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Abstract

The outer cortical table of the parietal bone has been commonly used as a calvarial bone

graft site for the craniofacial reconstruction. However, little is known about how removing

the outer table may affect the function and structure of the inner table, and how the knowl-

edge of the biomechanics and material properties of cortical bones will help the calvarial

graft to better integrate into the biological and mechanical functions of its surrounding native

tissues. In this study, it was hypothesized that there were significant differences in both den-

sity and material properties between inner and outer cortical plates in cranial bones. Twelve

cylindrical specimens, including inner-outer layers, of cortical parietal bone of a female

baboon were collected. Cortical thicknesses and densities were measured, and elastic prop-

erties were assessed using an ultrasonic technique. Results demonstrated remarkable dif-

ference in both thickness (t = 8.248, p�0.05) and density (t = 4.926, p�0.05) between inner

and outer cortical paired samples. Orthotropic characteristics of the cortical plates were

detected as well, these findings suggest that there are differences in biomechanical proper-

ties between two surfaces of cranial bones at both tissue and organ levels. How these differ-

ences are linked to the stress environments of the inner and outer cranial cortical layers

awaits further studies. Further study will greatly enhance our ability to address questions

derived from both morphological and craniofacial medicine fields about the development

and biomechanics of craniofacial skeletons.

Introduction

The skull is a complex arrangement of bones, joined by sutures, forming the craniofacial

region; this craniofacial complex is comprised of 22 facial and cranial bones of different shapes,

thicknesses, and functions. The cranial shape is the result of several functional factors such as:

(1) the neurocranial growth which produces osseous expansion, (2) the location, morphology,

and patency of cranial sutures, (3) the presence of supraorbital ridges to enforce the connec-

tion between the orbits and the brain case, and (4) the three-layered structure of the cranial

bone which is composed of an outer cortical table (periosteal cortical plate), a low density core

known as the diploe and an inner cortical table (endosteal cortical plate) [1]. The cranial bones
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are a three-layered system with two external cortical plates packing a thin layer of trabecular

bone. The origin of the three cranial layers is an intramembranous ossification process. First,

mesenchymal cells produce the ossification centers, and then osteoid is secreted within the

fibrous membrane to form two layers of compact bones, ectocranial table (outer plate) and

endocranial table (inner plate), and a central cavity containing red marrow (diploe) [2].

Overall, the cranial vault protects the brain from physical injuries, with a dome-shaped

three-layered structure. It has been suggested that neurocranial growth produces the outer

layer of the dura becoming the inner endosteal layer of calvarial bones [1]. That is, the shape,

the thickness and the mechanical properties of the inner surface of the osseous cranial vault

are a direct reflection of either, the growth rate of the brain at early ages or the cerebral shrink-

age at old ages. On the other hand, the outer periosteal table of the calvarial bones not only is

in contact with the external environment, but also provides the support for both masticatory

and nuchal muscular attachments [3]. Based on this disparate function of the two calvarial lay-

ers, the inner and the outer cranial plates are expected to exhibit different mechanical proper-

ties, possibly associated with loads resulting from diverse orofacial functions [4].

The outer cortical table of the parietal bone has been commonly used as a calvarial bone

graft site in craniofacial reconstructions [5, 6]. However, little is known about how the removal

of the outer table might affect the function and structure of the inner table, and further, how

the knowledge of the microstructure and material properties of cranial bones could improve

the design of a graft that can integrate better to the biological and mechanical function of its

surrounding native tissues [7]. In this regard, the biomechanical relationship between the

outer and inner cortical tables in the parietal bone is not clear: Are they coupled or not related

at all in terms of bone function and adaptation? An in-depth comparative study into the

microstructure of the cortical bones at the same location in the parietal bones, occupying the

ectocranial and endocranial surfaces, is likely to answer these questions.

Recent work has demonstrated that the three-dimensional material properties of cortical

bone vary throughout the craniofacial skeleton [8–10]. For instance, there is a general correla-

tion of bone anatomical axis and orientations of bone maximum stiffness at some areas, such

as the supraorbital torus and zygomatic arch, suggesting a link between bone mechanical prop-

erties and structures at the tissue level [11, 12]. Furthermore, the coupling of micro-CT imag-

ing and ultrasonic work on the cortical bone layers of the human mandibles and femurs [13]

proved the important relationship between the bone anisotropy of material properties and the

spatial configuration of the osteonal system, which is also supported by our recent study on

baboon mandibles [14]. Our finding represent a new understanding of the structural basis of

bone mechanical properties at the tissue level, in which the long axes of the osteons, as repre-

sented by the Haversian canals, are aligned along to the axes of maximum elastic stiffness (or

E3) of cortical bone (Explanations of elastic properties are detailed below in materials and

methods section).

Several studies have examined the overall mechanical properties of the cranial vault as a

whole by testing the mechanical properties of the vault using: tension test [5, 16], compression

test [5, 7, 9], triaxial compression test [7], shear test [7], torsion test [7], three point bending

test [16–22], four point bending test [23],and simple-bending test [24]. However, the results of

these studies represent only the overall mechanical properties of all three layers.

Many have studied the cortical material properties of the craniofacial complex in mammals,

including humans [10, 14–20], yet only a few studies have addressed the differences of

mechanical properties between external and internal cortical plates. Evans and Lissner (1957)

performed both tension and compression tests of the cortical layers of human parietal bone

separately [21]. Unfortunately, the compression test was performed on specimens which had

been used for a previous tension test, affecting their initial mechanical conditions. Later,
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Dempster (1967) examined the cortical grain patterns for the inner and outer table of the

human brain case using split-line methods in six complete human skulls [22], and he reported

different random pattern distributions of fibrous matrix in both the inner and the outer plates

of the skull vault, suggesting the layers have different mechanical properties, but also tangential

isotropy to the skull surface. McElhaney and collaborators (1970) performed Vickers micro-

hardness and tension tests on both inner and outer layers of bones from both humans and

Macaca mulatta and reported no significant differences in hardness or tensile properties

between the two plates [23]. Wood (1969, 1971) tested the two cortical plates of parietal, frontal

and temporal human cranial specimens using tension test of bone specimens parallel to both

the sagittal and the coronal sutures [15, 24], and he reported no significant differences in elas-

tic modulus between the two cranial cortical plates. Hubbard (1971) tested the three compo-

nents of the human calvarial system by using both four and three point bending tests, and he

reported no significant differences in flexural response in any of several orientations [25].

Peterson and Dechow (2002) reported the mechanical properties of the inner and outer tables

of the human parietal bone tested with an ultrasonic technique and reported significant differ-

ences in both mechanical properties and densities between inner and outer cortical tables [3].

The layered composition of the three-layered calvarial vault suggests independent bio-

mechanical purposes for each cranial stratum. However, there is little information regarding

how the material properties of each layer are correlated to maximize its capabilities to under-

take functional loadings. In this study, the density and elastic properties of two cortical plates

of the parietal bone were studied in a baboon skull. We hypothesized that bone density and

elastic properties are different between two cortical plates of the parietal bone due to orofacial

functional differences.

Materials and methods

The animal tissues were obtained from 14-year-old female baboon (sample reference # 10881)

from the Southwest National Primate Research Center (supported by NIH-NCRR P51

RR013986). Animal tissues were handled according to the NIH, Federal, State and local rules

and regulations. The fresh-frozen tissue was stored in a freezer at -20˚C before the removal of

bone samples. It has been reported that the freezing process of hard tissues has a minimal effect

on the elastic properties of cortical bone [26, 27]. After removing skin and muscle, twelve

cylindrical cortical bone specimens (Fig 1), 5 mm in diameter, were extracted from the right

parietal bone using a low-speed rotary tool (Dremel, Model 732, heavy duty flex shaft, Bosh

Inc., Germany) under permanent irrigation with saline solution. Prior to the removal, the

cylindrical cortical specimens were marked with a central graphite line parallel to the sagittal

suture, to ensure a common reference system for all the specimens. After the removal of each

cylindrical sample the core was split, leaving two cortical plates with attached trabecular struc-

ture in each of the sides. The trabecular remnants were removed from each cortical sample by

grinding the surfaces with a water-cooled grinding machine (Tormek, SuperGrind 2000, Lini-

desberg, Sweden). The cortical samples from both outer and inner plates were stored in a

50:50 solution of 95% ethanol and isotonic saline solution at room temperature (21˚C) in

order to maintain their mechanical properties [28].

Both the cortical thickness and the diameter of each cylindrical specimen were measured

three times, in different directions, using a digital caliper to ensure reliability and decrease

error. In the same way, the apparent density, based on Archimedes´ principle of buoyancy,

was measured three times for each cortical specimen, corrected by the effect of temperature,

and the mean values were recorded [28]. The elastic mechanical properties of each specimen

were assessed using an ultrasonic technique [28, 29]. Longitudinal ultrasonic waves were
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produced by a pair of V312-SU, 10 MHz, longitudinal piezoelectric transducers (Olympus Inc,

Waltham, MA), while transverse ultrasonic waves were generated by a pair of V156-RM, 5

MHz, shear piezoelectric transducers (Olympus Inc, Waltham, MA). The waves were sent

through each cylindrical cortical bone sample in nine radial directions, with 22.5˚ intervals

around the external circumference of the specimen, as shown in Fig 2. In addition, one set of

waves was delivered perpendicular to the cortical specimen. The time delay of the

Fig 1. Location of the sampling sites on the right parietal bone.

https://doi.org/10.1371/journal.pone.0229244.g001
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perpendicular path was combined with the caliper thickness of the specimens, whereas the

time delay of the radial path was complemented with the diameter of the specimens to calcu-

late the ultrasonic velocity of the waves through the cortical material. Elastic material proper-

ties were obtained from the principles of linear elastic wave theory based on Hooke´s law

using velocities, densities, and thicknesses [28]. All the measurements were performed for the

same operator.

Several elastic material properties were obtained: (1) principal elastic moduli E1, E2, and E3,

which represent the ability of a system to resist axial deformation by a given load, (2) principal

shear moduli G12, G23, and G13, which embody the ability of a system to resist shear deforma-

tion produced for an external load, (3) Poisson´s ratio ν12, ν23, and ν13 which represent the

ability of a structure to resist normal strains in perpendicular directions, (4) orientation of the

axis of maximum stiffness (in degrees), relative to the graphite line drawn parallel to the sagit-

tal suture before extraction of the cortical specimen, and (5) anisotropy quantified as the ratio

between one of the minimum elastic modulus and the maximum elastic modulus (E2/E3). Val-

ues of anisotropy close to 1.0 suggest an isotropic condition of the material, whereas values less

than 1.0 indicate the material tends to be orthotropic.

Statistics

Statistical evaluation of the data were performed using IBM SPSS statistical software (SPSS,

Version 25, IBM, Armonk, New York). Descriptive statistics were performed on all the inde-

pendent variables. A Kolmogorov-Smirnov test of normality was applied to the independent

variables to assess the normality of the distributions. In addition, a Levenes´s test was per-

formed to check if the variances of the outputs for the inner and the outer plates were approxi-

mately equal. A paired t-test was used to search for differences between inner and outer

mechanical properties. The hypothesis requires a two-tail test, with alpha value α = 0.05, and

11 degrees of freedom; thus, the critical value for the level of significance was stated as CV =

±2.201. The angular orientation of the axis of maximum stiffness were evaluated with circular

descriptive statistics using Oriana statistical analysis software Version 2.0 (Kovach Computing

Services, Pentraeth, UK). Differences between paired multiple angular means were calculated

using the Watson-Williams F-test.

Fig 2. Ultrasonic system used to test mechanical properties in cylindrical cortical bone specimens.

https://doi.org/10.1371/journal.pone.0229244.g002
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Results

Descriptive results are reported as the mean and the standard deviation (Table 1). Most of the

variables had normal distribution, except the density of the outer layer D(12) = 0.259,

p = 0.026, and the density of the inner layer D(12) = 0.266, p = 0.019. Thus, Wilcoxon test was

used to search for differences in density between inner and outer cortical plates. Levene´s test

showed equal variances for all the variables.

Overall, results show statistical differences in both thickness (t = 8.248, p� 0.05) and den-

sity (Z = -2.824, p = 0.005) between paired samples of inner and outer cortical plates of the

parietal bone (Fig 3). The outer table was both thicker and denser than the inner table. Thick-

nesses of the inner and outer plates were not correlated (R = 0.743, p = 0.06), nor were the den-

sities of the tables (R = 0.719, p = 0.08).

Significant differences for minimum elastic modulus E1 (t = 5.332, p< 0.05) and maximum

elastic modulus E3 (t = 6.321, p< 0.05) were found between inner and outer cortical plates

(Fig 4A). However, there were no statistical differences in principal elastic modulus E2 between

the two cortical plates. Specifically within the outer cortical table, statistical differences were

found between E1 and E2 (t = -11.543, p< 0.05) and between E2 and E3 (t = -16.683, p< 0.05).

Similarly, significant differences were found between E1 and E2 (t = -13.784, p< 0.05) and

between E2 and E3 (t = -5.006, p< 0.05) for the inner cortical plate. For the shear moduli, sig-

nificant differences were found for G12 (t = 5.455, p< 0.05), G31 (t = 6.466, p< 0.05), and G23

(t = 2.876, p = 0.015) between inner and outer cortical plates (Fig 4B). The Poison´s ratio ν31

was significantly different between inner and outer cortical plates (t = -2.418, p = 0.034). There

were no statistical differences in either ν12 and ν23 between cranial cortical plates (Fig 4C).

Angular orientation of the axis of maximum stiffness, measured with respect to the sagittal

suture, was 36.276˚ ± 25.987˚ for the inner cortical table and 39.077˚ ± 21.6˚ for the outer table

Table 1. Elastic mechanical properties for outer and inner cortical plates.

Property Mean Std. Dev.

Thickness Outer (mm) 1.98 0.35

Thickness Inner (mm) 1.42 0.25

Density Outer (kg/m3) 1939.84 26.23

Density Inner (kg/m3) 1911.60 26.72

E1 Outer (GPa) 16.29 1.07

E1 Inner (GPa) 14.23 1.33

E2 Outer (GPa) 21.84 1.17

E2 Inner (GPa) 21.22 0.82

E3 Outer (GPa) 28.05 1.14

E3 Inner (GPa) 24.14 2.03

G12 Outer (GPa) 7.72 0.46

G12 Inner (GPa) 6.84 0.51

G31 Outer (GPa) 8.40 0.55

G31 Inner (GPa) 7.04 0.73

G23 Outer (GPa) 10.89 0.97

G23 Inner (GPa) 9.99 0.97

ν12 Outer 0.21 0.04

ν12 Inner 0.24 0.06

ν31 Outer 0.20 0.05

ν31 Inner 0.25 0.07

ν 23 Outer 0.13 0.07

ν 23 Inner 0.14 0.08

https://doi.org/10.1371/journal.pone.0229244.t001
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(Fig 5). Differences in angular orientation were not statistically significant (F = 0.077,

p = 0.784).

Anisotropy, expressed as the ratio E2/E3, was not statistically different between inner

(0.5938 ± 0.083) and outer (0.5814 ± 0.040) cortical plates (t = -0.497, p = 0.629). Moreover,

Pearson´s correlation of E2 and E3 for outer and inner tables shows a low correlation for both

cases (Fig 6).

Discussion

Elastic moduli

Overall, there were no significant differences in anisotropy (E2/E3) between inner and outer

parietal cortical plates, suggesting the baboon cranial vault is orthotropic. Complementarily,

there were significant differences among the three principal elastic moduli between the inner

and the outer cortical tables (E3 > E2 > E1) of the parietal bone in baboons suggesting that

both cortical tables are orthotropic, and indicating that their osteons are oriented in a relative

uniform pattern [9]. Moreover, the principal elastic moduli were larger in the outer cortical

plate than in the inner cortical plate (Table 1). These results are similar to previous results

reported from humans [3]. Our results are also in agreement with previous works that

reported an orthotropic condition of the outer cortical plate of the skull in Macaca mulatta
[11], chimpanzees [8], and baboons [12]. In these previous reports, the reported elastic modu-

lus values were lower that we reported here, because the previous studies averaged results of

Fig 3. Differences in thickness (mm), and densities (kg/m3) between inner and outer cortical cranial plates.

https://doi.org/10.1371/journal.pone.0229244.g003

Fig 4. Principal elastic mechanical properties for baboons in the three-layered calvarial system. (A) Elastic moduli, (B) shear moduli, and (C) Poison´s ratios.

https://doi.org/10.1371/journal.pone.0229244.g004
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elastic moduli among parietal, frontal, and sphenoid bones. Complementarily, some authors

have previously reported that the human cortical plates are transversely isotropic [4, 9, 24]. We

believe that their results were affected due to the dynamic effect of the strain rate during the

tension tests [24], the high average age (68.4 years) of the human subjects [4], and the lack of a

pattern orientation when removing the specimens from the skull [9].

Shear moduli

Our tests of a single baboon skull found that the three shear moduli were statistically larger in

the outer parietal cortical table than in the inner table (G31 > G23 > G12), which replicates

Fig 5. Angular orientation of the axis of maximum stiffness for both cortical plates in the baboon´s skull. The direction 0 matches the direction of the sagittal

suture.

https://doi.org/10.1371/journal.pone.0229244.g005

Fig 6. Scatterplot of the correlation between E2 and E3 for (A) outer and (B) inner parietal cortical plates.

https://doi.org/10.1371/journal.pone.0229244.g006
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previous reports of human parietal cortical plates [3]. However, a previous study in chimpan-

zee external cortical plate of the skull reported a different order for the shear moduli: G23 >

G31 > G12 [8]. Complementarily, a study in the outer cranial cortical plate in baboons kept on

the different pattern for the shear moduli: G23 > G31 > G12 [12].

Density

Our study showed that the outer table was more dense than the inner table, which replies ear-

lier findings [3]. Although at least one study has suggested that bone density measurements

alone have a limited influence on bone strength [30], we propose that including complemen-

tary measurements of bone quality, such as elastic moduli and shear moduli, provide a more

through calculation of the overall ability of the outer table to resist external orofacial loads.

Thickness

Our measurements of the thickness of the layers of the baboon´s parietal bone found that the

outer cortical plate was significantly thicker than the inner cortical plate. These results are in

accordance with previous studies that reported the same characteristic in 10 human parietal

bones [3]. They reported 1.8±0.3 mm for the periosteal cortical (outer) plate and 1.7±0.3 mm

for the endosteal cortical (inner) plate [3]. In the same direction, one study in 4 human

embalmed calvaria reported 1.41±.2 mm for the inner table, 3.43±0.92 mm for the diploe, and

1.69±0.18 mm for the outer table [25].

Thickness and density, which are two important factors in the overall strength of cortical

bone, are negatively correlated with both the inner (R = -0.67) and outer (R = -0.93) cortical

plates (Fig 7). Our results were in concordance with the outer cortical plate in Macaca mulatta
skulls [11].

Principal direction of stiffness

Principal directions of maximum stiffness were consistent in both inner and outer parietal cor-

tical plates. The principal direction of maximum stiffness of the cortical plates is approximately

38˚ with respect to the sagittal suture in this individual baboon, suggesting a preferential ana-

tomical strength in the antero-posterior orientation rather than in the medio-lateral direction

of the cranial vault. This principal direction is correlated with diagonal linear fracture patterns

reported for the parietal bone under compression forces applied to the human calvaria [17].

Opposite to our results, one previous study find no significant differences in the principal

direction of stiffness between inner and outer cortical tables in humans [3].

Mechanical properties

The three-layered cranial system is a brittle material, so a compression test is the most correct

way to define its biomechanical characteristics because it is stronger in compression than in

tension [21]. However, ultrasonic tests present a nondestructive option that provides the elas-

tic characteristics of an anisotropic material in a dependable way. Although studies of the

mechanical properties of the human cranial vault have generally reported transverse isotropy

characteristics, with respect to the axis perpendicular to the calvarial surface [3, 4, 9, 15, 22,

25], other studies of the mechanical properties of the cortical skull in the Rhesus monkey

(Macaca mulatta) [11, 23], baboons [12], and chimpanzees [8] have found orthotropic condi-

tions of the cortical material. This difference among primate species could be due to the fact

that the patterns of osteons in the cranial cortical bone may lead to a specific anisotropic con-

dition in the cortical plates of the non-human primate skulls [9].
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Mechanical properties of the three layered calvarium system in humans, baboons, chimpan-

zees, and macaques showed that extant primates skulls have different patterns of mechanical

properties [12]. Thus, special attention is needed when trying to predict the biomechanical

response of the craniofacial skeleton of extinct species [12]. The individual mechanical proper-

ties of the calvarial three-layered system are relevant to understand not only the functional

response of the skull, but also its biomechanics, so clinical, functional, and anthropological

models of the skull may be evaluated properly [31–33]. Additionally, understanding of the

mechanical properties of the components of the cranial vault would make possible the devel-

opment of better synthetic bone substitutes for the cranium [34].

Functional implications

The dome shape of the skull is part of a complex group of functional cranial components [1],

that have different mechanical properties linked to the environmental stress and the orofacial

Fig 7. Scatterplot of the negative relationship between density and thickness for inner and outer cortical plates.

https://doi.org/10.1371/journal.pone.0229244.g007
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functions [3]. Complementarily, the three-layer system can be considered as an engineering

sandwich structure that provides tensile and compressive properties via the internal and exter-

nal cortical plates, with a central core that provides compressive and shear properties [24].

Functional masticatory and nuchal musculature activity produces tensile forces to the outer

table and compressive forces to the inner table [35]. Thus, the outer plate is thicker, denser,

and stiffer that the outer plate.

In the calvarial three-layered system, both the inner and outer tables provide the predomi-

nant stiffness to respond to the primary functional and accidental loads in the skull [36],

whereas the trabecular bone of the central diploe is an energy absorbing lightweight structure

that provides cushioning, shear strength, and separation between the cortical plates in order to

increase the inertial characteristics (bending strength) that allow the three-layered structure to

endure mainly bending loads [3, 36]. Although each of the three components of the engineer-

ing sandwich structure have different geometrical characteristics and mechanical properties,

the combined material has the ability to response naturally to functional loads. However, it is

important to consider that the mechanical properties of the whole three-layered system are dif-

ferent than the independent mechanical properties of each one of the three components.

Numerical model implications

Averaged mechanical properties obtained from testing the whole calvarial system frequently

assume that the cranial vault has a homogenous microstructure [7], proposing that the whole

calvarial bone is an isotropic material. On the other hand, several finite element models (FEM)

of the skull have been built using the information available for the engineering sandwich struc-

ture and the available mechanical properties. Consequently, most of the FEM of the skull can

be grouped into one of four categories: (1) FEM of the skull built using a single isotropic mate-

rial for an averaged layer in the entire calvarial structure [32]. (2) FEM of the skull including

an anisotropic condition of the material for a single layered structure [37]. (3) Three-layered

FEM structure with isotropic conditions for the material [31, 38, 39]. (4) Three-layered FEM

system with anisotropic conditions for the vault [40]. However, how these different bio-

mechanical assumptions of the three-layered system would affect mechanical responses in

FEM simulations is not clear. New knowledge on the mechanical properties of the three-lay-

ered system of the skull will allow both enhance models of functional activities in extant pri-

mates, and the improvement of functional modeling of fossil hominids.

In conclusion: bone strength is the combination of both the morphology and the mechani-

cal properties of a particular bone, suggesting its ability to endure functional loads as a sign of

adequate adaptation. However, previous studies have found only low values of strains within

the cranial vault from chewing and biting [41] suggesting that, in adult subjects, the main goal

of the three-layered system of the cranial vault is provide a surface for the attachment of the

nuchal and craniofacial muscles, and protect the brain from external traumatic loads. In par-

ticular, the arrangement and the differences in mechanical properties of the two cortical plates

support their different functions. Lastly, the cortical layers of the skull in most primates is

orthotropic, except in humans which has transversally isotropic characteristics. These differ-

ences in mechanical properties could be due to natural biological variances.

Limitations

Although this study is limited to the mechanical properties of the two cortical plates of a single

baboon´s parietal cortical bone, the results may be applicable to other three-layer cranial

bones as the frontal, the temporal, the sphenoid, and the occipital. In addition, it will be impor-

tant to study the mechanical contribution of the trabeculae diploe to the overall mechanical
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property of the primate parietal cortical bone. Although only one subject was evaluated, we

believe our results provide adequate pilot data from which to generate future hypotheses about

mechanical properties of cranial cortical bone in primates. Although several specimens from

cross the parietal bone were evaluated, other bones of the cranium were not evaluated. This

study did not considered differences in mechanical properties among subjects, the incidence

of the gender and the age were not considered.

Supporting information

S1 File. Paired-data-2018 Excel file including all the measurements and processes to obtain

the mechanical properties of the cortical plates. Time delay graphs from the oscilloscope are

attached to the corresponding cells.

(XLSX)
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