

Materials inside the Semiconductor Chips

Santosh K Kurinec Fellow IEEE

Electrical & Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology, Rochester, NY

The Advanced Materials Show USA & The Nanotechnology Show USA, October 13-14, 2021

Broad Spectrum of Semiconductor Chips Applications

The World of Semiconductors

Microchip

(or Nanochip!)

Advanced Materials

NANOTECHNOLOGY

Transportation

Space and Earth Sciences

National Defense

Agriculture and Environment

Medical Advances

Display

Computing

Energy & Power

Electrical Conductivity Spans ~ > 25 Orders of Magnitude

Largest varying physical property

MOS Switch to Logic Gates to Processors

Requirements: High Ion/Ioff ratio; Steeper subthreshold slope

Functional Chip

SHOWIUSA

тне 🔧

Advanced Materials

NANOTECHNOLOGY

SHOW

Smallest unit: A MOS switch

Gate

Overlap

SDE

Source

How Chips are Made?

тне 🔨 Advanced Materials NANOTECHNOLOGY SHOWIUSA

SHOW

Moore's Law: Stages of Scaling

Each new generation of silicon provided a profusion of value: chips captured more functionality at higher performance, with lower power per function, and at lower cost per circuit.

Scalings Geometrical, Equivalent, FinFET

Cramming more components onto integrated circuits

Moores' Law" was predicted by the co-founder of Intel[®], Gordon Moore, in 1965

Enablers:

- Remarkable innovations in photolithography
- Materials and Processes
- Designs

Accelerated Density Scaling – Push for more Complex Device Structures

FinFET Scaling

THE THE . **Advanced Materials** NANOTECHNOLOGY SHOWIUSA

SHOW

FinFET to Gate All Around to Nanowire and Nanosheets

TEM images of Fins, nanowire and nanoshhets.

GAAFET - IBM

Transfer and output characteristics of 75 nm gate stacked channel MOSFETs Huang et al, Tech. Dig. IEDM, 425-28 (2019)

pFET

nFET

Back End of the Line:

Advanced Materials show i usa

Technology Evolutions with Scaling in the CMOS Transistors

тне 🔨

NANOTECHNOLOGY

Advanced Materials

SHOWIUSA

Different Memory Devices

Emerging Neuromorphic Devices

Devices	Schematic	Mechanism	Materials	Switchin g Energy	On/Off	# of states						
PCM	Top Electrode Phase Change Material Dielectric Healer Healer Programmable Region Programmable Region	Phase change	Chalcogenides GST	>100 fJ	<103	~20	tes)	AER In	puts (Dend	rites)	(st
RRAM	$\overrightarrow{\text{Bottom Electrods}}$ $\overrightarrow{\text{Time}}$ $\overrightarrow{\text{Time}}$ $\overrightarrow{\text{OFF}} \rightarrow \overrightarrow{\text{R}}_{\text{High}}$ $\overrightarrow{\text{ON}} \rightarrow \overrightarrow{\text{R}}_{\text{Low}}$	Resistance change: filamentary, ion, vacancy movement	Metal oxides 2D materials Perovskites	>20 fJ	10-100	64-500	AER Inputs (Dendrit	Short Term Plasticity Synapse Array	Long Term Plasticity Synapse Array	Synapse De-multiple:	Soma Array	AER Outputs (Axor
MRAM	TE Free layer Tunnel barrier Pinned layer BE	Magnetization switching	CoFeB, MgO	>10 fJ	2-3	~2		STPS-Control	LTPS-Control	Mux Ctrl	Sama Carl	
ECRAM	Barvair Etectode Barvair Etectode Barvair Drain	Electrochemically driven ion movement	Metal oxides Graphene PEDOT:PSS	>10 fJ	2-40	50-1000						
Mott Memristor	Pi TN NbO, SO, TN SR, W	Metal to insulator phase transition	NbO2, VO2	> 1 pJ	> 500	~2						
FETs/FTJ	Cop electrode Farcolectric Bottom electrode	Polarization switching	Doped HfO2, HZO	> 100 fJ	45-300	32-100						

Ferroelectricity in Doped HfO2

Johannes Müller et al, Nano Lett., 2012, 12 (8), pp 4318–4323 DOI: 10.1021/nl302049k

J. D. Anderson, J. Merkel, D. MacMahon, and S. K. Kurinec, "Evaluation of Si:HfO2 Ferroelectric Properties in MFM and MFIS Structures," *IEEE Journal of the Electron Devices Society*, vol. 6, pp. 525–534, 2018, doi: 10.1109/JEDS.2018.2826978.

Park, 2015

Polakowski, 2015

HfO2 - From High-k to Ferroelectric Gate Oxide

FeFET

Introduction of HfO₂ as Gate- Oxide Replacement

Intel 45 nm node (2007):

Globalfoundries 28 nm node (2012):

World's first 28 nm Si:HfO₂

First demonstration of vertically

stacked FE HfO₂ capacitors

Emereging Devices Ferroelectric Tunnel Junction

Silicon substrat

Source: J J. Müller et al., "Ferroelectricity in HfO₂ Enables Nonvolatile Data Storage in 28 nm HKMG", 2012 IEEE Symposia on VLSI Technology and Circuits, submitted for publication.

K. Florent et al., IEEE IEDM, pp. 2.5.1-2.5.4, 2018.

HfO₂ gate insulator

Silicon & Beyond

Advanced Materials show i usa

Conventional MOS switching speed limited by change in entropy Landauer limit: 60mV/decade

Explore other switching mechanisms/ materials

They include graphene, black phosphorus, transition metal dichalcogenides, and boron nitride nanosheets.

Chang et. al. (Intel, Ian Young), "Clocked Domain Wall Logic using MagnetoelectricEffects," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, Year: 2016, Volume: PP, Issue: 99

Prof. Aaron Thean, Director, E6 Nanofabrication Center, HiFESResearch Program National University of Singapore

unec

Bank of New 2D Mateials:

Opportunities

2-D materials are ~ an atom or two thick, they can be either grown atop silicon or they can be grown separately, and then transferred on arbitrary substrates.

Some 2-D materials, especially graphene, dissipate heat well

2D semiconductors provide best electrostatic control for low power consumption concurrently with lateral channel scaling

Considerable challenges exist in the scalable and damage-free fabrication of 2D transistors, including doping, contact and dielectric integration.

Growth of uniform high quality material at wafer scales and compatible temperatures is also a major challenge.

Deposition and patterning with high pitch density on 300nm remains very challenging, and must be explored to justify these materials as Si replacement.

Published in IEEE Journal of the Electron Devices Society 2019

Ultimate Monolithic-3D Integration With 2D Materials: Rationale, Prospects, and ChallengesJunkai Jiang, K. Parto, W. Cao, K. Banerjee

Materials & Processes

- More and more materials are being incorporated
- New processes are being developed and implemented
- Selective patterning with high pitch density is desired

Deposition	Etching
Physical vapor deposition (PVD)	Wet etching
Chemical vapor deposition (CVD)	Dry etching
Thermal diffusion/growth	Ion milling
Atomic layer deposition(ALD)	Stripping
Electrochemical deposition	Chemical mechanical planarization
Spin coating	Atomic layer etching
Laser deposition	Lift-off

Sputtering Materials for VLSI and Thin Film Devices By Jaydeep Sarkar

Heterogeneous Integration (HI)

Concluding Remarks

Si is the foundational material for semiconductor devices.

Its abudance, electronic & chemical properties are super and scalability to 7nm device technology in production and 3nm Demonstrated.

More and more materials are being introduced in microchips to continue trend towards high density & performance. About 2/3 of the periodic Table is in the chips.

Heterogeneous integration of new materials augmenting Si electronics is happening.

New materials/devices have to be capable of process integration with lab to fab realizations. High pitch patterned depositions on large area. Process compatibility, defect free & resilience required.

0&A

Supply chain of materials/processes will be a critical issue.

Advanced

Materials

NANOTE

