Math 128A: Homework 8 Solutions

Due: August 8

1. Show for any induced matrix norm that
(a) if I is the identity matrix, then $\|I\|=1$.

By definition, we have

$$
\|I\|=\max _{\|\mathbf{x}\|=1}\|I \mathbf{x}\|=\max _{\|\mathbf{x}\|=1}\|\mathbf{x}\|=1
$$

(b) if A is invertible, then $\left\|A^{-1}\right\| \geq\|A\|^{-1}$

From (a), we have

$$
A A^{-1}=I \Rightarrow\left\|A A^{-1}\right\|=\|I\| \Rightarrow\|A\|\left\|A^{-1}\right\| \geq 1
$$

whence it follows that $\left\|A^{-1}\right\| \geq\|A\|^{-1}$.
(c) if $\|A-I\|<1$, then A is invertible.

Assume to the contrary that A is not invertible. Then, there exists a non-zero $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{0}$. Note then that

$$
(A-I) \mathbf{x}=A \mathbf{x}-\mathbf{x}=-\mathbf{x} \Rightarrow\left\|\left(A_{I}\right) \mathbf{x}\right\|=\|\mathbf{x}\| \Rightarrow \frac{\|(A-I) \mathbf{x}\|}{\|\mathbf{x}\|}=1
$$

It follows from the definition of an induced norm that $\|A-I\| \geq 1$, a contradiction. We conclude that A must be invertible.
2. The Frobenius norm is defined for an $n \times n$ matrix A by

$$
\|A\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} .
$$

(a) Show that $\|A \mathbf{x}\|_{2} \leq\|A\|_{F}\|\mathbf{x}\|_{2}$ for any $\mathbf{x} \in \mathbb{R}^{n}$.

We have

$$
\begin{aligned}
\|A \mathbf{x}\|_{2}^{2} & =\sum_{i=1}^{n}\left|(A \mathbf{x})_{i}\right|^{2} \\
& =\sum_{i=1}^{n}\left|\sum_{j=1}^{n} A_{i j} x_{j}\right|^{2} \\
& \leq \sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|^{2}\right)\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right) \quad(\because \text { Cauchy-Schwarz Ineq. }) \\
& =\|A\|_{F}^{2}\|\mathbf{x}\|_{2}^{2}
\end{aligned}
$$

so that $\|A \mathbf{x}\|_{2} \leq\|A\|_{F}\|\mathbf{x}\|_{2}$.
(b) Show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$ for any two $n \times n$ matrices A and B.

We have

$$
\begin{aligned}
\|A B\|_{F}^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left|(A B)_{i j}\right|^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\sum_{k=1}^{n} A_{i k} B_{k j}\right|^{2} \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{k=1}^{n}\left|A_{i k}\right|^{2}\right)\left(\sum_{l=1}^{n}\left|B_{l j}\right|^{2}\right) \quad(\because \text { Cauchy-Schwarz Ineq. }) \\
& =\left(\sum_{i=1}^{n} \sum_{k=1}^{n}\left|A_{i k}\right|^{2}\right)\left(\sum_{j=1}^{n} \sum_{l=1}^{n}\left|B_{l j}\right|^{2}\right) \\
& =\|A\|_{F}^{2}\|B\|_{F}^{2}
\end{aligned}
$$

whence we conclude that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$.
This shows that even though the Frobenius norm isn't an induced norm, it still has many of the nice properties that induced norms possess.
3. Show that if $\|\cdot\|$ is a norm on \mathbb{R}^{n} and A is an invertible matrix, then $x \mapsto\|A x\|$ is also a norm on \mathbb{R}^{n}.

Observe that
(i) As $\|\cdot\|$ is a norm, we have $\|A \mathrm{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(ii) Suppose that $\|A \mathbf{x}\|=0$ for some $\mathbf{x} \in \mathbb{R}^{n}$. As $\|\cdot\|$ is a norm, it follows that $A \mathbf{x}=\mathbf{0}$.

As A is invertible, we must have $\mathbf{x}=\mathbf{0}$.
Conversely, note that $\|A \mathbf{0}\|=\|\mathbf{0}\|=0$.
(iii) Let $a \in \mathbb{R}$. We then have

$$
\|A(a \mathbf{x})\|=\|a(A \mathbf{x})\|=|a|\|A \mathbf{x}\|
$$

as $\|\cdot\|$ is a norm.
(iv) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. We then have

$$
\|A(\mathbf{x}+\mathbf{y})\|=\|A \mathbf{x}+A \mathbf{y}\| \leq\|A \mathbf{x}\|+\|A \mathbf{y}\|
$$

where we used the fact that $\|\cdot\|$ satisfies the triangle inequality as it is a norm.
As all the properties hold, we conclude that $x \mapsto\|A x\|$ is also a norm on \mathbb{R}^{n}.
4. A square matrix A is said to be orthogonal if $A^{T} A=I$. Show that if a matrix is orthogonal and triangular, it must be diagonal. What are the diagonal entries?

It follows from the definition of orthogonality that $A^{-1}=A^{T}$. Recall that the inverse of a lower triangular matrix must also be lower triangular. Thus, A^{T} is both lower and upper (as it is the transpose of a lower triangular matrix) triangular; we conclude that A^{T}, and hence A, is diagonal.
Let d_{i} be the i th diagonal entry of A. Then, $A^{T}=A$ so the i th diagonal entry of $A^{T} A$ is d_{i}^{2}. As $A^{T} A$ also equals the identity matrix, we have $d_{i}^{2}=1 \Rightarrow d_{i}= \pm 1$.
5. A matrix is strictly upper triangular if it is upper triangular with zero diagonal elements. Show that if A is an $n \times n$ strictly upper triangular matrix, then $A^{n}=0$.

We prove that for $1 \leq k \leq n$, the diagonal and the first $(k-1)$ super-diagonals of A^{k} have only zero elements, i.e., $\left(A^{k}\right)_{i j}=0$ for $j-i \leq k-1$. Note that the statement holds for $k=1$: we are given that the diagonal of A is full of zeros.
Assuming now that it holds for some $k=k_{0}$, we have

$$
\begin{equation*}
A^{k_{0}+1}=A A^{k_{0}} \Rightarrow\left(A^{k_{0}+1}\right)_{i j}=\sum_{l=1}^{n} A_{i l}\left(A^{k_{0}}\right)_{l j} \tag{1}
\end{equation*}
$$

Observe that
(i) $A_{i l} \neq 0$ only if $l-i \geq 1 \Rightarrow l \geq i+1$;
(ii) $\left(A^{k_{0}}\right)_{l j} \neq 0$ only if $j-l \geq k_{0} \Rightarrow l \leq j-k_{0}$.

It follows that in (1), the entry $\left(A^{k_{0}+1}\right)_{i j}$ is non-zero only if

$$
i+1 \leq j-k_{0} \Rightarrow j-i \geq k_{0}+1
$$

In other words, $\left(A^{k_{0}+1}\right)_{i j}=0$ if $j-i \leq k_{0}$. This shows that the claim holds for $k=k_{0}+1$ if it holds for $k=k_{0}$.

It follows from the principle of induction that $\left(A^{k}\right)_{i j}=0$ for $j-i \leq k-1$. In particular, for $k=n$, we have $\left(A^{n}\right)_{i j}=0$ if $j-i \leq n-1$; as this inequality is satisfied by all $i, j \in\{1,2, \ldots, n\}$, we conclude that $A^{n}=0$.
6. For the following pairs of A and \mathbf{b}, find (i) the $L U$ factorization of $P A$ where P is an appropriate permutation matrix; (ii) the determinant of A; (iii) the solution to $A \mathbf{x}=\mathbf{b}$.
(a) $A=\left(\begin{array}{ccc}2 & -1 & 2 \\ -6 & 3 & 0 \\ 1 & 5 & -1\end{array}\right), \mathbf{b}=\left(\begin{array}{c}10 \\ 0 \\ 1\end{array}\right)$.
(i) We have

$$
\left.\left.\begin{array}{rl}
\left(R_{2}-(-3) R_{1} \rightarrow R_{2}\right) \\
\left(R_{3}-(1 / 2) R_{1} \rightarrow R_{3}\right)
\end{array}\right]\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 0 & 6 \\
0 & 11 / 2 & -2
\end{array}\right)\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 11 / 2 & -2 \\
0 & 0 & 6
\end{array}\right), ~ \$
$$

We conclude that $P A=L U$ where $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), L=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$ and $U=\left(\begin{array}{ccc}2 & -1 & 2 \\ 0 & 11 / 2 & -2 \\ 0 & 0 & 6\end{array}\right)$.
(ii) We have $\operatorname{det}(P A)=\operatorname{det}(L U)$ so that

$$
\operatorname{det}(P) \operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U) \Rightarrow-\operatorname{det}(A)=(1)(66) \Rightarrow \operatorname{det}(A)=-66 .
$$

(iii) Note that $A \mathbf{x}=\mathbf{b} \Rightarrow P A \mathbf{x}=P \mathbf{b} \Rightarrow L U \mathbf{x}=P \mathbf{b}$. Let $\mathbf{y}=U \mathbf{x}$; we then have $L \mathbf{y}=P \mathbf{b}$, i.e.,

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
10 \\
1 \\
0
\end{array}\right)
$$

Forward Substitution then yields $y_{1}=10 \Rightarrow y_{2}=-4$ and $y_{3}=30$. We next solve $U \mathbf{x}=\mathbf{y}$:

$$
\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 11 / 2 & -2 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
10 \\
-4 \\
30
\end{array}\right)
$$

Back Substitution gives $x_{3}=5, x_{2}=\frac{12}{11}$ and $x_{1}=\frac{6}{11}$.
(b) $A=\left(\begin{array}{cccc}1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 5 \\ 1 & -1 & 1 & 7 \\ 2 & 3 & 4 & 6\end{array}\right), \mathbf{b}=\left(\begin{array}{c}-2 \\ 13 \\ -3 \\ 13\end{array}\right)$.
(i) We have

$$
\begin{aligned}
& \begin{array}{l}
\left(R_{2}-(2) R_{1} \rightarrow R_{2}\right) \\
\left(R_{3}-(1) R_{1} \rightarrow R_{3}\right) \\
\left(R_{4}-(2) R_{1} \rightarrow R_{4}\right)
\end{array} \longrightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 0 & 6 & 1 \\
0 & -2 & 2 & 5 \\
0 & 1 & 6 & 2
\end{array}\right) \\
& \left(R_{2} \leftrightarrow R_{4}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 6 & 2 \\
0 & -2 & 2 & 5 \\
0 & 0 & 6 & 1
\end{array}\right) \\
& \left(R_{3}-(-2) R_{2} \rightarrow R_{3}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 6 & 2 \\
0 & 0 & 14 & 9 \\
0 & 0 & 6 & 1
\end{array}\right) \\
& \left(R_{4}-(3 / 7) R_{3} \rightarrow R_{4}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 6 & 2 \\
0 & 0 & 14 & 9 \\
0 & 0 & 0 & -20 / 7
\end{array}\right) \\
& \text { We conclude that } P A=L U \text { where } P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
2 & 0 & 3 / 7 & 1
\end{array}\right)
\end{aligned}
$$

and $U=\left(\begin{array}{cccc}1 & 1 & -1 & 2 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 14 & 9 \\ 0 & 0 & 0 & -20 / 7\end{array}\right)$.
(ii) We have $\operatorname{det}(P A)=\operatorname{det}(L U)$ so that

$$
\operatorname{det}(P) \operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U) \Rightarrow-\operatorname{det}(A)=(1)(-40) \Rightarrow \operatorname{det}(A)=40
$$

(iii) Note that $A \mathbf{x}=\mathbf{b} \Rightarrow P A \mathbf{x}=P \mathbf{b} \Rightarrow L U \mathbf{x}=P \mathbf{b}$. Let $\mathbf{y}=U \mathbf{x}$; we then have $L \mathbf{y}=P \mathbf{b}$, i.e.,

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
2 & 0 & 3 / 7 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
13 \\
-3 \\
13
\end{array}\right) .
$$

Forward Substitution then yields $y_{1}=-2 \Rightarrow y_{2}=17, y_{3}=33$ and $y_{4}=20 / 7$.
We next solve $U \mathbf{x}=\mathbf{y}$:

$$
\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 6 & 2 \\
0 & 0 & 14 & 9 \\
0 & 0 & 0 & -20 / 7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
17 \\
33 \\
20 / 7
\end{array}\right) .
$$

Back Substitution gives $x_{4}=-1, x_{3}=3, x_{2}=1$ and $x_{1}=2$.
7. For the following numerical schemes, find the amplification factor $R(z)$ and determine if they are A-stable.
(a) The three stage Runge-Kutta method

0	0		
$1 / 2$	$1 / 2$		
1	-1	2	
	$1 / 6$	$2 / 3$	$1 / 6$

We apply this method to the problem $y^{\prime}(t)=\lambda y$. We have

$$
\begin{aligned}
k_{1} & =\lambda u_{i} \\
k_{2} & =\lambda\left(u_{i}+\frac{h}{2} k_{2}\right)=\lambda u_{i}\left(1+\frac{h \lambda}{2}\right) \\
k_{3} & =\lambda\left(u_{i}-h k_{1}+2 h k_{2}\right)=\lambda u_{i}\left(1-h \lambda+2 h \lambda\left(1+\frac{h \lambda}{2}\right)\right) \\
u_{i+1} & =u_{i}+\frac{h}{6}\left(k_{1}+4 k_{2}+k_{3}\right)
\end{aligned}
$$

Note that

$$
k_{1}+4 k_{2}+k_{3}=\lambda u_{i}\left(6+3 h \lambda+(h \lambda)^{2}\right)
$$

so that

$$
u_{i+1}=u_{i}+u_{i} \frac{h \lambda}{6}\left(6+3 h \lambda+(h \lambda)^{2}\right)=u_{i}\left(1+h \lambda+\frac{(h \lambda)^{2}}{2}+\frac{(h \lambda)^{3}}{6}\right) .
$$

We conclude that the amplification factor is

$$
R(z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6} .
$$

Figure 1: The region of absolute stability for 7(a)

This method would be A-stable if $|R(z)| \leq 1$ whenever z is a complex number with a negative real part. Note however that $|R(-3)|=2$ so this method fails to be A-stable. See Figure 1 for the region of absolute stability
(b) The implicit method

$$
u_{i+1}=u_{i}+\frac{h}{4}\left(f\left(t_{i}, u_{i}\right)+3 f\left(t_{i+1}, u_{i+1}\right)\right)
$$

We apply this method to the problem $y^{\prime}(t)=\lambda y$. We have

$$
\begin{aligned}
u_{i+1} & =u_{i}+\frac{h}{4}\left(\lambda u_{i}+3 \lambda u_{i+1}\right) \\
4 u_{i+1} & =4 u_{i}+h \lambda\left(u_{i}+3 u_{i+1}\right) \\
(4-3 \lambda h) u_{i+1} & =(4+\lambda h) u_{i} \\
u_{i+1} & =\left(\frac{4+\lambda h}{4-3 \lambda h}\right) u_{i} .
\end{aligned}
$$

We conclude that the amplification factor is $R(z)=\frac{4+z}{4-3 z}$.
The region of absolute stability for this method is shown in Figure 2.

Figure 2: The region of absolute stability for 7(b)
The diagram suggests that this method is A-stable. For a definitive proof, note that
(i) the only pole of $R(z)$ is at $z=4 / 3$ which does not lie in the left half plane.
(ii) for any $b \in \mathbb{R}$, we have

$$
|R(i b)|=\frac{|4+i b|}{|4-3 b i|}=\sqrt{\frac{4+b^{2}}{4+9 b^{2}}} \leq 1
$$

We conclude that $|R(z)| \leq 1$ for all $z \in \mathbb{C}^{-}$, i.e., the method is indeed A-stable.

