Math 34: Fall 2016

Arithmetic Sequences

Supplemental Material Not Found in You Text

Do NOT print these slides!!
There are printer friendly files on the website.
September 9, 2016

Arithmetic Sequences

Arithmetic

1 Arithmetic Sequences

- Review
- Real World Examples

2 General Way to Write an Arithmetic Sequence

- Formula
- Examples

3 Partial Sums
■ Formula

- Examples

4 Homework

Arithmetic Sequences

- Recall an Arithmetic Sequence is a sequence where the difference between any two consecutive numbers in the sequence is constant.

In other words: $a_{k+1}-a_{k}=d$ where d is a constant.

Arithmetic Sequences

- Recall an Arithmetic Sequence is a sequence where the difference between any two consecutive numbers in the sequence is constant.

In other words: $a_{k+1}-a_{k}=d$ where d is a constant.

■ Which of the following are Arithmetic Sequences?
[1 $1,4,7,10,13, \ldots$
[2] $2,4,8,16,32, \ldots$
(3) $-3,7,17,27, \ldots$

Real World Examples

1 You start a new job and you're told you salary is $\$ 29,000$ for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years?

2 A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Real World Examples

1 You start a new job and you're told you salary is $\$ 29,000$ for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years?

2 A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Both these scenarios can be modeled by Arithmetic Sequences, and we will develop tools to help us answer these questions.

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :
Arithmetic Sequences

$$
5,7,9,11,13, \ldots
$$

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :
Arithmetic Sequences

$$
5,7,9,11,13, \ldots
$$

Look at the pattern that the common difference of 2 creates.

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :
Arithmetic Sequences

$$
5,7,9,11,13, \ldots
$$

Look at the pattern that the common difference of 2 creates.
$5, \quad 7, \quad 9, \quad 11, \quad 13, \quad \ldots$

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :

$$
5,7,9,11,13, \ldots
$$

Look at the pattern that the common difference of 2 creates.

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :

$$
5,7,9,11,13, \ldots
$$

Look at the pattern that the common difference of 2 creates.

We notice the pattern for this sequence $a_{n}=5+(n-1) 2$

General Way to Write an Arithmetic Sequence

■ Consider the Arithmetic Sequence below. Notice the first term is 5 and the common difference is 2 :

$$
5,7,9,11,13, \ldots
$$

Look at the pattern that the common difference of 2 creates.

We notice the pattern for this sequence $a_{n}=5+(n-1) 2$
We also see that $a_{n}=a_{n-1}+2$ (each term is 2 more than the previous term)

General Way to Write an Arithmetic Sequence

■ Way to Write a Formula for an Arithmetic Sequence: Given that $a_{1}, a_{2}, a_{3}, \ldots$ is an arithmetic sequence with common difference d,

We can rewrite the sequence as

$$
a_{n}=a_{1}+(n-1) d
$$

where the index starts at $n=1$.

Here a_{1} is the first term of the sequence (a constant) and d is the common difference (also a constant).

Examples (Arithmetic Sequences)

Arithmetic
Sequences

Arithmetic
Sequences
Review
Real World Examples
General Way to Write an

$$
\text { Given the Arithmetic Sequence }-10,-4,2,8, \ldots
$$

1 Find the fifth term in the sequence.

2 Find the $20^{\text {th }}$ term in the sequence.

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Arithmetic

Arithmetic
Sequences
Review

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:

1 Find the fifth term in the sequence.

2 Find the $20^{\text {th }}$ term in the sequence.

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.

2 Find the $20^{\text {th }}$ term in the sequence.

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.

2 Find the $20^{\text {th }}$ term in the sequence.

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.
i.e. $a_{5}=a_{4}+6=8+6=14$

2 Find the $20^{\text {th }}$ term in the sequence.

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.
i.e. $a_{5}=a_{4}+6=8+6=14$

2 Find the $20^{\text {th }}$ term in the sequence.
Use the formula: $a_{n}=a_{1}+(n-1) d$

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.
i.e. $a_{5}=a_{4}+6=8+6=14$

2 Find the $20^{\text {th }}$ term in the sequence.
Use the formula: $a_{n}=a_{1}+(n-1) d$
$a_{n}=-10+(n-1) 6$ with starting term $n=1$

3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.
i.e. $a_{5}=a_{4}+6=8+6=14$

2 Find the $20^{\text {th }}$ term in the sequence.
Use the formula: $a_{n}=a_{1}+(n-1) d$
$a_{n}=-10+(n-1) 6$ with starting term $n=1$
This mean the $20^{\text {th }}$ term is: $a_{20}=-10+(20-1) 6=104$
3 Find a formula for the $n^{\text {th }}$ term in the sequence.

Examples (Arithmetic Sequences)

Given the Arithmetic Sequence $-10,-4,2,8, \ldots$
To understand everything about this sequences we need to know:
It's Arithmetic
With common difference $d=6 \quad$ And first term $a_{1}=-10$
1 Find the fifth term in the sequence.
Since the first 4 terms are given, and the common difference is $d=6$, we can see the $5^{\text {th }}$ term 6 more than $4^{\text {th }}$ term.
i.e. $a_{5}=a_{4}+6=8+6=14$

2 Find the $20^{\text {th }}$ term in the sequence.
Use the formula: $a_{n}=a_{1}+(n-1) d$
$a_{n}=-10+(n-1) 6$ with starting term $n=1$
This mean the $20^{\text {th }}$ term is: $a_{20}=-10+(20-1) 6=104$
3 Find a formula for the $n^{\text {th }}$ term in the sequence.
Done above because shortcuts are awesome

Examples, Real World Arithmetic Sequences (Number 1)

Arithmetic
Sequences
Math 34: Fall 2016

Joan invests $\$ 3,000$ in an account that pays 2% simple interest. Determine how much money is in her account after each of the first 5 years.

Arithmetic

Examples, Real World Arithmetic Sequences (Number 1)

Arithmetic
Sequences
Joan invests $\$ 3,000$ in an account that pays 2% simple interest. Determine how much money is in her account after each of the first 5 years.

■ Using $I=P R T$ formula for simple interest.

Examples, Real World Arithmetic Sequences (Number 1)

Arithmetic interest. Determine how much money is in her account after each of the first 5 years.

■ Using $I=P R T$ formula for simple interest.

$$
P=\$ 3,000
$$

$$
R=0.02
$$

$T=$ (depends which year we're talking about)

$$
\begin{array}{lll}
\text { Year } & \text { Interest }(\mathbf{I}=\text { PRT }) & \text { Total In Account } \\
1 & \$ 3000 \cdot 0.02 \cdot 1=\$ 60 & \$ 3000+\$ 60=\$ 3060
\end{array}
$$

Examples, Real World Arithmetic Sequences (Number 1)

Arithmetic

Joan invests $\$ 3,000$ in an account that pays 2% simple interest. Determine how much money is in her account after each of the first 5 years.

■ Using $I=P R T$ formula for simple interest.
$P=\$ 3,000$
$R=0.02$
$T=$ (depends which year we're talking about)

Year	Interest $(\mathbf{I}=$ PRT $)$	Total In Account
1	$\$ 3000 \cdot 0.02 \cdot 1=\$ 60$	$\$ 3000+\$ 60=\$ 3060$
2	$\$ 3000 \cdot 0.02 \cdot 2=\$ 120$	$\$ 3000+\$ 120=\$ 3120$

Examples, Real World Arithmetic Sequences

 (Number 1)Arithmetic

Joan invests $\$ 3,000$ in an account that pays 2% simple interest. Determine how much money is in her account after each of the first 5 years.

■ Using $I=P R T$ formula for simple interest.

$$
P=\$ 3,000
$$

$$
R=0.02
$$

$T=$ (depends which year we're talking about)

Year	Interest $(\mathbf{I}=\mathbf{P R T})$	Total In Account
1	$\$ 3000 \cdot 0.02 \cdot 1=\$ 60$	$\$ 3000+\$ 60=\$ 3060$
2	$\$ 3000 \cdot 0.02 \cdot 2=\$ 120$	$\$ 3000+\$ 120=\$ 3120$
3	$\$ 3000 \cdot 0.02 \cdot 3=\$ 180$	$\$ 3000+\$ 180=\$ 3180$
4	$\$ 3000 \cdot 0.02 \cdot 4=\$ 240$	$\$ 3000+\$ 240=\$ 3240$
5	$\$ 3000 \cdot 0.02 \cdot 5=\$ 300$	$\$ 3000+\$ 300=\$ 3300$

Examples, Real World Arithmetic Sequences (Number 1) Cont.

■ Another way to think about it:

Arithmetic

Sequences
Review
Real World Examples

General Way
to Write an
Arithmetic
Sequence
Formula
Examples
Partial Sums
Formula
Examples
Homework

Examples, Real World Arithmetic Sequences (Number 1) Cont.

- Another way to think about it: The simple interest from each year is $\$ 3000 \cdot 0.02 \cdot 1=\$ 60$, so each year Joan has $\$ 60$ more than the previous year.

Examples, Real World Arithmetic Sequences (Number 1) Cont.

- Another way to think about it: The simple interest from each year is $\$ 3000 \cdot 0.02 \cdot 1=\$ 60$, so each year Joan has $\$ 60$ more than the previous year.
- This looks like an arithmetic sequence. With starting value $a_{1}=\$ 3060$ and common difference $d=\$ 60$.

Examples, Real World Arithmetic Sequences (Number 1) Cont.

- Another way to think about it: The simple interest from each year is $\$ 3000 \cdot 0.02 \cdot 1=\$ 60$, so each year Joan has $\$ 60$ more than the previous year.
- This looks like an arithmetic sequence. With starting value $a_{1}=\$ 3060$ and common difference $d=\$ 60$.

$$
\$ 3060, \$ 3120, \$ 3180, \$ 3240, \$ 3300, \ldots
$$

Examples, Real World Arithmetic Sequences (Number 1) Cont.

- Another way to think about it:

The simple interest from each year is $\$ 3000 \cdot 0.02 \cdot 1=\$ 60$, so each year Joan has $\$ 60$ more than the previous year.

■ This looks like an arithmetic sequence. With starting value $a_{1}=\$ 3060$ and common difference $d=\$ 60$.

$$
\$ 3060, \$ 3120, \$ 3180, \$ 3240, \$ 3300, \ldots
$$

- So the amount of money in the account at (the end of) year n is:

$$
a_{n}=\$ 3060+(n-1) \$ 60
$$

Examples, Real World Arithmetic Sequences (Number 2)

You start a new job and you're told you salary is $\$ 29,000$ for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years? How long does it take for your salary to (at least) double?

Examples, Real World Arithmetic Sequences (Number 2)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years? How long does it take for your salary to (at least) double?

- Fill in the table indicating your salary in the first several years:

Year	Salary in indicated year
1	
2	
3	
4	

Examples, Real World Arithmetic Sequences (Number 2)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years?

■ Fill in the table indicating your salary in the first several years:

Year	Salary in indicated year
1	$\$ 29,000$
2	
3	
4	

Examples, Real World Arithmetic Sequences (Number 2)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. What will your salary be in the third year? What will your salary be in 10 years? How long does it take for your salary to (at least) double?

- Fill in the table indicating your salary in the first several years:

Year	Salary in indicated year
1	$\$ 29,000$
2	$\$ 30,700$
3	$\$ 32,400$
4	$\$ 34,100$

Examples, Real World Arithmetic Sequences (Number 2) Cont.

■ Notice that the list of your salaries year by year look like an Arithmetic Sequence.
Identify the common difference, and the first term:

- Write a formula for a_{n} (your salary in year n).
- What will your salary be in the third year?
- What will your salary be in 10 years?

Examples, Real World Arithmetic Sequences (Number 2) Cont.

■ Notice that the list of your salaries year by year look like an Arithmetic Sequence.
Identify the common difference, and the first term:

$$
a_{1}=\$ 29,000 \quad d=\$ 1700
$$

(This is the important bit. You make the table to help you with this.)

- Write a formula for a_{n} (your salary in year n).
- What will your salary be in the third year?
- What will your salary be in 10 years?

Examples, Real World Arithmetic Sequences (Number 2) Cont.

■ Notice that the list of your salaries year by year look like an Arithmetic Sequence.
Identify the common difference, and the first term:

$$
a_{1}=\$ 29,000 \quad d=\$ 1700
$$

(This is the important bit. You make the table to help you with this.)

- Write a formula for a_{n} (your salary in year n).
$a_{n}=\$ 29,000+(n-1) \$ 1700$
Where n is measured in years, and a_{n} is your salary in year n (measured in dollars)
- What will your salary be in the third year?
- What will your salary be in 10 years?

Examples, Real World Arithmetic Sequences (Number 2) Cont.

■ Notice that the list of your salaries year by year look like an Arithmetic Sequence.
Identify the common difference, and the first term:

$$
a_{1}=\$ 29,000 \quad d=\$ 1700
$$

(This is the important bit. You make the table to help you with this.)

- Write a formula for a_{n} (your salary in year n).
$a_{n}=\$ 29,000+(n-1) \$ 1700$
Where n is measured in years, and a_{n} is your salary in year n (measured in dollars)
- What will your salary be in the third year?

$$
a_{3}=\$ 29,000+(3-1) \$ 1700=\$ 32,400
$$

- What will your salary be in 10 years?

Examples, Real World Arithmetic Sequences (Number 2) Cont.

■ Notice that the list of your salaries year by year look like an Arithmetic Sequence.
Identify the common difference, and the first term:
$a_{1}=\$ 29,000 \quad d=\$ 1700$
(This is the important bit. You make the table to help you with this.)

- Write a formula for a_{n} (your salary in year n).
$a_{n}=\$ 29,000+(n-1) \$ 1700$
Where n is measured in years, and a_{n} is your salary in year n (measured in dollars)
- What will your salary be in the third year?

$$
a_{3}=\$ 29,000+(3-1) \$ 1700=\$ 32,400
$$

- What will your salary be in 10 years?
$a_{10}=\$ 29,000+(10-1) \$ 1700=\$ 44,300$

Partial Sums of an Arithmetic Sequence

Arithmetic
Sequences
Math 34: Fall 2016

Arithmetic Sequences

Review

Real World Examples

General Way
to Write an
Arithmetic
Sequence
Formula
Examples
Partial Sums
Formula
Examples
Homework

■ Remember S_{n} is the sum of the first n terms of a sequence.

Partial Sums of an Arithmetic Sequence

Arithmetic
Sequences

■ Remember S_{n} is the sum of the first n terms of a sequence.

- Let's work our a formula for the $n^{\text {th }}$ partial sum of an Arithmetic Sequence

Partial Sums of an Arithmetic Sequence

Arithmetic
Sequences
Math 34: Fall 2016

Arithmetic
Sequences

Review

Real World Examples

General Way
to Write an
Arithmetic
Sequence
Formula
Examples
Partial Sums
Formula
Examples
Homework

- Here's one way to write our Arithmetic sequence:

$$
a_{1},\left(a_{1}+d\right),\left(a_{1}+2 d\right),\left(a_{1}+3 d\right), \ldots
$$

Partial Sums of an Arithmetic Sequence

■ Here's one way to write our Arithmetic sequence:

$$
a_{1},\left(a_{1}+d\right),\left(a_{1}+2 d\right),\left(a_{1}+3 d\right), \ldots
$$

- So the $n^{\text {th }}$ Partial Sum of the Arithmetic Series can be written as:

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-2) d\right)+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

Partial Sums of an Arithmetic Sequence

■ Here's one way to write our Arithmetic sequence:

$$
a_{1},\left(a_{1}+d\right),\left(a_{1}+2 d\right),\left(a_{1}+3 d\right), \ldots
$$

- So the $n^{\text {th }}$ Partial Sum of the Arithmetic Series can be written as:

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-2) d\right)+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

- Another way to name the terms:

$$
\underbrace{a_{1}}_{a_{n}-(n-1) d}+\underbrace{\left(a_{1}+d\right)}_{a_{n}-(n-2) d}+\underbrace{\left(a_{1}+2 d\right)}_{a_{n}-(n-3) d}+\cdots+\underbrace{\left(a_{1}+(n-2) d\right)}_{a_{n}-d}+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

Partial Sums of an Arithmetic Sequence

■ Here's one way to write our Arithmetic sequence:

$$
a_{1},\left(a_{1}+d\right),\left(a_{1}+2 d\right),\left(a_{1}+3 d\right), \ldots
$$

- So the $n^{\text {th }}$ Partial Sum of the Arithmetic Series can be written as:

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-2) d\right)+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

- Another way to name the terms:

$$
\underbrace{a_{1}}_{a_{n}-(n-1) d}+\underbrace{\left(a_{1}+d\right)}_{a_{n}-(n-2) d}+\underbrace{\left(a_{1}+2 d\right)}_{a_{n}-(n-3) d}+\cdots+\underbrace{\left(a_{1}+(n-2) d\right)}_{a_{n}-d}+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

- This gives us another way to write S_{n}

$$
S_{n}=a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right)+\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{n}-(n-1) d\right)
$$

Partial Sums of an Arithmetic Sequence

■ Here's one way to write our Arithmetic sequence:

$$
a_{1},\left(a_{1}+d\right),\left(a_{1}+2 d\right),\left(a_{1}+3 d\right), \ldots
$$

- So the $n^{\text {th }}$ Partial Sum of the Arithmetic Series can be written as:

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-2) d\right)+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

- Another way to name the terms:

$$
\underbrace{a_{1}}_{a_{n}-(n-1) d}+\underbrace{\left(a_{1}+d\right)}_{a_{n}-(n-2) d}+\underbrace{\left(a_{1}+2 d\right)}_{a_{n}-(n-3) d}+\cdots+\underbrace{\left(a_{1}+(n-2) d\right)}_{a_{n}-d}+\underbrace{\left(a_{1}+(n-1) d\right)}_{a_{n}}
$$

- This gives us another way to write S_{n}

$$
S_{n}=a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right)+\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{n}-(n-1) d\right)
$$

- Add the two ways to write S_{n} together.....

Partial Sums of an Arithmetic Sequence (Cont.)

Arithmetic
Sequences
Math 34: Fall 2016

Arithmetic Sequences
Review
Real World Examples

General Way to Write an Arithmetic

Formula

Examples

- Add the two ways to write S_{n} together.....

$$
\begin{array}{rlll}
S_{n} & =a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right) & & +\cdots+\left(a_{1}+(n-2) d\right)+\left(a_{1}+(n-1) d\right) \\
+S_{n} & =a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right) & & +\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{n}-(n-1) d\right) \\
\hline 2 S_{n} & =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right) & & +\cdots+\left(a_{1}+a_{n}\right)
\end{array}
$$

Partial Sums of an Arithmetic Sequence (Cont.)

Arithmetic
Sequences
Math 34: Fall 2016

Arithmetic

 SequencesReview
Real World Examples

General Way

- Add the two ways to write S_{n} together.....

$$
\begin{array}{rlll}
S_{n} & =a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right) & & +\cdots+\left(a_{1}+(n-2) d\right)+\left(a_{1}+(n-1) d\right) \\
+S_{n} & =a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right) & & +\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{n}-(n-1) d\right) \\
\hline 2 S_{n} & =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right) & & +\cdots+\left(a_{1}+a_{n}\right)
\end{array}
$$

We count the $\left(a_{1}+a_{n}\right)$ terms on the right...

Partial Sums of an Arithmetic Sequence (Cont.)

Arithmetic
Sequences
Math 34: Fall
2016

Arithmetic Sequences
Review
Real World Examples
General Way

- Add the two ways to write S_{n} together.....

$$
\begin{array}{rlll}
S_{n} & =a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right) & & +\cdots+\left(a_{1}+(n-2) d\right)+\left(a_{1}+(n-1) d\right) \\
+S_{n} & =a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right) & & +\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{n}-(n-1) d\right) \\
\hline 2 S_{n} & =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right) & & +\cdots+\left(a_{1}+a_{n}\right)
\end{array}
$$

We count the $\left(a_{1}+a_{n}\right)$ terms on the right...
We see that $2 S_{n}=n\left(a_{1}+a_{n}\right)$ and...

Partial Sums of an Arithmetic Sequence (Cont.)

Arithmetic
Sequences

Arithmetic

 SequencesReview Real World Examples
General Way

- Add the two ways to write S_{n} together.....

$$
\begin{array}{rlll}
S_{n} & =a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right) & & +\cdots+\left(a_{1}+(n-2) d\right)+\left(a_{1}+(n-1) d\right) \\
+S_{n} & = & a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right) & \\
\hline 2 S_{n} & =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right) & & +\cdots+\left(a_{n}-(n-2) d\right)+\left(a_{1}+a_{n}\right)
\end{array}
$$

We count the $\left(a_{1}+a_{n}\right)$ terms on the right...
We see that $2 S_{n}=n\left(a_{1}+a_{n}\right)$ and...

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

- The $n^{\text {th }}$ partial sum of an Arithmetic Sequence

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Where a_{1} is the first term of the Arithmetic Sequence and a_{n} is the $n^{t h}$ term of the Arithmetic Series.

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

■ For the Arithmetic Sequence 7,10,13,16, 19, 22, ...
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.

2 Find the $20^{\text {th }}$ term of the Sequence

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

■ For the Arithmetic Sequence 7,10,13,16, 19, 22, ...
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.

$$
S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46
$$

2 Find the $20^{\text {th }}$ term of the Sequence

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

Arithmetic
Sequences

Arithmetic

■ For the Arithmetic Sequence $7,10,13,16,19,22, \ldots$
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.
$S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46$
(We can double check that $7+10+13+16=46$)
2 Find the $20^{\text {th }}$ term of the Sequence Our Arithmetic Sequence has $a_{1}=7$ and $d=3$ so $a_{n}=7+(n-1) 3$, so \ldots

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

Arithmetic
Sequences

Arithmetic

■ For the Arithmetic Sequence $7,10,13,16,19,22, \ldots$
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.
$S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46$
(We can double check that $7+10+13+16=46$)
2 Find the $20^{\text {th }}$ term of the Sequence
Our Arithmetic Sequence has $a_{1}=7$ and $d=3$ so $a_{n}=7+(n-1) 3$, so \ldots
$a_{20}=7+(20-1) 3=7+19 \cdot 3=64$
3 Find the $20^{\text {th }}$ Partial Sum of the Sequence

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

Arithmetic

■ For the Arithmetic Sequence $7,10,13,16,19,22, \ldots$
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.
$S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46$
(We can double check that $7+10+13+16=46$)
2 Find the $20^{\text {th }}$ term of the Sequence
Our Arithmetic Sequence has $a_{1}=7$ and $d=3$ so

$$
\begin{aligned}
& a_{n}=7+(n-1) 3, \text { so } \ldots \\
& a_{20}=7+(20-1) 3=7+19 \cdot 3=64
\end{aligned}
$$

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence $S_{20}=\frac{20}{2}(7+64)=10(71)=710$

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

Arithmetic

■ For the Arithmetic Sequence $7,10,13,16,19,22, \ldots$
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.
$S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46$
(We can double check that $7+10+13+16=46$)
2 Find the $20^{\text {th }}$ term of the Sequence
Our Arithmetic Sequence has $a_{1}=7$ and $d=3$ so

$$
\begin{aligned}
& a_{n}=7+(n-1) 3, \text { so } \ldots \\
& a_{20}=7+(20-1) 3=7+19 \cdot 3=64
\end{aligned}
$$

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence $S_{20}=\frac{20}{2}(7+64)=10(71)=710$
Which is much faster than

Using the Formula the $n^{\text {th }}$ Partial Sum of an Arithmetic Sequence

Arithmetic Sequences

Review

■ For the Arithmetic Sequence $7,10,13,16,19,22, \ldots$
1 Find the $4^{\text {th }}$ Partial Sum of the Sequence.

$$
S_{4}=\frac{4}{2}\left(a_{1}+a_{4}\right)=\frac{4}{2}(7+16)=2(23)=46
$$

(We can double check that $7+10+13+16=46$)
2 Find the $20^{\text {th }}$ term of the Sequence
Our Arithmetic Sequence has $a_{1}=7$ and $d=3$ so

$$
\begin{aligned}
& a_{n}=7+(n-1) 3, \text { so } \ldots \\
& a_{20}=7+(20-1) 3=7+19 \cdot 3=64
\end{aligned}
$$

3 Find the $20^{\text {th }}$ Partial Sum of the Sequence $S_{20}=\frac{20}{2}(7+64)=10(71)=710$
Which is much faster than
$7+10+13+16+19+22+25+28+31+34+37+40+43+46+49+52+55+58+61+64=710$

Examples, Real World Arithmetic Sequences (Number 3)

A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Examples, Real World Arithmetic Sequences (Number 3)

A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Fill in the Table:

Month	Profit/Lost for Month in indicated month
1	
2	
3	

Examples, Real World Arithmetic Sequences (Number 3)

A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Fill in the Table:

Month	Profit/Lost for Month in indicated month
1	$-\$ 2,500$

Examples, Real World Arithmetic Sequences (Number 3)

A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Fill in the Table:

Month	Profit/Lost for Month in indicated month
1	$-\$ 2,500$
2	$-\$ 2,100$
3	$-\$ 1,700$

Examples, Real World Arithmetic Sequences (Number 3)

A new company has a loss of $\$ 2,500$ in its first month, but they expect their monthly profit to increase by $\$ 400$ each month. What is their profit in the $12^{\text {th }}$ month? What is their total profit/loss of the year?

Fill in the Table:

Month	Profit/Lost for Month in indicated month
1	$-\$ 2,500$
2	$-\$ 2,100$
3	$-\$ 1,700$

This is an Arithmetic Sequence with $a_{1}=-\$ 2500$ and $d=400$
So a_{n} represents the monthly profit/loss in month n and

$$
a_{n}=-\$ 2500+(n-1) \$ 400
$$

Examples, Real World Arithmetic Sequences (Number 3) Cont.

- The profit in the $12^{\text {th }}$ month:
- The total profit/loss for the year:

Examples, Real World Arithmetic Sequences (Number 3) Cont.

Arithmetic

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}
- The total profit/loss for the year:

Examples, Real World Arithmetic Sequences (Number 3) Cont.

- The profit in the $12^{\text {th }}$ month:
is represented by a_{12}
$a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900$
- The total profit/loss for the year:

Examples, Real World Arithmetic Sequences (Number 3) Cont.

Arithmetic

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) $+($ profit/loss for Feb $)+\cdots+($ profit/loss for Dec)

Examples, Real World Arithmetic Sequences (Number 3) Cont.

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) + (profit/loss for Feb) $+\cdots+$ (profit/loss for Dec)
which can be represented in symbols as $a_{1}+a_{2}+\cdots+a_{12}=S_{12}$

Examples, Real World Arithmetic Sequences (Number 3) Cont.

Arithmetic

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) + (profit/loss for Feb) $+\cdots+$ (profit/loss for Dec)
which can be represented in symbols as $a_{1}+a_{2}+\cdots+a_{12}=S_{12}$
Total Profits for the Year are S_{12}

Examples, Real World Arithmetic Sequences (Number 3) Cont.

Arithmetic

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) $+($ profit/loss for Feb $)+\cdots+$ (profit/loss for Dec)
which can be represented in symbols as $a_{1}+a_{2}+\cdots+a_{12}=S_{12}$
Total Profits for the Year are S_{12}

$$
S_{12}=\frac{12}{2}\left(a_{1}+a_{12}\right)=\frac{12}{2}(-2500+1900)=6(-600)=-\$ 3600
$$

Examples, Real World Arithmetic Sequences (Number 3) Cont.

Arithmetic

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) + (profit/loss for Feb) $+\cdots+$ (profit/loss for Dec)
which can be represented in symbols as $a_{1}+a_{2}+\cdots+a_{12}=S_{12}$
Total Profits for the Year are S_{12} $S_{12}=\frac{12}{2}\left(a_{1}+a_{12}\right)=\frac{12}{2}(-2500+1900)=6(-600)=-\$ 3600$

They lost a total of $\$ 3600$ for the year.

Examples, Real World Arithmetic Sequences (Number 3) Cont.

- The profit in the $12^{\text {th }}$ month: is represented by a_{12}

$$
a_{12}=-\$ 2500+(12-1) \$ 400=\$ 1900
$$

- The total profit/loss for the year:
(profit/loss for Jan) + (profit/loss for Feb) $+\cdots+$ (profit/loss for Dec)
which can be represented in symbols as $a_{1}+a_{2}+\cdots+a_{12}=S_{12}$
Total Profits for the Year are S_{12} $S_{12}=\frac{12}{2}\left(a_{1}+a_{12}\right)=\frac{12}{2}(-2500+1900)=6(-600)=-\$ 3600$
They lost a total of $\$ 3600$ for the year. Faster Than

```
-2500-2100-1700-1300-900-500-100+300+700+1100+1500+1900=-3600
```


Examples, Real World Arithmetic Sequences (Number 2...again)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. How much money will you make total your first 10 years on the job.

Examples, Real World Arithmetic Sequences (Number 2...again)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. How much money will you make total your first 10 years on the job.

We saw earlier this is an Arithmetic sequence with $a_{1}=\$ 29,000, d=\$ 1700$

$$
\begin{aligned}
& a_{n}=29000+(n-1) 1700 \\
& a_{10}=29000+(n-1) 1700=44,300
\end{aligned}
$$

Examples, Real World Arithmetic Sequences (Number 2...again)

You start a new job and you're told you salary is \$29,000 for the first year, and that you'll get a $\$ 1700$ raise each year. How much money will you make total your first 10 years on the job.

We saw earlier this is an Arithmetic sequence with $a_{1}=\$ 29,000, d=\$ 1700$

$$
\begin{aligned}
& a_{n}=29000+(n-1) 1700 \\
& a_{10}=29000+(n-1) 1700=44,300
\end{aligned}
$$

Total you make in the first 10 years is S_{10}

Examples, Real World Arithmetic Sequences (Number 2...again)

You start a new job and you're told you salary is $\$ 29,000$ for the first year, and that you'll get a $\$ 1700$ raise each year. How much money will you make total your first 10 years on the job.

We saw earlier this is an Arithmetic sequence with $a_{1}=\$ 29,000, d=\$ 1700$

$$
\begin{aligned}
& a_{n}=29000+(n-1) 1700 \\
& a_{10}=29000+(n-1) 1700=44,300
\end{aligned}
$$

Total you make in the first 10 years is S_{10}

$$
S_{10}=\frac{n}{2}\left(a_{1}+a_{10}\right)
$$

$$
S_{10}=\frac{10}{2}(29000+44300)=\$ 366,500
$$

Homework

It is NOT in your book.

