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Chapter 1

Introduction

1.1 Introduction

This set of lecture notes is designed for the MATH 008A course in precalculus. The
material covered here is not inclusive of the whole course, as I was only responsible
for covering some of the material. All the topics that I gave a lecture on have been
included in this file. Also included are many exercises to work, as I feel the best way
to learn and master the subject material in this class is to work as many problems
as you can to get good at the material. As for the exericises, I attempt to put them
in order of difficulty, with the easier problems first, and the most challenging at the
end. Best.
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Chapter 2

MATH 008A - Precalculus

2.1 Properties of Real Numbers, Exponent Prop-

erties, Right Triangles

2.1.1 Properties of Real Numbers

Definition 2.1.1 The intersection of A and B, denoted by A ∩ B, is the set con-
sisting of elements that belong to both A and B.

Definition 2.1.2 The union of A and B, denoted by A∪B, is the set consisting of
elements that belong to either A and B.

Definition 2.1.3 Given real numbers a, b, and c, the distributive property is

a · (b+ c) = ab+ ac

Definition 2.1.4 Given real numbers a, b the zero property states: If ab = 0, then
either a = 0 or b = 0 or both are equal to 0.

Definition 2.1.5 We can define inequalities as follows{
a > 0 is equivalent to a is positive
a < 0 is equivalent to a is negative

Example 1 On the real number line, graph all numbers x such that x > 5.
On the real number line, graph all numbers x such that x ≤ −1.

Definition 2.1.6 The absolute value of a real number a is defined as |a| = a if
a ≥ 0 and |a| = −a if a if a < 0.

Example 2 Let a = −5. Then | − 5| = −(−5) = 5.

Definition 2.1.7 If P and Q are two points on a real number line with coordinates
a and b, then the distance between P and Q, is

d(P,Q) = |b− a|

Definition 2.1.8 The set of values that a variable may assume is called the domain
of the variable.
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Example 3 Find the domain of the following function in interval notation

f(x) =
5

x− 2

Example 4 Find the domain of the following function in interval notation

f(x) =
x− 2

x− 9

2.1.2 Exponent Properties

Definition 2.1.9 The laws of exponents are

a0 = 1 if a 6= 0
a−n = 1

an
if a 6= 0

aman = am+n

(am)n = amn
am

an
= am−n = 1

an−m

(ab)n = anbn(
a
b

)n
= an

bn
if b 6= 0

Example 5 Write the following expression with all positive exponents

x5y−2

x3y

Example 6 Write the following expression with all positive exponents(
x−3

3y−1

)−2
2.1.3 Right Triangles and Geometry

Definition 2.1.10 The Pythagorean Theorem is c2 = a2 +b2, for finding the side
lengths of a right triangle.

Example 7 What is the hypotenuse of a right triangle with sides of 5 and 12?

Definition 2.1.11 Geometry Formulas (Here A = Area, P = Perimeter, C =
Circumference, V = Volume, and SA = Surface Area.

A = lw, P = 2l + 2w for a rectangle
A = 1

2
bh for a triangle

A = πr2, C = 2πr for a circle
V = lwh, SA = 2lh+ 2lw + 2wh for a rectanglular prism
V = 4

3
πr3, SA = 4πr2 for a sphere

V = πr2h, SA = 2πr2 + 2πrh for a cylinder

Example 8 Find the volume and surface area of a sphere that has radius 2.

Definition 2.1.12 Two triangles are congruent if each of the corresponding angles
is the same measure and each of the corresponding sides is the same length.

Definition 2.1.13 Two triangles are similar if each of the corresponding angles is
the same measure and each of the corresponding sides is proportitonal.

Example 9 Are the trianges with side lengths 5,6, 10 and 15, 18, 30:
(a) congruent? (b) similar?
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2.2 Rational Expressions

Definition 2.2.1 The Cancellation Property is

ac

bc
=
a 6 c
b 6 c

=
a

b

Example 10 Reduce the following

x2 + 4x+ 4

x2 + 3x+ 2

Example 11 Reduce the following

8− 2x

x2 − x− 12

Definition 2.2.2 Multiplying Rational expressions

a

b
· c
d

=
ac

bd

Definition 2.2.3 Dividing Rational expressions

a
b
c
d

=
a

b
· d
c

=
ad

bc

Example 12 Reduce the following

x2 − 2x+ 1

x3 + x
· 4x2 + 4

x2 + x− 2

Example 13 Reduce the following

x−2
4x

x2−4x+4
12x

Definition 2.2.4 Adding Rational expressions

a

b
+
c

b
=
a+ c

b

a

b
+
c

d
=
ad+ bc

bd

Example 14 Reduce the following

2x2 − 4

2x+ 5
+

x+ 3

2x+ 5

Example 15 Reduce the following

x2

x2 − 4
− 1

x

Example 16 Reduce the following using the least common multiple.

x

x2 + 3x+ 2
+

2x− 3

x2 − 1
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2.3 Word Problems

1) The length of a rectangle is 3 more than twice its width. If the area of the rectangle
is 119 cm2, find its length and width.

2) John can paint a house in 4 hours while Mike can paint the same house in 6 hours.
How long will it take them to paint the house if they work together?

3) The cooling system of a car has a capacity of 15 L. If the system is filled with a 40

4) An open box is to be constructed from a square piece of sheet metal by removing
a square of side 3 feet and turning up the edges. If the box is to hold 300 ft3, what
should be the dimensions of thte sheet metal?

5) A motorboat heads upstream a distance of 24 miles on a river whose current is
running at 3 mi/hr. The trip back takes 6 hours. Assuming that the motorboat
maintained a constant speed relative to the water, what was its speed?

6) A Tennis court has an area of 2808 ft2 and the length is 6 ft longer than 2 times
the width. Find the dimensions of the court.
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2.4 Lines

Definition 2.4.1 Given two points (x1, y1) and (x2, y2), the slope of the line that
passes through these points is

m =
y2 − y1
x2 − x1

=
rise

run

Note: Slope is undefined for vertical lines (x1 = x2). Slope is zero for horizontal lines
(y1 = y2).

Example 17 Find the slope of the line that passes through (1, 2) and (5,−3).

Definition 2.4.2 The Point Slope Formula for a line is

y − y1 = m(x− x1)
Definition 2.4.3 The Slope intercept formula for a line is

y = mx+ b

Definition 2.4.4 The General Form for a line is

Ax+By = C

Example 18 Find the equation for a line passing through (1, 2) with slope m = 3.

Definition 2.4.5 To find the x-intercepts, plug in 0 for y and solve for x. Similarly,
to find the y-intercepts, plug in 0 for x and solve for y.

Example 19 Find the x and y intercepts of x2 + 16y2 = 4.

Definition 2.4.6 Parallel lines have the same slope.
Perpendicular lines have a slope that is the negative reciprocal (Take the first
slope, invert the number, and multiply by -1).

Example 20 Find the equation of the line that passes through (1,−2) and is perpen-
dicular to the line x+ 3y = 6.

Definition 2.4.7 The equation of the circle is

(x− h)2 + (y − k)2 = r2

where the center is the coordinate (h, k) and the radius is r.

Definition 2.4.8 The General Form of a circle is

x2 + y2 + ax+ by + c = 0

Example 21 Find the equation of the circle that has the general form

x2 + y2 + 4x− 6y + 12 = 0

and give the center of the circle, the radius, and graph the circle.

Example 22 Find the equation of the circle that has the general form

x2 + y2 − 2x− 4y − 4 = 0

and give the center of the circle, the radius, and graph the circle.

Example 23 Find the equation of the circle that has the general form

2x2 + 2y2 − 2x+ 16y − 10 = 0

and give the center of the circle, the radius, and graph the circle.

8



2.5 Graph Transformations

Below is a chart that summarizes all of the transformations we covered in class. The
general formula is in the second column, and there is an example given for each case
for the function f(x) = |x| (the absolute value function). You can use the second
column as a guide to work with any function that you are given.

Figure 2.1: Transformation Chart - From http://hellermaayanotmath.wikispaces.com

Below are a few examples of using transformations that may be helpful for study-
ing.

Example 24 Apply a horizontal translation 3 units left and a vertical translation of
4 units down for the graph of f(x) = x2, and write the formula for this graph.

Example 25 Apply a horizontal translation 2 units right, a vertical translation of 5
units up, and a reflection over the x-axis for the graph of f(x) = |x|, and write the
formula for this graph.

Example 26 Sketch the graph of f(x) = (x+ 5)5 − 2 using graph transformations.

Example 27 Sketch the graph of f(x) = −|x− 3|+ 4 using graph transformations.

Example 28 Sketch the graph of f(x) = −2(x+1)2−5 using graph transformations.
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2.6 Quadratic Functions

Definition 2.6.1 A quadratic function is of the form

f(x) = ax2 + bx+ c

Definition 2.6.2 The maximum or minimum of the parabola is called a vertex.

Definition 2.6.3 The vertical line that passes through the vertex is called the axis
of symmetry.

The following proof is to show how to get the vertex form of the parabola in
general. We will have to complete the square.

f(x) = ax2 + bx+ c

= a

(
x2 +

b

a
x

)
+ c

= a

(
x2 +

b

a
x+

b2

4a2

)
+ c− a

(
b2

4a2

)
= a

(
x+

b

2a

)2

+ c− b2

4a

= a

(
x+

b

2a

)2

+
4ac− b2

4a

= a(x− h)2 + k

where we define h = − b
2a

and k = 4ac−b2
4a

. So then we have that

Vertex =

(
− b

2a
, f

(
− b

2a

))
Axis of Symmetry⇒ x = − b

2a

Definition 2.6.4 If we have a quadratic function f(x) = ax2 + bx+ c, then
(i) a > 0 implies that the vertex is a minimum.
(ii) a < 0 implies that the vertex is a maximum.

Definition 2.6.5 If we have a quadratic function f(x) = ax2 + bx+ c, then
(i) If b2 − 4ac > 0⇒, then f has 2 real roots.
(ii) If b2 − 4ac = 0⇒, then f has 1 real root.
(iii) If b2 − 4ac < 0⇒, then f has no real roots (does not cross the x-axis).

Below are a few examples of writing the quadratic in vertex form.

Example 29 Rewrite the function f(x) = x2 − 8x+ 7 in vertex form.

Example 30 Rewrite the function f(x) = x2 + 6x+ 1 in vertex form.

Example 31 Rewrite the function f(x) = 3x2 + 12x+ 2 in vertex form.

Example 32 Rewrite the function f(x) = 4x2 − 40x+ 13 in vertex form.
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2.7 Graphing Polynomials

Note: Remember to always write your answers in interval notation.

Example 33 Solve x2 − 4x− 12 ≤ 0

Example 34 Solve 2x2 < x+ 10

Example 35 Solve x2 + x > 12

Example 36 Solve −x2 − x+ 6 < 0

Note: Remember to always write your answers in interval notation. Also, re-
member that when moving the parts of the expression, ONLY use addition and
subtraction.

Example 37 Solve 4x+5
x+2
≥ 3

Example 38 Solve x+2
x−4 ≥ 1

Example 39 Solve 5
x−3 >

3
x+1

Example 40 Solve (x+3)(x−5)
3(x−1) > 0

Example 41 Solve x2+4x−45
x+1

≤ 0
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2.8 Quadratic and Rational Inequalities

2.8.1 Quadratic Inequalities

Note: Remember to always write your answers in interval notation.

Example 42 Solve x2 − 4x− 12 ≤ 0

Example 43 Solve 2x2 < x+ 10

Example 44 Solve x2 + x > 12

Example 45 Solve −x2 − x+ 6 < 0

2.8.2 Rational Inequalities

Note: Remember to always write your answers in interval notation. Also, remember
that when moving the parts of the expression, ONLY use addition and subtraction.

Example 46 Solve 4x+5
x+2
≥ 3

Example 47 Solve x+2
x−4 ≥ 1

Example 48 Solve 5
x−3 >

3
x+1

Example 49 Solve (x+3)(x−5)
3(x−1) > 0

Example 50 Solve x2+4x−45
x+1

≤ 0
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2.9 Complex Zeros; Exponential Functions and Equa-

tions

2.9.1 Complex Zeros

Note: Remember the Conjugte Pairs Theorem.

Example 51 Find polynomial of degree 3 with roots 3 and 2− 5i.

Example 52 Find polynomial of degree 3 with roots −5 and 1 + 2i.

Example 53 Find polynomial of degree 3 with roots 2 and −3 + i.

Example 54 Find polynomial of degree 3 with roots −1 and 4− 2i.

2.9.2 Exponential Functions and Equations

Definition 2.9.1 An exponential function has the form

f(x) = Cax

where C is a constant and a > 0 and a 6= 1.

Definition 2.9.2 Properties for the exponential function f(x) = ax:
(i) Domain is all reals, (−∞,∞).
(ii) Range is all positive reals, (0,∞).
(iii) No x-intercepts.
(iv) The y-intercept is the coordinate (0, 1).
(v) There is an asymptote at the x-axis, y = 0.

Example 55 Graph f(x) = 2x.

Example 56 Graph f(x) = (1
2
)x.

Note: It is strongly recommended that you work more problems similar to
these in order to get good at these types of problems as they are very likely to show
up on quizzes and tests.

Example 57 Solve 3x+1 = 81

Example 58 Solve 42x−1 = 8x+3

Example 59 Solve 3x
2−7 = 272x

Example 60 Solve e−x
2

= (ex) · 1
e3

Example 61 Solve 4x+1 = 1
64

Example 62 Solve 8x−2 =
√

8
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2.10 Logarithm and Exponential Equations; Right

Triangles/Trigonometry

2.10.1 Logarithm and Exponential Equations

Definition 2.10.1 So we define the logarithm as

y = loga(x)⇔ x = ay

for a > 0 and a 6= 1. We also have that if

loga(M) = loga(N)⇒M = N

Note: Some notation that to be aware of:

log = log10

ln = loge

Note: The log is the inverse of the exponential function. Also, you CANNOT
plug in negative numbers into a logarithm!

Definition 2.10.2 Properties for the logarithm function loga(x):

(i) r loga(M) = loga(M
r)

(ii) loga(M) + loga(N) = loga(MN)
(iii) loga(M)− loga(N) = loga(

M
N

)

Here are some basic examples that you should understand how to compute.
vspace.5cm

Example 63 Find the value of log4(64).

Example 64 Find the value of log3(
1
9
).

Example 65 Find the value of log(100).

Example 66 Find the value of ln(e10).

Here are some basic examples that you should understand how to compute.

Example 67 Solve 2 log5(x) = log5(9)

Example 68 Solve log5(x+ 6) + log5(x+ 2) = 1

Example 69 Solve ln(x) = ln(x+ 6)− ln(x− 4)

Example 70 Solve −2 log4(x) = log4(9)

Example 71 Solve ln(x− 3) + ln(x− 2) = ln(2x+ 24)

Example 72 Solve log(8x)− log(1 +
√
x) = 2
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2.10.2 Right Triangles and Trigonometry

Definition 2.10.3 We define the trig functions as following using the diagram above.

Figure 2.2: Right Triangle

sin(θ) =
opp

hyp
=
b

c
csc(θ) =

hyp

opp
=
c

b

cos(θ) =
adj

hyp
=
a

c
sec(θ) =

hyp

adj
=
c

a

tan(θ) =
opp

adj
=
b

a
cot(θ) =

adj

opp
=
a

b

Example 73 Find the values of all the trig functions given the triangle with sides
3, 4, 5.

Example 74 Find the values of all the trig functions given the triangle with sides
5, 12, 13.
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2.11 Graphing Trig Functions

Definition 2.11.1 We can define the cosine function as a horizontal shift of sin(x),
since we know the graph of this function already:

f(x) = cos(x) = sin(x+
π

2
)

where the horizontal shift is π
2

units to the left. The graph is given in the plot below.
Note the zeros are at π

2
and 3π

2
.

Figure 2.3: Graph of f(x) = cos(x)

Example 75 Sketch a complete graph of f(x) = −4 cos(2x)− 2

Solution : We want to do this graph by the graph transformations that are given
in a previous lecture. First we calculate 3 quantities: Amplitude, Period, and vertical
shift. Recall that the function has the general form: f(x) = A cos(ωx) + b. So then
we have that |A| = 4 is the amplitude, P = 2π

ω
= 2π

2
= π, and b = −2. From this, we

can deduce the graph. Starting out with the parent graph above in figure 1, we apply
transformations as follows:

16



Figure 2.4: Graph Transformations: (1) f(x) = cos(x), (2) f(x) = cos(2x), (3)
f(x) = − cos(2x), (4) f(x) = −4 cos(2x), (5) f(x) = −4 cos(2x) − 2. From left to
right and top to bottom.

�

17



Example 76 Sketch a complete period: y = 4 sin (4x) + 1

Example 77 Sketch a complete period: y = 2 cos (6x)− 3

Example 78 Sketch a complete period: y = 3 sin (2x) + 1

Definition 2.11.2 We can define the tangent function using sin(x) and cos(x),
since we know the function values of these trig functions already:

f(x) = tan(x) =
sin(x)

cos(x)

So we will have vertical asymptotes where cos(x) = 0 and zeros where sin(x) = 0. The
graph is shown below for the zoomed in version and the periodic zoomed out version.

Figure 2.5: Graph of f(x) = tan(x) zoomed in on left. Graph of f(x) = tan(x)
zoomed out on right.

Definition 2.11.3 We can define the cotangent function using sin(x) and cos(x),
since we know the function values of these trig functions already:

f(x) = cot(x) =
1

tan(x)
=

cos(x)

sin(x)

So we will have vertical asymptotes where sin(x) = 0 and zeros where cos(x) = 0. The
graph is shown below for the periodic zoomed out version.
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Figure 2.6: Graph of f(x) = cot(x) zoomed out.

Definition 2.11.4 We can define the cosecant function using sin(x), since we know
the function values of this trig functions already:

f(x) = csc(x) =
1

sin(x)

So we will have vertical asymptotes where sin(x) = 0. The graph is shown below for
the periodic zoomed out version.

Figure 2.7: Graph of f(x) = csc(x) in blue. Graph of f(x) = sin(x) in red.

Definition 2.11.5 We can define the secant function using cos(x), since we know
the function values of this trig functions already:

f(x) = sec(x) =
1

cos(x)

So we will have vertical asymptotes where cos(x) = 0. The graph is shown below for
the periodic zoomed out version.
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Figure 2.8: Graph of f(x) = sec(x) in blue. Graph of f(x) = cos(x) in red.

2.12 Inverse Trig Functions; Solving Inverse Trig

Equations

Definition 2.12.1 We define inverse sine function to be

y = sin−1(x) means x = sin(y)

for − 1 ≤ x ≤ 1 and − π

2
≤ y ≤ π

2

What y = sin−1(x) means is that “y is the angle whose sine is equal to x.” Or in other
words, what angle y gives you the value of x. NOTE: y = sin−1(x) does NOT mean
y = 1

sin(x)
! We know that this function is cosecant. The −1 is purely notation, if you

like, you can write the expression as y = sin−1(x) = arcsin(x), which is another name
for the inverse sine function.

Using the notion of “what angle y gives you the value x” in the formula y =
sin−1(x), we can figure out the values from the table below of sin(θ):

θ −π
2
−π

3
−π

4
−π

6
0 π

6
π
4

π
3

π
2

sin(θ) −1 −
√
3
2
−
√
2
2
−1

2
0 1

2

√
2
2

√
3
2

1

Note that for f−1(x) = sin−1(x), the domain is [−1, 1] and the range is
[
−π

2
, π
2

]
,

reverse of sin(x). Try to do the following exercises without the chart, using the
method: “what angle y gives you the value x.”

Example 79 Find the exact value of sin−1(−1
2
).

Example 80 Find the exact value of sin−1(−1).

Example 81 Find the exact value of sin−1(
√
3
2

).

Example 82 Find the exact value of sin−1(
√
2
2

).
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Sometimes we can use the fact that sin(x) and sin−1(x) are inverses directly, but
you MUST be careful! The values need to be in the domain and range of sin−1 to
be well defined to be able to apply the following rules.

Definition 2.12.2 For values x in the domain and range of sin−1 to cancel the sin
and sin−1:

f−1(f(x)) = sin−1(sin(x)) = x for − π

2
≤ x ≤ π

2
f(f−1(x)) = sin(sin−1(x)) = x for − 1 ≤ x ≤ 1

Here are some examples where you may or may not be able to use this definition.
Always check to see if the values are in the above intervals!

Example 83 Find the exact value of sin−1(sin(π
8
)).

Example 84 Find the exact value of sin−1(sin(5π
8

)).

Example 85 Find the exact value of sin(sin−1(1
2
)).

Example 86 Find the exact value of sin(sin−1(1.8)).
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Definition 2.12.3 We define inverse cosine function to be

y = cos−1(x) means x = cos(y)

for − 1 ≤ x ≤ 1 and 0 ≤ y ≤ π

What y = cos−1(x) means is that “y is the angle whose cosine is equal to x.” Or in
other words, what angle y gives you the value of x. NOTE: y = cos−1(x) does NOT
mean y = 1

cos(x)
! We know that this function is secant. The −1 is purely notation, if

you like, you can write the expression as y = cos−1(x) = arccos(x), which is another
name for the inverse cosine function.

Using the notion of “what angle y gives you the value x” in the formula
y = cos−1(x), we can figure out the values from the table below of cos(θ):

θ 0 π
6

π
4

π
6

π
2

2π
3

3π
4

5π
6

π

cos(θ) 1
√
3
2

√
2
2

1
2

0 −1
2
−
√
2
2
−
√
3
2
−1

Note that for sin−1(x), the domain is [−1, 1] and the range is [0, π]. Try to do the
following exercises without the chart, using the method: “what angle y gives you the

value x.”

Example 87 Find the exact value of cos−1(−1
2
).

Example 88 Find the exact value of cos−1(0).

Example 89 Find the exact value of cos−1(
√
3
2

).

Example 90 Find the exact value of cos−1(
√
2
2

).

Sometimes we can use the fact that cos(x) and cos−1(x) are inverses directly, but
you MUST be careful! The values need to be in the domain and range of cos−1 to

be well defined to be able to apply the following rules.

Definition 2.12.4 For values x in the domain and range of cos−1 to cancel the cos
and cos−1:

f−1(f(x)) = cos−1(cos(x)) = x for 0 ≤ x ≤ π

f(f−1(x)) = cos(cos−1(x)) = x for − 1 ≤ x ≤ 1

Here are some examples where you may or may not be able to use this definition.
Always check to see if the values are in the above intervals!

Example 91 Find the exact value of cos−1(cos( π
12

)).

Example 92 Find the exact value of cos(cos−1(−0.4)).

Example 93 Find the exact value of cos−1(cos(−2π
3

)).

Example 94 Find the exact value of cos(cos−1(π)).

22



Definition 2.12.5 We define inverse tangent function to be

y = tan−1(x) means x = tan(y)

for − 1 ≤ x ≤ 1 and 0 ≤ y ≤ π

What y = tan−1(x) means is that “y is the angle whose tangent is equal to x.” Or
in other words, what angle y gives you the value of x. NOTE: y = tan−1(x) does
NOT mean y = 1

tan(x)
! We know that this function is cotangent. The −1 is purely

notation, if you like, you can write the expression as y = tan−1(x) = arctan(x), which
is another name for the inverse tangent function.

Using the notion of “what angle y gives you the value x” in the formula
y = tan−1(x), we can figure out the values from the table below of tan(θ):

θ −π
2

−π
3
−π

4
−π

6
0 π

6
π
4

π
3

π
2

tan(θ) undefined −
√

3 −1 −
√
3
3

0
√
3
3

1
√

3 undefined

Note that the domain is (−∞,∞) and the range is
(
−π

2
, π
2

)
. Try to do the following

exercises without the chart, using the method: “what angle y gives you the value x.”

Example 95 Find the exact value of tan−1(−
√

3).

Example 96 Find the exact value of tan−1(1).

Example 97 Find the exact value of tan−1(
√
3
3

).

Example 98 Find the exact value of tan−1(0).

Sometimes we can use the fact that tan(x) and tan−1(x) are inverses directly, but
you MUST be careful! The values need to be in the domain and range of tan−1 to

be well defined to be able to apply the following rules.

Definition 2.12.6 For values x in the domain and range of tan−1 to cancel the tan
and tan−1:

f−1(f(x)) = tan−1(tan(x)) = x for − π

2
< x <

π

2
f(f−1(x)) = tan(tan−1(x)) = x for −∞ < x <∞

Here are some examples where you may or may not be able to use this definition.
Always check to see if the values are in the above intervals!

Example 99 Find the exact value of tan−1(tan(−3π
8

)).

Example 100 Find the exact value of tan(tan−1(4)).

Example 101 Find the exact value of tan−1(tan(−2π
3

)).

Example 102 Find the exact value of tan(tan−1(π)).
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Here is a chart to summarize the above information. This is how to use the chart.
When encountering problems of the form:

(A) sin−1(sin(θ)) = φ

(B) sin(sin−1(x)) = y

Look at the function on the outside, then reference the table. For the (A), look at
the first three rows, if θ is in the interval in the second column, then you can just
cancel the trig functions and φ = θ. For the (B), look at the last three rows, if x is
in the interval in the second column, then you can just cancel the trig functions and
y = x. For case (A), if the value θ is not in the interval, you must do more work
and find the correct angle. The answer will NOT be the one in parentheses. For case
(B), if the value x is not in the interval, the value will not be defined. The answer
will NOT be the one in parentheses.

Trig Function on the outside Interval
sin−1 [−π

2
, π
2
]

cos−1 [0, π]
tan−1 (−π

2
, π
2
)

sin [−1, 1]
cos [−1, 1]
tan (−∞,∞)

Here I will do one worked example of each of the two last topics. The first is
finding the inverse function of a trigonometric function. The second is solving an
equation involving an inverse trigonometric function.

Example 103 Find the inverse function f−1 of f(x) = 2 sin(x)− 1 on −π
2
≤ x ≤ π

2
.

Find the range of f and the domain and range of f−1.

Solution : Using our previous knowledge, we switch x and y and solve for y.

y = 2 sin(x)− 1

x = 2 sin(y)− 1

x+ 1 = 2 sin(y)

x+ 1

2
= sin(y)

y = sin−1
(
x+ 1

2

)
So the inverse function is f−1(x) = sin−1

(
x+1
2

)
. Now we have to find the range of f .

To do this, we solve y = 2 sin(x) − 1 for sin(x). So we have that sin(x) = y+1
2

. We
know that −1 ≤ sin(x) ≤ 1, so then we must have the following

−1 ≤ y + 1

2
≤ 1

−2 ≤ y + 1 ≤ 2

−3 ≤ y ≤ 1

24



So in interval notation, the range is [−3, 1]. Therefore, for f−1, we switch the domain
and the range. So then we have that the domain for f−1 is [−3, 1] and the range is
[−π

2
, π
2
]. �

Example 104 Solve the equation: 3 sin−1(x) = π.

Solution : To solve this type of question, isolate the trig function and use the defi-
nition from above:

3 sin−1(x) = π

sin−1(x) =
π

3

x = sin(
π

3
)

x =

√
3

2

�

Here are some examples to practice of these two ideas.

Example 105 Find the inverse function f−1 of f(x) = 5 sin(x) + 2 on −π
2
≤ x ≤ π

2
.

Find the range of f and the domain and range of f−1.

Example 106 Find the inverse function f−1 of f(x) = −2 cos(x) on 0 ≤ x ≤ π
3
.

Find the range of f and the domain and range of f−1.

Example 107 Find the inverse function f−1 of f(x) = 3 sin(2x) on −π
4
≤ x ≤ π

4
.

Find the range of f and the domain and range of f−1.

Example 108 Solve the equation: −6 sin−1(x) = π.

Example 109 Solve the equation: 3 tan−1(x) = π.

Example 110 Solve the equation: 3 cos−1(2x) = 2π.
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2.13 Vectors; Dot Product

2.13.1 Vectors

Definition 2.13.1 A vector is a “quantity” that has both magnitude and direc-
tion. We will use the notion of an arrow with some length (length defines the mag-
nitude) pointing in a certain direction to represent a vector.

Definition 2.13.2 Vectors have the following properties:
Commutative: v + w = w + v
Associative: u + (v + w) = (u + v) + w
Zero Vector: v + 0 = 0 + v = v
Additive Inverse: v + (-v) = 0

Definition 2.13.3 If α is a scalar (in our case, a real number), and v is a vector,
then a scalar multiple, which is αv, is defined different depending on α.

(a) If α > 0, then the vector v changes in magnitude by α and the vector is pointing
in the same direction. For magnitude: If 0 < α < 1, the vector becomes shorter. If
α = 1, the vector remains the same length. If α > 1, the vector becomes longer.
(b) If α < 0, then the vector v changes in magnitude by α and the vector is pointing
in the opposite direction. For magnitude: If 0 > α > −1, the vector becomes shorter.
If α = −1, the vector remains the same length. If α < −1, the vector becomes longer.
(c) If α = 0, or v = 0, then αv = 0.

Definition 2.13.4 Scalar multiples have the following properties:

0v = 0
1v = v
−1v = −v
(α + β)v = αv + βv
α(v + w) = αv + αw
α(βv) = (αβ)v

Definition 2.13.5 The symbol ||v|| denotes the magnitude of a vector v. It has the
following properties: 

||v|| ≥ 0
||v|| = 0 if and only if v = 0
|| − v|| = ||v||
||αv|| = |α|||v||

Definition 2.13.6 An algebraic vector, say v, is given by v = 〈a, b〉, where a and
b are points in the plane. If P1 = (x1, y1) and P2 = (x2, y2) and the vector points from
P1 to P2, then v = 〈x2 − x1, y2 − y1〉.

NOTE: If we have 〈a, b〉, then to draw this vector, start at the origin. Then go
a units in the x direction and b units in the y direction. Then connect the origin to
that point with an arrow.
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Definition 2.13.7 Here are some properties for vector addition (i and j represent
the ith and jth components, or x and y components). Let v = a1i + b1j = 〈a1, b1〉 and
w = a2i + b2j = 〈a2, b2〉, and α be a scalar. Then we have

v + w = (a1 + a2)i + (b1 + b2)j = 〈a1 + a2, b1 + b2〉
v−w = (a1 − a2)i + (b1 − b2)j = 〈a1 − a2, b1 − b2〉
αv = (αa1)i + (αb1)j = 〈αa1, αb1〉
||v|| =

√
a21 + b21

Example 111 If v = 〈2, 3〉 and w = 〈3,−4〉. Find v+w, v - w, ||v||, and ||w||.

Example 112 If v = 〈3, 4〉 and w = 〈−1, 3〉. Find v+w, v - w, ||v||, and ||w||.

Definition 2.13.8 The unit vector is defined to be

v =
v

||v||

To find the magnitude of a vector v = 〈a, b〉, all that is required is to compute
||v||. The direction, θ, which is an angle in the plane, can be found by using the
formula

tan(θ) =
b

a

NOTE: When you get to the step of tan(θ) = z, where z is a number, ask yourself
which value of θ in [0, 2π) gives you the value of z. I think this is the easiest way to
understand this. Use the unit circle and draw the picture of the graph. The angle
you get should make sense with the picture you draw.

Example 113 Find the direction θ of v = 〈4,−4〉.

Example 114 Find the direction θ of v = 〈1,
√

3〉.

Example 115 Find the direction θ of v = 〈3, 3〉.

Example 116 Find the direction θ of v = 〈−3
√

3, 3〉.

Definition 2.13.9 Let v be a vector. If we are given the magnitude of v (this is ||v||)
and a direction angle θ, then we can find what the vector looks like using the following
formula

v = ||v||〈cos(θ), sin(θ)〉

Example 117 If the magnitude of a vector v is 10 and has direction angle θ = π
3
,

write the vector v in component form.

Example 118 If the magnitude of a vector v is 4 and has direction angle θ = 2π
3

,
write the vector v in component form.

Example 119 If the magnitude of a vector v is 8 and has direction angle θ = 5π
6

,
write the vector v in component form.

Example 120 If the magnitude of a vector v is 5 and has direction angle θ = 3π
4

,
write the vector v in component form.
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2.13.2 Dot Product

Definition 2.13.10 Let v = a1i + b1j and w = a2i + b2j. Then the dot product is
defined by v·w is

v ·w = a1a2 + b1b2

Here are some properties for the dot product

Definition 2.13.11 
v ·w = u · v
u · (v + w) = u · v + u ·w
u · u = ||u||2
0 · u = 0

Definition 2.13.12 (Angle between vectors) - If u and v are non-zero vectors,
the angle θ, such that 0 ≤ θ ≤ π, between the vectors is defined to be

cos(θ) =
u · v
||u||||v||

Definition 2.13.13 If the angle θ between two vectors is 0 using the above formula,
then the vectors are parallel. If the angle θ between two vectors is π

2
using the above

formula, then the vectors are perpendicular or orthogonal.

Example 121 Find the dot product of u·v and the angle between the vectors for u =
i− j and v = i + j.

Example 122 Find the dot product of u·v and the angle between the vectors for u =
i− j and v = −i + j.

Example 123 Find the dot product of u·v and the angle between the vectors for u =
2i− j and v = i− 2j.

Example 124 Find the dot product of u·v and the angle between the vectors for u =√
3i− j and v = i + j.
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2.14 Partial Fraction Decomposition

The process of partial fraction decomposition is used to break down a complex fraction
expression into a sum of fractions. For example we will learn how to break down an
expression like the following

5x− 1

x2 + x− 12
=

3

x+ 4
+

2

x− 3

Each fraction has the form of P
Q

. There are 4 different cases depending on what the

polynomial Q looks like. The polynomial Q can have (a) Non-repeated Linear Factors,
(b) Repeated Linear Factors, (c) Non-repeated Irreducible Quadratic Factor, and (d)
Repeated Irreducible Quadratic Factor. We will consider these cases individually.
Below there is one worked example of each kind of problem and each section has some
example problems that you can work out.

2.14.1 Non-repeated Linear Factors

If Q has only non-repeated linear factors, then Q looks like

Q(x) = (x− a1)(x− a2)...(x− an)

where a1, a2, ..., an are roots of the polynomial Q. Then we can break up the fraction
as

P (x)

Q(x)
=

A1

x− a1
+

A2

x− a2
+ ...+

An
x− an

where A1, A2, .... , An are expressions we need to find.

Example 125 Find the partial fraction decomposition of

x

x2 − 5x+ 6

Solution : First we have to decompose the denominator into pieces:

x2 − 5x+ 6 = (x− 2)(x− 3)

Then we rewrite the expression in the form above and find a common denominator

x

x2 − 5x+ 6
=

A

x− 2
+

B

x− 3
x

x2 − 5x+ 6
=
A(x− 3) +B(x− 2)

(x− 2)(x− 3)

Now we can set the numerators equal to get

x = A(x− 3) +B(x− 2)
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The easiest way to solve for A and B is by plugging “special” numbers into the above
equation. Notice that if we plug in x = 3 and x = 2, we easily get the values of A and
B. Here is the work:

x = A(x− 3) +B(x− 2)

3 = A(3− 3) +B(3− 2)

3 = B

and

x = A(x− 3) +B(x− 2)

2 = A(2− 3) +B(2− 2)

2 = −A
−2 = A

So then we have the final expression

x

x2 − 5x+ 6
=
−2

x− 2
+

3

x− 3

�

Example 126 Find the partial fraction decomposition of

3x

(x+ 2)(x− 1)

Example 127 Find the partial fraction decomposition of
x

(x− 2)(x− 1)

Example 128 Find the partial fraction decomposition of

3x

(x+ 2)(x− 4)

Example 129 Find the partial fraction decomposition of

4

2x2 − 5x− 3

2.14.2 Repeated Linear Factors

If Q has a repeated linear factor, then Q has some term of the form

(x− a)n

where a is a root and n ≥ 2. Then we can break up the fraction as

P (x)

Q(x)
=

A1

x− a
+

A2

(x− a)2
+ ...+

An
(x− a)n

where A1, A2, .... , An are expressions we need to find.

Example 130 Find the partial fraction decomposition of

x+ 2

x3 − 2x2 + x
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Solution : First we have to decompose the denominator into pieces:

x3 − 2x2 + x = x(x− 1)2

Then we rewrite the expression in the form above along with the first term that comes
from the case we already did. Then we find a common denominator and get

x+ 2

x3 − 2x2 + x
=
A

x
+

B

x− 1
+

C

(x− 1)2

x+ 2

x3 − 2x2 + x
=
A(x− 1)2 +Bx(x− 1) + Cx

x(x− 1)2

Now we can set the numerators equal to get

x+ 2 = A(x− 1)2 +Bx(x− 1) + Cx

The easiest way to solve for A, B, and C is by plugging “special” numbers into the
above equation as before. Notice that if we plug in x = 0 and x = 1, we easily get the
values of A and C. Here is the work:

x+ 2 = A(x− 1)2 +Bx(x− 1) + Cx

0 + 2 = A(0− 1)2 +B(0)(0− 1) + C(0)

2 = A

and

x+ 2 = A(x− 1)2 +Bx(x− 1) + Cx

1 + 2 = A(1− 1)2 +B(1)(1− 1) + C(1)

3 = C

Now so far we have
x+ 2 = 2(x− 1)2 +Bx(x− 1) + 3x

At this point, we can plug in ANY value for x (except 0 and 1 of course) and solve
for B. We choose 2, so then

x+ 2 = 2(x− 1)2 +Bx(x− 1) + 3x

2 + 2 = 2(2− 1)2 +B(2)(2− 1) + 3(2)

4 = 8 + 2B

−2 = B

So then we have the final expression

x+ 2

x3 − 2x2 + x
=

2

x
+
−2

x− 1
+

3

(x− 1)2

�

Example 131 Find the partial fraction decomposition of

x+ 1

x2(x− 2)
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Example 132 Find the partial fraction decomposition of

x− 3

(x+ 2)(x+ 1)2

Example 133 Find the partial fraction decomposition of

x2 + x

(x+ 2)(x− 1)2

Example 134 Find the partial fraction decomposition of

x2

(x− 1)2(x+ 1)2

2.14.3 Irreducible Quadratic Factor

If Q has an irreducible quadratic factor, then Q has some term of the form ax2+bx+c
that we cannot break down any further. In this case we attempt to use the form

Ax+B

ax2 + bx+ c

where A and B are expressions we need to find.

Example 135 Find the partial fraction decomposition of

3x− 5

x3 − 1

Solution : As before, the first step is to reduce the denominator as much as we can.
This means

x3 − 1 = (x− 1)(x2 + x+ 1)

We can find this easily by noticing that x = 1 is a root of x3−1, so we can do synthetic
division to get the other polynomial. The quadratic term above is irreducible, so we
cannot break this up any further. Now we can use the definition above to write out
the expression

3x− 5

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
where the first term comes from Case 1.1 above and the second part from the definition
we defined here in 1.3. Then we follow the same procedure as above to get

3x− 5 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

by finding the common denominator and setting the numerators equal. Here, we can
also be clever in choosing values of x to plug in to easily solve for the A, B, and C.
Notice that if we pick x = 1, we get

3x− 5 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

3(1)− 5 = A(12 + 1 + 1) + (B(1) + C)(1− 1)

−2 = 3A

A = −2

3
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Now we have a value for A, so we have

3x− 5 = −2

3
(x2 + x+ 1) + (Bx+ C)(x− 1)

Now notice that if we choose x = 0, we get

3x− 5 = −2

3
(x2 + x+ 1) + (Bx+ C)(x− 1)

3(0)− 5 = −2

3
(02 + 0 + 1) + (B(0) + C)(0− 1)

−5 = −2

3
− C

C = 5− 2

3

C =
13

3

So far our expression is

3x− 5 = −2

3
(x2 + x+ 1) + (Bx+

13

3
)(x− 1)

Now we have reached the point where we can plug in ANY value for x (not the ones
we already chose) to solve for B. So let’s pick x = 2. Then we get

3x− 5 = −2

3
(x2 + x+ 1) + (Bx+

13

3
)(x− 1)

3(2)− 5 = −2

3
(22 + 2 + 1) + (B(2) +

13

3
)(2− 1)

1 = −2

3
(7) + (2B +

13

3
)(1)

1 = −14

3
+ 2B +

13

3

1 = −1

3
+ 2B

2B =
4

3

B =
2

3

So now we have all the values, and our final solution has the form

3x− 5

x3 − 1
=
−2

3

x− 1
+

2
3
x+ 13

3

x2 + x+ 1

�

Example 136 Find the partial fraction decomposition of

1

x2 + 1
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Example 137 Find the partial fraction decomposition of

1

(x+ 1)(x2 + 4)

Example 138 Find the partial fraction decomposition of

x+ 4

x2(x2 + 4)

Example 139 Find the partial fraction decomposition of

x2 − 11x− 18

x(x2 + 3x+ 3)

2.14.4 Repeated Irreducible Quadratic Factor

If Q has a repeated irreducible quadratic factor, then Q has some term of the form

(ax2 + bx+ c)n

and n ≥ 2. Then we attempt to use the form

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ ...+

Anx+Bn

(ax2 + bx+ c)n

where A1, A2, .... , An and B1, B2, .... , Bn are expressions we need to find.

Example 140 Find the partial fraction decomposition of

x3 + x2

(x2 + 4)2

Solution : Using the above definition to rewrite our expression, we get

x3 + x2

(x2 + 4)2
=
Ax+B

x2 + 4
+

Cx+D

(x2 + 4)2

Finding a common denominator, and setting the numerator equal, we get

x3 + x2 = (Ax+B)(x2 + 4) + Cx+D

x3 + x2 = Ax3 +Bx2 + 4Ax+ 4B + Cx+D

x3 + x2 = Ax3 +Bx2 + (4A+ C)x+D

Now we set the coefficients on the left and right hand sides equal. By that we mean,
the coefficients of the x3 terms must be the same, the coefficients of the x2 terms must
be the same, and so on. Then we get the system

A = 1
B = 1
4A+ C = 0
4B +D = 0
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Since we already know what A and B are, we can use them to solve for C and D using
equations 3 and 4 above. So now we just have to solve{

4 + C = 0
4 +D = 0

From this, it is clear that C = −4 and D = −4. So then our final solution is

x3 + x2

(x2 + 4)2
=

x+ 1

x2 + 4
+
−4x− 4

(x2 + 4)2

�

Example 141 Find the partial fraction decomposition of

x2 + 2x+ 3

(x2 + 4)2

Example 142 Find the partial fraction decomposition of

(x3 + 1)

(x2 + 16)2

Example 143 Find the partial fraction decomposition of

x3

(x2 + 16)3

Example 144 Find the partial fraction decomposition of

x2

(x2 + 4)3
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