
Math 121A — Linear Algebra

Neil Donaldson

Winter 2022

1 Vector Spaces

1.1 Introduction: What is Linear Algebra and why should we care?

Linear algebra is the study of vector spaces and linear maps between them. We’ll formally define these
concepts later, though they should be familiar from a previous class.
A function, or map, T : V → W between vector spaces is linear if for all vectors v1, v2 ∈ V and all
scalars λ, we have the properties:

(a) T(v1 + v2) = T(v1) + T(v2)

(b) T(λv1) = λT(v1)

Examples 1.1. You have seen many examples of these in your mathematical career.

1. T(x) = 3x defines a linear map T : R → R.

More generally, V = Rm, W = Rn, with T being multiplication by a real n × m matrix.

2. Differentiation: Let T = d
dx be the usual differential operator and V the vector space of differ-

entiable functions f : R → R. More generally, T could be a linear differential operator such as
T = d2

dx2 + 2x d
dx + x2 + 1 whence

T(y) = y′′ + 2xy′ + (x2 + 1)y

The standard methods for solving linear differential equations seen in a lower-division class are
based on linear algebra.

3. Integration: let V be a vector space of integrable functions then T(f) =
∫ x

a f (t)dt defines a
linear map to a vector space of continuous functions.

The ubiquity of linear structures is one reason to study linear algebra. Another is that linear problems
often admit systematic techniques that give us at least a fighting chance of finding a solution. By
contrast, non-linear problems are typically much more difficult: if such can be solved, it is often due
to some trickery or luck.

1

What makes linear problems easy? The core idea is to use simple solutions as building blocks to
construct more complex solutions. Here is a, hopefully familiar, example.

Example 1.2. The power law tells us how to integrate monomials. The linearity of integration
allows us to combine these building blocks to compute the integral of any polynomial:∫

x2 + 5x3 dx =
∫

x2 dx + 5
∫

x3 dx (linearity)

=
1
3

x3 +
5
4

x4 + c (power law)

By contrast, the integration of products is a non-linear problem. The fact that∫
ex sin x dx ̸=

[∫
ex dx

] [∫
sin x dx

]
and the resulting need for integration-by-parts is a major source of difficulty in freshman calculus.

A Brief Review of R2 and R3 In these standard spaces, we often visualize vectors as arrows.
In the picture, the vector v points from the origin O with co-ordinates (0, 0)
to the point P = (x, y). Writing i, j for the standard basis vectors, there are
several common notations for v:

v =
−→
OP =

(
x
y

)
= xi + yj = x

(
1
0

)
+ y

(
0
1

)
Column vector notation helps distinguish a vector from a point (x, y): we call
x and y the components of the column vector (x

y).

The vector space R2 is simply the set of all such vectors. There is no need for a
vector to have its tail at the origin, only direction and magnitude matter. In
R3 things are similar, a point has three co-ordinates and we need the three
standard basis vectors i, j, k.

Scalar multiplication involves lengthening or contracting a vector by a real
multiple: the vector tv has components tx and ty and we write

tv =
−→
OQ =

(
tx
ty

)
= txi + tyj

Note that if t < 0, then tv points in the opposite direction to v.

1

1
i

j

v

x

tyy

O

QP

tv

v

x

y

tx

ty

O

P

Q

Vector addition is defined by the parallelogram law. Simply add
components: if v1 =

(x1
y1

)
and v2 =

(x2
y2

)
, then

v1 + v2 :=
(

x1 + x2
y1 + y2

)
= (x1 + x2)i + (y1 + y2)j

The intuitive nose-to tail interpretation of vector addition is
immediate.

v
w

v + w
w

v

x1

y1

x2

y2

x1 + x2

y1 + y2

2

Example 1.3 (Rotation and the standard basis). We finish by reviewing an approach you should
have seen in a previous course. By considering how to transform a basis, we obtain a complete
formula for a linear map.
Consider the function T : R2 → R2 which rotates a point 30° clockwise around the origin. You should
believe, though a proof is tricky at the present, that T is indeed linear. To discover a formula for T it
is enough to consider what it does to the standard basis {i, j} of R2.
This is because if v = (x

y) is any vector, then, by linearity

v = xi + yj =⇒ T(v) = xT(i) + yT(j)

Using the picture and a little trigonometry, you should be convinced
that that

T(i) =
(

cos 30°
− sin 30°

)
=

(√
3

2
− 1

2

)
T(j) =

(
sin 30°
cos 30°

)
=

(
1
2√
3

2

)

from which we obtain

T
(

x
y

)
=

(√
3

2 x + 1
2 y

− 1
2 x +

√
3

2 y

)
=

(√
3

2
1
2

− 1
2

√
3

2

)(
x
y

)

1y

1
xT(i)

T(j)

30°

30°

i

j

where we’ve written the final expression as a matrix multiplication.a

aThis is one of the advantages of column vector notation. Indeed one of the major goals of the course is to see that every
linear map between finite-dimensional vector spaces can be represented in such a fashion.

Because of linearity, we were able to completely determine T merely by understanding how it acted
on the basis vectors i and j. This property is not shared by non-linear functions. For instance, if |v|
returns the length of a vector v ∈ R2, then the function

f : R2 → R2 : v 7→
(
|v|2 + 1

)
v (∗)

is non-linear. Simply knowing that f (i) = 2i and f (j) = 2j is insufficient to completely understand
the function.

Exercises 1.1 1. Using the same approach as in Example 1.3, explicitly find a formula for the linear
map T : R2 → R2 which reflects in the line y = x.

2. A linear map is not the same thing as a straight line! Explain why the function f : x 7→ 3x + 2
is non-linear.

3. Give a reason why the function f : R2 → R2 defined in (∗) above is non-linear.

4. (a) Give an algebraic proof (use components!) of the distributive law λ(v + w) = λv + λw in
the vector space R2.

(b) Give a pictorial argument for the distributive law?

(Hint: Consider similar triangles or parallelograms and channel your inner Euclid. . .)

3

1.2 Vector Spaces: Basic Results, Examples and Subspaces

Vector spaces generalize the intuitive structure of R2, where identities such as commutativity

v + w = w + v

are geometrically obvious. The axioms of a vector space merely assert that such identities hold gen-
erally.

Definition 1.4. Let V be a non-empty set (elements vectors) and F a field (elements scalars), and
suppose we have two operations:

Vector Addition If v and w are vectors, we can form the sum v + w.

Scalar Multiplication If v is a vector and λ a scalar, we can form the product λv.

We say that V is a vector space over F if the following axioms are satisfied:a

G1: Closure under addition ∀v, w ∈ V, v + w ∈ V

G2: Associativity of addition ∀u, v, w ∈ V, (u + v) + w = u + (v + w)

G3: Identity for addition ∃0 ∈ V, such that ∀v ∈ V, v + 0 = v

G4: Inverse for addition ∀v ∈ V, ∃ − v ∈ V, such that v + (−v) = 0

G5: Commutativity of addition ∀v, w ∈ V, v + w = w + v

A1: Closure under scalar multiplication ∀v ∈ V, λ ∈ F, λv ∈ V

A2: Identity for scalar multiplication ∀v ∈ V, 1v = v

A3: Action of scalar multiplication ∀λ, µ ∈ F, v ∈ V, λ(µv) = (λµ)v

D1: Distributivity I ∀v, w ∈ V, λ ∈ F, λ(v + w) = λv + λw

D2: Distributivity II ∀v ∈ V, λ, µ ∈ F, (λ + µ)v = λv + µv

aThis is easier to remember if you’ve studied group theory: the ‘G’ axioms say that (V,+) is an Abelian group, the ‘A’
axioms say that the field F has a left action on V. The distributivity axioms explain how the two operations interact.

Notation You can use another notation (e.g. v⃗ or v) for abstract vectors, but use something: distin-
guishing vectors and scalars helps avoid common mistakes like dividing by a vector. This notation
might not be appropriate in certain examples, (e.g. polynomials, matrices) so take extra care.

Fields A field F is a set which behaves very like the real numbers under addition and multiplication.
In almost all examples, F will be either the real numbers R or the complex numbers C. The symbols 0
and 1 (e.g. axiom A2) refer to the additive and multiplicative identities in F. Be careful to distinguish
the scalar 0 ∈ F from the zero vector 0 ∈ V.

Inverses and subtraction Subtraction of vectors is taken to
mean addition of the inverse, namely

v − w := v + (−w)

In R2 this can be viewed pictorially.

v
w

−w

v − w

4

Essentially every example we will encounter falls into one of two classes.

Theorem 1.5 (Matrices & Sets of Functions). Let F be a field.

1. The set Mm×n(F) of m × n matrices with entries in F

Mm×n(F) =


 a11 · · · a1n

...
. . .

...
am1 · · · amn

 : aij ∈ F


forms a vector space over F under component-wise addition and scalar multiplication: given
matrices A = (aij) and B = (bij) and λ ∈ F, the ijth entries of the matrices A + B and λA are

(A + B)ij := aij + bij, (λA)ij := λaij (∗)

2. Let D be a set and V a vector space over F. The set of functions

F (D, V) = { f : D → V}

forms a vector space over F with addition and scalar multiplication defined bya

(f + g)(x) := f (x) + g(x), (λ f)(x) := λ(f (x))

aThe function f + g ∈ F (D, V) is defined by what it does to an element x ∈ D. In particular, f (x) ∈ V is not a function.
However, it is acceptable to write ‘the function f (x)’, just make sure you know that this is an abuse of notation.

To prove the theorem, each axiom (G1–5, A1–3, D1,2) should be checked explicitly for each part of
the theorem: this is tedious! For instance, axiom D2 may be verified for matrices as follows:(

(λ + µ)A
)

ij = (λ + µ)aij = λaij + µaij = (λA)ij + (µA)ij

Definitions (∗) provide the red equalities, while the blue is distributivity in the field F.

Examples 1.6. 1. The column vectors (n-tuples) are a special case: Fn := Mn×1(F). E.g., in R3

2

 1
0
−4

+ 7

−1
2
1

 =

 2
0
−8

+

−7
14
7

 =

−5
14
−1


2. In M2×3(C), we have(

1 i 0
−3 1 − i 2 + 3i

)
+ i
(

2 −3 1
3 − i 0 2

)
=

(
1 + 2i −2i i
−2 + 3i 1 − i 2 + 5i

)

3. A field is a vector space over itself! In particular, F (R, R) is a vector space. For instance, if f , g
are defined by f (x) = x2 and g(x) = sin x, then 4 f − 2g is the function given by

(4 f − 2g)(x) = 4x2 − 2 sin x

We’ll shortly restrict to certain types of functions (e.g. continuous functions, differentiable functions,
polynomials) and see that these also form vector spaces.

5

Basic Results Here we gather several basic facts about vector spaces that you’ll use without think-
ing. Since these are not axioms, they do require proof.

Lemma 1.7. 1. Cancellation law: x + z = y + z =⇒ x = y

2. Uniqueness of Identity: The zero vector 0 posited in axiom G3 is unique.

3. Uniqueness of Inverse: Given v ∈ V, the vector −v posited in axiom G4 is unique.

4. Scalar multiplication by zero: ∀v ∈ V, we have 0v = 0.

5. Action of negatives: ∀v ∈ V, λ ∈ F, we have (−λ)v = −(λv).

6. Action on zero vector: ∀λ ∈ F, we have λ0 = 0.

Proof. We prove number 4, leaving the remainder as exercises: they are easiest if tackled in order!
Since 0 = 0 + 0 in F, apply axioms D2, G3, G5 and the cancellation law to see that

0v = (0 + 0)v = 0v + 0v (Distributivity D2)
=⇒ 0 + 0v = 0v + 0v (Identity G3 and Commutativity G5)
=⇒ 0 = 0v (Cancellation law)

Subspaces As in other areas of algebra (subgroup, subring, subfield, etc.) the prefix sub means that
an object is a subset, while retaining the algebraic structure of the original set.

Definition 1.8. Let V be a vector space over a field F.
A non-empty subset W ⊆ V is a subspace of V (written W ≤ V) if it is a vector space over the same
field F with respect to the same addition and scalar multiplication operations as V.
A subspace is proper if it is a proper subset (i.e., W ̸= V).
The trivial subspace of V is the point set {0}.

The subset approach allows us to quickly construct many more examples.

Example 1.9. Consider the line containing w =
(

3
2

)
∈ R2:

W :=
{

aw =

(
3a
2a

)
: a ∈ R

}
It is almost trivial, if tedious, to check that W satisfies the axioms
and is therefore a subspace of R2. For instance:

G1:
(

3a
2a

)
+

(
3b
2b

)
=

(
3(a + b)
2(a + b)

)
∈ W

by appealing to the distributivity laws in R.

W

w

3

2

Thankfully, as the next theorem shows, there is no need to check all the axioms to determine when
we have a subspace.

6

Theorem 1.10. Suppose W is a non-empty subset of a vector space V over F. Then W is a subspace
of V if and only if it is closed under addition and scalar multiplication:a

G1: ∀w1, w2 ∈ W, we have w1 + w2 ∈ W.

A1: ∀w ∈ W, λ ∈ F, we have λw ∈ W.
aThat w1 + w2 and λw lie in W and not just V is what makes these genuine conditions.

There are two common variants of this result: feel free to use these in examples if you prefer.

• Explicitly verify axiom G3 (0V ∈ W) instead of checking the non-emptiness of W. You still need
to check that W is a subset of V!

• Combine the closure axioms into a single statement: ∀x, y ∈ W, λ ∈ F, we have λx + y ∈ W.

Proof. If W is a subspace, then it is a vector space and so axioms G1 and A1 hold as written.
Conversely, assume that W is a non-empty subset of V satisfying G1 and A1. Reread the axioms
(Definition 1.4) and observe that all except perhaps G1, G3, G4 and A1 hold on any subset of V.
Under our assumptions therefore, it remains only to verify G3 and G4.

G3: Choose any w ∈ W. By Lemma 1.7 (part 4) and axiom A1 (for W!), we see that the zero vector
of V satisfies

0V = 0w ∈ W

Since 0V satisfies axiom G3 for V, it necessarily does on any subset: we therefore have 0W = 0V .

G4: Given w ∈ W, let −w ∈ V be its additive inverse in V. Now observe that

−w = (−1)w ∈ W

by Lemma 1.7 (part 5) and axiom A1.

Examples 1.11. 1. Returning to Example 1.9, recall that we already checked axiom G1. Moreover,

• 0 = 0w ∈ W so that W is non-empty.
• A1: λ(aw) = (λa)w ∈ W by axiom A3.

so that W is a subspace of R2. Alternatively, if λ ∈ R and x, y ∈ W, then ∃a, b ∈ R for which

λx + y = λaw + bw = (λa + b)w ∈ W

2. For any field F, let Pn(F) = {a0 + a1x + · · ·+ anxn : ai ∈ F} be the set of polynomials of degree
≤ n with coefficients in F. By considering axioms G1 and A1, this is plainly a subspace of the
space of functions F (F, F):

λ(a0 + a1x + · · ·+ anxn) + (b0 + b1x + · · ·+ bnxn) = (a0 + b0) + · · ·+ (an + bn)xn

Non-emptiness is guaranteed by considering the zero polynomial 0(x) = 0 + 0x + · · ·+ 0xn.

More generally, if n ≤ m, then Pn(F) ≤ Pm(F) ≤ P(F), where the last denotes the space of all
polynomials of any degree.

7

3. If U ⊆ R is an interval, then V = F (U, R) is a vector space over R. The subset C(U, R) of
continuous functions is a subspace of V. Indeed, as is verified in any analysis course,

If f , g : I → R are continuous and λ ∈ R, then λ f + g : I → R is continuous.

This also extends to sets of differentiable functions, etc.

4. The trace tr : Mn(F) → F of an n × n matrix is defined by summing the main diagonal:

tr A =
n

∑
i=1

aii = a11 + a22 + · · ·+ ann

The subset of trace-free matrices is denoted

sln(F) = {A ∈ Mn(F) : tr A = 0}

It is easy to check that sln(F) ≤ Mn(F):

tr(λA + B) =
n

∑
i=1

λaii + bii = λ
n

∑
i=1

aii +
n

∑
i=1

bii = λ tr A + tr B = 0

Intersections and Direct Sums Since vector spaces are sets, we may take intersections. . .

Theorem 1.12. If V and W are subspaces of some vector space U, then their intersection V ∩W is a
subspace of both V and W.

Proof. Since V and W are subspaces of U, they both contain 0 and so V ∩ W is non-empty.
Now suppose x, y ∈ V ∩ W and λ ∈ F. Since V and W are both vector spaces, they are closed under
addition and scalar multiplication (in U!): in particular,

x + y ∈ V, x + y ∈ W, λx ∈ V, λx ∈ W

But then x + y ∈ V ∩ W and λx ∈ V ∩ W, whence V ∩ W is closed and thus a subspace.

Example 1.13. Suppose that

V = {xi + zk : x, z ∈ R}
W = {yj + zk : y, z ∈ R}

are the xz- and yz-planes respectively. Plainly, V and W
are subspaces of R3 with intersection the z-axis

V ∩ W = {zk : z ∈ R}

8

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

Attempting the same thing for unions results in a problem.
For a simple counterexample, let

V = {xi : x ∈ R} W = {yj : y ∈ R}

be the x- and y-axes in R2, whose intersection is the trivial subspace
V ∩ W = {0}. Their union

V ∪ W = {xi, yj : x, y ∈ R}

is not a subspace of R2 since it is not closed under addition:

i ∈ V and j ∈ W but i + j ̸∈ V ∪ W

Instead we search for the smallest vector space containing V ∪ W.

W

Vi

j
i + j

Definition 1.14. Suppose V and W are subspaces of U. Their sum is the set

V + W := {v + w : v ∈ V, w ∈ W}

In addition, if V ∩ W = {0}, we call this the direct sum and write V ⊕ W.

Examples 1.15. 1. The x- and y-axes, V = {xi : x ∈ R} and W = {yj : y ∈ R} are clearly subspaces
of R2 with trivial intersection. It is immediate that

V ⊕ W = {xi + yj : x, y ∈ R} = R2

2. More generally, let V = {sv : s ∈ R} and W = {tw : t ∈ R} be
distinct, non-trivial subspaces of R2 (i.e. v, w are non-parallel).
Observe:

• If V ∩ W ̸= {0}, then ∃s, t ̸= 0 such that sv = tw, whence
v and w would be parallel: contradiction.

• Writing v = (a
b) and w = (c

d), we see that for any given
u = (x

y) ∈ R2,

u = sv + tw ⇐⇒
(

x
y

)
=

(
a c
b d

)(
s
t

)
⇐⇒

(
s
t

)
=

1
ad − bc

(
d −c
−b a

)(
x
y

)

V

sv

v
W

tww

u = sv + tw

Since v, w are non-parallel, we are not dividing by zero: every u can be written in the
form sv + tw and so R2 = V + W.

Putting both parts together, we conclude that R2 = V ⊕ W is a direct sum.

Indeed we see that every u ∈ R2 can be written uniquely in terms of the subspaces: as the next
result shows, this is a defining property of direct sums.

9

Theorem 1.16. Let V, W be subspaces of U with trivial intersection. Then:

1. V ⊕ W is a subspace of U.

2. V and W are subspaces of V ⊕ W.

3. If X is a subspace of U such that both V and W are subspaces of X, then V ⊕ W ≤ X.

4. U = V ⊕ W ⇐⇒ ∀u ∈ U, ∃unique v ∈ V and w ∈ W such that u = v + w.

The proofs are exercises. Note how the third property says that V ⊕W is the smallest space containing
V and W, while the fourth says that direct sums are synonymous with unique decompositions.

Exercises 1.2 1. Let S = {0, 1} and F = R. In the vector space of functions F (S, R), let

f (t) = 2t + 1, g(t) = 1 + 4t − 2t2, h(t) = 5t + 1

Show that f = g and f + g = h.

2. (a) If p(x) = 2x + 3x2 and q(x) = 4 − x2, compute the polynomial p(x) + 3q(x).
(b) Explain why the set of degree two polynomials with coefficients in R is not a vector space.
(c) Prove explicitly that P1(R) is a subspace of P3(R).

3. Prove parts 2, 3 and 6 of Lemma 1.7.

4. Consider the vector space C2 = {(w
z) : w, z ∈ C} over the field C of complex numbers.

(a) Show that v =
(i

2+3i
)

and w =
(1+2i

7+4i

)
are parallel.

(b) C2 is automatically a vector space over C. Prove that it is a vector space over R.

5. Is Mm×n(R) a vector space over the rational numbers Q? Explain.

6. Let V = {(a1, a2) : a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ V and λ ∈ R, define

(a1, a2) + (b1, b2) := (a1 + 2b1, a2 + 3b2) and λ(a1, a2) = (λa1, λa2)

Is V a vector space over R with respect to these operations? Explain.

7. Let V = R2, define vector addition as usual and scalar multiplication (by λ ∈ R) by

λ

(
x
y

)
:=
(

λx
λ−1y

)
if λ ̸= 0 or

(
0
0

)
if λ = 0

Is V a vector space with respect to these operations? Why/why not?

8. Prove or disprove:

(a) V := {
(

4a
−a
)

: a ∈ R} is a subspace of R2.
(b) W := {

(
4a+1
−a
)

: a ∈ R} is a subspace of R2.

(c) X :=
{(4a+b

−a
2a−b

)
: a, b ∈ R

}
is a subspace of R3.

9. Let V be the set of differentiable real-valued functions with domain R. Prove that V is a sub-
space of the set of functions F (R, R).
(You may quote anything you like from elementary calculus without proof)

10

10. With reference to Theorem 1.10, prove that properties G1 & A1 are equivalent to the combined
closure property: ∀x, y ∈ W, λ ∈ F, we have λx + y ∈ W.

11. (a) Let V = {xi : x ∈ R} and W = {yj + zk : y, z ∈ R} be subspaces of R3. Prove that
V ⊕ W = R3.

(b) Repeat part (a) but this time with V = {x(i + j) : x ∈ R}.

12. (a) Prove all four parts of Theorem 1.16.
(b) If we drop the assumption that V and W have trivial intersection, which parts of Theorem

1.16 must be true for the sum V + W.

13. A matrix A is symmetric if it equals its transpose: AT = A. It is skew-symmetric if AT = −A. Let
S be the set of symmetric matrices and K the set of skew-symmetric matrices in M2(R).

(a) Show that S and K are subspaces of M2(R).
(b) Prove or disprove: M2(R) = S ⊕ K.
(c) Does your argument extends to Mn(R) and, if you’ve studied fields, to Mn(F)?

14. Let Z5 = {0, 1, 2, 3, 4} together with addition and multiplication modulo 5.

(a) Prove that every non-zero element of Z5 has a multiplicative inverse (Z5 is a field): for all
x ∈ Z5 \ {0}, there exists y ∈ Z5 such that xy = 1.

(b) By part (a), Zn
5 is a vector space. Evaluate the expression 4

(
3
2

)
+ 2

(
1
4

)
∈ Z2

5. For any
n ∈ N, how many vectors are there in Zn

5? (What is the cardinality of Zn
5?)

15. Let V × W = {(v, w) : v ∈ V, w ∈ W} be the Cartesian product of spaces V, W over F.

(a) (Briefly!) Argue that V × W is a vector space over F with respect to the operations

(v1, w1) + (v2, w2) := (v1 + v2, w1 + w2) λ(v, w) := (λv, λw)

(b) Verify that V̂ := {(v, 0W) : v ∈ V} and Ŵ := {(0V , w) : w ∈ W} are subspaces of V × W
and that V̂ ⊕ Ŵ = V × W.

(V × W is an alternative definition of the direct sum V ⊕ W, which should be familiar if you’ve
seen direct products in group theory.)

16. (Optional: should be familiar if you’ve studied group theory) Let W be a subspace of V over
F. For any v ∈ V, define the coset of W containing v to be the set

v + W := {v + w : w ∈ W}
(a) If V = R3 and W = Span{i, j}, describe the coset k + W in words.
(b) Let V be a a general vector space. Prove that v +W is a subspace of V if and only if v ∈ W.
(c) Prove that v1 + W = v2 + W ⇐⇒ v1 − v2 ∈ W.

(d) Define the quotient space V
/

W
= {v + W : v ∈ V} to be the set of cosets of W in V together

with the operations

(v1 + W) + (v2 + W) := (v1 + v2) + W λ(v + W) := λv + W
Prove that addition and scalar multiplication are well-defined, and (briefly) convince your-
self that V

/
W

is a vector space over F under these operations.

11

1.3 Linear Combinations & Linear Independence

In this section we consider what vectors we can generate from a given collection using only the vector
space operations af addition and scalar multiplication.

Definition 1.17. Let S be a non-empty subset of a vector space V over a field F. A linear combination
of vectors in S is any vector of the form

a1v1 + · · ·+ anvn (∗)

where each vi ∈ S and each ai ∈ F. The span of S is the set of all linear combinations of vectors in S:

Span S = {a1v1 + · · ·+ anvn : n ∈ N, a1, . . . , an ∈ F, v1, . . . , vn ∈ S}

By convention, Span ∅ := {0} is the trivial subspace.
Important: A linear combination contains finitely many terms—no infinite sums!

Our primary goal of this chapter is to identify the smallest possible spanning sets for a vector space:
such a set will be called a basis. The full discussion is difficult and length; for the present, we consider
a few simple examples of linear combinations and spanning sets.

Examples 1.18. 1. In P2(R), the vector p(x) = 2 − 3x2 is a linear combination of the vectors
q(x) = 2x − x2 and r(x) = 1 − x − x2, since

p = q + 2r

2. In Example 1.9, W = Span{w}. Since this is the span of a single vector, it is common to abuse
notation and write Span w. In this notation, and following Definition 1.14, we see that

Span{v, w} = Span v + Span w

3. Let S = {v, w} ⊆ R3 where v =
(1

2
−1

)
and w =

(−1
1
2

)
.

Then

Span S =

a

 1
2
−1

+ b

−1
1
2

 : a, b ∈ R


This is the plane through the origin ‘spanned by’ v and w:
hence the use of the word span!

4. (a) Let S = {i, k} ⊆ R3. The span of S is the xz-plane

Span S = {ai + bk : a, b ∈ R}
(b) If T = S ∪ {3i − 2k} = {i, k, 3i − 2k} ⊆ R3, then Span T remains the xz-plane. The third

vector 3i − 2k is redundant since it is a linear combination of the first two. Indeed

ai + bk + c(3i − 2k) = (a + 3c)i + (b − 2c)k ∈ Span{i, k}
Part of our concern in this chapter is to more carefully consider such redundancies.

12

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

The examples should suggest the following.

Lemma 1.19. If S is a subset of a vector space V, then Span S is a subspace of V.

Proof. This is trivial if S = ∅. Otherwise, we follow the criteria in Theorem 1.10. Let x, y ∈ Span S
and λ ∈ F. Then ∃m, n ∈ N, x1, . . . , xm, y1, . . . , yn ∈ S, and a1, . . . , am, b1, . . . , bn ∈ F such that

x = a1x1 + · · ·+ amxm, y = b1y1 + · · ·+ bnyn

But then

λx + y = λa1x1 + · · ·+ λamxm + b1y1 + · · ·+ bnyn ∈ Span S

Generating or Spanning Sets Part of our goal is to identify subsets S, particularly small subsets, of
a vector space such that Span S is the entire space.

Definition 1.20. Let S be a subset of a vector space V. If Span S = V, we say that S is a spanning or
generating set for V. Alternatively, we say that S spans V or S generates V.

Examples 1.21. 1. S = {i, j} generates R2, since every vector v ∈ R is a linear combination
v = xi + yj of vectors in S. Indeed R2 is essentially defined as Span S!

2. Many vector spaces are defined via a spanning set: e.g. P3(R) := Span{1, x, x2, x3}.

3. Consider S = {1 − 2x2, 1 + x − x2, 1 + 2x + x3} ⊆ P3(R).

(a) The polynomial x3 lies in Span S.

For this, we need to find coefficients a, b, c such that

a(1 − 2x2) + b(1 + x − x2) + c(1 + 2x + x3) = x3

By equating the coefficients of 1, x, x2 and x3 is it enough for us to solve a linear system
a + b + c = 0
b + 2c = 0
−2a − b = 0
c = 1

⇐⇒ (a, b, c) = (1,−2, 1)

(b) 1 + 3x + x3 ̸∈ Span S. It follows that S does not generate P3(R).

This time, we need to show that there are no coefficients a, b, c such that

a(1 − 2x2) + b(1 + x − x2) + c(1 + 2x + x3) = 1 + 3x + x3 ⇐⇒


a + b + c = 1
b + 2c = 3
−2a − b = 0
c = 1

Substituting c = 1 in the second equation yields b = 1, however the remaining equations
are now a + 2 = 1 and −2a − 1 = 0 which are inconsistent.

13

4. S = {1 + x2, 2 − x2, x, 1 + 4x} generates the vector space P2(R).

Given any a + bx + cx2 ∈ P2(R) we need to see that there exist g, h, j, k ∈ R such that

a + bx + cx2 = g(1 + x2) + h(2 − x2) + jx + k(1 + 4x)

= g + 2h + k + (j + 4k)x + (g − h)x2

By equating coefficients, this amounts to finding a solution (g, h, j, k) (as functions of a, b, c) to
the underdetermined linear system

g + 2h + k = a
j + 4k = b
g − h = c

Only one solution is required, and k = 0, j = b, g = 1
3 (a + 2c), h = 1

3 (a − c) does the trick.

Alternatively, you could try to explicitly construct the elements 1, x, x2 from those of S: in this
situation it is fairly easy to do by inspection, e.g.,

1 = (1 + 4x)− 4x, x = x, x2 =
2
3
(1 + x2)− 1

3
(2 − x2)

It follows that {1, x, x2} ⊆ Span S and so P2(R) = Span{1, x, x2} ⊆ Span S. Since, plainly,
Span S ⊆ P2(R) we have equality: Span S = P2(R).

Aside: row operations review It should be revision, but the solution to the above linear system
would likely have been found very slowly in a previous class. Here are some of the details. The
required system can be put in augmented matrix form:

1 2 0 1
0 0 1 4
1 −1 0 0




g
h
j
k

 =

a
b
c

↭

 1 2 0 1 a
0 0 1 4 b
1 −1 0 0 c


Applying row operations, we can put this in (reduced) row echelon form: 1 0 0 1

3
1
3 (a + 2c)

0 1 0 1
3

1
3 (a − c)

0 0 1 4 b


There is a free variable (k) here, but all solutions can easily be read off:

g =
1
3
(a + 2c)− 1

3
k, h =

1
3
(a − c)− 1

3
k, j = b − 4k

Choosing k = 0 gives the solution referenced above.
Linear systems can always be tackled using augmented matrices, but it is encouraged to avoid them
if you can: see, e.g., the alternative method for the last example.

14

Linear Dependence & Independence: when is a spanning set larger than necessary?

If w = 2v, then Span{v, w} = Span v; for the purpose of spanning a subspace, the vector w is
therefore redundant. To generalize this idea, we essentially have to extend the notion of parallel.

Definition 1.22. A finite non-empty subset S = {v1, . . . , vn} of a vector space is linearly dependent if

∃ai ∈ F not all zero, for which a1v1 + · · ·+ anvn = 0

Such an equation is a linear dependence.a

An infinite set is linearly dependent if it has as least one non-empty linearly dependent subset.

aThe not all zero condition is crucial! You can always write 0 = 0v1 + · · ·+ 0vn (a trivial representation of 0), but this tells
you nothing about the vectors v1, . . . , vn. A linear dependence is a non-trivial representation of the zero vector!

Examples 1.23. 1. Vectors v, w are linearly dependent (i.e. {v, w} is linearly dependent) if and only
if they are parallel.

2. v1 =
(

2
1
0

)
, v2 =

(
1
1
2

)
and v3 =

(
7
5
6

)
are linearly dependent since

2v1 + 3v2 − v3 = 0

3. The infinite set S = {(x
y) : y > 1} is linearly dependent in R2. For instance {

(
0
2

)
,
(

0
3

)
} is a

finite linearly dependent subset of S, since 3
(

0
2

)
− 2

(
0
3

)
=
(

0
0

)
.

We now state the negation of the definition.

Definition (1.22 cont.). A finite subset S = {v1, . . . , vn} of a vector space is linearly independent if

∀ai ∈ F, a1v1 + · · ·+ anvn = 0 =⇒ a1 = · · · = an = 0

An infinite set is linearly independent if all of its finite subsets are linearly independent.

Examples 1.24. 1. The set S = {
(

2
1

)
,
(

3
−5
)
} is linearly independent in R2 since

a
(

2
1

)
+ b

(
3
−5

)
=

(
0
0

)
=⇒

{
2a + 3b = 0
a − 5b = 0

=⇒ a = b = 0

2. The empty set ∅ is trivially linearly independent since there is no condition to check.

3. Consider the set S = {1 − x2,−x + 2x2, 1 + 2x − x2} in P2(R). Attempting to find a linear
dependence is equivalent to finding a non-trivial solution (a, b, c) to a system of linear equations

a(1 − x2) + b(−x + 2x2) + c(1 + 2x − x2) = 0 ⇐⇒


a + c = 0
−b + 2c = 0
−a + 2b − c = 0

Since the only solution is trivial (a, b, c) = (0, 0, 0), the set S is linearly independent.

4. S = {1, x, x2, x3, . . .} is a linearly independent subset of P(R): we leave this as an exercise.

15

We consider shrinking or enlarging certain sets of vectors. Prove the next result yourself.

Lemma 1.25. Suppose S1 ⊆ S2 are subsets of a vector space. If S1 is linearly dependent,a so is S2.

aEquivalently (the contrapositive): if S2 is linearly independent, so is S1.

Now turn the lemma on its head: if S2 is linearly independent, when it is possible to find a larger
linearly independent set S2 ⊇ S1? What follows is one of the most important results in the course.

Theorem 1.26. Suppose that S is a linearly independent subset of V and that v ̸∈ S is given. Then

S ∪ {v} is linearly independent ⇐⇒ v ̸∈ Span S

Be careful reading the proof: we use the contrapositive and prove both directions simultaneously!

Proof. By definition, S ∪ {v} is linearly dependent if and only if there exist finitely many vectors
v1, . . . , vn ∈ S and scalars a, a1, . . . , an (not all zero), such that

av + a1v1 + · · ·+ anvn = 0 (∗)

Plainly a ̸= 0, for otherwise S would be linearly dependent. By dividing through all coefficients by
−a we therefore see that (∗) is equivalent to

v = b1v1 + · · ·+ bnvn ⇐⇒ v ∈ Span S

Examples 1.27. 1. Let S = {i} = {
(

1
0

)
} and v = (a

b). Then

{i, v} linearly independent ⇐⇒ v ̸∈ Span{i} ⇐⇒ v not parallel to i ⇐⇒ b ̸= 0

2. Plainly S = {v, w} =
{(1

2
−1

)
,
(−1

1
2

)}
is linearly independent (recall Example 1.18.3).

(a) Let u =
(1

−3
0

)
: we check that u ̸∈ Span S. If it were, there would exist a, b ∈ R such that

u = a

 1
2
−1

+ b

−1
1
2

 =⇒
 1
−3
0

 =

 1 −1
2 1
−1 2

(a
b

)

which has no solutions. It follows that {u, v, w} is linearly
independent. Indeed Span{u, v, w} = R3.

(b) If we let d =
(

0
6
2

)
, then

d = 2v + 2w

whence d ∈ Span{v, w} and so {d, v, w} is linearly de-
pendent.
In the picture, d lies in the plane spanned by v, w while u
does not.

16

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

The Theorem should be intuitive in R2 and R3 where planes and lines are easy to visualize. Ana-
logues abound elsewhere: indeed the following are reasonable statements according to the RGB
(additive) theory of colors,

purple ∈ Span{red, blue}, brown ̸∈ Span{red, blue}
For instance purple, red and blue are not independent colors.

Exercises 1.3 1. In R3, let v =
(

1
1
2

)
, w =

(1
−1
1

)
and x =

(
1
7
5

)
. Show that x ∈ Span{v, w}.

2. For the following lists of polynomials in P3(R), determine whether f can be expressed as a
linear combination of g and h.

(a) f = 4x3 + 2x2 − 6, g = x3 − 2x2 + 4x + 1, h = 3x3 − 6x2 + x + 4
(b) f = x3 − 8x2 + 4x, g = x3 − 2x2 + 3x − 1, h = x3 − 2x + 3

3. Determine whether the vectors A, B ∈ M2(R) lie in the span of S:

A =

(
1 2
−3 4

)
, B =

(
1 0
0 1

)
S =

{(
1 0
−1 0

)
,
(

0 1
0 1

)
,
(

1 1
0 0

)}
4. Determine whether the set S = {1 + x + x2, x − x2, 2 + 3x2} generates P2(R).

5. Which of the following sets are linearly independent? Prove your assertions.

(a) {2, 3 − x, 1 − 2x2} in P2(R)

(b) {1, x2 − x, x2 + x, x2} in P2(R)

(c) {sin(x), cos(x), tan(x)} in C
(
(−π

2 , π
2), R

)
(recall Example 1.11.3 for the notation)

(d) {cos2(x), sin2(x), cos(2x)} in C(R, R)

6. Suppose that S = {v} is a linearly dependent set. What is v?

7. Let v1, . . . , vn be linearly independent vectors in V. Prove that Span{v2, . . . , vn} ̸= V.

8. Explicitly verify the claim on page 16 that Span{u, v, w} = R3.

9. Show that the functions f , g defined by f (x) = 2x and g(x) = |x| are linearly independent in
the vector space C([−1, 1], R), but linearly dependent in C([0, 1], R).

10. Suppose that c is a constant, and consider the continuous functions f , g ∈ C(R, R) defined by

f (x) = cos(x + c), g(x) = 2 sin x

For what values of c are the functions linearly independent? Draw a picture of what happens.

11. Prove that Span S is the intersection of all subspaces of V which contain S.

12. Justify Example 1.24.4: the infinite set {1, x, x2, . . .} is linearly independent.

13. Let X, Y, Z be subsets of a vector space V. Prove that:

(a) Span(X ∪ Y) = Span X + Span Y;
(b) Span(X ∪ Y) = Span X ⇐⇒ Y ⊆ Span X
(c) If y ∈ Z, then Span(Z \ {y}) = Span Z ⇐⇒ y ∈ Span(Z \ {y})

17

1.4 Bases and Dimension

We now come, arguably, to the most important definition of the course.

Definition 1.28. A basis of a vector space is a linearly independent spanning set.

Our main goals are to see that every vector space has a basis and that all bases of the same space have
the same number of elements, what we’ll call the dimension.

Standard Bases Many vector spaces have commonly used standard bases.

Vector Space V Standard Basis β

R2 {i, j}
R3 {i, j, k}
Fn {e1, . . . , en} where ei has ith entry 1 and the rest 0
Mm×n(F) {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} where Eij has ijth entry 1 and

remaining entries 0
Pn(F) {1, x, x2, . . . , xn}
P(F) {1, x, x2, x3, . . .}

Examples 1.29. 1. The standard bases of P3(R) and M2(R) are, respectively,

{1, x, x2, x3} and {E11, E12, E21, E22} =

{(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)}
2. The above spaces have other bases! For example β = {x, x − 1, 1 + x2} is a basis of P2(R):

verification of the following should be straightforward:

• β is linearly independent: ax + b(x − 1) + c(1 + x2) = 0 =⇒ a = b = c = 0

• β spans P2(R): ∀s, t, u, ∃a, b, c such that s + tx + ux2 = ax + b(x − 1) + c(1 + x2)

What matters is that you are comfortable transforming the definitions into algebra!

3. Following the convention that Span ∅ = {0}, the empty set is a basis of the trivial space {0}.

The Unique Co-ordinate Representation We first discuss one of the primary uses of a basis: the
representation of vectors in terms of co-ordinates.

Definition 1.30. Let β = {v1, . . . , vn} be a basis of V over F and suppose v ∈ V is given. The
co-ordinate representation of v with respect to β is the column vector

[v]β :=

a1
...

an

 ∈ Fn where v = a1v1 + · · ·+ anvn

To check that this is well-defined, we need to make sure that each vector v has exactly one co-ordinate
representation. We’ll deal with this in Theorem 1.32, after seeing an example.

18

Example 1.31. In P2(R), consider the bases α = {1, x, x2} and β = {x, x − 1, 1 + x2}, and the vector

p(x) = 3x − 2(x − 1) + 5(1 + x2) = 7 + x + 5x2

The co-ordinate representations with respect to the two bases are then:

[p]α =

7
1
5

 , [p]β =

 3
−2
5


The advantage of co-ordinates is that we can easily invoke matrix methods. The challenge is to keep
in mind the basis used in the conversion, so we can properly convert back once we’re done!

We now verify the uniqueness of co-ordinate representations. Amazingly, this property essentially
characterises the concept of a basis.

Theorem 1.32. Let β = {v1, . . . , vn} be a non-empty finite subset of a vector space V. Then β is a
basis if and only if each v ∈ V can be written as a unique linear combination

v = a1v1 + · · ·+ anvn (∗)

Compare this to Theorem 1.16: we are really saying that V = Span v1 ⊕ · · · ⊕ Span vn.

Proof. (⇒) If β is a basis, then V = Span β and so every vector can be expressed in the form (∗).
Now suppose ∃v ∈ V with at least two distinct representations:

v = a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn

It follows that

(a1 − b1)v1 + · · ·+ (an − bn)vn = 0

is a linear dependence on β. Contradiction.
(⇐) Conversely, suppose β is not a basis. There are two possibilities:

(a) β does not generate V. In this case, ∃v ̸∈ Span β with no representation.

(b) β generates V but is linearly dependent. In this case there exists a linear dependence

c1v1 + · · ·+ cnvn = 0

from which the zero vectora has at least two representations!

Either way, there exists some v ∈ V without a unique representation.

a0 = 0v1 + · · · 0vn. Indeed any v ∈ V will have multiple representations in this case.

We don’t typically refer to co-ordinates with respect to infinite bases, but the Theorem can be rephrased
so that the uniqueness of representation holds. We will return to co-ordinate representations and their
relationship to linear maps and matrix multiplication in the next chapter.

19

Existence of Finite Bases

If we attempt to enlarge a basis β of V by adding a new vector v ̸∈ β, a quick appeal to Theorem 1.26
(let S = β) shows that

v ∈ Span β (= V) =⇒ β ∪ {v} is linearly dependent

Otherwise said, a basis is a maximal linearly independent set. This suggests a simple looped algorithm:

1. Start with a linearly independent set X (even X = ∅ will do!).

2. Does there exist a vector s such that X ∪ {s} is linearly independent?

Yes: Repeat step 2 with X replaced with X ∪ {s}.

No: Stop. We have a basis.

The algorithm has two problems: how do we find a suitable s, and how do we know that the algo-
rithm will terminate? Both these problems can be addressed by restricting to vector spaces spanned
by a finite set.

Definition 1.33. A vector space V is finite-dimensional if it has a finite spanning set: if there exists a
finite subset S ⊆ V such that Span S = V.

Theorem 1.34 (Existence of a Basis). Every finite-dimensional vector space has a basis.
More specifically, suppose X and S are subsets of V such that:

• S is a finite spanning set for V;

• X is a linearly independent subset of S.

Then there exists a basis β of V such that X ⊆ β ⊆ S: in particular β is a finite set.

Proof. Suppose V is non-trivial, for otherwise ∅ is a basis (X = ∅ and S = ∅ or {0}).
Let m = |X| and n = |S| be the cardinalities so that m ≤ n, and label X = {x1, . . . , xm}. Then

X ⊆ S =⇒ Span X ⊆ Span S = V

Loop: If Span X = Span S = V, we are done: X is a basis.
Otherwise, ∃sm+1 ∈ S such that sm+1 ̸∈ Span X, whence (Theorem 1.26)

X ∪ {sm+1} = {x1, . . . , xm, sm+1} is linearly independent.

Now repeat the loop with X ∪ {sm+1} in place of X (induction).

The process must terminate with a basis in at most n − m steps since S is a finite spanning set.
To establish the primary claim, simply choose any x ∈ S and let X = {x}.

20

The finite spanning set S was crucial in resolving the problems with our looped algorithm: it pro-
vided a finite list of vectors from which to choose, and guaranteed that only finitely many loops
were possible thus forcing the algorithm to terminate.1 The existence of bases for infinite-dimensional
spaces (no finite spanning sets) is more technical and will be outlined in the next section.

Example 1.35. We follow the algorithm in R3, omitting explicit calculations for brevity.

S = {s1, s2, s3, s4, s5, s6} =


1

2
0

 ,

2
1
1

 ,

 1
−1
1

 ,

5
4
2

 ,

0
1
3

 ,

1
1
4


1. Let X = {s1}. Since s2 ̸∈ Span X we conclude that {s1, s2} is linearly independent.

2. {s1, s2} does not span R3 so we need another vector.

• s3 = s2 − s1 ∈ Span{s1, s2} so we reject s3

• s4 = s1 + 2s2 ∈ Span{s1, s2} so we also reject s4

• We accept s5 since s5 ̸∈ Span{s1, s2}.

3. β := {s1, s2, s5} is linearly independent and spans R3: it is a suitable basis.

The Exchange Theorem and its Consequences

Our next goal is comparison of the cardinalities of spanning sets and linearly independent set (and
thus bases), the key to which is the Exchange (or Replacement) Theorem. Take your time, since this is
the trickiest result of the course so far.

Theorem 1.36 (Exchange Theorem). Let V be a finite-dimensional vector space. If S is a finite
spanning set and X is a linearly independent subset of V, then |X| ≤ |S|. More specifically,

∃T ⊆ S such that |T| = |X| and Span(X ∪ (S \ T)) = V

A few observations before we see the proof.

• The hypotheses are the same as for the Existence Theorem (1.34), except that X need not be a
subset of S. The result therefore allows us to compare unrelated subsets.

• The result shows that every linearly independent set is no larger than every finite spanning set.
In particular, we obtain the important fact that every linearly independent subset and thus basis is
finite!

• The subset T is sometimes called the exchange, since the theorem essentially exchanges T with
X while preserving the span.

• Since the proof depends on a tricky induction, it is strongly recommended to work through an
example (say Example 1.37) while reading. The exchange is often easy to compute when X and
S are small. If you really want to understand the proof, make up more examples! Alternatively,
simply skip the proof and come back later; while important, it is technical and hard to use
directly in examples.

1Imagine applying the algorithm X = {1} and S = {1, x, x2, . . .} in the space of polynomials P(R): what happens?

21

Proof. Denote n = |S| and m = min{n, |X|}: our eventual goal is to see that |X| = m, but at present
we don’t know whether X is finite!
Consider a subset {x1, . . . , xm} ⊆ X. We prove the following claim by induction:

∀k ∈ {0, 1, . . . , m}, ∃s1, . . . , sk ∈ S such that Span{x1, . . . , xk, sk+1, . . . , sn} = V (†)

Base case If k = 0 then the claim is trivial for S spans V.

Induction step Suppose the claim holds for some k < m. Since {x1, . . . , xk, sk+1, . . . , sn} spans V, there
exist coefficients ai, bj such that

xk+1 = a1x1 + · · ·+ akxk + bk+1sk+1 + · · ·+ bnsn (∗)

Since (∗) is a linear dependence, the independence of X shows that at least one bj ̸= 0: WLOG
assume bk+1 ̸= 0. Since

sk+1 = −b−1
k+1(a1x1 + · · ·+ akxk − xk+1 + bk+2sk+2 + · · ·+ bnsn)

we may eliminate sk+1 from any linear combination describing an element of V at the cost of
including xk+1: we conclude that

V = Span{x1, . . . , xk+1, sk+2, . . . , sn}

By induction, the claim is proved. Taking k = m and setting T = {s1, . . . , sm} we see that

V = Span
(
{x1, . . . , xm} ∪

(
S \ T

))
Now suppose, for contradiction, that |X| > m. Then n = m and ∃xm+1 ∈ X. Since (†) holds for
k = m = n, we see that

xm+1 ∈ V = Span{x1, . . . , xm}

which contradicts the linear independence of X.
We complete the proof by observing that |X| = m ≤ n = |S|.

Example 1.37. Let V = R3, S = {i, j, k}, X =
{(

2
3
5

)
,
(6

9
12

)}
and apply the induction step twice:

1. Since x1 = 2i + 3j + 5k and the coefficient of i is non-zero, we choose s1 = i. Observe that
Span{x1, j, k} = Span S = R3.

2. Now find the coefficients of x2 with respect to {x1, j, k}: this might need a little augmented
matrix work, but we see that

x2 =

 6
9
12

 = 3x1 + 0j − 3k

so we choose s2 = k. Again we have Span{x1, x2, j} = R3. The exchange is therefore T = {i, k}.

22

Armed with the Exchange Theorem, the key facts come quickly and easily:

Corollary 1.38. Given a finite-dimensional vector space:

1. (Extension Theorem) Any linearly independent subset may be extended to a basis.

2. (Well-definition of Dimension) Any two bases have the same cardinality.

Proof. If the space is trivial then both statements are immediate. Otherwise:

1. Suppose S is a finite spanning set for V and that X a linearly independent subset. The Exchange
Theorem says there exists a finite spanning set X ∪ (S \ T) containing X. By the Existence
theorem, there exists a basis β such that X ⊆ β ⊆ X ∪ (S \ T).

2. If β and γ are bases, take X = β and S = γ in the Exchange Theorem to see that |β| ≤ |γ|. Now
repeat the argument with the roles reversed.

Definition 1.39. The dimension dimF V of a finite-dimensional vector space V over a field F is the
cardinality of any basis.a

aWe usually write dim V if the field is understood, but be careful: see Exercise 1.4.6. . .

Examples 1.40. 1. The dimension is often part of the name of a vector space or is easily read off:

dim R5 = 5, dim Fn = n, dim Mm×n(F) = mn

2. Beware of polynomials! The standard basis of Pn(R) is {1, x, . . . , xn}, whence dim Pn(R) = n + 1.

Corollary 1.41. Suppose W is a subspace of a finite-dimensional space V. Then:

1. dim W ≤ dim V.

2. dim W = dim V =⇒ W = V.

Proof. By the Extension Theorem, we may extend any basis α of W to a basis β of V. Since α ⊆ β, we
plainly have dim W = |α| ≤ |β| = dim V. Part 2 is an exercise.

Summary: bases of finite-dimensional vector spaces We have not quite proved all of the following,
but all should now seem at least reasonable.

1. Every such space has a basis and all have the same cardinality (the dimension).

2. We can extend a linearly independent set to a basis: a basis is a maximal linearly independent set.

3. Every spanning set contains a basis as a subset: a basis is a minimal spanning set.

4. A subset β is a basis of V if it satisfies any two of the following (it then satisfies the third):

|β| = dim V, β is linearly independent, Span β = V

23

Example 1.42. We verify that β =
{(

1
3
4

)
,
(

2
1
5

)
,
(

1
1
1

)}
is a basis of R3.

Since |β| = 3 = dim R3, we need only check linear independence:

a

1
3
4

+ b

2
1
5

+ c

1
1
1

 = 0 ⇐⇒
1 2 1

3 1 1
4 5 1

a
b
c

 = 0 =⇒ a = b = c = 0

since the matrix is invertible.
It is unnecessary, but the invertibility also shows directly that β is a spanning set: given x ∈ R3,a

b
c

 :=

1 2 1
3 1 1
4 5 1

−1

x =⇒ x = a

1
3
4

+ b

2
1
5

+ c

1
1
1

 ∈ Span β

Exercises 1.4 1. Prove carefully that β = {3i + 2k, 2i + k, j + k} is a basis of R3.

2. Let p(x) = 3 − 5x + 7x2 ∈ P2(R). With respect to the bases β = {1 − x, 1 + x2, x − 2x2} and
γ = {2 − x, x2, 1 + x}, find the co-oordinate representations [p]β and [p]γ.

3. As in Exercise 1.35, find a subset of S which is a basis of the vector space V.

(a) V = R3, S =
{(

1
1
2

)
,
(

1
2
3

)
,
(

0
2
2

)
,
(

1
0
1

)
,
(

0
2
3

)
,
(

2
1
2

)}
(b) V = P3(R), S =

{
1 + 2x, 1 + x + x2, 2 + x − x2, 3 + 2x, x − 2x3}

4. Find a basis and thus the dimension of the following subspace of F5:

W = {a1e1 + · · ·+ a5e5 ∈ F5 : a1 − a3 − a4 = 0}

5. Let u, v, w be distinct vectors in a vector space V. Prove that if β = {u, v, w} is a basis of V,
then γ := {u + v + w, v + w, w} is also a basis of V.

6. C3 is a vector space over C and over R. What are the values dimC C3 and dimR C3? State a basis
in each case.

7. (a) Define Q(
√

2) = {a + b
√

2 : a, b ∈ Q}. Prove that this is a vector space over Q and that
β = {1,

√
2} is a basis.

(b) More generally, if d ∈ Z is not a perfect square, prove that dimQ Q(
√

d) = 2.

8. Explain the observation in the proof of the Existence Theorem 1.34: If Span X ̸= Span S, then
∃sm+1 ∈ S such that sm+1 ̸∈ Span X.

9. Given subsets X and S of the vector space V, compute the exchange T from the Exchange
Theorem by mirroring Example 1.37.

(a) X =
{(

1
1
2

)
,
(2

0
−1

)}
, S = {i, j, k}, V = R3.

(b) X = {1 − x, 2 + x2, 1 + x3}, S = {1, x, x2, x3}, V = P3(R).

(c) X =
{(

0 1
1 1

)
,
(

0 −1
0 1

)}
, S = {E11, E12, E21, E22}, V = M2(R).

24

10. Let V = {(xn)∞
n=1} be the set of all sequences of real numbers. This is a vector space over R

under elementwise addition and scalar multiplication. For example: if xn = 1
n and yn = 1 − 1

n2 ,
then (xn) + (yn) is the sequence (zn) with nth term

zn = xn + yn =
1
n
+ 1 − 1

n2

(a) For each m ∈ N define the sequence Em = (em
n) where

em
n =

{
1 if n = m
0 otherwise

Thus E1 = (1, 0, 0, 0, . . .) and E2 = (0, 1, 0, 0, . . .), etc. Show that the set X = {Em : m ∈ N}
is a linearly independent subset of V.

(b) Is X a basis of V? Why/why not?

11. Let V be a vector space with dimension n ≥ 1, and let S be a generating set.

(a) Show that S contains a linearly independent subset X.

(b) If X is a linearly independent subset of S, but X is not a basis, prove that ∃s ∈ S such that
X ∪ {s} is linearly independent.

(c) Prove that there exists a subset of S which is a basis of V.

(d) Prove that |S| ≥ n.

(This is asking you to modify the proof of the Existence Theorem. Note that you cannot assume that S is
a finite set!)

12. (Optional application) In this question we use linear algebra to find a polynomial of minimal
degree through a set of points in the plane. Suppose that a0, a1 are distinct real numbers. Define
the functions

f0(x) =
x − a1

a0 − a1
, f1(x) =

x − a0

a1 − a0

It follows that

fi(aj) =

{
1 if i = j
0 if i ̸= j

(∗)

(a) Prove that f0 and f1 are linearly independent.

(b) Suppose that b0, b1 are real numbers. Show that the straight line passing through the points
(a0, b0) and (a1, b1) lies in Span{ f0, f1} and that, consequently, { f0, f1} forms a basis of the
vector space of linear polynomials P1(R).

(c) Repeat parts (a) and (b) for any set of distinct values a0, a1, . . . , an to obtain polyno-
mials f0, f1, . . . , fn which satisfy (∗) and form a basis of Pn(R). Hence or otherwise,
prove that there is a unique degree ≤ n + 1 polynomial passing through any points
(a0, b0), . . . , (an, bn) where the ai are distinct.

(d) Hence or otherwise, find the unique degree 3 polynomial which passes through the points
(0, 1), (1, 4), (3,−1) and (5, 10).

25

1.5 Maximal linearly independent subsets (non-examinable)

In the previous section, we showed that every finite-dimensional vector space has a basis. What
about other vector spaces? Does every vector space have a basis?

Examples 1.43. To see the difficulty, consider two related spaces and the set β = {1, x, x2, x3, · · · }.

1. The space of polynomials P(R) has standard basis β (Exercise 1.3.12), and is therefore an
infinite-dimensional space with a countable basis: it seems reasonable to write dim P(R) = ℵ0.

2. The space V of formal power series with coefficients in R contains the vector

∞

∑
n=0

xn = 1 + x + x2 + x3 + · · ·

an infinite combination of the elements of β. Plainly β is not a basis of V. But does V have a
basis and, if so, how can we find one?

There are two standard ways to tackle our problem.

1. Broaden the concept of linear combination/span to allow for infinite sums.2 This introduces
a new difficulty, convergence, which takes us into the realm of analysis and requires further
definitions. If you later study Banach and Hilbert spaces, this is the approach you will follow.
Indeed, in the context of power series, β is incredibly useful, even more so than a basis would be!

2. Appeal to Zorn’s Lemma, a technical result equivalent to the (somewhat) controversial axiom of
choice. This is the approach we’ll follow for the remainder of the section.

Definition 1.44. Let F be a set of sets. A subset C ⊆ F is a chaina in F if

∀A, B ∈ C either A ⊆ B or B ⊆ A

A chain C has an upper bound in F if there is some set B ∈ F such that

∀A ∈ C we have A ⊆ B

A set β ∈ F is maximal it is a subset of no member of F but itself.

aAlternatively C is a nest, a tower, or is totally ordered.

The idea is to let F to be the set of all linearly independent subsets of a vector space V. Our goal is
then to hunt for a maximal member of F , since a basis β is precisely a maximal linearly independent set
(see Exercise 1.5.1):

1. β is linearly independent.

2. The only linearly independent subset of V containing β is β itself.
2Definition 1.17 only allows us to conclude, by induction, that any finite sum of vectors ∑n

i=1 vi is well-defined. In the
abstract, i.e. without limits, an infinite sum ∑∞

n=1 vn has no meaning.

26

Examples 1.45. 1. Consider the standard basis β = {i, j, k} of R3. Clearly β is an upper bound for
the following chain of linearly independent subsets

C =
{
{i}, {i, j}, {i, j, k}

}
2. The basis β = {1, x, x2, . . .} of P(R) is an upper bound for the chain

C =
{
{1}, {1, x}, {1, x, x2}, . . .

}
Read this example carefully: the ellipsis hides infinitely many subsets. In particular the upper
bound β does not have to be an element of the chain! It is, however, the union β =

⋃
U∈C

U of all
elements of the chain. . .

Axiom 1.46 (Zorn’s Lemma). Let F be a non-empty family of sets. If every chain C ⊆ F has an
upper bound MC ∈ F , then F has a maximal member.

Theorem 1.47. Every vector space has a basis.

Proof. If V is non-trivial, let F = {linearly independent subsets of V}. Plainly this is non-empty.
Suppose C ⊆ F is a chain and define

MC :=
⋃

U∈C
U

We claim that MC is an upper bound for C in F . For this, we need to show two things:

1. MC ∈ F : that is, MC is a linearly independent set.

2. ∀A ∈ C, we have A ⊆ MC .

The latter is obvious from the definition of union! For the former, suppose that u1, . . . , un ∈ MC are
distinct vectors such that

a1u1 + · · ·+ anun = 0

By the total ordering of C, we seea that ∃U ∈ C such that u1, . . . , un ∈ U. But each U is linearly
independent, whence a1 = · · · = an = 0. It follows that MC ∈ F .
Applying Zorn’s lemma, we see that F has a maximal element β, which is necessarily a basis of V.

aSince ui ∈ MC , ∃Ui ∈ C such that ui ∈ Ui. Now let U = U1 ∪ · · · ∪ Un. By total ordering, one of these Ui contains all
the others: this is U. Note that this only works because the subscript n is finite!

This argument (create an upper bound by taking the union over a chain before invoking Zorn’s
Lemma) is replicated in other areas of mathematics.3 The results of the previous section may be
generalized to cover infinite-dimensional vector spaces. A couple are outlined in the exercises.

3For instance, in abstract algebra to prove the existence of a maximal ideal in a ring.

27

Exercises 1.5 (Remember these are optional!)

1. As defined above, a set β is a maximal linearly independent subset of V if

• β is linearly independent.

• The only linearly independent subset of V containing β is β itself.

The discussion on page 20 shows that every basis is a maximal linearly independent subset.
Prove the converse:

β a maximal linearly independent subset =⇒ β is a basis

(You cannot assume that β is finite: the entire point of this section is that it needn’t be!)

2. Show that categorization 4 on page 23 does not extend to infinite dimensions: specifically, state
a linearly independent subset X of a vector space V such that |X| = dim V, but such that X is
not a basis of V.

3. Prove a more general version of Theorem 1.32: If β is a basis of V, then for all non-zero v ∈ V
there is a unique finite subset {v1, . . . , vn} ⊆ β and unique non-zero scalars a1, . . . , an such that

v = a1v1 + · · ·+ anvn

Our only freedom is in the order of the vectors vi.

(Hint: obtain a contradiction by supposing v ∈ V is a non-zero vector which can be written as a linear
combination of elements of β in two different ways)

4. Prove the infinite-dimensional version of the Extension Theorem: if X is a linearly independent
subset of a vector space V, then there exists a basis of V which contains X.

(Hint: let F be the set of all linearly independent subsets of V which contain X, and mimic the proof of
Theorem 1.47)

5. Consider the set X = {eλx : λ ∈ R}. Investigate the idea that X is a linearly independent set in
the vector space of continuous functions on R, and the relationship of this to the Vandermonde
matrix. It follows that Span X is a subspace of C(R) with uncountably infinite dimension.

28

	Vector Spaces
	Introduction: What is Linear Algebra and why should we care?
	Vector Spaces: Basic Results, Examples and Subspaces
	Linear Combinations & Linear Independence
	Bases and Dimension
	Maximal linearly independent subsets (non-examinable)

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

