.2	2 37	2.36	2.34
C2H4	2.32	2.3		0.14	0.12
C2H6	0.20	0.10		n 13	0.13
C3H6	0.15	0.14	+ U.14	, 0.13 , 0.07	<u>ک</u> ۵_۵
C6H6	80.0	0.0	7 U.U/		0.05
C10H8	0.06	5 0.0	U.U.	, 0.03	0.07
C14H10	0.03	5 0.0	3 0.03	0.03	2 40.00
N20	48.94	47.2	6 45.50	5 43.83	, 42.07
nev		•••••			400.00
	100.00	100.0	0 100.00	0 100.00	100.00

4450

<u>110</u>

	1550	1575	1600	1625	1650
Recycle gas					
MF	0.51	0.53	0.54	0.56	0.58
Dry Gas					
H2, mole %	22.38	23.21	24.05	<b>24.9</b> 2	25.82
<b>CO</b>	42.95	42.64	42.37	42.14	41.94
C02	13.28	13.07	12.84	12.59	12.32
CH4	15.75	15.60	15.42	15.23	15.02
C2H2	0.38	0.40	0.41	0.42	0.43
C2H4	4.56	4.47	4.36	4.22	4.06
C2H6	0.39	0.34	0.29	0.25	0.20
C3H6	0.30	0.27	0.25	0.23	0.22
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	21.32	22.11	22.91	23.74	24.59
<b>CO</b>	40.91	40.62	40.36	40.14	39.95
CO2	12.65	12.45	12.23	11.99	11.73
CH4	15.00	14.86	14.69	14.51	14.30
C2H2	0.37	0.38	0.39	0.40	0.41
C2H4	4.35	4.26	4.15	4.02	3.86
C2H6	0.37	0.32	0.28	0.23	0.19
СЗН6	0.28	0.26	0.24	0.22	0.21
H2O	4.74	4.74	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1675	1700	1725	1750	1112
	•••			4 90/15-02	1.0401E-02
un thilb total feed	1.4293E-02 1	5449E-02	1.66965-02	7 50045-01	3.6641E-01
M2, ID/ID LOCAL TEEL	3.1029E-01 3	3.2297E-01	5.3650E-01	3.3070E-01 ·	1 4832F-01
8	1.4038E-01	1.4282E-01	1.4498E-01	1.40032-01	4 00/35-02
CO2	6.2892E-02	6.4537E-02	6.6118E-02	0.7024E-02	7 4/195-03
CH4	3.0135E-03	3.1800E-03	3.3412E-03	3.4950E-05	3.0410E-03
C2HZ	2 8776E-02	2.8384E-02	2.7704E-02	2.6700E-02	C.3330E-02
C2H4	1 33746-03	1.1215E-03	9.1710E-04	7.2710E-04	2.34045-04
C2H6	2 06635-03	1.9839E-03	1.9016E-03	1.8193E-03	1.73702-03
C3H6	2 04435-03	1.9839E-03	1.9016E-03	1.8193E-03	1.73/UE-03
С6н6	2.000000-000	1.9839E-03	1.9016E-03	1.8193E-03	1.73/UE-05
C10H8	2.000002-00	1 98396-03	1.9016E-03	1.8193E-03	1.7370E-03
C14H10	2.00035-03	3 12735-01	3.0207E-01	2.9113E-01	2.7991E-01
H20	3.2309E-01	5.01015-03	5.9191E-03	5.9191E-03	5.9191E-03
Ash	5.9191E-05	0 /0555-02	8 8139F-02	8.1298E-02	7.4431E-02
Char, MAF	1.0174E-01	9.49332-02	0.0.072 00		
•		4 00005+00	1 0000E+00	1.0000E+00	1.0000E+00
Total	1.0000E+00	1.00002-00	1.00002.00		
			9 29275-03	8.9497E-03	9.6690E-03
H2. moles/lb feed	7.0904E-03	7.66412-03	4 20175-02	1 25296-02	1.3081E-02
nc,	1.1078E-02	1.1530E-02	7.20/35-02	3 33635-03	3.3701E-03
co?	3.1897E-03	3.2451E-03	5.29435-03	/ 21526-03	4.3037E-03
	3.9203E-03	4.0228E-03	4.1215E-05	4 7/255-04	1 3987E-04
6747 6747	1.1573E-04	1.2213E-04	1.2832E-04	0 517/5-0/	0 0312E-04
	1.0257E-03	1.0118E-03	9.8751E-04	9.31745-04	1 8/495-05
	4.4484E-05	3.7303E-05	3.0505E-05	2.41075-05	1.44725-05
LZNO	5.2904E-05	5.0796E-05	4.8688E-05	4.000UE-UD	3 33745-05
Cono	2.6452E-05	2.5398E-05	2.4344E-05	2.3290E-05	2.2230E-05
COHO	1.9462E-05	1.8687E-05	1.7911E-05	1.7136E-05	0.7/575-04
CIONS	1 1593E-05	1.1131E-05	1.0669E-05	1.0207E-05	9.7433E-00
C14H10	1 70345-02	1.7359E-02	1.6768E-02	1.6160E-02	1.555/E-02
H20					
	/ /5005-02	4.5099E-02	4.5727E-02	4.6398E-02	4.7115E-02
	4.43075 95				
	15 07	16.99	18.11	19.29	20.52
H2, mole %	12.73	25.57	26.27	27.00	27.76
<b>CO</b>	24.07	7 20	7.20	7.19	7.15
C02	/.1/	2 02	9.01	9.08	9.13
CH4	0.01	0.75	0.28	0.29	0.30
C2H2	0.20	2 2/	2.16	2.05	1.92
C2H4	2.30	2.24	0.07	0.05	0.04
C2H6	0.10	0.00	0.0	0.10	0.09
C386	0.12	0.11	0.1	0.05	0.05
C6H6	0.06	0.06		0.02	0.03
C1048	0.04	0.04	0.0		0.02
c16410	0.03	0.02	U.U.	د المع 7 مرابع	32.98
U 1711 IU U 20	40.29	38.49	<b>36.</b> 0	/ J4.00	
				- 100.00	100.00
	100-00	100.00	) 100.0	0 100.00	, 100.00

.

1775

.

Recycle Gas

-

÷

ŝ,

•• *

	1675	1700	1725	1750	1775
MF	0.60	0.61	0.63	0.65	0.67
Dry Gas					0.07
H2, mole %	26.74	27.68	28.65	29.65	30,67
CO	41.78	41.65	41.56	41.51	41.49
CO2	12.03	11.72	11.40	11.05	10.69
CH4	14.78	14.53	14.26	13.96	13 65
C2H2	0.44	0.44	0.44	0.44	0 44
C2H4	3.87	3.65	3.42	3 15	2 86
C2H6	0.17	0.13	0.11	0.08	0.06
C3H6	0.20	0.18	0.17	0.15	0.14
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	25.47	26.37	27.20	28 24	20 21
0	39.79	39.67	30 50	20.24	20 53
C02	11.46	11.17	10 86	10 53	37.32
CH4	14.08	13 84	17 58	17 20	10.10
C2H2	0.42	0 42	0 / 2	13.30	13.00
C2H4	3 48	3 /2	7 25	U.42 7 00	U.42
C2H6	0.00	0 17	0.10	3.00	2.75
C3H6	ύ.10	0.13	0.10	0.08	0.06
N20	6.7/	/ 7/	0.10	0.15	0.13
	4./4	4./4	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

.

1

	<b>180</b> 0	1825	1050
	2 10555-02	2.2742E-02	2.4562E-02
H2, Lb/lb total feed	7 00045-01	4 0060E-01	4.1973E-01
<b>co</b>	3.029DE-01	1 50055-01	1.5018E-01
C02	1.49412-01	7 454/5-07	7 26335-02
CH4	7.0362E-02	7.13046-02	4 0130E-03
C2H2	3.7782E-03	3.9029E-03	1 84545-02
C2H4	2.3571E-02	2.1501E-02	4 70255-04
C2H6	4.0320E-04	2.7665E-04	1.79232-04
C386	1.6546E-03	1.5723E-U5	1.4900E-05
C5110	1.6546E-03	1.5723E-03	1.4900E-05
C010	1.6546E-03	1.5723E-03	1.4900E-05
	1.6546E-03	1.5723E-03	1.4900E-03
114110	2.6839E-01	2.5659E-01	2.4450E-01
HZU	5.9191E-03	5.9191E-03	5.9191E-03
Ash	6 7538E-02	6.0619E-02	5.3674E-02
Char, MAr	0.13002 00		
Total	1.0000E+00	1.0000E+00	1.0000E+00
was a low of the decord	1 0445F-02	1,1282E-02	1.2185E-02
H2, moles/lb teed	1 36725-02	1.4305E-02	1.4985E-02
<b>CO</b>	7 70/05-03	3.4094E-03	3.4124E-03
CO2	/ 70505-03	4 4608E-03	4.5274E-03
CH4	4.30372-03	1 40805-04	1.5415E-04
C2H2	1.43102-04	7 41/35-04	6 6500E-04
C2H4	8.4022E-04	0 20205-04	5 9625E-06
C2H6	1.3411E-05	9.2020E-00	Z 81/85-05
C3H6	4.2364E-05	4.02302-03	1 007/ 5-05
C6H6	2.1182E-05	2.01205-05	1.70746-05
C10H8	1.5585E-05	1.4809E-00	1.40346-05
C14H10	9.2834E-06	8.8215E-06	8.33902-00
820	1.4898E-02	1.4243E-02	1.55/2E-02
ii20			
	4.7883E-02	4.8704E-02	4.9586E-02
	21.81	23.16	, 24.57
HZ, mole X	28 55	29.37	30.22
ຜູ	7 00	7.00	) 6.88
CO2	0 14	9.16	9.13
CH4	7.10	0.31	0.31
C2H2	4 7	1 5/	1.34
C2H4	1.73		0.01
C2H6	0.0		0.08
C3H6	0.0	y U.U	n.04
C6H6	0.0		, 0.04 7 0.07
C10H8	0.0	5 0.0.	
C14H10	0.0	2 0.0	2 U.UZ
H20	31.1	1 29.2	4 21.31
	••••• <b>•</b>		
	100.0	0 100.0	0 100.00

Recycle Gas

	1800	1825	1850
NF	0.69	0.71	0.73
Dry Gas			•••••
H2, mole %	31.71	32.78	33.87
co	41.51	41.56	41.66
CO2	10.31	9.91	9.49
CH4	13.32	12.96	12.59
C2H2	0.44	0.44	0.43
C2H4	2.55	2.21	1.85
C2H6	0.04	0.03	0 02
C3H6	0.13	0.12	0.11
Total	100.00	100.00	100.00
Sat Gas Analysis			
H2, mole X	30.21	31.22	32.27
<b>co</b>	39.54	39.59	39.68
CO2	9.82	9.44	9.04
CH4	12.68	12.35	11.99
C2H2	0.42	0.41	0.41
C2H4	2.43	2.11	1.76
C2H6	0.04	0.03	0-02
C3H6	0.12	0.11	0.10
H20	4.74	4.74	4.74
	*****		
Total	100.00	100.00	100.00

.

## APPENDIX 11

NEW TITLE 'INDIR ;GASIFIER - B ;Low steam ca ;REFORMER - E ;VERSION 2 - ;UPDATED: Nov	ECT GASIFIE ATTELLE COLU se QUILIBRIUM I SAND RECYCLI ember 4, 199	R - REFO UMBUS - MODEL. M E, STEAM 91	DRMER - METHA RYIELD MODEL METHANOL - EQ MERATION	NOL SYNTHE	SIS ' MODEL	
İN-UNITS EN OUT-UNITS EN ; HISTORY MSG- ; RUN-CONTROL SIM-OPTIONS ; STREAM-REPORT	G G LEVEL PROPI MAX-TIME= SIZE-RESU	ERTIES=4 =600 JLTS = 0	SIMULATION	=4 STREAMS	=4 SYSTEM=4	
STREAMS FLOW-FRA INTENSIV FLOW-FRA INTENSIV FLOW-FRA INTENSIV	ALL C MIXED BA E-PROPS MI) C CISOLID E E-PROPS CISO C NCPSD BAS E-PROPS NCPS COMPONEM	ASES = KED PRO BASES = DLID PR SES = SD PROP	MOLE MOLE-FR DPS=TEMP PRES MASS ROPS=TEMP PRE MASS PS=TEMP PRES PROPERTIES	AC MW ENTH DI S ENTH DEN: ENTH DENS	ENS BASE =MC S BASE=MASS BASE=MASS	DLE
; PROPERTIES	SYSOPO / SY	(SOP3R	L00P2			
COMPONENTS H2 C0 C02 H20 CH4 C2H2 C2H4 C2H6 C3H6-2 MEOH O2 N2 C6H6 C10H8 C14H10-1 C O2SI CHAR WOOD	H2 CO CO2 H2O METHANE ACETYLENE ETHYLENE ETHYLENE ETHANE PROPYLENE CH4O O2 N2 C6H6 C10H8 C14H10-1 C O2SI		Benzene Naphthalene Anthracene			
ÁLIAS	H2	1				

/ **CO** CO / CO2 C02 ////// H20 H20 CH4 CH4 C2H2 C2H2 C2H4 C2H4 C2H6 C2H6 C3H6-2 C3H6-2 **CH40** MEOH 02 02 N2 N2 C6H6 C6H6 C10H8 C10H8 | | C14H10-1 C14H10-1 С С . | | **02SI 02SI** CHAR WOOD Proxanal Ultanal Sulfanal Coalmisc Genanal Attr-Comps CHAR Proxanal Ultanal Sulfanal Coalmisc Genanal Attr-Comps WOOD Prop-Sources Global ASPENPCD Comps= CH4 H2 H2O CO2 CO O2 C6H6 C2H2 C2H4 & C2H6 C3H6-2 N2 MEOH & Comps= C10H8 C14H10-1 C 02SI Global DIPPR . Nc-props wood enthalpy hcjlboie / density dnstygen Nc-props char enthalpy hcjlboie / density dnstygen Prop-data char wood comp-list 1000 440 1 cval dengen 1 Prop-data BOIEC Prop-List BIAS 0 N S Η С 0.0 0.0 ; 0.0 0.0 122.50632 154.8761 Wood Pval 0.0 0.0 0.0 0.0 122.50632 154.8761 Pval Char Prop-List MW / SPGR / DHSFRM / DGSFRM / VSPOLY / CPSPO1 PVAL C 12.01115 / 2.2 / 0. / 0. / 0.0053 0.0 0.0 0.0 0.0 0.0 3000. /& 1.7154e+4 4.268 0.0 0.0 -2.786e+8 0.0 3000.0 Prop-Data Pval 02SI 60.086 / 2.2 / 0. / 0. / .02726 0. 0. 0. 0. 0. 3000. / & 37713 0. 0. 0. 0. 0. 3000. ***** ***** FLOWSHEET FLOWSHEET DRY IN = WWOOD DRYGAS QNET OUT = WETGAS DWOOD **QDRYER** DRYER OSTORE OUT = DWOOD2IN = DWOODSTORE

FLOWSHEET GA	ASFER		
FEEDMIX	IN = STEAMG2 DW	00D2 OUT = FEEDG	
GASIFIER	IN = FEEDG	OUT = GPROD	OGAS
SOLSEP	IN = GPROD	OUT = SOLID1	GAS1
SOLSP2	IN = GAS1	OUT = SOLID2	GASIB
HEAT1	IN = GASIB AT	R1 $OUT = GAS1C$	ATRIA
HFAT2	IN = GASIC ST	$FAMC \qquad OUT = GASID$	STEAMC2
HEATS	IN = GASIC SI	CANG OUT = CASID	A I DT2
DIIMDA	IN - CHATED	OUT - CHATED	
HEVIJA	IN = CWATER		
HEATA	IN = GASIE	OUT = GASIF	UHI 3A
	IN = GASIF	UUI = GASIG	QHI4
AUTO	IN = GASIG  CW	AIEKZ UUI = SCrub	<b>.</b> .
ANIK	IN = SCRUB	OUI = SCRUB2	Qscrub
AUSEP	IN = SCRUB2	OUT = GAS	LIQUOR QSEP
AUSEPZ	IN = LIQUOR	OUT = WASTE	TARS
AQSEP3	IN = WASTE	OUT = SGAS	WASTE2
GASMIX1	IN = GAS SG	AS OUT = SUMGAS	
RGHTX	IN = RCG3 RC	G1 OUT = $RCG4$	RCG2
RGCOMP	IN = RCG	OUT = RCG1	WCRCG
RGHEAT	IN = RCG2	OUT = RCG3	ORCG
RPUMP	IN = RGWAT	OUT = RGWAT2	WPRCG
RQUENCH	IN = RCG4 RGV	AT2 OUT = RCG5	
RGHTR	IN = RCG5	OUT = RCGG	OPCG3
RGSEP	IN = RCG6	OUT = RC67	PCCI TO GREAT
GASHT	IN = 0GAS OR(		ACASEED OCASEED
FLOWSHEET HOT	SAND		<b>VUASEER</b>
HSAND	IN = SAND1 OG	SEED OUT - SAND?	
CSAND	IN = SAND1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	OUT = SAND2	
CHCOMP	IN = SIND2 IN = AID2	OUT = ATD2	USANDZ
CM		001 = AIK3	WUHAK
CDECOMD	IN = DECED		
CMIY	TN - DECED	UUI = DEU	yaec
COMPLICT	IN = AIKS MEIN (	1013a $001 = 00010$	<b>–</b>
	IN = COMIN		Qmeth
	IN = AIKIAK	OUT = AIRI	WAIRT
	IN = AIKI2 IAI	S OUT = TARC	
CUMTAR	IN = IARC	OUT = TARP	QTAR
SUMGAS	IN = DEC COMOUT	TARP OUT = DRYGAS	
SUMQ1	IN = QDEC QMETH	QTAR OUT =	QCHAR
FLOWSHEET LO	OP1		
Change	IN = SUMGAS	Out = Gasc	
COMP1	IN = GASC	OUT = HPGAS	WC1 WC1A WC1B WC1C &
			QC1 QC2 QC3
INLET	IN = HPGAS STEAM	RCO2 OUT = CFEED	
HTR	IN = HPROD2 CFE	ED $OUT = HPROD3$	FEED1
REAC1	IN = FEED1	OUT = FEFD2	OF
HTR2	IN = HPROD FFF	$D_2 \qquad OUT = HPROD_2$	Refin
REFORM	IN = Refin	OUT = HPROD	COKE OH3
HTR3	IN = HPROD3	$\Delta \Delta \Delta \Delta = T U O$	00000
H2OCOND	IN = AGAS	$\Omega_{\rm III} = \Omega_{\rm III}$	WWATER
HWCOOL	IN = AGAS2	$\frac{1}{1000} = \frac{1}{1000}$	
OHWCED	IN = OHW	$\frac{1}{1} - \frac{1}{1}$	0HW2
CUSCUND	$\frac{1}{10} = \frac{1}{10}$	001 = 00AS	
COLCOND	$m \rightarrow maasza$	001 = CGAS	LIQ

•

**RCO2** OUT = PCO2IN = LIQCO2SEP FLOWSHEET LOOP2 Out = Cgas2In = CgasChange2 OH OUT = RGASIN = CGAS2HTR4 OUT = GAS4 W1 W1A W1B QC5 QC6 IN = RGASCOMP2 OH5 OUT = RECYCLE2IN = RECYCLEHTR5 WLA OUT = GAS4AIN = RECYCLE2COMP3 OUT = GAS4BGAS4A IN = GAS4MIXM 03 OUT = GAS5IN = GAS4BHTR6 04 LIQM OUT = GASMIN = GAS5MEOH 05 OUT = GASM2IN = GASMCOOL METHANOL 06 OUT = GasrlIN = GASM2CONDENSE RECYCLE OUT = PURGEIN = GASR1MSPLIT FLOWSHEET COMBUST WAIR1 OUT = COMAIR IN = AMBAIRAIRCOMP COMAIR2 OUT = FLUE3COMAIR IN = FLUE2HCOM1 PURGEH OUT = FLUE4PURGE IN = FLUE3HCOM2 OUT = COMGASPURGEH IN = COMAIR2MCOMB OUT = FLUEGAS IN = COMGAS QH3 QF ADCOMB FLOWSHEET CHECK WP1 OUT = WATER2 IN = WATERPUMP1 IN = QC1 QC2 QC3 QC5 QC6 QHT4 QHW1 & SUM02 OUT = QSUMOUT = WATER3 IN = WATER2 QSUM WHTR1 OUT = Psteam IN = WATER3 Q4 QFLUE QH4 WHTR2 0FL2 OUT = FLUE2IN = FLUEgasREFCOOL QFLUE OUT = FLUE5IN = FLUE4REFCOOL2 ****** STREAM SPECIFICATIONS ******* Def-Subs-Attr PSD PSD in-units Length = MU intervals 10 size-limits 0/4/5/6.4/8/10.1/12.7/16/20.2/32/50.8 Def-Stream-Class Mixcinc Definition Substreams=Mixed Cisolid Ncpsd Def-Streams Mixcinc Dry Gasfer Hotsand/mixcisld Loop1/Conven Loop2 Def-Streams HEAT QH QH4 QH5 Q3 Q4 Q5 Q6 QDRYER QSTORE QGAS Qdec Qmeth & QH3 QSEP Qscrub QF QFL2 QSAND1 QSAND2 Qchar QC1 QC2 QC3 QC5 Qht3a & QC6 Qtar Qflue QRCG QRCG3 QGASFER Qht4 Qhw Qhw1 Qhw2 QSUM Qchar DEF-STREAMS WORK WI WLA WCI WAIRI WPI Wchar Wairt WPA WCIA WCIB WCIC & W1A W1B WCRCG WPRCG STREAM STEAM Mixed TEMP =1000 PRES = 300 MOLE-FLOW = 8000 Substream H20 1.00 MOLE-FRAC Stream SteamG

<u>120</u>

```
Substream Mixed Temp = 1000 Pres = 25 Mass-flow = 66360.340
    Mass-frac H20 1.00
Stream Cwater
    Substream Mixed Temp=50 P=14.7 Mole-flow=10000
    Mole-frac H2O 1.00
Stream water
    Substream Mixed Temp = 50 P=25 Mole-flow= 11750
    Mole-frac H20 1.00
Stream Ambair
   Substream Mixed Temp=80 Pres=14.7 Mole-flow = 5500
   Mole-frac 02 0.21 / N2 0.79
Stream Airl
   Substream Mixed Temp=80 Pres = 25 Mass-flow=100
   Mass-frac 02 0.2329 / N2 0.7671
Stream Air2
   Substream Mixed Temp = 80 Pres = 14.7 Mole-flow = 200
  Mole-frac 02 0.21 / N2 0.79
Stream Meth
   Substream Mixed Temp = 80 Pres = 14.7 Mole-flow =25
  Mole-frac MEOH 1.0
Stream Airtar
   Substream Mixed Temp = 80 Pres=14.7 Mole-flow = 1250
  Mole-frac 02 0.21/ N2 0.79
Stream RCG
   Substream Mixed Temp=100 Pres=20 Mole-flow = 4900.0
  Mole-frac H2 0.2547 / CO 0.3979 / CO2 0.1146 / CH4 0.1408 / &
            C2H2 0.0042 / C2H4 0.0368 / C2H6 0.0016 / &
            C3H6-2 0.0019 / H20 0.0474
Stream Rgwat
  Substream Mixed Temp = 50 P = 14.696 Mole-flow = 1000
  Mole-frac H2O 1.0
Stream Wwood Mixed Temp=80 Pres=14.7 Mass-flow= 149693.674
   Mass-flow H20 149693.674
   Substream NCPSD Temp=80 Pres=14.7 Mass-flow=183639.660
   Mass-flow Wood
                   183639.660
                                   / Char le-10
   Subs-attr PSD Frac=0.593 0.001 0.011 0.026 0.033 0.04 0.052 &
                     0.072 0.140 0.032
   Comp-Attr Wood
                  Proxanal (9.24 15.37 83.44 0.89)/
                  Ultanal (0.89 50.89 6.04 0.17 0.03 0.09 41.90)/
                  Sulfanal (0.03 0.03 0.03)/
                  Coalmisc (8539. 0.0 0.0 0.0 0.0)/
```

```
Proxanal (0.0 80.0 20.0 0.0)/
   Comp-Attr Char
                  Ultanal (0.0 86.0 4.0 0.0 0.0 0.03 9.97)/
                   Sulfanal (.01 .01 .01)/
                  Coalmisc (14336. 0.0 0.0 0.0 0.0)/
                   Stream Sandl
                    Temp=1975 P=25 Mole-flow=0.01
  Substream Mixed
  Mole-frac N2 1.00
  Substream Cisolid Temp=1975 P=25 Mass-flow=6E+6
  Mass-frac 02SI 1.00
                        ******
*************** Blocks
Block Dryer Flash2
   Param Temp = 220 Pres = 14.7 maxit = 100
Block Store Heater
   Param Temp=220
Block Feedmix Mixer
   Param Pres=20
Block Gasifier Ryield
   Properties Option=SYSOPO
   Param Temp=1675 Pres=20
                                             Val=1.4293E-02/
                            Comp = H2
   Massyield Ssid = Mixed
                                             Val=3.1029E-01/
                            Comp = CO
             Ssid = Mixed
                                             Val=1.4038E-01/
                            Comp = CO2
             Ssid = Mixed
                                             Val=6.2892E-02/
                            Comp = CH4
             Ssid = Mixed
                                             Val=3.0135E-03/
                             Comp = C2H2
             Ssid = Mixed
                                             Val=2.8776E-02/
                             Comp = C2H4
             Ssid = Mixed
                                             Val=1.3374e-03/
                             Comp = C2H6
             Ssid = Mixed
                                             Val=2.0663E-03/
                             Comp = C3H6-2
             Ssid = Mixed
                                             Va1=2.0663E-03/
                             Comp = C6H6
             Ssid = Mixed
                                             Val=2.0663E-03/
                             Comp = C10H8
             Ssid = Mixed
                                             Val=2.0663E-03/
                             Comp = C14H10-1
             Ssid = Mixed
                                             Val=3.2309E-01/
                             Comp = H2O
             Ssid = Mixed
                                             Val=5.9191E-03/
                             Comp = 02SI
             Ssid = Cisolid
                                             Val=1.0174E-01/
                             Comp = Char
              Ssid = Ncpsd
                                             Va1=0.0
                             Comp = Wood
              Ssid = Ncpsd
 Block Solsep Sep2
                                                     Frac=1.0/
                                       Comp=Char
                        Stream=Solidl
           Subs=Ncpsd
    Frac
                                       Comp=C14H10-1 Frac=0.995
                        Stream=Gas1
           Subs=Mixed
    Flash-specs Gasl Pres=20
  Block Solsp2 Sep2
                                                    Frac=1.0 /
                                       Comp=02SI
                        Stream=Solid2
           Subs=Cisolid
    Frac
                                       Comp=C14H10-1 Frac=0.995
                         Stream=Gas1b
           Subs=Mixed
    Flash-specs Gas1b Pres=20
  ;
```

f

```
Block Heatl Heatx
   Param Option=1 Fdir=0 Thot=1100
Block Heat2 Heatx
   Param Option=1 Fdir=0 Thot=1075
 Block Heat3 Heatx
   Param Option=1 Fdir=0 Thot=1025
Block Heat3A Heater
   Param Temp=1010
Block Heat4 Heater
   Param Temp = 600
Block PumpA Pump
   Param Pres=20 Type=1 Eff=0.9
Block AQuench mixer
Block Ahtr Heater
   Param Temp = 100
Block AQsep Flash2
   Param Pres=20 Temp=100
Block Agsep2 Sep2
   Frac Subs=Mixed
                    Stream=Tars Comp=C6H6 C10H8 C14H10-1 Frac=1.0 1.0 1.0/
         Subs=Mixed
                    Stream=Waste Comp= H2 CO CO2 CH4 C2H2 C2H4 C2H6 C3H6-2 &
                    Block Aqsep3 Sep2
   Frac Subs=Mixed Stream=Sgas Comp= H2 CO CO2 CH4 C2H2 C2H4 C2H6 C3H6-2 &
                   FRAC = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0/
        Subs=Mixed Stream=Waste2 Comp=H20 Frac=1.0
Block Gasmixl Mixer
Block Change Clchng
Block Rghtx Heatx
  Param Opt=1 Fdir=0 Thot=400
Block Rgcomp Compr
  Param Type=1 Pres=25 EP=0.85
Block Rgheat Heater
  Param Temp=1675
Block Rpump Pump
  Param Type=1 Pres=20 Eff=0.90
;
```

<u>123</u>

```
Block Rquench Mixer
  Param Pres=20
Block Rghtr Heater
   Param Temp=300
Block Rgsep Flash2
   Param Pres=345 Temp=200
Block Gasht Mixer
Block Hsand Heater
   Param Temp=1675 Pres=25
Block Csand Heater
   Param Temp=1975 Pres=25
Block Chcomp Compr
   Param Type = 1 Pres = 25 EP = 0.90
 Block CM Mixer
 Block Cdecomp Ryield
    Param Pres = 25 Temp=2075
                                        Val = 0.267717/
    Massyield Ssid = Mixed Comp=CO2
                                        Val = 0.030371/
               Ssid = Mixed Comp=H20
                                        Val = 0.701912
               Ssid = Mixed Comp=N2
 Block Cmix Mixer
 Block Combust Rstoic
    Param Pres = 20 Maxit = 500 T = 2075
    Stoich 1 Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
           1 Mixed MEOH 1.0
    Conv
  Block Chcom2 Compr
     Param Type=1 Pres=25 EP=0.90
  Block MixTar Mixer
  Block Comtar Rstoic
     Param Temp=2075 Pres=25
                                                 / CO2 6
                                                            / H2O 3
                                         -7.5
                                -1 / 02
                 Mixed C6H6
                                                 / CO2 10 / H2O 4
     Stoich 1
                               -1 / 02
                                         -12
                 Mixed C10H8
                                                 / CO2 14 / H2O 5
     Stoich 2
                 Mixed C14H10-1 -1 / 02
                                         -16.5
     Stoich 3
                                1.0
     Conv 1 Mixed C6H6
     Conv 2 Mixed C10H8
                                1.0
     Conv 3 Mixed C14H10-1
                                 1.0
  Block Sumgas Mixer
   Block SumQ1 Mixer
```

Block Comp1 Mcomp Specs Nstage=4 Pfinal=200 Param kode=0 Type=1 EP=0.95 DELT=75 Block Inlet MIXER **BLOCK HTR Heatx** Param Opt=1 Fdir=0 Thot=900 BLOCK REAC1 RSTOIC PARAM TEMP = 1000STOICH 1 MIXED C2H2 -1 / H2O -1 / CO 1 / CH4 1 -1 / H2O -1 / CO 1 / CH4 1 / H2 1 -1 / H2O -1 / CO 1 / CH4 1 / H2 2 2 MIXED C2H4 STOICH 3 MIXED C2H6 STOICH -1 / H2O -1 / CO 1 / CH4 2 4 MIXED C3H6-2 STOICH -1 / H2O -3 / CO 3 / CH4 3 STOICH 5 MIXED C6H6 -1 / H2O -10 / CO 10 / H2 14 -1 / H2O -14 / CO 14 / H2 19 STOICH 6 MIXED C10H8 STOICH 7 MIXED C14H10-1 -1 / H2 2 / CO 1 8 MIXED MEOH STOICH -1 CONV 1 MIXED C2H2 1.00 2 MIXED C2H4 CONV 1.00 CONV 3 MIXED C2H6 1.00 CONV MIXED C3H6-2 4 1.00 CONV MIXED C6H6 5 1.00 CONV 6 MIXED C10H8 1.00 7 CONV MIXED C14H10-1 1.00 CONV 8 MIXED MEOH 1.00 Block Htr2 Heatx Param Opt=1 Fdir=0 Thot=1050 **BLOCK REFORM RGIBBS** PARAM TEMP = 1600. maxit=500 nat=4PROD H2 1 / CO 1 / H2O 1 / CH4 1 / CO2 1 / C 0 / H2 -1 / H20 1 / C0 1 / C 1 / C02 1 1 CO2 -1 STOI ; 2 CO -2 STOI 3 CH4 -1 / H2O -1 / CO 1 / H2 3 STOI DELT 3 -15. Block Htr3 Heater Param Temp=425 BLOCK H2OCOND Sep2 Frac Subs=Mixed Stream=Agas2 Comp=H2 CO CO2 CH4 H2O FRAC=1.0 1.0 1.0 1.0 & 0.05/ Subs=Mixed Stream=Wwater Comp=H2 CO CO2 CH4 H2O Frac=0.0 0.0 0.0 & 0.0 0.95 Flash-Specs Agas2 Temp=425 P=200 Maxit = 300 Tol=0.001/ ; Wwater Temp=425 P=200 Maxit=300 Tol=0.001 ; Block Hwcool Heater

```
Param Temp = 80
Block Qhwsep Fsplit
  Frac Qhw1 0.75 / Qhw2 0.25
BLOCK CO2COND Sep2
  Frac Subs=Mixed Stream=Cgas Comp=H2 CO CH4 H2O CO2 FRAC=1.0 1.0 1.0 1.0 &
            0.05/
       Subs=Mixed Stream=Liq Comp=CO2 Frac=0.95
   Flash-Specs Cgas Temp=425 P=200/
               Lig Temp=425 P=200
Block CO2SEP Fsplit
   Frac PCO2 0.55 / RCO2 0.45
Block Change2 Clchng
BLOCK HTR4 HEATER
     PARAM TEMP = 425 PRES = 200
BLOCK COMP2 MCOMP
     SPECS NSTAGE=3 PFINAL=750
     PARAM KODE=0 TYPE = 1 EP = 0.95 DELT=50
Block HTR5 Heater
     Param Temp=150
BLOCK COMP3 COMPR
     PARAM TYPE = 1 PRES = 750 EP=0.95
 BLOCK HTR6 HEATER
     PARAM TEMP = 445 PRES = 750
 BLOCK MEOH Requil
     PARAM TEMP = 445 PRES =750 NR=3 Mxol=600 Mxil=600
     STOI 1 CO -1 0/ H2 -2 0/ MEOH 1 0
      STOI 2 CO2 -1 0/ H2 -1 0/ CO 1 0/ H2O 1 0
      STOI 3 CO -1 0/ H2 -3 0/ CH4 1 0/ H20 1 0
      EXSP 3 0.1E-08
      DELT 1 +0.0001
 Block Cool Heater
      Param Temp=35
 BLOCK CONDENSE FLASH2
      PARAM TEMP = 32 PRES = 740
 BLOCK MSPLIT FSPLIT
      FRAC PURGE 0.3300 / RECYCLE 0.6700
      Param npk=1 kph=1
 BLOCK MIXM MIXER
```

```
PARAM KPH = 1
 Block Aircomp Compr
    Param Type = 1 Pres=20 EP=0.90
 Block Hcoml Heatx
    Param Opt=1 Fdir=0 Thot=950
 Block Hcom2 Heatx
    Param Opt=1 Fdir=0 Thot=850 DPC=20
 Block Mcomb Mixer
    Param Pres=20 Maxit = 500 Tol=0.001 NPK=1 kph=1
Block Adcomb Rstoic
    Param Pres=20 Maxit=500 Test=1800 Tol=0.001
   Stoich 1 Mixed CO -1 / 02 -0.5 / CO2 1
             Mixed CH4 -1 / 02 -2 / CO2 1 / H2O 2
Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
    Stoich 2
   Stoich 3
             Mixed
   Stoich 4 Mixed H2 -1
                             / 02 -0.5 / H2O 1
   Conv
          1 Mixed CO
                               1.00
          2 Mixed CH4
   Conv
                               1.00
   Conv
          3 Mixed MEOH
                               1.00
   Conv
          4 Mixed H2
                               1.00
Block Refcool Heater
   Param Temp=1700
Block Refcool2 Heater
   Param Temp=250
Block Pumpl Pump
   Param Pres=200 Type=1 Eff=0.9
Block Sumg2 Mixer
Block Whtrl Heater
Block Whtr2 Heater
   *************
                      Design Specifications
                                                *********
Design-spec Three
   Define C Strm-attr-var Stream=Qscrub Attribute=Heat Variable=Duty
   Spec C to O
   Tol-spec 50
   Vary Stream-var Stream=Cwater Variable=mole-flow
   Limits 0 1E+06
Design-spec RG
  Define R Strm-attr-var Stream=Qrcg3 Attribute=Heat Variable=Duty
   Spec R to O
```

Tol-spec 100 Vary Stream-var Stream=Rgwat Variabl Limits 0 0.1e+07	le=Mole-flow
; ************************************	************
Fortran Set-Air Properties Sysop0 Define FA Mass-flow Stream=Solid1 Define FB Mass-flow Stream=Air1 Define FC Mass-flow Stream=Air1 F FB = 2.5085984*FA F FC = 8.2617314*FA	Substream=Ncpsd Comp=Char Substream=Mixed Comp=O2 Substream=Mixed Comp=N2
Flash-specs Airl Kode=2 Temp=80 Execute after solsep	Pres=25
;	

REPORT DOCUMEN	Form Approved OMB NO. 0704-0188					
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.						
1. AGENCY USE ONLY (Leave blank)	ERED					
4. TITLE AND SUBTITLE Material and Energy Balance	Jsing Biomass Gasifiers	5. FUNDING NUMBERS				
6. AUTHOR(S) R.L. Bain	BF15.3436					
<ol> <li>PERFORMING ORGANIZATION NAM National Renewable Energy I 1617 Cole Blvd. Golden, CO 80401-3393</li> </ol>	8. PERFORMING ORGANIZATION REPORT NUMBER NREL/TP-510-17098					
9. SPONSORING/MONITORING AGENC	10. SPONSORING/MONITORING AGENCY REPORT NUMBER					
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY ST/ National Technical Informa U.S. Department of Comm 5285 Port Royal Road Springfield, VA 22161	12b. DISTRIBUTION CODE					
13. ABSTRACT (Maximum 200 words) The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) "Renugas" gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.						
14. SUBJECT TERMS	15. NUMBER OF PAGES					
	16. PRICE CODE					
17. SECURITY CLASSIFICATION OF REPORT Unclassified	20. LIMITATION OF ABSTRACT					

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102