Spring 2012

Chapter 4: Exponential and Logarithmic Functions

Chapter 4.1: Exponential Functions

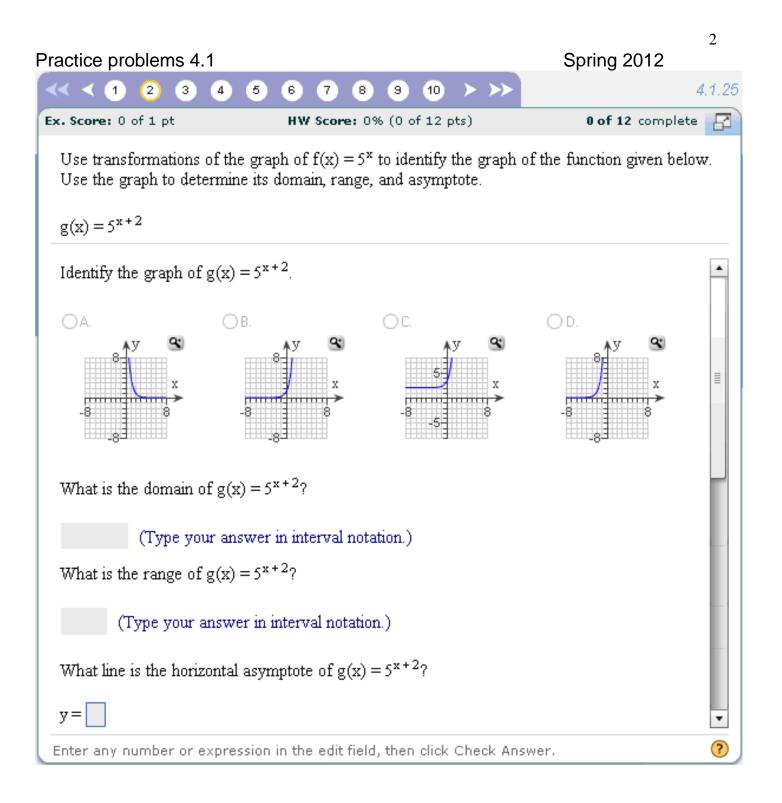
Exponential Functions are of the form $f(x) = b^x$, where the base *b* is a number b > 0 but not equal to 1 and where x is any real number. The exponential function $f(x) = b^x$ is read as the **exponential function f with base b**. Exponential Functions are very useful in real-world applications. They are used to model situations involving Inflation of Cost, Financial Investments, Population Growth, Growth of Epidemics, Radioactive Decay, and more.

- Objective 1, 2: Evaluating and Graphing Exponential Functions(p413)
 - Evaluating exponential functions means to "plug in" a known x-value into the function and calculate the result. You will need to use the key on your TI-83/84 calculator. Use ______ when evaluating functions.
 - Characteristics of Exponential Functions $f(x) = b^x$ and their graphs:
 - Domain is $(-\infty,\infty)$ Range is $(0,\infty)$
 - y-intercept is 1 because $f(0) = b^0 = 1$ (where $b \neq 0$)
 - if base b>1, then f(x) = b^x increases ______
 if base 0<b<1, then f(x) = b^x decreases ______
 - _____ is the equation for the Horizontal Asymptote.

(From the graph, $f(x) = b^x$ is a one-to-one function, so it has an _____.)

- Objective 3, 4: Natural base e; Compound Interest Formulas(p417,419)
 - The irrational number e is a value that $\left(1+\frac{1}{n}\right)^n$ approaches as $n \to \infty$.

Use a TABLE and enter large values of n,(10, 100, 1000, 10000,...) and


you can see that the value $\left(1+\frac{1}{n}\right)^n$ is approximately _____.

We call this approximate value the natural base *e*. It is used to model natural exponential behavior that increases or decreases.

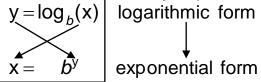
- There are 2 Compound Interest Formulas used to calculate Total Investment amounts in this section:
 - For *n* compounding periods per year use $A = P\left(1 + \frac{r}{n}\right)^{(n) \cdot (t)}$ where

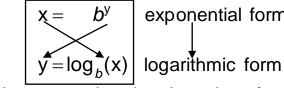
A is Total amount, P is beginning amount, r is interest rate, t is time in years, and n is number of compounding periods per year.

• For continuous compounding use $A = P \cdot e^{(r) \cdot (t)}$ where A is Total amount, P is beginning amount, r is interest rate, t is time in years. You will need to use 2^{nd} LN when entering $e^{(r) \cdot (t)}$.

Practice problems 4.1			Spring 2012	3
<< < 1 2 3 4 5	6 7 8 9	10 > >>		4.1.53
Ex. Score: 0 of 1 pt	HW Score: 0% (0 of	12 pts)	0 of 12 complet	e 🗗
Use the compound interest for Round answers to the nearest	mulas $A = P\left(1 + \frac{r}{n}\right)^{nt}$	and A = Pe ^{rt} f	to solve the problem give	en.
Find the accumulated value of the money is a. compounded se compounded continuously.		-		
a. What is the accumulated va	lue if the money is co	mpounded sen	iiannually?	•
\$ (Round your answ	er to the nearest cent	.)		
b .What is the accumulated value	le if the money is con	npounded quar	terly?	≣
\$ (Round your answ	er to the nearest cent	.)		
c. What is the accumulated val	ue if the money is cor	npounded mon	thly?	
\$ (Round your answ	er to the nearest cent	.)		
d. What is the accumulated val	ue if the money is co	mpounded cont	inuously?	
(Round your answ	er to the nearest cent	.)		•
Enter any number or expression	in the edit field, then	click Check An:	swer.	?

Practice problems 4.1	Spring 2012	4
<<>< 1 2 3 4 5 6 7 8 9 10 ≻ >>	4	.1.65
Ex. Score: 0 of 1 pt HW Score: 0% (0 of 12 pts)	0 of 12 complete	B
Use a calculator with a y^x key or a \land key to solve the following.		
The exponential function $f(x) = 567(1.032)^x$ models the population of a x years after 1975. Complete parts (a) – (e).	a country, f(x), in million	15,
a. Substitute 0 for x and, without using a calculator, find the country's $_{\mathrm{f}}$	population in 1975.	•
The country's population in 1975 was million.		
b. Substitute 22 for x and use your calculator to find the country's population, in the year 1997 as modeled by this function.	ulation, to the nearest	
The country's population in 1997 was million.		
c. Find the country's population, to the nearest million, in the year 2019 function.	as predicted by this	L
The country's population in 2019 will be million.		L
d . Find the country's population, to the nearest million, in the year 2041 function.	as predicted by this	L
The country's population in 2041 will be million.		L
e. What appears to be happening to the country's population every 22	years?	L
$\bigcirc A$. It appears that the population is growing by a factor of 3 every	22 years.	L
$\bigcirc B$. It appears that the population is growing by a factor of 2 every	22 years.	
$\bigcirc C$. There does not appear to be a pattern.		
$\bigcirc D$. It appears that the population is decreasing by a factor of $\frac{1}{2}$ even	ery 22 years.	•
Click to select your answer, then click Check Answer.		?


Spring 2012


Chapter 4: Exponential and Logarithmic Functions

Logarithmic Functions Chapter 4.2:

Logarithmic Functions are of the form $f(x) = \log_{b}(x)$, where the base b is a number _____ but not equal to 1 and where x > 0. The function $f(x) = \log_b(x)$ is read as the logarithmic function f with base b. Logarithms are merely an exponent for an indicated base. Logarithmic Functions are very useful in real-world applications and are used to model Earthquake and Sound Intensity, Acidity of Aqueous Solutions, Human Memory, and more.

- Objective 1,2 3: Change between Logarithmic and Exponential form; Evaluate logarithms(p425)
 - To change between exponential and logarithmic forms using the crossing method:
 - line up the equal signs
 - identify base b and write as exponential or logarithmic form
 - switch x and y expressions

exponential form

To evaluate logarithms by inspection, remember that the value of a logarithm is merely an _____ for an indicated base.

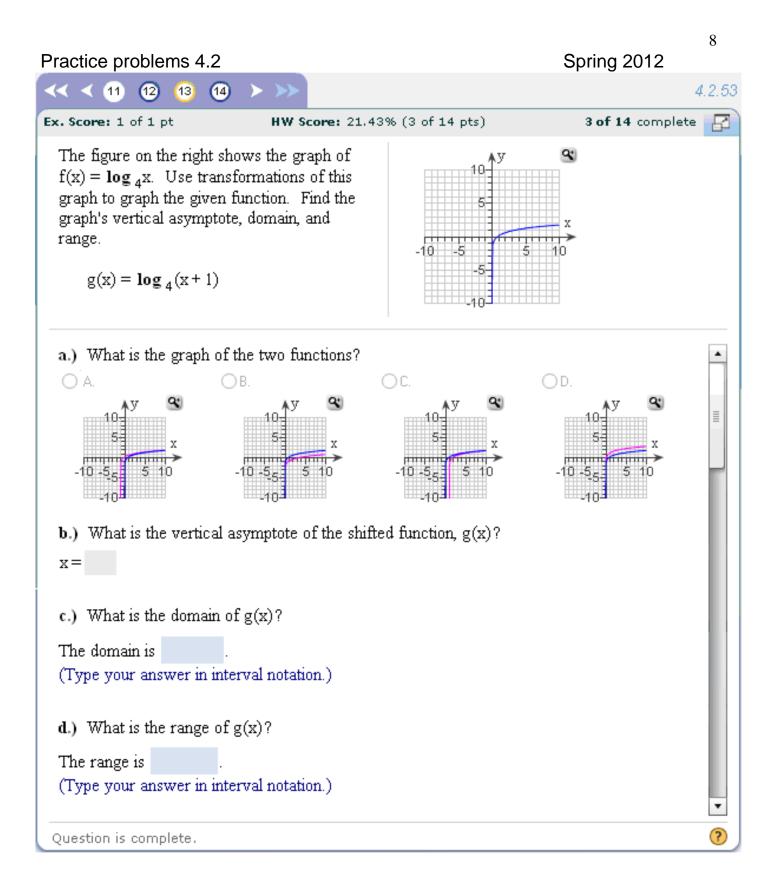
Evaluate $\log_2(32)$. Example:

The value of $\log_2(32)$ is 5 because $2^{()} = 32$.

In logarithms such as log(100), the blank base is understood to be _____. Logarithm and can be This type of logarithm is called a _____ rewritten as $log_{10}(100)$. You can use the LOG key to evaluate it. In logarithms such as In(4), the notation In represents log_e and is called a ______ Logarithm. You must use the LN key to evaluate it.

- Objective 4: Basic Properties of Logarithms(p426) Recall that the value of a logarithm is merely an for the indicated base. The following properties are based on this fact.
 - $\log_{b}(b) = 1$ because $b^{1} = b$
 - $\log_{b}(1) = 0$ because $b^{0} = 1$
 - $\log_b(b^x) = x$ \log_b and base *b* in () cancel leaving only x.
 - $b^{\log_b(x)} = x$ base *b* and \log_{b} cancel out leaving only x.

Chapter 4.2:


Spring 2012

4 4 5 6 7 8 9 10 $4.2.7$ Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete 16 Write the following equation in its equivalent exponential form. 103 $381 = y$ 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 10333 10333 10333 10333 103333 103333	•	Graphing Logarithmic Functions	127)
• Domain is Range is • x-intercept is • if base $b > 1$, then $f(x) = \log_b(x)$ increases if base $0 < b < 1$, then $f(x) = \log_b(x)$ decreases is the equation for the Asymptote. Note: Since $f(x) = \log_b(x)$ is one-to-one and is the inverse of $f(x) = b^x$, the points $\left(-1, \frac{1}{b}\right)$, $(0, 1)$, $(1, b)$ that are on the graph of $f(x) = b^x$ will be reflected a the points $\left(\frac{1}{b}, -1\right)$, $(1, 0)$, $(b, 1)$ on the graph of $f(x) = \log_b(x)$. Practice problems 4.2 Spring 2012 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete Write the following equation in its equivalent exponential form. $\log_3 381 = y$ The exponential form is]. (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. 2 Write the following equation in its equivalent logarithmic form. $\frac{3\sqrt{25} = 5}{2}$ The equation in logarithmic form is]. (Type an equation.)	-		-
• x-intercept is			
• if base $b > 1$, then $f(x) = \log_b(x)$ increases			
if base $0 < b < 1$, then $f(x) = \log_b(x)$ decreases			S
• is the equation for the Asymptote. Note: Since $f(x) = \log_b(x)$ is one-to-one and is the inverse of $f(x) = b^x$, the points $\left(-1, \frac{1}{b}\right)$, $(0, 1)$, $(1, b)$ that are on the graph of $f(x) = b^x$ will be reflected a the points $\left(\frac{1}{b}, -1\right)$, $(1, 0)$, $(b, 1)$ on the graph of $f(x) = \log_b(x)$. Practice problems 4.2 Spring 2012 Constant of the equation of the equati			
Note: Since $f(x) = \log_b(x)$ is one-to-one and is the inverse of $f(x) = b^x$, the points $\left(-1, \frac{1}{b}\right)$, $(0, 1)$, $(1, b)$ that are on the graph of $f(x) = b^x$ will be reflected a the points $\left(\frac{1}{b}, -1\right)$, $(1, 0)$, $(b, 1)$ on the graph of $f(x) = \log_b(x)$. Practice problems 4.2 Spring 2012 Creative problems 4.2 Spring 2012 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete C Write the following equation in its equivalent exponential form. log $_381 = y$ The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. 2 Write the following equation in its equivalent logarithmic form. 2 2 3 4 6 6 7 6 9 10 > >> 4 .2.13 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete C Write the following equation in its equivalent logarithmic form. 2 4 2 5 5 The equation in logarithmic form is . (Type an equation.)		-	
points $\left(-1, \frac{1}{b}\right)$, $(0, 1)$, $(1, b)$ that are on the graph of $f(x) = b^x$ will be reflected at the points $\left(\frac{1}{b}, -1\right)$, $(1, 0)$, $(b, 1)$ on the graph of $f(x) = \log_b(x)$. Practice problems 4.2 Spring 2012 Constant of a particle of a part	Note: Since $f(x)$	= log (x) is one-to-one and is the inv	<u> </u>
the points $\left(\frac{1}{b}, -1\right)$, $(1,0)$, $(b,1)$ on the graph of $f(x) = \log_b(x)$. Practice problems 4.2 Spring 2012 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete Write the following equation in its equivalent exponential form. log $_381 = y$ The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. Constant of the equation in its equivalent logarithmic form. $\frac{2}{\sqrt{25}} = 5$ The equation in logarithmic form is . (Type an equation.)			
Practice problems 4.2 Spring 2012 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete Write the following equation in its equivalent exponential form. log $_{3}81 = y$ The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field, then click Check Answer. enter any number or expression in the edit field of 14 pts first the following equation in its equivalent logarithmic form. $\frac{2}{\sqrt{25}} = 5$ The equation in logarithmic form is . (Type an equation.)			
4.2.7 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete \square Write the following equation in its equivalent exponential form. $\log_3 81 = y$ \square \square The exponential form is \square . (Type an equation.) \square \square \square \square Enter any number or expression in the edit field, then click Check Answer. \square \square \square Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) \square of 14 complete \square Write the following equation in its equivalent logarithmic form. \square \square \square \square $2^2\sqrt{25} = 5$ The equation in logarithmic form is \square . (Type an equation.) \square \square \square \square	the points $\left(\frac{1}{b}, -1\right)$	$\left \right\rangle$, (1,0), (<i>b</i> ,1) on the graph of f(x) = log	$b_b(\mathbf{x})$.
Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete Image: Complete in the initial complete initial com	Practice problems 4.2		Spring 2012
Write the following equation in its equivalent exponential form. log 381 = y The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. (2) (1 2 3 4 6 6 7 8 9 10 >>>> 42.13 Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete 2 2 2 7 25 = 5 The equation in logarithmic form is (Type an equation.)	<< < 1 2 3 4	5 6 7 8 9 10 > >>	4.2.7
$\log_{3} 81 = y$ The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. (?) Complete Comple	Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 14 pts)	0 of 14 complete
$\log_{3} 81 = y$ The exponential form is . (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. (?) Complete Comple	Write the following equat	tion in its equivalent exponential form.	
The exponential form is (Type an equation.) Enter any number or expression in the edit field, then click Check Answer. The equation in its equivalent logarithmic form. $2\sqrt{25} = 5$ The equation in logarithmic form is . (Type an equation.)			
(Type an equation.) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (8) (1) Enter any number or expression in the edit field, then click Check Answer. (8) (1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (0) (14)	log ₃ 81 = y		
(Type an equation.) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (7) Enter any number or expression in the edit field, then click Check Answer. (8) (1) Enter any number or expression in the edit field, then click Check Answer. (8) (1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (0) (14)	The evnonential form is		
Enter any number or expression in the edit field, then click Check Answer. (<u>ı </u> .	
$4 = 3$ $4 = 5$ $6 = 7$ $8 = 9$ $10 > >>>$ $4.2.13$ Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete \blacksquare Write the following equation in its equivalent logarithmic form. $2\sqrt{25} = 5$ $10 > 2 = 5$ $10 > 2 = 5$ The equation in logarithmic form is \Box . $10 > 2 = 5$ $10 > 2 = 5$ $10 > 2 = 5$			
Ex. Score: 0 of 1 pt HW Score: 0% (0 of 14 pts) 0 of 14 complete Image: Complete Write the following equation in its equivalent logarithmic form. $\sqrt{25} = 5$ The equation in logarithmic form is . . (Type an equation.) $(Type an equation.)$ $(Type an equation.)$ $(Type an equation.)$	Enter any number or expre	ession in the edit field, then click Check Answer.	?
Write the following equation in its equivalent logarithmic form. $\sqrt[2]{25} = 5$ The equation in logarithmic form is . (Type an equation.)	<< < 1 2 3 4	6 7 8 9 10 ≻ >>	4.2.13
$\sqrt[2]{25} = 5$ The equation in logarithmic form is . (Type an equation.)	Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 14 pts)	0 of 14 complete 🛛 🛃
The equation in logarithmic form is . (Type an equation.)	Write the following equat	tion in its equivalent logarithmic form.	
The equation in logarithmic form is . (Type an equation.)	_		
(Type an equation.)	$\sqrt[2]{25} = 5$		
Enter any number or expression in the edit field then eliek Check Answer		uic form is 🚺.	
		ession in the odit field, then elicle Oberly Annuar	

Logarithmic Functions Graphing Logarithmic Functions(p427)

		7
Practice problems 4.2		Spring 2012
<< < 1 2 3 4	5 6 7 8 9 10 > >>	4.2.21
Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 14 pts)	0 of 14 complete 🛛 🔂
Find the exact value of th	ne logarithm without using a calculator.	
log ₆ 36		
log ₆ 36 =		
Enter any number or expre	ession in the edit field, then click Check Answ	ver. 🕐
<< < 1 2 3 4	5 6 7 8 9 10 > >>	4.2.25
Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 14 pts)	0 of 14 complete 🛛 🔂
Evaluate the expression v	without using a calculator.	
$\log_{11} \frac{1}{11}$		
$\log_{11} \frac{1}{11} =$		
Enter any number or expre	ession in the edit field, then click Check Answ	ver. 🕐

<< < 1 2 3	4 5 6 7 8 9 10 > >>	4.2.37
Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 14 pts)	0 of 14 complete 🛛 🛃
Evaluate the express	on without using a calculator.	
log ₂ 1		
$\log_2 1 =$		
Enter any number or e	xpression in the edit field, then click Check Answ	ier. 📀

Spring 2012

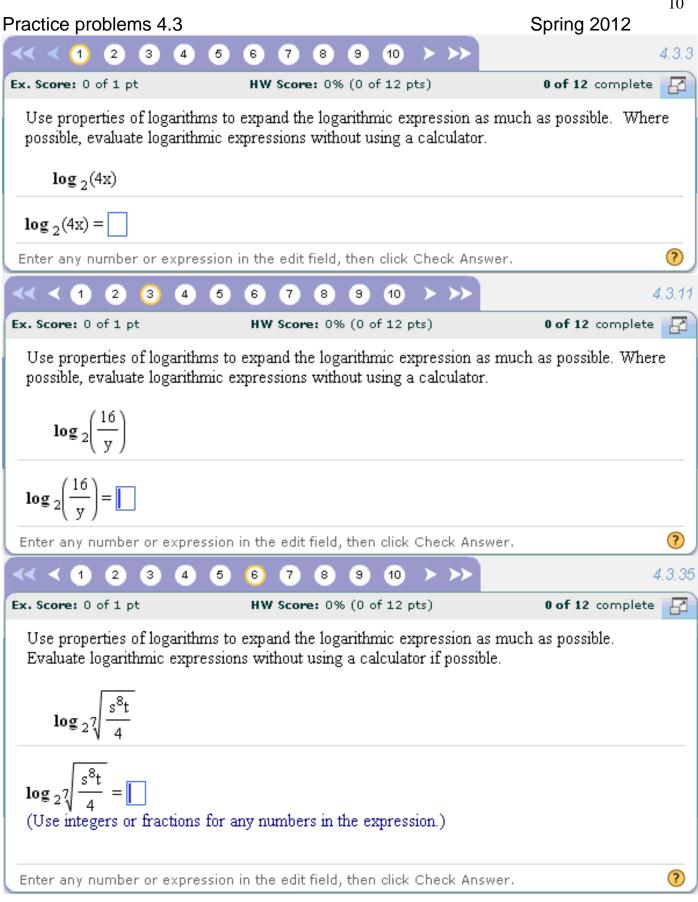
Chapter 4: Exponential and Logarithmic Functions

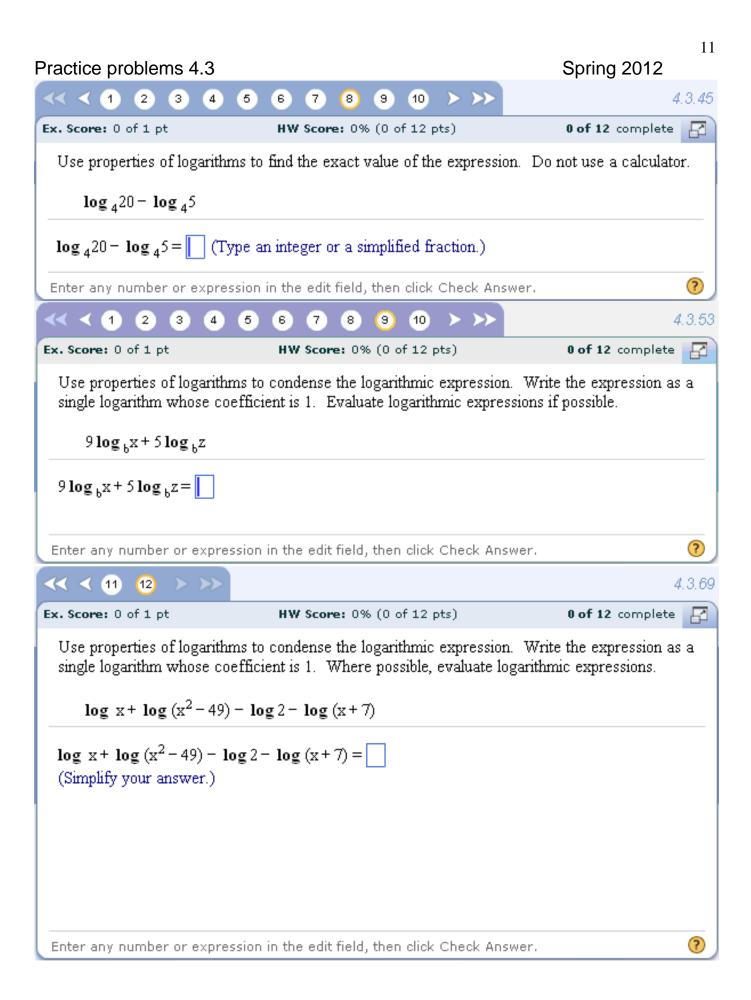
Chapter 4.3: Properties of Logarithms

This section introduces properties of logarithms which will be used to rewrite (_______ or ______) logarithmic expressions. When solving logarithmic equations or evaluating logarithmic expressions, it is sometimes necessary to rewrite logarithms using their properties. Certain characteristics of the logarithm properties will seem familiar because the properties of ______ discussed previously correspond to properties of logarithms.

 Objective 1,2,3,4,5,6: Properties of Logarithms; Change of Base Formula(p438-443)

To expand logarithmic expressions, use the following order:


Rule	The expression	log _b (M·N)	expands to	$\log_b(M) + \log_b(N)$
Rule	The expression	$\log_{b}\left(\frac{M}{N}\right)$	expands to	$\log_b(M) - \log_b(N)$
Rule	The expression	$\log_b(M^p)$	expands to	p·log _b (M)


To condense logarithmic expressions, use the following order:

Rule	The expression $p \cdot \log_b(M)$ condenses to	log _b (l	М ^{<i>р</i>})
Rule	The expression $\log_b(M) + \log_b(N)$ conde	nses to	log _b (M⋅N)
Rule	The expression $\log_b(M) - \log_b(N)$ conde	nses to	$\log_{b}\left(\frac{M}{N}\right)$

The **Change of Base Formula** is used to evaluate a logarithm expression that has an indicated base *b* other than 10 or e.

To evaluate $\log_b(n) \Rightarrow \frac{\log(n)}{\log(b)}$ or $\frac{\ln(n)}{\ln(b)}$. Example: Evaluate $\log_6(32)$. Round your answer to the nearest tenth. This logarithm uses base 6. If your calculator does not have a LOG key for base 6, then the Change of Base Formula is needed. Enter $\log_6(32)$ as $\frac{\log(32)}{\log(6)}$ or as $\frac{\ln(32)}{\ln(6)}$. Either entry gives _____.... The answer is therefore _____.

MATH 1314 College Algebra Notes Chapter 4: Exponential and Logarithmic Functions

> Chapter 4.4: Solving Exponential and Logarithmic Equations This section will now introduce methods for solving Exponential and Logarithmic Equations, including the TI-83/84 calculator.

- Objective 1: Solving Exponential Equations(p448)
 - To solve exponential equations algebraically using like bases:
 - Make sure both sides of equation have the _____.
 Rewrite if necessary. If bases cannot be made the same, use logarithms to solve.
 - Once the bases are the same, _____ and set the exponents equal to each other.
 - Solve for x.

> To solve exponential equations $b^{M} = b^{N}$ using a TABLE:

- \rightarrow Enter left side of equation as Y1 and right side of equation as Y2.
- \rightarrow Press 2nd GRAPH to find the solution for x in a TABLE. The solution will be the x-value with the same Y1 and Y2 value.

> To solve exponential equations $b^{M} = b^{N}$ using GRAPH:

- \rightarrow Enter left side of equation as Y1 and right side of equation as Y2.
- \rightarrow Press 2nd TRACE to select the **5**: intersect command.
- \rightarrow For First Curve? move cursor on first graph close to intersection and press ENTER .

For Second Curve? move cursor on second graph close to intersection and press ENTER

Press ENTER again for Guess?

IMPORTANT: If exact answers are needed, you may need to use the _____ method above.

- To solve exponential equations algebraically with logarithms:
 - the exponential expression.
 - Apply the _____ logarithm or the _____logarithm to each side.
 - Use the _____ Rule for logarithms to bring the variable x expression down from the exponent and solve for x.

Spring 2012

Chapter 4.4: Solving Exponential and Logarithmic Equations

Objective 2,3,4: Solving Logarithmic Equations(p449)

For equations having logarithms on one side of equation only:

- _____ the left side of equation to form a single logarithm. If the left side of equation only has a single logarithm, then you are ready for next step.
- Change the logarithm equation to ______ form using the crossing method from section 4.2.
- Solve the new exponential equation using the like bases method.

For equations containing logarithms on both sides with the same base:

- _____ both sides of equation until it is of the form $\log_b(M) = \log_b(N)$ with each side having a coefficient of 1.
- Using the one-to-one property, you can ______ the log_b notation on both sides and set the (M and N expressions) equal to each other.
- Solve for the variable in the new equation.

To solve logarithmic equations with the TI-83/84 calculator, use a TABLE or GRAPH by following the same steps given earlier for exponential equations.

Practice problems 4.4		Spring 2012
<< < 1 2 3 4	5 6 7 8 9 10 >	▶▶ 4.4.9
Ex. Score: 0 of 1 pt	HW Score: 0% (0 of 15 pts)	0 of 15 complete 🛛 🔀
Solve the exponential equat equating exponents. 128 ^x = 8	ion by expressing each side as a po	wer of the same base and then
The solution set is {		
Enter any number or express	sion in the edit field, then click Checl	k Answer. 🕜

Practice	probler	ms 4	.4									Spring 2012
	1 2	3	4	6	6	7	8	9	10	≻	>>	4.4.15
Ex. Score	:0 of 1 p	t			нw	Scor	e: 09	6(0 0	f 15 p	ots)		0 of 15 complete 🛛 🖓
	he expon g expone		l equa	ation 1	by ex	press	sing e	each s	ide a	sap	ower	of the same base and then
9	$\frac{-2}{4} = \sqrt{9}$	<u>-</u>										
The sol	ution set	; is {	}.									
Enter an	y numbe	rore	expres	ssion	in the	edit	field	, then	click	Cheo	k An	swer. 🕐
<u> </u>	1 2	3	4	5	6	7	8	9	10	>	>>	4.4.33
Ex. Score	:0 of 1 p	ot			HW	Scor	e: 09	6(0 0	f 15 p	ots)		0 of 15 complete
the solu approxi		erms for the	of nat	tural l								ithm on both sides. Express to obtain a decimal
The sol (Type : formula What i: The sol	the solu an exact to write the dec ution set	; is { soluti e the ; imal ; ; is {[ion, u: answi appro	sing r er in (ximat]}.	adica either tion fi	ls an base	id log e 10 (funct or bas			eded	. Use the change of base
	y numbe					edit	field	, then	click	Cheo	:k An	swer.

Prac	tice	pro	bler	ns 4	.4					Sprinç	g 2012	
	<	11	12	13	14	15	>>>				4	.4.37
Ex. S	core	e: 0 d	of 1 p	t		ŀ	IW Score	e:	3.33% (0.5 of 15 pts)	1 of 15	complete	B
			-		-		-		the solution in terms of natural lo tion for the solution.)garithms.	Then use	a
	6	x - 3)	= 39	0								
W	'hat i	is the	e solu	tion i	n terr	ns of	natural	l 1o	garithms?			
Tł	ne so	olutio	n set	is {			}.					
Ent	er ai	ny ni	umbe	rore	expres	sion	in the ec	dit	t field, then click Check Answer.			?
		_	_	_	_	_						
	<	11	12	13	14	15	\rightarrow \rightarrow	>			4	4.67
Ex. S	core	a: 0 d	of 1 p	t		ŀ	IW Score	e:	3.33% (0.5 of 15 pts)	1 of 15	complete	R
			_		-				to reject any value of x that is no e exact answer.	t in the do	omain of th	le

 $\log_{5}(x+121) + \log_{5}(x+1) = 4$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

OB. There is no solution.

Click to select and enter your answer(s), then click Check Answer.

?

Spring 2012

Chapter 4: Exponential and Logarithmic Functions

Chapter 4.5: Exponential Growth and Decay In this section, you will learn how to create functions to model exponential growth and exponential decay and use them to make future predictions.

- Objective 1: Exponential Growth and Decay(p460)
 - Exponential Growth and Exponential Decay use the same mathematical model(you will use this model to make a formula):

$$\mathsf{A} = \mathsf{A}_0 \cdot \mathsf{e}^{(k) \cdot (t)}$$

where A is the final amount of a sample at time t

 A_0 is the beginning amount of a sample when time t = 0

k is the growth rate if k > 0 or is the decay rate if k < 0

(This constant represents the percentage of increase or decrease

in the population or sample)

t is time

Important terms to know for Growth:

 $increase \rightarrow beginning amount grows$

double \rightarrow 2 times beginning amount

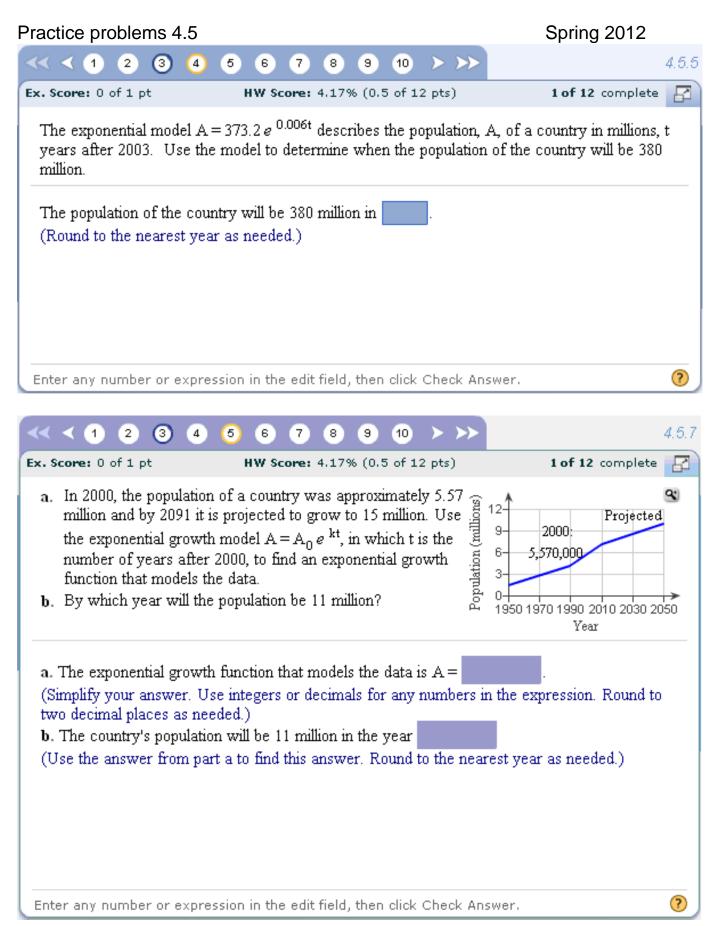
triple \rightarrow 3 times beginning amount...

Important terms to know for Decay:

decrease \rightarrow beginning amount breaks down, decomposes

half-life \rightarrow time needed for $\frac{1}{2}$ of a substance to decay.

Objective 2: Logistic Growth(p464)


In real life, exponential growth is limited by conditions set by nature, therefore, population growth will be limited by things like the surrounding resources available and the environment. An epidemic will grow and begin to spread exponentially within a confined population, but will eventually slow down as the number of people affected approaches the population size.

• Limited Logistic Growth for populations uses the mathematical model:

$$\mathsf{A} = \frac{\mathsf{c}}{\left(1 + \mathbf{a} \cdot \mathsf{e}^{(-b) \cdot (t)}\right)}$$

where A is the size of the population affected at time t

- c is the limiting(maximum) size of A as time $t \rightarrow \infty$
- a and b are constants
- t is time

Practice problems 4.5	Spring 2012
<< < 1 2 3 4 5 6 7 8 9 10 > >>	4.5.27
Ex. Score: 0 of 1 pt HW Score: 8.33% (1 of 12 pts)	2 of 12 complete 🛛 🔀
In 1964, paleontologists discovered the bones of a new species of dim dinosaur was estimated using potassium-40 dating of rocks surroundin these rocks indicated that 62.5% of the original amount of the potassi The decay model for potassium-40 is $A = A_0 e^{-0.52912t}$, where t is in $A = 0.625A_0$ in this decay model and estimate the age of the bones of	ng the bones. Analysis of um-40 was still present. n billions of years. Let
The bones are approximately billion years old. (Type an integer or decimal rounded to four decimal places as needed Enter any number or expression in the edit field, then click Check Answ	
<< 1 2 3 4 5 6 7 8 9 10 > >>	4.5.31
Ex. Score: 0 of 1 pt HW Score: 8.33% (1 of 12 pts)	2 of 12 complete
The half-life of a certain tranquilizer in the bloodstream is 28 hours. H drug to decay to 89% of the original dosage? Use the exponential dec solve. hours (Round to one decimal place as needed.)	-
Enter any number or expression in the edit field, then click Check Answ	er. 🍞

Practice problems 4.5 Spring 2012 << < 11 12 4.5.37 2 of 12 complete 🛛 🖓 Ex. Score: 0 of 1 pt HW Score: 8.33% (1 of 12 pts) $f(t) = \frac{116,000}{1+4300 \, e^{-t}}$ The logistic growth function at right describes the number of people, f(t), who have become ill with influenza t weeks after its initial outbreak in a particular community. a. How many people became ill with the flu when the epidemic began? b. How many people were ill by the end of the fourth week? c. What is the limiting size of the population that becomes ill? a. The number of people initially infected is (Round to the nearest number of people.) b. The number of people infected after 4 weeks is (Round to the nearest number of people.) c. The limiting size of the infected popluation is (Round to the nearest number of people.) Enter any number or expression in the edit field, then click Check Answer. (?