Math 141: Section 4.1 Extreme Values of Functions Notes

Definition: Let f be a function with domain D. Then f has an absolute (global) maximum value on D at a point c if

$$
f(x) \leq f(c) \text { for all } x \text { in } D
$$

and an absolute (global) minimum value on D at c if

$$
f(x) \geq f(c) \text { for all } x \text { in } D
$$

Example 1 Consider the function $y=x^{2}$ on the domains $(-\infty, \infty),[0,2]$, $(0,2]$, and $(0,2)$.

No global max
Absolute min

$$
\text { at } x=0
$$

Absolute max at $x=2$
Absolute min at $x=0$

Absolute max at $x=2$
No absolute min

No absolute max or min

Extreme Value Theorem If f is continuous on a closed interval $[a, b]$, then f attains both an absolute maximum value M and an absolute minimum value m in $[a, b]$. That is, there are numbers x_{1} and x_{2} in $[a, b]$ with $f\left(x_{1}\right)=m, f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for every other x in $[a, b]$.

Local Extreme Values; Definition A function f has a local maximum value at a point c within its domain D if $f(x) \leq f(c)$ for all $x \in D$ lying in some open interval containing c.
A function f has a local minimum value at a point c within its domain D if $f(x) \geq f(c)$ for all $x \in D$ lying in some open interval containing c.

Example 2 Consider the following graph:

Local max occurs at B, D
Local min occurs at A, C, E Absolute min at C

The First Derivative Theorem for Local Extreme Values If f has a local maximum or minimum value at an interior point c of its domain, and if f^{\prime} is defined at c, then

$$
f^{\prime}(c)=0
$$

Definition: An interior point of the domain of a function f where f^{\prime} is zero or
undefined is a critical point of f.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

1) Evaluate f at all critical points and endpoints.
2) Take the largest and smallest of these values.

Example 3 Find the absolute maximum and minimum values of

$$
f(x)=10 x(2-\ln x)
$$

on the interval $\left[1, e^{2}\right]$.
Since the interval $\left[1, e^{2}\right]$ is closed and finite, we are guaranteed an absolute max and on absolute min.

1) Find $f^{\prime}(x)$

$$
\begin{aligned}
f^{\prime}(x) & =10(2-\ln x)+10 x(-1 / x) \\
& =20-10 \ln x-10 \\
& =10-10 \ln x
\end{aligned}
$$

2) Find critical points

$$
\begin{aligned}
f^{\prime}(x)=0 \quad 10-10 \ln x & =0 \\
-10 \ln x & =-10 \\
\ln x & =1 \\
x & =e
\end{aligned}
$$

3) Evaluate the original function $f(x)=10 x(2-\ln x)$ at the critical point (s) and the endpoints of the interval

$$
\begin{array}{rlrl}
f(e) & =10(e)(2-\ln e): 10 e f\left(e^{2}\right) & =10\left(e^{2}\right)\left(2-\ln \left(e^{2}\right)\right) \\
& \approx 27.18 & & =10\left(e^{2}\right)(2-2) \\
f(1) & =10(1)(2-\ln (1)) & & =0 \\
& =20 \quad 10
\end{array}
$$

Absolute max value is ≈ 27.18 and occurs at $x=e$
Absolute min value is 0 and occurs at $x=e^{2}$

Math 141: Section 4.2 The Mean Value Theorem Notes

Role's Theorem
Consider the following graph:

Rolle's Theorem Suppose that $y=f(x)$ is continuous over the closed interval $[a, b]$ and differentiable at every point of its interior (a, b). If $f(a)=f(b)$, then there is at least one number c in (a, b) at which $f^{\prime}(c)=0$.

Example 1 Show that the equation $x^{3}+3 x+1=0$ has exactly one real solution.
Intermediate Value Theorem:
Since $f(-1)=(-1)^{3}+3(-1)+1=-3$ and

$$
f(0)=1
$$

the IVT says there is at least are
real solution to $x^{3}+3 x+1=0$.
Rale's Theorem says if there were another point where $x^{3}+3 x+1=0$, then there would exist a point $x=c$ where $f^{\prime}(c)=0$.
Note $f^{\prime}(x)=3 x^{2}+3$ which is always positive. ($3 x^{2}+3=0 \rightarrow 3 x^{2}=-3$, no real solution) So, there is no such value for c and there is only one real solution to $x^{3}+3 x+1=0$.

The Mean Value Theorem Suppose $y=f(x)$ is continuous over a closed interval $[a, b]$ and differentiable on the interval's interior, (a, b). Then there is at least one point c in (a, b) at which

$$
\begin{aligned}
& \text { Slope of line } f(b)-f(a) \\
& \text { secant } x=a \\
& \text { the } f^{\prime}(c) .
\end{aligned}
$$

Slope of the
tangent lime at $x=c$

Example 2 If a car accelerating from zero takes 8 sec to go 352 ft , its average velocity for the $8-\mathrm{sec}$ interval is $352 / 8=44 \mathrm{ft} / \mathrm{sec}$. The Mean Value Theorem says that at some point during the acceleration the speedometer must read exactly $30 \mathrm{mph}(44 \mathrm{ft} / \mathrm{sec})$.

Corollary 1 If $f^{\prime}(x)=0$ at each point x of an open interval (a, b), then $f(x)=$ C for all $x \in(a, b)$, where C is a constant.

Corollary 2 If $f^{\prime}(x)=g^{\prime}(x)$ at each point x in an open interval (a, b), then there exists a constant C such that $f(x)=g(x)+C$ for all $x \in(a, b)$. That is, $f-g$ is a constant function on (a, b).

Example 3 Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point $(0,2)$.

$$
\text { If } g(x)=-\cos x \text { then } g^{\prime}(x)=\sin x
$$

$$
f(x)=g(x)+c
$$

$$
\begin{aligned}
& f(x)=-\cos x+c \text { To solve for } c \text {, use }(0,2) \\
& f(0)=-\cos (0)+c=2 \\
&-1+c=2 \\
& c=3
\end{aligned}
$$

$$
f(x)=-\cos x+3
$$

Ex. Findry values of C that satisfy the MUT.

1) Find all values of c that satisfy the conclusion of the MVT for

$$
\begin{aligned}
& f(x)=x^{3}-x-1 \quad \text { on }\left[\begin{array}{c}
-1,3] \\
a \\
b
\end{array}\right. \\
& \frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(-1)}{3--1}=\frac{23+1}{4}=6 \\
& f^{\prime}(c)=6 \quad f^{\prime}(x)=3 x^{2}-1 \\
& 3 x^{2}-1=6 \quad 3 x^{2}=7 \\
& x=\sqrt{7 / 3} \quad(-\sqrt{7} / 3 \text { is outside |he interval })
\end{aligned}
$$

2) Find all values of C that satisfy the Conclusion of the MVT for

$$
\begin{gathered}
f(x)=\sin (x) \text { on }[0,7] . \\
\frac{f(b)-f(a)}{b-a}=\frac{\sin (7)}{7}, f^{\prime}(x)=\cos x \\
\cos (x)=\frac{\sin (7)}{7} \\
x=\arccos \left(\frac{\sin (7)}{7}\right) \begin{array}{c}
\text { (Use technology } \\
\text { topproxmate } \\
\text { the tow solutions } \\
\text { in the interacal) }
\end{array}
\end{gathered}
$$

Math 141: Section 4.3 Monotonic Functions and the First Derivative Test - Notes

Increasing and Decreasing Functions As another corollary to the Mean Value Theorem, we can show that function with positive derivatives are increasing functions and functions with negative derivatives are decreasing functions.

Definition: A function that is increasing or decreasing on an interval is said to be monotonic on the interval.

Corollary 3: Suppose that f is continuous on $[a . b]$ and differentiable on (a, b).
If $f^{\prime}(x)>0$ at each point $x \in(a, b)$, then f is increasing on $[a, b]$.
If $f^{\prime}(x)<0$ at each point $x \in(a, b)$, then f is decreasing on $[a, b]$.
Example 1 Find the critical points of $f(x)=x^{3}-12 x-5$ and identify the open intervals on which f is increasing and on which f is decreasing.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 \text { CPs occur when } f^{\prime} \text { is } 0 \\
& \text { or undefined }
\end{aligned}
$$

$$
f^{\prime}(x) \text { is always defined so only consider } f^{\prime}(x)=0
$$

$$
3 x^{2}-12=0
$$

$$
3 x^{2}=12
$$

$$
x=2 \text { or } x=-2 \text { critical points }
$$

$$
f^{\prime}(-3)=3(-3)^{2}-12>0
$$

$$
f \text { is }
$$

$$
f^{\prime}(0)=3(0)^{2}-12<0 \quad \text { Increasing on }(-\infty,-2) \cup(2, \infty)
$$

$$
f^{\prime}(3)>0
$$

First Derivative Test for Local Extrema

Decreasing on $(-2,2)$
(Note the open intervals)
Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across the interval from left to right,

1. If f^{\prime} changes from negative to positive at c, then f has a local minimum at $x=c$;
2. If f^{\prime} changes from positive to negative at c, then f has a local maximum at $x=c$;
3. If f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local extremum at $x=c$.

Example 2 Find the critical points of

$$
f(x)=x^{1 / 3}(x-4)
$$

Identify the open intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

$$
\begin{aligned}
f(x) & =x^{4 / 3}-4 x^{1 / 3} \\
f^{\prime}(x) & =\frac{4}{3} x^{1 / 3}-\frac{4}{3} x^{-2 / 3} \\
& =\frac{4 x^{1 / 3}}{3}-\frac{4}{3 x^{2 / 3}}=\frac{4 x-4}{3 x^{2 / 3}}
\end{aligned}
$$

$f^{\prime}(x)$ is undefined at $x=0$
$f^{\prime}(x)=0$ when $4 x-4=0$ or $x=1$
C Ps $x=0, x=1$

$$
f^{\prime}(-1)=\frac{4(-1)-4}{3(-1)^{2 / 3}}<0
$$

$$
f^{\prime}(1 / 2)=\frac{4(1 / 2)-4}{3(1 / 2)^{2 / 3}}<0
$$

$$
f^{\prime}(2)=\frac{4(2)-4}{3(2)^{2 / 3}}>0
$$

Increase: $(1, \infty)$
Decrease: $(-\infty, 0),(0,1)$
Local min occurs at $x=1$
Furthermore, $x=1$ corresponds to the absolute min

