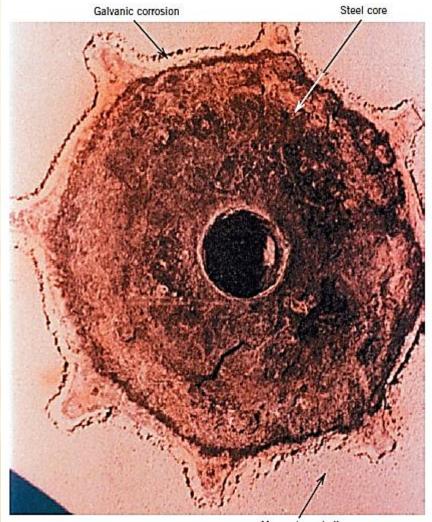
Materials of Engineering ENGR 151

CORROSION ELECTRICAL PROPERTIES

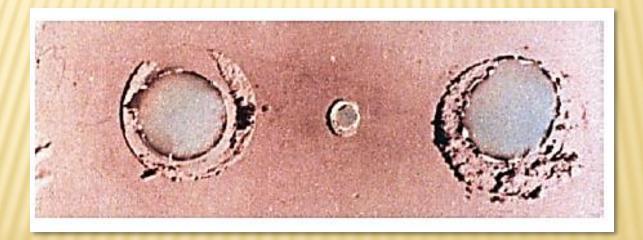
GALVANIC SERIES

Ranking of the reactivity of metals/alloys in seawater

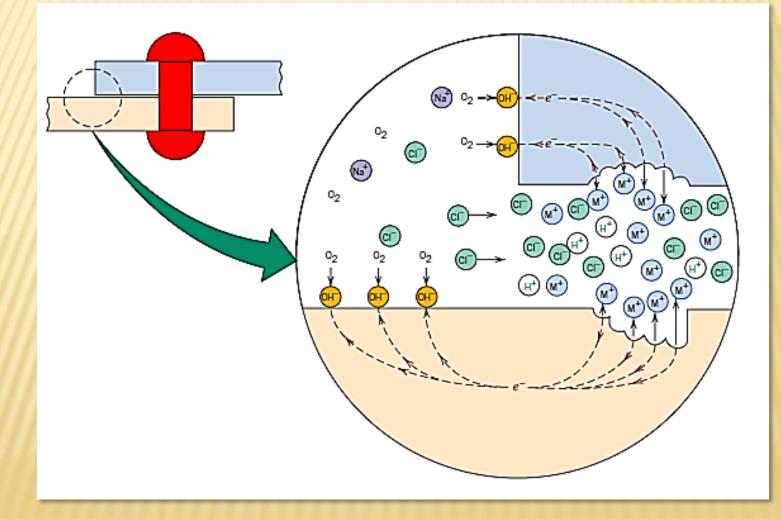

more cathodic (inert)

more anodic (active) Platinum Gold Graphite Titanium Silver 316 Stainless Steel (passive) Nickel (passive) Copper Nickel (active) Tin Lead 316 Stainless Steel (active) Iron/Steel **Aluminum Alloys** Cadmium Zinc Magnesium

Table 17.2, *Callister & Rethwisch 9e*. Source is M.G. Fontana, *Corrosion Engineering*, 3rd ed., McGraw-Hill Book Company, 1986. Reprinted with permission)

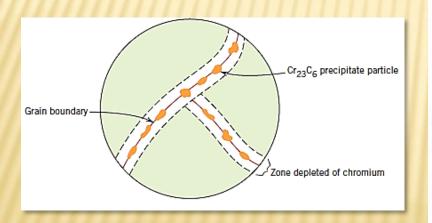

- Uniform Attack: Occurs with equal intensity over the entire exposed surface
 - Often leaves behind a scale or residue
 - E.g. Rusting of steel and iron, tarnishing of silverware
- Galvanic Corrosion: Occurs when two metals or alloys having different compositions are electrically coupled when exposed to electrolyte
 - Constitutes an electrochemical cell
 - More reactive metal experiences corrosion
 - Seawater is a medium that is conducive to galvanic corrosion

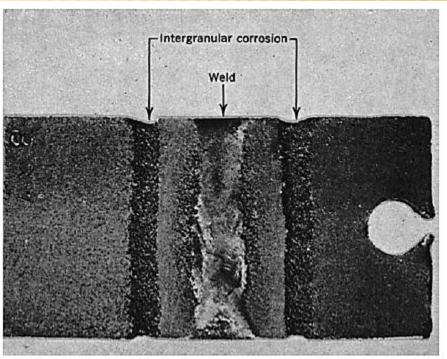
Example of Galvanic Corrosion



Magnesium shell

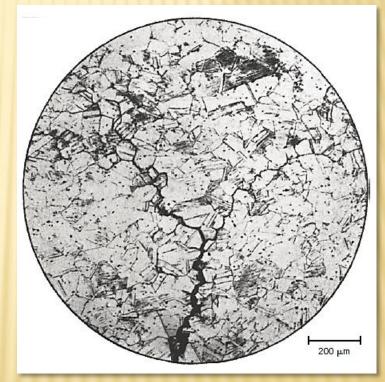
- **Crevice Corrosion:** May occur as a consequence of concentration differences of ions or dissolved gases in the electrolyte solution
 - Crevices are areas where concentration may drop, conducive to corrosion – crevice corrosion


Crevice Corrosion – Schematic



- **Pitting Corrosion:** Localized corrosion attack involving the formation of small pits or holes
 - Top-down direction, nearly vertical
 - Insidious, may go undetected till failure occurs
 - Similar mechanism to crevice corrosion

- Intergranular Corrosion: Occurs along grain boundaries
 - Macroscopic specimen disintegrates along grain boundaries
 - Prevalent in some stainless steels



- Selective Leaching: Found in solid solution alloys when one constituent is preferentially removed as a result of corrosion processes
 - E.g. Dezincification of brass
 - Zinc is selectively leached from a copper-zinc brass alloy
 - Properties of alloy adversely affected
 - May also occur in other alloys in which aluminum, iron, cobalt, chromium and other elements are vulnerable to preferential removal

- Stress Corrosion: Also known as corrosion cracking – combined action of a tensile stress and a corrosive environment
 - Some materials which are virtually inert in a particular corrosive environment become susceptible to corrosion when a stress is applied
 - Small cracks form and propagate in a direction perpendicular to the stress

Stress Corrosion – Examples

Along grain boundaries

- Hydrogen Embrittlement: Significant reduction in ductility and tensile strength when atomic hydrogen penetrates into the material
 - Seen in various metal alloys and some steels
 - Atomic hydrogen (H) diffuses interstitially through the crystal lattice, causing cracking

Stress corrosion

• Uniform Attack Oxidation & reduction reactions occur uniformly over surfaces.

- Selective Leaching Preferred corrosion of one element/constituent [e.g., Zn from brass (Cu-Zn)].
 - Intergranular

Corrosion along grain boundaries, often where precip. particles form.

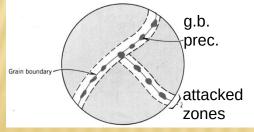
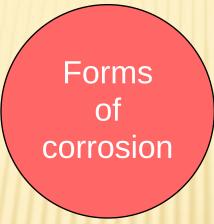



Fig. 17.18, Callister & Rethwisch 9e.

Corrosion at crack tips when a tensile stress is present.

• Galvanic

Dissimilar metals are physically joined in the presence of an electrolyte. The more anodic metal corrodes.

Erosion-corrosion

Combined chemical attack and mechanical wear (e.g., pipe elbows).

• Pitting

Downward propagation of small pits and holes.

Fig. 17.17, *Callister & Rethwisch 9e*. (From M.G. Fontana, *Corrosion Engineering*, 3rd ed., McGraw-Hill Book Company, 1986.)

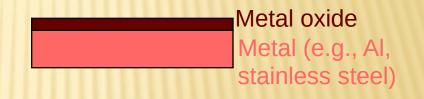
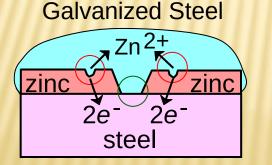

• Crevice Narrow and confined spaces.

Fig. 17.15, *Callister & Rethwisch 9e*. (Courtesy LaQue Center for Corrosion Technology, Inc.)

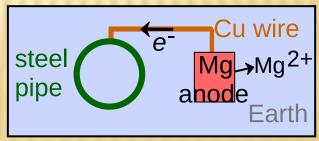
CORROSION PREVENTION (I)

- Materials Selection
 - -- Use metals that are relatively unreactive in the corrosion environment -- e.g., Ni in basic solutions
 - -- Use metals that passivate
 - These metals form a thin, adhering oxide layer that slows corrosion.



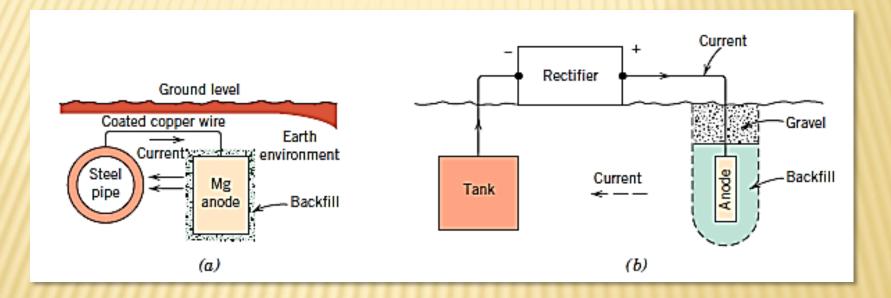
- Lower the temperature (reduces rates of oxidation and reduction)
- Apply physical barriers -- e.g., films and coatings

CORROSION PREVENTION (II)


- Add inhibitors (substances added to solution that decrease its reactivity)
 - -- Slow oxidation/reduction reactions by removing reactants (e.g., remove O₂ gas by reacting it w/an inhibitor).
 - -- Slow oxidation reaction by attaching species to the surface.
- Cathodic (or sacrificial) protection
 - -- Attach a more anodic material to the one to be protected.

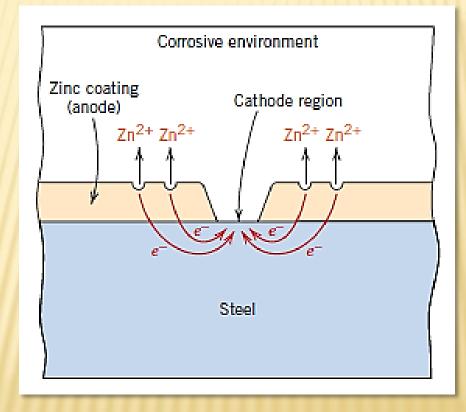
e.g., zinc-coated nail

Using a sacrificial anode



e.g., Mg Anode

Adapted from Fig. 17.23(a), *Callister & Rethwisch* 9e.


CORROSION PREVENTION (III)

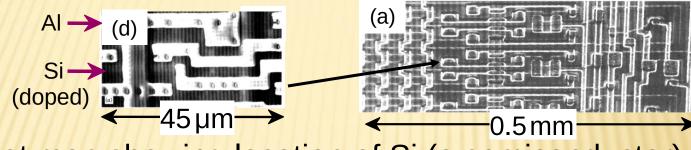
Cathodic (or sacrificial) protection

CORROSION PREVENTION (IV)

Galvanic protection

SUMMARY

- Metallic corrosion involves electrochemical reactions
 -- electrons are given up by metals in an oxidation reaction
 -- these electrons are consumed in a reduction reaction
- Metals and alloys are ranked according to their corrosiveness in standard emf and galvanic series.
- Temperature and solution composition affect corrosion rates.
- Forms of corrosion are classified according to mechanism
- Corrosion may be prevented or controlled by:
 - -- materials selection
 - -- reducing the temperature
 - -- applying physical barriers
 - -- adding inhibitors
 - -- cathodic protection


CHAPTER 18: ELECTRICAL PROPERTIES

ISSUES TO ADDRESS...

- How are electrical conductance and resistance characterized?
- What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
- For metals, how is conductivity affected by imperfections, temperature, and deformation?
- For semiconductors, how is conductivity affected by impurities (doping) and temperature?

VIEW OF AN INTEGRATED CIRCUIT

Scanning electron micrographs of an IC:

A dot map showing location of Si (a semiconductor):
 -- Si shows up as light regions.

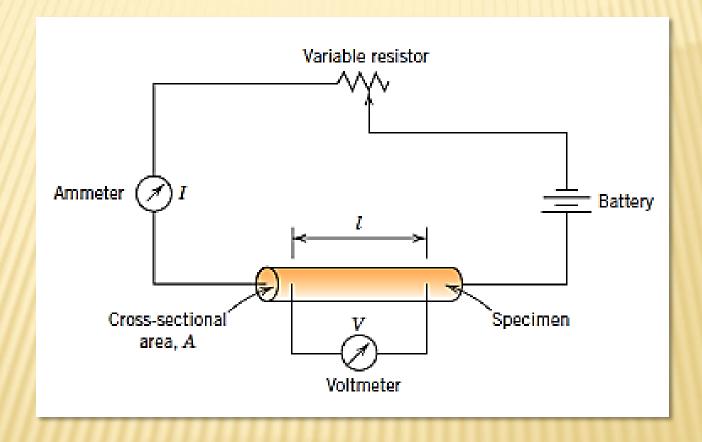
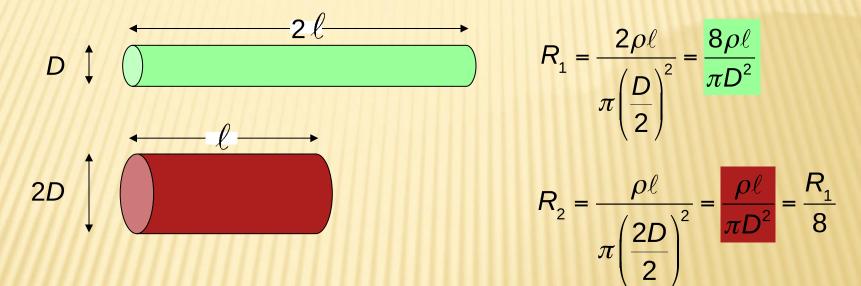

A dot map showing location of Al (a conductor):
 Al shows up as light regions.

Fig. (d) from Fig. 12.27 (a), *Callister & Rethwisch 3e*. (Courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Figs. (a), (b), (c) from Fig. 18.27, *Callister & Rethwisch 9e.*

ELECTRICAL CONDUCTION

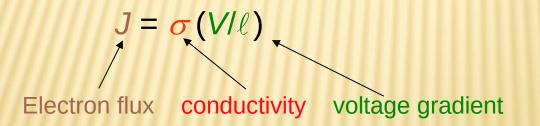


ELECTRICAL CONDUCTION

- Ohm's Law:
 voltage drop (volts = J/C)
 C = Coulomb
 V = I R resistance (Ohms) current (amps = C/s)
- Resistivity, *ρ*:
 - -- a material property that is independent of sample size and geometry RA of current flow
 - Conductivity, σ $\rho = \frac{1}{\rho}$ $\sigma = \frac{1}{\rho}$

ELECTRICAL PROPERTIES

× Which will have the greater resistance?


- × Analogous to flow of water in a pipe
- Resistance depends on sample geometry and size.

REFINITIONS

Further definitions

$J = \sigma E$	<= anothei	r way to sta	ite Ohr	m's law
$J \equiv \text{current de}$	ensity =	current surface area	$\frac{I}{A} = \frac{I}{A}$	like a flux

E = electric field potential = V/ℓ

CONDUCTIVITY: COMPARISON

• Room temperature values $(Ohm-m)^{-1} = (\Omega - m)^{-1}$

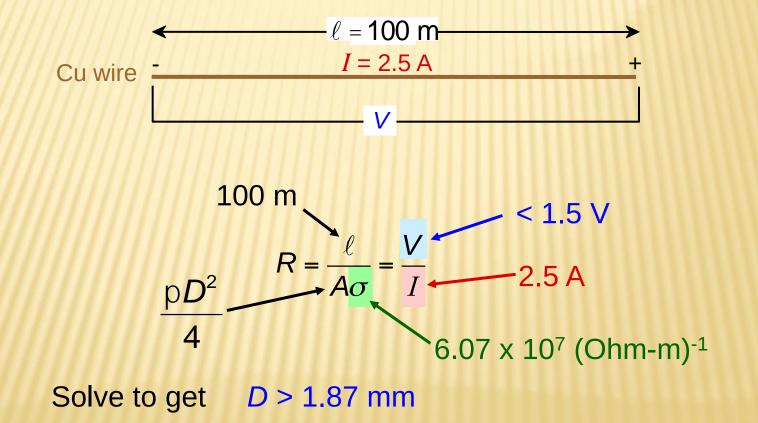
METALS	conductors
Silver	6.8 x 10 ⁷
Copper	6.0 x 10 ⁷
Iron	1.0 x 10 ⁷

CERAMICSSoda-lime glass 10^{-10} - 10^{-11} Concrete 10^{-9} Aluminum oxide $<10^{-13}$

SEMICONDUCTORSSilicon 4×10^{-4} Germanium 2×10^{0} GaAs 10^{-6}

POLYMERS Polystyrene Polyethylene

<10⁻¹⁴ 10⁻¹⁵-10⁻¹⁷


insulators

semiconductors

Selected values from Tables 18.1, 18.3, and 18.4, Callister & Rethwisch 9e.

EXAMPLE: CONDUCTIVITY PROBLEM

What is the minimum diameter (D) of the wire so that V < 1.5 V?

