Math 365 – Monday 2/11/19 Section 2.5: Cardinality of Sets

Exercise 15. Show that each of the following sets are countably infinite by giving a bijective function between that set and the positive integers.

- (a) the integers greater than 10.
- (b) the odd negative integers
- (c) the set $A \times \mathbb{Z}^+$, where $A = \{2, 3\}$
- (d) the integers that are multiples of 10

Exercise 16.

- (a) Determine whether each of these sets is finite, countable, or uncountable. For those that are countably infinite, exhibit a bijective correspondence between the set of positive integers and that set.
 - (i) The integers that are multiples of 10.
 - (ii) Integers not divisible by 3.
 - (iii) The real numbers with decimal representations consisting of all 1s.
 - (iv) The real numbers with decimal representations of all 1s or 9s.
 - (v) The integers with absolute value less than 1,000.
 - (vi) The real numbers between 0 and 2
- (b) Give an example of two uncountable sets A and B such that A B is
 - (i) finite;
 - (ii) countably infinite;
 - (iii) uncountable.
- (c) Explain why the power set of $\mathbb{Z}_{\geq 1}$ is not countable as follows:

{

(i) First, for each subset A ⊂ Z≥1, represent A as an infinite bit string (a sequence of 1's and 0's with no end to the right) with *i*th bit 1 if *i* belongs to the subset and 0 otherwise. For example, we represent

$$\begin{array}{ll} \{3\} & \text{as } 001000000000\dots, \\ \{1,3,4\} & \text{as } 101100000000\dots, \text{ and} \\ 2x \mid x \in \mathbb{Z}_{\geq 1}\} & \text{as } 010101010101\dots. \end{array}$$

Give the bit-string expansions for the sets $\{2, 4, 6, 7\}$ and $\{3x \mid x \in \mathbb{Z}_{\geq 1}\}$ (i.e. the positive multiples of 3); and give the set corresponding to the bitstring expansions 000000000000... and 111111111.... Finally, explain why this coding of sets as bit strings is actually a bijection between {infinite bit strings} and $\mathcal{P}(\mathbb{Z}_{\geq 1})$.

- (ii) Suppose that you can list these infinite strings in a list labeled by the positive integers (as we saw, this is the same as saying that there is some bijective map f: {infinite bit strings} $\rightarrow \mathbb{Z}_{\geq 1}$). Construct a new bit string one bit at a time, so that it doesn't match the *i*th string in the *i*th bit. Conclude that your new string can't be in the list, so that the list wasn't actually complete.
- (iii) Finally, explain how to use (i) and (ii) together to show that the sets in $\mathcal{P}(\mathbb{Z}_{\geq 1})$ aren't listable (and therefore aren't countable).
- (d) Show that if A and B are sets and $A \subset B$, then $|A| \leq |B|$. [Hint: Start with thinking about the definition of what it means for $|A| \leq |B|$.]
- (e) Show that a subset of a countable set is also countable. [Hint: Start with "Suppose A is a countable set, and that $B \subseteq A$. Since A is countable, there is a bijective function...".]
- (f) Use the Schröder-Bernstein theorem to show that (0,1) and [0,1] have the same cardinality.

Getting to know

(Section 2.5)

How do we count?

Match numbers to groundhogs. Every groundhog gets **exactly** one number; every number gets **exactly** one groundhog.

Defn. Two sets *A* and *B* have the same **cardinality** if there is a bijection $f: A \rightarrow B$.

2 <u>555558</u> 88 Ð B and so on... 8 8 \mathbb{C} \mathbb{C} Counting numbers never run out, because there are an *infinite* number of them. 1.

2.

Countably infinite *a*.

Capable of being matched bijectively with the natural numbers.

Example 1:

The counting numbers are countably infinite.

Example 2:

The integers from -2 and above are countably infinite.

6.

Example 3:

The integers from **any** fixed number (like -11) and above are countably infinite.

Being precise

Recall: A bijection is a function that is both injective and surjetive. We also showed that a function is bijective if and only if it is invertible.

Example 1: The sets $\mathbb{Z}_{\geq 1}$ and $\mathbb{Z}_{\geq 1}$ have the same cardinality since $f: \mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1}$

is a bijective map.

Example 2: The sets $\mathbb{Z}_{\geq -2}$ and $\mathbb{Z}_{\geq 1}$ have the same cardinality since $f: \mathbb{Z}_{\geq -2} \rightarrow \mathbb{Z}_{\geq 1}$

 $x \mapsto x+3$

is a bijective map.

Example 3: The sets $\mathbb{Z}_{\ge -11}$ and $\mathbb{Z}_{\ge 1}$ have the same cardinality since

$$\begin{array}{rccc} f: \mathbb{Z}_{\geq -11} & \to & \mathbb{Z}_{\geq 1} \\ x & \mapsto & x+12 \end{array}$$

is a bijective map.

Example 4: The sets \mathbb{Z} and $\mathbb{Z}_{\geq 1}$ have the same cardinality since...

is a bijective map.

Alternatively, turning that bijective function around: the sets \mathbb{Z} and $\mathbb{Z}_{\ge 1}$ have the same cardinality since

is a bijective map.

Countably infinite *a*.

Capable of being matched bijectively with the natural numbers.

Examples:

The counting numbers and the integers are both countably infinite sets.

Rational numbers *n*. **Can't list in order of size!**

Those numbers that can be expressed as integer fractions, i.e. 2/5, -17/3, 0/1, ...

	1	2	3	4	5	6	7	8	9	••
1	1	2	3	4	5	6	7	8	9	_
2	1/2	2/2	3/2	4/2	5/2	6/2	7/2	8/2	9/2	
3	1/3	2/3	3/3	4/3	5/3	6/3	7/3	8/3	9/3	
4	1/4	2/4	3/4	4/4	5/4	6/4	7/4	8/4	9/4	
5	1/5	2/5	3/5	4/5	5/5	6/5	7/5	8/5	9/5	
6	1/6	2/6	3/6	4/6	5/6	6/6	7/6	8/6	9/6	
7	1/7	2/7	3/7	4/7	5/7	6/7	7/7	8/7	9/7	
8	1/8	2/8	3/8	4/8	5/8	6/8	7/8	8/8	9/8	
9	1/9	2/9	3/9	4/9	5/9	6/9	7/9	8/9	9/9	
:										•.

:

Countably infinite *a*.

Capable of being matched bijectively with the natural numbers.

Is there anything that **isn't** countable?

(Spoiler: yes!)

Real numbers *n*.

Numbers obtained by appending an infinite decimal expansion to an integer.

Examples:

Includes:

Integers, rational numbers.

-2.12121212121...

3.1415926535...

1.00000000...

Excludes: $\sqrt{-1}$

Starting with *any* list of real numbers...

1.	12.	321	5601	L 9
2.	0.	121	2121	L 2
3.	-5.	0 0 0	0000	0 0
4.	95.	333	<mark>3333</mark> 33	33
5.	1.	123	000 (0 0
6.	0.	000	0 0 0 0	0
7.	3.	141	592	55
Q •	1 \ 1	1 ^ 1	0010	

we can build a number that's *not* on that list!

Starting with *any* list of real numbers...

- 0.00101101... 1.
- 2. **12. 321 5 6 0 1 9** ...
- 0.12121212... 3.
- 4. 5 . 0 0 0 0 0 0 0 ...
- 95.3333<mark>3</mark>333... 5.
- 1.12300000... 6.
- 7. **0.000000**...

Q

we can build a number that's *not* on that list!

0.00101101...

Any list of real numbers is incomplete. So the real numbers are not countable!

Cantor's Diagonal Argument

Infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $(\mathbb{N} = \mathbb{Z}_{\geq 0})$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A| = \aleph_0$ (pronounced "aleph naught" or "aleph null"). To show that $|A| = \aleph_0$: show A is not finite, and give a bijection $f : \mathbb{Z}_{\geq 1} \to A$.

A set A is not countable if there is **no** bijection between $\mathbb{Z}_{\geq 0}$ and A. To show that, start with "Suppose $f : \mathbb{Z}_{\geq 1} \to A$ is a bijection" and find a universal problem—that means that no such bijection could possibly exist!

Other cardinalities:

- The real numbers \mathbb{R} have size \aleph_1 ;
- the power set of the real numbers $\mathcal{P}(\mathbb{R})$ has size \aleph_2 ;
- the power set of the power set of the real numbers P(P(ℝ)) has size ℵ₃;

and so on...

Independence of the continuum hypothesis: You can't prove or disprove that there are or aren't others.

More facts

Unions

If A and B are countable, then so is $A \cup B$. Therefore, if A_1, A_2, \ldots, A_n are all countable, then so is $\bigcup_{i=1}^n A_i$. In fact, if $\{A_x \mid x \in C\}$ is a countable collection of countable sets (i.e. C is a countable set), then so is $\bigcup_{x \in C} A_x$. Example: Let $A_x = \{y/x \mid y \in \mathbb{Z}\}$ for each $x \in \mathbb{Z}_{>0}$. Then

 $\bigcup_{x\in\mathbb{Z}_{>0}}A_x=\mathbb{Q},\quad\text{which is countable.}$

However, if $\{A_x \mid x \in U\}$ is an uncountable collection of countable sets, then $\bigcup_{x \in U} A_x$ could be countable or uncountable (we can't tell).

Countable: $\bigcup_{x \in [0,1)} A_x$ where $A_x = \mathbb{Q}$. Uncountable: $\bigcup_{x \in [0,1)} A_x$ where $A_x = \{x\}$.

Containment

If A is not countable and $A \subseteq B$, then B is not countable.

Ex: Any subset of \mathbb{Z} is countable.

If B is countable and $A \subseteq B$, then A is countable (prove on HW). Ex. Since \mathbb{R} is not countable, then neither is \mathbb{C} .

Comparing sizes

If there is an injective function $f : A \to B$ then we write $|A| \leq |B|$. (Makes sense for finite sets; take as a definition for infinite sets.)

Theorem (Schröder-Bernstein Theorem) If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example

We can show |(0,1)| = |(0,1]| by using the fact that

$$f:(0,1)\to (0,1] \qquad x\mapsto x$$

 and

$$g:(0,1] \to (0,1) \qquad x \mapsto x/2$$

are both injective, even though they are not surjective nor are they inverses of each other.

You try: Exercise 16