
Math 128A: Homework 8 Solutions

Due: August 8

1. Show for any induced matrix norm that

(a) if I is the identity matrix, then ‖I‖ = 1.

By definition, we have

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

(b) if A is invertible, then ‖A−1‖ ≥ ‖A‖−1

From (a), we have

AA−1 = I ⇒ ‖AA−1‖ = ‖I‖ ⇒ ‖A‖‖A−1‖ ≥ 1

whence it follows that ‖A−1‖ ≥ ‖A‖−1.
(c) if ‖A− I‖ < 1, then A is invertible.

Assume to the contrary that A is not invertible. Then, there exists a non-zero
x ∈ Rn such that Ax = 0. Note then that

(A− I)x = Ax− x = −x⇒ ‖(AI)x‖ = ‖x‖ ⇒ ‖(A− I)x‖
‖x‖

= 1.

It follows from the definition of an induced norm that ‖A−I‖ ≥ 1, a contradiction.
We conclude that A must be invertible.

2. The Frobenius norm is defined for an n× n matrix A by

‖A‖F =

(
n∑

i=1

n∑
j=1

|aij|2
)1/2

.

(a) Show that ‖Ax‖2 ≤ ‖A‖F‖x‖2 for any x ∈ Rn.
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We have

‖Ax‖22 =
n∑

i=1

|(Ax)i|2

=
n∑

i=1

∣∣∣∣∣
n∑

j=1

Aijxj

∣∣∣∣∣
2

≤
n∑

i=1

(
n∑

j=1

|Aij|2
)(

n∑
k=1

|xk|2
)

(∵ Cauchy-Schwarz Ineq.)

= ‖A‖2F‖x‖22

so that ‖Ax‖2 ≤ ‖A‖F‖x‖2.
(b) Show that ‖AB‖F ≤ ‖A‖F‖B‖F for any two n× n matrices A and B.

We have

‖AB‖2F =
n∑

i=1

n∑
j=1

|(AB)ij|2

=
n∑

i=1

n∑
j=1

∣∣∣∣∣
n∑

k=1

AikBkj

∣∣∣∣∣
2

≤
n∑

i=1

n∑
j=1

(
n∑

k=1

|Aik|2
)(

n∑
l=1

|Blj|2
)

(∵ Cauchy-Schwarz Ineq.)

=

(
n∑

i=1

n∑
k=1

|Aik|2
)(

n∑
j=1

n∑
l=1

|Blj|2
)

= ‖A‖2F‖B‖2F

whence we conclude that ‖AB‖F ≤ ‖A‖F‖B‖F .

This shows that even though the Frobenius norm isn’t an induced norm, it still has
many of the nice properties that induced norms possess.

3. Show that if ‖·‖ is a norm on Rn and A is an invertible matrix, then x 7→ ‖Ax‖ is also
a norm on Rn.

Observe that

(i) As ‖·‖ is a norm, we have ‖Ax‖ ≥ 0 for all x ∈ Rn.

(ii) Suppose that ‖Ax‖ = 0 for some x ∈ Rn. As ‖·‖ is a norm, it follows that Ax = 0.
As A is invertible, we must have x = 0.

Conversely, note that ‖A0‖ = ‖0‖ = 0.
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(iii) Let a ∈ R. We then have

‖A(ax)‖ = ‖a(Ax)‖ = |a|‖Ax‖

as ‖·‖ is a norm.

(iv) Let x,y ∈ Rn. We then have

‖A(x + y)‖ = ‖Ax + Ay‖ ≤ ‖Ax‖+ ‖Ay‖

where we used the fact that ‖·‖ satisfies the triangle inequality as it is a norm.

As all the properties hold, we conclude that x 7→ ‖Ax‖ is also a norm on Rn.

4. A square matrix A is said to be orthogonal if ATA = I. Show that if a matrix is
orthogonal and triangular, it must be diagonal. What are the diagonal entries?

It follows from the definition of orthogonality that A−1 = AT . Recall that the inverse
of a lower triangular matrix must also be lower triangular. Thus, AT is both lower and
upper (as it is the transpose of a lower triangular matrix) triangular; we conclude that
AT , and hence A, is diagonal.

Let di be the ith diagonal entry of A. Then, AT = A so the ith diagonal entry of ATA
is d2i . As ATA also equals the identity matrix, we have d2i = 1⇒ di = ±1 .

5. A matrix is strictly upper triangular if it is upper triangular with zero diagonal el-
ements. Show that if A is an n × n strictly upper triangular matrix, then An = 0.

We prove that for 1 ≤ k ≤ n, the diagonal and the first (k − 1) super-diagonals of Ak

have only zero elements, i.e., (Ak)ij = 0 for j − i ≤ k − 1. Note that the statement
holds for k = 1: we are given that the diagonal of A is full of zeros.

Assuming now that it holds for some k = k0, we have

Ak0+1 = AAk0 ⇒ (Ak0+1)ij =
n∑

l=1

Ail(A
k0)lj. (1)

Observe that

(i) Ail 6= 0 only if l − i ≥ 1⇒ l ≥ i+ 1;

(ii) (Ak0)lj 6= 0 only if j − l ≥ k0 ⇒ l ≤ j − k0.

It follows that in (1), the entry (Ak0+1)ij is non-zero only if

i+ 1 ≤ j − k0 ⇒ j − i ≥ k0 + 1.

In other words, (Ak0+1)ij = 0 if j − i ≤ k0. This shows that the claim holds for
k = k0 + 1 if it holds for k = k0.

It follows from the principle of induction that (Ak)ij = 0 for j−i ≤ k−1. In particular,
for k = n, we have (An)ij = 0 if j − i ≤ n − 1; as this inequality is satisfied by all
i, j ∈ {1, 2, . . . , n}, we conclude that An = 0.
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6. For the following pairs of A and b, find (i) the LU factorization of PA where P is
an appropriate permutation matrix; (ii) the determinant of A; (iii) the solution to
Ax = b.

(a) A =

 2 −1 2
−6 3 0
1 5 −1

, b =

10
0
1

.

(i) We have

(R2 − (−3)R1 → R2)
(R3 − (1/2)R1 → R3)

−→

2 −1 2
0 0 6
0 11/2 −2


(R2 ↔ R3) −→

2 −1 2
0 11/2 −2
0 0 6



We conclude that PA = LU where P =

1 0 0
0 0 1
0 1 0

, L =

 1 0 0
1/2 1 0
−3 0 1

 and

U =

2 −1 2
0 11/2 −2
0 0 6

.

(ii) We have det(PA) = det(LU) so that

det(P ) det(A) = det(L) det(U)⇒ − det(A) = (1)(66)⇒ det(A) = −66 .

(iii) Note that Ax = b⇒ PAx = Pb⇒ LUx = Pb. Let y = Ux; we then have
Ly = Pb, i.e.,  1 0 0

1/2 1 0
−3 0 1

y1y2
y3

 =

10
1
0

 .

Forward Substitution then yields y1 = 10 ⇒ y2 = −4 and y3 = 30. We next
solve Ux = y: 2 −1 2

0 11/2 −2
0 0 6

x1x2
x3

 =

10
−4
30

 .

Back Substitution gives x3 = 5 , x2 =
12

11
and x1 =

6

11
.

(b) A =


1 1 −1 2
2 2 4 5
1 −1 1 7
2 3 4 6

, b =


−2
13
−3
13

.
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(i) We have

(R2 − (2)R1 → R2)
(R3 − (1)R1 → R3)
(R4 − (2)R1 → R4)

−→


1 1 −1 2
0 0 6 1
0 −2 2 5
0 1 6 2



(R2 ↔ R4) −→


1 1 −1 2
0 1 6 2
0 −2 2 5
0 0 6 1



(R3 − (−2)R2 → R3) −→


1 1 −1 2
0 1 6 2
0 0 14 9
0 0 6 1



(R4 − (3/7)R3 → R4) −→


1 1 −1 2
0 1 6 2
0 0 14 9
0 0 0 −20/7



We conclude that PA = LU where P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, L =


1 0 0 0
2 1 0 0
1 −2 1 0
2 0 3/7 1


and U =


1 1 −1 2
0 1 6 2
0 0 14 9
0 0 0 −20/7

.

(ii) We have det(PA) = det(LU) so that

det(P ) det(A) = det(L) det(U)⇒ − det(A) = (1)(−40)⇒ det(A) = 40 .

(iii) Note that Ax = b⇒ PAx = Pb⇒ LUx = Pb. Let y = Ux; we then have
Ly = Pb, i.e., 

1 0 0 0
2 1 0 0
1 −2 1 0
2 0 3/7 1



y1
y2
y3
y4

 =


−2
13
−3
13

 .

Forward Substitution then yields y1 = −2⇒ y2 = 17, y3 = 33 and y4 = 20/7.
We next solve Ux = y:

1 1 −1 2
0 1 6 2
0 0 14 9
0 0 0 −20/7



x1
x2
x3
x4

 =


−2
17
33

20/7

 .

Back Substitution gives x4 = −1 , x3 = 3 , x2 = 1 and x1 = 2 .
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7. For the following numerical schemes, find the amplification factor R(z) and determine
if they are A-stable.

(a) The three stage Runge-Kutta method

0 0
1/2 1/2
1 −1 2

1/6 2/3 1/6

We apply this method to the problem y′(t) = λy. We have

k1 = λui

k2 = λ

(
ui +

h

2
k2

)
= λui

(
1 +

hλ

2

)
k3 = λ (ui − hk1 + 2hk2) = λui

(
1− hλ+ 2hλ

(
1 +

hλ

2

))
ui+1 = ui +

h

6
(k1 + 4k2 + k3)

Note that
k1 + 4k2 + k3 = λui

(
6 + 3hλ+ (hλ)2

)
so that

ui+1 = ui + ui
hλ

6

(
6 + 3hλ+ (hλ)2

)
= ui

(
1 + hλ+

(hλ)2

2
+

(hλ)3

6

)
.

We conclude that the amplification factor is

R(z) = 1 + z +
z2

2
+
z3

6
.
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Figure 1: The region of absolute stability for 7(a)
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This method would be A-stable if |R(z)| ≤ 1 whenever z is a complex number
with a negative real part. Note however that |R(−3)| = 2 so this method fails to
be A-stable. See Figure 1 for the region of absolute stability

(b) The implicit method

ui+1 = ui +
h

4
(f(ti, ui) + 3f(ti+1, ui+1))

We apply this method to the problem y′(t) = λy. We have

ui+1 = ui +
h

4
(λui + 3λui+1)

4ui+1 = 4ui + hλ(ui + 3ui+1)

(4− 3λh)ui+1 = (4 + λh)ui

ui+1 =

(
4 + λh

4− 3λh

)
ui.

We conclude that the amplification factor is R(z) =
4 + z

4− 3z
.

The region of absolute stability for this method is shown in Figure 2.
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Figure 2: The region of absolute stability for 7(b)

The diagram suggests that this method is A-stable. For a definitive proof, note
that

(i) the only pole of R(z) is at z = 4/3 which does not lie in the left half plane.

(ii) for any b ∈ R, we have

|R(ib)| = |4 + ib|
|4− 3bi|

=

√
4 + b2

4 + 9b2
≤ 1.

We conclude that |R(z)| ≤ 1 for all z ∈ C−, i.e., the method is indeed A-stable.
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