
MATH 311: COMPLEX ANALYSIS — AUTOMORPHISM

GROUPS LECTURE

1. Introduction

Rather than study individual examples of conformal mappings one at a time,
we now want to study families of conformal mappings. Ensembles of conformal
mappings naturally carry group structures.

2. Automorphisms of the Plane

The automorphism group of the complex plane is

Aut(C) = {analytic bijections f : C −→ C}.

Any automorphism of the plane must be conformal, for if f ′(z) = 0 for some z
then f takes the value f(z) with multiplicity n > 1, and so by the Local Mapping
Theorem it is n-to-1 near z, impossible since f is an automorphism.

By a problem on the midterm, we know the form of such automorphisms: they
are

f(z) = az + b, a, b ∈ C, a 6= 0.

This description of such functions one at a time loses track of the group structure.
If f(z) = az + b and g(z) = a′z + b′ then

(f ◦ g)(z) = aa′z + (ab′ + b),

f−1(z) = a−1z − a−1b.

But these formulas are not very illuminating. For a better picture of the automor-
phism group, represent each automorphism by a 2-by-2 complex matrix,

(1) f(z) = ax+ b ←→
[
a b
0 1

]
.

Then the matrix calculations[
a b
0 1

] [
a′ b′

0 1

]
=

[
aa′ ab′ + b
0 1

]
,[

a b
0 1

]−1
=

[
a−1 −a−1b
0 1

]
naturally encode the formulas for composing and inverting automorphisms of the
plane. With this in mind, define the parabolic group of 2-by-2 complex matrices,

P =

{[
a b
0 1

]
: a, b ∈ C, a 6= 0

}
.

Then the correspondence (1) is a natural group isomorphism,

Aut(C) ∼= P.

1



2 MATH 311: COMPLEX ANALYSIS — AUTOMORPHISM GROUPS LECTURE

Two subgroups of the parabolic subgroup are its Levi component

M =

{[
a 0
0 1

]
: a ∈ C, a 6= 0

}
,

describing the dilations f(z) = ax, and its unipotent radical

N =

{[
1 b
0 1

]
: b ∈ C

}
,

describing the translations f(z) = z + b.

Proposition 2.1. The parabolic group takes the form

P = MN = NM.

Also, M normalizes N , meaning that

m−1nm ∈ N for all m ∈M and n ∈ N.

Proof. To establish the first statement, simply compute:[
a b
0 1

]
=

[
a 0
0 1

] [
1 a−1b
0 1

]
=

[
1 b
0 1

] [
a 0
0 1

]
.

Similarly for the second statement,[
a−1 0
0 1

] [
1 b
0 1

] [
a 0
0 1

]
=

[
1 a−1b
0 1

]
.

�

The geometric content of the proposition’s first statement is that any affine map
is the composition of a translation and a dilation and is also the composition of a
dilation and a translation. The content of the second statement is that a dilation
followed by a translation followed by the reciprocal dilation is again a translation.
(I do not find this last result quickly obvious geometrically.)

In sum so far, considering the automorphisms of the plane has led us to affine
maps and the parabolic group.

3. Automorphisms of the Sphere

Let Ĉ denote the Riemann sphere C∪{∞}, and consider its automorphism group,

Aut(Ĉ) = {meromorphic bijections f : Ĉ −→ Ĉ}.

The fact that meromorphic bijections of the Riemann sphere are closed under com-
position and inversion follows from the fact that meromorphic functions are analytic
in local coordinates, and (excepting the constant function ∞) conversely. In any
case, the following lemma will soon make the closure properties of automorphisms
of the Riemann sphere clear in more concrete terms.

Proposition 3.1. Let f : Ĉ −→ Ĉ be meromorphic. Then f is a rational function,

f(z) = p(z)/q(z),

where p and q are polynomials with complex coefficients, and q is not the zero
polynomial.
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Proof. Since the Riemann sphere is compact, f can have only finitely many poles,
for otherwise a sequence of poles would cluster somewhere, giving a nonisolated
singularity. Especially, f has only finitely many poles in the plane. Let the poles
occur at the points z1 through zn with multiplicities e1 through en. Define a
polynomial

q(z) =

n∏
j=1

(z − zj)ej , z ∈ C.

(So q(z) is identically 1 if f has no poles in C.) Then the function

p : Ĉ −→ Ĉ, p(z) = f(z)q(z)

has removable singularities at the poles of f in C, i.e., it is entire. So p has a power
series representation on all of C. Also, p is meromorphic at∞ because both f and q
are. This forces p to be a polynomial. Since f = p/q, the proof is complete. �

It follows from the proposition that the invertible meromorphic functions on Ĉ
take the form

f(z) =
az + b

cz + d
, a, b, c, d ∈ C,

since if the numerator or the denominator of f were to have degree greater than 1
then by the standard argument using the Local Mapping Theorem, f would not
be bijective. (To analyze the denominator, consider the reciprocal function 1/f .)
On the other hand, unless at least one of the numerator or the denominator of f
has degree 1—as compared to being constant—then again f is not bijective. Also,
we are assuming that f is expressed in lowest terms, i.e., the numerator is not a
scalar multiple of the denominator. This discussion narrows our considerations to
functions of the form

(2) f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0.

Perhaps it deserves explicit mention here that if c = 0 then f(∞) = ∞, while if
c 6= 0 then f(−d/c) =∞ and f(∞) = a/c. We still don’t know that these functions
are bijections of the Riemann sphere, but we do know that they are its only possible
meromorphic bijections.

Introduce the general linear group of 2-by-2 complex matrices,

GL2(C) =

{[
a b
c d

]
: a, b, c, d ∈ C, ad− bc 6= 0

}
.

Then there is a surjective map

GL2(C) −→ Aut(Ĉ),

[
a b
c d

]
7−→ f(z) =

az + b

cz + d
.

(True, we don’t yet know that f is an automorphism, but soon we will, and so we
temporarily notate it as such to avoid temporary clutter.) One can verify that the
map is a homomorphism, i.e., if[

a b
c d

]
7−→ f(z) =

az + b

cz + d
,

[
a′ b′

c′ d′

]
7−→ g(z) =

a′z + b′

c′z + d′
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then the matrix product maps to the corresponding composition. That is, the
product is [

a b
c d

] [
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
,

while the corresponding composition is the image of the product,

(f ◦ g)(z) =
(aa′ + bc′)z + (ab′ + bd′)

(ca′ + dc′)z + cb′ + dd′
.

The verification is discussed in a separate writeup, as it deserves a better treatment
than it usually receives. Here we now take it as proved.

Thus the map from GL2(C) to Aut(Ĉ) is an epimorphism, meaning a surjective
homomorphism. This makes it easy to show that all maps of the form (2) are
automorphisms. Any such function arises from an invertible matrix, and the inverse
matrix gives rise to the inverse function. As automorphisms of a structure that
locally looks like the complex plane, all functions (2) are conformal. The calculation

f ′(z) =
ad− bc

(cz + d)2
6= 0

verifies this directly so long as the infinite point of the Riemann sphere is not in-
volved, but strictly speaking a complete argument requires special-case calculations
to cover the cases where the input to f or the output from f is ∞.

The map from GL2(C) to Aut(Ĉ) is not injective because all nonzero scalar
multiples of a given matrix are taken to the same automorphism. The kernel of
the map (the inputs that it takes to the identity automorphism) is the subgroup
of GL2(C) consisting of all nonzero scalar multiples of the identity matrix,

C×I =

{
λ

[
1 0
0 1

]
: λ ∈ C, λ 6= 0

}
.

And so by the First Isomorphism Theorem of group theory, there is an isomorphism

GL2(C)/C×I ∼−→ Aut(Ĉ),

{
λ

[
a b
c d

]}
7−→ f(z) =

az + b

cz + d
.

The quotient of GL2(C) by the nonzero scalar multiples of the identity matrix is
the projective general linear group of 2-by-2 complex matrices,

PGL2(C) = GL2(C)/C×I.

Next define the special linear group of 2-by-2 complex matrices, the elements of
the general linear group with determinant 1,

SL2(C) =

{[
a b
c d

]
∈ GL2(C) : ad− bc = 1

}
.

Introduce the notation

G = GL2(C), K = C×I, H = SL2(C),

so that H ∩K = {±I}. Then the calculation[
a b
c d

]
=

1√
ad− bc

[
a b
c d

]
·
√
ad− bc

[
1 0
0 1

]
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(where
√
ad− bc denotes either square root of ad − bc) shows that G = HK. By

the Second Isomorphism Theorem of group theory,

G/K = HK/K ∼= H/(H ∩K),

which is to say,

GL2(C)/C×I ∼= SL2(C)/{±I}.
So, letting PSL2(C) denote the projective special linear group SL2(C)/{±I},

Aut(Ĉ) ∼= PGL2(C) ∼= PSL2(C).

Note that although SL2(C) is very much a proper subgroup of GL2(C), the dif-
ference between them collapses under projectivizing. Note also that the automor-

phisms of Ĉ that fix ∞ restrict to automorphisms of C. Correspondingly there is a
monomorphism (injective homomorphism) of groups

P −→ PGL2(C),

[
a b
0 1

]
7−→ C×

[
a b
0 1

]
.

In sum, considering the automorphisms of the sphere has led us to fractional
linear transformations and to the projective general (or special) linear group.

4. Rotations of the Riemann Sphere

The round sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
has its group of rotations, denoted Rot(S2). This rotation group is isomorphic to
the special orthogonal group of 3-by-3 real matrices

Rot(S2) ∼= SO3(R)

where the special orthogonal group is defined intrinsically as follows (in which the
superscript t denotes the transpose of a matrix):

SO3(R) = {m ∈ SL3(R) : mtm = I}.
Recall that stereographic projection is a conformal bijection from the round

sphere S2 to the Riemann sphere Ĉ. An automorphism of Ĉ that corresponds

under stereographic projection to a rotation of S2 is called a rotation of Ĉ. The

group of rotations of Ĉ is denoted Rot(Ĉ). Thus under stereographic projection,

Rot(S2) ∼= Rot(Ĉ).

The special unitary subgroup of SL2(C) is defined intrinsically as follows (in
which the superscript ∗ denotes the transpose-conjugate of a matrix):

SU2(C) = {m ∈ SL2(C) : m∗m = I, detm = 1}.
Thus the elements of SU2(C) are the 2-by-2 analogues of unit complex numbers.
The special unitary group can be described in coordinates,

SU2(C) =

{[
a b

−b a

]
: a, b ∈ C, |a|2 + |b|2 = 1

}
.

This description shows that SU2(C) can be viewed as a group structure on the three-
dimensional unit sphere S3 ⊂ R4, a compact set, and similarly for PSU2(C) and the
projective three-sphere, meaning the three-sphere modulo antipodal identification.
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Let PSU2(C) = SU2(C)/{±I}. A separate writeup establishes the isomorphism

Rot(Ĉ) ∼= PU2(C) ∼= PSU2(C).

(Of course the unitary group U2(C) is defined like the special unitary group but
without the determinant condition. The isomorphism between the projective uni-
tary and special unitary groups follows from that between the projective general
and special linear groups.) A corollary isomorphism is therefore

SO3(R) ∼= PSU2(C).

5. Automorphisms of the Unit Disk

Recall the definition of the special unitary group of 2-by-2 complex matrices
intrinsically,

SU2(C) =

{
m ∈ SL2(C) : m∗

[
1 0
0 1

]
m =

[
1 0
0 1

]
, detm = 1

}
,

and in coordinates,

SU2(C) =

{[
a b

−b a

]
: a, b ∈ C, |a|2 + |b|2 = 1

}
.

Define analogously another special unitary group of 2-by-2 complex matrices,

SU1,1(C) = {m ∈ SL2(C) : m∗
[

1 0
0 −1

]
m =

[
1 0
0 −1

]
, detm = 1},

and in coordinates,

SU1,1(C) =

{[
a b

b a

]
: a, b ∈ C, |a|2 − |b|2 = 1

}
.

The intrinsic definitions show that SU2(C) preserves a geometry with two positive
curvatures, whereas SU1,1(C) preserves a geometry with one positive curvature
and one negative curvature, i.e., a hyperbolic geometry. This hyperbolic geometry
describes the complex unit disk D,

D = {z ∈ C : |z|2 < 1} =

{
z ∈ C :

[
z
1

]∗ [
1 0
0 −1

] [
z
1

]
< 0

}
,

and this description of the disk D combines with the intrinsic description of the
group SU1,1(C) to show that the group preserves the disk. Let PSU1,1(C) =
SU1,1(C)/{±I}. Then we have shown that

PSU1,1(C) ⊂ Aut(D).

That is, we have found some automorphisms of the disk. In fact, it will turn out
that we have found them all.

(For a coordinate-based argument that SU1,1(C) preserves D, consider any el-
ement m of SU1,1(C) and any complex number z such that |z| = 1, recall that
z = z−1 and compute that consequently

|m(z)|2 =
az + b

bz + a
· az

−1 + b

bz−1 + a
=
az + b

bz + a
· a+ bz

b+ az
= 1.
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Thus m takes the unit circle to itself, either taking its interior D to itself as well or
exchanging D with the exterior of the circle. But compute that

|m(0)|2 =
|b|2

|a|2
< 1 since |a|2 = |b|2 + 1,

and so m is an automorphism of D.)
The first step toward seeing that PSU1,1(C) is all of Aut(D) is the observation

that PSU1,1(C) acts transitively on D, meaning that the group can move any point
of D to any other. It suffices to show that the group can move any point a ∈ D to
the origin. Given such a, consider the matrix

ma =
1√

1− |a|2

[
1 −a
−a 1

]
∈ SU1,1(C).

The corresponding fractional linear transformation is

ma(z) =
z − a
1− az

,

and so in particular, ma(a) = 0 as desired. For future reference, observe that
ma(0) = −a and m−1a = m−a. (See figure 1.)

Figure 1. A motion of the disk

So now, given an arbitrary automorphism f of D, let a the element of D such
that f(a) = 0. Then the composition f ◦m−a is an automorphism of D that fixes 0.
Such automorphisms must take a surprisingly simple form:
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Theorem 5.1 (The Schwarz Lemma). Let f be an endomorphism of D that fixes 0.
Then |f(z)| ≤ |z| for all z ∈ D, and |f ′(0)| ≤ 1. Further, f is an automorphism if
and only if f is a rotation f(z) = eiθz for some fixed angle θ.

Proof. Certainly rotation f(z) = eiθz is an automorphism of D. We need to prove
the converse.

Given an endomorphism f : D −→ D with f(0) = 0, define a related function

g : D − {0} −→ C, g(z) = f(z)/z.

Thus g is analytic on the punctured disk. Furthermore, the singularity of g at 0 is
removable since limz→0 g(z) = f ′(0). Thus g extends analytically to the disk,

g : D −→ C, g(z) =

{
f(z)/z if z 6= 0,

f ′(0) if z = 0.

For any radius r such that 0 < r < 1 the Maximum Principle gives

sup
|z|≤r

|g(z)| = sup
|z|=r

|g(z)| = sup
|z|=r

|f(z)|/r ≤ 1/r,

and so letting r → 1− now gives

sup
z∈D
|g(z)| ≤ 1.

(I find this little point appealing: because r appears in the denominator of the
bound on |g|, enlarging it gives a stronger bound on more values of g.) That is,
|g(z)| ≤ 1 for all z ∈ D. Furthermore, if |g(z)| = 1 for any z ∈ D then g is
the constant function eiθ for some θ. Returning to the original endomorphism f
of D that fixes 0, we have shown that |f(z)| ≤ |z| on D and that |f ′(0)| ≤ 1, and
furthermore that if |f(z)| = |z| for some nonzero z ∈ D or if |f ′(0)| = 1 then f is
the rotation f(z) = eiθz.

If f is an automorphism then the same analysis applies to f−1, so that in par-

ticular |f ′(0)| ≤ 1 and |f ′−1(0)| ≤ 1. But since f−1 ◦ f is the identity map and
f(0) = 0, the chain rule gives

f ′
−1

(0)f ′(0) = 1.

Thus |f ′(0)| = 1 and so f is a rotation f(z) = eiθz. �

With the Schwarz Lemma in hand, we can find all automorphisms of the disk.
Returning to the discussion before the lemma, given an automorphism f of D,
let a the element of D such that f(a) = 0. Then the composition f ◦m−a is an
automorphism of D that fixes 0, and so by the Schwarz Lemma, it is a rotation.
Thus (recalling that m−a = m−1a ), the general automorphism is

f = rθ ◦ma, rθ(z) = eiθz, ma(z) =
z − a
1− az

.

Both rθ and ma can be viewed as arising from the group PSU1,1(C), in the former
case because [

eiθ/2 0
0 e−iθ/2

]
∈ SU1,1(C).

Therefore we have proved that

Aut(D) ∼= PU1,1(C) ∼= PSU1,1(C).
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Again the definition of the general unitary group omits the determinant condition,
and so on.

Since the elements rθ ◦ ma of PSU1,1(C) are described by the pairs (θ, a), we
have geometrically

PSU1,1(C) ∼= D × S1.

That is, PSU1,1(C) can be viewed as a group structure on the open solid torus, a
noncompact set.

Let f : D −→ D be analytic and fix 0. The Schwarz Lemma shows that if f
is not an automorphism then |f ′(0)| < 1. We will quote this fact in proving the
Riemann Mapping Theorem.

6. Automorphisms of the Upper Half Plane

Now consider the complex upper half plane,

H = {x+ iy ∈ C : y > 0}.

The fractional linear transformation taking 0 to −i, i to 0, and ∞ to i is an
isomorphism from H to the disk,

t : H ∼−→ D, t(z) =
z − i
−iz + 1

.

Therefore the automorphisms of H and of D are conjugate groups,

Aut(H) = t−1 Aut(D) t.

Define the special linear linear group of real 2-by-2 matrices,

SL2(R) =

{[
a b
c d

]
: a, b, c, d ∈ R, ad− bc = 1

}
.

Then a matrix calculation shows that for complex a = a1 + ia2 and b = b1 + ib2
such that |a|2 − |b|2 = 1,

1

2

[
1 i
i 1

] [
a1 + ia2 b1 + ib2
b1 − ib2 a1 − ia2

] [
1 −i
−i 1

]
=

[
a1 + b2 b1 + a2
b1 − a2 a1 − b2

]
and for real a, b, c, d such that ad− bc = 1,

1

2

[
1 −i
−i 1

] [
a b
c d

] [
1 i
i 1

]
=

1

2

[
a+ d+ i(b− c) b+ c+ i(a− d)
b+ c− i(a− d) a+ d− i(b− c)

]
so that

1

2

[
1 i
i 1

]
SU1,1(C)

[
1 −i
−i 1

]
= SL2(R).

Therefore,

Aut(H) ∼= PGL+
2 (R) ∼= PSL2(R).

Here GL+
2 (R) is the group of 2-by-2 real matrices with positive determinant. The

groups PGL2(R) and PSL2(R) are not isomorphic because scaling a 2-by-2 real
matrix preserves the sign of its determinant.

The group of matrices in SL2(R) that fix i is the natural counterpart to the group
of matrices in SU1,1(C) that fix 0, the complex rotation matrices. And indeed this
group works out to be the corresponding real rotation matrix group, SO2(R).
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Consider any point of the upper half plane, z = x + iy where y > 0. Associate
to the point z a real parabolic matrix,

pz =
1
√
y

[
y x
0 1

]
.

Then pz(i) = z. Given any g ∈ SL2(R), let z = g(i) ∈ H. Then p−1z g fixes i, and
so g = pk where p is real parabolic and k ∈ SO2(R). This establishes the Iwasawa
decomposition of SL2(R),

SL2(R) = PK,

where

P =

{[
a b
0 d

]
: a, b, c, d ∈ R, ad = 1

}
, K = SO2(R).

7. Spaces as Quotient Spaces of Groups

Let G be a locally compact Hausdorff topological group. This means that G is
both a group and a topological space and the group operations of multiplication
and inversion are continuous under the topology; that every point of G has an open
neighborhood with compact closure; that every two distinct points x and y of G lie
in disjoint open sets,

Let X be a Hausdorff topological space. Suppose that G acts transitively on X,
meaning that G takes any point of X to any other.

Let x be any point of X, and let Gx be the isotropy subgroup of G, meaning
the subgroup of G that fixes x. Then there is a natural isomorphism of topological
spaces,

X ∼= G/Gx.

Examples:

S2 ∼= SO3(R)/SO2(R)

Ĉ ∼= SL2(C)/P

H ∼= SL2(R)/SO2(R)

D ∼= SU1,1(C)/
{[

eiθ 0
0 e−iθ

]}
The modular curve of level one is

Y (1) = SL2(Z)\SL2(R)/SO2(R).

More generally, for any congruence subgroup of SL2(Z), the corresponding modular
curve is

Y = Γ\SL2(R)/SO2(R).

8. The Hopf Map

(Geometric description of homotopically nontrivial S3 −→ S2.)


