Math 113 HW \#8 Solutions

1. Exercise 3.8.10. A sample of tritium- 3 decayed to 94.5% of its original amount after a year.
(a) What is the half-life of tritium-3?

Answer: If $N(t)$ is the amount of tritium-3 relative to the original amount, we know that the general form of $N(t)$ is

$$
N(t)=C e^{k t}
$$

Also, we know that $N(0)=1$, so

$$
1=N(0)=C e^{k \cdot 0}=C,
$$

so $C=1$ and we can write

$$
N(t)=e^{k t} .
$$

Also, we know $N(1)=0.945$, so

$$
0.945=N(1)=e^{k \cdot 1}=e^{k} .
$$

Taking the natural log of both sides,

$$
k=\ln (0.945)
$$

Therefore,

$$
N(t)=e^{\ln (0.945) t}=\left(e^{\ln (0.945)}\right)^{t}=(0.945)^{t}
$$

for any t.
The half-life of tritium- 3 is the amount of time t_{0} such that $N\left(t_{0}\right)=0.5$. Therefore, we can solve for t_{0} from the equation

$$
0.5=N\left(t_{0}\right)=(0.945)^{t_{0}}
$$

Taking the natural \log of both sides,

$$
\ln (0.5) \ln \left(0.945^{t_{0}}\right)=t_{0} \ln (0.945),
$$

so

$$
t_{0}=\frac{\ln (0.5)}{\ln (0.945)} \approx 12.25 .
$$

Therefore, the half-life of tritium- 3 is 12.25 years.
(b) How long would it take the sample to decay to 20% of its original amount?

Answer: If t_{1} is the time it takes the sample to decay to 20% of its original amount,

$$
0.2=N\left(t_{1}\right)=(0.945)^{t_{1}}
$$

meaning that (if we take the natural log of both sides),

$$
\ln (0.2)=\ln \left(0.945^{t_{1}}\right)=t_{1} \ln (0.945)
$$

so

$$
t_{1}=\frac{\ln (0.2)}{\ln (0.945)} \approx 28.45 \text { years. }
$$

2. Exercise 3.8.14. A thermometer is taken from a room where the temperature is $20^{\circ} \mathrm{C}$ to the outdoors, where the temperature is $5^{\circ} \mathrm{C}$. After one minute the thermometer reads $12^{\circ} \mathrm{C}$.
(a) What will the reading on the thermometer be after one more minute?

Answer: From Newton's Law of Cooling, we know that

$$
T(t)=T_{s}+C e^{k t} .
$$

The ambient temperature is $T_{s}=5^{\circ} \mathrm{C}$, whereas

$$
20=T(0)=5+C e^{k \cdot 0}=5+C,
$$

so $C=15$. Therefore,

$$
T(t)=5+15 e^{k t} .
$$

Moreover, we know that $T(1)=12$, so

$$
12=T(1)=5+15 e^{k \cdot 1}=5+15 e^{k},
$$

so

$$
e^{k}=\frac{7}{15}
$$

Taking the natural log of both sides,

$$
k=\ln \left(\frac{7}{15}\right) .
$$

Hence,

$$
T(t)=5+15 e^{\ln \left(\frac{7}{15}\right) t}=5+15\left(e^{\ln \left(\frac{7}{15}\right)}\right)^{t}=5+\left(\frac{7}{15}\right)^{t} .
$$

Therefore, after 2 minutes, the temperature of the thermometer will be

$$
T(2)=5+15\left(\frac{7}{15}\right)^{2}=5+\frac{49}{15}=\frac{124}{15}=8.266 \ldots
$$

(b) When will the thermometer read $6^{\circ} \mathrm{C}$?

Answer: The time t_{0} when $T\left(t_{0}\right)=6$ is given by

$$
6=T\left(t_{0}\right)=5+15\left(\frac{7}{15}\right)^{t_{0}}
$$

so

$$
\frac{1}{15}=\left(\frac{7}{15}\right)^{t_{0}}
$$

Taking the natural log of both sides,

$$
\ln \left(\frac{1}{15}\right)=\ln \left(\frac{7}{15}\right)^{t_{0}}=t_{0} \ln \left(\frac{7}{15}\right) .
$$

Therefore,

$$
t_{0}=\frac{\ln \frac{1}{15}}{\ln \frac{7}{15}} \approx 3.55
$$

so the thermometer will read $6^{\circ} \mathrm{C}$ after about 3 and a half minutes.
3. Exercise 3.8.16. A freshly brewed cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room. When its temperature is $70^{\circ} \mathrm{C}$, it is cooling at a rate of $1^{\circ} \mathrm{C}$ per minute. When does this occur?
Answer: From Newton's Law of Cooling, the temperature of the coffee is given by

$$
T(t)=20+C e^{k t} .
$$

At time $t=0$,

$$
95=T(0)=20+C e^{k \cdot 0}=20+C,
$$

meaning that $C=75$ and $T(t)=20+75 e^{k t}$. At some time t_{0},

$$
70=T\left(t_{0}\right)=20+75 e^{k t_{0}}
$$

so

$$
75 e^{k t_{0}}=50
$$

or

$$
e^{k t_{0}}=\frac{2}{3}
$$

Therefore,

$$
k t_{0}=\ln \left(\frac{2}{3}\right) .
$$

We also know the rate of change of T at this time t_{0} :

$$
-1=T^{\prime}\left(t_{0}\right)=75\left(e^{k t_{0}} k\right)=75 k e^{k t_{0}} .
$$

In other words,

$$
k=\frac{-1}{75 e^{k t_{0}}} .
$$

Since $k t_{0}=\ln \left(\frac{2}{3}\right)$, we know that

$$
k=\frac{-1}{75 e^{\ln \left(\frac{2}{3}\right)}}=\frac{-1}{75 \frac{2}{3}}=\frac{-1}{50} .
$$

Since $k t_{0}=\ln \left(\frac{2}{3}\right)$, we know that

$$
t_{0}=\frac{\ln \left(\frac{2}{3}\right)}{k}=\frac{\ln \left(\frac{2}{3}\right)}{\frac{-1}{50}}=-50 \ln \left(\frac{2}{3}\right) \approx 20.3,
$$

so the cup of coffee is $70^{\circ} \mathrm{C}$ after just over 20 minutes.
4. Exercise 3.10.12. Find the differential of the functions
(a) $y=s /(1+2 s)$

Answer: If $f(s)=\frac{s}{1+2 s}$, then, by definition,

$$
d y=f^{\prime}(s) d s
$$

Now,

$$
f^{\prime}(s)=\frac{(1+2 s) \cdot 1-s \cdot 2}{(1+2 s)^{2}}=\frac{1+2 s-2 s}{(1+2 s)^{2}}=\frac{1}{(1+2 s)^{2}}
$$

Therefore, the differential is

$$
d y=\frac{d s}{(1+2 s)^{2}}
$$

(b) $y=e^{-u} \cos u$

Answer: If $g(u)=e^{-u} \cos u$, then, by definition,

$$
d y=g^{\prime}(u) d u
$$

Since

$$
g^{\prime}(u)=-e^{-u} \cos u+e^{-u}(-\sin u)=-e^{-u} \cos u-e^{-u} \sin u=-e^{-u}(\cos u+\sin u),
$$

we have that

$$
d y=-e^{-u}(\cos u+\sin u) d u
$$

5. Exercise 3.10.18.
(a) Find the differential $d y$ of $y=\cos x$.

Answer: By definition, if $f(x)=\cos x$, then

$$
d y=f^{\prime}(x) d x
$$

Since $f^{\prime}(x)=-\sin x$, this means that

$$
d y=-\sin x d x
$$

(b) Evaluate $d y$ for $x=\pi / 3$ and $d x=0.05$.

Answer: Given the above expression for $d y$ and knowing that $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$, we have that

$$
d y=-\frac{\sqrt{3}}{2}(0.05)=-\frac{\sqrt{3}}{40} \approx 0.0433 .
$$

6. Exercise 3.10.24. Use a linear approximation (or differentials) to estimate $e^{-0.015}$.

Answer: Let $f(x)=e^{x}$. If $L(x)$ is the linearization of f at 0 , then

$$
L(x)=f(0)+f^{\prime}(0)(x-0)=1+1(x-0)=1+x .
$$

Since -0.015 is close to 0 , it should be the case that

$$
e^{-0.015} \approx L(-0.015)=1+(-0.015)=0.985
$$

7. Exercise 3.10.32. Let $f(x)=(x-1)^{2}, g(x)=e^{-2 x}, h(x)=1+\ln (1-2 x)$.
(a) Find the linearizations of f, g, and h at $a=0$. What do you notice? How do you explain what happened?
Answer: By definition, the linearization of f is

$$
f(0)+f^{\prime}(0)(x-0)=f(0)+f^{\prime}(0) x .
$$

Since $f^{\prime}(x)=2(x-1)$, we know that $f(0)=1$ and $f^{\prime}(0)=-2$, so the linearization of f is

$$
1-2 x .
$$

By definition, the linearization of g is

$$
g(0)+g^{\prime}(0)(x-0)=g(0)+g^{\prime}(0) x .
$$

Since $g^{\prime}(x)=-2 e^{-2 x}$, we know that $g(0)=1$ and $g^{\prime}(0)=-2$, so the linearization of g is

$$
1-2 x
$$

By definition, the linearization of h is

$$
h(0)+h^{\prime}(0)(x-0)=h(0)+h^{\prime}(0) x .
$$

Since $h^{\prime}(x)=\frac{-2}{1-2 x}$, we know that $h(0)=1$ and $h^{\prime}(0)=-2$, so the linearization of h is

$$
1-2 x
$$

We notice that all three linearizations are the same. This occurs because $f(0)=g(0)=$ $h(0)$ and $f^{\prime}(0)=g^{\prime}(0)=h^{\prime}(0)$: all three functions have the same value at 0 and their derivatives also have the same value at 0 . Of course, this says nothing about the behavior of the three functions at other points.
(b) Graph f, g, and h and their linear approximations. For which function is the linear approximation best? For which is it worst? Explain.
Answer:

Figure 1: Blue: f; Red: g; Purple: h; Black: linearization
From the picture, the linear approximation appears to be best for f and worst for h.

