## Math 128A: Homework 8 Solutions

Due: August 8

- 1. Show for any induced matrix norm that
  - (a) if I is the identity matrix, then ||I|| = 1.

By definition, we have

$$||I|| = \max_{\|\mathbf{x}\|=1} ||I\mathbf{x}|| = \max_{\|\mathbf{x}\|=1} ||\mathbf{x}|| = 1.$$

(b) if A is invertible, then  $||A^{-1}|| \ge ||A||^{-1}$ 

From (a), we have

$$AA^{-1} = I \Rightarrow ||AA^{-1}|| = ||I|| \Rightarrow ||A|| ||A^{-1}|| \ge 1$$

whence it follows that  $||A^{-1}|| \ge ||A||^{-1}$ .

(c) if ||A - I|| < 1, then A is invertible.

Assume to the contrary that A is not invertible. Then, there exists a non-zero  $\mathbf{x} \in \mathbb{R}^n$  such that  $A\mathbf{x} = \mathbf{0}$ . Note then that

$$(A-I)\mathbf{x} = A\mathbf{x} - \mathbf{x} = -\mathbf{x} \Rightarrow ||(A_I)\mathbf{x}|| = ||\mathbf{x}|| \Rightarrow \frac{||(A-I)\mathbf{x}||}{||\mathbf{x}||} = 1.$$

It follows from the definition of an induced norm that  $||A-I|| \ge 1$ , a contradiction. We conclude that A must be invertible.

2. The Frobenius norm is defined for an  $n \times n$  matrix A by

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

(a) Show that  $||A\mathbf{x}||_2 \leq ||A||_F ||\mathbf{x}||_2$  for any  $\mathbf{x} \in \mathbb{R}^n$ .

We have

$$\begin{aligned} \|A\mathbf{x}\|_{2}^{2} &= \sum_{i=1}^{n} |(A\mathbf{x})_{i}|^{2} \\ &= \sum_{i=1}^{n} \left|\sum_{j=1}^{n} A_{ij} x_{j}\right|^{2} \\ &\leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |A_{ij}|^{2}\right) \left(\sum_{k=1}^{n} |x_{k}|^{2}\right) \quad (\because \text{Cauchy-Schwarz Ineq.}) \\ &= \|A\|_{F}^{2} \|\mathbf{x}\|_{2}^{2} \end{aligned}$$

so that  $||A\mathbf{x}||_2 \le ||A||_F ||\mathbf{x}||_2$ .

(b) Show that  $||AB||_F \leq ||A||_F ||B||_F$  for any two  $n \times n$  matrices A and B.

We have

$$||AB||_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} |(AB)_{ij}|^{2}$$
  

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} A_{ik} B_{kj} \right|^{2}$$
  

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left( \sum_{k=1}^{n} |A_{ik}|^{2} \right) \left( \sum_{l=1}^{n} |B_{lj}|^{2} \right) \quad (\because \text{Cauchy-Schwarz Ineq.})$$
  

$$= \left( \sum_{i=1}^{n} \sum_{k=1}^{n} |A_{ik}|^{2} \right) \left( \sum_{j=1}^{n} \sum_{l=1}^{n} |B_{lj}|^{2} \right)$$
  

$$= ||A||_{F}^{2} ||B||_{F}^{2}$$

whence we conclude that  $||AB||_F \leq ||A||_F ||B||_F$ .

This shows that even though the Frobenius norm isn't an induced norm, it still has many of the nice properties that induced norms possess.

3. Show that if  $\|\cdot\|$  is a norm on  $\mathbb{R}^n$  and A is an invertible matrix, then  $x \mapsto \|Ax\|$  is also a norm on  $\mathbb{R}^n$ .

Observe that

- (i) As  $\|\cdot\|$  is a norm, we have  $\|A\mathbf{x}\| \ge 0$  for all  $\mathbf{x} \in \mathbb{R}^n$ .
- (ii) Suppose that  $||A\mathbf{x}|| = 0$  for some  $\mathbf{x} \in \mathbb{R}^n$ . As  $||\cdot||$  is a norm, it follows that  $A\mathbf{x} = \mathbf{0}$ . As A is invertible, we must have  $\mathbf{x} = \mathbf{0}$ . Conversely, note that  $||A\mathbf{0}|| = ||\mathbf{0}|| = 0$ .

(iii) Let  $a \in \mathbb{R}$ . We then have

$$||A(a\mathbf{x})|| = ||a(A\mathbf{x})|| = |a|||A\mathbf{x}||$$

as  $\|\cdot\|$  is a norm.

(iv) Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ . We then have

$$||A(\mathbf{x} + \mathbf{y})|| = ||A\mathbf{x} + A\mathbf{y}|| \le ||A\mathbf{x}|| + ||A\mathbf{y}||$$

where we used the fact that  $\|\cdot\|$  satisfies the triangle inequality as it is a norm.

As all the properties hold, we conclude that  $x \mapsto ||Ax||$  is also a norm on  $\mathbb{R}^n$ .

4. A square matrix A is said to be *orthogonal* if  $A^T A = I$ . Show that if a matrix is orthogonal and triangular, it must be diagonal. What are the diagonal entries?

It follows from the definition of orthogonality that  $A^{-1} = A^T$ . Recall that the inverse of a lower triangular matrix must also be lower triangular. Thus,  $A^T$  is both lower and upper (as it is the transpose of a lower triangular matrix) triangular; we conclude that  $A^T$ , and hence A, is diagonal.

Let  $d_i$  be the *i*th diagonal entry of A. Then,  $A^T = A$  so the *i*th diagonal entry of  $A^T A$  is  $d_i^2$ . As  $A^T A$  also equals the identity matrix, we have  $d_i^2 = 1 \Rightarrow \boxed{d_i = \pm 1}$ .

5. A matrix is strictly upper triangular if it is upper triangular with zero diagonal elements. Show that if A is an  $n \times n$  strictly upper triangular matrix, then  $A^n = 0$ .

We prove that for  $1 \le k \le n$ , the diagonal and the first (k-1) super-diagonals of  $A^k$  have only zero elements, i.e.,  $(A^k)_{ij} = 0$  for  $j - i \le k - 1$ . Note that the statement holds for k = 1: we are given that the diagonal of A is full of zeros.

Assuming now that it holds for some  $k = k_0$ , we have

$$A^{k_0+1} = AA^{k_0} \Rightarrow (A^{k_0+1})_{ij} = \sum_{l=1}^n A_{il}(A^{k_0})_{lj}.$$
 (1)

Observe that

- (i)  $A_{il} \neq 0$  only if  $l i \ge 1 \Rightarrow l \ge i + 1$ ;
- (ii)  $(A^{k_0})_{lj} \neq 0$  only if  $j l \ge k_0 \Rightarrow l \le j k_0$ .

It follows that in (1), the entry  $(A^{k_0+1})_{ij}$  is non-zero only if

$$i+1 \le j-k_0 \Rightarrow j-i \ge k_0+1.$$

In other words,  $(A^{k_0+1})_{ij} = 0$  if  $j - i \leq k_0$ . This shows that the claim holds for  $k = k_0 + 1$  if it holds for  $k = k_0$ .

It follows from the principle of induction that  $(A^k)_{ij} = 0$  for  $j-i \le k-1$ . In particular, for k = n, we have  $(A^n)_{ij} = 0$  if  $j-i \le n-1$ ; as this inequality is satisfied by all  $i, j \in \{1, 2, ..., n\}$ , we conclude that  $A^n = 0$ .

6. For the following pairs of A and **b**, find (i) the LU factorization of PA where P is an appropriate permutation matrix; (ii) the determinant of A; (iii) the solution to  $A\mathbf{x} = \mathbf{b}$ .

(a) 
$$A = \begin{pmatrix} 2 & -1 & 2 \\ -6 & 3 & 0 \\ 1 & 5 & -1 \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} 10 \\ 0 \\ 1 \end{pmatrix}$ .

(i) We have

We conclude that PA = LU where  $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ ,  $L = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$  and  $U = \begin{pmatrix} 2 & -1 & 2 \\ 0 & 11/2 & 2 \end{pmatrix}$ 

$$U = \begin{pmatrix} 2 & -1 & 2 \\ 0 & 11/2 & -2 \\ 0 & 0 & 6 \end{pmatrix}.$$

(ii) We have det(PA) = det(LU) so that

$$\det(P)\det(A) = \det(L)\det(U) \Rightarrow -\det(A) = (1)(66) \Rightarrow \boxed{\det(A) = -66}.$$

(iii) Note that  $A\mathbf{x} = \mathbf{b} \Rightarrow PA\mathbf{x} = P\mathbf{b} \Rightarrow LU\mathbf{x} = P\mathbf{b}$ . Let  $\mathbf{y} = U\mathbf{x}$ ; we then have  $L\mathbf{y} = P\mathbf{b}$ , i.e.,

$$\begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \\ 0 \end{pmatrix}.$$

Forward Substitution then yields  $y_1 = 10 \Rightarrow y_2 = -4$  and  $y_3 = 30$ . We next solve  $U\mathbf{x} = \mathbf{y}$ :

$$\begin{pmatrix} 2 & -1 & 2\\ 0 & 11/2 & -2\\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 10\\ -4\\ 30 \end{pmatrix}.$$
  
Back Substitution gives  $\boxed{x_3 = 5}, \ \boxed{x_2 = \frac{12}{11}}$  and  $\boxed{x_1 = \frac{6}{11}}$ 

(b) 
$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 5 \\ 1 & -1 & 1 & 7 \\ 2 & 3 & 4 & 6 \end{pmatrix}$$
,  $\mathbf{b} = \begin{pmatrix} -2 \\ 13 \\ -3 \\ 13 \end{pmatrix}$ .

(i) We have

(ii) We have det(PA) = det(LU) so that

$$\det(P)\det(A) = \det(L)\det(U) \Rightarrow -\det(A) = (1)(-40) \Rightarrow \det(A) = 40.$$

(iii) Note that  $A\mathbf{x} = \mathbf{b} \Rightarrow PA\mathbf{x} = P\mathbf{b} \Rightarrow LU\mathbf{x} = P\mathbf{b}$ . Let  $\mathbf{y} = U\mathbf{x}$ ; we then have  $L\mathbf{y} = P\mathbf{b}$ , i.e.,

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & 0 & 3/7 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 13 \\ -3 \\ 13 \end{pmatrix}.$$

Forward Substitution then yields  $y_1 = -2 \Rightarrow y_2 = 17$ ,  $y_3 = 33$  and  $y_4 = 20/7$ . We next solve  $U\mathbf{x} = \mathbf{y}$ :

$$\begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 14 & 9 \\ 0 & 0 & 0 & -20/7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 17 \\ 33 \\ 20/7 \end{pmatrix}.$$
  
Back Substitution gives  $x_4 = -1$ ,  $x_3 = 3$ ,  $x_2 = 1$  and  $x_1 = 2$ .

- 7. For the following numerical schemes, find the amplification factor R(z) and determine if they are A-stable.
  - (a) The three stage Runge-Kutta method

$$\begin{array}{c|cccc} 0 & 0 \\ 1/2 & 1/2 \\ 1 & -1 & 2 \\ \hline & 1/6 & 2/3 & 1/6 \end{array}$$

We apply this method to the problem  $y'(t) = \lambda y$ . We have

$$k_{1} = \lambda u_{i}$$

$$k_{2} = \lambda \left( u_{i} + \frac{h}{2}k_{2} \right) = \lambda u_{i} \left( 1 + \frac{h\lambda}{2} \right)$$

$$k_{3} = \lambda \left( u_{i} - hk_{1} + 2hk_{2} \right) = \lambda u_{i} \left( 1 - h\lambda + 2h\lambda \left( 1 + \frac{h\lambda}{2} \right) \right)$$

$$u_{i+1} = u_{i} + \frac{h}{6} (k_{1} + 4k_{2} + k_{3})$$

Note that

$$k_1 + 4k_2 + k_3 = \lambda u_i \left( 6 + 3h\lambda + (h\lambda)^2 \right)$$

so that

$$u_{i+1} = u_i + u_i \frac{h\lambda}{6} \left( 6 + 3h\lambda + (h\lambda)^2 \right) = u_i \left( 1 + h\lambda + \frac{(h\lambda)^2}{2} + \frac{(h\lambda)^3}{6} \right)$$

We conclude that the amplification factor is

$$R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6}$$



Figure 1: The region of absolute stability for 7(a)

This method would be A-stable if  $|R(z)| \leq 1$  whenever z is a complex number with a negative real part. Note however that |R(-3)| = 2 so this method fails to be A-stable. See Figure 1 for the region of absolute stability

(b) The implicit method

$$u_{i+1} = u_i + \frac{h}{4}(f(t_i, u_i) + 3f(t_{i+1}, u_{i+1}))$$

We apply this method to the problem  $y'(t) = \lambda y$ . We have

$$u_{i+1} = u_i + \frac{h}{4} (\lambda u_i + 3\lambda u_{i+1})$$
  

$$4u_{i+1} = 4u_i + h\lambda(u_i + 3u_{i+1})$$
  

$$(4 - 3\lambda h)u_{i+1} = (4 + \lambda h)u_i$$
  

$$u_{i+1} = \left(\frac{4 + \lambda h}{4 - 3\lambda h}\right)u_i.$$

We conclude that the amplification factor is  $R(z) = \frac{4+z}{4-3z}$ . The region of absolute stability for this method is shown in Figure

The region of absolute stability for this method is shown in Figure 2.



Figure 2: The region of absolute stability for 7(b)

The diagram suggests that this method is A-stable. For a definitive proof, note that

- (i) the only pole of R(z) is at z = 4/3 which does not lie in the left half plane.
- (ii) for any  $b \in \mathbb{R}$ , we have

$$|R(ib)| = \frac{|4+ib|}{|4-3bi|} = \sqrt{\frac{4+b^2}{4+9b^2}} \le 1$$

We conclude that  $|R(z)| \leq 1$  for all  $z \in \mathbb{C}^-$ , i.e., the method is indeed A-stable.