
Math 115 HW #5 Solutions

From §12.9

4. Find the power series representation for the function

f(x) =
3

1− x4

and determine the interval of convergence.

Answer: Using the geometric series formula,

3
1− x4

=
∞∑

n=0

3(x4)n =
∞∑

n=0

3x4n.

Using the Ratio Test,

lim
n→∞

∣∣∣∣∣3x4(n+1)

3x4n

∣∣∣∣∣ = lim
n→∞

|x|4,

which is less than 1 when |x| < 1. Checking the endpoints, we see that when x = 1, the series
is

∞∑
n=0

3 (1)4n =
∞∑

n=0

3,

which diverges. When x = −1, the series is

∞∑
n=0

3 (−1)4n =
∞∑

n=0

3,

which diverges. Therefore, the interval of convergence is

(−1, 1) .

10. Find a power series representation for the function

f(x) =
x2

a3 − x3

and determine the interval of convergence.

Answer: Re-writing f as

f(x) = x2

(
1

a3 − x3

)
=

x2

a3

(
1

1− x3

a3

)
,

we can use the geometric series to see that

f(x) =
x2

a3

∞∑
n=0

(
x3

a3

)n

=
x2

a3

∞∑
n=0

x3n

a3n
=

∞∑
n=0

x3n+2

a3n+3
.
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Using the Ratio Test,

lim
n→∞

∣∣∣∣∣
x3(n+1)+2

a3(n+1)+3

x3n+2

a3n+3

∣∣∣∣∣ = |x|3

a3
,

which is less than 1 when |x| < a. Checking the endpoints, when x = a, the series is

∞∑
n=0

a3n+2

a3n+3
=

∞∑
n=0

1
a
,

which diverges. When x = −a, the series is

∞∑
n=0

(−a)3n+2

a3n+3
=

∞∑
n=0

(−1)3n+2 1
a
,

which also diverges. Therefore, the interval of convergence is

(−a, a).

16. Find a power series representation for the function

f(x) =
x2

(1− 2x)2

and determine the radius of convergence.

Answer: Write f(x) as

f(x) = x2

(
1

(1− 2x)2

)
.

Therefore,

f(x) = x2
∞∑

n=1

n(2x)n−1 = x2
∞∑

n=1

2n−1nxn−1 =
∞∑

n=1

2n−1nxn+1.

Using the Ratio Test,

lim
n→∞

∣∣∣∣2n(n + 1)xn+2

2n−1nxn+1

∣∣∣∣ = lim
n→∞

2|x|n + 1
n

= 2|x| lim
n→∞

n + 1
n

= 2|x|,

which is less than 1 when |x| < 1/2. Therefore, the radius of convergence is 1/2.

24. Evaluate the indefinite integral ∫
ln(1− t)

t
dt

as a power series. What is the radius of convergence?

Answer: From Example 6, we know that the power series for ln(1− t) is

−t− t2

2
− t3

3
− . . . = −

∞∑
n=1

tn

n
.
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Therefore, the series for ln(1−t)
t is

1
t

(
−t− t2

2
− t3

3
− . . .

)
= −1− t

2
− t2

3
− . . . = −

∞∑
n=0

tn

n + 1
.

Therefore,∫
ln(1− t)

t
dt =

∫ (
−1− t

2
− t2

3
− . . .

)
dt = C − t− t2

4
− t3

9
− . . . = C −

∞∑
n=1

tn

n2
.

Using the Ratio Test,

lim
n→∞

∣∣∣∣∣∣
tn+1

(n+1)2

tn

n2

∣∣∣∣∣∣ = |t| lim
n→∞

n2

n2 + 2n + 1
= |t|,

so the radius of convergence is 1.

From §12.10

8. Find the Maclaurin series for
f(x) = cos 3x

using the definition of a Maclaurin series. Also find the associated radius of convergence.

Answer: We compute the first few derivatives:

f ′(x) = −3 sin 3x

f ′′(x) = −9 cos 3x

f ′′′(x) = 27 sin 3x

f (4)(x) = 81 cos 3x
...

Therefore,

f(0) = 1
f ′(0) = 0
f ′′(0) = −9
f ′′′(0) = 0

f (4)(0) = 81
...

So, by the definition of the Maclaurin series,

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + . . . = 1− 9

2
x2 +

81
4

x4 − . . . =
∞∑

n=0

(−1)n 32n

(2n)!
x2n.

3



Using the Ratio Test,

lim
n→∞

∣∣∣∣∣∣
(−1)n+1 32n+2

(2n+2)!x
2n+2

(−1)n 32n

(2n)!x
2n

∣∣∣∣∣∣ = lim
n→∞

32

(2n + 2)(2n + 1)
|x|2 = |x|2 lim

n→∞

9
4n2 + 6n + 2

= 0,

so this series always converges. Therefore, the radius of convergence is ∞.

16. Find the Taylor series for

f(x) =
1
x

centered at a = −3.

Answer: Note that

f ′(x) = − 1
x2

f ′′(x) =
2
x3

f ′′′(x) = − 6
x4

f (4)(x) =
24
x5

...

f (n)(x) = (−1)n n!
xn+1

.

Therefore,

f(−3) = −1
3

f ′(−3) = −1
9

f ′′(−3) = − 2
27

f ′′′(−3) = − 6
81

f (4)(−3) = − 24
243

...

f (n)(3) = − n!
3n+1

.

Hence, by the definition of the Taylor series,

f(x) = −
∞∑

n=0

(x + 3)n

3n+1

is the Taylor series for f(x) = 1
x centered at 3.
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34. Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the function

f(x) = x2 tan−1
(
x3
)

Answer: From Table 1, we know that the Maclaurin series for tan−1 x is

tan−1 x =
∞∑

n=0

(−1)n x2n+1

2n + 1
= x− x3

3
+

x5

5
− x7

7
+ . . .

Therefore, the series for tan−1(x3) is

tan−1(x3) =
∞∑

n=0

(−1)n (x3)2n+1

2n + 1
=

∞∑
n=0

(−1)n x6n+3

2n + 1
= x3 − x9

3
+

x15

5
− x21

7
+ . . .

In turn, this means that the series for f is

x2 tan−1(x3) = x2
∞∑

n=0

(−1)n x6n+3

2n + 1
=

∞∑
n=0

(−1)n x6n+5

2n + 1
= x5 − x11

3
+

x17

5
− x23

7
+ . . .

48. Evaluate the indefinite integral ∫
ex − 1

x
dx

as an infinite series.

Answer: The Maclaurin series for ex is

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . ,

so the series for the numerator is

ex − 1 =
(

1 + x +
x2

2!
+

x3

3!
+ . . .

)
− 1 = x +

x2

2!
+

x3

3!
+ . . . =

∞∑
n=1

xn

n!
.

In turn, this means the series for the integrand is

1
x

∞∑
n=1

xn

n!
=

∞∑
n=1

xn−1

n!
= 1 +

x

2!
+

x2

3!
+ . . .

Therefore, we can integrate term-by-term to get∫
ex − 1

x
dx = C + x +

x2

2 · 2!
+

x3

3 · 3!
+ . . . = C +

∞∑
n=1

xn

n · n!

56. Use series to evaluate the limit
lim
x→0

1− cos x

1 + x− ex
.
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Answer: Using the Maclaurin series for cos x we can write the numerator as the series

1− cos x = 1−
(

1− x2

2!
+

x4

4!
− x6

6!
+ . . .

)
=

x2

2!
− x4

4!
+

x6

6!
− . . . .

Using the Maclaurin series for ex, we can write the denominator as

1 + x− ex = 1 + x−
(

1 + x +
x2

2!
+

x3

3!
+ . . .

)
= −x2

2!
− x3

3!
− . . .

Therefore,

lim
x→0

1− cos x

1 + x− ex
= lim

x→0

x2

2! −
x4

4! + . . .

−x2

2! −
x3

3! − . . .

Dividing both numerator and denominator by x2, this is equal to

lim
x→0

1
2! −

x2

4! + . . .

− 1
2! −

x
3! − . . .

=
1
2!

− 1
2!

= −1

68. Find the sum of the series

1− ln 2 +
(ln 2)2

2!
− (ln 2)3

3!
+ . . .

Answer: Notice that

e− ln 2 = 1− ln 2 +
(ln 2)2

2!
− (ln 2)3

3!
+ . . .

is just the given series, so the sum of the series is

e− ln 2 =
1

eln 2
=

1
2
.

From §12.11

16. (a) Approximate
f(x) = sin x

by a Taylor polynomial with degree 4 at the number π/6
Answer: The first four derivatives of f are

f ′(x) = cos x

f ′′(x) = − sinx

f ′′′(x) = − cos x

f (4)(x) = sin x
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so we have

f(π/6) = 1/2

f ′(π/6) =
√

3/2
f ′′(π/6) = −1/2

f ′′′(π/6) = −
√

3/2

f (4)(π/6) = 1/2.

Therefore, the degree 4 Taylor polynomial for f at π/6 is

1
2

+
√

3
2

(x− π/6)− 1
2 · 2!

(x− π/6)2 −
√

3
2 · 3!

(x− π/6)3 +
1

2 · 4!
(x− π/6)4.

(b) Use Taylor’s Inequality to estimate the accuracy of the approximation f(x) = T4(x)
when x lies in the interval 0 ≤ x ≤ π/3.
Answer: When 0 ≤ x ≤ π/3, Taylor’s Inequality says that the remainder R4(x) is
bounded by

|R4(x)| ≤ M

5!
|x− π/6|5

where M is an upper bound on f (5) in this interval. Since

f (5)(x) = cos x

and since
1
2
≤ cos x ≤ 1

for all x between 0 and π/3, we can pick M = 1.
Therefore,

|R4(x)| ≤ 1
5!
|x− π/6|5 =

1
120

|x− π/6|5.

When 0 ≤ x ≤ π/3, the quantity |x− π/6| ≤ π/6, so

1
240

|x− π/6|5 ≤ 1
120

(π/6)5 =
π5

120 · 7776
≈ 0.000328

is the worst the error could possibly be on this interval.
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(c) Check your result in (b) by graphing |R4(x)|.
Answer:

0 0.25 0.5 0.75 1

8⋅10-5

1.6⋅10-4

2.4⋅10-4

3.2⋅10-4

4⋅10-4

35.

If a water wave with length L moves with velocity v across a body of water with depth d, as
in the figure, then

v2 =
gL

2π
tanh

2πd

L

(a) If the water is deep, show that v ≈
√

gL/(2π).
Answer: As u →∞, tanhu → 1, so, when the water is very deep,

v2 ≈ gL

2π
,
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meaning that

v ≈
√

gL

2π
,

as desired.

(b) If the water is shallow, use the Maclaurin series for tanh to show that v ≈
√

gd. (Thus in
shallow ater the velocity of a wave tends to be independent of the length of the wave.)
Answer: The first few derivatives of f(x) = tanhx are

f ′(x) = sech 2x

f ′′(x) = −2 sechx sechx tanh x = −2 sech 2x tanh x

f ′′′(x) = −4 sechx sechx tanh x tanh x− 2 sech 2x sech 2x = −4 sech 2x tanh2 x− 2 sech 4x

Therefore,

f(0) = tanh 0 = 0

f ′(0) = sech 20 = 1

f ′′(0) = −2 sech 20 tanh 0 = 0

f ′′′(0) = −4 sech 20 tanh2 0− 2 sech 40 = −2

Hence,

tanh x = x− x3

3
+ . . .

This gives a Maclaurin series for v2:

v2 =
gL

2π

(
2πd

L
−
(

2πd
L

)3
3

+ . . .

)

= gd− gL

6π

(
2πd

L

)3

+ . . .

When d is small, 2πd
L is also small and higher powers of it are even smaller. Therefore,

the first term above gives a good approximation for v2 when d is small. Thus,

v ≈
√

gd.

(c) Use the Alternating Series Estimation Theorem to show that if L > 10d, then the estimate
v2 ≈ gd is accurate to within 0.014gL.
Answer: The error is no bigger than the first unused term in the series:

|error| ≤ gL

6π

(
2πd

L

)3

.

When L > 10d, the right hand side (and, thus, the error) is smaller than

gL

6π

(
2πd

10d

)3

=
gL

6π

(π

5

)3
=

π3

6π · 53
gL =

π2

750
gL ≈ 0.013gL
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