Math 115 HW \#5 Solutions

From §12.9

4. Find the power series representation for the function

$$
f(x)=\frac{3}{1-x^{4}}
$$

and determine the interval of convergence.
Answer: Using the geometric series formula,

$$
\frac{3}{1-x^{4}}=\sum_{n=0}^{\infty} 3\left(x^{4}\right)^{n}=\sum_{n=0}^{\infty} 3 x^{4 n} .
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|\frac{3 x^{4(n+1)}}{3 x^{4 n}}\right|=\lim _{n \rightarrow \infty}|x|^{4},
$$

which is less than 1 when $|x|<1$. Checking the endpoints, we see that when $x=1$, the series is

$$
\sum_{n=0}^{\infty} 3(1)^{4 n}=\sum_{n=0}^{\infty} 3
$$

which diverges. When $x=-1$, the series is

$$
\sum_{n=0}^{\infty} 3(-1)^{4 n}=\sum_{n=0}^{\infty} 3,
$$

which diverges. Therefore, the interval of convergence is

$$
(-1,1) .
$$

10. Find a power series representation for the function

$$
f(x)=\frac{x^{2}}{a^{3}-x^{3}}
$$

and determine the interval of convergence.
Answer: Re-writing f as

$$
f(x)=x^{2}\left(\frac{1}{a^{3}-x^{3}}\right)=\frac{x^{2}}{a^{3}}\left(\frac{1}{1-\frac{x^{3}}{a^{3}}}\right),
$$

we can use the geometric series to see that

$$
f(x)=\frac{x^{2}}{a^{3}} \sum_{n=0}^{\infty}\left(\frac{x^{3}}{a^{3}}\right)^{n}=\frac{x^{2}}{a^{3}} \sum_{n=0}^{\infty} \frac{x^{3 n}}{a^{3 n}}=\sum_{n=0}^{\infty} \frac{x^{3 n+2}}{a^{3 n+3}} .
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{3(n+1)+2}}{a^{3(n+1+1+3}}}{\frac{x^{33+2}}{a^{3 n+3}}}\right|=\frac{|x|^{3}}{a^{3}},
$$

which is less than 1 when $|x|<a$. Checking the endpoints, when $x=a$, the series is

$$
\sum_{n=0}^{\infty} \frac{a^{3 n+2}}{a^{3 n+3}}=\sum_{n=0}^{\infty} \frac{1}{a},
$$

which diverges. When $x=-a$, the series is

$$
\sum_{n=0}^{\infty} \frac{(-a)^{3 n+2}}{a^{3 n+3}}=\sum_{n=0}^{\infty}(-1)^{3 n+2} \frac{1}{a},
$$

which also diverges. Therefore, the interval of convergence is

$$
(-a, a) .
$$

16. Find a power series representation for the function

$$
f(x)=\frac{x^{2}}{(1-2 x)^{2}}
$$

and determine the radius of convergence.
Answer: Write $f(x)$ as

$$
f(x)=x^{2}\left(\frac{1}{(1-2 x)^{2}}\right) .
$$

Therefore,

$$
f(x)=x^{2} \sum_{n=1}^{\infty} n(2 x)^{n-1}=x^{2} \sum_{n=1}^{\infty} 2^{n-1} n x^{n-1}=\sum_{n=1}^{\infty} 2^{n-1} n x^{n+1} .
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|\frac{2^{n}(n+1) x^{n+2}}{2^{n-1} n x^{n+1}}\right|=\lim _{n \rightarrow \infty} 2|x| \frac{n+1}{n}=2|x| \lim _{n \rightarrow \infty} \frac{n+1}{n}=2|x|,
$$

which is less than 1 when $|x|<1 / 2$. Therefore, the radius of convergence is $1 / 2$.
24. Evaluate the indefinite integral

$$
\int \frac{\ln (1-t)}{t} d t
$$

as a power series. What is the radius of convergence?
Answer: From Example 6, we know that the power series for $\ln (1-t)$ is

$$
-t-\frac{t^{2}}{2}-\frac{t^{3}}{3}-\ldots=-\sum_{n=1}^{\infty} \frac{t^{n}}{n}
$$

Therefore, the series for $\frac{\ln (1-t)}{t}$ is

$$
\frac{1}{t}\left(-t-\frac{t^{2}}{2}-\frac{t^{3}}{3}-\ldots\right)=-1-\frac{t}{2}-\frac{t^{2}}{3}-\ldots=-\sum_{n=0}^{\infty} \frac{t^{n}}{n+1}
$$

Therefore,

$$
\int \frac{\ln (1-t)}{t} d t=\int\left(-1-\frac{t}{2}-\frac{t^{2}}{3}-\ldots\right) d t=C-t-\frac{t^{2}}{4}-\frac{t^{3}}{9}-\ldots=C-\sum_{n=1}^{\infty} \frac{t^{n}}{n^{2}}
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|\frac{t^{n+1}}{\frac{(n+1)^{2}}{\frac{t^{n}}{n^{2}}}}\right|=|t| \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=|t|
$$

so the radius of convergence is 1 .

From §12.10

8. Find the Maclaurin series for

$$
f(x)=\cos 3 x
$$

using the definition of a Maclaurin series. Also find the associated radius of convergence.
Answer: We compute the first few derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =-3 \sin 3 x \\
f^{\prime \prime}(x) & =-9 \cos 3 x \\
f^{\prime \prime \prime}(x) & =27 \sin 3 x \\
f^{(4)}(x) & =81 \cos 3 x \\
\vdots &
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(0) & =1 \\
f^{\prime}(0) & =0 \\
f^{\prime \prime}(0) & =-9 \\
f^{\prime \prime \prime}(0) & =0 \\
f^{(4)}(0) & =81
\end{aligned}
$$

So, by the definition of the Maclaurin series,

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots=1-\frac{9}{2} x^{2}+\frac{81}{4} x^{4}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n}}{(2 n)!} x^{2 n}
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \frac{3^{2 n+2}}{(2 n+2)!} x^{2 n+2}}{(-1)^{n} \frac{3^{2 n}}{(2 n)!} x^{2 n}}\right|=\lim _{n \rightarrow \infty} \frac{3^{2}}{(2 n+2)(2 n+1)}|x|^{2}=|x|^{2} \lim _{n \rightarrow \infty} \frac{9}{4 n^{2}+6 n+2}=0
$$

so this series always converges. Therefore, the radius of convergence is ∞.
16. Find the Taylor series for

$$
f(x)=\frac{1}{x}
$$

centered at $a=-3$.
Answer: Note that

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{x^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{x^{3}} \\
f^{\prime \prime \prime}(x) & =-\frac{6}{x^{4}} \\
f^{(4)}(x) & =\frac{24}{x^{5}} \\
\vdots & \\
f^{(n)}(x) & =(-1)^{n} \frac{n!}{x^{n+1}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(-3) & =-\frac{1}{3} \\
f^{\prime}(-3) & =-\frac{1}{9} \\
f^{\prime \prime}(-3) & =-\frac{2}{27} \\
f^{\prime \prime \prime}(-3) & =-\frac{6}{81} \\
f^{(4)}(-3) & =-\frac{24}{243} \\
\vdots & \\
f^{(n)}(3) & =-\frac{n!}{3^{n+1}} .
\end{aligned}
$$

Hence, by the definition of the Taylor series,

$$
f(x)=-\sum_{n=0}^{\infty} \frac{(x+3)^{n}}{3^{n+1}}
$$

is the Taylor series for $f(x)=\frac{1}{x}$ centered at 3 .
34. Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the function

$$
f(x)=x^{2} \tan ^{-1}\left(x^{3}\right)
$$

Answer: From Table 1, we know that the Maclaurin series for $\tan ^{-1} x$ is

$$
\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
$$

Therefore, the series for $\tan ^{-1}\left(x^{3}\right)$ is

$$
\tan ^{-1}\left(x^{3}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{3}\right)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{2 n+1}=x^{3}-\frac{x^{9}}{3}+\frac{x^{15}}{5}-\frac{x^{21}}{7}+\ldots
$$

In turn, this means that the series for f is

$$
x^{2} \tan ^{-1}\left(x^{3}\right)=x^{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+5}}{2 n+1}=x^{5}-\frac{x^{11}}{3}+\frac{x^{17}}{5}-\frac{x^{23}}{7}+\ldots
$$

48. Evaluate the indefinite integral

$$
\int \frac{e^{x}-1}{x} d x
$$

as an infinite series.
Answer: The Maclaurin series for e^{x} is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots,
$$

so the series for the numerator is

$$
e^{x}-1=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)-1=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=\sum_{n=1}^{\infty} \frac{x^{n}}{n!} .
$$

In turn, this means the series for the integrand is

$$
\frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}=1+\frac{x}{2!}+\frac{x^{2}}{3!}+\ldots
$$

Therefore, we can integrate term-by-term to get

$$
\int \frac{e^{x}-1}{x} d x=C+x+\frac{x^{2}}{2 \cdot 2!}+\frac{x^{3}}{3 \cdot 3!}+\ldots=C+\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot n!}
$$

56. Use series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}} .
$$

Answer: Using the Maclaurin series for $\cos x$ we can write the numerator as the series

$$
1-\cos x=1-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots
$$

Using the Maclaurin series for e^{x}, we can write the denominator as

$$
1+x-e^{x}=1+x-\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)=-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\ldots
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\ldots}{-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\ldots}
$$

Dividing both numerator and denominator by x^{2}, this is equal to

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{2!}-\frac{x^{2}}{4!}+\ldots}{-\frac{1}{2!}-\frac{x}{3!}-\ldots}=\frac{\frac{1}{2!}}{-\frac{1}{2!}}=-1
$$

68. Find the sum of the series

$$
1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\ldots
$$

Answer: Notice that

$$
e^{-\ln 2}=1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\ldots
$$

is just the given series, so the sum of the series is

$$
e^{-\ln 2}=\frac{1}{e^{\ln 2}}=\frac{1}{2} .
$$

From §12.11

16. (a) Approximate

$$
f(x)=\sin x
$$

by a Taylor polynomial with degree 4 at the number $\pi / 6$
Answer: The first four derivatives of f are

$$
\begin{aligned}
f^{\prime}(x) & =\cos x \\
f^{\prime \prime}(x) & =-\sin x \\
f^{\prime \prime \prime}(x) & =-\cos x \\
f^{(4)}(x) & =\sin x
\end{aligned}
$$

so we have

$$
\begin{aligned}
f(\pi / 6) & =1 / 2 \\
f^{\prime}(\pi / 6) & =\sqrt{3} / 2 \\
f^{\prime \prime}(\pi / 6) & =-1 / 2 \\
f^{\prime \prime \prime}(\pi / 6) & =-\sqrt{3} / 2 \\
f^{(4)}(\pi / 6) & =1 / 2 .
\end{aligned}
$$

Therefore, the degree 4 Taylor polynomial for f at $\pi / 6$ is

$$
\frac{1}{2}+\frac{\sqrt{3}}{2}(x-\pi / 6)-\frac{1}{2 \cdot 2!}(x-\pi / 6)^{2}-\frac{\sqrt{3}}{2 \cdot 3!}(x-\pi / 6)^{3}+\frac{1}{2 \cdot 4!}(x-\pi / 6)^{4} .
$$

(b) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x)=T_{4}(x)$ when x lies in the interval $0 \leq x \leq \pi / 3$.
Answer: When $0 \leq x \leq \pi / 3$, Taylor's Inequality says that the remainder $R_{4}(x)$ is bounded by

$$
\left|R_{4}(x)\right| \leq \frac{M}{5!}|x-\pi / 6|^{5}
$$

where M is an upper bound on $f^{(5)}$ in this interval. Since

$$
f^{(5)}(x)=\cos x
$$

and since

$$
\frac{1}{2} \leq \cos x \leq 1
$$

for all x between 0 and $\pi / 3$, we can pick $M=1$.
Therefore,

$$
\left|R_{4}(x)\right| \leq \frac{1}{5!}|x-\pi / 6|^{5}=\frac{1}{120}|x-\pi / 6|^{5} .
$$

When $0 \leq x \leq \pi / 3$, the quantity $|x-\pi / 6| \leq \pi / 6$, so

$$
\frac{1}{240}|x-\pi / 6|^{5} \leq \frac{1}{120}(\pi / 6)^{5}=\frac{\pi^{5}}{120 \cdot 7776} \approx 0.000328
$$

is the worst the error could possibly be on this interval.
(c) Check your result in (b) by graphing $\left|R_{4}(x)\right|$.

Answer:

35.

If a water wave with length L moves with velocity v across a body of water with depth d, as in the figure, then

$$
v^{2}=\frac{g L}{2 \pi} \tanh \frac{2 \pi d}{L}
$$

(a) If the water is deep, show that $v \approx \sqrt{g L /(2 \pi)}$.

Answer: As $u \rightarrow \infty, \tanh u \rightarrow 1$, so, when the water is very deep,

$$
v^{2} \approx \frac{g L}{2 \pi}
$$

meaning that

$$
v \approx \sqrt{\frac{g L}{2 \pi}}
$$

as desired.
(b) If the water is shallow, use the Maclaurin series for tanh to show that $v \approx \sqrt{g d}$. (Thus in shallow ater the velocity of a wave tends to be independent of the length of the wave.)
Answer: The first few derivatives of $f(x)=\tanh x$ are

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{sech}^{2} x \\
f^{\prime \prime}(x) & =-2 \operatorname{sech} x \operatorname{sech} x \tanh x=-2 \operatorname{sech}^{2} x \tanh x \\
f^{\prime \prime \prime}(x) & =-4 \operatorname{sech} x \operatorname{sech} x \tanh x \tanh x-2 \operatorname{sech}^{2} x \operatorname{sech}^{2} x=-4 \operatorname{sech}^{2} x \tanh ^{2} x-2 \operatorname{sech}^{4} x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(0) & =\tanh 0=0 \\
f^{\prime}(0) & =\operatorname{sech}^{2} 0=1 \\
f^{\prime \prime}(0) & =-2 \operatorname{sech}^{2} 0 \tanh 0=0 \\
f^{\prime \prime \prime}(0) & =-4 \operatorname{sech}^{2} 0 \tanh ^{2} 0-2 \operatorname{sech}^{4} 0=-2
\end{aligned}
$$

Hence,

$$
\tanh x=x-\frac{x^{3}}{3}+\ldots
$$

This gives a Maclaurin series for v^{2} :

$$
\begin{aligned}
v^{2} & =\frac{g L}{2 \pi}\left(\frac{2 \pi d}{L}-\frac{\left(\frac{2 \pi d}{L}\right)^{3}}{3}+\ldots\right) \\
& =g d-\frac{g L}{6 \pi}\left(\frac{2 \pi d}{L}\right)^{3}+\ldots
\end{aligned}
$$

When d is small, $\frac{2 \pi d}{L}$ is also small and higher powers of it are even smaller. Therefore, the first term above gives a good approximation for v^{2} when d is small. Thus,

$$
v \approx \sqrt{g d}
$$

(c) Use the Alternating Series Estimation Theorem to show that if $L>10 d$, then the estimate $v^{2} \approx g d$ is accurate to within $0.014 g L$.
Answer: The error is no bigger than the first unused term in the series:

$$
\mid \text { error } \left\lvert\, \leq \frac{g L}{6 \pi}\left(\frac{2 \pi d}{L}\right)^{3}\right.
$$

When $L>10 d$, the right hand side (and, thus, the error) is smaller than

$$
\frac{g L}{6 \pi}\left(\frac{2 \pi d}{10 d}\right)^{3}=\frac{g L}{6 \pi}\left(\frac{\pi}{5}\right)^{3}=\frac{\pi^{3}}{6 \pi \cdot 5^{3}} g L=\frac{\pi^{2}}{750} g L \approx 0.013 g L
$$

