Math 22 -
Linear Algebra and its applications

- Lecture 1 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tue 1-3 pm, Th, Sun 2-4 pm in KH 229
- Tutorial: Tue, Th, Sun 7-9 pm in KH 105
- Workload: Demanding course 10-15 h / week is normal
- Conclusion: Engage yourself! Come to the class/tutorial, read the book, do homework and suggested practice problems until you feel confident with the topic.
- No class this Wednesday!

1

Linear Equations in Linear Algebra

1.1

SYSTEMS OF LINEAR EQUATIONS

Linear Algebra

 AND ITS APPLICATIONSFIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

GEOMETRIC INTERPRETATION

- Example:

GEOMETRIC INTERPRETATION

GEOMETRIC INTERPRETATION

LINEAR EQUATION

Aim: Learn an algorithm that can solve any system of linear equations or state that it has no solution.

LINEAR EQUATION

- A linear equation in the variables x_{1}, \ldots, x_{n} is an equation that can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b,
$$

where b and the coefficients a_{1}, \ldots, a_{n} are real or complex numbers that are usually known in advance.

- A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_{1}, \ldots, x_{n}.

LINEAR EQUATION

- A solution of the system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively.
- The set of all possible solutions is called the solution set of the linear system.
- Two linear systems are called equivalent if they have the same solution set.

LINEAR EQUATION

- In the next lecture will see: A system of linear equations has

1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

- A system of linear equation is said to be inconsistent if it has no solution.
- A system of linear equations is said to be consistent if it has either one solution or infinitely many solutions.

MATRIX NOTATION

- The essential information of a linear system can be recorded in a table or matrix.
- For the following system of equations,

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9,
\end{aligned}
$$

the matrix $\left[\begin{array}{rrr}1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 5 & 9\end{array}\right]$
is called the coefficient matrix of the system.

MATRIX NOTATION

- An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.
- For the given system of equations,

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

is called the augmented matrix.

MATRIX SIZE

- The size of a matrix tells how many rows and columns it has. If m and n are positive numbers, an $\boldsymbol{m} \times \boldsymbol{n}$ matrix is a matrix or table with m rows and n columns. (The number of rows always comes first.)
- The basic strategy for solving a linear system is to replace one system with an equivalent system (i.e., one with the same solution set) that is easier to solve.

SOLVING SYSTEM OF EQUATIONS

- Example 1: Solve the given system of equations.

$$
\begin{align*}
x_{1}-2 x_{2}+x_{3} & =0 \tag{1}\\
2 x_{2}-8 x_{3} & =8 \tag{2}\\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9 \tag{3}
\end{align*}
$$

- Solution: Elimination algorithm using elementary row transformations.

SOLVING SYSTEM OF EQUATIONS

SOLVING SYSTEM OF EQUATIONS

SOLVING SYSTEM OF EQUATIONS

- Thus, the only solution of the original system is $(29,16,3)$. To verify that $(29,16,3)$ is a solution, substitute these values into the left side of the original system, and compute.

$$
\begin{aligned}
(29)-2(16)+(3) & =29-32+3=0 \\
2(16)-8(3) & =32-24=8 \\
-4(29)+5(16)+9(3) & =-116+80+27=-9
\end{aligned}
$$

- The results agree with the right side of the original system, so $(29,16,3)$ is a solution of the system.

ELEMENTARY ROW OPERATIONS

- Elementary row operations include the following:

1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

- Two matrices are called row equivalent if there is a sequence of elementary row operations that transforms one matrix into the other.

ELEMENTARY ROW OPERATIONS

- It is important to note that row operations are reversible.
- If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.
- As already mentioned, a central question is whether the linear system has a solution and if the solution is unique.

EXISTENCE AND UNIQUENESS OF SYSTEM OF EQUATIONS

- Example 2: Determine if the following system is consistent.

$$
\begin{array}{r}
x_{2}-4 x_{3}=8 \tag{4}\\
2 x_{1}-3 x_{2}+2 x_{3}=1 \\
5 x_{1}-8 x_{2}+7 x_{3}=1
\end{array}
$$

- Solution: The augmented matrix is

$$
\left[\begin{array}{rrrr}
0 & 1 & -4 & 8 \\
2 & -3 & 2 & 1 \\
5 & -8 & 7 & 1
\end{array}\right]
$$

EXISTENCE AND UNIQUENESS OF SYSTEM OF

 EQUATIONS
EXISTENCE AND UNIQUENESS OF SYSTEM OF

 EQUATIONS