
Math 372: Solutions to Homework

Steven Miller

October 21, 2013

Abstract

Below are detailed solutions to the homework problems from Math 372 Complex Analysis (Williams College,
Fall 2013, Professor Steven J. Miller, sjm1@williams.edu). The course homepage is

http://www.williams.edu/Mathematics/sjmiller/public_html/372

and the textbook isComplex Analysisby Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Note to students:
it’s nice to include the statement of the problems, but I leave that up to you.I am only skimming the solutions.
I will occasionally add some comments or mention alternate solutions. If you find an error in these notes,
let me know for extra credit.
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1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang(2010)

Due by 11am Friday, September 13: Chapter 1: Page 24: #1abcd,#3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsz in the complex plane defined by the fol-
lowing relations: (a)|z − z1| = |z − z2| wherez1, z2 ∈ C; (b) 1/z = z; (c) Re(z) = 3; (d) Re(z) > c (resp.,≥ c)
wherec ∈ R.

Solution: (a) Whenz1 6= z2, this is the line that perpendicularly bisects the line segment fromz1 to z2. When
z1 = z2, this is the entire complex plane.
(b)

1

z
=

z

zz
=

z

|z|2 . (1.1)

So
1

z
= z ⇔ z

|z|2 = z ⇔ |z| = 1. (1.2)

This is the unit circle inC.
(c) This is the vertical linex = 3.
(d) This is the open half-plane to the right of the vertical linex = c (or the closed half-plane if it is≥).

Problem: Chapter 1: #3: Withω = seiϕ, wheres ≥ 0 andϕ ∈ R, solve the equationzn = ω in C wheren is a
natural number. How many solutions are there?

Solution: Notice that
ω = seiϕ = sei(ϕ+2πm),m ∈ Z. (1.3)

It’s worth spending a moment or two thinking what is the best choice for our generic integer. Clearlyn is a bad
choice as it is already used in the problem; as we often uset for the imaginary part, that is out too. The most natural
is to usem (thoughk would be another fine choice); at all costs do not usei!

Based on this relationship, we have
zn = sei(ϕ+2πm). (1.4)

So,

z = s1/ne
i(ϕ+2πm)

n . (1.5)

Thus, we will haven unique solutions since each choice ofm ∈ {0, 1, . . . , n − 1} yields a different solution so
long ass 6= 0. Note thatm = n yields the same solution asm = 0; in general, if two choices ofm differ by n then
they yield the same solution, and thus it suffices to look at then specified values ofm. If s = 0, then we have only
1 solution.

Problem: Chapter 1: #13: Suppose thatf is holomorphic in an open setΩ. Prove that in any one of the follow-
ing casesf must be constant:
(a) Re(f ) is constant;
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(b) Im(f ) is constant;
(c) |f | is constant.

Solution: Let f(z) = f(x, y) = u(x, y) + iv(x, y), wherez = x+ iy.
(a) Since Re(f) = constant,

∂u

∂x
= 0,

∂u

∂y
= 0. (1.6)

By the Cauchy-Riemann equations,
∂v

∂x
= −∂u

∂y
= 0. (1.7)

Thus, inΩ,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.8)

Thusf(z) is constant.

(b) Since Im(f) = constant,
∂v

∂x
= 0,

∂v

∂y
= 0. (1.9)

By the Cauchy-Riemann equations,
∂u

∂x
=
∂v

∂y
= 0. (1.10)

Thus inΩ,

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0 + 0 = 0. (1.11)

Thusf is constant.

(c) We first give a mostly correct argument; the reader shouldpay attention to find the difficulty. Since|f | =√
u2 + v2 is constant,

{

0 = ∂(u2+v2)
∂x = 2u∂u

∂x + 2v ∂v
∂x .

0 = ∂(u2+v2)
∂y = 2u∂u

∂y + 2v ∂v
∂y .

(1.12)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0. (1.13)

− u
∂v

∂x
+ v

∂v

∂y
= 0. (1.14)

(1.14) ⇒ ∂v

∂x
=
v

u

∂v

∂y
. (1.15)

Plug (1.15) into (1.13) and we get
u2 + v2

u

∂v

∂y
= 0. (1.16)
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Sou2 + v2 = 0 or ∂v
∂y = 0.

If u2 + v2 = 0, then, sinceu, v are real,u = v = 0, and thusf = 0 which is constant.
Thus we may assumeu2 + v2 equals a non-zero constant, and we may divide by it. We multiply both sides by

u and find∂v
∂y = 0, then by (1.15),∂v∂x = 0, and by Cauchy-Riemann,∂u∂x = 0.

f ′ =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 0. (1.17)

Thusf is constant.

Why is the above only mostly a proof? The problem is we have a division by u, and need to make sure
everything is well-defined. Specifically, we need to know that u is never zero. We do havef ′ = 0 except at points
whereu = 0, but we would need to investigate that a bit more.

Let’s return to
{

0 = ∂(u2+v2)
∂x = 2u∂u

∂x + 2v ∂v
∂x .

0 = ∂(u2+v2)
∂y = 2u∂u

∂y + 2v ∂v
∂y .

(1.18)

Plug in the Cauchy-Riemann equations and we get

u
∂v

∂y
+ v

∂v

∂x
= 0

−u∂v
∂x

+ v
∂v

∂y
= 0. (1.19)

We multiply the first equationu and the second byv, and obtain

u2
∂v

∂y
+ uv

∂v

∂x
= 0

−uv ∂v
∂x

+ v2
∂v

∂y
= 0. (1.20)

Adding the two yields

u2
∂v

∂y
+ v2

∂v

∂y
= 0, (1.21)

or equivalently

(u2 + v2)
∂v

∂y
= 0. (1.22)

We now argue in a similar manner as before, except now we don’thave the annoyingu in the denominator. If
u2+ v2 = 0 thenu = v = 0, else we can divide byu2+ v2 and find∂v/∂y = 0. Arguing along these lines finishes
the proof. 2

One additional remark: we can trivially pass from results onpartials with respect tov to those with respect tou
by noting that iff = u+ iv has constant magnitude, so too doesg = if = −v+ iu, which essentially switches the
roles ofu andv. Though this isn’t needed for this problem, arguments such as this can be very useful.
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The following is from Steven Miller.Let’s consider another proof. If|f | = 0 the problem is trivial as then
f = 0, so we assume|f | equals a non-zero constant. As|f | is constant,|f |2 = ff is constant. By the quotient
rule, the ratio of two holomorphic functions is holomorphic, assuming the denominator is non-zero. We thus find
f = |f |2/f is holomorphic. Thusf andf are holomorphic, and satisfy the Cauchy-Riemann equations. Applying
these tof = u+ iv yields

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

while applying tof = u+ i(−v) gives

∂u

∂x
=

∂(−v)
∂y

,
∂u

∂y
= −∂(−v)

∂x
.

Adding these equations together yields

2
∂u

∂x
= 0, 2

∂u

∂y
= 0.

Thusu is constant, and by part (a) this implies thatf is constant. If we didn’t want to use part (a) we could subtract
rather than add, and similarly find thatv is constant.

The following is from Craig Corsi, 2013 TA.The problem also follows from the polar form of the Cauchy-
Riemann equations.

It’s worth mentioning that (a) and (b) follow immediately from (c). For example, assume we know the real part
of f is constant. Consider

g(z) = exp(f(z)) = exp(u(x, y)) exp(iv(x, y)).

As |g(z)| = exp(u(x, y)), we see that the real part off being constant implies the functiong has constant magni-
tude. By part (c) this implies thatg is constant, which then implies thatf is constant.

2 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due at the start of class by 11am Friday, September 20: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat’s theorem for triangles. Assume instead we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let γ be the closed curve that is the unit circle centered at the origin, oriented
counter-clockwise. Compute

∮

γ f(z)dz where f(z) is complex conjugation (sof(x + iy) = x − iy). Repeat
the problem for

∮

γ f(z)
ndz for any integer n (positive or negative), and compare this answer to the results

for
∮

γ z
ndz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of

Goursat’s theorem are all similar to the original triangle. (#4) In the proof of Goursat’s theorem we assumed
that f was complex differentiable (ie, holomorphic). Would the result still hold if we only assumed f was
continuous? If not, where does our proof break down?
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3 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due at the start of class by 11am Friday, September 20: Chapter 1: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat’s theorem for triangles. Assume instead we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let γ be the closed curve that is the unit circle centered at the origin, oriented
counter-clockwise. Compute

∮

γ f(z)dz where f(z) is complex conjugation (sof(x + iy) = x − iy). Repeat
the problem for

∮

γ f(z)
ndz for any integer n (positive or negative), and compare this answer to the results

for
∮

γ z
ndz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of

Goursat’s theorem are all similar to the original triangle. (#4) In the proof of Goursat’s theorem we assumed
that f was complex differentiable (ie, holomorphic). Would the result still hold if we only assumed f was
continuous? If not, where does our proof break down?

Problem: If γ is a curve inC, show that
∫

−γ f(z)dz = −
∫

γ f(z)dz.

Parameterizeγ by z = g(t) for t in [a, b], and definew(t) = g(a + b − t). Thenw(t) is a parameterization of
−γ on the interval[a, b] (note thatw(a) = g(b), w(b) = g(a)). Additionally, w′(t) = −g′(a + b − t). It follows
that

∫

−γ
f(z)dz =

∫ b

a
f(w(t))w′(t)dt = −

∫ b

a
f(g(a+ b− t))g′(a+ b− t)dt.

Making the substitutionu = a+ b− t, we get that

−
∫ b

t=a
f(g(a+ b− t))g′(a+ b− t)dt =

∫ a

u=b
f(g(u))g′(u)du

= −
∫ b

u=a
f(g(u))g′(u)du. (3.1)

But

−
∫ b

u=a
f(g(u))g′(u)du = −

∫

γ
f(z)dz,

which proves the claim.
Problem: If γ is a circle centered at the origin, find

∫

γ z
ndz.

We start by parameterizingγ by z = reiθ, 0 ≤ θ < 2π, sodz = ireiθdθ. Then

∫

γ
zndz =

∫ 2π

0
rneinθ(ireiθ)dθ = irn+1

∫ 2π

0
ei(n+1)θdθ.
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If n = −1, this isir0
∫ 2π
0 dθ = 2πi. Otherwise, we get

irn+1

∫ 2π

0
ei(n+1)θdθ =

rn+1

n+ 1
ei(n+1)θ

∣

∣

∣

∣

2π

0

= 0.

Problem: If γ is a circle not containing the origin, find
∫

γ z
ndz.

If n 6= −1, the functionf(z) = zn has a primitive (namelyz
n+1

n+1 ), so by Theorem 3.3 in Chapter 1 of our book,
∫

γ f(z)dz = 0.

If n = −1, we parameterizeγ by z = z0 + reiθ, 0 ≤ θ < 2π, sodz = ireiθdθ.Then

∫

γ

1

z
dz =

∫ 2π

0

ireiθ

z0 + reiθ
dθ =

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ.

Note that because our circle does not contain the origin,|z0| > r, so | rz0 e
iθ| < 1. Thus, we can write this

expression as a geometric series:

ir

z0

∫ 2π

0

eiθ

1 + r
z0
eiθ
dθ =

ir

z0

∫ 2π

0
eiθ

∞
∑

k=0

(
−r
z0
eiθ)kdθ.

Interchanging the sum and the integral, we see that this is just

−i
∞
∑

k=0

(
−r
z0

)k+1

∫ 2π

0
ei(k+1)θdθ = −

∞
∑

k=0

(
−r
z0

)k+1 e
i(k+1)θ

k + 1

∣

∣

∣

∣

2π

0

dθ = 0.

Why may we interchange? We can justify the interchange due tothe fact that the sum of the absolute values
converges.

Problem: If γ is the unit circle centered at the origin, find
∫

γ z̄
ndz.

We start by parameterizingγ by z = eiθ, 0 ≤ θ < 2π, soz̄ = e−iθ anddz = ieiθdθ. Then

∫

γ
z̄ndz =

∫ 2π

0
e−inθ(ieiθ)dθ = i

∫ 2π

0
e−i(n−1)θdθ.

If n = 1, this isi
∫ 2π
0 dθ = 2πi. Otherwise, we get

i

∫ 2π

0
e−i(n−1)θdθ =

ei(1−n)θ

1− n

∣

∣

∣

∣

2π

0

= 0.
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Note that instead of doing the algebra, we could have observed that on the unit circlēz = z−1, so
∫

γ z̄
ndz =

∫

γ z
−ndz. Applying our work from Problem 3, we get the answer above.

Problem: Where in the proof of Goursat’s theorem do we use the fact thatthe functionf is holomorphic? Is it
sufficient to know thatf is continuous?

Start by recapping the main ideas behind the proof. We began by continually splitting our triangleT into smaller
triangles. These triangles converge to a point in the limit,and we called this pointz0. We then established the bound

∣

∣

∫

T
f(z)dz

∣

∣ ≤ 4n
∣

∣

∫

T (n)
f(z)dz

∣

∣.

Our goal was to show that this quantity tends to zero asz → z0.
To do this, we Taylor expandedf(z) around the pointz0 : f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0).

Note that(z − z0) dividesψ(z), soψ(z) → 0 asz → z0.
∣

∣

∣

∣

∫

T (n)

f(z)dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

T (n)

f(z0) + f ′(z0)(z − z0)dz

∣

∣

∣

∣

+

∫

T (n)

|ψ(z)(z − z0)|dz

The first integrand in this sum has a primitive, so the value ofthis integral is zero. LetMn = maxz onT (n) |ψ(z)|.
Then |ψ(z)| ≤ Mn, andz − z0 ≤ diam(T (n)). Hence, the value of the second integral is at most perim(T (n)) ·
diam(T (n)) ·Mn.

Since the perimeter and diameter ofT (n) both decay at a rate of2−n, we establish the bound that
∣

∣

∫

T (n) f(z)dz
∣

∣ ≤
4−nCMn for some constantC. Hence,CMn is an upper-bound for

∣

∣

∫

T f(z)dz
∣

∣, and sinceψ(z) → 0 asz → z0,
Mn → 0 as desired.

Now let us see what happens if we don’t know thatf is differentiable. Using only continuity, we can approxi-
matef(z) by f(z0) + ψ(z)(z − z0). DefiningMn as before, we can still bound our integral byCMn. We want to
say thatMn tends to0, but limz→z0 ψ(z) = limz→z0

f(z)−f(z0)
z−z0

, which may not exist iff is not differentiable (and
certainly may not tend to zero). Thus, this approach fails.

We could also try the expressionf(z) = f(z0) + ψ(z), and thenψ(z) → 0 asz → z0. Unfortunately, without
the factor of(z− z0), our bound on|

∫

T (n) f(z)dz| will simply be perim(T (n)) ·Mn = 2−nCMn. Thus, our bound
for |

∫

T (n) f(z)dz| is 4n2−nCMn = 2nCMn. Even thoughMn tends to 0, the factor of2n may overwhelm it, so
this approach fails. From these attempts, it seems that knowing thatf was differentiable was a fairly important step
in the proof.
Problem: Prove Goursat’s theorem for triangles using only the fact that it holds for rectangles.

Note that it suffices to prove that the integral along any right triangle is zero, since any triangle can be divided
into two right triangles by dropping an altitude.

Given a right triangle ABC, by drawing a series of rectanglesinside the triangle, we can reduce the desired
integral to the integral along a series ofn congruent triangles similar to ABC, each of which border theoriginal
hypotenuse (as shown in the figure).
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Sincef is continuous on the original triangle ABC (a compact set) weknow thatf is uniformly continuous on
the region of interest.

Thus, given anyε > 0, there exists aδ > 0 such that for any two pointsx, y in ABC with |x − y| < δ,
|f(x) − f(y)| < ε. If h is the length of the hypotenuse of ABC, choosen large enough so that the diameter of
each small triangle,h/n, is less thanδ. Then for any triangleTk and any pointzk on that triangle writef(z) =
f(zk) + ψ(z), so that

∫

Tk

f(z)dz =

∫

Tk

f(zk) + ψ(z)dz =

∫

Tk

f(zk)dz +

∫

Tk

ψ(z)dz

Sincef(zk) is a constant, it has a primitive, so the first integral is zero. Meanwhile, since any point on triangle
Tk is within h/n of zk, and we chosen to be such thath/n < δ, we know that|ψ(z)| = |f(z)− f(zk)| < ε. Thus,
|
∫

Tk
ψ(z)dz| < perim(Tk) · ε. But perim(Tk) < 3h/n, so the integral off(z) along triangleTk is at most3hε/n.

Summing over alln triangles, we see that the integral off(z) along the entire curve is at most3hε. Since this
technique works for arbitrarily smallε, this implies that the integral off along any right triangle is zero, proving
the claim.

4 Math 372: Homework #3: Carlos Dominguez, Carson Eisenach,David Gold

HW: Due at the start of class by 11am Friday, September 27: Chapter 2, Page 64: #1, #8. Also do: Chap-
ter 2: (Problems from me): (#1) In the proof of Liouville’s th eorem we assumedf was bounded. Is it
possible to remove that assumption? In other words, is it enough to assume that|f(z)| < g(z) for some
real-valued, non-decreasing functiong? If yes, how fast can we letf grow? (#2) a) Find all z where the
function f(z) = 1/(1+ z4) is not holomorphic; b) Let a, b, c, andd be integers such thatad− bc = 1. Find all
z where the functiong(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 − z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 − z as
1/2− (z − 1/2)). (#4) Do Chapter 1, Page 29, #18.
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Math 372: Complex Analysis

HW #3: Due at the start of class by 11am Friday, September 27: Chapter 2, Page 64: #1, #8. Also do:
Chapter 2: (Problems from me): (#1) In the proof of Liouville’s theorem we assumedf was bounded. Is
it possible to remove that assumption? In other words, is it enough to assume that|f(z)| < g(z) for some
real-valued, non-decreasing functiong? If yes, how fast can we letf grow? (#2) a) Find all z where the
function f(z) = 1/(1+ z4) is not holomorphic; b) Let a, b, c, andd be integers such thatad− bc = 1. Find all
z where the functiong(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 − z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 − z as
1/2− (z − 1/2)). (#4) Do Chapter 1, Page 29, #18.

1. Letγ1 denote the straight line along the real line from 0 toR, γ2 denote the eighth of a circle fromR toRei
π
4 ,

andγ3 denote the line fromRei
π
4 to 0. Then by Cauchy’s theorem,

∫

γ1+γ2+γ3

e−z2 dz = 0.

We can calculate

−
∫

γ3

e−z2 dz =

∫ R

0
e−(eiπ/4t)2eiπ/4 dt

= eiπ/4
∫ R

0
e−it2 dt

= eiπ/4
∫ R

0
cos (−t2)dt+ i sin (−t2) dt

= eiπ/4
∫ R

0
cos (t2)dt− i sin (t2) dt

So we can calculate the Fresnel integrals by calculating
∫

γ1+γ2
e−z2 dz, takingR → ∞, dividing by eiπ/4,

and looking at the real and negative imaginary parts. First we show the integral overγ2 goes to zero:

∣

∣

∣

∣

∫

γ2

e−z2 dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π/4

0
e−R2e2iθ iReiθ dθ

∣

∣

∣

∣

∣

≤ R

∫ π/4

0
e−R2 cos 2θ dθ

= R

∫ π/4−1/R logR

0
e−R2 cos 2θ dθ +R

∫ π/4

π/4−1/R logR
e−R2 cos 2θ dθ

≤ R

(

π

4
− 1

R logR

)

e
−R2 cos

(

π
2
− 2

R logR

)

+R · 1

R logR

≤ π

4
Re

−R2 sin
(

2
R logR

)

+
1

logR
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The 1
logR term goes to zero asR goes to infinity. So we need to show that the first term goes to zero. Note

that sinx ≥ x/2 for positivex sufficiently close to 0, sincesin 0 = 0 and d
dx sinx ≥ 1/2 for sufficiently

smallx. So for sufficiently largeR the first term is less than or equal to

π

4
Re−R2· 1

R logR =
π

4
elogR− R

logR ,

which goes to zero asR goes to infinity. So, asR→ ∞, the contribution fromγ2 goes to zero. And we know
that asR→ ∞,

∫ R
0 e−x2

dx =
√
π/2. So, finally,

∫ ∞

0
cos (t2)dt− i sin (t2) dt =

√
π

2
· 1√

2/2 + i
√
2/2

=

√
2π

4
−

√
2π

4
i

as desired.

8. Sincex ∈ R, f is holomorphic in an open circle of radiusǫ centered atx, 0 < ǫ < 1. And by Cauchy’s
inequality,

|f (n)(x)| ≤ n!||f ||C
Rn

Case 1:η ≥ 0. For some 0< ǫ < 1,
|z| ≤ |x+ ǫ|

thus,
|f(z)| ≤ A(1 + |x+ ǫ|)η ≤ A(1 + ǫ+ |x|)η

by both the given and the triangle inequality. And in Cauchy’s inequality R is justǫ. So by combining results
from above

|f (n)(x)| ≤ n!||f ||C
ǫn

≤ An!

ǫn
(1 + ǫ+ |x|)η

≤ An!

ǫn
(1 + ǫ+ |x|+ ǫ|x|)η

≤ An!

ǫn
(1 + ǫ)η(1 + |x|)η . (4.1)

Now let

An =
A(n!)

ǫn
(1 + ǫ)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

Case 2:η < 0. For some 0< ǫ < 1,
ǫ ≥ |x− z| ≥ |x| − |z|

11



by the reverse triangle inequality. When we rearrange the inequality we see that

|z| ≥ |x| − |ǫ| = |x|+ ǫ

Sinceη is negative, our goal is to minimize (1+|z|) in order to get an upper bound. Now, by combining our
result above with the Cauchy inequality we get that:

|f (n)(x)| ≤ n!||f ||C
ǫn

≤ An!

ǫn
(1− ǫ+ |x|)η

≤ An!

ǫn
(1− ǫ+ |x| − ǫ|x|)η

≤ An!

ǫn
(1− ǫ)η(1 + |x|)η . (4.2)

Now let

An =
A(n!)

ǫn
(1− ǫ)η

thus,
|f (n)(x)| ≤ An(1 + |x|)η.

q.e.d.

1. In the proof of Liouville’s theorem, we had that

|f ′(z0)| ≤
B

R

whereB was an upper bound forf . It only matters thatB is an upper bound forf in a disc of radiusR about
z0, however. LetBR be the smallest upper bound forf in a disc of radiusR aboutz0. Liouville’s theorem
still holds ifBR → ∞ as long asBR/R → 0 for every choice ofz0. Alternatively, we just needf to grow
slower than linear; say|f(z)| is less thanC|z|1−ǫ or C|z|/ log |z| or anything like this (for those who have
seen little-oh notation,f(z) = o(z) suffices).

2. (a) f is holomorphic wherever its derivative exists:

f ′(z) = − 4z3

1 + z4

That is, wheneverz4 6= −1. This givesz = eiπ/4, e3iπ/4, e5iπ/4, ande7iπ/4, or
√
2
2 +

√
2
2 i, −

√
2
2 +

√
2
2 i,

−
√
2
2 −

√
2
2 i, and

√
2
2 −

√
2
2 i.

(b) Thead − bc = 1 condition preventsg from being a mostly-constant function with an undefined value
at z = −d/c. (That is, ifad − bc = 0, thena/c = b/d, and so the function would simply collapse to
the value ofa/c.) So

g′(z) =
(cz + d)a− (az + b)c

(cz + d)2
=

1

(cz + d)2

The function is then not holomorphic atz = −d/c.

12



3. Just use the geometric series formula:

1

1− z
=

1

1/2− (z − 1/2)

=
2

1− 2(z − 1/2)

=

∞
∑

n=0

2n+1(z − 1/2)n.

4. Letf(z) =
∑∞

n=0 anz
n. Then

f(z) =
∞
∑

n=0

an(z0 + (z − z0))
n

=

∞
∑

n=0

an

[

n
∑

m=0

(

n

m

)

(z − z0)
mzn−m

0

]

=

∞
∑

m=0

(z − z0)
m

( ∞
∑

n=m

an

(

n

m

)

zn−m
0

)

.

The inner sum converges by the root test:

lim sup
n→∞

n

√

an

(

n

m

)

=
1

R
lim
n→∞

n

√

(

n

m

)

=
1

R

where R is the radius of convergence of the original power series forf and second limit is evaluated by noting

1 ≤ n

√

(n
m

)

≤ nm/n and limn→∞ nm/n = 1. Since the inner sum has the same radius of convergence as
the original sum,z0 still lies in the disc of convergence in the inner sum; hence all the coefficients ofz − z0
converge, andf has a power series expansion aboutz0.

Homework 4: Due at the start of class by 11am Friday, October 11 (even if this is Mountain Day): Chapter
3, Page 103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions

holomorphic everywhere except possibly atz = 0. a) Find the residues off(z) and g(z) at z = 0; b) Find the
residue off(z) + g(z) at z = 0; c) Find the residue off(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at
z = 0.
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5 Math 372: Homework #4: Due Friday, October 4, 2013: Pham, Jensen, Kolŏglu

HW: Due at the start of class by 11am Friday, October 11 (even if this is Mountain Day): Chapter 3, Page
103: #1, #2, #5 (this is related to the Fourier transform of the Cauchy density), #15d, #17a (hard). Additional:
Let f(z) =

∑∞
n=−5 anz

n and g(z) =
∑∞

m=−2 bmz
m be the Laurent expansions for two functions holomorphic

everywhere except possibly atz = 0. a) Find the residues off(z) and g(z) at z = 0; b) Find the residue of
f(z) + g(z) at z = 0; c) Find the residue off(z)g(z) at z = 0; d) Find the residue off(z)/g(z) at z = 0.

5.1 Chapter 3, Exercise 1

Exercise 5.1.Using Euler’s formulasinπz = eiπz−e−iπz

2i , show that the complex zeros ofsinπz are exactly the
integers, and that they are each of order 1. Calulate the residue of 1

sinπz at z = n ∈ Z.

Solution: To show that the complex zeros ofsinπz are exactly the integers, we will show thateiπz0−e−iπz0

2i = 0
if and only if z0 ∈ Z.

First prove the forward direction. We see thateiπz0−e−iπz0

2i = 0 gives

eiπz0 = e−iπz0 . (5.1)

Sincez0 = x+ iy with x, y ∈ R,
eiπxe−πy = e−iπxeπy. (5.2)

For complex numbers to be equivalent, their magnitudes mustbe the same. Thus,

e−πy = eπy. (5.3)

This implies that−πy = πy, soy = 0. The angles corresponding to Equation 5.2 must be congruentmodulo2π as
well. Thus,

πx ≡ −πx mod 2π, (5.4)

which meansπx ≡ 0 or π. So we have
2πx mod 2π ≡ 0, (5.5)

which implies thatx is an integer. Thusx ∈ Z. Sincey = 0, we havez0 = x, implying z0 ∈ Z.
To prove the backward direction, considerz0 ∈ Z for z0 even,

sinπz0 =
eiπz − e−iπz

2i

=
1− 1

2i
= 0. (5.6)

Similarly for z0 odd,

sinπz0 =
eiπz − e−iπz

2i

=
−1 + 1

2i
= 0. (5.7)

Thussinπz0 = 0 if and only if z0 ∈ Z. So the zeros ofsinπz are exactly the integers.
Next we must show that each zero has order 1. We refer to Theorem 1.1 in Stein and Shakarchi.
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Theorem 5.2. Suppose that f is holomorphic in a connected open setΩ, has a zero at a pointz0 ∈ Ω, and does not
vanish identically inΩ. Then there exists a neighborhoodU ⊂ Ω of z0, a non-vanishing holomorphic function g on
U, and a unique positive integer n such thatf(z) = (z − z0)

ng(z) for all z ∈ U .

Sincesinπz is analytic, take its Taylor series aboutz0. We add zero to writez asz − z0 + z0. Using properties
of the sine function, we claim

sinπz = sinπ(z + z0 − z0) = sinπ(z − z0) cos πz0 + cos π(z − z0) sinπz0. (5.8)

Note this statement does require proof, but will follow fromstandard properties of the exponential function (or
from analytic continuation). The reason some work needs to be done is thatz− z0 need not be real, but the relation
above does hold whenz is real. What we are trying to do is understand the behavior ofthe function nearz0 from
knowledge near0 (asz − z0 is close to zero). This is a common trick, but of course what makes this tractable is
that we have the angle addition formula for sine.

Whenz0 is an integer, we always havesinπz0 = 0. If z0 is odd thencos πz0 is -1 while if z0 is even it is 1.
Thus for oddz0,

sinπz = − π

1!
(z − z0)

1 +
π3

3!
(z − z0)

3 − π5

5!
(z − z0)

5 + · · · (5.9)

and for evenz0,

sinπz =
π

1!
(z − z0)

1 − π3

3!
(z − z0)

3 +
π5

5!
(z − z0)

5 − · · · . (5.10)

We thus see that all zeros are simple.
We now turn to finding the residue atz = n for 1/ sin πz. From our Taylor expansion above, we have

1

sinπz
=

1

sinπ(z − n) cos πn
=

1

cos πn

1

sinπ(z − n)
. (5.11)

The problem is now solved by using the Taylor expansion of sine and the geometric series. We havecos πn =
(−1)n, so

1

sinπz
= (−1)n

1

π(z − z0)− 1
3!π

3(z − z0)3 + · · ·

=
(−1)n

π(z − z0)

1

1−
(

1
3!π

2(z − z0)2 + · · ·
)

=
(−1)n

π(z − z0)

(

1 +

(

1

3!
π2(z − z0)

2 + · · ·
)

+

(

1

3!
π2(z − z0)

2 + · · ·
)2

+ · · ·
)

.

(5.12)

Note that each term in parentheses in the last line is divisible by (z− z0)
2, and thusnoneof these will contribute to

the residue, which is simply(−1)n/π.

5.2 Chapter 3, Exercise 2

Exercise 5.3.Evaluate the integral
∫ ∞

−∞

dx

1 + x4
.
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Solution: Consider the functionf(z) = 1
1+z4 . This function has poles at

1/f(z) = 0

1 + z4 = 0

z = ei(
π
4
+nπ

2 ). (5.13)

Consider the contour of the semicircle in the upper half plane of radiusR, denotedγ. Denote the part of the
contour along the real lineγ1 and the part along the arcγ2. Note that two of the poles off(z) lie inside this contour.
Thus by Cauchy’s residue theorem,

1

2πi

∮

γ
fdz = Resf (e

iπ/4) + Resf (e
i3π/4). (5.14)

To find the residues, write

f(z) =
1

1 + z4
=

(

1

z − ei
π
4

)(

1

z − ei
3π
4

)(

1

z − ei
5π
4

)(

1

z − ei
7π
4

)

.

Thus

Resf (e
iπ/4) =

(

1

ei
π
4 − ei

3π
4

)(

1

ei
π
4 − ei

5π
4

)(

1

ei
π
4 − ei

7π
4

)

= e−i 3π
4

(

1

1− i

)(

1

2

)(

1

1 + i

)

= −1 + i

4
√
2

(5.15)

and similarly

Resf (e
i 3π

4 ) = e−i 9π
4

(

1

1 + i

)(

1

1− i

)(

1

2

)

=
1− i

4
√
2

(5.16)

Thus we have

1

2πi

∮

γ
fdz = −1 + i

4
√
2
+

1− i

4
√
2

= − i

2
√
2

∮

γ
fdz =

π√
2
. (5.17)

Now, note that
∮

γ
fdz =

∮

γ1+γ2

fdz =

∫

γ1

fdz +

∫

γ2

fdz. (5.18)
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Observe that
∫

γ1

fdz =

∫ R

−R

1

1 + x4
dx

and that
∫

γ2

fdz =

∫ R

−R

1

1 + z4
dx

∣

∣

∣

∣

∫

γ2

fdz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ R

−R

1

1 + z4
dx

∣

∣

∣

∣

≤ max
z∈γ2

∣

∣

∣

∣

1

1 + z4

∣

∣

∣

∣

πR

=
1

R4 − 1
πR. (5.19)

Thus

lim
R→∞

∣

∣

∣

∣

∫

γ2

fdz

∣

∣

∣

∣

≤ lim
R→∞

πR

R4 − 1
= 0. (5.20)

Hence, asR→ ∞,
∫

γ2
fdz → 0. Therefore asR→ ∞ we get our final result;

lim
R→∞

∫ R

−R

1

1 + x4
dx+ lim

R→∞

∫

γ2

fdz =
π√
2

∫ ∞

−∞

1

1 + x4
dx =

π√
2
. (5.21)

5.3 Chapter 3, Exercise 5

Exercise 5.4.Use contour integration to show that
∫ +∞
−∞

e−2πixξ

(1+x2)2
dx = π

2 (1 + 2π|ξ|)e−2π|ξ| for all ξ real.

Solution: Let f(z) = e−2πizξ

(1+z2)2
= e−2πizξ

(z+i)2(z−i)2
. We see thatf(z) has poles of order2 atz = ±i. Thus

resz0f(z) = lim
z→z0

d

dz
(z − z0)

2f(z). (5.22)

Alternatively, we could write our function as

f(z) =
g(z)

(z − z0)2
, (5.23)

and then we need only compute the coefficient of thez − z0 term ofg.
Now consider the residue atz0 = i:

resz0=if(z) = lim
z→i

d

dz
(e−2πizξ(z + i)−2)

= lim
z→i

(−2πiξe−2πizξ(z + i)−2 − 2e−2πizξ(z + i)−3)

=
1

2
πiξe2πξ − 1

4
ie2πξ. (5.24)
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Forz0 = −i, we have:

resz0=−if(z) = lim
z→i

d

dz
(e−2πizξ(z − i)−2)

= lim
z→−i

(−2πiξe−2πizξ(z − i)−2 − 2e−2πizξ(z − i)−3)

=
1

2
πiξe−2πξ +

1

4
ie−2πξ. (5.25)

Now let us first consider the case whenξ < 0. We will use the contourγ of a semicircle oriented counterclockwise
in the upper half-plane with radiusR. Call the portion ofγ along the real lineγ1 and the arc portionγ2. Note that
there is a pole insideγ atz0 = i. By the residue formula, we have that

∫

γ
f(z)dz = 2πi

(

1

2
πiξe2πξ − 1

4
ie2πξ

)

= −π2ξe2πξ + 1

2
πe2πξ. (5.26)

We also know that
∫ +∞

−∞
f(x)dx = lim

R→∞

∫

γ1

f(z)dz. (5.27)

Along γ2, z = Reiθ anddz = iReiθdθ, wherez = R cos θ + iR sin θ. Thus

∫

γ2

f(z)dz =

∫ π

0

e−2πiξReiθ iReiθ

(1−R2ei2θ)2
dθ. (5.28)

Then it follows that
∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2

∣

∣

∣

∣

dθ

≤
∫ π

0

∣

∣

∣

∣

∣

Re−2π|ξ|R sin θ

(1−R2)2

∣

∣

∣

∣

∣

dθ

≤
∫ π

0

R

(1−R2)2
dθ =

πR

(R2 − 1)2
. (5.29)

Taking the limit asR goes to infinity, we have

lim
R→∞

∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤ lim
R→∞

πR

(R2 − 1)2
= 0. (5.30)

Thus

lim
R→∞

∫

γ2

f(z)dz = 0. (5.31)

SolimR→∞
∫

γ f(z) = limR→∞
∫

γ1
f(z). It thus follows from Equation 5.26 that

∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −π2ξe2πξ + 1

2
πe2πξ

=
π

2
(1 + 2π|ξ|) e−2π|ξ| (5.32)
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Now considerξ ≥ 0. We will use the contourγ of a semicircle oriented counterclockwise in the lower half-
plane with radiusR. Call the portion ofγ along the real lineγ1 and the arc portionγ2. Note that there is a pole
insideγ atz0 = −i. By the residue formula, we have that

∫

γ
f(z)dz = 2πi

(

1

2
πiξe−2πξ +

1

4
ie−2πξ

)

= −π2ξe−2πξ − 1

2
πe−2πξ. (5.33)

Also note that,
∫ +∞

−∞
f(x)dx = − lim

R→∞

∫

γ1

f(z)dz. (5.34)

Along γ2, z = Reiθ anddz = iReiθdθ, wherez = R cos θ + iR sin θ. Thus,

∫

γ2

f(z)dz =

∫ 0

−π

e−2πiξR cos θe2πξR sin θiReiθ

(1−R2ei2θ)2
dθ. (5.35)

Accordingly,
∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤
∫

γ2

|f(z)|dz

≤
∫ 0

−π

∣

∣

∣

∣

∣

Re2π|ξ|R sin θ

(1−R2ei2θ)2

∣

∣

∣

∣

∣

dθ

≤
∫ 0

−π

∣

∣

∣

∣

R

(1−R2)2

∣

∣

∣

∣

dθ

=
πR

(1−R2)2
(5.36)

Taking the limit asR goes to infinity, we have

lim
R→∞

∣

∣

∣

∣

∫

γ2

f(z)dz

∣

∣

∣

∣

≤ lim
R→∞

πR

(R2 − 1)2
= 0. (5.37)

And thus,

lim
R→∞

∫

γ2

f(z)dz = 0. (5.38)

SolimR→∞
∫

γ f(z) = limR→∞
∫

γ1
f(z). It thus follows from Equation 5.33 that

∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx = −

(

−π2ξe−2πξ − 1

2
πe−2πξ

)

=
π

2
(1 + 2π|ξ|) e−2π|ξ| (5.39)

Thus for allξ real,
∫ +∞

−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|) e−2π|ξ| (5.40)

19



5.4 Chapter 3 Exercise 15d
1 For any entire functionf , let’s consider the functionef(x). It is an entire function and furthermore we have the
real part off is bounded so:

|ef | = |eu+iv| = |eu| ≤ ∞
Henceef is bounded and therefore, by Louisville’s Theorem,ef is constant. It then follows thatf is constant .

Alternatively, we could argue as follows. We are told the real part of f is bounded. Let’s assume that the real
part is always at mostB − 1 in absolute value. Then if we considerg(z) = 1/(B − f(z)) we have|g(z)| ≤ 1.
To see this, note the real part ofB − f(z) is at least 1. We again have constructed a bounded, entire function, and
again by Liouville’s theorem we can concludeg (and hencef ) is constant.

5.5 Chapter 3 Exercise 17a

Exercise 5.5.Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show that if
|f(z)| = 1 whenever|z| = 1, then the image off contains the unit disc.

Solution: Supposef(z) does not have a zero in the unit disc,D. Then1/f(z) is holomorphic inD. Note that
since|f(z)| = 1 whenever|z| = 1, |1/f(z)| = 1/|f(z)| = 1 whenever|z| = 1 as well. Butf(z) is holomorphic
in D, implying |f(z)| ≤ 1 in D by the maximum modulus principle since|f(z)| = 1 on the boundary ofD. We
find 1 ≤ |f(z)| ≤ 1 in the unit disk, which implies that our function is constantas its modulus is constant (we
would like to use Exercise 15d, but that requires our function to be entire; fortunately we can obtain constancy by
the Open Mapping Theorem), contradicting the assumption that f is not constant!

Let w0 ∈ D. Consider the constant functiong(z) = −w0. On the unit circle,|f(z)| = 1 > |w0| = |g(z)| for
all |z| = 1. Thus by Rouch́e’s theorem,f(z) andf(z) + g(z) have the same number of zeroes inside the unit circle
(ie, inD). But we have shown thatf(z) has at least one zero, thus for somezw, 0 = f(zw)+ g(zw) = f(zw)−w0.
Thus for allw0 ∈ D, there existszw such thatf(zw) = w0. Thus the image off(z) contains the unit disc.�

5.6 Additional Problem 1
2 Let:

f(z) =

∞
∑

n=−5

an z
n g(z) =

∞
∑

m=−2

bm z
m

1. We have:
res0f = a−1 res0g = b−1

2. We have

f(z) + g(z) =

−3
∑

n=−5

anz
n +

∞
∑

n=−2

(an + bn)z
n

Sores0(f + g) = a−1 + b−1.

1Hint from Professor Miller
2Hint from Professor Miller
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3. We have−1 = −5 + 4 = −4 + 3 = −3 + 2 = −2 + 1 = −1 + 0 = 0− 1 = 1− 2 so:

res0(f g) = a−5 b4 + a−4 b3 + a−3 b2 + a−2 b1 + a−1 b0 + a0 b−1 + a1 b−2

4. We have (assumingb2 6= 0):

f(z)

g(z)
=

∑∞
n=−5 an z

n

∑∞
m=−2 bm z

m

=
1

z3

∑∞
n=−2 an−3 z

n

∑∞
m=−2 bm z

m

=
1

b−2z

∑∞
n=−2 an−3 z

n

1− (− 1
b−2

∑∞
m=1 bm−2 zm)

. (5.41)

As z → 0 the final quantity in parentheses tends to zero, and thus we can expand using the geometric series
formula. We only care about the constant term of this fraction, as it is multiplied by1/b−2z and thus only the
constant term contributes to the pole. This is a very useful observation. It means that, when we expand with
the geometric series, we can drop many terms, as we only need to keep terms that contribute to the constant
term. Remember, we are not trying to find the Taylor expansionof this function, but rather just one particular
term. We can thus write:

f(z)

g(z)
=

1

b−2z
(

∞
∑

n=−2

an−3 z
n)

∞
∑

k=0

(

− 1

b−2

∞
∑

m=1

bm−2 z
m)

)k

=
1

b−2z

[

(a−5z
−2)

(−1

b−2
(b0z

2 + · · · ) + 1

b2−2

(b2−1z
2 + · · · ) + · · ·

)

+(a−4z
−1)

(−1

b−2
(b−1z

1 + · · · ) + · · ·
)

+ (a−3z
0) (1 + · · · ) + · · · .

]

(5.42)

So:

res0(
f

g
) =

1

b−2

[

a−5(−
b0
b−2

+
b−1

b2−2

) + a−4(−
b−1

b−2
) + a−3

]

.

Homework due Friday October 18 (though you are strongly encouraged to hand it in on Friday, October 18, you
may hand it in by 10am on Monday October 21, but 10am does not mean 10:05am!!!): The Midterm!

HW: Due at the start of class by 11am Friday, October 25: Chapter 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Chapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the functionf(z) = 1/(1 − z2)4 and find the residues at the poles. (2) Consider the map
f(z) = (z − i)/(z + i). Show that this is a 1-to-1 and onto map from the upper half plane (all z = x + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product forcos(πz) (this is also problem #10b in
Chapter 5, and the answer is listed there), and fortan(πz).
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6 Math 372: Homework #5: Due Friday October 25: Pegado, Vu

HW: Due at the start of class by 11am Friday, October 25: Chapter 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Chapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the functionf(z) = 1/(1 − z2)4 and find the residues at the poles. (2) Consider the map
f(z) = (z − i)/(z + i). Show that this is a 1-to-1 and onto map from the upper half plane (all z = x + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product forcos(πz) (this is also problem #10b in
Chapter 5, and the answer is listed there), and fortan(πz).

6. Prove Wallis’s product formula

π

2
=

2 · 2
1 · 3 · 4 · 4

3 · 5 . . .
2m · 2m

(2m− 1) · (2m+ 1)
. . . .

[Hint: Use the product formula forsin z at z = π/2.]

6. We know (from p. 142) the product formula for the sine function is

sin(πz)

π
= z

∞
∏

n=1

(

1− z2

n2

)

.

Let z = 1/2. Then,
sin(π/2)

π
=

1

2

∞
∏

n=1

(

1− (1/2)2

n2

)

.

Usingsin(π/2) = 1, we simplify this equation:

1

π
=

∞
∏

n=1

(

1− z2

n2

)

=
1

2

∞
∏

n=1

(

1− 1

(2n)2

)

2

π
=

∞
∏

n=1

(

(2n)2 − 1

(2n)2

)

=

∞
∏

n=1

(

(2n + 1)(2n − 1)

(2n)2

)

. (6.1)

But this implies that
π

2
=

∞
∏

n=1

(

(2n)2

(2n + 1)(2n − 1)

)

,

proving the identity.

7. Establish the following properties of infinite products.
(a) Show that ifΣ|an|2 converges, andan 6= −1, then the product

∏

(1 + an) converges
to a non-zero limit if and only ifΣan converges.

(b) Find an example of a sequence of complex numbers{an} such thatΣan converges
but
∏

(1 + an) diverges.
(c) Also find an example such that

∏

(1 + an) converges andΣan diverges.
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7. a) Let
∑

|an|2 converge witha1 6= −1.
(⇐) First assume

∑

an converges to a nonzero limit. Without loss of generality we may assume that each
an satisfies|an| ≤ 1/2; this is clearly true in the limit (as the sum converges, the summands must tend to zero).
We assume this to facilitate expanding with logarithms. Consider the product

∏

(1 + an). Taking logs, we see
log
(
∏

(1 + an)
)

=
∑

log(1 + an). Settingx = −an and using the Taylor expansion

log(1 + x) = −x+
x2

2
− x3

3
+
x4

4
− · · · ,

we see that

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

.

In general, notice that
∞
∑

k=2

−|x|k ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤
∞
∑

k=2

|x|k,

or

−|x|2(1 + |x|+ |x|2 + . . . ) ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤ |x|2(1 + |x|+ |x|2 + . . . ).

If a sum
∑

x converges to a nonzero limit, we know that|x| converges to zero; thus we may assume (without
changing convergence) that|x| ≤ 1

2 . Thus using the geometric expansion, we see that1 + |x|+ |x|2 + · · · = 1
1−|x| .

Because|x| ≤ 1
2 , we have that 1

1−|x| ≤ 2. Hence we have that

−2|x|2 ≤
∣

∣

∣

∣

−x
2

2
+
x3

3
− · · ·

∣

∣

∣

∣

≤ 2|x|2.

Recall that we were looking atlog
(
∏

(1+ an)
)

=
∑
(

an − a2n
2 + a3n

3 − · · ·
)

. Since
∑

an converges, we know
eventually we must have|an| < 1/2, so we can assume|an| < 1/2 without changing convergence, and thus use
the simplification involving the geometric series expansion developed in the previous paragraph. Thus we write

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

≤
∑

(

an + 2|an|2
)

=
∑

an + 2
∑

|an|2.
(6.2)

A QUICK WORD OF WARNING. THE ABOVE EQUATION, AND THE ONES BELO W, ARE A LIT-
TLE ODD. REMEMBER THAT OUR SEQUENCE NEED NOT BE JUST REAL NUMB ERS. AS SUCH,
WE MUST BE CAREFUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE A BUSE NOTATION
A BIT – WHEN WE WRITE a ≤ b + c, THIS MEANS THE DESIRED RELATION IS TRUE UP TO A
LINEAR RESCALING. REALLY WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |c|. WE
REALLY SHOULD WRITE THINGS LIKE |a − b| ≤ c, BUT IN A HOPEFULLY OBVIOUS ABUSE OF
NOTATION....

Since by assumption both
∑

an and
∑

|an|2 converge, we must have that
∑

an + 2
∑

|an|2 is finite, call itL.
Thuslog

(
∏

(1 + an)
)

≤ L, so
∏

(1 + an) ≤ eL, which is again finite. Thus the product converges.
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(⇒) Next assume
∏

(1+an) converges to a nonzero limit. Since
∏

(1+an) is converging to a nonzero limit, the
terms in the product must be converging to1, so we must have|an| approaching zero and we can assume|an| < 1/2
without affecting convergence. We now write:

log
(

∏

(1 + an)
)

=
∑

(

an − a2n
2

+
a3n
3

− · · ·
)

≥
∑

(

an − |an|2
2

− |an|3
3

− · · ·
)

≥
∑

(

an − |an|2 − |an|3 − · · ·
)

.

(6.3)

As before, we substitute in using the geometric series expansion:

log
(

∏

(1 + an)
)

≥
∑

(

an − |an|2 − |an|3 − · · ·
)

=
∑

(

an − |an|2(1 + |an|+ |an|2 + · · · )
)

≥
∑

(

an − 2|an|2
)

=
∑

an − 2
∑

|an|2.
(6.4)

Thus we see thatlog
(
∏

(1 + an)
)

+ 2
∑ |an|2 ≥ ∑

an. Since
∏

(1 + an) and
∑ |an|2 converge, we must

have thatlog
(
∏

(1 + an)
)

+ 2
∑ |an|2 are both finite. Thus our sum

∑

an is bounded by finite terms, and so the
sum must also be finite itself. Hence the sum

∑

an must converge to a finite limit.

b) Let{an} = { i√
1
, −1√

1
, i√

2
, −i√

2
, . . . }. The sum

∑

an converges by the alternating series test, since the absolute
value of the terms approaches zero (one can show this by showing that first the odd terms tend to zero in absolute
value and then that the even terms do as well).

Consider now the product
∏
(

1 + an
)

. For an arbitrary integerN , look at the2N -th partial product:

2N
∏

n=1

(

1 + an

)

=

(

1 +
i√
1

)(

1− i√
1

)

· · ·
(

1 +
i√
2N

)(

1− i√
2N

)

=

(

1− i2√
12

)

· · ·
(

1− i2
√

(2N)2

)

=

(

1 +
1

1

)

· · ·
(

1 +
1

2N

)

=

(

2

1

)

· · ·
(

2N + 1

2N

)

= 2N + 1.

(6.5)

Thus when we evaluate at an even term2N , we see that

lim
2N→∞

2N
∏

n=1

(1 + an) = lim
2N→∞

(2N + 1) = ∞,

so the product diverges. Hence the product diverges at even terms and thus cannot converge in general.
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c) For a trivial example, let{an} = {1,−1, 1,−1, . . . }. The sum
∑

an does not converge because the limit of
theN th partial sum asN tends to infinity does not converge; it alternates between0 and1. However, the product
will clearly converge:

∏

an = (1 + 1)(1 − 1)(1 + 1)(1 − 1) · · · = (1)(0)(1)(0) · · · = 0.

For an example in which the sum diverges but the product converges to a nonzero limit, consider the sequence
{an|a2n−1 = 1/

√
n, a2n = −1/(1 +

√
n)}∞n=1. Grouping the pairs2n and2n− 1 together, we see that

∞
∑

m=1

am =

∞
∑

n=1

(

1√
n
− 1

1 +
√
n

)

=

∞
∑

n=1

1

n+
√
n

.

We’ll show that this series diverges. Notice that for every n,

∞
∑

n=1

1

n+
√
n
≥

∞
∑

n=1

1

2n

and since the series on the RHS diverges, by comparison test,so does the series on the LHS. So
∑

an diverges.
However, grouping again the even and odd pair terms, for evenN , we have

N
∏

m=1

(1 + am) =

N/2
∏

n=1

(1 +
1√
n
)(1 − 1√

n+ 1
)

=

N/2
∏

n=1

(1 +
1√
n
− 1√

n+ 1
− 1√

n+ n
)

=

N/2
∏

n=1

(1− −√
n+

√
n+ 1− 1√

n+ n
) =

N/2
∏

n=1

1 = 1

and for odd N,
N
∏

m=1

(1 + am) = (1 +
1√
N

)

which converges to 1 asN → ∞. Thus,
∞
∏

n=1

(1 + an) = 1.

Hence{an} is the desired sequence.
9. Prove that if|z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =
∞
∏

k=0

(

1 + z2
k
)

=
1

1− z
.

9. Consider the product(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · . Suppose we tried to multiply this product out:
to get one term, we would need to choose either the1 or the power ofz in each term to multiply by. For example,
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one term we could get out is simplyz, where we would choose thez in the first term and the1 in every succeeding
term; another way to say this is to writez = z × 1 × 1 × · · · . To write out the entire product, we would have to
make sure we evaluated every possible choice of ones and powers of z.

But this isn’t so bad if we think of choosing terms as countingin binary. In binary counting, a number is written
entirely in terms of 0s and 1s. For any given number, each digit represented a choice between the digit 0 and the
digit 1. If we think of selecting the power ofz in a term as picking1 for a given digit in binary counting, and
selecting the1 in a term as picking0 for a given digit in binary, we can identify a bijective correspondence between
integers written in binary and products from our term (with the exception that000000000 · · · = 1 in our product).
For example, the binary number101 = · · · 000101 = 22 × 1 + 21 × 0 + 20 × 1 = 5, and if choose the terms
(z)(1)(z4)(1)(1) · · · , we see that we get the productz5.

To evaluate our product we must sum over all such possible choices. Since all possible binary numbers together
yield precisely the nonnegative integers, this bijective correspondence importantly tells us that the sum over all such
products will be the sum over all nonnegative powers of z, or1 + z + z2 + z3 + . . . . Thus we have(1 + z)(1 +
z2)(1 + z4)(1 + z8) · · · = 1 + z + z2 + z3 + . . . . Since|z| < 1, we can use the geometric expansion ofz to write
(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · = 1

1−z , as desired.
Significance for combinatorics: notice the way in which our solution invokes combinatorics (such as seeing

how many ways we can choose our terms to make a product).
Alternatively, we can truncate the product and multiply by1 − z. Note that(1 − z)(1 + z) = (1 − z2), then

(1− z2)(1 + z2) = (1− z4), and so

(1− z)(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) = 1− z2

k+1
;

as|z| < 1 the latter tends to 1, and thus

(1 + z)(1 + z2)(1 + z4) · · · (1 + z2
k
) =

1

1− z
− z2

k+1

z − 1
→ 1

1− z
.

Chapter 3

10. Show that ifa > 0, then
∫ ∞

0

log x

x2 + a2
dx =

π

2a
log a.

[Hint: Use the contour in Figure 10.]

10. We will first find the residue atia and then integrate over the given contour. Letf(z) = log z
z2+a2

, where we
take the branch cut of the logarithm along−ib for all b ∈ [0,∞). Furthermore,ia is a zero of order1. Finding the
residue atia, we have

resiaf = lim
z→ia

(z − ia)
log z

z2 + a2
= lim

z→ia
(
log z

z + ia
) =

log ia

2ia
=

log a

2ia
+

π

2a

Label the contours from the portion on the positive real axisγ1, the larger arcγ2, the portion on the negative real
axisγ3, and the smaller arcγ4. Chooseǫ < min{a, 1}a, R > max{a, 1}. Parametrizeγ1 with z(t) = t from ǫ
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to R, γ2 with z(t) = Reit from 0 to π, γ3 with z(t) = t from −R to −ǫ, andγ4 with z(t) = ǫeit from π to 0.
Integrating over theγ2 and taking absolute values, we have

∣

∣

∣

∣

∫

γ2

log z

z2 + a2
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

0

logReit

(Reit)2 + a2
Rieitdt

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

logReit

R2e2it + a2
Rieit

∣

∣

∣

∣

dt

=

∫ π

0

∣

∣

∣

∣

logReit

R2e2it + a2

∣

∣

∣

∣

Rdt

=

∫ π

0

∣

∣

∣

∣

logR+ it

R2e2it + a2

∣

∣

∣

∣

Rdt

≤
∫ π

0

logR+ |it|
|R2e2it|+ |a2|Rdt

=

∫ π

0

logR+ t

|Re2it|+ |a2|
R

dt ≤
∫ π

0

logR+ t

R+ |a2|
R

dt ≤ π
logR+ π

R+ |a2|
R

sincet, logR > 0. SinceR→ ∞, logR+ π,R+ |a2|
R → ∞, by L’Hopital,

lim
R→∞

logR+ π

R+ |a2|
R

= lim
R→∞

1/R

1− |a2|
R2

= lim
R→∞

1

R− |a2|
R

= 0.

Thus, asR→ ∞, the contribution alongγ2 vanishes to0. Similarly, forγ4, we have

∣

∣

∣

∣

∫

γ4

log z

z2 + a2
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

π

log ǫeit

(ǫeit)2 + a2
ǫeitdt

∣

∣

∣

∣

≤
∫ 0

π

∣

∣

∣

∣

log ǫeit

ǫ2e2it + a2
ǫeit
∣

∣

∣

∣

dt

=

∫ 0

π

∣

∣

∣

∣

log ǫeit

ǫ2e2it + a2

∣

∣

∣

∣

ǫdt

=

∫ 0

π

∣

∣

∣

∣

− log ǫ+ it

ǫ2e2it + a2

∣

∣

∣

∣

ǫdt

≤
∫ 0

π

− log ǫ+ |it|
|ǫ2e2it|+ |a2|ǫdt

≤
∫ 0

π

− log ǫ+ t

|ǫe2it|+ |a2|
ǫ

dt ≤
∫ 0

π

− log ǫ+ t

ǫ+ |a2|
ǫ

dt ≤ π
− log ǫ+ π

ǫ+ |a2|
ǫ

dt

sincet,− log ǫ > 0. Sinceǫ→ 0, − log ǫ+ π, ǫ+ |a2|
ǫ → ∞, by L’Hopital,

lim
ǫ→0

− log ǫ+ π

ǫ+ |a2|
ǫ

= lim
ǫ→0

−1/ǫ

1− |a2|
ǫ2

= lim
ǫ→0

−1

ǫ− |a2|
ǫ

= 0.
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Thus, asǫ → 0, the contribution alongγ4 also vanishes to0. For the integral overγ1, γ3, we have

∫

γ1+γ3

log z

z2 + a2
dz =

∫ R

ǫ

log t

t2 + a2
dt+

∫ −ǫ

−R

log s

s2 + a2
ds.

Letting s = −t, we have

∫

γ1+γ3

log z

z2 + a2
dz =

∫ R

ǫ

log t

t2 + a2
dt+

∫ ǫ

R

log−t
(−t)2 + a2

(−1)dt

=

∫ R

ǫ

log t

t2 + a2
dt+

∫ R

ǫ

log−t
t2 + a2

dt

=

∫ R

ǫ

log t

t2 + a2
dt+

∫ R

ǫ

log t+ iπ

t2 + a2
dt

= 2

∫ R

ǫ

log t

t2 + a2
dt+ iπ

∫ R

ǫ

1

t2 + a2
dt = 2

∫ R

ǫ

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

Thus we have, asR→ ∞, ǫ→ 0 and asresiaf = log a
2ia + π

2a , we have

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt+

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

)

= 2πi

(

log a

2ia
+

π

2a

)

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

+ lim
R→∞,ǫ→0

(

iπ

a
arctan

t

a

∣

∣

∣

∣

R

ǫ

)

=
π log a

a
+
iπ2

a

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

+
iπ2

a
=
π log a

a
+
iπ2

a

lim
R→∞,ǫ→0

(

2

∫ R

ǫ

log t

t2 + a2
dt

)

=
π log a

a
∫ ∞

0

log t

t2 + a2
dt =

π log a

2a

as desired.

Additional Problems

1. Find all poles of the functionf(z) = 1/(1 − z2)4 and find the residues at the poles.

Let g(x) = 1/f(z) = (1 − z2)4 = ((1 + z)(1 − z))4. We see that the zeros ofg are±1, each with order4.
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Hence, the residues are

res1(f) = lim
z→1

1

(4− 1)!

(

d

dz

)4−1

(z − 1)4
1

(1− z2)4

= lim
z→1

1

6

(

d

dz

)3 1

(1 + z)4

= lim
z→1

1

6
(−4)(−5)(−6)

1

(1 + z)7

= lim
z→1

−20

(1 + z)7
=

−20

27
=

−5

32

and

res−1(f) = lim
z→−1

1

(4− 1)!

(

d

dz

)4−1

(z + 1)4
1

(1− z2)4

= lim
z→−1

1

6

(

d

dz

)3 1

(z − 1)4

= lim
z→−1

1

6
(4)(5)(6)

−1

(z − 1)7

= lim
z→−1

−20

(z − 1)7
=

−20

−27
=

5

32

Thus we have found the desired residues.
We sketch an alternative proof. We have

f(z) =
1

(z − 1)4
1

(z + 1)4

=
1

(z − 1)4
1

(z − 1 + 2)4

=
1

(z − 1)4
1

24
1

(1 + z−1
2 )4

=
1

(z − 1)4
1

16

(

1− z − 1

2
+

(z − 1)2

4
− (z − 1)3

8
+ · · ·

)4

. (6.6)

The difficulty is we have to expand the factor to the fourth power well enough to identify the coefficient of(z−1)3.
A little algebra shows it is−5

2(z − 1)3, and thus (remembering the factor 1/16) the residue is just−5/32.

2. Consider the mapf(z) = (z − i)/(z + i). Show that this is a one-to-one and onto map from the upper half
plane (allz = x+ iy with y > 0) to the unit disk.

2. First we’ll show that the range off is the unit disk. Writingz = x+ iy wherex, y ∈ R, y > 0, then we have

|f(x+ iy)| =
∣

∣

∣

∣

x+ (y − 1)i

x+ (y + 1)i

∣

∣

∣

∣

=

√

x2 + (y − 1)2
√

x2 + (y + 1)2
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and sincey > 0,
√

x2 + (y − 1)2 <
√

x2 + (y + 1)2, f(x+ iy) < 1, so the range off is the unit disk.
Now we’ll show that f is injective. Suppose forz1, z2 with imaginary part positive,f(z1) = f(z2). Then

z1 − i

z1 + i
=

z2 − i

z2 + i

(z1 − i)(z2 + i) = (z2 − i)(z1 + i)

z1Z2 + z1i− Z2i+ 1 = z1z2 − z1i+ z2i+ 1

2i(z1 − z2) = 0

z1 = z2. (6.7)

Here’s another, faster way to do the algebra. We add zero:

z1 − i

z1 + i
=

z2 − i

z2 + i
z1 + i− 2i

z1 + i
=

z2 + i− 2i

z2 + i

1− 2i

z1 + i
= 1− 2i

z2 + 1
; (6.8)

it is clear that the only solution is whenz1 = z2.

Now we’ll show thatf is surjective. Given anyw ∈ D, settingz = (w + 1)i/(1 − w), we see that

f(z) =

(w+1)i
(1−w) − i

(w+1)i
(1−w) + i

=
(w + 1)i− (1− w)i

(w + 1)i+ (1− w)i
= w.

Now we’ll show thatz has positive imaginary part. Writingw = x+ iy with x, y ∈ R, x2 + y2 < 1, we have

z = i
(x+ 1) + iy

(1− x)− iy
=

−2y + i(1− y2 − x2)

(1− x)2 + y2
.

So the imaginary part is1− (x2 + y2) > 0, soz has positive imaginary part.

3. Calculate the Weierstrass product forcos(πz) (this is also problem 10b in Chapter 5, and the answer is listed
there) and fortan(πz).

3. By the Euler formulas for sine and cosine, we see that

cos(πz) =
eiπz + e−iπz

2

=
ei

π
2 (eiπz + e−iπz)

2i

=
(eiπ(z+

1
2
) + e−iπ(z− 1

2
))

2i

=
eiπ(

1
2
−z) − e−iπ( 1

2
−z)

2i
= sin(π(

1

2
− z))
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and since the zeros ofsinπz occur only at the integers, the zeros ofcos πz occur atm + 1
2 for all m ∈ Z. Thus,

define the sequence{a2n−1 = n+ 1
2 , a2n = −(n+ 1

2 )}∞n=1, which are precisely the zeros ofcos πz. Furthermore,

since the zeros of sine are of order 1, the zeros of cosine are also of order one. Thus we have, forhk(z) =
∑k

j=1
zj

j ,

grouping together the pairs2n and2n − 1, the Weierstrauss product ofcos πz is, up to a factor ofeh(z) for some
entire functionh,

∞
∏

m=0

(1− z

am
)ehm(z) =

∞
∏

n=0

(1− z

n+ 1
2

)(1− z

−(n+ 1
2 )

)

∞
∏

m=1

ehm(z)

=
∞
∏

n=0

(1− z2

(n+ 1
2)

2
)e

∑

∞

m=1 hm(z)

=

∞
∏

n=0

(1− 4z2

(2n+ 1)2
)e

∑

∞

m=1 hm(z).

Considering
∏∞

n=0(1− 4z2

(2n+1)2
), we’ll show this product converges. Note that

∞
∑

n=1

1

n2
=

∞
∑

n=1

1

(2n)2
+

∞
∑

n=0

1

(2n + 1)2

3

4

∞
∑

n=1

1

n2
=

∞
∑

n=0

1

(2n+ 1)2

so since the sum on the RHS is bounded
∑∞

n=1
1
n2 , a convergent series, the series on the RHS converges as well,

and as the convergence is absolute, the product converges. Thus (up to the exponential of an entire function) the
Weierstrauss product ofcos πz is

∏∞
n=0(1− 4z2

(2n+1)2
).

Next, notice thattan(πz), has poles at odd integer multiples ofπ
2 , and so by definition does not have a Weier-

strass product.

HW: Due Friday, November 1: (1) Evaluate
∫∞
−∞ cos(4x)dx/(x4 +1). (2) Let U be conformally equivalent to

V and V conformally equivalent toW with functions f : U → V and g : V → U . Prove g ◦ f (g composed
with f ) is a bijection. (3) The Riemann mapping theorem asserts that if U and V are simply connected
proper open subsets of the complex plane then they are conformally equivalent. Show that simply connected
is essential: find a bounded open setU that is not simply connected and prove that it cannot be conformally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.
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