Math	1710
Clas	s 32
Clas	s 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Math 1710 Class 32

t - Inference incl. 2-Sample and MP Dr. Back

Nov. 11, 2009

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Because of the calendar (prelim next Th followed by Thanksgiving the following Th), tomorrow's lab will be the next to last one you hand in.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Because of the calendar (prelim next Th followed by Thanksgiving the following Th), tomorrow's lab will be the next to last one you hand in.

There will be an optional (to do) lab on Chi Square the day of prelim 2, but most of that recitation will be devoted to review.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Because of the calendar (prelim next Th followed by Thanksgiving the following Th), tomorrow's lab will be the next to last one you hand in.

There will be an optional (to do) lab on Chi Square the day of prelim 2, but most of that recitation will be devoted to review. Consequently tomorrow's lab includes elements of chapters 23, 24, and 25.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Because of the calendar (prelim next Th followed by Thanksgiving the following Th), tomorrow's lab will be the next to last one you hand in.

There will be an optional (to do) lab on Chi Square the day of prelim 2, but most of that recitation will be devoted to review. Consequently tomorrow's lab includes elements of chapters 23, 24, and 25.

We'll try and use today's class to give you an introduction to all the concepts coming up in the lab.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Because of the calendar (prelim next Th followed by Thanksgiving the following Th), tomorrow's lab will be the next to last one you hand in.

There will be an optional (to do) lab on Chi Square the day of prelim 2, but most of that recitation will be devoted to review. Consequently tomorrow's lab includes elements of chapters 23, 24, and 25.

We'll try and use today's class to give you an introduction to all the concepts coming up in the lab.

In some cases we'll skip some details and come back to them over the next few classes.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's an HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity A coffee vending machine dispenses coffee into a paper cup. You're supposed to get 10 ounces of coffee., but the amount varies slightly form cup to cup. Here are the amounts measured in a random sample of 20 cups.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity A coffee vending machine dispenses coffee into a paper cup. You're supposed to get 10 ounces of coffee., but the amount varies slightly form cup to cup. Here are the amounts measured in a random sample of 20 cups.

9.9	9.7	10.0	10.1
9.9	9.6	9.8	9.8
10.0	9.5	9.7	10.1
9.9	9.6	10.2	9.8
10.0	9.9	9.5	9.9

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity A coffee vending machine dispenses coffee into a paper cup. You're supposed to get 10 ounces of coffee., but the amount varies slightly form cup to cup. Here are the amounts measured in a random sample of 20 cups.

9.9	9.7	10.0	10.1
9.9	9.6	9.8	9.8
10.0	9.5	9.7	10.1
9.9	9.6	10.2	9.8
10.0	9.9	9.5	9.9

Is there evidence that the machine is shortchanging customers?

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

A natural HT situation.

< ロ > < 置 > < 注 > < 注 > 、 注 > のQの

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We'll summarize the data by its mean $\bar{x} = 9.845$ and its standard deviation s = .1986.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's an HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We'll summarize the data by its mean $\bar{x} = 9.845$ and its standard deviation s = .1986.

Notation: Let μ denote the mean amount of coffee in a dispensed cup.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We'll summarize the data by its mean $\bar{x} = 9.845$ and its standard deviation s = .1986. Notation: Let μ denote the mean amount of coffee in a dispensed cup.

Hypotheses:

- H_0 : $\mu = 10$ (or $\mu \ge 10$)
- $\bullet \ H_{\rm a}: \ \mu < 10$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers? Recall by the CLT that the sampling distribution of \bar{x} is

$$N(\mu, \frac{\sigma}{\sqrt{n}})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

when *n* is large.

Math 1710 Class 32

V2cu

Tomorrow's Lab

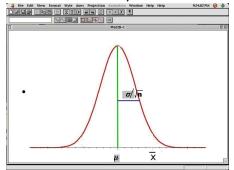
Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

$$N(\mu, \frac{\sigma}{\sqrt{n}})$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

As usual with HT's, we are interested in whether the observed statistic of $\bar{x} = 9.845$ is reasonably consistent with the sampling distribution assuming H_0 is true.

Math 1710 Class 32

V2cu

Tomorrow's Lab

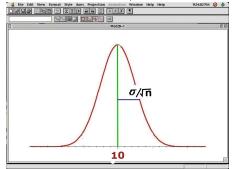
Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

$$N(10, \frac{\sigma}{\sqrt{n}})$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

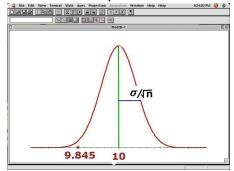
Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

$$N(10, \frac{\sigma}{\sqrt{n}})$$
 with \bar{x}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We know n = 20, but the major catch is not knowing σ . What is the obvious approximation?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We know n = 20, but the major catch is not knowing σ . What is the obvious approximation? Answer: Use s = .1986 instead of σ .

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

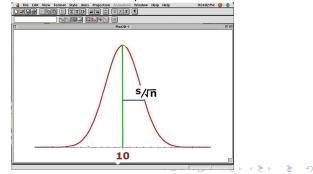
t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example


df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

We know n = 20, but the major catch is not knowing σ . What is the obvious approximation? Answer: Use s = .1986 instead of σ .

$$N(10, \frac{s}{\sqrt{n}})$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

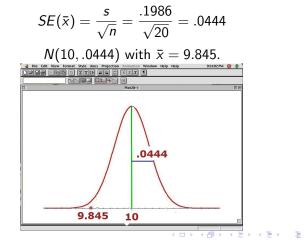
Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

Since the standard error is

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

If $s = \sigma$, we'd look at a Z-statistic

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{9.845 - 10}{\frac{.1986}{\sqrt{20}}}$$

where we've written H_0 more abstractly as $\mu = \mu_0$, μ_0 being the hypothesized value, 10 in this case.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

Because s will not exactly match σ , we actually get a bit of extra error here. This is compensated for by viewing

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{9.845 - 10}{\frac{.1986}{\sqrt{20}}} = \frac{-.155}{.0444} = -3.49.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

as a t-Statistic.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

Because s will not exactly match σ , we actually get a bit of extra error here. This is compensated for by viewing

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{9.845 - 10}{\frac{.1986}{\sqrt{20}}} = \frac{-.155}{.0444} = -3.49.$$

as a *t-Statistic*.

Since the error in approximating σ by s varies with the sample size, there is a different t-distribution for each sample size. These are labeled by the "degrees of freedom" which for a 1-sample t-test is:

$$df = n-1.$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

	0.10	0.05	0.025	0.01	0.005
df					
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
17	1.333	1.740	2 110	2 567	2.898
18	1,330	1 724	2 101	2.557	2.878
19	1.328	1.729	2.093	2.539	2,861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
	1 2 3 4 17 18 19 20	df 3.078 2 1.886 3 1.638 4 1.533 17 1.333 18 1.320 19 1.325 20 1.325 21 1.323	df 3.078 6.314 1 3.078 6.314 2 1.886 2.920 3 1.638 2.353 4 1.533 2.132 17 1.333 1.740 18 1.320 1.734 19 1.328 1.729 20 1.325 1.725 21 1.323 1.721	df 3.078 6.314 12.706 2 1.886 2.920 4.303 3 1.638 2.353 3.182 4 1.533 2.132 2.776 17 1.333 1.740 2.110 18 1.320 1.724 2.101 19 1.328 1.729 2.093 20 1.325 1.725 2.086 21 1.323 1.721 2.080	df 3.078 6.314 12.706 31.821 2 1.886 2.920 4.303 6.961 3 1.638 2.353 3.182 4.541 4 1.533 2.132 2.776 3.747 17 1.333 1.740 2.110 2.567 18 1.320 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.721 2.080 2.518

These are all critical values t^* . For example P(t > 1.328) = .10 for the t distribution with 19 df.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

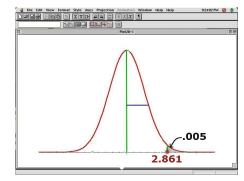
t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example


df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

Our t-statistic of -3.49 is more extreme than any on the df=19 row of the table.

The picture

shows what the critical value $t^* = 2.861$ for a tail prob. of 0.005

Math 1710 Class 32

V2cu

Tomorrow's Lab

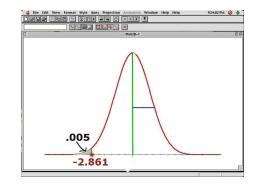
Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Is there evidence that the machine is shortchanging customers?

So by symmetry

$$P(T < -2.861) = .005$$
 as well.

Math 1710 Class 32

V2cu

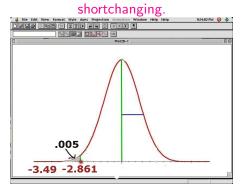
Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters


A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Is there evidence that the machine is shortchanging customers?

So our tail probability and p-value are both less than .005 and we reject the null. The machine does appear to be

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Sps. our t-statistic had been 2.00 with the same 1-sided hypotheses

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $H_0: \mu = 10 \text{ (or } \mu \ge 10)$

■ *H*_a: *µ* < 10

What P-value would we report?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Sps. our t-statistic had been 2.00 with the same 1-sided hypotheses

- $H_0: \mu = 10 \text{ (or } \mu \ge 10)$
- *H*_a: µ < 10

What P-value would we report?

One tail probability		0.10	0.05	0.025	0.01	0.005
Table T	df					
Values of t _a	1	3.078	6.314	12.706	31.821	63.657
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	17	1.333	1.740	2.110	2.567	2.898
	19	1.328	1.729	2.093	2.539	2.861
	20	1.325	1.725	2.086	2.528	2.845
	21	1.323	1.721	2.080	2.518	2.831

Answer: A tail probability and P-value of between .025 and .05.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Sps. instead our t-statistic had been 2.00 with 2-sided hypotheses

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$H_0: \mu = 10$$

$$\bullet H_a: \mu \neq 10$$

What P-value would we report?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Sps. instead our t-statistic had been 2.00 with 2-sided hypotheses

- $H_0: \mu = 10$
- H_a : $\mu \neq 10$

What P-value would we report?

One tail probability		0.10	0.05	0.025	0.01	0.005
Table T	df					
Values of t _a	1	3.078	6.314	12.706	31.821	63.6.57
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	17	1.333	1.740	2.110	2.567	2.898
	19	1.328	1.729	2.093	2.539	2.878
	20	1.325	1.725	2.086	2.528	2.845
	21	1.323	1.721	2.080	2.518	2.831
		1				

Answer: Our tail probability is still between .025 and .05 but our P-value is now between .05 and $.10_{\text{const}}$

t-CI's and HT's

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

A t-hypothesis test with

 $H_0: \mu = m\mu_0$

is resolved using a t-statistic of

$$t=\frac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

t-CI's and HT's

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

A t-hypothesis test with

$$H_0: \mu = m\mu_0$$

is resolved using a t-statistic of

$$t=\frac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 H_a can be any of the three

- 1 $\mu \neq \mu_0$ 2 $\mu > \mu_0$
- 3 $\mu < \mu_0$

t-CI's and HT's

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

A t confidence interval for $\boldsymbol{\mu}$ is

$$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

for the same reason as the corresponding formula in the proportion case:

t-CI's and HT's

Math 1710 Class 32

V2cu

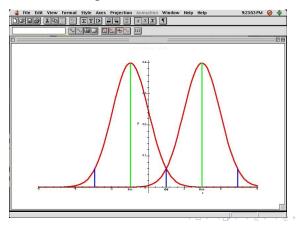
Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters


A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity The two sampling distributions at the border of the CI. The blue lines delimit central regions on the sampling distributions.

The CI is between the green lines on the horizontal axis.

t-CI's and HT's

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the coffee machine example, this gives a 95% CI for μ of $9.845 \pm 2.093(.0444) = 9.845 \pm .093 = (9.752, 9.938)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

. You did expect it to not include 10, didn't you?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's an HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Let $X_0, X_1, \ldots X_d$ be d + 1 independent standard normal random variables.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Let $X_0, X_1, \ldots X_d$ be d + 1 independent standard normal random variables.

The t-distribution with d degrees of freedom is defined to be the random variable

$$\frac{X_0}{\sqrt{X_1^2 + X_2^2 + \ldots + X_d^2}}.$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity The t-distribution with d degrees of freedom is defined to be the random variable

$$\frac{X_0}{\sqrt{X_1^2 + X_2^2 + \ldots + X_d^2}}.$$

Think of this as keeping track of the t-statistic

$$\frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{\frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}}{\frac{s}{\sigma}}$$

with the top X_0 keeping track of the numerator and the denominator $\sqrt{X_1^2 + X_2^2 + \ldots + X_d^2}$ keeping track of the ratio of s to σ .

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Just as the normal distribution has the density formula

$$f(x) = \frac{e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Methods of calculus show that the density formula for the t-distribution with d degrees of freedom is

$$f(x) = \frac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})} \frac{1}{\sqrt{d\pi}} \frac{1}{(1 + \frac{x^2}{d})^{\frac{d+1}{2}}}$$

where d is the number of degrees of freedom and

$$\Gamma(n)=\int_0^\infty t^{n-1}e^{-t}\ dt$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

is the gamma function, a generalized factorial.

Math 1710 Class 32

V2cu

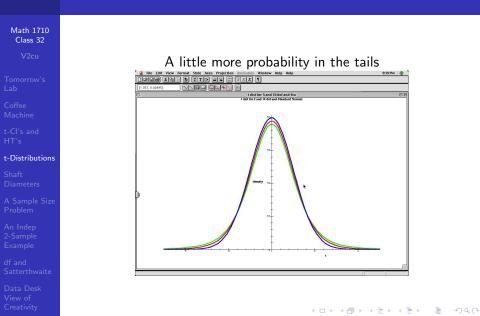
Tomorrow's Lab

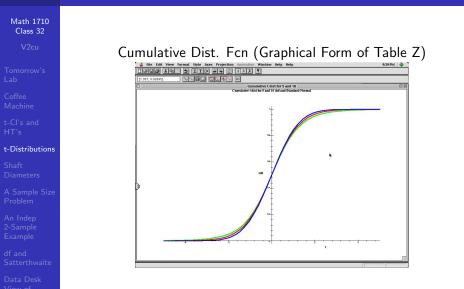
Coffee Machine

t-CI's and HT's

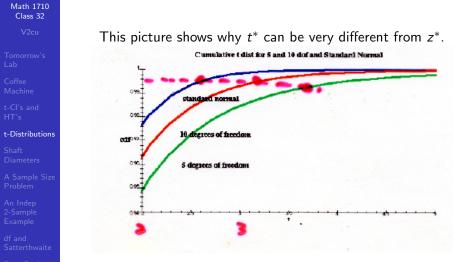
t-Distributions

Shaft Diameters


A Sample Size Problem


An Indep 2-Sample Example

df and Satterthwaite


Data Desk View of Creativity It will be important when we think about 2-sample tests to realize that the degrees of freedom is just a parameter in the above formula.

$$f(x) = \frac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})} \frac{1}{\sqrt{d\pi}} \frac{1}{(1 + \frac{x^2}{d})^{\frac{d+1}{2}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Data Desk View of Creativity

tur tai	0.20	0.10	0.05	0.02	0.01
ne fuil	0.10	0.05	0.025	0.01	0.02
df				0.91	
2	3.078	6.314	12,756	31,821	(3.65
3	1.886	2.920	4.303	6.965	9.92
3		2.353	3.182	4.541	5.84
	1.533	2.132	2.776	3.747	4.60
5	1.476	2.015	2.571	3.365	4.05
6	1.440	1.943	2,447	3.143	3.700
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.890	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
3.9	1.372	1,812	2.228	2.764	3,149
11	1,363	1,796	2.201	2.718	3.106
22	1.356	1.782	2.179	2,681	3.055
13	1.350	1.771	2,160	2,650	3.012
14	1.345	1.761	2.145	2.624	2,977
15	1.341	1.753	2.131	2.602	2,945
16	1.337	1.746	2,120	2.563	2.921
17	1.333	1.740	2.110	2.567	2,895
18	1.330	1.734	2.101	2.582	2,878
19	1.328	1.729	2.093	2.539	2.861
20	1.325				
22	1.323	1.725	2.086	2.528	2.845
22		1.721	2.060	2.518	2.831
	1.321	1.717	2.074	2.508	2.819
23 24	1.319	1.714	2.069	2.500	2.937
	1.318	1.711	2.064	2,492	2,797
25	1.316	1.708	2.060	2.485	2,787
26	1.315	1.706	2.056	2,479	2.775
27	1.314	1.703	2.052	2,473	2,771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2,043	2.462	2,756
30	1.310	1.697	2,042	2.457	2,750
32	1.309	1.694	2.037	2.449	2,738
35	1.306	1.690	2.030	2.438	2,725
40	1.303	1,684	2.021	2.423	2,794
45	1.301	1.679	2.014	2.412	2,690
52	1.299	1.676	2.009	2,013	2,678
60	1.296	1.671	2.000	2 290	2,660
75	1,293	1.665	1.992	2.377	2,643
100	1.250	1.660	1.994	2.364	2.626
120	1.289	1.658	1,990	2,358	2,617
140	1.288				
180	1.288	1.656	1.977	2.353	2.611
		1.653	1.973	2.347	2.663
250 400	1.285	1.651	1.969	2.341	2.596
400	1.284	1.649	1.966	2.336	2.588
	1.282	1.646	1.962	2.330	2.591
a	1.282	1.645	1.960	2.725	2.575

イロト イ理ト イヨト イヨト

Ξ.

Shaft Diameters

Math 1710 Class 32		
Shaft Diameters		

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Next time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Sample Size Problem

Math 1710 Class 32 V2cu	
Tomorrow's Lab	
Coffee Machine	
t-CI's and HT's	Next time.
t-Distributions	
Shaft Diameters	
A Sample Size Problem	
An Indep 2-Sample Example	
df and Satterthwaite	
Data Desk View of	

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity haiku: A Japanese poem composed of three unrhymed lines of five, seven, and five syllables. Haiku often reflect on some aspect of nature.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Math 1710 Class 32

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

Randomized Experiment on Creativity in poetry: Grades on creativity recorded. (Higher is better.)

Both groups filled out questionnaires before writing poetry.

 Intrinsic group first did questionnaire emphasizing intrinsic motivations.

 Extrinsic group first did questionnaire emphasizing extrinsic motivations.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

People then wrote Haiku poems which were graded by experienced poets.

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

The Results						
Group	n	\bar{x}	s			
Intrinsic	24	19.88	4.44			
Extrinsic	23	15.73	5.25			

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

Notation: Let μ_i and μ_e denote the respective mean haiku scores for the intrinsically and the extrinsically motivated groups.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this?

Notation: Let μ_i and μ_e denote the respective mean haiku scores for the intrinsically and the extrinsically motivated groups.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Hypotheses:

$$H_0: \mu_i = \mu_e$$

• H_a : $\mu_i \neq \mu_e$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

$$\bullet H_0: \ \mu_i = \mu_e$$

$$H_a: \mu_i \neq \mu_e$$

Under H_0 , the sampling distribution of $\bar{x}_i - \bar{x}_e$ has mean 0 and approx. std deviation

$$SE(\bar{x}_i - \bar{x}_e) = \sqrt{rac{s_i^2}{n_i} + rac{s_e^2}{n_e}}$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity How can you study this? Hypotheses:

$$H_0: \mu_i = \mu_e$$

$$H_a: \mu_i \neq \mu_e$$

Under H_0 , the sampling distribution of $\bar{x}_i - \bar{x}_e$ has mean 0 and approx. std deviation

$$SE(\bar{x}_i - \bar{x}_e) = \sqrt{\frac{s_i^2}{n_i} + \frac{s_e^2}{n_e}}$$

$$SE(\bar{x}_i - \bar{x}_e) = \sqrt{\frac{4.44^2}{24} + \frac{5.25^2}{23}} = 1.42.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

$$H_0: \ \mu_i = \mu_e$$

$$H_a: \mu_i \neq \mu_e$$

$$SE(\bar{x}_i - \bar{x}_e) = \sqrt{\frac{4.44^2}{24} + \frac{5.25^2}{23}} = 1.42.$$

Our t-statistic is

$$t = \frac{19.88 - 15.73}{1.42} = 2.92.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity How can you study this? Hypotheses:

$$\bullet H_0: \ \mu_i = \mu_e$$

$$H_a: \mu_i \neq \mu_e$$

$$SE(\bar{x}_i - \bar{x}_e) = \sqrt{\frac{4.44^2}{24} + \frac{5.25^2}{23}} = 1.42.$$

Our t-statistic is

$$t = \frac{19.88 - 15.73}{1.42} = 2.92.$$

For homework and hand computation on exams, we suggest you use df the smaller of 24-1 and 23-1 to interpret the t-statistic. *To be explained later.*

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

•
$$H_0$$
: $\mu_i = \mu_e$

$$\blacksquare H_a: \mu_i \neq \mu_e$$

With df = 22, 2.92 is more extreme than the biggest t^* in table T (which is 2.819) so our tail probability is less than .005 and our P-value is less than .01.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

$$\bullet H_0: \mu_i = \mu_e$$

$$H_a: \mu_i \neq \mu_e$$

With df = 22, 2.92 is more extreme than the biggest t^* in table T (which is 2.819) so our tail probability is less than .005 and our P-value is less than .01.

We reject H_0 . Intrinsic vs. extrinsic motivation does seem to make a difference.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

- $H_0: \mu_i = \mu_e$
- $H_a: \mu_i \neq \mu_e$

We reject H_0 . Intrinsic vs. extrinsic motivation does seem to make a difference.

A 95% CI for $\mu_i \neq \mu_e$ would be

 $19.88 - 15.73 \pm 2.074 \cdot 1.42 = 4.15 \pm 2.95 = (1.20, 7.10).$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

How can you study this? Hypotheses:

- $\bullet H_0: \ \mu_i = \mu_e$
- H_a : $\mu_i \neq \mu_e$

Scope of the Inference:

- Causal relationship seems to be established.
- Doesn't say much about a population since not an SRS.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$. But the sampling distribution of $\bar{x} - \bar{y}$ can be well approximated by a t-distribution with the following degrees of freedom:

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)^2}{\frac{1}{n_x - 1} \left(\frac{s_x^2}{n_x}\right)^2 + \frac{1}{n_y - 1} \left(\frac{s_y^2}{n_y}\right)^2}$$

~

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_{x}^{2}}{n_{x}} + \frac{s_{y}^{2}}{n_{y}}\right)^{2}}{\frac{1}{n_{x}-1}\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} + \frac{1}{n_{y}-1}\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2}}$$

Let $min(n_x - 1, n_y - 1)$ denote the smallest of $n_x - 1$ and $n_y - 1$. This df is always between $min(n_x - 1, n_y - 1)$ and $n_x + n_y - 2$.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_{x}^{2}}{n_{x}} + \frac{s_{y}^{2}}{n_{y}}\right)^{2}}{\frac{1}{n_{x}-1}\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} + \frac{1}{n_{y}-1}\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2}}$$

Special Case $s_x = s_y = s$, $n_x = n_y = n$.

$$df = \frac{\left(\frac{2s^2}{n}\right)^2}{\frac{1}{n-1}\frac{2s^4}{n^2}} = 2(n-1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

 $df = \frac{\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)^2}{\frac{1}{n_x - 1} \left(\frac{s_x^2}{n_x}\right)^2 + \frac{1}{n_y - 1} \left(\frac{s_y^2}{n_y}\right)^2}$ Special Case $\frac{s_x^2}{n_x} << \frac{s_y^2}{n_y}$

$$df = \frac{\left(\frac{J}{n_y}\right)}{\frac{1}{n_y - 1} \left(\frac{s_y^2}{n_y}\right)^2} = n_y - 1.$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_{x}^{2}}{n_{x}} + \frac{s_{y}^{2}}{n_{y}}\right)^{2}}{\frac{1}{n_{x}-1}\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} + \frac{1}{n_{y}-1}\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2}}$$

Calculators and computers will use this df formula. For hand computation on HW and exams, we suggest you never use this formula. Instead use the conservative $min(n_x - 1, n_y - 1)$.

Math 1710 Class 32

V2cu

Lab Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_{x}^{2}}{n_{x}} + \frac{s_{y}^{2}}{n_{y}}\right)^{2}}{\frac{1}{n_{x}-1}\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} + \frac{1}{n_{y}-1}\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2}}$$

Calculators and computers will use this df formula. For hand computation on HW and exams, we suggest you never use this formula. Instead use the conservative $min(n_x - 1, n_y - 1)$. Your t^* will be a little too big so your CI will be a little too wide and your HT a little harder to show statistical significance. But this is not so bad.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_{x}^{2}}{n_{x}} + \frac{s_{y}^{2}}{n_{y}}\right)^{2}}{\frac{1}{n_{x}-1}\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} + \frac{1}{n_{y}-1}\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2}}$$

In your published papers and lab reports, use a computer which will likely automatically use this formula.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

$$df = \frac{\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)^2}{\frac{1}{n_x - 1} \left(\frac{s_x^2}{n_x}\right)^2 + \frac{1}{n_y - 1} \left(\frac{s_y^2}{n_y}\right)^2}$$

Satterthwaite derived this formula using the fact that the exact mean and variance of the sampling distribution of $\bar{x} - \bar{y}$ is easy to calculate. He asked, "What df in the t-distribution would give the right μ and σ ." The answer is the above.

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

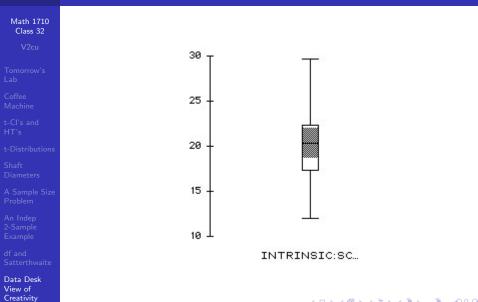
Shaft Diameters

A Sample Size Problem

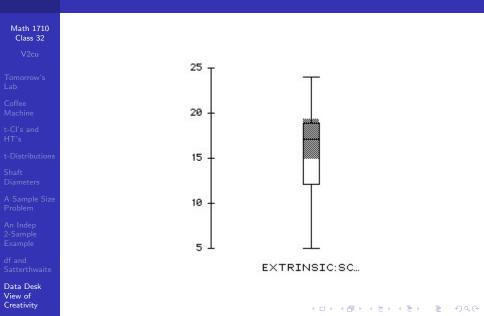
An Indep 2-Sample Example

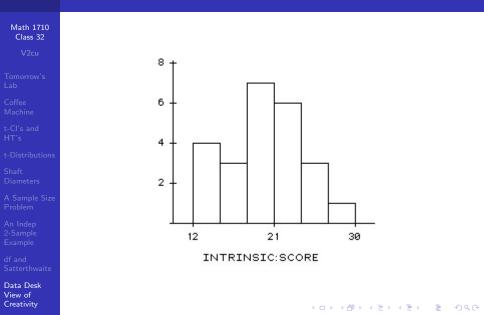
df and Satterthwaite

Data Desk View of Creativity In the 2-independent sample case, even if the individual data is normal, the difference $\bar{x} - \bar{y}$ does *not* follow a t-distribution unless $\sigma_x = \sigma_y$.

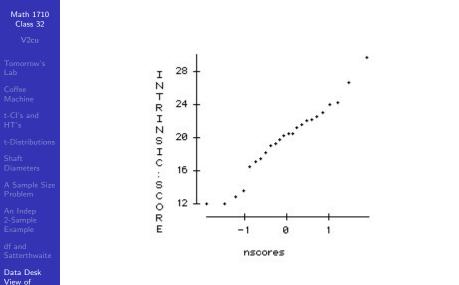

$$df = \frac{\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)^2}{\frac{1}{n_x - 1} \left(\frac{s_x^2}{n_x}\right)^2 + \frac{1}{n_y - 1} \left(\frac{s_y^2}{n_y}\right)^2}$$

$$f(x) = \frac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})} \frac{1}{\sqrt{d\pi}} \frac{1}{\left(1 + \frac{x^2}{d}\right)^{\frac{d+1}{2}}}$$

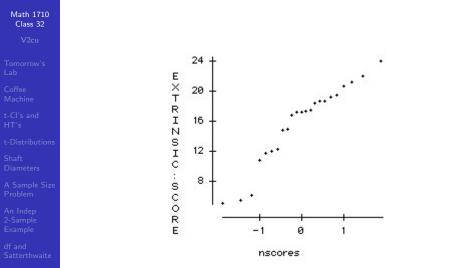

・ロト・西ト・西ト・日・ 日・ シック


Math 1710 Class 32		
V2cu		
Tomorrow's _ab	Summary of IN ⁻	TRINSIC:SCORE
Coffee	No Selector	
Machine	Percentile 25	
t-Cl's and HT's	Count	24
t-Distributions	Mean	19.8833
Shaft	Median	20.4
Diameters	StdDev	4.43951
A Sample Size	Range	17.7
Problem	IntQRange	5.05
An Indep	Lower ith Stile	17.35
2-Sample Example	Upper ith # tile	22.4
df and Satterthwaite		

Math 1710 Class 32	
V2cu	
Tomorrow's _ab	Summary of EXTRINSIC:SCORE
	No Selector
Coffee Machine	Percentile 25
t-CI's and	reicentile 23
HT's	Count 23
t-Distributions	Mean 15.7391
	Median 17.2
Shaft Diameters	StdDev 5.2526
	Range 19
A Sample Size Problem	IntQRange 7
And Inclusion	Lower ith stile 12.075
An Indep 2-Sample	Upper ith #tile 19.075
Example	
df and Satterthwaite	



・ロト ・ 一 ト ・ モト ・ モト æ



・ロト ・聞ト ・ヨト ・ヨト

æ

Creativity

Data Desk View of Creativity

◆□> ◆□> ◆三> ◆三> ・三 のへの

w's	
2	t-Interval for Individual μ's
and	No Selector
ibutions	Individual Confidence 95.00%
ers	Bounds: Lower Bound < μ < Upper Bound
le Size	With 95.00% Confidence, 18.008691 < μ(INTRINSIC:SCORE) < 21.75797
2	

t-Interval for Individual μ's
No Selector
Individual Confidence 95.00%
Bounds: Lower Bound < μ < Upper Bound
With 95.00% Confidence, 13.467738 < $\mu(\text{EXTRINSIC:SCORE}$

Data Desk View of Creativity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

Math 1710 Class 32	
V2cu	
Tomorrow's Lab	
Coffee Machine	2-Sample t-Interval for μ 1- μ 2
t-Cl's and HT's	No Selector Individual Confidence 95.00%
t-Distributions	Bounds: Lower Bound < $\mu1{-}\mu2$ < Upper Bound
Shaft Diameters	With 95.00% Confidence, -7.0100029 < µ(EXTRINSIC:SCORE)-µ(INTRINSIC:SCORE) < -1.2776029
A Sample Size Problem	
An Indep 2-Sample Example	
df and Satterthwaite	
Data Desk View of Creativity	

Math 1710 Class 32	
V2cu	
Tomorrow's Lab	
Coffee Machine	2-Sample t-Test of µ1-µ2
:-CI's and HT's	No Selector Individual Alpha Level 0.05
-Distributions	Ho: μ1-μ2 = 0 Ho: μ1-μ2 = 0
Shaft Diameters A Sample Size Problem	EXTRINSIC:SCORE - INTRINSIC:SCORE : Test Ho: μ (EXTRINSIC:SCORE)- μ (INTRINSIC:SCORE) = 0 vs Ha: μ (EXTRINSIC:SCORE)- μ (INTRINSIC:SCORE) = Difference Between Means = -4.1442029 t-Statistic = -2.915 w/43 df Reject Ho at Alpha = 0.05 p = 0.0056
An Indep 2-Sample Example	
df and Satterthwaite	
Data Desk	

View of Creativity

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Does regular exercise reduce resting pulse rates? 10 volunteers do 20 minutes of exercise 3 times a week for 6 weeks. Their resting pulse rates before and after were measured. (Beats/min.)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Data	Desk

Subject	Before	After	
Allen	73	73	
Brandon	83	79	
Carlos	85	81	
David	87	86	
Edwin	91	87	
Franco	99	91	
Graeme	87	84	
Hans	85	83	
Ivan	83	84	
Jorge	79	76	

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ う々の

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity

Subject	Before	After	
Allen	73	73	
Brandon	83	79	
Carlos	85	81	
David	87	86	
Edwin	91	87	
Franco	99	91	
Graeme	87	84	
Hans	85	83	
Ivan	83	84	
Jorge	79	76	

Notice that 8 out of 10 subjects had reduced RPR's. There is a non-parametric test called the sign test that could be used to conclude that RPR's tend to decrease as hypothesized. Can you see how binomial distribution ideas could be used for this?

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Notation: Let μ_b be the mean resting pulse rate before the exercise program and μ_a the mean resting pulse rate after.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Notation: Let μ_b be the mean resting pulse rate before the exercise program and μ_a the mean resting pulse rate after. Hypotheses:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$H_0: \mu_b = \mu_a \text{ (or } \mu_b - \mu_a \le 0 \text{ or } \dots \text{)}$$

$$\blacksquare H_a: \mu_b > \mu_a$$

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity Since individuals have important characteristics besides their exercise programs which determine their RPR's, statistical tests based on

$$\mathit{Var}(ar{x}_b - ar{x}_{\mathsf{a}}) = \mathit{Var}(ar{x}_b) + \mathit{Var}(ar{x}_{\mathsf{a}})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

would not be appropriate here.

V2cu

Tomorrow's Lab

Coffee Machine

t-Cl's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity In MP, we look at the differences and apply 1-sample ideas to the differences.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Math 1710 Class 32	

Differences d_i			
Subject	Before - After		
Allen	0		
Brandon	4		
Carlos	4		
David	1		
Edwin	4		
Franco	8		
Graeme	3		
Hans	2		
lvan	-1		
Jorge 3			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity The mean $\overline{d} = 2.8$ with a standard deviation *s* of 2.8. Note you need to directly calculate *s* for the differences; it is not determined by s_a and s_b .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Math 1710 Class 32

V2cu

Tomorrow's Lab

Coffee Machine

t-CI's and HT's

t-Distributions

Shaft Diameters

A Sample Size Problem

An Indep 2-Sample Example

df and Satterthwaite

Data Desk View of Creativity The mean $\bar{d} = 2.8$ with a standard deviation s of 2.8.

$$t = \frac{2.8}{\frac{2.53}{\sqrt{10}}} = -3.50$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

with df=9. Our P-value is < .005 and we reject H_0 . Exercise does seem to reduce RPR's.

Matched Pairs vs. Indep. 2-Sample Math 1710 Class 32 Group1 Group 2 *x*₁ *Y*1 X_2 y_2 Xn . . . Уm \overline{x} \bar{y} mean std. dev S_{X} S_V

イロト 不得 トイヨト イヨト

э.

Matched Pairs vs. Indep. 2-Sample

Math 1710 Class 32			
	Group1	Group 2	
	<i>x</i> ₁	<i>y</i> 1	
	<i>x</i> ₂	<i>y</i> 2	
	Xn		
		Уm	
	x		mean
	S _X	s _y	std. de
	- ^	- y	

Independent 2-Sample

Each x_i and each y_j are (except to the extent that they come from one of the groups) independent of each other. The sample sizes m and n can be different.

Matched Pairs vs. Indep. 2-Sample

Math 1710 Class 32 V2cu		Group1	Group 2	
v 2cu		Gloupi	Group 2	
Tomorrow's Lab		<i>x</i> ₁	<i>y</i> 1	
		<i>x</i> ₂	<i>y</i> ₂	
Coffee		_	-	
Machine		• • •		
t-CI's and HT's		Xn		
			y _m	
t-Distributions		x	-	
Shaft		X	Γ, Ξ	mean
Diameters		S_X	s _y	std. dev
A Sample Size				
Problem	Matched Pairs			

The i'th observation x_i in group 1 is more closely related (in a relevant way) to the i'th observation y_i in group 2 than a general x_i is to a general y_i .

The sample sizes m and n must be the same.