Math 115 HW #5 Solutions

From §12.9

4. Find the power series representation for the function
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and determine the interval of convergence.

Answer: Using the geometric series formula,
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Using the Ratio Test,
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which is less than 1 when |z| < 1. Checking the endpoints, we see that when = = 1, the series
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which diverges. When z = —1, the series is
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which diverges. Therefore, the interval of convergence is
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10. Find a power series representation for the function

f(iL'): 3

ad — a3
and determine the interval of convergence.

Answer: Re-writing f as
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we can use the geometric series to see that
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Using the Ratio Test,
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which is less than 1 when |z| < a. Checking the endpoints, when = = a, the series is
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which diverges. When = = —a, the series is
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which also diverges. Therefore, the interval of convergence is
(—a,a).

16. Find a power series representation for the function
2

f(x):m

and determine the radius of convergence.

Answer: Write f(z) as
1
1= (1 =57).
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Using the Ratio Test,
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which is less than 1 when |z| < 1/2. Therefore, the radius of convergence is 1/2.
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as a power series. What is the radius of convergence?

24. Evaluate the indefinite integral

Answer: From Example 6, we know that the power series for In(1 —¢) is



In(1-t) .

Therefore, the series for

L, 2 ot P _it”
t 2 3 B 2 3 - S+l
Therefore,
In(1 —t) t t? 2 43 >t
—dt = “1-=-—=—=- s )dt=C—-t—— — — — .=0C= —.
/ t / < 2 3 4 9 n2
n=1
Using the Ratio Test,
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so the radius of convergence is 1.
From §12.10
8. Find the Maclaurin series for
f(x) = cos3x

using the definition of a Maclaurin series. Also find the associated radius of convergence.

Answer: We compute the first few derivatives:

f'(z) = —3sin3x
f"(z) = =9 cos 3z
" (z) = 27sin 3z
FW(z) = 81 cos 3z

Therefore,
f(0)=1
f(0)y=0
f"(0)=-9
£"(0) =0
F®(0) =81
So, by the definition of the Maclaurin series,
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Using the Ratio Test,
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so this series always converges. Therefore, the radius of convergence is co.

16. Find the Taylor series for
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centered at a = —3.
Answer: Note that
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Therefore,
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Hence, by the definition of the Taylor series,
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34. Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the function

f(z) = 2% tan™* (1:3)

1

Answer: From Table 1, we know that the Maclaurin series for tan™" x is
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In turn, this means that the series for f is
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48. Evaluate the indefinite integral
/ e —1
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as an infinite series.
Answer: The Maclaurin series for e” is
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In turn, this means the series for the integrand is
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Therefore, we can integrate term-by-term to get
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56. Use series to evaluate the limit
1—cosx



Answer: Using the Maclaurin series for cosz we can write the numerator as the series
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Using the Maclaurin series for e®, we can write the denominator as
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Dividing both numerator and denominator by x2, this is equal to
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68. Find the sum of the series

Answer: Notice that
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is just the given series, so the sum of the series is
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From §12.11
16. (a) Approximate
f(z) =sinzx

by a Taylor polynomial with degree 4 at the number /6
Answer: The first four derivatives of f are



so we have

f(m/6) =1/2
f(m/6) = v/3/2
f!(x/6) = —1/2
f"(w/6) = —V/3/2

fO(n/6) =1/2

Therefore, the degree 4 Taylor polynomial for f at 7/6 is
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(b) Use Taylor’s Inequality to estimate the accuracy of the approximation f(x) = Ti(x)
when z lies in the interval 0 < x < /3.

Answer: When 0 < z < 7/3, Taylor’s Inequality says that the remainder Ry(x) is
bounded by
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where M is an upper bound on f(® in this interval. Since
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for all  between 0 and 7/3, we can pick M = 1.
Therefore,
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When 0 < z < /3, the quantity |z — 7/6| < 7/6, so
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is the worst the error could possibly be on this interval.



(¢) Check your result in (b) by graphing |R4(z)].
Answer:
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35.

If a water wave with length L moves with velocity v across a body of water with depth d, as
in the figure, then
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(a) If the water is deep, show that v ~ \/gL/(27).
Answer: As u — oo, tanhu — 1, so, when the water is very deep,
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meaning that

as desired.

(b) If the water is shallow, use the Maclaurin series for tanh to show that v ~ /gd. (Thus in
shallow ater the velocity of a wave tends to be independent of the length of the wave.)

Answer: The first few derivatives of f(z) = tanhz are

f'(x) = sech?x

f"(z) = —2sech z sech z tanh z = —2sech 2z tanh z
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Therefore,
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f"(0) = —2sech?0tanh 0 = 0
f"(0) = —4sech 20 tanh? 0 — 2sech *0 = —2
Hence,
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This gives a Maclaurin series for v?:
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When d is small, % is also small and higher powers of it are even smaller. Therefore,

the first term above gives a good approximation for v when d is small. Thus,

v~ /gd

(c) Use the Alternating Series Estimation Theorem to show that if L > 10d, then the estimate

v? ~ gd is accurate to within 0.014¢gL.

Answer: The error is no bigger than the first unused term in the series:
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When L > 10d, the right hand side (and, thus, the error) is smaller than
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