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Preface

This is the complementary text to my Linear Algebra Lecture Notes for the

telecommunication students at Technical University in Poznań.

It is designed to help you succeed in your linear algebra course, and shows

you how to study mathematics, to learn new material, and to prepare effec-

tive review sheets for tests. This text guide you through each section, with

summaries of important ideas and tables that connect related ideas. Detailed

solutions to many of exercises allow you to check your work or help you get

started on a difficult problem. Also, complete explanations are provided for

some writing exercises Practical Problems point out important exercises, give

hints about what to study, and sometimes highlight potential exam questions.

Frequent warnings identify common student errors. Don’t ever take an exam

without reviewing these warnings! Good luck!

Andrzej Máckiewicz

Poznán, September 2014
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1

Complex Numbers (Exercises)

Exercise 1.1 Simplify the imaginary numbers below

a)
√−36

b) ±√−49
c) −√−16
d) 11

√−81
e) 9

f) 12

g) 2420

h) 16−√−169
i) 16−√−16
j)  where  is positive even number.

Exercise 1.2 Solve the following problems. Answers are to be in simplest +

form.

1. Multiply: (3 + 5)(3− 5)

a) 9− 25
b) 25

c) 34

2. Multiply: (8 + 9)(7− 3)

a) 15− 12
b) 29− 39
c) 83 + 39
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3. Multiply: (4− 3)(3− 4)

a) 25

b) −25
c) 12− 12

4. Simplify: (2 + 5)2

a) 21 + 20

b) −21 + 20
c) 29 + 20

5. Simplify: 8 + (8− )

a) 7 + 8

b) 8 + 8

c) 9 + 8

6. Simplify:
7− 4
1− 2

a) 5− 2
b) 3 + 2

c) 15 + 10

7. Simplify:
6 + 

6− 

a) 3537 + (1237)

b) 35 + 12

c) 3536 + (1236)

8. Simplify:
3− 5



a) 5 + 3

b) −5− 3
c) 5− 3

9. Simplify:
1

6− 3
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a) 215 + 15

b) 215− 15

c) 145 + 15

10. What is the multiplicative inverse of
1

2
+ 
1

2

a) 2(1 + )

b) (12)− (12)
c) (1 + )2

 ∗ 

Exercise 1.3 Verify that

a)
¡√
3 + 

¢
+ (1 +

√
3) = 2;

b) (1−3)(−2 3) = (7 9);
c) (3 2) (3−2) (1 2) = (13 26)

Exercise 1.4 Show that

a) Re() = − Im();
b) Im() = Re()

Exercise 1.5 Show that (1 + )3 = 3 + 32 + 3 + 1

Exercise 1.6 Verify that each of the two numbers  = 1 ± 
√
2 satisfies the

equation 2 − 2 + 3 = 0;
Exercise 1.7 Prove that multiplication of complex numbers is commutative.

Exercise 1.8 Verify

a) the associative law for addition of complex numbers,

b) the distributive law .

Exercise 1.9 Use the associative law for addition and the distributive law to

show that

 (1 + 2 + 3 + 4) = 1 + 2 + 3 + 4
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Exercise 1.10 a) Write ( ) + ( ) = ( ) and point out how it follows

that the complex number 0 = (0 0) is unique as an additive identity.

b) Likewise, write ( )( ) = ( ) and show that the number 1 = (1 0) is

a unique multiplicative identity.

Exercise 1.11 Solve the equation 2 − 2 + 2 = 0, for  = ( ) by writing

( )( )− 2( ) + (2 0) = (0 0)

and then solving a pair of simultaneous equations in x and y.

HINT: Use the fact that no real number  satisfies the given equation to show

that  6= 0.
Answer: Solution is: 1 +  1− .

 ∗ 

Exercise 1.12 Reduce each of these quantities to a real number:

a)
1 + 2

3− 4 +
2− 

5

b)
5

(− 1) (2− ) (3− )

c) (1− )8

Answer: a) −2
5
 b) 1

2
 c) 16

Exercise 1.13 Show that

1

1
=  ( 6= 0) 

Exercise 1.14 Use the associative and commutative laws for multiplication

to show that

(12)(34) = (13)(24)

Exercise 1.15 Prove that if 123 = 0, then at least one of the three factors

is zero.

HINT: Write (12)3 = 0 and use a similar result involving two factors.

 ∗ 

Exercise 1.16 Locate the numbers 1 + 2 and 1 − 2 vectorially when
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a) 1 = 3 2 =
4
3
− 

b) 1 =
¡−√5 1¢  2 =

¡√
2 1
¢


c) 1 = (−2 1)  2 =
¡√
3 1
¢


d) 1 = 1 + 1 2 = 1 − 1

Exercise 1.17 Verify inequalities ??, involving Re(), Im(), and ||.
Exercise 1.18 Use established properties of moduli to show that when |3| 6=
|4|,

Re(1 + 2)

|3 + 4| ≤
|1|+ |2|
||3|− |4|| 

Exercise 1.19 Verify that
√
2|| ≥ |Re |+ | Im |

HINT: Reduce this inequality to(||− ||)2 ≥ 0.
Exercise 1.20 In each case, sketch the set of points determined by the given

condition:

a) | − 2 + | = 1;
b) | + | ≤ 2;
c) | − 4| ≥ 3

Exercise 1.21 Using the fact that |1− 2| is the distance between two points
1 and 2, give a geometric argument that

a) | − 4|+ | + 4| = 10 represents an ellipse whose foci are (0±4);
b) | − 1| = | + | represents the line through the origin whose slope is −1.

 ∗ 

Exercise 1.22 Use properties of conjugates and moduli to show that

a) ̄ + 4 =  − 4;
b)  = −;

c) (2 + )2 = 3− 4;
d)

¯̄
(2̄ + 5)(

√
2− )

¯̄
=
√
3 |2 + 5| 
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Exercise 1.23 Sketch the set of points determined by the condition

a) Re(̄ − ) = 2;

b) |2̄ + | = 4

Exercise 1.24 Verify properties

1 − 2 = ̄1 − ̄2

and

12 = ̄1̄2

of conjugates.

Exercise 1.25 Show that

a) 123 = ̄1̄2̄3 ;

b) 4 = ̄4

Exercise 1.26 Verify property¯̄̄̄
1

2

¯̄̄̄
=
|1|
|2| (2 6= 0) 

of moduli.

Exercise 1.27 Show that when 2 and 3 are nonzero,

a)

µ
1

23

¶
=

̄1

̄2̄3
;

b)

¯̄̄̄
1

23

¯̄̄̄
=

|1|
|2| |3| 

Exercise 1.28 Show that¯̄
Re(2 + ̄ + 3)

¯̄
≤ 4 when || ≤ 1

Exercise 1.29 Give an alternative proof that if 12 = 0, then at least one

of the numbers 1 and 2 must be zero. Use the corresponding result for real

numbers and the identity |12| = |1| |2| 
Exercise 1.30 Prove that



1. Complex Numbers (Exercises) 13

a)  is real if and only if ̄ = ;

b)  is either real or pure imaginary if and only if ̄2 = 2

Exercise 1.31 Use mathematical induction to show that when  = 2 3 ,

a) 1 + 2 + · · ·+  = ̄1 + ̄2 + · · ·+ ̄;

b) 12 · · ·  = ̄1̄2 · · · ̄.

Exercise 1.32 Let 0 1 2   ( ≥ 1) denote real numbers, and let  be
any complex number. With the aid of the results in previous, show that

0 + 1 + 22 + ···+  = 0 + 1̄ + 2̄
2 + ···+ ̄



Exercise 1.33 Show that the equation |− 0| =  of a circle, centered at 0
with radius , can bewritten

||2 − 2Re(0) + |0|2 = 2

 ∗ 

Exercise 1.34 Find the principal argument Arg  when

a)  =


−2− 2 ;

b)  =
¡√
3− 

¢6


Answer: a) −34 b) 

Exercise 1.35 Show that a) || = 1; b)  = −.

Exercise 1.36 Use mathematical induction to show that

12 · · ·  = (1+2+···+) ( = 2 3 )

Exercise 1.37 Using the fact that the modulus |−1| is the distance between
the points  and 1give a geometric argument to find a value of  in the

interval 0 ≤   2 that satisfies the equation | − 1|.
Answer: 

Exercise 1.38 By writing the individual factors on the left in exponential

form, performing the needed operations, and finally changing back to rectan-

gular coordinates, show that
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a) 
¡
1−√3¢ ¡√3 + 

¢
= 2

¡
1 + 

√
3
¢
;

b) 5(2 + ) = 1 + 2;

c) (−1 + )7 = −8− 8 = −8(1 + );

d)
¡
1 +
√
3
¢−10

= 1
2048


√
3− 1

2048
= 1

211
(−1 +√3)

Exercise 1.39 Show that if Re 1  0 and Re 2  0, then

(12) = (1) +(2)

where principal arguments are used.

Exercise 1.40 Let  be a nonzero complex number and  a negative integer

( = −1−2 ). Also, write  =  and  = − = 1 2  Using the

expressions

 =  and −1 =
µ
1



¶
(−)

verify that ()−1 =
¡
−1

¢


 ∗ 

Exercise 1.41 Find the square roots of

a) 2;

b) 1−√3
and express them in rectangular coordinates.

Answer: a)± (1 + ) ; b) ±
√
3−√
2


Exercise 1.42 In each case, find all the roots in rectangular coordinates, ex-

hibit them as vertices of certain squares, and point out which is the principal

root:

a) (−16)14 ;

b)
¡−8− 8√3¢14 ;
Answer: a) ±√2 (1 + )  ±√2 (1− ) b) ± ¡√3− 

¢
 ± ¡1 +√3¢ 
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Exercise 1.43 The three cube roots of a nonzero complex number 0 can be-

written 0, 03, 0
2
3 where 0 is the principal cube root of 0 and

3 = exp

µ

2

3

¶
=
−1 +√3

2


Show that if 0=−4
√
2 + 4

√
2 then 0 =

√
2 (1 + ) and the other two cube

roots are, in rectangular form, the numbers

03 =
− ¡√3 + 1¢+ ¡√3− 1¢ √

2
 0

2
3 =

¡√
3− 1¢+ ¡√3 + 1¢ √

2


Exercise 1.44 Find the four zeros of the polynomial 4 + 4, then use those

zeros to factor 4 + 4 into quadratic factors with real coefficients.

 ∗ 

Exercise 1.45 Use complex numbers to find the sum of the  − 1 terms of
the series

 = 2 sin  + 3 sin 2 + 4 sin 3 + +  sin(− 1)

Show that, if  = 2, then  = 1
2
 cot 2.

Exercise 1.46 Use De Moivre’s formula to show that:

cos () = cos  −
µ


2

¶
cos−2  sin2  +

µ


4

¶
cos−4  sin4  + 

sin () =

µ


1

¶
cos−1  sin  −

µ


3

¶
cos−3  sin3  + 

Exercise 1.47 Find real and imaginary parts and the modulus of

1 + 

1 + 


Exercise 1.48 If  = cos 2

+  sin 2


(see ??, p.??) prove that

1 +  + 2 + + (−1) = 0

for any integer  which is not a multiple of 
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2

Systems of Linear Equations (Exercises)

Get into the habit now of working the Practice Problems before you start

the exercises. Probably, you should attempt all the Practice Problems before

checking the solutions, because once you start reading the first solution, you

might tend to read on through the other solutions and spoil your chance to

benefit from those problems.

2.1 Practice Problems

Problem 1 Determine if the following system is consistent:

2 − 43 = 8

21 − 32 + 23 = 1

51 − 82 + 73 = 1

(2.1)

Solution: The augmented matrix is⎡⎣ 0 1 −4 8

2 −3 2 1

5 −8 7 1

⎤⎦ (2.2)

To obtain an 1 in the first equation, interchange rows 1 and 2:⎡⎣ 2 −3 2 1

0 1 −4 8

5 −8 7 1

⎤⎦ (2.3)

To eliminate the 51 term in the third equation, add −52 times row 1 to row
3: ⎡⎣ 2 −3 2 1

0 1 −4 8

0 −12 2 −32

⎤⎦ (2.4)

Next, use the 2 term in the second equation to eliminate the −122 term
from the third equation. Add 12 times row 2 to row 3:⎡⎣ 2 −3 2 1

0 1 −4 8

0 0 0 5
2

⎤⎦ (2.5)



18 2. Systems of Linear Equations (Exercises)

Fig. 2.1. The system 2.1 is inconsistent because there is no point that lies in all three

planes (yellow,pink and blue)

The augmented matrix is now in triangular form. To interpret it correctly, go

back to equation notation:

21 − 32 + 23 = 1

2 − 43 = 1

0 = 52

(2.6)

The equation 0 = 52 is a short form of 01+02+03 = 52. This system

in triangular form obviously has a built-in contradiction. There are no values

of 1;2;3 that satisfy (2.6) because the equation 0 = 52 is never true. Since

(2.6) and (2.1) have the same solution set, the original system is inconsistent

(i.e., has no solution).
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Problem 2 State in words the next elementary row operation that should be

performed on the system in order to solve it. [More than one answer is possi-

ble.]

a)

1 + 2 − 43 + 64 = 8

2 + 23 − 34 = 1

73 + 4 = 1

3 − −34 = 5

b)

1 + 2 − 43 + 64 = 8

2 + 23 = 1

23 = 1

4 = 5

Solution:

a) For “hand computation,” the best choice is to interchange equations 3

and 4. Another possibility is to multiply equation 3 by 17. Or, replace

equation 4 by its sum with −17 times row 3. (In any case, do not use
the 2 in equation 2 to eliminate the 2 in equation 1.)

b) The system is in triangular form. Further simplification begins with the

4 in the fourth equation. Use the 4 to eliminate all 4 terms above it.

The appropriate step now is to add −6 times equation 4 to equation 1.
(After that, move to equation 3, multiply it by 12, and then use the

equation to eliminate the 3 terms above it.)

Problem 3 The augmented matrix of a linear system has been transformed

by row operations into the form below. Determine if the system is consistent.⎡⎣ 1 5 2 −6
0 4 −7 2

0 0 5 0

⎤⎦  (2.7)

Solution: The system corresponding to the augmented matrix is

1 + 52 + 23 = −6
42 − 73 = 2

53 = 0

(2.8)

The third equation makes 3 = 0, which is certainly an allowable value for 3.

After eliminating the 3 terms in equations 1 and 2, you could go on to solve

for unique values for 2 and 1. Hence a solution exists, and it is unique (see

Figure 2.2).
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Fig. 2.2. Each of the equations 2.8 determines a plane in three-dimensional space. The

solution lies in all three planes.
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Problem 4 Is (3 4−1) a solution of the following system?

51 − 2 + 23 = 9

−21 + 62 + 93 = 9

−71 + 52 − 33 = 1

(2.9)

Solution: It is easy to check if a specific list of numbers is a solution. Set

1 = 3, 2 = 4, and 3 = −1, and find that

5(3)− (4) + 2(−1) = 9

−2(3) + 6(4) + 9(−1) = 9

−7(3) + 5(4)− 3(−1) = 2

Although the first two equations are satisfied, the third is not, so (3 4−1) is
not a solution of the system. Notice the use of parentheses when making the

substitutions. They are strongly recommended as a guard against arithmetic

errors.

Problem 5 For what values of  and  is the following system consistent?

21 − 2 = 

−41 + 22 = 

Solution: When the second equation is replaced by its sum with 2 times

the first equation, the system becomes

21 − 2 = 

0 =  + 2

If  + 2 is nonzero, the system has no solution. The system is consistent for

any values of  and  that make  + 2 = 0.

Exercise 2.1 (True or False) Mark each statement True or False, and jus-

tify your answer. (If true, give the approximate location where a similar state-

ment appears, or refer to a definition or theorem. If false, give the location of

a statement that has been quoted or used incorrectly, or cite an example that

shows the statement is not true in all cases.) Similar true/false questions will

appear in many next lectures.

a) Every elementary row operation is reversible.

b) A 5× 6 matrix has six rows.
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c) The solution set of a linear system involving variables 1   is a list of

numbers 1   that makes each equation in the system a true state-

ment when the values 1   are substituted for 1  , respectively.

d) Two fundamental questions about a linear system involve existence and

uniqueness.

Exercise 2.2 The augmented matrix of a linear system has been reduced by

row operations to the form shown. In each case, continue the appropriate row

operations and describe the solution set of the original system.

a) ⎡⎢⎢⎣
1 −1 0 0 4

0 1 −2 0 3

0 0 1 −3 2

0 0 0 1 −4

⎤⎥⎥⎦ 
b) ⎡⎢⎢⎣

1 −1 0 0

0 1 −2 0

0 0 0 −3
0 0 1 1

⎤⎥⎥⎦ 
Exercise 2.3 Solve the following system

1 − 33 = 8

21 + 22 + 93 = 7

2 + 53 = −2

Exercise 2.4 Construct three different augmented matrices for linear systems

whose solution set is 1 = 3 2 = −2 3 = −1
Exercise 2.5 Determine the value(s) of  such that the matrix is the aug-

mented matrix of a consistent linear system.∙
1 2 

3 4 −2
¸




3

Row Reduction and Echelon Forms
(Exercises)

3.1 Practice problems

Example 6 Find the general solution of the linear system whose augmented

matrix is ∙
1 −3 −5 0

0 1 1 3

¸
(3.1)

Solution: The reduced echelon form of the augmented matrix and the

corresponding system are∙
1 0 −2 9

0 1 1 3

¸
and

½
1 − 23 = 9

3 + 3 = 3
(3.2)

The basic variables are 1 and 2, and the general solution is⎧⎨⎩
1 = 9 + 23
2 = 3− 3
3 is free

See Figures 3.1 and 3.2 ¤

Example 7 Find the general solution of the system⎧⎨⎩
1 − 22 − 3 + 34 = 0

−21 + 42 + 53 − 54 = 3

31 − 62 − 63 + 84 = 2

Solution: Row reduce the system’s augmented matrix:⎡⎣ 1 −2 −1 3 0

−2 4 5 −5 3

3 −6 −6 8 2

⎤⎦

∼

⎡⎣ 1 −2 −1 3 0

0 0 3 1 3

0 0 −3 −1 2

⎤⎦
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Fig. 3.1. The general solution of the oryginal system of equations 3.1 is the line of

intersection of the two planes.
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Fig. 3.2. Line of intersection of the two planes which correspond to the system 3.2 in

rref. The solution sets for the system 3.1 and 3.2 are identical.
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∼

⎡⎣ 1 −2 −1 3 0

0 0 3 1 3

0 0 0 0 5

⎤⎦
This echelon matrix shows that the system is inconsistent, because its right-

most column is a pivot column; the third row corresponds to the equation

0 = 5. There is no need to perform any more row operations. Note that the

presence of the free variables in this problem is irrelevant because the system

is inconsistent.

3.2 Solving Several Systems Simultaneously

In many cases, we need to solve two or more systems having the same coeffi-

cient matrix. Suppose we wanted to solve both of the systems:⎧⎨⎩
31 + 2 − 23 = 1

41 − 3 = 7

21 − 32 + 53 = 18

and

⎧⎨⎩
31 + 2 − 23 = 8

41 − 3 = −1
21 − 32 + 53 = −32

It is wasteful to do two almost identical row reductions on the augmented

matrices ⎡⎣ 3 1 −2 1

4 0 −1 7

2 −3 5 18

⎤⎦ and

⎡⎣ 3 1 −2 8

4 0 −1 −1
2 −3 5 −32

⎤⎦
Instead,we can create the following “simultaneous” matrix containing the in-

formation from both systems:⎡⎣ 3 1 −2 1 8

4 0 −1 7 −1
2 −3 5 18 −32

⎤⎦
Row reducing this matrix completely yields⎡⎣ 1 0 0 2 −1

0 1 0 −3 5

0 0 1 1 −3

⎤⎦
By considering both of the right-hand columns separately,we discover that the

unique solution of the first system is 1 = 2, 2 = −3, and 3 = 1 and that

the unique solution of the second system is 1 = −1, 2 = 5, and 3 = −3.
Any number of systems with the same coefficient matrix can be handled

similarly, with one column on the right side of the augmented matrix for each

system.
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Example 8 Find the general solutions of the system whose augmented matrix

is given by ⎡⎢⎢⎣
1 −3 0 −1 0 −2
0 1 0 0 −4 1

0 0 0 1 9 4

0 0 0 0 0 0

⎤⎥⎥⎦ (3.3)

Solution: ⎡⎢⎢⎣
1 −3 0 −1 0 −2
0 1 0 0 −4 1

0 0 0 1 9 4

0 0 0 0 0 0

⎤⎥⎥⎦

∼

⎡⎢⎢⎣
1 −3 0 −1 9 2

0 1 0 0 −4 1

0 0 0 1 9 4

0 0 0 0 0 0

⎤⎥⎥⎦

∼

⎡⎢⎢⎣
1 0 0 0 −3 5

0 1 0 0 −4 1

0 0 0 1 9 4

0 0 0 0 0 0

⎤⎥⎥⎦
Corresponding system:⎧⎪⎪⎨⎪⎪⎩

1 − 35 = 5

2 − 45 = 1

4 + 95 = 4

0 = =

Basic variables: 1 2 4; free variables: 3 5. General solution:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 = 5 + 33
2 = 1 + 45
3 = is free

4 = 4− 95
5 = is free

Note: A common error in this exercise is to assume that 3 is zero. Another

common error is to say nothing about 3 and write only 1 2 4, and 5,

as above. To avoid these mistakes, identify the basic variables first.

Any remaining variables are free. ¤
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Exercise 3.1 Solve the systems x = b1 and x = b2 simultaneously, as il-

lustrated above, where

 =

⎡⎣ 9 2 2

3 2 4

27 12 22

⎤⎦  b1 =

⎡⎣ −60
12

⎤⎦  b2 ==

⎡⎣ −12−5
8

⎤⎦ 
Exercise 3.2 Solve the systems x = b1 and x = b2 simultaneously, as il-

lustrated above, where

 =

⎡⎢⎢⎣
12 2 0 3

−24 −4 1 −6
−4 −1 −1 0

−30 −5 0 −6

⎤⎥⎥⎦  b1 =

⎡⎢⎢⎣
3

8

−4
6

⎤⎥⎥⎦  b2 =

⎡⎢⎢⎣
2

4

−24
0

⎤⎥⎥⎦ 
Exercise 3.3 Find the values of  (and  in part ()) in the following

partial fractions problems:

a)

52 + 23− 58
(− 1)(− 3)(+ 4) =



− 1 +


− 3 +


+ 4

b)

−33 + 292 − 91+ 94
(− 2)2(− 3)2 =



(− 2)2 +


− 2 +


(− 3)2 +


− 3

Exercise 3.4 (True of False) Mark each statement True or False. Justify

each answer.

a) In some cases, a matrix may be row reduced to more than one matrix in

reduced echelon form, using different sequences of row operations.

b) The row reduction algorithm applies only to augmented matrices for a lin-

ear system.

c) A basic variable in a linear system is a variable that corresponds to a pivot

column in the coefficient matrix.

d) Finding a parametric description of the solution set of a linear system is

the same as solving the system.

e) If one row in an echelon form of an augmented matrix is [0 0 0 5 0], then

the associated linear system is inconsistent.
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Exercise 3.5 (True or False) Mark each statement True or False. Justify

each answer.

a) The reduced echelon form of a matrix is unique.

b) If every column of an augmented matrix contains a pivot, then the corre-

sponding system is consistent.

c) The pivot positions in a matrix depend on whether row interchanges are

used in the row reduction process.

d) A general solution of a system is an explicit description of all solutions of

the system.

e) Whenever a system has free variables, the solution set contains many so-

lutions.

f) If a linear system is consistent, then the solution is unique if and only if

every column in the coefficient matrix is a pivot column; otherwise there

are infinitely many solutions.
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4

Vector equations (Exercises)

4.1 Practice problems

Example 9 Compute u+ 2v and u− v when

u =

∙ −1
2

¸
and v =

∙ −3
−1

¸


Solution:

u+ 2v =

∙ −1
2

¸
+ 2

∙ −3
−1

¸
=

∙ −1
2

¸
+

∙
2 (−3)
2 (−1)

¸
=

∙ −1
2

¸
+

∙ −6
−2

¸
=

∙ −1− 6
2− 2

¸
=

∙ −7
0

¸


u− v =
∙ −1

2

¸
−
∙ −3
−1

¸
=

∙ −1− (−3)
2− (−1)

¸
=

∙
2

3

¸


Example 10 Compute u+ 2v and u− v when

u =

∙
1

3

¸
and v =

∙ −2
1

¸


Solution:

u+ 2v =

∙ −3
5

¸


u− v =
∙
3

2

¸


¤

Example 11 Display the following vectors using arrows on an -graph:

u v −v 2v u+ 2v u− v

Notice that u− v is the vertex of a parallelogram whose other vertices are u,

0, and −v. Take vectors u and v as in Example 9
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Solution:

Example 12 Prove that u+ v = v + u for any  and  in R.

Solution: Take arbitrary vectors

u =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦  v =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦ in R

and compute

u+ v =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 + 1
2 + 2
...

 + 

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 + 1
2 + 2
...

 + 

⎤⎥⎥⎥⎦ = v+ u
¤

Example 13 Write a system of equations that is equivalent to the given vector

equation.

1

⎡⎣ 11
1

⎤⎦+ 2

⎡⎣ 1

−2
3

⎤⎦ =
⎡⎣ 1

−2
1

⎤⎦ 
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Solution:

1

⎡⎣ 11
1

⎤⎦+ 2

⎡⎣ 1

−2
3

⎤⎦ =
⎡⎣ 1

−2
1

⎤⎦
⎡⎣ 1

1
1

⎤⎦+
⎡⎣ 2
−22
32

⎤⎦ =
⎡⎣ 1

−2
1

⎤⎦
⎡⎣ 1 + 2

1 − 22
1 + 32

⎤⎦ =
⎡⎣ 1

−2
1

⎤⎦
System of equations that is equivalent to the given vector equation is of the

following form: ⎧⎨⎩
1 + 2
1 − 22
1 + 32

=

1

−2
1

Usually the intermediate steps are not displayed. ¤

Example 14 Determine if b is a linear combination of a1, a2, and a3.

a1 =

⎡⎣ 1

−3
0

⎤⎦  a2 =

⎡⎣ 0

−3
2

⎤⎦  a3 =

⎡⎣ 5

−1
5

⎤⎦  b =

⎡⎣ 2

−1
5

⎤⎦
Solution: The question

Is b a linear combination of a1a2 and a3?

is equivalent to the question

Does the vector equation 1a1 + 2a2 + 3a3 = b have a solution?

The equation

1

⎡⎣ 1

−3
0

⎤⎦
a1

+ 2

⎡⎣ 0

−3
2

⎤⎦
a2

+ 3

⎡⎣ 5

−1
5

⎤⎦
a3

=

⎡⎣ 2

−1
5

⎤⎦
b

(4.1)

has the same solution set as the linear system whose augmented matrix is

 =

⎡⎣ 1 0 5 2

−3 −3 −1 −1
0 2 5 5

⎤⎦ 
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Row reduce  until the pivot positions are visible:

 ∼

⎡⎣ 1 0 5 2

0 −3 14 5

0 2 5 5

⎤⎦ ∼
⎡⎣ 1 0 5 2

0 1 −19 −10
0 2 5 5

⎤⎦
∼

⎡⎣ 1 0 5 2

0 1 −19 −10
0 0 43 25

⎤⎦
The linear system corresponding to  has a solution, so the vector equation

(4.1) has a solution, and therefore b is a linear combination of a1a2and a3.

¤

Example 15 Let

a1 =

⎡⎣ 1

4

−2

⎤⎦  a2 =

⎡⎣ −2−3
7

⎤⎦  b =

⎡⎣ 4

1



⎤⎦
For what value(s) of  is b in the plane spanned by a1 and a2?

Solution:

£
a1 a2 b

¤
=

⎡⎣ 1 −2 4

4 −3 1

−2 7 

⎤⎦ ∼
⎡⎣ 1 −2 4

0 5 −15
0 3 + 8

⎤⎦
∼

⎡⎣ 1 −2 4

0 1 −3
0 3 + 8

⎤⎦ ∼
⎡⎣ 1 −2 4

0 1 −3
0 0 + 17

⎤⎦
The vector  is in Span{a1a2} when +17 is zero, that is, when  = −17. ¤

Example 16 Let v1 v be points in R3 and suppose that for  = 1  an
object with mass  is located at point v. Physicists call such objects point

masses. The total mass of the system of point masses is

 = 1 +2 + +

The center of gravity (or center of mass) of the system is

v̄ =
1


(1v1 + +v)
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Compute the center of gravity of the system consisting of the following point

masses (see the Figure 4.1):

Point Mass

v1 = (2−2 4) 4

v2 = (−4 2 3) 2

v3 = (4 0−2) 3

v4 = (1−6 0) 5

Solution: The total mass is 4 + 2 + 3 + 5 = 14. So

v̄ = (4v1 + 2v2 + 3v3 + 5v4)14

That is,

v̄ =
1

14

⎛⎝4
⎡⎣ 2

−2
4

⎤⎦+ 2
⎡⎣ −42

3

⎤⎦+ 3
⎡⎣ 4

0

−2

⎤⎦+ 5
⎡⎣ 1

−6
0

⎤⎦⎞⎠ =

⎡⎣ 17
14

−17
7
8
7

⎤⎦ 

4.2 Exercises

Exercise 4.1 (True or False) a) An example of a linear combination of

vectors v1 and v2 is the vector
1

3
v1.

b) The solution set of the linear system whose augmented matrix is£
a1 a2 a3 b

¤
is the same as the solution set of the equation 1a1 + 2a2 + 3a3 = b.

c) The set Span{uv} is always visualized as a plane through the origin.

d) When u and v are nonzero vectors, Span{uv} contains only the line
through u and the origin, and the line through v and the origin.

e) Asking whether the linear system corresponding to an augmented matrix£
a1 a2 a3 b

¤
has a solution amounts to asking whether b is in

Span{a1a2a3}.

f) The weights 1   in a linear combination 1a1 + 2a2 +  a cannot

all be zero.
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Fig. 4.1. Center of gravity shown in yellow.
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Exercise 4.2 Display the following vectors using arrows on an -graph:

u v −v 2v u+ 2v u− v

Notice that u− v is the vertex of a parallelogram whose other vertices are u,

0, and −v. Take vectors u and v as in Example 10
Exercise 4.3 Write a system of equations that is equivalent to the given vec-

tor equation.

1

⎡⎣ 11
1

⎤⎦+ 2

⎡⎣ 1

−2
3

⎤⎦+ 3

⎡⎣ 10
0

⎤⎦+ 4

⎡⎣ 01
1

⎤⎦ =
⎡⎣ 00
0

⎤⎦ 
Exercise 4.4 Determine if b is a linear combination of a1, a2, and a3 when

a1 =

⎡⎣ 10
1

⎤⎦  a2 =

⎡⎣ −23
−2

⎤⎦  a3 =

⎡⎣ −67
5

⎤⎦  b =

⎡⎣ 11

−5
9

⎤⎦
Exercise 4.5 Let

v1 =

⎡⎣ 1

0

−2

⎤⎦  v2 =

⎡⎣ −21
7

⎤⎦  y =

⎡⎣ 

−3
−5

⎤⎦
For what value(s) of  is y in the plane spanned by v1 and v2?

Exercise 4.6 Let v̄ be the center of mass of a system of point masses located

at v1 v as in Example 16. Is v̄ in Span {v1 v}? Explain.
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5

The Matrix Equation Ax = b (Exercises)

5.1 Practice Problems

Example 17 Write the system⎧⎨⎩
21 − 32 + 53 = 7

91 + 42 − 63 = 8

in matrix form.

Solution: The coefficient matrix is

 =

∙
2 −3 +5

9 4 −6
¸

and b =

∙
7

8

¸


The matrix form is

x = b

or ∙
2 −3 +5

9 4 −6
¸⎡⎣ 1

2
3

⎤⎦ = ∙ 7
8

¸


¤

Example 18 Let

 =

⎡⎣ 1 −1 0 2 −3
0 2 1 4 −1
3 5 −2 0 1

⎤⎦  p =

⎡⎢⎢⎢⎢⎣
2

1

−1
3

4

⎤⎥⎥⎥⎥⎦  b =

⎡⎣ −59
17

⎤⎦

It can be shown that p is a solution of x = b. Use this fact to exhibit b as

a specific linear combination of the columns of .
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Solution : The matrix equation

⎡⎣ 1 −1 0 2 −3
0 2 1 4 −1
3 5 −2 0 1

⎤⎦
⎡⎢⎢⎢⎢⎣

2

1

−1
3

4

⎤⎥⎥⎥⎥⎦ =
⎡⎣ −59
17

⎤⎦

is equivalent to the vector equation

2

⎡⎣ 10
3

⎤⎦+ 1
⎡⎣ −12

5

⎤⎦+ (−1)
⎡⎣ 0

1

−2

⎤⎦+ 3
⎡⎣ 24
0

⎤⎦+ 4
⎡⎣ −3−1

1

⎤⎦ =
⎡⎣ −59
17

⎤⎦
which expresses b as a linear combination of the columns of . ¤

Example 19 Let

 =

⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦  u =

⎡⎣ 3

−6
9

⎤⎦  v =

⎡⎣ 1

0

−2

⎤⎦ 
Verify that

(u+ v) = u+v

Solution:

u+ v =

⎡⎣ 3

−6
9

⎤⎦+
⎡⎣ 1

0

−2

⎤⎦ =
⎡⎣ 4

−6
7

⎤⎦ 
(u+ v) =

⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦⎡⎣ 4

−6
7

⎤⎦ =
⎡⎣ 1328
43

⎤⎦ 

u+v =

⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦⎡⎣ 3

−6
9

⎤⎦+
⎡⎣ 1 2 3

4 5 6

7 8 9

⎤⎦⎡⎣ 1

0

−2

⎤⎦
=

⎡⎣ 1836
54

⎤⎦+
⎡⎣ −5
−8
−11

⎤⎦ =
⎡⎣ 1328
43

⎤⎦ 
¤
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Fig. 5.1. Plane spanned by the columns of 

Example 20 Let

u =

⎡⎣ 04
4

⎤⎦ and  =

⎡⎣ 3 −5
−2 6

1 1

⎤⎦
Is u (in red) in the plane in R3 spanned by the columns of ? (See the Figure
5.1) Why or why not?

Solution : The vector u is in the plane spanned by the columns of  if

and only if u is a linear combination of the columns of . This happens if and

only if the equation x = u has a solution. To study this equation, reduce the

augmented matrix [ u]:⎡⎣ 3 −5 0

−2 6 4

1 1 4

⎤⎦ ∼
⎡⎣ 1 1 4

−2 6 4

3 −5 0

⎤⎦ ∼
⎡⎣ 1 1 4

0 8 12

0 −8 −12

⎤⎦ ∼
⎡⎣ 1 1 4

0 8 12

0 0 0

⎤⎦
The equation x = u has a solution, so u is in the plane spanned by the

columns of . ¤

Example 21 Let

 =

⎡⎣ 1 3 4

−4 2 −6
−3 2 −7

⎤⎦ and b =

⎡⎣ 1
2
3

⎤⎦ 
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Fig. 5.2. In Example 21 the columns of [a1 a2 a3] span a plane through 0

Is the equation x = b consistent for all possible 1, 2, 3?

Solution : Row reduce the augmented matrix for x = b⎡⎣ 1 3 4 1
−4 2 −6 2
−3 −2 −7 3

⎤⎦ ∼

⎡⎣ 1 3 4 1
0 14 10 2 + 41
0 7 5 3 + 31

⎤⎦
∼

⎡⎣ 1 3 4 1
0 14 10 2 + 41
0 0 0 3 + 31 − 1

2
(2 + 41)

⎤⎦ 
The third entry in column 4 equals : 1 − 1

2
2 + 3 The equation x = b is

not consistent for every b because some choices of b can make 1 − 1
2
2 + 3

nonzero. The columns of [a1 a2 a3] span a plane through 0 (see Figure 5.2).

¤

Example 22 For the following list of polynomials

43 + 22 − 6 3 − 22 + 4+ 1 33 − 62 + + 4

determine whether the first polynomial can be expressed as


¡
3 − 22 + 4+ 1¢+ 

¡
33 − 62 + + 4

¢


where   ∈ R.



5.2 Exercises 43

Solution: We need to verify that there exist   ∈ R such that

43 + 22 − 6 = 
¡
3 − 22 + 4+ 1¢+ 

¡
33 − 62 + + 4

¢


This yields the following system of equations:⎧⎪⎪⎨⎪⎪⎩
 + 3 = 4

−2 +  = 2

4 +  = 0

 + 4 = −6
This system is inconsistent (check it !) and therefore has no solutions. We

conclude that 43 + 22 − 6 cannot be expressed as a linear combination of
3 − 22 + 4+ 1 and 33 − 62 + + 4. ¤

5.2 Exercises

Exercise 5.1 Write the following system first as a vector equation and then

as a matrix equation.½
1 + 22 − 3 = 1

2 + 33 = −2 

Exercise 5.2 Write the following system first as a vector equation and then

as a matrix equation. ⎧⎨⎩
1 − 2 = 0

1 + 22 = −1
1 + 52 = 2



Exercise 5.3 Note that⎡⎣ 1 −2 3

0 1 2

−2 −1 1

⎤⎦⎡⎣ 1

−1
3

⎤⎦ =
⎡⎣ 125
2

⎤⎦
Use this fact (and no row operations) to find scalars 1 2 3 such that⎡⎣ 125

2

⎤⎦ = 1

⎡⎣ 1

0

−2

⎤⎦+ 2

⎡⎣ −21
−1

⎤⎦+ 3

⎡⎣ 32
1

⎤⎦ 
Exercise 5.4 Construct a 3× 3 matrix, not in echelon form, whose columns
span R3. Show that the matrix you construct has the desired property.
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Exercise 5.5 Construct a 3× 3 matrix, not in echelon form, whose columns
do not span R3. Show that the matrix you construct has the desired property.

Exercise 5.6 Determine if the columns of the matrix

 =

⎡⎢⎢⎣
1 2 3 4

5 6 7 8

−1 0 1 0

0 1 0 2

⎤⎥⎥⎦ 
span R4
Answer: yes.

Exercise 5.7 (True or False)

a) The equation x = b is referred to as a vector equation.

b) A vector b is a linear combination of the columns of a matrix  if and

only if the equation x = b has at least one solution.

c) The equation x = b is consistent if the augmented matrix [ b] has a

pivot position in every row.

d) If the columns of an ×  matrix  span R, then the equation x = b

is consistent for each b in R.

e) If  is an  ×  matrix and if the equation x = b is inconsistent for

some b in R, then  cannot have a pivot position in every row.

f) Every matrix equation x = b corresponds to a vector equation with the

same solution set.

g) If the equation x = b is consistent, then b is in the set spanned by the

columns of .

h) Any linear combination of vectors can always be written in the form x

for a suitable matrix  and vector x.

i) If the coefficient matrix  has a pivot position in every row, then the equa-

tion x = b is inconsistent.

j) The solution set of a linear system whose augmented matrix is [a1 a2 a3 b]

is the same as the solution set of x = b, if  = [a1 a2 a3].

k) If  is an × matrix whose columns do not span R, then the equation

x = b is consistent for every b in R
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Exercise 5.8 Solve the following system of nonlinear equations for , , and

.

2 + 2 + 2 = 6

2 − 2 + 22 = 2

22 + 2 − 2 = 3

HINT: Begin by making the substitutions  = 2  = 2  = 2

Answer:  = ±1  = ±√3  = ±√2
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6

Solutions Sets of Linear Systems
(Exercises)

6.1 Practice Problems

Example 23 Each of the following equations determines a plane in R3. Do
the two planes intersect? If so, describe their intersection.

1 + 42 − 53 = 0

21 − 2 + 83 = 9

Solution: Row reduce the augmented matrix:∙
1 4 5 0

2 −1 8 9

¸
∼
∙
1 4 5 0

0 −9 18 9

¸
∼
∙
1 0 3 4

0 1 −2 −1
¸

1 + 33 = 4

2 − 23 = −1
Thus 1 = 4 − 33; 2 = −1 + 23, with 3 free. The general solution in

parametric vector form is⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 4− 33
−1 + 23

3

⎤⎦ =
⎡⎣ 4

−1
0

⎤⎦
↑
p

+ 3

⎡⎣ −32
1

⎤⎦
↑
v

The intersection of the two planes is the line through p in the direction of v

(see Figure 6.1). ¤

Example 24 Write the general solution of 101−32−23 = 7 in parametric
vector form.

Solution: The augmented matrix£
10 −3 −2 7

¤
is row equivalent to £

1 −3 −2 7
¤
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Fig. 6.1. The intersection of the two planes is the line through p (in red) in the

direction of v (in blue).
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Fig. 6.2. The translated plane p + Span{uv}, which passes through p (in red) and
is parallel to Span{uv}

and the general solution is 1 = 7+ 32+ 23, with 2 and 3 free. That is,

⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 7 + 32 + 23

2
3

⎤⎦ =
⎡⎣ 7

0

0

⎤⎦+
↑
p

2

⎡⎣ 3

1

0

⎤⎦
↑

2u

+ 3

⎡⎣ 2

0

1

⎤⎦
↑

3v

The solution set of the nonhomogeneous equation x = b is the translated

plane p+ Span{uv}, which passes through p and is parallel to the solution
set of the homogeneous equation (see Figure 6.2).

101 − 32 − 23 = 0

¤
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Example 25 Describe all solutions of x = 0 in parametric vector form,

where  is row equivalent to the matrix⎡⎢⎢⎣
1 −4 −2 0 3 −5
0 0 1 0 0 −1
0 0 0 0 1 −4
0 0 0 0 0 0

⎤⎥⎥⎦
Solution:⎡⎢⎢⎣

1 −4 −2 0 3 −5 0

0 0 1 0 0 −1 0

0 0 0 0 1 −4 0

0 0 0 0 0 0 0

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
1 −4 −2 0 0 7 0

0 0 1 0 0 −1 0

0 0 0 0 1 −4 0

0 0 0 0 0 0 0

⎤⎥⎥⎦

∼

⎡⎢⎢⎣
1 −4 0 0 0 5 0

0 0 1 0 0 −1 0

0 0 0 0 1 −4 0

0 0 0 0 0 0 0

⎤⎥⎥⎦
1 − 42 56 = 0

3 − 6 = 0

5 − 46 = 0

0 = 0

Some students are not sure what to do with 4. Some ignore it; others set

it equal to zero. In fact, 4 is free; there is no constraint on 4, at all. The

basic variables are 1, 3, and 5. The remaining variables are free. So, 1
= 42 − 56, 3 = 6, and 5 = 46, with 2, 4, and 6 free.

In parametric vector form,

x =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

42 − 56
2
6
4
46
6

⎤⎥⎥⎥⎥⎥⎥⎦ = 2

⎡⎢⎢⎢⎢⎢⎢⎣

4

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
↑
u

+ 4

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
↑
v

+ 6

⎡⎢⎢⎢⎢⎢⎢⎣

−5
0

1

0

4

1

⎤⎥⎥⎥⎥⎥⎥⎦
↑
w

The solution set is the same as Span{uvw}. ¤
Study Tip:When solving a system, identify (and perhaps circle) the basic

variables. All other variables are free.
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Example 26 Solve the following homogeneous system of linear equations by

using Gauss—Jordan elimination.⎧⎪⎪⎨⎪⎪⎩
21 + 22 − 3 + 5 = 0

−1 − 2 + 23 − 34 + 5 = 0

1 + 2 − 23 − 5 = 0

3 + 4 + 5 = 0

(6.1)

Solution: The augmented matrix for the system is⎡⎢⎢⎣
2 2 −1 0 1 0

−1 −1 2 −3 1 0

1 1 −2 0 −1 0

0 0 1 1 1 0

⎤⎥⎥⎦
Reducing this matrix to reduced row-echelon form, we obtain⎡⎢⎢⎣

1 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

⎤⎥⎥⎦
The corresponding system of equations is

1 + 2 + 5 = 0

3 + 5 = 0

4 = 0

(6.2)

Solving for the leading variables yields

1 = − 1 − 2
3 = − 5
4 = 0

Thus, the general solution is

1 = −− 

2 = 

3 = −
4 = 0

5 = 



Note that the trivial solution is obtained when  =  = 0. ¤
Example 26 illustrates two important points about solving homogeneous

systems of linear equations. First, none of the three elementary row operations
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alters the final column of zeros in the augmented matrix, so the system of

equations corresponding to the reduced row-echelon form of the augmented

matrix must also be a homogeneous system [see system 6.2]. Second, depending

on whether the reduced row-echelon form of the augmented matrix has any

zero rows, the number of equations in the reduced system is the same as or less

than the number of equations in the original system [compare systems 6.1 and

6.2]. Thus, if the given homogeneous system has  equations in  unknowns

with   , and if there are  nonzero rows in the reduced row-echelon form

of the augmented matrix, we will have   . It follows that the system of

equations corresponding to the reduced row-echelon form of the augmented

matrix will have the form

· · · 1 +
P
() = 0

· · · 2 +
P
() = 0

· · · ...

· · ·  +
P
() = 0

(6.3)

where 1  2 ..., are the leading variables and denotes sums (possibly all

different) that involve the free variables[compare system 6.3 with system 6.2

above]. Solving for the leading variables gives

1 = −P()
2 = −P()

...

 = −P()
As in Example 26, we can assign arbitrary values to the free variables on

the right-hand side and thus obtain infinitely many solutions to the system.

In summary, we have the following important conclusion.

Conclusion 27 A homogeneous system of linear equations with more un-

knowns than equations has infinitely many solutions.

6.2 Exercises

Exercise 6.1 (True of False)

a) A homogeneous equation is always consistent.

b) The homogeneous equation x = 0 has the trivial solution if and only if

the equation has at least one free variable.
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c) The equation x = p+ v describes a line through v parallel to p.

d) The solution set of x = b is the set of all vectors of the form w = p+v,

where v is any solution of the equation x = 0.

e) A homogeneous system of equations can be inconsistent.

f) If x is a nontrivial solution of x = 0, then every entry in x is nonzero.

g) The effect of adding p to a vector is to move the vector in a direction

parallel to p.

h) The equation x = b is homogeneous if the zero vector is a solution.

i) If a linear system has more unknowns than equations, then it must have

infinitely many solutions.

Exercise 6.2 If the linear system

1 + 1 + 1 = 0

2 − 2 + 2 = 0

3 + 3 − 3 = 0

has only the trivial solution, what can be said about the solutions of the fol-

lowing system?

1 + 1 + 1 = 3

2 − 2 + 2 = 7

3 + 3 − 3 = 11

Solution: The nonhomogeneous system will have exactly one solution.

Exercise 6.3 Find the coefficients   , and  so that the curve shown in

the accompanying figure is given by the equation

2 + 2 + +  +  = 0
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Exercise 6.4

a) Prove that if −  6= 0, then the reduced row echelon form of∙
 

 

¸
is

∙
1 0

0 1

¸


b) Use the result in part a) to prove that if − 6= 0, then the linear system

 +  = 

 +  = 

has exactly one solution.

Exercise 6.5 Show that the following nonlinear system has 18 solutions if

0 ≤  ≤ 2, 0 ≤  ≤ 2, and 0 ≤  ≤ 2.⎧⎨⎩
sin + 2cos + 3 tan  = 0

2 sin + 5cos + 3 tan  = 0

− sin − 5 cos + 5 tan  = 0

HINT: Begin by making the substitutions  = sin  = cos  = tan 
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Linear Independence (Exercises)

7.1 Practice Problems

Example 28 Let

v1 =

⎡⎣ 12
3

⎤⎦  v2 =

⎡⎣ 45
6

⎤⎦  v3 =

⎡⎣ 21
0

⎤⎦ 
a) Determine if the set {v1v2v3} is linearly independent.
b) If possible, find a linear dependence relation among v1v2 and v3

Solution:

a) We must determine if there is a nontrivial solution of equation

1

⎡⎣ 12
3

⎤⎦+ 2

⎡⎣ 45
6

⎤⎦+ 3

⎡⎣ 21
0

⎤⎦ =
⎡⎣ 00
0

⎤⎦  (7.1)

Row operations on the associated augmented matrix show that⎡⎣ 1 4 2 0

2 5 1 0

3 6 0 0

⎤⎦ ∼
⎡⎣ 1 4 2 0

0 −3 −3 0

0 0 0 0

⎤⎦ 
Clearly, 1 and 2 are basic variables, and 3 is free. Each nonzero value

of 3 determines a nontrivial solution of (7.1). Hence {v1v2v3} are
linearly dependent (and not linearly independent).

b) To find a linear dependence relation among v1v2 and v3, completely row

reduce the augmented matrix and write the new system:⎡⎣ 1 0 −2 0

0 1 1 0

0 0 0 0

⎤⎦ 1 − 23 = 0

2 + 3 = 0

0 = 0
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Thus 1 = 23, 2 = −3, and 3 is free. Choose any nonzero value for

3–say, 3 = 5 Then 1 = 10 and 2 = −5. Substitute these values
into equation (7.1) and obtain

10v1 − 5v2 + 5v3 = 0
This is one (out of infinitely many) possible linear dependence relations

among v1v2 and v3.

Example 29 Determine if the vectors {v1v2v3} are linearly independent,
where

v1 =

⎡⎣ 50
0

⎤⎦  v2 =

⎡⎣ 7

2

−6

⎤⎦  v3 =

⎡⎣ 9

4

−8

⎤⎦ 
Justify each answer.

Solution: Use an augmented matrix to study the solution set of

1v1 + 2v2+3v3 = 0 (7.2)

where v1v2, and v3 are the three given vectors. Since⎡⎣ 5 7 9 0

0 2 4 0

0 −6 −8 0

⎤⎦ ∼
⎡⎣ 1 4 2 0

0 2 4 0

0 0 4 0

⎤⎦ 
there are no free variables. So the homogeneous equation (7.2) has only the

trivial solution. The vectors are linearly independent. ¤

Warning: Whenever you study a homogeneous equation, you may be tempted

to omit the augmented column of zeros because it never changes under row op-

erations. I urge you to keep the zeros, to avoid possibly misinterpreting your

own calculations.

Example 30 Are the following vectors in R7 linearly independent?

v1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7

0

4

0

1

9

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
 v2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

0

7

1

4

8

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
v3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5

0

6

2

3

1

7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
v4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4

5

3

3

2

2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solution: Let’s look for “redundant” vectors (as far as the span is con-

cerned) in this list. Vectors v1 and v2 are clearly nonredundant, since v1 is

nonzero and v2 fails to be a scalar multiple of v1 (look at the fourth compo-

nents). Looking at the last components, we realize that v3 cannot be a linear

combination of v1 and v2, since any linear combination of v1 and v2 will have

a 0 in the last component, while the last component of v3 is 7. Looking at

the second components, we can see that v4 isn’t a linear combination of v1,

v2 and v3. Thus the vectors v1, v2, v3, v4 are linearly independent. ¤

Example 31 Are the vectors v1, v2, and v3 (all in black) in part (a) of

the accompanying figure linearly independent? What about those in part (b)?

Explain.

a) b)

Answer:

Exercise 7.1 a) They are linearly independent since v1, v2, and v3 do not

lie in the same plane when they are placed with their initial points at the

origin.

b) They are not linearly independent since v1, v2, and v3 lie in the same

plane when they are placed with their initial points at the origin.
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7.2 Exercises

Exercise 7.2 (True or False) a) A set containing a single vector is linearly

independent.

b) The set of vectors {v v}is linearly dependent for every scalar .
c) Every linearly dependent set contains the zero vector.

d) If the set of vectors {v1v2v3} is linearly independent, then {v1 v2v3}
is also linearly independent for every nonzero scalar .

e) If v1v2 v are linearly dependent nonzero vectors, then at least one

vector v is a unique linear combination of v1v2 v−1

f) The columns of a matrix  are linearly independent if the equation x = 0

has the trivial solution.

g) If  is a linearly dependent set, then each vector is a linear combination

of the other vectors in .

h) The columns of any 5× 6 matrix are linearly dependent.
i) If x and y are linearly independent, and if (xy z) is linearly dependent,

then z is in Span{xy}
j) If three vectors in R3 lie in the same plane in R3, then they are linearly

dependent.

k) If a set contains fewer vectors than there are entries in the vectors, then

the set is linearly independent.

l) If a set in R is linearly dependent, then the set contains more than n

vectors.

m) If v1 v4 are in R
4 and v3 = v1 + v2, then {v1v2v3v4} is linearly

dependent.

n If v1 v5 are in R
5 and v3 = 0, then {v1v2v3v4v5} is linearly de-

pendent.

o) If v1 v4 are in R
4 and {v1v2v3} is linearly dependent, then

{v1v2v3v4} is also linearly dependent.
p) If {v1v2v3v4} is a linearly independent set of vectors inR4, then

{v1v2v3} is also linearly independent. [HINT: Think about
1v1 + 2v2 + 3v3 + 0v4 = 0.]
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Fig. 7.1. Vector z (in red) is not a linear combination of u, v, and w (all in black)

Exercise 7.3 Let

u =

⎡⎣ 3

2

−4

⎤⎦  v =

⎡⎣ −61
7

⎤⎦  w =

⎡⎣ 0

−5
2

⎤⎦  and z =

⎡⎣ 55
5

⎤⎦ 
a) Are the sets {uv}; {uw}; {u z}; {vw}; {v z}, and {w z} each linearly

independent? Why or why not?

b) Does the answer to part a) imply that {uvw z} is linearly independent?

c) To determine if {uvw z} is linearly dependent, is it wise to check if,
say, w is a linear combination of u, v, and z?

d) Is {uvw z} linearly dependent?

Warning: When testing for linear independence, it is usually a poor idea

to check if one selected vector is a linear combination of the others. It may

happen that the selected vector is not a linear combination of the others and

yet the whole set of vectors is linearly dependent. In the Exercise 7.3, z is not

a linear combination of u, v, and w (see Figure 7.1).
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Exercise 7.4 Use as many columns of

 =

⎡⎢⎢⎣
3 −4 10 7 −4
−5 −3 −7 −11 15

4 3 5 2 1

8 −7 23 4 15

⎤⎥⎥⎦
as possible to construct a matrix  with the property that the equation x = 0

has only the trivial solution. Solve x = 0 to verify your work.
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Introduction to Linear Transformations
(Exercises)

8.1 Practice Problems

Definition 32 A function  : R → R is called a linear transformation

if for all vectors v1v2 ∈ R and for all scalars 1 2 ∈ R ,  satisfies the

linearity property  (1v+ 2v) = 1 (v)+ 2 (v). This can also be expressed

more geometrically by saying that  preserves vector addition, i.e.  (v1+v2) =

 (v1) +  (v2) , and  preserves scalar multiplication, i.e.  () =  () .

We call the input space R the domain (as expected), and we refer to the

output space R as the codomain.

Example 33 Prove that  (x) = x (for an  ×  matrix ) is a linear

transformation.

Solution: If we write the matrix  in terms of its columns,

 =

⎡⎣ ↑ ↑
a1 · · · a
↓ ↓

⎤⎦
and let

x =

⎡⎢⎣ 1
...



⎤⎥⎦  y =

⎡⎢⎣ 1
...



⎤⎥⎦
and let   ∈ R then

x+y =

⎡⎢⎣ 1
...



⎤⎥⎦+ 

⎡⎢⎣ 1
...



⎤⎥⎦ =
⎡⎢⎣ 1

...



⎤⎥⎦+
⎡⎢⎣ 1

...



⎤⎥⎦ =
⎡⎢⎣ 1 + 1

...

 + 

⎤⎥⎦
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using basic facts about scaling and adding vectors. Using our definition of the

product of a matrix and a vector, we have:

 (x+y) = (x+y) =

⎡⎣ ↑ ↑
a1 · · · a
↓ ↓

⎤⎦
⎡⎢⎣ 1 + 1

...

 + 

⎤⎥⎦
= (1 + 1)a1 + · · ·+ ( + )a

= 1a1 + 1a1 + · · ·+ a + a

=  (1a1 + · · ·+ a) +  (1a1 + · · ·+ a)

= x+y = (x)+ (y) 

As you can see, the linearity property ultimately flows from the distributive

law for vector addition. ¤

Definition 34 The set of all images  (x) is called the range of 

Domain, codomain, and range of  : R → R

Example 35 Let  =

⎡⎣ 1 −3
3 5

−1 7

⎤⎦, u = ∙ 2

−1
¸
 v =

⎡⎣ 3

2

−5

⎤⎦  b =
⎡⎣ 3

2

−5

⎤⎦ 
c =

⎡⎣ 32
5

⎤⎦  and define a transformation  : R2 → R3 by  (x) = x so that

 (x) = x =

⎡⎣ 1 −3
3 5

−1 7

⎤⎦∙ 1
2

¸
=

⎡⎣ 1 − 32
31 + 52
72 − 1

⎤⎦ 
a) Find  (u), the image of u under the transformation  .
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b) Find an x in R2 whose image under  is b.

c) Is there more than one x whose image under  is b?

d) Determine if  is in the range of the transformation  .

Solution:

a) Compute

 (u) = u =

⎡⎣ 1 −3
3 5

−1 7

⎤⎦∙ 2

−1
¸
=

⎡⎣ 5

1

−9

⎤⎦  (8.1)

b) Solve  (x) = b for x. That is, solve x = b, or⎡⎣ 1 −3
3 5

−1 7

⎤⎦∙ 1
2

¸
=

⎡⎣ 3

2

−5

⎤⎦ (8.2)

Using the Gauss-Jordan method, row reduce the augmented matrix:⎡⎣ 1 −3 3

3 5 2

−1 7 −5

⎤⎦ ∼
⎡⎣ 1 −3 3

0 14 −7
0 4 −2

⎤⎦ ∼
⎡⎣ 1 −3 3

0 1 −5
0 0 0

⎤⎦ ∼
⎡⎣ 1 0 15

0 1 −5
0 0 0

⎤⎦
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Hence 1 = 15, 2 = −5, and x =
∙
15

−5
¸
 The image of this x under

 is the given vector b.

c) Any x whose image under  is b must satisfy equation (8.1). From (8.2),

it is clear that equation (8.1) has a unique solution. So there is exactly

one x whose image is b.

d) The vector c is in the range of  if c is the image of some x in R2, that is,
if c = (x) for some x. This is just another way of asking if the system

x = c is consistent. To find the answer, row reduce the augmented

matrix:⎡⎣ 1 −3 3

3 5 2

−1 7 8

⎤⎦ ∼
⎡⎣ 1 −3 3

0 14 −7
0 4 −2

⎤⎦ ∼
⎡⎣ 1 −3 3

0 1 2

0 14 −7

⎤⎦ ∼
⎡⎣ 1 −3 3

0 1 2

0 0 −35

⎤⎦
The third equation, 0 = −35, shows that the system is inconsistent. So

c is not in the range of  . ¤

The next example is important, because it will help you to connect the

concepts of linear dependence and linear transformation.

Example 36 Let  : R → R be a linear transformation, and let {v1 v2
v3} be a linearly dependent set in R. Explain why the set { (v1)  (v2)

 (v3)} is linearly dependent.

Solution: To construct the proof, first write in mathematical terms what

is given.

Since {v1 v2 v3} is linearly dependent, there exist scalars 1 2 3 not
all zero, such that

1v1 + 2v2 + 3v3 = 0 (8.3)

Apply to both sides of (8.3) and use linearity of  , obtaining

 (1v1 + 2v2 + 3v3) =  (0)

and

1 (v1) + 2 (v2) + 3 (v3) = 0

Since not all the weights are zero, { (v1)  (v2)  (v3)} is linearly dependent
set. ¤
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Example 37 A linear transformation is completely determined by the images

of a set of basis vectors. In the case of a linear transformation  : R2 → R2

,  (x) =x where the columns of the matrix  are the vectors  (i) and

 (j)(Here i = e1 j = e2) Look for examples:
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8.2 Exercises

Exercise 8.1 (True or False)

a) If A is a 3 × 5 matrix and  is a transformation defined by  (x) = x,

then the domain of  is R3.

b) The range of the transformation x → x is the set of all linear combina-

tions of the columns of .

c) A linear transformation preserves the operations of vector addition and

scalar multiplication.

d) A linear transformation  : R → R always maps the origin of R to the

origin of R

Exercise 8.2 Suppose  : R5 → R2 and  (x) = x for some matrix  and

for each x in R5. How many rows and columns does A have?

Exercise 8.3 Let  =

∙
1 0

0 −1
¸
 Give a geometric description of the trans-

formation x→ x.

Exercise 8.4 The line segment from 0 to a vector u is the set of points of

the form u, where 0 ≤  ≤ 1. Show that a linear transformation  maps this

segment into the segment between 0 and  (u)
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Exercise 8.5 Let u and v be linearly independent vectors in R3, and let  be

the plane through u, v, and 0. The parametric equation of  is  = u+ v

(with ;  in R). Show that a linear transformation  : R3 → R3 maps  onto

a plane through 0, or onto a line through 0 or onto just the origin in R3.
What must be true about  (u) and  (v) in order for the image of the plane

 to be a plane?

Exercise 8.6 Define  : R→ R by () = + .

a) Show that  is a linear transformation when  = 0.

b) Find a property of a linear transformation that is violated when  6= 0.
c) Why is  called a linear function?

Exercise 8.7 An affine transformation  : R → R has the form  (x) =

x + b, with  an  ×  matrix and b in R. Show that  is not a linear

transformation when b 6= 0. (Affine transformations are important in com-

puter graphics.)

Exercise 8.8 The conversion formula  = 5
9
( − 32) from Fahrenheit to

Celsius (as measures of temperature) is nonlinear, in the sense of linear algebra

(why?). Still, there is a technique that allows us to use a matrix to represent

this conversion.

Exercise 8.9 In the financial pages of a newspaper, one can sometimes find a

table (or matrix) listing the exchange rates between currencies. In this exercise

we will consider a miniature version of such a table, involving only the Cana-

dian dollar ($) and the South African Rand (). Consider the matrix∙
1 18

8 1

¸
$



$ 

representing the fact that $ 1 is worth  8 (as of June 2008). After a

trip you have $ 100 and  1 600 in your pocket. We represent these

two values in the vector

x =

∙
100

1600

¸


Compute x. What is the practical significance of the two components of the

vector x?
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9

The Matrix of a Linear Transformation
(Exercises)

9.1 Practice Problems

Example 38 Let

 =

∙
1 2

0 1

¸

The transformation  : R2 → R2 defined by  (x) = x is called a shear

transformation. It can be shown that if  acts on each point in the 2×2 square
shown in Figure below, then the set of images forms the green parallelogram.

The key idea is to show that  maps line segments onto line segments (as

shown in Exercises of the previous chapter) and then to check that the corners

of the square map onto the vertices of the parallelogram. For instance, the

image of the point u =

∙
0

2

¸
is

 (u) =

∙
1 2

0 1

¸ ∙
0

2

¸
=

∙
4

2

¸


and the image of v =

∙
2

2

¸
is

 (v) =

∙
1 2

0 1

¸ ∙
2

2

¸
=

∙
6

2

¸


 deforms the square as if the top of the square were pushed to the right while

the base is held fixed. Shear transformations appear in physics, geology, and
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crystallography.

Example 39 Consider the letter  in Figure below, made up of the vectors∙
1

0

¸
and

∙
0

2

¸
 Show the effect of the linear transformation

 (x) =

∙
0 −1
1 0

¸
x

The letter 

on this letter, and describe the transformation in words.

Solution: We have



∙
1

0

¸
=

∙
0 −1
1 0

¸ ∙
1

0

¸
=

∙
0

1

¸
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and



∙
0

2

¸
=

∙
0 −1
1 0

¸ ∙
0

2

¸
=

∙ −2
0

¸
as shown below.

−−−→∙
0 −1
1 0

¸
The  is rotated through an angle of 90◦ in the counterclockwise direction. ¤

Example 40 Find the standard matrix  for the dilation transformation  (x) =

3x, for x in R2.

Solution:

 (e1) =

∙
3

0

¸
and  (e2) =

∙
0

3

¸


So

 =

∙
3 0

0 3

¸
¤

Example 41 Let  : R2 → R2 be the transformation that first performs a
horizontal shear that maps e2 into e2 −5e1 (but leaves e1 unchanged) and
then reflects the result through the 2-axis. Assuming that  is linear, find its

standard matrix. [HINT:: Determine the final location of the images of e1 and

e2.]



72 9. The Matrix of a Linear Transformation (Exercises)

Solution: Follow what happens to e1 and e2. First, e1 is unaffected by

the shear and then is reflected into −e1. So  (e1) = −e1. Second, e2 goes
to e2 −5e1 by the shear transformation. Since reflection through the 2-axis
changes e1 into -e1 and leaves e2 unchanged, the vector e2 − 5e1 goes to e2
+5e1. So  (e1) = e2 +5e1. Thus the standard matrix of  is

£
 (e1)  (e2)

¤
=
£ −e1 e2 + 5e1

¤
=

∙ −1 5

0 1

¸


¤

9.2 Exercises

Exercise 9.1 (True or False) a) A linear transformation  : R → R is

completely determined by its effect on the columns of the ×  identity

matrix.

b) If  : R2 → R2 rotates vectors about the origin through an angle , then 

is a linear transformation.

Exercise 9.2  : R2 → R2 first rotates points through −34 radians (clock-
wise) and then reflects points through the horizontal 1-axis. Find the standard

matrix of  .

Exercise 9.3  : R2 → R2 first reflects points through the horizontal 1- axis
and then reflects points through the line 2 = 1. Find the standard matrix of

 . Show that  is merely a rotation about the origin. What is the angle of

the rotation?

Exercise 9.4 A linear transformation  : R2 → R2 first reflects points through
the 1- axis and then reflects points through the 2- axis. Find the standard

matrix of  . Show that  can also be described as a linear transformation

that rotates points about the origin. What is the angle of that rotation?

Fill in the missing entries of the matrix, assuming that the equation holds

for all values of the variables.⎡⎣ ? ? ?

? ? ?

? ? ?

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 1 − 23

1 − 3
−2 − 3

⎤⎦ 
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10.1 Diagonal Matrices

A square matrix is an ×  matrix; that is, a matrix with the same number

of rows as columns. The diagonal of a square matrix is the list of entries

11 22  . A diagonal matrix is a square matrix with all the entries which

are not on the diagonal equal to 0. So  is diagonal if it is ×  and  = 0

if  6= . Then  looks as follows

 =

⎡⎢⎢⎢⎣
11 0 · · · 0

0 22 · · · 0
...

...
. . .

...

0 0 · · · 

⎤⎥⎥⎥⎦ 
Notice, that some of the diagonal elements in this diagonal matrix could be

equal to zero.

Example 42 Which of these matrices are diagonal?⎡⎣ −1 0 0

0 2 0

0 1 1

⎤⎦ 
⎡⎣ 1 0 0

0 0 0

0 0 2

⎤⎦  ∙
1 0 0

0 2 0

¸


Answer: Only the second matrix is diagonal. ¤

Definition 43 Two matrices are equal if they are the same shape and if cor-

responding entries are equal. That is, if  = [ ] and  = [ ] are both ×

matrices, then

 =  ⇔  =  1 ≤  ≤  1 ≤  ≤ 

10.2 Matrix addition and scalar multiplication

From now we will restrict our attention (unless it is explicitly stated) to the

most common class of matrices i.e. to the R-valued matrices (real matrices).
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If  and  are two real matrices, then provided they are the same shape we

can add them together to form a new matrix  + . We define  +  to be

the matrix whose entries are the sums of the corresponding entries in  and

.

Definition 44 If  = [ ] and  = [ ] are both ×  matrices, then

+ = [ +  ] 1 ≤  ≤  1 ≤  ≤ 

Example 45 Let

 =

⎡⎣ 1 −4 1
2

3

0 1
4

1 1

0 0 1 −1
2

⎤⎦ and  =

⎡⎣ 1
4
3 1 0

1 2 1 1
8

1 0 0 1
2

⎤⎦
then

+ =

⎡⎣ 5
4
−1 3

2
3

1 9
4

2 9
8

1 0 1 0

⎤⎦ 
¤

We can also multiply any matrix by a real number, referred to as a scalar

in this context. If  is a scalar and  is a matrix, then  is the real matrix

whose entries are  times each of the entries of .

Definition 46 (Scalar multiplication) If  = [ ] is an × real matrix

and  ∈ R, then

 = [ ] 1 ≤  ≤  1 ≤  ≤ 

Example 47 Let

 =

µ
1 −4 1

2
3

0 1
4

1 1

¶


Then

−3 =
∙ −3 12 −3

2
−9

0 −3
4
−3 −3

¸


¤

10.3 Matrix multiplication

Is there a way to multiply two matrices together in the meaningful way? The

answer is sometimes, depending on the shapes of the matrices. If  and  are
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Fig. 10.1. Element in row 3 and column 3 of the product is obtained.

matrices such that the number of columns of  is equal to the number of rows

of , then we can define a matrix  which is the product of  and . We do

this1 by saying what the entry  of the product matrix  should be.

Definition 48 (Matrix multiplication) If  is an ×  matrix and  is

an ×  matrix, then the product is the matrix  =  = [ ] with

 = 11 + 22 + ···+  

Although this formula looks daunting, it is quite easy to use in practice.

What it says is that the element in row  and column  of the product is

obtained by taking each entry of row  of  and multiplying it by the corre-

sponding entry of column  of , then adding these  products together (see

Fig. 10.1 and Fig. 10.2).

Be sure you understand that for the product of two matrices to be defined,

the number of columns of the first matrix must equal the number of rows of

1We shall see in later chapters that this definition of matrix multiplicationis exactly what is

needed for applying matrices in our study of linear algebra.
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Fig. 10.2. Element in row 4 and column 5 of the product  is obtained.

the second matrix. That is,

 ∗  = 

m×n n×p m×p
↑ ←−−→ ↑

⇑   ←−−−−−−−−→ ⇑

What shape is  = ? The matrix  must be ×  since it will have one

entry for each of the  rows of  and each of the  columns of . It is easy to

check, that approximately ×× of floating point operations (called flops )

are required to execute just described method of computing  on computer.

Example 49 if

 =

∙
11 12 13
21 22 23

¸
2×3

and  =

⎡⎣ 11 12 13 14
21 21 22 23
31 32 33 34

⎤⎦
3×4

then inside ones match

( 2 × 3 )

( 3 × 4 )
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so the product  exists and has shape 2 × 4. We need 24 flops to get the
result. ¤

It is an important consequence of our definition (48) that:

•  6=  in general. That is, matrix multiplication is not ‘commuta-

tive’.

To see just how non-commutative matrix multiplication is, let’s look at some

examples, starting with the two matrices  and  in the example (49) above.

The product  is defined, but the product  is not even defined. Since 

is 2× 3 and  is 3× 4, it is not possible to multiply the matrices in the order
.

Now consider the matrices

 =

∙
1 2 3

4 5 6

¸
and  =

⎡⎣ 0 4

1 3

2 1

⎤⎦
Both products  and  are defined, but they are different shapes, so they

cannot be equal. What shapes are they?

Even if both products are defined and the same shape, it is still generally

true that  6= .

Example 50 Let

 =

∙
1 2

3 4

¸
and  =

∙
0 4

1 3

¸


Then

 =

∙
2 10

4 24

¸
6=
∙
12 16

10 14

¸
= 

¤

The fragment (written in MATLAB)

C = zeros(m,n);

for j=1:n

for i=1:m

for k=1:r

C(i,j) = C(i,j) + A(i,k)*B(k,j);

end

end
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end

computes the product  as it was described above and assigns the result to

.2 However, there are a number of different ways to look at matrix multipli-

cation, and we shall present several distinct versions later.

Notice, that matrix products that involve diagonal factors are especially

easy to compute. For example,⎡⎣ 11 0 0

0 22 0

0 0 33

⎤⎦⎡⎣ 11 12 13 14
21 22 23 24
31 32 33 34

⎤⎦
=

⎡⎣ 1111 1112 1113 1114
2221 2222 2223 2224
3331 3332 3333 3334

⎤⎦
⎡⎢⎢⎣

11 12 13
21 22 23
31 32 33
41 42 43

⎤⎥⎥⎦
⎡⎣ 11 0 0

0 22 0

0 0 33

⎤⎦
:

=

⎡⎢⎢⎣
1111 2212 3313
1121 2222 3323
1131 2232 3333
1141 2242 3343

⎤⎥⎥⎦ 
In words, to multiply a matrix  on the left by a diagonal matrix , one can

multiply successive rows of  by the successive diagonal entries of , and to

multiply  on the right by , one can multiply successive columns of  by

the successive diagonal entries of .

10.4 Why do it this way

If you were given the task of formulating a definition for composing two ma-

trices  and  in some sort of “natural” multiplicative fashion, your first

attempt would probably be to compose  and  by multiplying correspond-

ing entries–much the same way matrix addition is defined. Asked then to

defend the usefulness of such a definition, you might be hard pressed to pro-

vide a truly satisfying response. Unless a person is in the right frame of mind,

2MATLAB supports matrix-matrix multiplication, and so this can be implemented with the one-

liner  =  ∗
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the issue of deciding how to best define matrix multiplication is not at all

transparent, especially if it is insisted that the definition be both “natural”

and “useful.” The world had to wait for Arthur Cayley to come to this proper

frame of mind. Matrix algebra appeared late in the game. Manipulation on

arrays and the theory of determinants existed long before modern theory of

matrices (in ancient China for example). Perhaps this can be attributed to

the fact that the “correct” way to multiply two matrices eluded discovery for

such a long time. Around 1855, Cayley became interested in composing linear

functions. Typical examples of two such functions are

(x) = 

∙
1
2

¸
=

∙
1 + 2
1 + 2

¸
and

(x) = 

∙
1
2

¸
=

∙
1 +2
1 +2

¸


Consider, as Cayley did, composing  and  to create another linear function

() =  (()) = 

∙
1 +2
1 +2

¸
=

∙
(+ )1 + ( + )2
(+ )1 + ( + )2

¸


It was Cayley’s idea to use matrices of coefficients to represent these linear

functions. That is,  , , and  are represented by

 =

∙
 

 

¸
  =

∙
 

 

¸
 and  =

∙
+   + 

+   + 

¸
respectively. After making this association, it was only natural for Cayley to

call  the composition (or product) of  and , and to write∙
 

 

¸ ∙
 

 

¸
=

∙
+   + 

+   + 

¸
 (10.1)

In other words, the product of two matrices represents the composition of the

two associated linear functions. By means of this observation, Cayley brought

to life the subjects of matrix analysis and linear algebra.

10.5 Matrix algebra

Matrices are useful because they provide a compact notation and we can per-

form algebra with them. For example, given a matrix equation such as

3+ 2 = 2( −+ ) (10.2)
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we can solve this for the matrix  using the rules of algebra. You must always

bear in mind that to perform the operations they must be defined. In this

equation, it is understood that all the matrices  and  are the same

shape, say × .

We list the rules of algebra satisfied by the operations of addition, scalar mul-

tiplication and matrix multiplication. The shapes of the matrices are dictated

by the operations being defined. The first rule is that addition is ‘commuta-

tive’:

+ =  + (10.3)

This is easily shown to be true. The matrices  and  must be of the same

shape, say × , for the operation to be defined, so both + and  +

are ×  matrices for some  and . They also have the same entries. The

( ) entry of + is  +  and the ( ) entry of  + is  +  , but

 +  =  +  by the properties of real numbers. So the matrices +

and  + are equal.

On the other hand, as we have seen, matrix multiplication is not commuta-

tive:

 6= 

in general.

We have the following ‘associative’ laws:

(+) +  = + ( + ) (10.4)

() = () = ()

() = ()

These rules allow us to remove brackets. For example, the last rule says that

we will get the same result if we first multiply  and then multiply by 

on the right as we will if we first multiply  and then multiply by  on the

left, so the choice is ours.

We can show that all these rules follow from the definitions of the operations,

just as we showed the commutativity of addition. We need to know that the

matrices on the left and on the right of the equals sign have the same shape and

that corresponding entries are equal. Only the associativity of multiplication

presents any complications, but you just need to carefully write down the ( )

entry of each side and show that,by rearranging terms, they are equal.

Similarly, we have three ‘distributive’ laws:
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( +) =  + (10.5)

( + ) = + 

(+) = + 

Why do we need both of the first two rules (which state that matrix multipli-

cation distributes through addition)? Well, since matrix multiplication is not

commutative,we cannot conclude the second distributive rule from the first;

we have to prove it is true separately. These statements can be proved from

the definitions of the operations, as above, but we will not take the time to do

this here. If  is an ×  matrix, what is the result of −? We obtain an

×  matrix all of whose entries are 0. This is an ‘additive identity ’; that is,

it plays the same role for matrices as the number 0 does for numbers, in the

sense that

+ 0 = 0 + = 

There is a zero matrix of any shape × .

Definition 51 (Zero matrix) A zero matrix, denoted 0, is an × matrix

with all entries zero: ⎡⎢⎢⎢⎣
0 0 · · · 0

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎦
×

Then:

• + 0 = 

• − = 0

• 0 = 0 0 = 0

where the shapes of the zero matrices above must be compatible with the

shape of the matrix  We also have a ‘multiplicative identity’,which acts like

the number 1 does for multiplication of numbers.
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Definition 52 (Identity matrix) The ×  identity matrix, denoted  or

simply , is the diagonal matrix with  = 1,

 =

⎡⎢⎢⎢⎣
1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎦
×

If  is any ×  matrix, then:

 =  and  =  (10.6)

where it is understood that the identity matrices are the appropriate shape

for the products to be defined. Particularly, if  is ×  and  =  then 

is ×

Example 53 We can apply these rules to solve the equation 10.2 i.e.

3+ 2 = 2( −+)

for . We will pedantically apply each rule so that you can see how it is being

used. In practice, you don’t need to put in all these steps, just implicitly use

the rules of algebra. We begin by removing the brackets using the distributive

rule.

3+ 2 = 2 − 2+ 2 (distributive rule)

3+ 2 − 2 (add −2 to both sides)

= 2 − 2+ 2 − 2
(commutativity, associativity

3+ (2 − 2) of addition)

= −2+ 2 + (2 − 2) (additive inverse)

3+ 0 = −2+ 2 + 0 (additive identity)

3+ 2 = −2+ 2 + 2 (add 2 to both sides)

5 = 2 (commutativity, associativity of

addition, additive identity)

 = 5
2
 (scalar multiplication).

If  = , can we conclude that  = ? The answer is ‘no’ (in general),

as the following example shows.

Example 54 If

 =

∙
0 0

1 1

¸
  =

∙
2 3

−1 0

¸
  =

∙
6 4

−5 −1
¸
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then the matrices  and  are not equal, but

 =  =

∙
0 0

1 3

¸


¤

Example 55 Let

 =

∙
1 −3
−2 6

¸
Construct a 2×2 matrix  such that  is the zero matrix. Use two different

nonzero columns for .

Solution: One possible matrix  is like that:

∙
3 −6
1 −2

¸


WARNINGS

Properties above are analogous to properties of real numbers. ButNOT ALL

real number properties correspond to matrix properties.

1. It is not the case that  always equal . (see Example 50).

2. Even if  = , then  may not equal . (see Example 56).

3. It is possible for  = 0 even if  6= 0 and  6= 0. (see Example ).

10.6 Exercises

Exercise 10.1 (True or False)

a) The matrix

∙
1 2 3

4 5 6

¸
has no main diagonal.

b) An matrix ×  has  column vectors and  row vectors.

c) If  and  are 2× 2 matrices, then  = .

d) For every matrix , it is true that
¡

¢
= 

e) If  and  are square matrices of the same order, then () =  .

f) If , , and  are matrices of the same size such that  −  =  − ,

then  = .

g) If + is defined, then  and  are square matrices of the same size.
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h) () =  

i) If  and  are 3 × 3 matrices and  =
£
b1 b2 b3

¤
, then  =£

b1 +b2 +b3
¤

j) If  is an ×  matrix, then ( )2 = (2) 

Exercise 10.2 What size is the identity matrix if  is  ×  matrix and

 = ?

Exercise 10.3 If a matrix  is 5× 3 and the product  is 5× 7 what is the
size of ?

Exercise 10.4 Suppose the third column of  is all zeros. What can be said

about the third column of ?

Exercise 10.5 Show that if  and  are both defined, then  and 

are square matrices.

Exercise 10.6 Suppose the third column of  is the sum of the first two

columns. What can be said about the third column of ? Why?

Exercise 10.7 Given the matrices:

 =

∙
1 3 4

−1 1 0

¸
  =

⎡⎣ 1 0 1

2 1 1

1 1 −1

⎤⎦ 

 =

⎡⎣ 1 1

3 2

−1 4

⎤⎦  d =

⎡⎣ 12
1

⎤⎦
which of the following matrix expression are defined? Compute those which are

defined.

a) d

b)  + 

c) + 

d) 

e) 

f) d
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g) d

h) dd

i) dd 

Exercise 10.8 Given the matrices:

 =

⎡⎣ 2 1

1 1

0 3

⎤⎦  b =

⎡⎣ 1

1

−1

⎤⎦ 

 =

⎡⎣ 1 2 1

3 0 −1
4 1 1

⎤⎦   =

⎡⎣ 0 1

2 5

6 3

⎤⎦
which of the following matrix expression are defined? Compute those

which are defined.

a) b

b) 

c) +b

d) +

e) b

f)  + 

g) bb

h) bb 

i) b

Exercise 10.9 Find, if possible, a matrix  and a constant  such that⎡⎣ 1 7

5 0

9 3

⎤⎦ =
⎡⎣ −4 14

15 0

24 

⎤⎦ 
Exercise 10.10 In each part, find a matrix [] that satisfies the stated con-

dition. Make your answers as general as possibly using letters rather than

specific numbers for the nonzero entries.
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a)  = 0 if  6= 

b)  = 0 if   

c)  = 0 if   

d)  = 0 if |− |  1

Exercise 10.11 If  =

∙
1 −3
−3 5

¸
and  =

∙ −3 −11
1 17

¸
 determine

the first and second columns of 
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11.1 Practice Problems

If  = , can we conclude that  = ? The answer is ‘no’ (in general),

as the following example shows.

Example 56 If

 =

µ
0 0

1 1

¶
  =

µ
2 3

−1 0

¶
  =

µ
6 4

−5 −1
¶

then the matrices  and  are not equal, but

 =  =

µ
0 0

1 3

¶


¤

On the other hand, if + 5 = + 5, then we can conclude that  = 

because the operations of addition and scalar multiplication have inverses.

If we have a matrix , then the matrix− = (−1) is an additive inverse

because it satisfies  + (−) = 0. If we multiply a matrix  by a non-zero

scalar , we can ‘undo’ this by multiplying  by 1.

What about matrix multiplication? Is there a multiplicative inverse? The

answer is ‘sometimes ’.

Definition 57 (Inverse matrix) The  ×  matrix  is invertible if there

is a matrix  such that

 =  = 

where  is the ×  identity matrix. The matrix  is called the inverse of

 and is denoted by −1.
Notice that the matrix  must be square, and that both  and  = −1

must also be square ×  matrices, for the products to be defined.

Example 58 Let

 =

µ
1 2

4 3

¶
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Then with

 =

µ −3
5

2
5

4
5
−1
5

¶
we have  =  = ,  = −1. ¤

You might have noticed that we have said that  is the inverse of . This

is because an invertible matrix has only one inverse. We will prove

this.

Example 59 Prove that if  is an  ×  invertible matrix, then the matrix

−1 is unique.

Solution: Assume the matrix  has two inverses,  and , so that  =

 =  and  =  = . We will show that  and  must actually be the

same matrix; that is, that they are equal. Consider the product . Since

matrix multiplication is associative and  =  , we have

 = () =  = 

On the other hand, again by associativity,

 = () =  = 

since  = . We conclude that  = , so there is only one inverse matrix

of . ¤
Not all square matrices will have an inverse. We say that  is invertible or

non-singular if it has an inverse. We say that  is non-invertible or singular

if it has no inverse.

Example 60 Show that the matrix

 =

µ
0 0

1 1

¶


is not invertible

Solution: It is not possible for a matrix to satisfyµ
0 0

1 1

¶µ
 

 

¶
=

µ
0 0

+  + 

¶
=

µ
1 0

0 1

¶
since the (1 1) entry of the product is 0 and 0 6= 1. ¤
On the other hand we have:
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Example 61 If

 =

µ
 

 

¶
where −  6= 0

then  has the inverse

−1 =
µ


− − 

−
− 

−


−

¶
=

1

− 

µ
 −
− 

¶
(11.1)

Indeedµ
 

 

¶µ


− − 
−

− 
−


−

¶
=

µ
 
− −  

− 0

0  
− −  

−

¶
=

µ
1 0

0 1

¶


This tells us how to find the inverse of any 2× 2 invertible matrix. If

 =

µ
 

 

¶
the scalar  −  is called the determinant of the 2 × 2 matrix , denoted

det(). It is called determinant, since its value being zero or nonzero deter-

mines whether  has an inverse. So if

det() = −  6= 0

then to construct −1 we take the matrix , switch the main diagonal entries
and put minus signs in front of the other two entries, then multiply by the

scalar 1det()

Example 62 Let

 =

µ
1 2

4 3

¶


Then determinant: det() = −5 and

−1 = −1
5

µ
3 −2
−4 1

¶
=

µ −3
5

2
5

4
5
−1
5

¶
which is consistent with the above example 58 .

Example 63 If  = , and  is invertible, can we conclude that  = ?

(Compare with Example 56). This time the answer is ‘yes’, because we can

multiply each side of the equation on the left by −1:
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−1 = −1 =⇒  =  =⇒  = 

Warning: Be careful! If  = , then we cannot conclude that  = ,

only that

 = −1

It is not possible to ‘divide’ by a matrix. We can only multiply on the right or

left by the inverse matrix.

Example 64 The matrix

 =

⎡⎣ 1 4 0

2 5 0

3 6 0

⎤⎦
is singular. To see why, let

 =

⎡⎣ 11 12 13
21 22 23
31 32 33

⎤⎦
be any matrix. The third column of  is⎡⎣ 11 12 13

21 22 23
31 32 33

⎤⎦⎡⎣ 00
0

⎤⎦ =
⎡⎣ 00
0

⎤⎦
Thus

 6=  =

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦
¤

11.1.1 Properties of the inverse

If  is an invertible matrix, then, by definition, −1 exists and −1 =
−1 =  . This statement also says that the matrix  is the inverse of −1;
that is,

(−1)−1 =  (11.2)

It is important to understand the definition of an inverse matrix and be able

to use it. Essentially, if we can find a matrix that satisfies the definition, then
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that matrix is the inverse, and the matrix is invertible. For example, if  is

an invertible×  matrix, then:

()− 1 = 1


−1 provided  6= 0 (11.3)

This statement says that the matrix  is invertible, and its inverse is given

by the matrix  = (1)−1. To prove this is true, we just need to show
that the matrix  satisfies () = () = . This is straightforward using

matrix algebra:

()

µ
1


−1

¶
= 

1


−1 = 

and µ
1


−1

¶
() = 

1


−1 = 

If  and  are invertible ×matrices, then using the definition of the inverse
you can show the following important fact:

()−1 = −1−1 (11.4)

This last statement says that if  and  are invertible matrices of the same

shape × , then the product  is invertible and its inverse is the product

of the inverses in the reverse order. The proof of this statement is quite easy.

By definition, to prove that the matrix  is invertible you have to show that

there exists a matrix, , such that

() = () = 

You are given that  = −1−1. Since both  and  are invertible matrices,

you know that both −1 and −1 exist and both are  × , so the matrix

product −1−1 is defined. So all you need to do is to show that if you multiply
 on the left or on the right by the matrix −1−1, then you will obtain
the identity matrix, .

()
¡
−1−1

¢
= (−1)−1 (matrix multiplication is associative)

= −1 (by the definition of −1)
= −1 (since  =  for any matrix )

=  (by the definition of −1).

In the same way,

(−1−1)() = (−1)(−1)() = −1 = −1 = 

Hence −1−1 is the inverse of the matrix .
Notice, that there is no formula to relate (+)−1 to the sum of inverses.
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Example 65

11.1.2 Inverses and Powers of Diagonal Matrices

Let  be a diagonal matrix

 =

⎛⎜⎜⎜⎝
11 0 · · · 0

0 22 · · · 0
...

...
. . .

...

0 0 · · · 

⎞⎟⎟⎟⎠ (11.5)

Such a diagonal matrix is invertible if and only if all of its diagonal entries are

nonzero; in this case the inverse of (11.5) is

−1 =

⎛⎜⎜⎜⎝
1
11

0 · · · 0

0 1
22

· · · 0
...

...
. . .

...

0 0 · · · 1


⎞⎟⎟⎟⎠
The reader should verify that indeed

−1 = −1 = 

11.1.3 An Algorithm for finding −1

Example 66 Find the inverse of the matrix

 =

⎡⎣ 1 0 −2
−3 1 4

2 −3 4

⎤⎦ 
Solution:

£
 

¤
=

⎡⎣ 1 0 −2 1 0 0

−3 1 4 0 1 0

2 −3 4 0 0 1

⎤⎦
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∼

⎡⎣ 1 0 −2 1 0 0

0 1 −2 3 1 0

0 −3 8 −2 0 1

⎤⎦

∼

⎡⎣ 1 0 −2 1 0 0

0 1 −2 3 1 0

0 0 2 7 3 1

⎤⎦

∼

⎡⎣ 1 0 0 8 3 1

0 1 0 10 4 1

0 0 1 72 32 12

⎤⎦
So:

−1 =

⎡⎣ 8 3 1

10 4 1

72 32 12

⎤⎦ 
¤

Example 67 Find the inverse of the matrix

 =

⎡⎣ 1 −2 −1
−1 5 6

5 −4 5

⎤⎦ 
Solution:

£
 

¤
=

⎡⎣ 1 −2 −1 1 0 0

−1 5 6 0 1 0

5 −4 5 0 0 1

⎤⎦
∼

⎡⎣ 1 −2 −1 1 0 0

0 3 5 1 1 0

0 6 10 −5 0 1

⎤⎦
∼

⎡⎣ 1 −2 −1 1 0 0

0 3 5 1 1 0

0 0 0 −7 −2 1

⎤⎦
So
£
 

¤
is row equivalent to a matrix of the form

£
 

¤
, where  is

square and has a row of zeros. Further row operations will not transform 

into  , so we stop.  does not have an inverse. ¤
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11.2 Exercises

Exercise 11.1 (True or False)

a) In order for a matrix  to be the inverse of , the equations  =  and

 =  must both be true.

b) If  and  are ×  and invertible, then −1−1 is the inverse of .

c) If  is an invertible n n matrix, then the equation x = b is consistent

for each b in R.

d) If  =

∙
 

 

¸
and −  6= 0, then  is invertible.

e) If  is invertible, then the inverse of −1 is  itself.

f) Each elementary matrix is invertible.

g) If  can be row reduced to the identity matrix, then  must be invertible.

Exercise 11.2 Compute the inverses of the following matrices.

a)

∙
3 1

5 2

¸


b

∙
2 −3
4 4

¸


c)

∙
6 4

−2 −1
¸


d)

∙
2 0

0 6

¸


Exercise 11.3 Use the matrices  and  in Exercise 71 to verify that

a)
¡
−1

¢−1
= 

b)
¡

¢−1

=
¡
−1

¢


Exercise 11.4 Use the matrices , , and  in Exercise 71 to verify that

a) ()−1 = −1−1
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b) ()−1 = −1−1−1

Exercise 11.5 Find the inverse of

 =

∙
cos  sin 

− sin  cos 

¸


Exercise 11.6 Let  be the matrix⎡⎣ 1 0 1

1 1 0

0 1 1

⎤⎦
Determine whether  is invertible, and if so, find its inverse. HINT: Solve

 =  by equating corresponding entries on the two sides.

Exercise 11.7 Find 2×2 matrices  and  such that (+)−1 6= −1+−1

Exercise 11.8 Use the algorithm from this section to find the inverses of⎡⎣ 1 0 0

1 1 0

1 1 1

⎤⎦ and

⎡⎣ 1 −1 −10 1 −1
0 0 1

⎤⎦ 
Exercise 11.9 Repeat the strategy of Exercise 11.8 to guess the inverse  of⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

2 2 0
...

3 3 3
...

. . .
...

    

⎤⎥⎥⎥⎥⎥⎥⎦ 

Show that  = .

Exercise 11.10 Let

 =

⎡⎣ 1 1 1

1 2 3

1 4 9

⎤⎦
Find the third column of −1 without computing the other columns.
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12

Characterizations of Invertible Matrices
(Exercises)

12.1 Practice Problems

Example 68 Determine whether

 =

∙
1 1

2
1
3

1
4

¸
or  =

∙ −2 1
3
2

−1
2

¸
are inverses for

 =

∙
1 2

3 4

¸
Solution: B is an inverse if and only if  =  = ; C is an inverse if

and only if  =  = . Here,

 =

∙
1 2

3 4

¸ ∙
1 1

2
1
3

1
4

¸
=

∙
5
3

1
13
3

5
2

¸
6=
∙
1 0

0 1

¸
while

 =

∙
1 2

3 4

¸ ∙ −2 1
3
2

−1
2

¸
=

∙
1 0

0 1

¸
=

∙ −2 1
3
2

−1
2

¸ ∙
1 2

3 4

¸
= 

Thus,  is not an inverse for , but  is.We may write −1 = . ¤

Example 69 Use determinants to determine which of the following matrices

are invertible.

a)

∙
4 −8
2 4

¸
b)

∙
2 1

0 3

¸
c)

∙
4 −2
−8 4

¸
,

Solution:

a) det

∙
4 −8
2 4

¸
= 32 The determinant is nonzero, so The determinant is

nonzero, so

b) det

∙
2 1

0 3

¸
= 6 The matrix is invertible.
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c) det

∙
4 −2
−8 4

¸
= 0 The matrix is not invertible. ¤

Example 70 Find the inverse of the matrix

 =

⎡⎣ 1 −2 −12 −2 0

1 0 −3

⎤⎦ 
if it exists.

Solution:⎡⎣ 1 −2 −1 1 0 0

2 −2 0 0 1 0

1 0 −3 0 0 1

⎤⎦ ∼
⎡⎣ 1 0 0 −3

4
3
4

1
4

0 1 0 −3
4

1
4

1
4

0 0 1 −1
4

1
4
−1
4

⎤⎦ 
So

−1 =

⎡⎣ −34 3
4

1
4

−3
4

1
4

1
4

−1
4

1
4
−1
4

⎤⎦ 
¤

Example 71 Find the inverses of⎡⎣ 1 0 0

1 1 0

1 1 1

⎤⎦ and

⎡⎢⎢⎣
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

⎤⎥⎥⎦ 
Let  be the corresponding ×  matrix, and let  be its inverse. Guess the

form of  and then show that  =  .

Solution: Let

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0    0

−1 1 0    0

0 −1 1 0
...

. . .
. . .

...
. . .

. . .

0 0    −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


and for  = 1  , let a , b , and e , denote the -th columns of , , and

, respectively. Note that for  = 1   − 1, a − a+1 = e , (because a
and a+1 have the same entries except for the -th row), b = e − e+1 and
a = b = e.



12.2 Exercises 99

12.2 Exercises

Exercise 12.1 Find the inverses of the following matrices:

a)

∙
1 −4
1 2

¸
,

b)

∙
1 −4
0 2

¸
,

c)

∙
2 −4
1 2

¸
,

d)

∙
1 −4
1 −2

¸
.

Exercise 12.2 For which values of the constants  and  is the matrix∙
 −
 

¸
invertible? What is the inverse in this case?

Exercise 12.3 Show that the inverse for a diagonal matrix  having only

nonzero elements on its main diagonal is also a diagonal matrix whose diagonal

elements are the reciprocals of the corresponding diagonal elements of . That

is, if

 =

⎡⎢⎢⎢⎣
1 0

2
. . .

0 

⎤⎥⎥⎥⎦
then

−1 =

⎡⎢⎢⎢⎣
11 0

12
. . .

0 1

⎤⎥⎥⎥⎦
Exercise 12.4 When you represent a three-dimensional object graphically in

the plane (on paper, the blackboard, or a computer screen), you have to trans-

form spatial coordinates, ⎡⎣ 1
2
3

⎤⎦
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into plane coordinates,

∙
1
2

¸
 The simplest choice is a linear transformation,

for example, the one given by the matrix

 =

∙ −1
2
1 0

−1
2
0 1

¸


a) Use this transformation to represent the unit cube with comer points⎡⎣ 00
0

⎤⎦ 
⎡⎣ 10
0

⎤⎦ 
⎡⎣ 01
0

⎤⎦ 
⎡⎣ 00
1

⎤⎦ 
⎡⎣ 01
1

⎤⎦ 
⎡⎣ 11
0

⎤⎦ 
⎡⎣ 10
1

⎤⎦ 
⎡⎣ 11
1

⎤⎦
Include the images of the 1 , 2, and 3 axes in your sketch.

b) Represent the image of the point

⎡⎣ 1
1
2
1
2

⎤⎦ in your figure in part (a). Explain.
c) Find all the points

⎡⎣ 1
2
3

⎤⎦ that are transformed to ∙ 0
0

¸
 Explain.

Exercise 12.5 Repeat the strategy of Example 71 to guess the inverse  of

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0    0

2 2 0    0

3 3 3 0
...

. . .
. . .

...
. . .

. . .

    

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


Show that  = .

Exercise 12.6 Prove that the inverse of the lower (upper) triangular matrix

(if exists) is lower (upper) triangular.

Exercise 12.7 Suppose  and  are × matrices,  is invertible, and 

is invertible. Show that  is invertible. [HINT: Let  = , and solve this

equation for .]

Exercise 12.8 Suppose  is an × matrix with the property that the equa-

tion x = b has at least one solution for each b in R. Explain why each

equation x = b has in fact exactly one solution.
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Exercise 12.9 The color of light can be represented in a vector

⎡⎣ 





⎤⎦
where  = amount of red,  = amount of green, and  = amount of blue.

The human eye and the brain transform the incoming signal into the signal

⎡⎣ 





⎤⎦
where

intensity  =
++

3
long-wave signal  = −

short-wave signal  =  − +

2

Example 72

a) Find the matrix  representing the transformation from

⎡⎣ 





⎤⎦ to

⎡⎣ 





⎤⎦ 

b) Consider a pair of yellow sunglasses for water sports that cuts out all

blue light and passes all red and green light. Find the 3 × 3 matrix 

that represents the transformation incoming light undergoes as it passes

through the sunglasses.

c) Find the matrix for the composite transformation that light undergoes as it

first passes through the sunglasses and then the eye.

d) As you put on the sunglasses, the signal you receive (intensity, long- and

short-wave signals) undergoes a transformation. Find the matrix  of

this transformation.
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Example 73 Matrix inversion can be used to encode and decode sensitive

messages for transmission. Initially, each letter in the alphabet is assigned a

unique positive integer, with the simplest correspondence being

             

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12 13 14

           

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 16 17 18 19 20 21 22 23 24 25 26

Zeros are used to separate words. Thus, the message

SHE IS A SEER

is encoded

19 8 5 0 9 19 0 1 0 19 5 5 18 0.

This scheme is too easy to decipher, however, so a scrambling effect is added

prior to transmission. One scheme is to package the coded string as a set of

2-tuples, multiply each 2-tuple by a 2× 2 invertible matrix, and then transmit
the new string. For example, using the matrix

 =

∙
1 2

2 3

¸
the coded message above would be scrambled into∙

1 2

2 3

¸ ∙
19

9

¸
=

∙
37

65

¸
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1 2

2 3

¸ ∙
5

0

¸
=

∙
5

10

¸
∙
1 2

2 3

¸ ∙
9

19

¸
=

∙
47

75

¸
etc. and the scrambled message becomes

35 62 5 10 47 75

Note an immediate benefit from the scrambling: the letter , which was origi-

nally always coded as 19 in each of its three occurrences, is now coded as a 35

the first time and as 75 the second time. Continue with the scrambling, and

determine the final code for transmitting the above message.
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13

Introduction to Determinants (Exercises)

13.1 Practice Problems

Determinant and volume

If  is a  ×  matrix, then det() is the volume of the -dimensional

parallelepiped  spanned by the  column vectors a of  (see Fig.13.1).

Orientation

Determinants allow to define the orientation of  vectors in -dimensional

space. This is "handy" because there is no "right hand rule" in hyperspace...

To do so, define the matrix  with column vectors a and define the orientation

as the sign of det(). In three dimensions, this agrees with the right hand rule:

if a1 is the thumb, a2 is the pointing finger and a3 is the middle finger, then

their orientation is positive.

Why do we care about determinants?

• check invertibility of matrices,

• have geometric interpretation as volume,

• explicit algebraic expressions for inverting a matrix,

• as a natural functional on matrices it appears in formulas in particle or
statistical physics,

• allow to define orientation in any dimensions,

• appear in change of variable formulas in higher dimensional integration,

• proposed alternative concepts are unnatural, hard to teach and harder
to understand,

• determinants are fun.



106 13. Introduction to Determinants (Exercises)

Fig. 13.1. The -dimensional parallelepiped  spanned by the  column vectors a
of 

The art of calculating determinants.

When confronted with a matrix, it is good to go through a checklist of

methods to crack the determinant. Often, there are different possibilities to

solve the problem, in many cases the solution is particularly simple using one

method.

• Is it a 2× 2 or 3× 3 matrix?

• Is it a upper or lower triangular matrix?

• Is it a trick: like 1000?

• Does geometry imply noninvertibility?

• Do you see duplicated columns or rows?

• Can you row reduce to a triangular case?

• Are there only a few nonzero patters?

• Laplace expansion with some row or column?

• Later: Can you see the eigenvalues of ?
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Example 74 Use a determinant to decide if v1, v2, v3 are linearly indepen-

dent, when

v1 =

⎡⎣ 5

−7
9

⎤⎦  v2 =

⎡⎣ −33
−5

⎤⎦  v3 =

⎡⎣ 2

−7
5

⎤⎦ 
Solution:

det

⎡⎣ 5 −3 2

−7 3 −7
9 −5 5

⎤⎦ = det
⎡⎣ 5 −3 2

−2 0 −5
9 −5 5

⎤⎦
(row 1 added to row 2)Next, taking cofactors of column 2 we have

= det

⎡⎣ 5 −3 2

−2 0 −5
9 −5 5

⎤⎦
= − (−3) det

∙ −2 −5
9 5

¸
− (−5) det

∙
5 2

−2 −5
¸
= 0

So, the matrix [v1 v2 v3] is not invertible. The columns are linearly depen-

dent. ¤
Here is a memory aid (called Sarrus’s Rule) for the determinant of a 3× 3

matrix: To find the determinant of a 3×3matrix , write the first two columns
of  to the right of . Then multiply the entries along the six diagonals shown

below.

Add or subtract these diagonal products, as shown in the diagram:

det() = 112233+122331+132132−132231−112332−122133
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Example 75 (Sarrus’s Rule) Find the determinant of

 =

⎡⎣ 1 2 3

4 5 6

7 8 10

⎤⎦
Solution: By Sarrus’s rule, det() = 1 · 5 · 10 + 2 · 6 · 7 + 4 · 8 · 3− 3 · 5 ·

7− 2 · 4 · 10− 6 · 8 · 1 = −3 Matrix  is invertible.

Example 76 Compute det, where

 =

⎡⎢⎢⎢⎢⎣
3 −7 8 9 −6
0 2 −5 7 3

0 0 1 2 3

0 0 4 5 6

0 0 7 8 10

⎤⎥⎥⎥⎥⎦ 

Solution: The cofactor expansion down the first column of  has all terms

equal to zero except the first. Thus

det () = 3 · det

⎛⎜⎜⎝
⎡⎢⎢⎣
2 −5 7 3

0 1 2 3

0 4 5 6

0 7 8 10

⎤⎥⎥⎦
⎞⎟⎟⎠

Next, expand this 4 × 4 determinant down the first column, in order to take
advantage of the zeros there. We have

det () = 3 · 2 · det
⎛⎝⎡⎣ 1 2 3

4 5 6

7 8 10

⎤⎦⎞⎠ 

This 3× 3 determinant was computed in Example 75 and found to equal −3.
Hence

det () = 3 · 2 · (−3) = −18
¤

Example 77 Using the Inverse Formula find −1 when

 =

⎡⎣ 2 1 3

1 −1 1

1 4 −2

⎤⎦ 
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Solution:

11 = +det

∙ −1 1

4 −2
¸
= −2 12 = −det

∙
1 1

1 −2
¸
= 3 13 = +det

∙
1 −1
1 4

¸
= 5

21 = −det
∙
1 3

4 −2
¸
= 14 22 = +det

∙
2 3

1 −2
¸
= −7 23 = −det

∙
2 1

1 4

¸
= −7

31 = +det

∙
1 3

−1 1

¸
= 4 32 = −det

∙
2 3

1 1

¸
= 1 33 = +det

∙
2 1

1 −1
¸
= −3

The adjugate matrix is the transpose of the matrix of cofactors. [For instance,

12 goes in the(2 1) position.] Thus

adj =

⎡⎣ −2 14 4

3 −7 1

5 −7 −3

⎤⎦ 
We could compute det () directly, but the following computation provides a

check on the calculations above and produces det ()

(adj) · =

⎡⎣ −2 14 4

3 −7 1

5 −7 −3

⎤⎦⎡⎣ 2 1 3

1 −1 1

1 4 −2

⎤⎦
=

⎡⎣ 14 0 0

0 14 0

0 0 14

⎤⎦ = 14
Since (adj) · = 14 we conclude

−1 =
1

14

⎡⎣ −2 14 4

3 −7 1

5 −7 −3

⎤⎦ =
⎡⎣ −17 1 2

7
3
14
−1
2

1
14

5
14
−1
2
− 3
14

⎤⎦ 
¤

13.2 Application to Engineering

A number of important engineering problems, particularly in electrical en-

gineering and control theory, can be analyzed by Laplace transforms. This

approach converts an appropriate system of linear differential equations into

a system of linear algebraic equations whose coefficients involve a parameter.

The next example illustrates the type of algebraic system that may arise.
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Example 78 Consider the following system in which  is an unspecified para-

meter. Determine the values of  for which the system has a unique solution,

and use Cramer’s rule to describe the solution.

31 − 22 = 4

−61 + 2 = 1

Solution 79 View the system as x = b. Then

 =

∙
3 −2
−6 

¸
 1(b) =

∙
4 −2
1 

¸
 2(b) =

∙
3 4

−6 1

¸


Since

det() = 32 − 12 = 3(+ 2)(− 2)
the system has a unique solution precisely when  6= ±2. For such an , the

solution is

1 =
det(1(b))

det()
=

4+ 2

3(+ 2)(− 2)

2 =
det(2(b))

det()
=

3+ 24

3(+ 2)(− 2) =
+ 8

(+ 2)(− 2) 

¤

13.3 Exercises

Exercise 13.1 Find det() when:

 =

⎡⎢⎢⎢⎢⎣
1 2 3 4 5

2 4 6 8 10

5 5 5 5 4

1 3 2 7 4

3 2 8 4 9

⎤⎥⎥⎥⎥⎦
HINT: Try row reduction.

Exercise 13.2 Find det() when:

 =

⎡⎢⎢⎢⎢⎣
2 1 0 0 0

1 1 1 0 0

0 0 2 1 0

0 0 0 3 1

0 0 0 0 4

⎤⎥⎥⎥⎥⎦
HINT: Laplace expansion.
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Exercise 13.3 Find det() when:

 =

⎡⎢⎢⎢⎢⎣
1 1 0 0 0

1 2 2 0 0

0 1 1 0 0

0 0 0 1 3

0 0 0 4 2

⎤⎥⎥⎥⎥⎦
HINT: Partitioned matrix.

Exercise 13.4 Find det() when:

 =

⎡⎢⎢⎢⎢⎣
1 6 10 1 15

2 8 17 1 29

0 0 3 8 12

0 0 0 4 9

0 0 0 0 5

⎤⎥⎥⎥⎥⎦
HINT: Make it tridiagonal.

Exercise 13.5 Test Cramer’s rule for a random 4×4 matrix  and a random
4 × 1 vector b. Compute each entry in the solution of x = , and compare

these entries with the entries in −1b.

Exercise 13.6 Use Cramer’s rule to compute the solution of the following

system: ⎧⎨⎩
21 + 2 = 7

−31 + 3 = −8
2 + 23 = −3



Exercise 13.7 Use Cramer’s rule to compute the solution of the following

system: ⎧⎨⎩
21 + 2 + 3 = 4

−1 + 23 = 2

31 + 2 + 33 = −2


Exercise 13.8 Find the volume of the parallelepiped with one vertex at the

origin and adjacent vertices at (1 0−2), (1 2 4), and (7; 1; 0).

Exercise 13.9 Let 1   be fixed but mutually distinct numbers. The ma-

trix below, called a Vandermonde matrix, occurs in applications such as signal
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processing, error-correcting codes, and polynomial interpolation.

 =

⎡⎢⎢⎢⎣
1 1 21 · · · −11

1 2 22 · · · −12
...

...
...

...

1  2 · · · −1

⎤⎥⎥⎥⎦ 
Find det( )
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Eigenvectors and Eigenvalues (Exercises)

14.1 Practice Problems

Definition 80 An eigenvector of an ×  matrix  is a nonzero vector 

such that x = x for some scalar (real or complex) . A scalar  is called

an eigenvalue of  if there is a nontrivial solution x of x = x; such an x

is called an eigenvector corresponding to .

Note that an eigenvector must be nonzero, by definition, but an eigenvalue

may be zero.

It is easy to determine if a given vector is an eigenvector of a matrix. It is

also easy to decide if a specified scalar is an eigenvalue.

Example 81 Let  =

∙
3 −2
−2 3

¸
 u =

∙ −1
1

¸
 and v =

∙
2

1

¸
 Are u

and v eigenvectors of ?

Solution:

u =

∙
3 −2
−2 3

¸ ∙ −1
1

¸
=

∙ −5
5

¸
= 5

∙ −1
1

¸
= 5u

v =

∙
3 −2
−2 3

¸ ∙
2

1

¸
=

∙
4

−1
¸
6= 

∙
2

1

¸
Thus u is an eigenvector corresponding to an eigenvalue (5), but v is not an

eigenvector of , because v is not a multiple of v. ¤

Example 82 Show that 1 is an eigenvalue of matrix  in Example 81, and

find the corresponding eigenvectors.

Solution: The scalar 1 is an eigenvalue of  if and only if the equation

x = 1 · x (14.1)

has a nontrivial solution. But (14.1) is equivalent to x− x = 0, or

(− )x = 0 (14.2)



114 14. Eigenvectors and Eigenvalues (Exercises)

To solve this homogeneous equation, form the matrix

(− ) =

∙
3 −2
−2 3

¸
−
∙
1 0

0 1

¸
=

∙
2 −2
−2 2

¸


The columns of − are obviously linearly dependent, so (14.2) has nontrivial
solutions. Thus 1 is an eigenvalue of . To find the corresponding eigenvectors,

use row operations: ∙
2 −2 0

−2 2 0

¸
∼
∙
1 −1 0

0 0 0

¸


The general solution has the form 2

∙ −1
1

¸
 Each vector of this form with

2 6= 0 is an eigenvector corresponding to  = 1. ¤
Example 83 Let

 =

⎡⎣ 1 −4 −4
8 −11 −8
−8 8 5

⎤⎦
An eigenvalue of  is −3. Find a basis for the corresponding eigenspace.
Solution: Form

+ 3 =

⎡⎣ 4 −4 −4
8 −8 −8
−8 8 8

⎤⎦
and row reduce the augmented matrix for (+ 3) x = 0 :

⎡⎣ 4 −4 −4 0

8 −8 −8 0

−8 8 8 0

⎤⎦ ∼
⎡⎣ 1 −1 −1 0

0 0 0 0

0 0 0 0

⎤⎦ 
At this point, it is clear that −3 is indeed an eigenvalue of  because the

equation (+ 3) x = 0 has free variables. The general solution is⎡⎣ 1
2
3

⎤⎦ = 2

⎡⎣ 11
0

⎤⎦+ 3

⎡⎣ 10
1

⎤⎦  2 and 3 are free.

The eigenspace is a two-dimensional subspace of R3. A basis is⎧⎨⎩
⎡⎣ 11
0

⎤⎦ 
⎡⎣ 10
1

⎤⎦⎫⎬⎭ 

¤
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Theorem 84 The eigenvalues of a triangular matrix are the entries on its

main diagonal.

Example 85 Let

 =

⎡⎣ −9 0 0

−8 −6 0

20 15 9

⎤⎦ and  =

⎡⎣ 0 −3 −10 8 5

0 0 8

⎤⎦ 
Solution: The eigenvalues of  are −9−6 and 9 The eigenvalues of 

are 0 and 8 ¤

Example 86 If x is an eigenvector of  corresponding to , what is 2x?

Solution: If x is an eigenvector of  corresponding to , then x = λx and

so

2x =Ax =x =2x

The general pattern, x =x is proved by induction. ¤

14.2 Exercises

Exercise 14.1 (True or False) Here  is an × matrix. Mark each state-
ment True or False. Justify each answer

a) If  is an eigenvalue of  and corresponding eigenvector is x then every

nonzero scalar multiple of x is also an eigenvector of 

b) Matrix  can have only one eigenvalue.

c) If  is an eigenvalue of  then the set of all eigenvectors of  is a subspace

of R.

d) If  is not an eigenvalue of , then the linear system ( − )x = 0 has

only the trivial solution.

e) If  = 0 is an eigenvalue of , then 2 is singular.

f) To find the eigenvalues of , reduce  to echelon form.

g) The eigenvalues of a matrix are on its main diagonal.
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Exercise 14.2 Find the dimension of the eigenspace corresponding to eigen-

value  = 3 when

a)  =

⎡⎣ 3 0 0

0 3 0

0 0 3

⎤⎦ 
b)  =

⎡⎣ 3 1 0

0 3 0

0 0 3

⎤⎦ 
c)  =

⎡⎣ 3 1 0

0 3 1

0 0 3

⎤⎦ 
d)  =

⎡⎣ 3 1 1

0 3 1

0 0 3

⎤⎦ 

Exercise 14.3 Is x =

⎡⎣ 3

−2
1

⎤⎦ an eigenvector of  =
⎡⎣ −4 3 3

2 −3 −2
−1 0 −2

⎤⎦? If

so, find the eigenvalue.

Exercise 14.4 Determine which of the following are eigenvectors for

 =

⎡⎢⎢⎣
−9 −6 −2 −4
−8 −6 −3 −1
20 15 8 5

32 21 7 12

⎤⎥⎥⎦
and for those which are eigenvectors, identify the associated eigenvalue.

)

⎡⎢⎢⎣
−1
1

0

1

⎤⎥⎥⎦  )

⎡⎢⎢⎣
1

0

−1
0

⎤⎥⎥⎦  )

⎡⎢⎢⎣
−1
0

2

2

⎤⎥⎥⎦  )

⎡⎢⎢⎣
0

1

−3
0

⎤⎥⎥⎦ 
Exercise 14.5 Explain why a 2×2 matrix can have at most two distincteigen-
values. Explain why an ×  matrix can have at most  distinct eigenvalues.
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The Characteristic Equation (Exercises)

15.1 Practice Problems

To find the eigenvalues,we solve the characteristic equation det (− ) = 0.

Let us illustrate with a 2× 2 example
Example 87 Let

 =

∙
7 −15
2 −4

¸


Then

−  =

∙
7 −15
2 −4

¸
− 

∙
1 0

0 1

¸
=

∙
7−  −15
2 −4− 

¸
and the characteristic polynomial is

(7− ) (−4− ) + 30 = 2 − 3+ 2
So the eigenvalues are the solutions of 2− 3+2 = 0. To solve this for , we
could use either the formula for the solutions to a quadratic equation, or simply

observe that the characteristic polynomial factorises. We have(−1)(−2) = 0
with solutions  = 1 and  = 2. Hence the eigenvalues of  are 1 and 2, and

these are the only eigenvalues of .

Example 88 Find the eigenvalues of

 =

⎡⎣ 0 1 0

0 0 1

4 −17 8

⎤⎦ 
Solution: The characteristic polynomial of  is

det(− ) = det

⎡⎣ − 1 0

0 − 1

4 −17 8− 

⎤⎦ = −3 + 82 − 17+ 4
The eigenvalues of  must therefore satisfy the cubic equation

3 − 82 + 17− 4 = 0 (15.1)
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To solve this equation, we shall begin by searching for integer solutions. This

task can be greatly simplified by exploiting the fact that all integer solutions

(if there are any) to a polynomial equation with integer coefficients

 + 1
−1 + · · ·+  = 0

must be divisors of the constant term, . Thus, the only possible integer

solutions of 2 are the divisors of −4, that is, ±1±2±4 Successively sub-
stituting these values in 15.1 shows that  = 4 is an integer solution. As a

consequence, −4 must be a factor of the left side of 15.1. Dividing −4 into
3 − 82 + 17− 4 shows that 15.1 can be rewritten as

(− 4) ¡2 − 4+ 1¢ = 0
Thus the remaining solutions of 15.1 satisfy the quadratic equation

2 − 4+ 1 = 0
which can be solved by the quadratic formula. Thus the eigenvalues of  are

1 = 4 2 =
√
3 + 2 3 = 2−

√
3

¤

Remark 89 In practical problems, the matrix  is usually so large that com-

puting the characteristic equation is not practical. As a result, other methods

are used to obtain eigenvalues.

Example 90 (Complex eigenvalues) It is possible for the characteristic

equation of a matrix with real entries to have complex solutions. In fact, be-

cause the eigenvalues of an × matrix are the roots of a polynomial of precise
degree , every matrix has exactly  eigenvalues if we count them as we count

the roots of a polynomial (meaning that they may be repeated, and may occur

in complex conjugate pairs). For example, the characteristic polynomial of the

matrix

 =

∙
2 1

−5 −2
¸

is

det

∙
2−  1

−5 −2− 

¸
= 2 + 1

so the characteristic equation is

2 + 1 = 0
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the solutions of which are the imaginary numbers and 1 = − 2 = .

Thus we are forced to consider complex eigenvalues, even for real matrices.

This, in turn, leads us to consider the possibility of complex vector spaces–

that is, vector spaces in which scalars are allowed to have complex values. Such

vector spaces will be considered in more advanced courese of linear algebra.

For now, we will allow complex eigenvalues, but we will limit our discussion

of eigenvectors to the case of real eigenvalues. ¤

Example 91 We know that square matrix  is invertible if and only if  = 0

is not an eigenvalue of . The matrix  in Example 88 is invertible since it

has eigenvalues

1 = 4 2 =
√
3 + 2 3 = 2−

√
3

neither of which is zero. ¤

Example 92 Find the characteristic equation of

 =

⎡⎢⎢⎣
3 −2 6 1

0 4 3 2

0 0 1 −1
0 0 0 4

⎤⎥⎥⎦ 
Solution: Form −  , and use of tiangularity of  we have:

det(− ) = det

⎡⎢⎢⎣
3−  −2 6 1

0 4−  3 2

0 0 1−  −1
0 0 0 4− 

⎤⎥⎥⎦
= (3− ) (1− ) (4− )2 

The characteristic equation is

(3− ) (1− ) (4− )2 = 0

The matrix  has eigenvalues

1 = 3 2 = 3 3 = 4 4 = 4

15.2 Exercises

Exercise 15.1 Suppose that the characteristic polynomial of some matrix 

is found to be

(− 1) (− 2)2 (− 3)3 
In each part, answer the question and explain your reasoning.
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a) What is the size of ?

b) Is  invertible?

c) How many eigenspaces does  have?

Exercise 15.2 The eigenvectors for  = 0 are the non-zero solutions of  =

0. To find these, row reduce the coefficient matrix

 =

⎡⎣ 4 0 4

0 4 4

4 4 8

⎤⎦ 
Similarly, you should find the eigenvectors for  = 12.

Exercise 15.3 We know that if  is an eigenvalue of , then  is an eigen-

value of . Give a 2 × 2 matrix  and an integer  that provide a coun-

terexample to the Give a 2 × 2 matrix  and an integer  that provide a

counterexample to the converse.

Exercise 15.4 Find the eigenvalues of

 =

⎡⎢⎢⎣
100 1 1 1

1 100 1 1

1 1 100 1

1 1 1 100

⎤⎥⎥⎦ 
Exercise 15.5 Find the eigenvalues of 10 for

 =

⎡⎢⎢⎣
1
2
7 1 2

0 4 −1 −1
0 0 −1 4

0 0 0 6

⎤⎥⎥⎦ 
Exercise 15.6 Prove that the coefficient of  in the characteristic polyno-

mial of an ×  matrix  is (−1).
Exercise 15.7 Show that the characteristic equation of a 2× 2 matrix  can

be expressed as

2 − tr()+ det() = 0
where tr() is the sum of two (not necessarily distinct) eigenvalues of .

Exercise 15.8 Prove that if  is a square matrix, then  and  have the

same eigenvalues. HINT: Look at the characteristic equation det(− ) = 0



Appendixes

A1. Greek letters used in mathematics, science, and
engineering

The Greek letter forms used in mathematics are often different from those used

in Greek-language text: they are designed to be used in isolation, not connected

to other letters, and some use variant forms which are not normally used in

current Greek typography. The table below shows Greek letters rendered in

TEX

Table 15.1. Greek letters used in mathematics

 alpha  nu

 beta  Ξ xi

 Γ gamma  Π pi

 ∆ delta  rho

 epsilon  Σ sigma

 zeta  tau

 eta  upsilon

 Θ theta  Φ phi

 iota  chi

 kappa  Ψ psi

 Λ lambda  Ω omega

 mu † dagger

TEXis a typesetting system designed and mostly written by Donald Knuth

at Stanford and released in 1978.

Together with the Metafont language for font description and the Computer

Modern family of typefaces, TeX was designed with two main goals in mind:

to allow anybody to produce high-quality books using a reasonably minimal

amount of effort, and to provide a system that would give exactly the same

results on all computers, now and in the future.
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