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§1 Lec 1: Sep 24, 2021

§1.1 Intro to Mathematical Modeling

First, let’s examine the following question

Question 1.1. Why do we learn mathematical modeling?

There are lots of question that math may provide some explanation so that we could understand
the question deeply.

Example 1.1 1. How is Covid-19 spread? How can we control the spread of Covid-19?

2. How to control the spreading of the forest fire and how to reduce the loss?

3. How does the population of human evolve over time?

So,

Question 1.2. What is a mathematical model and how can we create the model?

Definition 1.2 (Mathematical Model) — A mathematical model is a description of a system
using mathematical concepts and language. The process of developing a mathematical model
is called mathematical modeling.

To create a mathematical model, we

1. formulate the problem: approximations and assumptions based on experiments and observa-
tions

2. solve the problem that is formulated above

3. interpret the mathematical results in the context of the problem

Let’s now explain the three steps above in more details.

1. Formulation

a) State the question: If the question is vague, then make it to be precise. If the question is
too “big”, then subdivide it into several simple and manageable parts.

b) Identify factors: Decide important quantities and assign some notation to the correspond-
ing quantity. Then, we need to determine the relationship between the quantities and
represent each relationship with an equation.

2. Solve the problem above: This may entail calculations that involve algebraic equations, some
ODE, PDE, etc; provide some theorems or doing some simulations, etc.

3. Interpretation/Evaluation: We need to translate the mathematical result in step 2 back to the
real world situations and evaluate whether the model is good or not by asking the following
questions:

a) Has the model explained the real-world observations?

b) Are the answers we found accurate enough?

c) Were our assumptions good?

3
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d) What are the strengths and weaknesses of our model?

e) Did we make any mistake in step 2?

If the answer to any of the above question is not favorable, we need to go back to step 1 and
go through all the steps again until we get some satisfying results.
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§2 Lec 2: Sep 27, 2021

§2.1 An Example of Modeling a Mass-Spring System

Consider the following question

Question 2.1. How does the spring-mass system move/work?

Formulation:

a) State the question: What formula can describe how the spring-mass system work?

b) Identify factors:

(a) initial position x0 (called natural length)

(b) the spring constant k

(c) friction fc

(d) mass of the object m

(e) position x

(f) velocity v

(g) acceleration a

(h) force F

x < 0 x > 0

x0

5
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Now, we try to find some relations between factors we listed above. First, let’s describe our
observations. If we contract the spring (x < 0), there is some force to push the spring outward
(F > 0). If we stretch the spring (x > 0), there is some force that restores the initial shape of
the spring (F < 0). So, we can observe that

F · x < 0

The relation between F and x can be summarized by the Hooke’s Law

F = −kx (*)

Next, let’s find the relation between the force and the movement of the object (F,m, v, a) by
assuming that the movement of the object only depends on the force of the spring (not on
other factors). This can be summarized by Newton’s second law of motion.

~F = m~a = m
d~v

dt
= m

d

dt

(
d~x

dt

)
= m

d2~x

dt2
(**)

By (*) and (**), we deduce

F = −kx = m
d2x

dt2

Mathematical analysis: we need to find the solution of the ODE:

mx′′ + kx = 0

To solve the ODE, we want to find the solution to the characteristic equation

mλ2 + k = 0 =⇒ x = ±
√
k

m
i

Thus,

x(t) = c1e
t
√

k
m i + c2e

−t
√

k
m i

= (c1 + c2) cos

(√
k

m
t

)
+ (c1 − c2)i sin

(√
k

m
t

)

= c3 cos

(√
k

m
t

)
+ c4 sin

(√
k

m
t

)
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§3 Lec 3: Sep 29, 2021

§3.1 An Example (Cont’d)

Recall that we have

x(t) = c3 cos

(√
k

m
t

)
+ c4 sin

(√
k

m
t

)

Let θ2 =
√

k
m t. Then,

x(t) =
√
c23 + c24

(
c3√
c23 + c24

cos(θ2) +
c4√
c23 + c24

sin(θ2)

)

Let sin θ1 = c3√
c23+c24

and cos θ1 = c4√
c23+c24

with tan θ1 = c3
c4

or θ1 = arctan
(
c3
c4

)
. So,

x(t) =
√
c23 + c24 sin(θ1 + θ2)

=
√
c23 + c24

(√
k

m
+ θ1

)

Evaluation of x(t) = A sin (ωt+ θ)

t

x

A

−A

From the figure above, we know x(t) is periodic with period T = 2λ
ω = 2λ

√
m
k

max
t
x(t) = A, min

t
x(t) = −A

where A is the amplitude and ωt+ TBA
Since x(t) is a periodic function, this means the spring will oscillate forever. However, in practice,

it is impossible. Thus, we need to modify our model by removing or adding some assumption.
Now, we may consider the case that there is friction when spring oscillates.

Ff = −cdx
dt

Then,

m
d2x

dt2
= −kx− c · dx

dt
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§3.2 Population Dynamics

Consider the following question

Question 3.1. Can we predict whether a species or its population will thrive or go extinct?

In order to answer it, let’s first investigate an example.

Example 3.1

How many people will there be in the U.S. in the next 4 years?
First let’s reformulate the question in the example to be more specific:

Question 3.2. Can we build a math model to predict the number of people in the U.S. in 1,
2, 3, 4 year?

Assumption Factor
the death and birth rate are constant birth rate: b

the counting period (of the population) is fixed death rate: d
the growth of the population only depends on the period

the death and birth rate initial population: N0

the distribution of the population: N (a)

migration rate
the # of years from the current time: t

the # of population at time t: N(t)
the growth rate: R

To study N(t) we need to consider the relation between N(t) and N(t+ ∆t)

N(t+ ∆t) = N(t) + # of new birth at [t, t+ ∆t]−# of death at [t, t+ ∆t]

= N(t) + (b− d)∆t ·N(t)

= (1 + (b− d)∆t) ·N(t)

Thus,

N(t+ ∆t) = (1 +R∆t)N(t)

N(1) = (1 +R)N0

N(2) = (1 +R)N(1) = (1 +R)2N0

N(3) = (1 +R)N(2) = (1 +R)3N0

N(4) = (1 +R)N(3) = (1 +R)4N0

8
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§4 Lec 4: Oct 1, 2021

§4.1 Population Dynamics (Cont’d)

Example 4.1

N0 = 300 millions, R = 0.6%, ∆t = 1

N(1) = (1 + r)N0 = (1 + 0.6%) · 300

= 300 + 1.8 = 301.8 millions

N(2) = (1 + r)2N0 = (1 + 0.6%) · 300

= 301.8 · 100.6%

N(3) = (1 +R)3N0 = (1 + 0.6%)3 · 300

N(4) = (1 +R)4 ·N0 = (1 + 0.6%)4 · 300

Consider:

N(t+ ∆t) = (1 +R ·∆t) ·N(t)

where t0 = 0, t1 = ∆t, t2 = 2∆t,. . . , tn = n∆t

=⇒ N(n ·∆t) = (1 +R ·∆t)N ((nt)∆t) = . . . = (1 +R∆t)
n
N0

We have

(1 +R∆t)
1

∆tR ·Rn∆t ·N0 = (1 +R∆t)
1

R∆tRtN0

Set ∆t→ 0, we obtain (1 +R∆t)
1

R∆t → e. Then,

N(t) = eRtN0 as ∆t→ 0

Next, let’s analyze the property of the model above:

N (n∆t) = (1 +R∆t)
n
N0

1. 1 +R∆t > 1, then N(n∆t)→ +∞, as n→ +∞

2. 0 < 1 +R∆t < 1, then N(n∆t)→ 0 as n→ +∞

Conclusion: When 0 < 1 +R∆t < 1, the model is acceptable; however, when 1 +R∆t > 1(R > 0),
the model should be modified. Thus, we may change our assumption: the growth rate is constant
(e.g., the growth rate depends on the population itself)

§4.2 Continuous Population Model

Have:
N(t) = eRtN0

Let’s start from the previous lecture

N (t+ ∆t) = N(t) +R∆t ·N(t)

9
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So

N(t+ ∆t)−N(t)

∆t
= R ·N(t)

lim
∆t→0

N(t+ ∆t)−N(t)

∆t
= lim

∆t→0
R ·N(t) = R ·N(t)

dN(t)

dt
= R ·N(t)∫

dN(t)

N(t)
=

∫
Rdt

ln(N(t)) = Rt+ C

N(t) = eCeRt = N0e
Rt

Evaluate the continuous model N(t) = eRtN0

1. 0 < R < 1: N(t)→∞ as t→∞ and N(t) ↑ as t ↑

2. −1 < R < 0: N(t)→ 0 as t→∞ and N(t) ↓ as t ↑

Conclusion: When R < 0, the model is acceptable; however, when the growth rate R > 0,the
individuals (of a species) will compete each other as the resource is limited, N(t)→∞ as t→∞.
Now, let’s consider the density-dependent growth. Assumption:

• The growth rate is density dependent, i.e., R(t) = R (N(t))

• If the population is small, then the influence of the environment is small, then we hope that
the population has exponential growth.

• As N(t) gets large enough, we don’t expect the growth of N(t). In other word, the growth
rate R (N(t)) ≤ 0 when N(t) is large enough (since R(t) is usually assume to be smooth,
R (N(t)) = 0 when N(t) is large enough)

dN

dt
= R (N(t)) ·N(t)

From our assumption, R (N(t)) should be a constant when N(t) is small and R (N(t)) = 0 as N(t)
is large enough. So we can consider R (N(t)) of the form

R (N(t)) = a− bN(t)

Thus, the model becomes
dN

dt
= (a− bN)N

This is known as the logistic model.

Remark 4.2. The discrete-time population model is called Beverton-Holt model.{
N(t ·∆t) = R0(N(t−1)·∆t)

1+N((t−1)∆t)/M

R(N) = R0
1+N((t−1)·∆t)/M

10
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§5 Lec 5: Oct 4, 2021

§5.1 Continuous and Discrete Population Models

Recall the continuous logistic population model

dN

dt
= N (a− bN)

Let’s manipulate this

dN

N(a− bN)
= dt∫

1

aN
+

b

a(a− bN)
dN =

∫
dt

1

a
lnN − 1

a
ln |a− bN | = t+ c

ln

∣∣∣∣ N

a− bN

∣∣∣∣ = at+ c̃

N

a− bN
= eat+c̃ = Ceat

N =
a

b+ Ce−at

Since N(0) = N0 =⇒ N0 = a
b+C , we have

N(t) =
a

b+
(
a
N0
− b
)
e−at

Let’s now consider the relation between continuous logistic population and discrete-time logistic
model for ∆t = 1. For the discrete case,{

N(t) = R0N(t−1)
1+N(t−1)/M

R (N(t)) = R0

1+N(t−1)/M

For the continuous case,

N(t) =
a

b+
(
a
N0
− b
)
e−at

Then,

N(t− 1) =
a

b+
(
a
N0
− b
)
e−atea

Notice that

1

N(t)
=
b

a
+

(
a

N0
− b
)
eat/a

ea · 1

N(t− 1)
=

(
b

a
+

(
a

N0
− b
)
eate−a/a

)
· ea

1

N(t)
− ea

N(t− 1)
=
b

a
− b

a
ea

For the continuous model, as t→∞, we can see that N(t)→ a
b which is a good model.
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§5.2 Discrete One-Species Model with an Age Distribution

Motivation: The birth and death rates will vary a lot if state A has more young citizens than state
B.
Let’s consider the period ∆t = 1 year, define variables for a population at each age

N0(t) = # individuals whose age < 1

N1(t) = # of individuals one year old

N2(t) = # of individuals two years old

...

NM (t) = # of individuals M years old

where M is the oldest age with proper population. Suppose

bm = birth rate for a population that is m years old

dm = death rate for a population that is m years old

Let’s consider the population Nm(t+ 1)

N0(t+ 1) = b0N0(t) + b1N1(t) + . . .+ bMNM (t)

N1(t+ 1) = N0(t)− d0N0(t) = (1− d0)N0(t)

N2(t+ 1) = N1(t)− d1N1(t) = (1− d1)N1(t)

...

NM (t+ 1) = NM−1(t)− dM−1NM−1(t) = (1− dM−1)NM−1(t)

In matrix notation,

~N(t) =


N0(t)
N1(t)
N2(t)

...
NM (t)


Then,


N0(t+ 1)
N1(t+ 1)

...
NM (t+ 1)

 =


b0 b1 . . . bM

1− d0 0 . . . 0
0 1− d1 . . . 0
...

...
...

...
0 . . . 1− dM−1 0



N0(t)
N1(t)

...
NM (t)


=⇒ ~N(t+ 1) = L ~N(t) – the matrix is called Leslie matrix.
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§6 Lec 6: Oct 6, 2021

§6.1 Stable Age Distribution

Definition 6.1 (Stable Age Distribution) — A stable age distribution exists if the populations

approach an age distribution that is independent of time as time increases, i.e., 1

‖ ~N(t)‖1
~N(t)→ ~v

as t→∞ where

‖ ~N(t)‖1 =

M∑
i=0

|Ni(t)|

Assume that the Leslie matrix

L =

[
2 1

0.44 0

]
and

~N(0) =

[
100
100

]
Let’s track the evolution of the population age groups. We have

~N(t+ 1) = L · ~N(t)

~N(1) = L ~N(0) =

[
2 1

0.44 0

] [
100
100

]
=

[
300
44

]
~N(2) = L ~N(1) =

[
2 1

0.44 0

] [
300
44

]
=

[
644
132

]
Continue this process we obtain

~N(3) =

[
1420
2834

]
,

[
3123.4
624.8

]
, . . .

Observation: The population appears to grow over time without bound.a The ratio N0(t+1)
N0(t) and

N1(t+1)
N1(t)

N0(1)

N0(0)
=

300

100
= 3

N0(2)

N0(1)
=

644

300
= 2.1467

N0(3)

N0(2)
=

1420

300
= 2.2050

N0(4)

N0(3)
= 2.1996

Apply the same process to N1 and we can notice that they both approach 2.2, i.e.,[
N0(t+ 1)
N1(t+ 1)

]
≈ 2.2

[
N0(t)
N1(t)

]
The fraction of the population in age 0 and fraction of the population in age 0 is 1.

N0(0)

N0(0) +N1(0)
=

100

100 + 100
=

1

2

N0(1)

N0(1) +N1(1)
=

300

344
≈ 0.872

N0(2)

N0(2) +N1(2)
≈ 0.8407

N0(3)

N0(3) +N1(3)
≈ 0.8336 . . .

With these calculations, we can see that

N0(t)

N0(t) +N1(t)
→ 0.833 =⇒ N1(t)

N0(t) +N1(t)
→ 0.167

13
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So
1

‖ ~N(t)‖

[
N0(t)
N1(t)

]
→
[
0.833
0.167

]
Recall that [

N0(t+ 1)
N1(t+ 1)

]
= L

[
N0(t)
N1(t)

]
≈ 2.2

[
N0(t)
N1(t)

]

Claim 6.1. 2.2 is one eigenvalue of the Leslie matrix L.

Guess:

[
0.833
0.167

]
is an eigenvector of the Leslie matrix L. Let’s check.

det(L− λI) = det

([
2 1

0.44 0

]
−
[
λ 0
0 λ

])
= (2− λ)(−λ)− 0.44

= (λ− 2.2)(λ+ 0.2)

Thus, λ = 2.2, λ = −0.2 which verifies our claim. When λ = 2.2, we can find the corresponding
eigenvector as follows

L− 2.2I =

[
2 1

0.44 0

]
−
[
2.2 0
0 2.2

]
=

[
−0.2 1
0.44 −2.2

]
We need to find the null space of L− 2.2I, i.e.[

−0.2 1
0.44 −2.2

] [
x1

x2

]
=

[
0
0

]
which is [

x1

x2

]
=

[
5x2

x2

]
= 6x2

[
5
6

1
6

]

Thus,

[
5
6
1
6

]
≈
[
0.833
0.167

]
is the corresponding eigenvector (of 2.2).

From this example, we may guess in order to find the stable age distribution, we need to find the
maximum eigenvalue of the Leslie matrix and then find the corresponding normalized eigenvector.
Now, we will try to check our guess for the general Leslie model.

~N(t+ ∆t) = L ~N(t)

with

~N(t) =


N0(t)
N1(t)

...
~NM (t)

 and L ∈ R(M+1)×(M+1)

being a non-negative. Let’s assume that ~N(0) = ~N0, then we have ~N(n ·∆t) = L ~N ((n− 1) ·∆t) =

. . . = Ln · ~N0. Suppose that the Leslie matrix L is diagonalizable, i.e., there are M + 1 eigenvalues
λ1 ≥ λ2 ≥ . . . λM+1 and M + 1 linearly independent eigenvectors ~v1, . . . , ~vM+1.
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§7 Lec 7: Oct 7, 2021

§7.1 Stable Age Distribution (Cont’d)

Assume that ~N(0) = ~N0, then we have ~N(n ·∆t) = L ~N ((n− 1) ·∆t) = . . . = Ln ~N0. Suppose that
the Leslie matrix L is diagonalizable, i.e., there are M + 1 eigenvalues λ1 ≥ . . . ≥ λM+1 and M + 1
linearly indep. eigenvectors ~v1, . . . , ~vM+1.

L = V DV −1

where

D =


λ1

λ2

. . .

λM+1

 , V =
[
~v1 . . . ~vM+1

]
Since ~v1, ~v2, . . . , ~vM+1 are linearly independent, {~v1, . . . , ~vM+1} is a basis for RM+1. Then, there
exists c1, c2, . . . , cM+1 s.t.

~N0 =

M+1∑
i=1

ci~vi

Thus,

~N(n ·∆t) = Ln ~N0

= Ln

(
M+1∑
i=1

ci~vi

)

=

M+1∑
i=1

ci(L
n~vi)

=

M+1∑
i=1

ciλ
n
i ~vi

= c1~v1 +

M+1∑
i=2

ci

(
λi
λ1

)n
~vi

If |λ1| > |λi| for i ≥ 2, then |λi||λ1| < 1 which means∣∣∣∣ λiλ1

∣∣∣∣n → 0 as n→∞ for i ≥ 2

Therefore, we have

1

λn1
~N(n ·∆t) = c1~v1 +

M+1∑
i=2

ci

(
λi
λ1

)n
~vi → c1~v1

as n→∞. Thus, for large value of n, we can approximate ~N(n ·∆t) by c1λ
n
1~v1.

The process to find “stable age distribution”:

1. Find the maximum eigenvalue of the Leslie matrix L

det(L− λI) = 0

2. |λ1| > |λi|

3. Find one corresponding eigenvector ~vi associated to λ1

4. Normalize ~v1 : ~v1

‖~v1‖

15
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§7.2 Logistic Equations with Phase Plane Solution

Definition 7.1 (Phase Plane) — A phase plane is a visual display of certain characteristics of
certain kinds of differential equations. A coordinate plane with axes being the values of two
variables.

Logistic Equation:
dN

dt
= N · (a− bN)

Notice that this is an autonomous differential equation. One important thing for autonomous DE is
the stability of the equilibrium points.

N(a− bN) = 0 =⇒ N = 0, N =
a

b

We can observe that the equilibrium point N(t) = a
b is stable and N(t) = 0 is unstable. Now, let’s

show the stability of equilibrium points from an analytical aspect. We will first analyze the solution
in the neighborhood of N = a

b . Let’s consider the Taylor’s expansion of f(N) = N(a − bN) at
N = a

b .

f(N) = N · (a− bN)

= f
(a
b

)
+

d

dN
f(N)

∣∣∣
N= a

b (N− ab )
+
d2f(N)

dN2

∣∣∣
N= a

b ·
1
2 (N− ab )2

= 0 + (−a)
(
N − a

b

)
+ (−b)

(
N − a

b

)2

≈ −a ·
(
N − a

b

)
Therefore,

dN

dt
= N · (a− bN) ≈ (−a)

(
N − a

b

)
near the neighborhood of N = a

b .

dN

dt
= −a

(
N − a

b

)
Let y = N − a

b =⇒ dy
dt = dN

dt

dy

dt
= −ay =⇒ y = Ce−at

N − a

b
= Ce−at

N(t) =
a

b
+ Ce−at

as t→∞, we have N(t)→ a
b . Thus, N(t) = a

b is stable.
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§8 Lec 8: Oct 11, 2021

§8.1 Logistic Equation with Phase Plane Solution (Cont’d)

We’d like to illustrate N(t) = a
b is stable from perturbation analysis point of view. Let N(t) =

a
b + ε ·N1(t) by assuming that

|εN1(t)| � a

b

Let’s substitute N(t) = a
b + εN1(t) into the original DE:

dN

dt
= N (a− bN)

d

dt

(a
b

+ εN1(t)
)

= ε
d

dt
N1(t)

=
(a
b

+ εN1(t) (a− (a+ εbN1(t))
)

= −a
b
εbN1(t)− ε2bN2

1 (t)

= −aεN1(t)− ε2bN2
1 (t)

d

dt
N1(t) = −aN1(t)− εbN2

1 (t)

≈ −aN1(t)

Thus, N1(t) = Ce−at → 0 as t→∞ and N(t)→ a
b as t→∞. So, N(t) = a

b is stable.

§8.2 SIR Model

The SIR model was first used by Kermack and McKendrick in 1947. Now this model is popularly
used to study the spread of infectious disease such as measles, Covid 19, etc. It consists of three
parts:

• S: the number of susceptible individuals

• I: the number of infected individuals

• R: the number of recovered individuals

The process of the spread of the infectious disease is at the beginning where all the individuals are
susceptible. The some of them become infectious and then become recovered individuals.

S I R

We assume that the total population

N = S + I +R

is fixed. Let β be the contact rate (individuals who come into contact with each other). Let γ be
the recovery rate for the infected individuals.

17
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§9 Lec 9: Oct 13, 2021

§9.1 SIR Model (Cont’d)

SIR model without vital dynamics

• We assume that the course of the infection is short.

• The birth and death can be ignored.

• The total number N can be treated as a constant.

Observation: The more interactions between the people in S and I the more individuals in S will
“transfer” to I.

dS

dt
= −β · S · I/N (1)

The change of I will involve two parts: S → I which will increase I, and I → R which will decrees I

dI

dt
= β · S · I/n− γ · I (2)

dR

dt
= γI (3)

Let’s combine the three equations. 
dS
dt = −βSI

N
dI
dt = βSI

N − γI
dR
dt = γI

with S + I +R = N being a constant. Thus, to understand the model, we only need to understand{
dS
dt = −βSIN
dI
dt = βSI

N − γI

Let’s normalize S, I,R first by setting

s =
S

N
, i =

I

n
, r =

R

N
ds

dt
=

1

N

dS

dt
=

1

N

(
−βSI
N

)
= −βsi

di

dt
=

1

N

dI

dt
=

1

N

(
βSI

N
− γI

)
= βsi− γi

and we know r = 1− i− s.

Remark 9.1. s ∈ [0, 1], i ∈ [0, 1], r ∈ [0, 1].

Next, let’s analyze the new model{
ds
dt = −βsi
di
dt = βsi− γi = (βs− γ)i

Observe that

1. ds
dt = −βsi ≤ 0 =⇒ s ↓

2. di
dt = (βs− γ)i = 0 =⇒ i = 0, s = γ

β . When di
dt > 0, we know that s > γ

β . Similarly, when
di
dt < 0, s < γ

β .
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Let’s draw the graph for s, i, r together.

1

t

rs

i

SIR Model with Vital Dynamics:
For this model, the disease will last for a long period. It is not reasonable to ignore the birth and
death rate. It is not a reasonable assumption that S + I +R = N where N is a constant. For this
case, let’s introduce new parameters birth rate b and death rate d.

dS

dt
=
−βSI
N

+ bN − dS

dI

dt
=
βSI

N
− γI − dI

dR

dt
= γI − dR

§9.2 SIRS Model

SIRS Model without Vital Dynamics:

S I R

SIRS


dS
dt = −βSIN + αR
dI
dt = βSI

N − γI
dR
dt = γI − αR

and S + I +R = N fixed

SIRS with Vital Dynamics: Similar to SIR with vital dynamics, we need to take the birth and
death rate into account.

dS
dt = −βSIN + αR+ bN − dS
dI
dt = βSI

N − γI − dI
dR
dt = γI − αR− dR

and N(t) = S + I +R not fixed

Intro to Two-Species Models: There are several different relations: competition, predator and prey,
symbiosis, mutualism.
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§10.1 Solutions to System of Differential Equations

Theorem 10.1

If (λ,~v) is an eigen pair of M , then eλt~v is a solution of d~y(t)
dt = M~y(t).

Proof. Set ~y(t) = eλt~v. Then we have

d

dt
~y(t) =

d

dt

(
eλt~v

)
= (

d

dt
eλt)~v = λeλt~v (1)

and

M~y(t) = M
(
eλt~v

)
= eλtM~v

= eλt(λ~v)

= λeλt~v (2)

Combining (1) and (2) we have ~y(t) = eλt~v is a solution of d
dt~y(t) = M~y(t).

From the above theorem, we could find n solutions eλ1t~v1,. . . , eλnt~vn.

Question 10.1. Are these n solutions linearly independent?

If
∑n
i=1 ci~vi = ~0 where ci = 0 in which i = 1, . . . , n, then ~v1, . . . , ~vn are linearly independent.

Know:
∑n
i=1 ci~vi = ~0 and M~vi = λi~vi. We want to show ci = 0 for all i. Let’s use mathematical

induction to show this.

• When n = 1, c1~v1 = ~0 =⇒ c1 = 0 because ~v1 6= 0

• Assume that the statement is correct when n = k.

• We want to show now that the statement also applies for the case n = k + 1. Have

k+1∑
i=1

ciM~vi =

k+1∑
i=1

ciλi~vi = ~0 (3)

Idea: get rid of one term so that we could use the induction assumption.

k+1∑
i=1

ci~vi = ~0 =⇒
k+1∑
i=1

ciλk+1~vi = ~0 (4)

So (3)− (4),

k∑
i=1

ci (λi − λk+1)~vi = ~0

ci (λi − λk+1) = 0

Thus, ci = 0 since λi are distinct.

k+1∑
i=1

ci~vi = ck+1~vk+1 = ~0 =⇒ ck+1 = 0

Thus, the statement is true for n = k + 1.
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Theorem 10.2

If M has n distinct eigenvalues λ1, . . . , λn with the corresponding eigenvectors ~v1, . . . , ~vn then{
eλ1t~v1, . . . , e

λnt~vn
}

are linearly independent.

Proof. Left as exercise.

Example 10.3

Solve the following ODE: {
dx
dt = 2x− 3y
dy
dt = x− 2y

Let’s rewrite the ODE into the matrix vector form.

~Y (t) =

[
x(t)
y(t)

]
, M =

[
2 −3
1 −2

]
Now, let’s find the eigenvalues and the corresponding eigenvectors of M .

det (M − λI) = det

[
2− λ −3

1 −2− λ

]
= λ2 − 1 = 0

So, λ1,2 = ±1.

• For λ1 = −1,

(M + I)~v1 =

[
3 −3
1 −1

]
= −

[
x
y

]
=⇒ ~v1 =

[
1
1

]

• For λ = 1, using the same process we obtain ~v2 =

[
3
1

]
Therefore,

~Y (t) = c1e
−t
[
1
1

]
+ c2e

t

[
3
1

]
is the general solution for d~Y (t)

dt = M~Y (t).
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§11 Lec 11: Oct 18, 2021

§11.1 Solutions to System of Differential Equations
(Cont’d)

Example 11.1 (Cont’d of the last example from last lecture)

Suppose that the initial conditions are x(0) = 8 and y(0) = 4. Find the explicit solution for
the DE. Recall

~Y (t) = c1e
−t
[
1
1

]
+ c2e

t

[
3
1

]
is the general solution. So,

c1e
−0

[
1
1

]
+ c2e

0

[
3
1

]
=

[
8
4

]
[
1 3
1 1

] [
c1
c2

]
=

[
8
4

]
[
c1
c2

]
=

[
1 3
1 1

]−1 [
8
4

]
=

[
2
2

]

Question 11.1. If there are some complex eigenvalues for the real matrix M , how can we find the

general real solutions for d~Y (t)
dt = M~Y (t)?

Example 11.2

Find the real solution for the ODE {
dx
dt = x(t)− y(t)
dy
dt = x(t) + y(t)

Notice that

~Y (t) =

[
x(t)
y(t)

]
, M =

[
1 −1
1 1

]
First, let’s find the eigenvalues and their corresponding eigenvectors of M .

det (M − λI) = det

([
1 −1
1 1

]
−
[
λ 0
0 λ

])
= λ2 − 2λ+ 2 = 0

So, λ = 1± i.

• For λ = 1 + i, we have

[
i
1

]
is a corresponding eigenvector.

• For λ = 1− i, we have

[
−i
1

]
is a corresponding eigenvector.

Thus,

~Y (t) = c1e
(1+i)t

[
i
1

]
+ c2e

(1−i)t
[
−i
1

]
is the general solution for d~Y (t)

dt = M~Y (t).
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Question 11.2. How do we transform the general solution to general real solution?

Recall that
eai = cos(a) + i sin(a), a ∈ R

So,

~Y (t) = c1e
(1+i)t

[
i
1

]
+ c2e

(1−i)t
[
−i
1

]
= c1e

teti
[
i
1

]
+ c2e

te−ti
[
−i
1

]
= c1e

t (cos(t) + i sin(t))

[
i
1

]
+ c2e

t (cos(−t) + i sin(−t))
[
−i
1

]
= c1e

t

[
(cos(t) + i sin(t)) i

cos(t) + i sin(t)

]
+ c2e

t

[
(cos(−t) + i sin(−t)) (−i)

cos(−t) + i sin(−t)

]
= c1e

t

[
− sin(t) + cos(t)i
cos(t) + sin(t)i

]
+ c2e

t

[
− sin(t)− cos(t)i
cos(t)− sin(t)i

]
= (c1 + c2)et

[
− sin(t)
cos(t)

]
+ (c1 − c2)iet

[
cos(t)
sin(t)

]
Because c1 and c2 are arbitrary numbers we could choose c1 + c2 = 1 and c1 − c2 = 0 or c1 + c2 = 0
and (c1 − c2)i = 1.

et
[
− sin(t)
cos(t)

]
, et

[
cos(t)
sin(t)

]
are two linearly independent real solutions of d~Y (t)

dt = M~Y (t). The general real solutions can be
represented by

~Y (t) = c̃1e
t

[
− sin(t)
cos(t)

]
+ c̃2e

t

[
cos(t)
sin(t)

]
where c̃1, c̃2 ∈ R.
Method II: Exponential Method

When n = 1, we have ODE

dx

dt
= mx =⇒ x(t) = emtx0

is the solution of dx
dt = mx. Recall that

emt =

∞∑
j=0

(mt)j

j!

eMt =

∞∑
j=0

(Mt)j

j!
=

∞∑
j=1

tjM j

j!
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To get a clearer look at eMt, let’s consider the case that M is diagonal, e.g., M =

[
2 0
0 3

]
.

eMt =

∞∑
j=0

tjM j

j!

=

∞∑
j=0

tj
[
2 0
0 3

]j
j!

=

∞∑
j=0

tj
[
2j 0
0 3j

]
j!

=

[∑∞
j=0

(2t)j

j! 0

0
∑∞
j=0

(3t)j

j!

]

=

[
e2t 0
0 e3t

]
If M is diagonalizable, how can we compute eMt?

M = JDJ−1

eMt =

∞∑
j=0

tjMj

j!

=

∞∑
j=0

tj(JDJ−1)j

j!

=

∞∑
j=0

tjJDjJ−1

j!

= J

 ∞∑
j=0

tjDj

j!

 J−1

= JeDtJ−1
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§12.1 Asymptotic Properties of Solutions to Linear ODE
System

Consider: {
dx
dt = ax+ by
dy
dt = cx+ dy

Then,

M =

[
a b
c d

]
, ~Y (t) =

[
x(t)
y(t)

]
So,

det (M − λI) = det

[
a− λ b
c d− λ

]
= (a− λ)(d− λ)− bc
= λ2 − (a+ d)λ+ ad− bc

Set p = a+ d, q = ad− bc. Then,

det (M − λI) = λ2 − pλ+ q = 0

∆ = p2 − 4q

Thus the eigenvalues distribution of the matrix M are as follows

1. ∆ > 0, the eigenvalues are real and distinct (node or saddle)

2. ∆ = 0, repeated real eigenvalues (improper node)

3. ∆ < 0, the eigenvalues are complex (spiral)

First, let’s consider the case where we have two real roots: ∆ > 0.

a) positive real roots p > 0, q > 0

~Y (t) = c1e
λ1t~v1 + c2e

λ2t~v2

Since λ1, λ2 > 0 =⇒ eλ1t− >∞
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Example 12.1

Consider

M =

[
4 1
1 2

]
then

det(M − λI) = λ2 − 6λ+ 7 = 0

λ = 3±
√

2 > 0

~Y (t) = c1e
(3+
√

2)t

[
1√

2− 1

]
+ c2e

(3−
√

2)t

[
1

−
√

2− 1

]

b) Two negative real solutions: p < 0, q > 0.

~Y (t) = c1e
λ1t~v1 + c2e

λ2t~v2

Since λ1, λ2 < 0 =⇒ eλ1t → 0, eλ2t → 0 as t→∞. So the equilibrium solution is stable.

c) λ1 < 0 and λ2 > 0 and so q < 0

~Y (t) = c1e
λ1t~v1 + c2e

λ2t~v2

Since λ1 < 0 =⇒ eλ1t → 0 as t→∞ and λ2 > 0 =⇒ eλ2t →∞ as t→∞.

~v2

~v1

d) One root is 0: q = 0 and another root is positive: p > 0. Let’s assume that λ1 = 0, λ2 > 0

~Y (t) = c1~v1 + c2e
λ2t~v2
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~v1

~v2

e) One root is 0: q = 0, and another root is negative: p < 0

~Y (t) = c1~v1 + c2e
λ2t~v2

~v1

~v2
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§13.1 Asymptotic Properties (Cont’d)

2. Real and equal: ∆ = 0

a) Both are positive, p > 0, the equilibrium point is unstable because ~Y (t) = (c1 +c2t)e
λt →

∞
b) Both negative, p < 0, the equilibrium point is stable because ~Y (t) = (c1 + c2t)e

λt → 0 as
t→∞

c) Both zero, p = 0, the equilibrium point is unstable.

3. Complex roots for λ2 − pλ+ q = 0:

∆ := p2 − 4q < 0

Then we have

λ =
p±
√

∆

2
=
p± i

√
−∆

2
= µ± vi

a) Real part is positive: p > 0 then we could write

~Y (t) = eµt (c1 sin(vt)~v1 + c2 cos(vt)~v2)

since µ > 0, eµt →∞ as t→∞. Therefore, the equilibrium point is unstable.

b) Real part is negative: p < 0

~Y (t) = eµt (c1 sin(vt)~v1 + c2 cos(vt)~v2)

where eµt → 0 as t→∞. Thus, the equilibrium point is stable.

c) The real part is zero: p = 0. Then the solution can be written as

~Y (t) = c1 sin(bt)~v1 + c2 cos(bt)~v2

Notice that for any fixed constants, ~Y (t) is a cyclic function of t. We call the equilibrium
point is neutrally stable.
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Question 13.1. Why do we spend so much time to learn how to solve linear ODE and study their
asymptotic properties?

Let’s introduce a new section to answer this.

§13.2 Introduction to Two-Species Models

Let’s consider a simple model between two species by assuming that the population of these two
species are only depending on their population. First, let us denote the populations of these two
species as N1 and N2. By our assumption that the change of the populations N1, N2 only depends
on N1, N2, i.e., we just ignore the other environmental factors.{

dN1

dt = g(N1, N2)
dN2

dt = f(N1, N2)
(*)

If we assume that there is no migration of these two species

g(0, N2) = 0, f(N1, 0) = 0

For a non-linear ODE, we’re interested in the stability of the equilibrium points. Recall the definition
of equilibrium point: constants solutions for the original DE. Thus, we could find the equilibrium
point by solving {

g(N1e, N2e) = 0

f (N1e, N2e) = 0
(**)

Now let’s assume that (N1e, N2e) is a solution for (**). Our goal is to study the stability of
(N1e, N2e). We consider small perturbations on (N1e, N2e), i.e.,{

N1(t) = N1e + εN11(t)

N2(t) = N2e + εN21(t)

Let’s substitute N1(t), N2(t) back to the original DE system{
dN1

dt = g(N1, N2)
dN2

dt = f(N1, N2)

Then we have{
d
dt (N1e+ εN11(t)) = εdN11(t)

dt = g (N1e+ εN11(t), N2e+ εN21(t))
d
dt (N2e+ εN21(t)) = εdN21(t)

dt = f (N1e+ εN11(t), N2e+ εN21(t))

Since ε is pretty small, we can consider the Taylor expansion of the function g, f at (N1e, N2e).
Recall the Taylor expansion with two variables

φ (x+ ∆x, y + ∆y) = φ(x, y) +

(
∂φ

∂x
(x, y) ·∆x+

∂φ

∂y
(x, y) ·∆y

)
+

1

2!

(
∂2φ

∂x2
(x, y)∆x2 + 2

∂2φ

∂x∂y
∆x∆y +

∂2φ

∂y2
(x, y)∆y2

)
+ . . .

=
∞∑
n=0

1

n!

(
∂

∂x
∆x+

∂

∂y
·∆y

)n
· φ(x, y)
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§14 Lec 14: Oct 27, 2021

§14.1 Two-Species Models (Cont’d)

The Taylor expansion function for g at the equilibrium point is

g(N1e + εN11(t), N2e + εN21(t)) = g(N1e, N2e) +
∂

∂N1
g(N1e, N2e)εN11(t)

+
∂

∂N2
g(N1e, N2e)εN21(t) +O(ε2)

=
∂

∂N1
g(N1e, N2e)εN11(t) +

∂

∂N2
g(N1e, N2e)εN21(t) +O(ε2)

Similarly, we have

f (N1e + εN11(t), N2e + εN21(t)) =
∂

∂N1
f (N1e, N2e) εN11(t) +

∂

∂N2
f (N1e, N2e) εN21(t) +O(ε2)

Substitute the Taylor expansion of g and f back to the differential equation system we have{
εdN11

dt = ∂
∂N1

g (N1e, N2e) εN11(t) + ∂
∂N2

g (N1e, N2e) εN21(t) +O(ε2)

εdN21

dt = ∂
∂N1

f (N1e, N2e) εN11(t) + ∂
∂N2

f (N1e, N2e) εN21(t) +O(ε2)

Since ε is very small, we could ignore the term O(ε). Therefore, analyzing the stability of the
equilibrium point is equivalent to the analysis of the asymptotic properties (t→∞) of the linear
ODE system: {

dN11

dt = ∂
∂N1

g (N1e, N2e)N11(t) + ∂
∂N2

g (N1e, N2e)N21(t)
dN21

dt = ∂
∂N1

f(N1e, N2e)N1(t) + ∂
∂N2

f (N1e, N2e)N21(t)

§14.2 Predator-Prey Models

For this model, we can consider the relations between sharks and the small fish as an example. Let

• F : number of a certain species of fish in a specific region of the sea

• S : number of sharks in the same area

Assume that the area in bounded such that there is no migration, and the food for fish is unlimited.
Therefore, the model can be represented by the two species model.{

dF
dt = g(F, S)
dS
dt = f(F, S)

Since this model is about the relation between the predator and the prey, we should expect some
properties of g and f .
Observations: Since the food for the fish is unlimited, we can expect the increase of number of fish.

• F ↑ =⇒ S ↑ (the sharks have enough food to maintain a large population)

• S ↑ =⇒ F ↓ (the demand of the food of the shark increases)

• F ↓ =⇒ S ↓ (the decrease of the food of the shark results in the fact that there is not a
sufficient amount of food for sharks to maintain a large population)

• S ↓ =⇒ F ↑
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The observation above continues periodically. One popular simple model for the predator-prey is
called Lotka-Volterra model. Recall the model for one species: by our assumption, the food for the
fish is unlimited, we should expect the exponential growth of the fish, i.e.,

dF

dt
= aF

If the population growth of the fish stops growing at some point, we should consider the logistic
model.

dF

dt
= aF − bF 2

Next, let’s consider one species model for sharks

dS

dt
= −kS

Now let’s consider the interaction of fish and shark: the growth rate of the shark increases when
fishes appear. The growth rate of fish decreases when sharks appear.{

dF
dt = aF − bF 2 − cFS
dS
dt = −kS + λFS

where a, b, c, k, λ are some positive constants. This is known as the Lotka-Volterra model.
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§15 Lec 15: Oct 29, 2021

§15.1 Predator-Prey Models (Cont’d)

Our goal now is to analyze the Lotka-Volterra model by asking the following questions:

Question 15.1. 1. Is this model reasonable?

2. Can the solution of the Lotka-Volterra model be consistent with our observation?

Exercise 15.1. Consider the case b 6= 0.

Here we will consider the case b = 0.{
dF
dt = aF − cFS = (a− cS)F
dS
dt = −kS + λsF = (−k + λF )S

• Without any predator, S = 0 =⇒ dF
dt = aF , prey(fish) will increase exponentially.

• Without any prey, F = 0 =⇒ dS
dt = −kS, predator(sharks) will decrease exponentially.

• −cFS describes the effect of the predator on prey. The predator reduces the prey’s growth
with rate cS.

• λsF describes the effect of the prey on the predator. The prey makes some contributions to
the growth of the predator by rate λF .

Next, we will consider

1. the equilibrium population for the Lotka-Volterra model and its stability

2. understand the relation between F and S by considering the trajectories of the solution of

dF

dS
=
dF/dt

dS/dt
=

(a− cS)F

(−k + λF )S

First, let’s consider the equilibrium points{
(a− cS)F = 0

(−k + λF )S = 0

(a− cS)F = 0 =⇒ F = 0, S =
a

c
F = 0 =⇒ S = 0

S =
a

c
=⇒ F =

k

λ

Thus, we have two equilibrium points

(F, S) = (0, 0)

(F, S) =

(
k

λ
,
a

c

)
The stability of these equilibrium points are
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1. (F, S) = (0, 0): Set

g(F, S) = aF − cFS
f(F, S) = −kS + λFS

Then,

M =

 ∂g
∂F

∣∣∣
(0,0)

∂g
∂S

∣∣∣
(0,0)

∂f
∂F

∣∣∣
(0,0)

∂f
∂S

∣∣∣
(0,0)


=

[
a 0
0 −k

]
Because a > 0 and a is one of the eigenvalues of the matrix M , (0, 0) is not stable. In order
to find the relation between F and S near (0, 0) we can consider

dF

dS
=

aF

−kS
= −a

k

F

S
dF

F
= −a

k

dS

S∫
dF

F
= −a

k

∫
dS

S

F = c̃S−
a
k

2.
(
k
λ ,

a
c

)
:

M =

 ∂g
∂F

∣∣∣
( kλ ,

a
c )

∂g
∂S

∣∣∣
( kλ ,

a
c )

∂f
∂F

∣∣∣
( kλ ,

a
c )

∂f
∂S

∣∣∣
( kλ ,

a
c )


=

[
0 −ck

λ
aλ
c 0

]
det(M − tI) = 0 =⇒ t = ±

√
aki

We have two complex eigenvalues with real part equal to 0 for M . Thus,
(
k
λ ,

a
c

)
is algebraically

unstable. Next, let’s consider the relations between F and S near
(
k
λ ,

a
c

)
(use Taylor’s

expansion near it)
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§16 Lec 16: Nov 1, 2021

§16.1 Predator-Prey Models (Cont’d)

Let’s consider the relations between F and S near
(
k
λ ,

a
c

)
(we can consider the Taylor’s expansion

of g and f near
(
k
λ ,

a
c

)
). By setting {

F = k
λ + εF1

S = a
c + εS1

And by ignoring the small ε, we can consider the constant coefficient DEs{
dF1

dt = − ckλ S1

dS1

dt = aλ
c F1

So

dF

dt
= ε

dF1

dt
= a

(
k

λ
+ εF1

)
− c

(
k

λ
+ εF1

)(a
c

+ εS1

)
= −εck

λ
S1 +O(ε2)

In order to find F1, or S1, we can consider

d2F1

dt2
=

d

dt

(
dF1

dt

)
=

d

dt

(
−ck
λ
S1

)
= −ck

λ

dS1

dt

= −ck
λ

aλ

c
F1

d2F1

dt2
+ akF1 = 0

The corresponding characteristic polynomial is

t2 + ak = 0 =⇒ t = ±
√
akiF1 = c1 cos

(√
akt
)

+ c2 sin
(√

akt
)

S1 = c3 cos
(√

akt
)

+ c4 sin
(√

akt
)

Remark 16.1. We could also use the formula for linear ODE system with complex eigenvalues
directly.

By considering the initial condition, we have{
F1 = F10 cos(wt)− cw

aλS10 sin(wt)

S1 = S10 cos(wt) + aλ
cwF10 sin(wt)

where w =
√
ak. We can see that S1 and F1 are periodic functions with period T = 2λ

w = 2λ√
ak

.

Remark 16.2. The period property only holds near the equilibrium point
(
k
λ
, a
c

)
, i.e., ε� 1.
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Goal: Find the phase plane of F and S{
dF
dt = aF − cFS = aF

(
1− c

aS
)

dS
dt = −kS + λFS = kS

(
−1 + λ

kF
)

Set u = c
aS, v = λ

kF (make the equilibrium points to be independent of the parameters). Then we
have {

dv
dt = λ

k
dF
dt = λ

kaF
(
1− c

aS
)

= av(1− u)
du
dt = c

a
ds
dt = c

aks
(
−1 + λ

kF
)

= ku(−1 + v)

To study the relation between F and S, we only need to study the relation between u and v.

du

dv
=
ku(−1 + v)

av(1− u)

1− u
u

du =
k

a

v − 1

v
dv∫ (

1

u
− 1

)
du =

k

a

∫ (
1− 1

v

)
dv

ln(u)− u =
k

a
(v − ln v) + c

ue−u = c̃v−
k
a · e ka v

because u = c
aS and v = λ

kF .

c

a
Se−

c
aS = c̃

(
λ

k

)− ka
F−

k
a e

λ
aF

F−keλF = ĉSae−cS = Z

Next, let’s sketch the relation between F and S. To implement, we introduce a new variable Z by
setting {

Z = F−keλF

Z = ĉe−cSSa

Idea: Let’s study the relation between Z and F , Z and S. These relations are much easier than the
relation between F and S because Z is explicitly represented in terms of F or S.

dZ

dF
= −kF−k−1eλF + F−k

(
eλFλ

)
= F−keλF

(
− k
F

+ λ

)
= 0

F =
k

λ

• When F > k
λ , dZ

dF > 0

• When F < k
λ , dZ

dF < 0
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k
λ F a

c S

Z

Z

We have

dZ

dS
= ĉe−cS · (−c)Sa + ĉe−cS · (aSa−1)

= ĉe−cS · Sa
(
−c+

a

S

)
= 0

S =
a

c

• When S > a
c , dZ

dS < 0

• When S < a
c , dZ

ds > 0
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§17 Lec 17: Nov 3, 2021

§17.1 Cooperation Model

Many organisms cooperate to perform some tasks that they cannot achieve individually.

Example 17.1 • With species cooperation: raising young, gathering food, predator pro-
tection or defense, etc

• Between-species cooperation: remoras and sharks. Remoras remove parasites, dead skin
from the sharks. Sharks will also provide protection for the remoras.

Cooperation is interesting but tricky. The cooperation will involve the process: contributing to the
common good, but the individuals might lose something.
Aim: We will build cooperation model using game theory. There are two types of organism:

1. Cooperators

2. Cheaters

There are three interactions for these two types of organisms

i) Cooperator meets cooperator: they work together

cost:
c

2
for each, benefit: b for each

ii) Cooperator meets cheater: only cooperator works, cheater doesn’t contribute anything.

cost: c for cooperator, 0 for cheater, benefit: b for each

iii) Cheater meets cheater: both cheats and do nothing =⇒ no cost, no benefit.

Assume that the total population is N . All organisms are equally likely to die at a rate d. Assume
that for each birth, there is one death occurs. We propose the model:

1. Rate of the changes of number of cooperators = the rate of cooperator births - rate of
cooperator deaths.

2. Rate of the changes of numbers cheaters = rate of cheater births - rate of cheater deaths

Our next goal is to find the number of birth by finding the payoffs

total payoff to cooperator = # cooperators interact with ×payoff from the interaction with the cooperator+#cheaters interact with×payoff from the interacting with the cheaters

Assumption: The birth rate is proportional to the payoff.

the rate of cooperator birth = # of cooperators × total payoff to cooperators× k

where k is the proportional constant.
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§18 Lec 18: Nov 5, 2021

§18.1 Cooperation Model (Cont’d)

Similarly for the cheater, we have the total payoff for the cheater = to the number of cooperators
interact with · the payoff from the interaction with the cheater. From these interactions, we could
construct a payoff matrix, that represents the hat benefit received by the organism depending on
the choice of these organism (

b− c
2 b− c

b 0

)
which is a payoff matrix.
Observations:

• If the other organism is a cooperator then cheating will give a higher off.

• If the other organism is a cheater, then if b > c it’s better to cooperate if b < c it’s better to
cheat.

Net, let’s introduce some notion for the cooperation model

• N = total population of organisms

• x = fraction of organisms that are cooperators

• y = fraction of organisms that are cheaters. Note that x+ y = 1

• b = benefit, c = cost

• k = proportional constant

• d = death rate

Assumption:

• Birth rate is proportional to the payoff from all its interaction.

• For each interaction, payoff is determined by the payoff matrix

• In each unit time, each orgasm will interact with other n randomly chosen organism.

• Offspring of cooperators are cooperators

• Offspring of cheater are cheaters

Therefore, we have the model{
d
dt (Nx) = Nx ·

(
R ·
(
nx ·

(
b− c

2

)
+ ny · (b− c)

)
− d
)

d
dt (Ny) = Ny · (k · nx · b− d)

Since N is fixed number and x+ y = 1, we could cancel N in both of the equations above

dx

dt
+
dy

dt
= 0

So

x
(
k ·
(
nx
(
b− c

2

)
+ ny (b− c)

)
− d
)

+ y (knxb− d) = 0

kx
(
nxb− nxc

2
+ nyb− nyc

)
− dx+ kynxb− yd = 0
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because x+ y = 1 =⇒ y = 1− x

kx
(
nb+

nxc

2
− nc

)
− d+ k (1− x) · nxb = 0

knx
(
b− c

2

)
(2− x) = d ≥ 0

b− c

2
≥ 0 =⇒ b ≥ c

2

Next, let’s subsided the expression for d to the ODEs above, we have{
dx
dt = knx

(
x
(
b− c

2

)
+ y (b− c)

)
− xknx

(
b− c

2

)
(2− x)

dy
dt = yknxb− yknx

(
b− c

2

)
(2− x)

To do the simplification for the above ODE system, we can get{
dx
dt = knxy

[(
c
2 − b

)
x+ (b− c)

]
dy
dt = knx

(
c
2 −

(
b− c

2y
))

Recall that x+ y = 1, we have y = 1− x. Let’s substitute y = 1− x to the expression of dx
dt , we

obtain
dx

dt
=
knx(1− x)

((
c
2 − b

)
x+ b− c

)
g(x)

where x ∈ [0, 1].
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§19 Lec 19: Nov 8, 2021

§19.1 Cooperation Models (Cont’d)

Let’s first find the equilibrium points by setting

g(x) = knx(1− x)
(( c

2
− b
)
x+ (b− c)

)
= 0

So x = 0, 1,− b−c
c
2−b

(require c
2 − b < 0). Since x ∈ [0, 1], we need to discuss whether − b−c

c
2−b
∈ [0, 1]?

Now, let’s assume that

0 ≤ − b− cc
2 − b

≤ 1

0 ≤ b− c ≤ b− c

2
=⇒ b ≥ c ≥ 0

Therefore, we have the following cases for the equilibrium points

1. When b > c, we have three equilibrium points on [0, 1]

x = 0, 1,
b− c
b− c

2

0 x∗ 1 x

dx
dt

From the figure above, we can conclude that the equilibrium points x = 0, 1 are unstable. The
equilibrium point x = x∗ = b−c

b− c2
is stable.

2. When c
2 < b ≤ c, we only have two equilibrium points in [0, 1]

x = 0, 1

x∗ =
b− c ≤ 0

b− c
2 > 0

≤ 0
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10
x

dx
dt

From the figure, we can conclude that x = 0 is stable but x = 1 is unstable.

§19.2 Stochastic Population Growth

Stochastic Process: family of random variables. Discrete and continuous time models predict the
average behavior of a population. This can be treated as the average size of the population over many
trials with the same environment. In real life, we may care more than the average.

Example 19.1

In stock, we may ask

Question 19.1. What’s the probability that one specific stock will drop 1000 points in a
day/week?

This will be more useful than the question “What’s the average behavior in the stock
market each day/week?”

Example 19.2

What’s the probability that a population for one species goes extinct?

Therefore, realistic population model should take the randomness into account.

41



Duc Vu (Fall 2021) 19 Lec 19: Nov 8, 2021

Example 19.3

Let’s consider the cells division. It is more practical to consider the random division because
the real birth rate varies between different periods.
Assumptions:

• Death rate is ignored.

• Census time is divided into subintervals ∆t.

• b is birth rate per cell.

• time intervals of interest is [0, T ].

In each interval, each cell has a probability to divide and the probability is b ·∆t. How to
simulate the stochastic process?

• At each time step, generate N(t) random numbers from a uniform distribution on [0, 1]

• For each X < b∆t, it means that there is a cell to divide

N(t+ ∆t) = N(t) + # random numbers < b ·∆t
= N(t) + |{X : X < b∆t}|
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§20 Lec 20: Nov 10, 2021

§20.1 Stochastic Population Growth (Cont’d)

From the simulation, we can see that we get different random numbers for each run and hence a
different sequence of population sizes: N(0), N(∆t), N(2∆t),. . . , N(T ). This just captures random
growth of populations. To analyze N(t) itself is tricky because N(t) varies for each simulation.

Question 20.1. What should we analyze for the stochastic birth model?

We could analyze the PN (t), where PN (t) represents the probability that the population equals
N at time t. Let b = birth rate where b can be considered as the probability of a birth per unit
time. We set ∆t to be small enough s.t. the probability for the case where there are more than 2
births can be negligible. Assume

P (one birth) = b ·∆t
P (≥ 2 birth)� 1

Example 20.1

An average of 20 chickens hatch from a population of 600 hens in one hour. Then the birth
rate

b =
20

600
=

1

30
per hour

or the birth rate

b =
20

600 ∗ 60
=

1

1800
per minute

Let’s now get back PN (t). To find the stochastic model for PN (t) we need to find the relation
between PN (t+ ∆t) and PN (t). For sufficient small ∆t, we should have

PN (t+ ∆t) = σN − 1PN−1(t) + γNPN (t) . . . (*)

where σN − 1 is the probability that exactly one birth occurs among N − 1 individuals and γN is
the probability that no birth among N individuals.

Question 20.2. σN−1? γN?

The probability of an individual giving birth in the time interval with length ∆t is b ·∆t because
P (≥ 2 birth) � 1. So the probability of not giving birth should be 1 − b · ∆t. Therefore, the
probability that N individuals will not give birth should be

(1− b∆t)N =⇒ γN = (1− b∆t)N ≈ 1− bN∆t

So

(1− b∆t)N = 1 +

(
N

1

)
(−b∆t) +

(
N

2

)
(−b∆t)2

+ . . .

The probability of at least one birth among N individual is

1− γN = 1− (1− b∆t)N

≈ 1− (1−Nb∆t)
= Nb∆t

=⇒ σN−1 ≈ (N − 1)b∆t because the case ≥ 2 birth can be ignored.
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An alternative way to compute σN−1,

σN−1 =

(
N − 1

1

)
(b∆t) (1− b∆t)N−2

= (N − 1) (b∆t)

(
1 +

(
N − 2

1

)
· (−b∆t) +

(
N − 2

2

)
(−b∆t)2

+ . . .

)
≈ (N − 1)b∆t

We substitute the expression of γN , σN−1 back into (*).

PN (t+ ∆t) ≈ b · (N − 1) ∆tPN−1(t) + (1− bN∆t)PN (t)
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§21 Lec 21: Nov 12, 2021

§21.1 Stochastic Population Growth (Cont’d)

Because ∆t is sufficiently small, we could consider the Taylor expansion of PN (t+ ∆t) at t

PN (t+ ∆t) = PN (t) +
dPN (t)

dt
∆t+

1

2

d2PN (t)

dt2
∆t2 + . . .

= PN (t) +
dPN (t)

dt
∆t+O(∆t2)

≈ PN (t) +
dPN (t)

dt
∆t (∆t� 1)

Plug in PN (t+ ∆t) into (*) from last lecture,

PN (t) +
dPN (t)

dt
∆t ≈ b(N − 1)∆tPN−1(t) + (1− bN∆t)PN (t)

dPN (t)

dt
∆t = b(N − 1)∆tPN−1(t)− bN∆tPN (t)

dPN (t)

dt
= b(N − 1)PN−1(t)− bNPN (t) (**)

Let’s solve (**). Assume that we have the initial condition

PN (0) =

{
0, N 6= 1

1, N = 1

Let’s rewrite (**)
dPN (t)

dt
+ bNPN (t) = b(N − 1)PN−1(t) (**)

We can see that to find PN (t), we need PN−1(t), to find PN−1(t), we need PN−2(t). Therefore, we
need to solve

P1(t)→ P2(t)→ P3(t)→ . . .→ PN−1(t)→ PN (t)

Now, let’s consider P1(t)
dP1(t)

dt
+ bP1(t) = 0

Since there is no death, we are only interested in populations ≥ N(0) = 1, P0(t) = 0.

dP1(t)

dt
+ bP1(t) = 0

dP1(t)

P1(t)
= −bdt

lnP1(t)− lnP1(0) = −bt
P1(t) = P1(0)e−bt = e−bt

where P1(0) is the initial condition. Next, we can consider the case N = 2. We have

dP2(t)

dt
+ 2bP2(t) = bP1(t) = be−bt (?)

In order to solve the DE above, we need to find the solution for the homogeneous DE:

dP2(t)

dt
+ 2bP2(t) = 0 =⇒ P2(t) = Ce−2bt
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Then we consider the method of parameter C by setting C to be a function of t. Then

P2(t) = C(t)e−2bt

=⇒ dP2(t)
dt = C ′(t)e−2bt + C(t)

(
−2be−2bt

)
. So (?) becomes

C ′(t)e−2bt − 2bC(t)e−2bt + 2bC(t)e−2bt = be−bt

C ′(t) = bebt

C(t) = C +

∫
bebt dt

= C + ebt

P2(t) =
(
C + ebt

)
e−2bt

0 = P2(0) = (C + 1) · 1 = C + 1

So C = −1.
P2(t) =

(
ebt − 1

)
e−2bt =

(
1− e−bt

)
e−bt

Continue this process, we could get the following results

P3(t) =
(
1− e−bt

)2
e−bt

P4(t) =
(
1− e−bt

)3
e−bt

...

The general formula then is

PN (t) =
(
1− e−bt

)N−1
e−bt

Let’s show the conclusion by mathematical induction.

1. Base case: N = 1
P1(t0 = e−bt = e−bt

(
1− e−bt

)
X

2. Let’s assume that the results hold for the case N = k, i.e.,

Pk(t) = e−bt
(
1− e−bt

)k−1

3. We need to show the results for the case N = k + 1

dPN (t)

dt
+ bNPN (t) = b(N − 1)PN−1(t)

We have,
dPk+1(t)

dt
+ b(k + 1)Pk+1(t) = bke−bt

(
1− e−bt

)k−1
(◦)

Similar to the process for N = 2, we first find the general solution for the homogeneous DE:

dPk+1(t)

dt
+ b(k + 1)Pk+1(t) = 0

Pk+1(t) = Ce−b(k+1)t

Then we set

Pk+1(t) = C(t)e−b(k+1)t

dPk+1(t)

dt
= C ′(t)e−b(k+1)t − C(t)b(k + 1)e−b(k+1)t
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Substitute Pk+1(t), dPk+1(t)
dt into (◦),

C ′(t)e−b(k+1)t = bke−bt
(
1− e−bt

)k−1

C(t) = C +

∫
bke−bkt

k−1∑
j=0

(
j

k − 1

)(
−e−bt

)j
1k−1−j

= C +

∫
bk

k−1∑
j=0

(
j

k − 1

)
(−1)je−bjt−bkt
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§22 Lec 22: Nov 22, 2021

§22.1 Stochastic Population Growth (Cont’d)

We have

Pk+1(t) =

c+

∫
bk

k−1∑
j=0

(
k − 1

j

)
(−1)j · e−bjt−bkt

 e−b(k+1)t

=
(
c+ ekbt(1− e−bt)k

)
· e−b(k+1)t

...

So the general formula is

PN (t) =
(
1− e−bt

)N−1
e−bt

Since Pk+1(0) = 0 for all k ≥ 1, we have

Pk+1(0) = (c+ 0) · 1 = 0 =⇒ c = 0

Pk+1(t) = ekbt
(
1− e−bt

)k · e−b(k+1)t

=
(
1− e−bt

)k · e−bt
Here, PN (t) is called the probability mass function. It gives the probability that the population is
exactly equal to N at time t.
Properties of PN (t):

1.
∑∞
N=1 PN (t) = 1.

Proof. Have

∞∑
N=1

PN (t) =

∞∑
N=1

e−bt
(
1− e−bt

)N−1

= e−bt
∞∑
N=0

(
1− e−bt

)N
= e−bt

1

1− (1− e−bt)
= e−bt · ebt = 1

2. Expected (mean) population E(t) at time t is ebt

Proof. Have

E(t) =

∞∑
N=1

N · PN (t)

=

∞∑
N=1

N · e−bt
(
1− e−bt

)N−1

= e−bt
1

(1− (1− e−bt))2

= e−bt · e2bt

= ebt
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§22.2 Flow

Random Walks: Let’s imagine that a large group of bacteria that are swimming in a long, thin
tube. Bacteria swim in a “run and tumble” way:

• A “run” propels a bacterium to the left or right.

• A “tumble” randomly change the moving directions of the bacteria.

Question 22.1. How far along the tube do bacteria swim by time t?

Assumptions:

• Tube is long and thin so that it can be modeled effectively as one dimensional.

• All bacteria introduced at t = 0 at the center of the tube.

x = 0

• Each “run” moves the bacteria a distance l along the tube.

• Bacterium run left with probability 1
2 (more general case P ) and right with probability 1

2
(more general case 1− P )

• Move left to be negative direction or move right to be positive direction

• Break up time into t0, t1, t2, . . . where each run happens during [tk−1, tk), so tk is the time
where the bacterium ends its kth run and xk is the location at time tk.

−2l −l 0 l 2l

t0

t1

t2

This is a stochastic process with random variable xk. These are some questions:

1. What is the average position xk (or denote xk by E(xk).

2. What is the distribution for xk? E.g., the probability that bacterium is at ±2l, ±l, 0, etc.

49



Duc Vu (Fall 2021) 23 Lec 23: Nov 24, 2021

§23 Lec 23: Nov 24, 2021

§23.1 Flow (Cont’d)

First, let’s consider the relation positions at tk and tk+1

xk+1 = xk + dk+1

where dk+1 is the directional distance by the bacterium in its (k + 1)st

dk+1 =

{
l, with probability 1

2 (1− p)
−l, with probability 1

2 (p)

Next, we will find E(xk+1) by considering

E (xk+1) = E (xk + dk+1)

= E(xk) + E(dk+1)

Notice that

E(dk+1) =
1

2
l +

1

2
(−l) = 0

E(xk+1) = E(xk) = . . . = E(x1) = E(x0) = 0

Since this is a random process, we are interested in the variance of xk+1

var (xk+1) = E
(
(xk+1 − E(xk+1))2

)
= E

(
(xk+1 − 0)2

)
= E(x2

k+1)

= E
(
(xk + dk+1)2

)
= E(x2

k) + 2E(xkdk+1) + E(d2
k+1)

Since xk and dk+1 are independent, we have E(xkdk+1) = E(xk)E(dk+1) = 0. Notice that

E
(
d2
k+1

)
=

1

2
l2 +

1

2
(−l)2 = l2

So

var(xk+1) = E(x2
k) + l2

= var(xk) + l2

= var(xk−1) + l2 + l2

= var(xk−1) + 2l2

...

= var(x0) + (k + 1)l2

= 0 + (k + 1)l2 = (k + 1)l2

Next, let’s answer the second question: For l = 1, we want to find PN (d) the probability of
being at location d at time tN (after N step). When l = 1, then the possible d at time tN is 0,
±1,±2, . . . ,±N . In order to think about the “run” direction, we could correct this with the coin
flip: head =⇒ right, tail =⇒ left. Therefore, for the N coin flip, we have total 2N outcome
(because for each flip, it has two possibilities and each flip is independent). Thus, we can make the
table for the outcomes.
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figure here
When N = 4, it has 16 possibility. Let’s assume that we have d1 head and d2 tail.{

d1 + d2 = 4

d1 − d2 = d
=⇒ d1 =

4 + d

2

Since d1, d2 are positive integers, we have d1 = 0, 2, 4. Therefore, for the general N , we have{
d1 + d2 = N

d1 − d2 = d

=⇒

{
d1 = N+d

2

d2 = N−d
2

Since d1 and d2 are positive integers, we have that N and d have the same odd or even properties.
Notice that for each outcome, the probability should be 1

2N
. Therefore, we have

PN (d) =

(
N
N+d

2

)
·
(

1

2

)N

Question 23.1. PN (d) if the right moving probability 1− p and the left has probability p.

§23.2 Diffusion Equation

The continuous hypothesis: Let’s treat distance from the origin as a continuous variable x (no
longer restricted to multiple of l). Our goal is to derive an equation for the density of the run ρ(x, t).
Density is defined: for some interval with length ∆x around the point x̂

([
x̂− ∆x

2 , x̂+ ∆x
2

])
, the

number of the runner at time τ is ρ(x̂, z) ·∆x.
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§24 Lec 24: Nov 29, 2021

§24.1 Diffusion Equation (Cont’d)

We can model how the number of runners in interval
[
x̂− ∆x

2 , x̂+ ∆x
2

]
changes between time points

t and t + ∆t. The number of runners in
[
x̂− ∆x

2 , x̂+ ∆x
2

]
at time t is ρ(x̂, t) ·∆x. The number

of runners in
[
x̂− ∆x

2 , x̂+ ∆x
2

]
at time t+ ∆t is ρ(x̂, t+ ∆t) ·∆x. Thus, the change in number of

runners in [t, t+ ∆t] is ρ(x̂, t+ ∆t) ·∆x− ρ(x̂, t) ·∆x = (ρ(x̂, t+ ∆t)− ρ(x̂, t)) ·∆x.
Let q(x, t) be the flow rate (“flux”) of the runners at point x at time [t, t+ ∆t]: change in number
of runners in interval

[
x̂− ∆x

2 , x̂+ ∆x
2

]
is[

flow in net # crossing
x̂− ∆x

2 ∈ [t, t+ ∆t]

]
−
[
flow in net # crossing
x̂+ ∆x

2 ∈ [t, t+ ∆t]

]
= q

(
x̂− ∆x

2
, t

)
·∆t− q

(
x̂+

∆x

2
, t

)
·∆t

Since the above two perspectives describe the same phenomenon (the number of runners that change
over

[
x̂− ∆x

2 , x̂+ ∆x
2

]
over [t, t+ ∆t], we have

(ρ(x̂, t+ ∆t)− ρ(x̂, t)) ·∆x =

(
q

(
x̂− ∆x

2
, t

)
− q

(
x̂+

∆x

2
, t

))
·∆t

or
ρ(x̂, t+ ∆t)− ρ(x̂, t)

∆t
=
q
(
x̂− ∆x

2 , t
)
− q

(
x̂+ ∆x

2 , t
)

∆x

Set ∆x→ 0,∆t→ 0, we thus have

∂ρ

∂t
(x̂, t) = − ∂q

∂x
(x̂, t) =⇒ ∂ρ

∂t
+
∂q

∂x
= 0 (*)

(*) is called the continuity equation where ρ(x, t) is the density of runners (bacteria) and q(x, t) is
the flow rate (flux).

Fact 24.1. Equation (*) holds for any system, where mass is conserved (no creation or destruction).

Notice that (*) involves two functions ρ and q which make it difficult to analyze the solution of
(*). So we want to check whether ρ and q have some connections so that (*) can be described as a
DE with only ρ or q.
Let ∆x = l (step length) and ∆t is the time for one step. Let p(x, t) be the probability that a
runner is at position x = ml at time t = n ·∆t. Then

p(x, t+ ∆t) =
1

2
p(x−∆x, t) +

1

2
p(x+ ∆x, t) (**)

because ∆t,∆x are pretty small, we can consider the Taylor expansion of p(x, t+ ∆t), p(x−∆x, t),
p(x+ ∆x, t) at (x, t)

1. p(x, t+ ∆t)

p(x, t+ ∆t) = p(x, t) +
∂p

∂t
·∆t+

1

2

∂2p

∂t2
(∆t)2 + . . .

= p(x, t) +
∂p

∂t
∆t

2. p(x−∆x, t) and p(x+ ∆x, t)

p(x−∆x, t) = p(x, t) +
∂p

∂x
(−∆x) +

1

2

∂2p

∂x2
(−∆x)2 + . . .

p(x+ ∆x, t) = p(x, t) +
∂p

∂x
∆x+

1

2

∂2p

∂x2
(∆x)2 + . . .
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Thus,
1

2
p(x−∆x, t) +

1

2
p(x+ ∆x, t) = p(x, t) +

1

2

∂2p

∂x2
(∆x)2 +O

(
(∆x)4

)
Substitute 1. and 2. into (**), we obtain

p(x, t) +
∂p

∂t
∆t+O(∆t2) = p(x, t) +

1

2

∂2p

∂x2
(∆x)2 +O(∆t4)

Set ∆t→ 0, ∆x→ 0
∂p

∂t
=

1

2

∂2p

∂x2
·D

where D = lim∆x,∆t→0
(∆x)2

∆t .
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§25 Lec 25: Dec 1, 2021

§25.1 Diffusion Equations (Cont’d)

Since ρ(x, t) = Np(x,t)
4x where N is the total population of runners (bacteria), substitute p(x, t) =

∆x
N ρ(x, t) back into

∂p

∂t
=

1

2

∂2p

∂x2
·D

we obtain

∂

∂t

(
∆x

N
ρ(x, t)

)
=
p

2

∂

∂x2

(
∆x

N
ρ(x, t)

)
∆x

N
· ∂
∂t
ρ(x, t) =

∆x

N

D

2

∂

∂x2
ρ(x, t)

∂ρ

∂t
=
D

2
· ∂

2ρ

∂x2

= D̃
∂2ρ

∂x2
(*)

Here (*) is called the diffusion equation. D̃ is called the diffusion coefficient. Also, (*) is called the
heat equation because it can describe the distribution of the heat over time.

Let’s compare ∂
∂tρ = D ∂2

∂x2 ρ and
∂ρ

∂t
+
∂q

∂x
= 0

Since these two DEs describe the same situation, we have

D̃
∂2

∂x2
ρ = − ∂q

∂x
∂

∂x

(
D̃
∂

∂x
ρ

)
+

∂

∂x
q = 0

∂

∂x

(
D̃
∂

∂x
ρ+ q

)
= 0

Therefore, we have D̃ ∂
∂xρ+ q = C(t). If C(t) = 0, q = −D̃ ∂

∂xρ, which is called Fick’s Law.
Find the solution for the heat equation

∂p

∂t
= D · ∂

2

∂x2
p

We will apply the Fourier transformation on p with respect to x. First, let’s review the Fourier
Transformation on a function f(x). The Fourier Transformation on f(x) is denoted by f̂(s) and it
is defined as

f̂(s) =

∫ ∞
−∞

f(x)e−2λisx dx

The Fourier Transformation on the derivative of f(x) satisfies

f̂ ′(s) =

∫ ∞
−∞

f ′(x)e−2λisx dx

=

∫ ∞
−∞

e−2λisxdf(x)

= e−2λisxf(x)
∣∣∣∞
−∞
−
∫ ∞
−∞

f(x) · (−2λis)e−2λisx dx

= 2λisf̂(s)
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Here we need to assume that limx→∞ f(x) = 0

f̂ ′′(s) = 2λisf̂ ′(s)

= (2λis)2f̂(s)

= 4λ2s2f̂(s)

The inverse Fourier Transform on f̂(s) is defined to be
∫∞
−∞ f̂(s)e2λisx ds which equal to f(x) itself,

i.e.,

f(x) =

∫ ∞
−∞

f̂(s)e2λisx ds

Now we are ready to solve
∂ρ

∂t
= D

∂2

∂x2
ρ

by applying Fourier Transform on both sides w.r.t. x. Then we have

ˆ(
∂ρ

∂t

)
= D

ˆ(
∂2

∂x2
ρ

)
∂ρ̂

∂t
= −4λ2s2Dρ̂

ρ̂(s, t) = ce−4λ2s2Dt

To get the expression of ρ(x, t), we need to take the inverse Fourier Transform of ρ̂(s, t) w.r.t. s.
Then we have

ρ(x, t) =

∫ ∞
−∞

ρ̂(s, t)e2λisx ds

=

∫ ∞
−∞

ce−4λ2s2Dte2λisx ds

= c

∫ ∞
−∞

e−4λ2s2Dt+2λisx ds

= c

∫ ∞
−∞

e
−
(

2λs
√
Dt− xi

2
√
Dt

)2
− x2

4tD ds

= ce−
x2

4tD

∫ ∞
−∞

e
−
(

2λs
√
Dt− xi

2
√
Dt

)2

ds

Set y = 2λs
√
Dt− xi

2
√
Dt

=⇒ dy = 2λ
√
Dtds

ρ(x, t) = ce−
x2

4tD

∫ ∞
−∞

e−y
2 1

2λ
√
Dt

dy

=
c

2λ
√
Dt

e−
x2

4tD

∫ ∞
−∞

e−y
2

dy

=
c

2λ
√
Dt

e−
x2

4tD

√
λ

=
c

2
√
λDt

e−
x2

4tD

Notice that

• limt→0+ ρ(0, t) = limt→0− ρ(0, t) =∞. This is consistent with our assumption: all bacterial
are at x = 0 at t = 0.

• limx→∞ ρ(x, t) = limx→−∞ ρ(x, t) = 0

• ρ(0, t) = c
2
√
λDt

=⇒ density at origin decay over time.
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§25.2 Diffusion on a Bounded Domain

Motivation: In real case, we would like to model dynamics on a finite domain. In this case, we need
to consider the influence at the boundaries. So we need to impose the boundary conditions (along
with the initial conditions) to ensure our PDE problem to be well-posed.
Suppose the length of the bar is L and the bar is perfectly insulated on the outsides (except possibly
from the ends x = 0, x = L). Since the bar is perfectly insulated, we will not gain or lose energy
anywhere except the boundary =⇒ conservation of energy. This system satisfies the continuity
equation

∂

∂t
(Tcρ) = − ∂q

∂x
(1)

where c = specific heat, ρ = material density, Tcρ stands for the heat energy and q represents the
flux (here c and ρ are some fixed number).
Repeat the process of the density function for the running process, we have that the flux of the
heat should satisfy the Fick’s Law:

q(x, t) = −k · ∂T
∂x

(2)

where k is the thermal conductivity of the material. Let’s substitute (2) to (1), we have

∂

∂t
(cρT ) = − ∂

∂x

(
−k∂T

∂x

)
cρ
∂

∂t
T = k

∂2T

∂x2

∂T

∂t
=

k

cρ︸︷︷︸
D

∂2T

∂x2

where 0 < x < L, t > 0 and it satisfies the initial condition T (x, 0) = T0(x). In a finite domain, we
also need to consider temperature dynamics at the boundaries.
Popular boundary conditions:

1. Temperature on the boundaries is constant

T (0, t) = α0 and T (L, t) = αL

This is called “Dirichlet” or “fixed” conditions.

2. Flux on boundaries is constant:

q(0, t) = β0, q(L, t) = βL

This is called “Neumann” or “fixed-flux” boundary condition. Because q(x, t) = −k ∂T∂x , the
“Neumann” boundary condition can be converted into

∂T

∂x

∣∣∣
(0,t)

= γ0,
∂T

∂x

∣∣∣
(L,t)

= γL

But β0γ0 < 0, βLγL < 0.

3. Perfect insulation. Then it means that no heat can enter or leave the bar. So the flux is 0.

q(0, t) = q(L, t) = 0

“No flux” condition.
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It’s difficult to find the solutions for the PDE with boundary conditions. But we can learn the
system by considering equilibrium solution. Notice that we are assuming the BC are independent of
time, the steady state exist and the steady state is also independent of time:

lim
t→∞

T (x, t) = T∞(x)

∂

∂t
T∞(x) = 0

Example 25.1

Consider

∂T

∂t
= D

∂2T

∂x2
, 0 < x < 1, T (0, t) = α0

T (1, t) = α1 and T (x, 0) = T0(x)

Find the steady state T∞.

∂T∞
∂t

= 0 =⇒ D
∂2T∞
∂x2

= 0

=⇒ ∂2T∞
∂x2

=
∂

∂x

(
∂T∞
∂x

)
= 0

=⇒ ∂T∞
∂x

= C1

C1 is independent of t and x because T∞ is independent of t, so T∞ = T∞(x).

=⇒ T∞(x) = C1x+ C2

Now, let’s use the BC

T (0, t) = α0 =⇒ C1 · 0 + C2 = α0 =⇒ C2 = α0

T (1, t) = alph1 =⇒ C1 + C2 = α1 =⇒ C1 = α1 − α0

=⇒ T∞(x) = (α1 − α0)x+ α0

Example 25.2

Consider

∂T

∂t
= D

∂2T

∂x2
, 0 < x < 1, T (0, t) = α0

∂T

∂x

∣∣∣
x=1

= 0 and T (x, 0) = T0(x)

Find the steady state T∞.
From the above example, we have T∞(x) = C1x+ C2. Next, let’s apply the BC on T∞

T (0, t) = α0 =⇒ T∞(0) = C2 = α0

∂T

∂x

∣∣∣
x=1

= 0 =⇒ ∂T∞
∂x

∣∣∣
x=1

= C1 = 0

Thus, T∞(x) = α0.
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