Math 128A: Homework 8 Solutions

Due: August 8

1. Show for any induced matrix norm that
(a) if I is the identity matrix, then ||I|| = 1.
By definition, we have

11| = max |1 7x]| = max|Jx] = 1.
lIx|l=1 [Ix|l=1

(b) if A is invertible, then [[A7Y| > || A|~*
From (a), we have
AAT =T = ||AAY| = 1]l = [AA] > 1
whence it follows that ||A~Y|| > || Al 7"
(c) if ||A — ]| < 1, then A is invertible.

Assume to the contrary that A is not invertible. Then, there exists a non-zero
x € R"™ such that Ax = 0. Note then that

(A= Dx|| _

(A-Dx=Ax—x=—x= [[(A))x] = |Ix|| = =1.

Il

It follows from the definition of an induced norm that ||A—I|| > 1, a contradiction.
We conclude that A must be invertible.

2. The Frobenius norm is defined for an n x n matrix A by
n o n 1/2
e = (33 mr)
i=1 j=1

(a) Show that ||Ax||s < [|A]|r|/x]||2 for any x € R™.



We have

1Ax[l; = > [(Ax)if?
=1

= DDAy

2

i=1 | j=1

<> (Z |Aij’2> <Z !xk|2> (-.- Cauchy-Schwarz Ineq.)
i=1 \j=1 k=1

= [lAlE ]

so that [[Axlls < [[A]lr[x]l2.
(b) Show that ||AB||r < ||A||r||B]|r for any two n x n matrices A and B.

We have

IABIE = D I(AB)yl’

i—1 j—1
n n n 2
= ZZ ZAikBkj
i=1 j=1 | k=1
< z”: 2": (z”: |Aik|2> (i \Blj|2> (.- Cauchy-Schwarz Ineq.)
i=1 j=1 \k=1 I=1
- (T (3]
i=1 k=1 =1 =1
= [AlZlIBI%

whence we conclude that |AB||r < ||A||r|| B F.

This shows that even though the Frobenius norm isn’t an induced norm, it still has
many of the nice properties that induced norms possess.

. Show that if ||-|| is a norm on R™ and A is an invertible matrix, then x — ||Az|| is also
a norm on R".

Observe that

(i) As ||| is a norm, we have ||Ax|| > 0 for all x € R".

(ii) Suppose that ||Ax|| = 0 for some x € R™. As ||-|| is a norm, it follows that Ax = 0.
As A is invertible, we must have x = 0.

Conversely, note that ||A0| = ||0|| = 0.



(iii) Let a € R. We then have
[A(ax)[| = [la(Ax)[| = |al[|Ax]
as ||| is a norm.
(iv) Let x,y € R". We then have
[Ax+ )|l = [[Ax + Ay || < [[Ax[| + || Ay
where we used the fact that ||-|| satisfies the triangle inequality as it is a norm.
As all the properties hold, we conclude that z — ||Az|| is also a norm on R™.

. A square matrix A is said to be orthogonal if ATA = I. Show that if a matrix is
orthogonal and triangular, it must be diagonal. What are the diagonal entries?

It follows from the definition of orthogonality that A=! = AT, Recall that the inverse
of a lower triangular matrix must also be lower triangular. Thus, A7 is both lower and
upper (as it is the transpose of a lower triangular matrix) triangular; we conclude that
AT and hence A, is diagonal.

Let d; be the ith diagonal entry of A. Then, AT = A so the ith d1agonal entry of ATA
is d?. As AT A also equals the identity matrix, we have d? = 1 = .

. A matrix is strictly upper triangular if it is upper triangular with zero diagonal el-
ements. Show that if A is an n x n strictly upper triangular matrix, then A" =

We prove that for 1 < k < n, the diagonal and the first (k — 1) super-diagonals of A*
have only zero elements, i.e., (4%);; = 0 for j —i < k — 1. Note that the statement
holds for k = 1: we are given that the diagonal of A is full of zeros.

Assuming now that it holds for some k = ky, we have
Ak0+1 _ AAko Ako—l—l ) ZAzl (1)

Observe that
(i) Au#0onlyifl—i>1=1>i+1,;
(ii) (Ako);; #£ 0 only if j — 1> ko =1 < j — ky.
It follows that in (1), the entry (A**1),; is non-zero only if
i+1<j—ko=>7—i>ko+1

In other words, (A**!),; = 0if j —i < ko. This shows that the claim holds for
k = ko + 1 if it holds for k = k.

It follows from the principle of induction that (Ak)z-j = 0 for j—i < k—1. In particular,
for k = n, we have (A");; = 0if j — ¢ < n — 1; as this inequality is satisfied by all
i,7 €{1,2,...,n}, we conclude that A™ = 0.
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6. For the following pairs of A and b, find (i) the LU factorization of PA where P is
an appropriate permutation matrix; (ii) the determinant of A; (iii) the solution to

Ax = b.

2 -1 2 10
(a) A=|-6 3 0 ],b=1]0
1 5 -1 1
(i) We have
2 -1 2
(RQ—(—3)R1—>R2> _ . 0 0 6
2 -1 2
(RQHR;;) — 0 11/2 —2
0 O 6
1 00 1 00
We conclude that PA = LU where P= {0 0 1|, L=1{1/2 1 0] and
010 -3 01
2 -1 2
U=10 11/2 -2
0 O 6

(ii)) We have det(PA) = det(LU) so that

det(P) det(A) = det(L) det(U) = — det(A) = (1)(66) = |det(A) = —66|.

(iii) Note that Ax = b = PAx = Pb = LUx = Pb. Let y = Ux; we then have

Ly = Pb, i.e.,
1 00 Y1 10
1/2 1 0 |l =11

Forward Substitution then yields y; = 10 = y» = —4 and y3 = 30. We next
solve Ux = y:

2 -1 2 1 10

0 11/2 -2 o | = | —4

0O O 6 T3 30

Back Substitution ives Ty = 1—2 and |z; = E
g 3 — ) 2 — 11 1 — 11 .

1 1 -1 2 -2
2 4 5 13
(b) A= 1 -1 1 7 b= -3
2 3 4 6 13



(i) We have

1 1 -1 2
(R4 — (2)R1 — R4) 0 1 6 9
1 1 -1 2
0 1 6 2
(R2<—>R4) — 0 —2 9 5
0 O 6 1
11 -1 2
01 6 2
(Rg—(—Z)Rg%Rg) — 00 14 9
00 6 1
11 -1 2
01 6 2
0 0 —20/7
1 0 0 O 1 0 0 O
0 0 01 2 1 0 O
We conclude that PA = LU where P = 0010 , L= 1 -9 1 0
01 00 2 0 3/7 1
1 1 -1 2
01 6 2
mdU=140 14 9
00 0 —20/7

(ii)) We have det(PA) = det(LU) so that

det(P) det(A) = det(L) det(U) = — det(A) = (1)(—40) = [ det(A) = 40]

(iii) Note that Ax =b = PAx = Pb = LUx = Pb. Let y = Ux; we then have
Ly = Pb, ie.,

1 0 0 0\ [u —2
2 1 0 Offw]| |13
1 -2 1 of |yl = |-3
2 0 3/7 1) \w 13

Forward Substitution then yields y; = —2 = y = 17, y3 = 33 and y4, = 20/7.
We next solve Ux = y:

1 1 -1 2 1 -2
01 6 2 ro | 17
0 0 14 9 3| | 33
00 0 -—20/7 Ty 20/7
Back Substitution gives x4 = —1| |23 = 3| |22 =1 ‘ and ’xl =2 ‘
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7. For the following numerical schemes, find the amplification factor R(z) and determine
if they are A-stable.

(a) The three stage Runge-Kutta method

0] o
1/21/2
1| -1 2
| 1/6 2/3 1/6

We apply this method to the problem 3/(¢) = A\y. We have
kl = )\'Lbl

h hA

h
Uip1 = U+ g(lﬁ + 4ko + k3)

Note that
ki + 4ks + ks = Ay, (6 + 3R\ + (hA)?)

so that

(hA)? (hA)?’)
- .

hA

We conclude that the amplification factor is

22 28

=1 S
R(2) +z+2—|—6

Figure 1: The region of absolute stability for 7(a)



This method would be A-stable if |R(z)| < 1 whenever z is a complex number
with a negative real part. Note however that |R(—3)| = 2 so this method fails to
be A-stable. See Figure 1 for the region of absolute stability

(b) The implicit method

h
1%+127%4‘Z(f@uuﬁ‘+3fﬁruyuwdﬁ

We apply this method to the problem %/(¢) = \y. We have

h
Uir1 = U; + Z()\Ul + 3)\Ui+1)
4Ui+1 = 4Uz + h)\(u, + 3Ui+1)

4+ A\h
Uiy1 = 41— 3\h Uy

4
We conclude that the amplification factor is | R(z) = 1 +32 .
— 3z

The region of absolute stability for this method is shown in Figure 2.

Re(z)

Figure 2: The region of absolute stability for 7(b)

The diagram suggests that this method is A-stable. For a definitive proof, note
that

(i) the only pole of R(z) is at z = 4/3 which does not lie in the left half plane.
(ii) for any b € R, we have

. P R =
b f— p—t < ]_,
RO = = = Vg0 =

We conclude that |[R(z)| <1 for all z € C™, i.e., the method is indeed A-stable.




