
Math 365 – Monday 2/11/19
Section 2.5: Cardinality of Sets

Exercise 15. Show that each of the following sets are countably infinite by giving a bijective

function between that set and the positive integers.

(a) the integers greater than 10.

(b) the odd negative integers

(c) the set A⇥ Z+
, where A = {2, 3}

(d) the integers that are multiples of 10

Exercise 16.

(a) Determine whether each of these sets is finite, countable, or uncountable. For those that are

countably infinite, exhibit a bijective correspondence between the set of positive integers and

that set.

(i) The integers that are multiples of 10.

(ii) Integers not divisible by 3.

(iii) The real numbers with decimal representations consisting of all 1s.

(iv) The real numbers with decimal representations of all 1s or 9s.

(v) The integers with absolute value less than 1, 000.
(vi) The real numbers between 0 and 2

(b) Give an example of two uncountable sets A and B such that A�B is

(i) finite;

(ii) countably infinite;

(iii) uncountable.

(c) Explain why the power set of Z�1 is not countable as follows:

(i) First, for each subset A ⇢ Z�1, represent A as an infinite bit string (a sequence of 1’s and

0’s with no end to the right) with ith bit 1 if i belongs to the subset and 0 otherwise. For

example, we represent

{3} as 001000000000 . . . ,

{1, 3, 4} as 101100000000 . . . , and

{2x | x 2 Z�1} as 010101010101 . . . .

Give the bit-string expansions for the sets {2, 4, 6, 7} and {3x | x 2 Z�1} (i.e. the positive

multiples of 3); and give the set corresponding to the bitstring expansions 0000000000000. . . and

111111111. . . . Finally, explain why this coding of sets as bit strings is actually a bijection

between {infinite bit strings} and P(Z�1).

(ii) Suppose that you can list these infinite strings in a list labeled by the positive in-

tegers (as we saw, this is the same as saying that there is some bijective map f :

{infinite bit strings} ! Z�1). Construct a new bit string one bit at a time, so that it

doesn’t match the ith string in the ith bit. Conclude that your new string can’t be in the

list, so that the list wasn’t actually complete.

(iii) Finally, explain how to use (i) and (ii) together to show that the sets in P(Z�1) aren’t

listable (and therefore aren’t countable).

(d) Show that if A and B are sets and A ⇢ B, then |A|  |B|.
[Hint: Start with thinking about the definition of what it means for |A|  |B|.]

(e) Show that a subset of a countable set is also countable.

[Hint: Start with “Suppose A is a countable set, and that B ✓ A. Since A is countable, there

is a bijective function. . . ”.]

(f) Use the Schröder-Bernstein theorem to show that (0, 1) and [0, 1] have the same cardinality.



Getting to know ∞
(Section 2.5)

1 2 3
Match numbers to groundhogs.
Every groundhog gets exactly one number;
every number gets exactly one groundhog.

Defn. Two sets A and B have the same 
cardinality if there is a bijection f: A → B. 

Zajj Daugherty
How do we count?



1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

and so on…

Counting numbers never run 
out, because there are an  
infinite number of them.



Example 3:  
The integers from any fixed number (like -11) 
and above are countably infinite.

Countably infinite  a.
 Capable of being matched  
bijectively with the natural 
numbers. 
Example 1:  
The counting numbers are countably infinite.1

2

3

4

0

-1

-2

Example 2:  
The integers from -2 and above are countably 
infinite.

1.

2.

3.

4.

5.

6.

7.

8.
Being precise

Recall: A bijection is a function that is both injective and

surjctive. We also showed that a function is bijective if and only if

it is invertible.

Example 1: The sets Z•1 and Z•1 have the same cardinality since

f : Z•1 Ñ Z•1

x fiÑ x

is a bijective map.

Example 2: The sets Z•´2 and Z•1 have the same cardinality since

f : Z•´2 Ñ Z•1

x fiÑ x ` 3

is a bijective map.

Example 3: The sets Z•´11 and Z•1 have the same cardinality

since

f : Z•´11 Ñ Z•1

x fiÑ x ` 12

is a bijective map.



Example 4: The sets Z and Z•1 have the same cardinality since. . .

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Z•0: 1 23 45 67 89¨ ¨ ¨ ¨ ¨ ¨

f : Z Ñ Z•1

x fiÑ
#
2x x ° 0

´2x ` 1 x § 0

is a bijective map.

Alternatively, turning that bijective function around: the sets Z
and Z•1 have the same cardinality since

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Z•0: 1 23 45 67 89¨ ¨ ¨ ¨ ¨ ¨

f : Z•1 Ñ Z

x fiÑ
#
x{2 x ° 0

´px ´ 1q{2 x § 0
is a bijective map.

Countably infinite  a.
 Capable of being matched bijectively with the 
natural numbers. 

Rational numbers  n.
 Those numbers that can be expressed as 
integer fractions, i.e.   2/5,   -17/3,   0/1,   …

Examples:
The counting numbers and the integers are both 
countably infinite sets. 

1/25/12 11/24

Can’t list in order of size!

“Dense”



1 2 3 4 5 6 7 8 9 ⠂⠂⠂

1 1 2 3 4 5 6 7 8 9
2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2
3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4
5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5
6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 9/6
7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7
8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8
9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9
⠇ ⠑

1 2 3 4 5 6 7 8 9 ⠂⠂⠂

1 1 2 3 4 5 6 7 8 9
2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2
3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4
5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5
6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 9/6
7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7
8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8
9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9
⠇ ⠑

1 2 6

3

4
7

5



1 2 3 4 5 6 7 8 9 ⠂⠂⠂

1 1 2 3 4 5 6 7 8 9
2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2
3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4
5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5
6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 9/6
7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7
8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8
9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9
⠇ ⠑

1 2 6 12 22
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5 11

19
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31

and so on…
Example 5:

The positive rational numbers 
are countably infinite.

…

You try: Exercise 15

(Spoiler: yes!)

Excludes: 

Is there anything that isn’t countable?

Countably infinite  a.
 Capable of being matched bijectively with the 
natural numbers. 

Real numbers  n.
 Numbers obtained by appending an infinite 
decimal expansion to an integer.

Examples:
    1.000000000…
   -2.12121212121…
    3.1415926535…

Includes:
Integers, rational numbers. 

−1



1.

2.

3.

4.

5.

6.

7.

8.

12.32156019…
 0.12121212…
-5.00000000…
95.33333333…

 0.00000000…
 1.12300000…

 3.14159265…
101.10100100…

Starting with any list of 
real numbers…

we can build a number 
that’s not on that list!

0

0

0

1
1

1…

0.

1
0

12.32156019…
 0.12121212…
-5.00000000…
95.33333333…

 0.00000000…
 1.12300000…

 3.14159265…

0.00101101…1.

2.

3.

4.

5.

6.

7.

8.

Starting with any list of 
real numbers…

we can build a number 
that’s not on that list!

0.00101101…

Any list of real 
numbers is 
incomplete. 

So the real numbers 
are not countable! 

Cantor’s 
Diagonal Argument 



1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40    

Finite
Countably infinite ℵ0

Uncountably infinite
Real numbers ℵ1

Sets of real numbers ℵ2
Sets of sets of real numbers ℵ3

Uncountably infinite
Real numbers

Sets of real numbers

Sets of sets of real numbers

Sets of sets of sets of real numbers

Sets of sets of sets of sets of real numbers

Sets of sets of sets of sets of sets of real numbers

Sets of sets of sets of sets of sets of sets of real numbers

Sets of sets of sets of sets of sets of sets of sets of real numbers

ℵ1
ℵ2
ℵ3
ℵ4
ℵ5
ℵ6
ℵ7
ℵ8



Infinite sets
A set is countable if it is either finite or the same cardinality as the

natural numbers (N “ Z•0). If a set A is not finite but is

countable, we say A is “countably infinite” and write |A| “ @0

(pronounced “aleph naught” or “aleph null”). To show that

|A| “ @0: show A is not finite, and give a bijection f : Z•1 Ñ A.

A set A is not countable if there is no bijection between Z•0 and

A. To show that, start with “Suppose f : Z•1 Ñ A is a bijection”

and find a universal problem—that means that no such bijection

could possibly exist!

Other cardinalities:

§ The real numbers R have size @1;

§ the power set of the real numbers PpRq has size @2;

§ the power set of the power set of the real numbers PpPpRqq
has size @3;

and so on. . .

It’s ok… 
not “yes” 

either.

Cohen

1963

Gödel

Not 
“no”.

1940

Someone 
should 

figure this 
out!!Hilbert

1900

Fact: 
There are at least a countably infinite 
number of “sizes” of infinite sets.

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40    

Finite
Countably infinite

Uncountably infinite

Independence of the continuum hypothesis: 
You can’t prove or disprove that there are or aren’t others.

Question: 
Are there more?

No?

Cantor

1870’s



More facts

Unions

If A and B are countable, then so is A Y B.

Therefore, if A1, A2, . . . , An are all countable, then so is
în

i“1Ai.
In fact, if tAx | x P Cu is a countable collection of countable sets

(i.e. C is a countable set), then so is
î

xPC Ax.
Example: Let Ax “ ty{x | y P Zu for each x P Z°0. Then

§

xPZ°0

Ax “ Q, which is countable.

However, if tAx | x P Uu is an uncountable collection of countable

sets, then
î

xPU Ax could be countable or uncountable (we can’t

tell).

Countable:
î

xPr0,1q Ax where Ax “ Q.

Uncountable:
î

xPr0,1q Ax where Ax “ txu.

Containment

If A is not countable and A Ñ B, then B is not countable.

Ex: Any subset of Z is countable.

If B is countable and A Ñ B, then A is countable (prove on HW).

Ex. Since R is not countable, then neither is C.



Comparing sizes

If there is an injective function f : A Ñ B then we write |A| § |B|.
(Makes sense for finite sets; take as a definition for infinite sets.)

Theorem (Schröder-Bernstein Theorem)

If |A| § |B| and |B| § |A|, then |A| “ |B|.

Example
We can show |p0, 1q| “ |p0, 1s| by using the fact that

f : p0, 1q Ñ p0, 1s x fiÑ x

and

g : p0, 1s Ñ p0, 1q x fiÑ x{2
are both injective, even though they are not surjective nor are they

inverses of each other.

You try: Exercise 16 


