Math 372: Solutions to Homework

Steven Miller

October 21, 2013

Abstract

Below are detailed solutions to the homework problems froath\872 Complex Analysis (Williams College,
Fall 2013, Professor Steven J. Miller, sim1@williams.edilje course homepage is

http://wwv. wllianms. edu/ Mathematics/symller/public htm /372

and the textbook i€omplex Analysiby Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Not&ttdents:
it's nice to include the statement of the problems, but | éethat up to youl am only skimming the solutions.

I will occasionally add some comments or mention alternatedutions. If you find an error in these notes,

let me know for extra credit.
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1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang(2010)

Due by 11am Friday, September 13: Chapter 1: Page 24: #labc#3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of pointsthe complex plane defined by the fol-
lowing relations: (a)z — z1| = |z — 22| Wherezy, 29 € C; (b) 1/2 = Z; () Re(2) = 3; (d) Re(z) > ¢ (resp.,> ¢)
wherec € R.

Solution: (a) Whenz; # z», this is the line that perpendicularly bisects the line seginfiromz; to zo. When
z1 = 29, this is the entire complex plane.

(b)

1 3 _
o2 2 (1.1)
z 2z |z]?
So ] _
Toze S =Fel=1 (1.2)
z |22

This is the unit circle irC.
(c) This is the vertical linec = 3.
(d) This is the open half-plane to the right of the verticakli: = ¢ (or the closed half-plane if it i5).

Problem: Chapter 1: #3: Witho = se’?, wheres > 0 andy € R, solve the equation™ = w in C wheren is a
natural number. How many solutions are there?

Solution: Notice that ‘ ‘
w = se'¥ = 5!t e 7. 1.3)

It's worth spending a moment or two thinking what is the bexiice for our generic integer. Clearlyis a bad
choice as it is already used in the problem; as we ofternt twethe imaginary part, that is out too. The most natural
is to usem (thoughk would be another fine choice); at all costs do notdise

Based on this relationship, we have

2" = getlet2mm), (1.4)
So,
i(p+2mm)
z = sl/me™ (1.5)
Thus, we will haven unique solutions since each choicemfe {0,1,...,n — 1} yields a different solution so

long ass # 0. Note thatm = n yields the same solution as = 0; in general, if two choices of. differ by n then
they yield the same solution, and thus it suffices to look atitepecified values af. If s = 0, then we have only
1 solution.

Problem: Chapter 1: #13: Suppose thats holomorphic in an open s€t. Prove that in any one of the follow-
ing casesf must be constant:
(a) Re(f) is constant;



(b) Im(f) is constant;
(c) If] is constant.

Solution: Let f(z) = f(z,y) = u(z,y) + iv(x,y), wherez = x + iy.
(a) Since Réf) = constant,

ou ou
Fy 0, o 0. (1.6)
By the Cauchy-Riemann equations,
ov ou
oz~ oy 0. .7
Thus, in€2, 9 9 5
/ = — = —u —U = =
fi(z) = 9~ D + L 0+0 . (1.8)
Thus f(z) is constant.
(b) Since In{f) = constant,
ov ov
py 0, oy 0. (1.9)
By the Cauchy-Riemann equations,
ou  Ov
oy 0. (1.10)
Thus in€2, o 9 5
Ny = 9L v ov —
f(z)_aw ax“ax 0+0=0. (1.11)

Thusf is constant.

(c) We first give a mostly correct argument; the reader shpaidattention to find the difficulty. Sindg| =

vu? + v? is constant,

0= B(UZ;'UQ) = 2u% + 21)%.
_ 0Wit?) _ o du av (1.12)
Plug in the Cauchy-Riemann equations and we get
ov ov
— — =0. 1.13
u(‘?y + Vs ( )
ov ov
a2z ) 1.14
“ax + U@y 0 ( )
ov  vOov
1.14 — = 1.15
(114) = == =~ 9y (1.15)
Plug (1.15) into (1.13) and we get
2 2
wAv (1.16)
u Oy



Sou? +v* = 0or §& = 0.

If u? + v? = 0, then, sincey, v are realy = v = 0, and thusf = 0 which is constant.

Thus we may assume + v equals a non-zero constant, and we may divide by it. We niylipth sides by
u and findg—Z = 0, then by (1.15)2% = 0, and by Cauchy-Rieman#& = 0.

_g_au Ov

! —
f 9r oz + o = 0. (1.17)

Thusf is constant.

Why is the above only mostly a proof? The problem is we haveveidn by u, and need to make sure
everything is well-defined. Specifically, we need to knowt th# never zero. We do havg = 0 except at points
whereu = 0, but we would need to investigate that a bit more.

Let’s return to

A(u?+v? du v (118)
0=2 ay ) = 2uy, +2vg,.

2 2
{0 = Q0 tvT) — 9y du 4 9y,

Plug in the Cauchy-Riemann equations and we get

) (1.19)

—uv— +v°— = 0. (1.20)
Adding the two yields

w—+ = = 0, (1.21)
or equivalently

(u? +v?) = = 0. (1.22)
We now argue in a similar manner as before, except now we dawvée the annoying. in the denominator. |If

u? +v? = 0 thenu = v = 0, else we can divide by? + v? and findov/dy = 0. Arguing along these lines finishes
the proof. O

One additional remark: we can trivially pass from resultgpartials with respect to to those with respect to
by noting that iff = « 4 iv has constant magnitude, so too dges if = —v + iu, which essentially switches the
roles ofu andv. Though this isn’t needed for this problem, arguments sgdhia can be very useful.
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The following is from Steven MillerLet’s consider another proof. [ff| = 0 the problem is trivial as then
f = 0, so we assumégf| equals a non-zero constant. A4 is constant,f|?> = ff is constant. By the quotient
rule, the ratio of two holomorphic functions is holomorphéssuming the denominator is non-zero. We thus find
f =1|f|?/f is holomorphic. Thug and f are holomorphic, and satisfy the Cauchy-Riemann equatidpglying

these tof = u + iv yields
ou _ v o o
or Oy’ Oy Ox’
while applying tof = u + i(—v) gives

ou  O(-v) Ou  O(-v)

dr 9y oy oz
Adding these equations together yields

ou ou

— =0, 2— = 0.

Ox T Ty

Thusu is constant, and by part (a) this implies tifais constant. If we didn’t want to use part (a) we could sulttrac

rather than add, and similarly find thais constant.

2

The following is from Craig Corsi, 2013 TAhe problem also follows from the polar form of the Cauchy-
Riemann equations.

It's worth mentioning that (a) and (b) follow immediatelyin (c). For example, assume we know the real part
of f is constant. Consider
9(z) = exp(f(z)) = exp(u(z,y))exp(iv(z,y)).
As |g(2)| = exp(u(z,y)), we see that the real part ¢fbeing constant implies the functignhas constant magni-
tude. By part (c) this implies thatis constant, which then implies thétis constant.

2 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due at the start of class by 11am Friday, September 20: Chaptel: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat's theorem for triangles. Assume ingtad we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let ~ be the closed curve that is the unit circle centered at the ogin, oriented
counter-clockwise. Compute3€7 f(z)dz where f(z) is complex conjugation (sof (x + iy) = x — iy). Repeat
the problem for f,y f(2)"dz for any integer n (positive or negative), and compare this answer to the restd
for 3?7 z"dz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of
Goursat's theorem are all similar to the original triangle. (#4) In the proof of Goursat's theorem we assumed
that f was complex differentiable (ie, holomorphic). Wouldthe result still hold if we only assumed f was
continuous? If not, where does our proof break down?



3 Math 372: Homework #2: Solutions by Nick Arnosti and ThomasCrawford
(2010)

Due at the start of class by 11am Friday, September 20: Chaptel: Page 24: #16abc, #24, #25ab. Chapter 2:
(#1) We proved Goursat's theorem for triangles. Assume ingtad we know it holds for any rectangle; prove
it holds for any triangle. (#2) Let ~ be the closed curve that is the unit circle centered at the ogin, oriented
counter-clockwise. Computef7 f(z)dz where f(z) is complex conjugation (sof (x + iy) = x — iy). Repeat
the problem for 557 f(2)™dz for any integer n (positive or negative), and compare this answer to the restd
for f,y z"dz; is your answer surprising? (#3) Prove that the four triangles in the subdivision in the proof of

Goursat's theorem are all similar to the original triangle. (#4) In the proof of Goursat's theorem we assumed
that f was complex differentiable (ie, holomorphic). Wouldthe result still hold if we only assumed f was
continuous? If not, where does our proof break down?
Problem: If v is a curve inC, show that|__ f(2)dz = — [ f(z)d=.

Parameterize by z = ¢(t) for ¢ in [a, b], and definev(t) = g(a + b — t). Thenw(t) is a parameterization of

—~ on the intervala, b] (note thatw(a) = g(b), w(b) = g(a)). Additionally, w'(t) = —¢'(a + b — t). It follows
that

b b
2)dz = wt)w' (t)dt = — a+b— "(a +b—t)dt.
/_ 5G) / Flw(t)! (t)dt / Flgla+b—t)g'(a+b— t)dt

Making the substitutiont = a + b — ¢, we get that

t=a

b a
- [ taterr=tiglarp—ni = [ s @i
b

- / ~ Hglw)y(wdu. (3.)

But

which proves the claim.
Problem: If - is a circle centered at the origin, firfg 2"dz.

We start by parameterizingby z = re?, 0 < 6 < 2w, sodz = ire’’df. Then

2 2
/z”dz :/ e (iret?)dh = z'r”“/ et g9,
vy 0 0



If n = —1, this isir? 02” df = 2mi. Otherwise, we get
27 ,r,n-l,-l 27
it / im0 gp JntDgl T _ o
0 n —+ 1 0

Problem: If ~ is a circle not containing the origin, finﬂ7 2"dz.

If n # —1, the functionf(z) = 2™ has a primitive (namely’;:%l), so by Theorem 3.3 in Chapter 1 of our book,
J, f(z)dz = 0.

If n = —1, we parameterize by z = 2y + e, 0 < 0 < 27, sodz = ire’?df.Then
1 2w - .10 . 2w 6
/—dZ:/ Lﬂdazﬁ/ o db.
v Z o *o+re 20 Jo 1+ €

Note that because our circle does not contain the origif, > r, so |éei9| < 1. Thus, we can write this
expression as a geometric series:

21 i0 : 2

. o0

(18 e i : —-r .

— 77‘9d9 = — 629 E (—e’e)de.
20 Jo 1+ 562 20 Jo 20

Interchanging the sum and the integral, we see that thisis ju

o~ =T k+1 o i(k+1)6 o, T k+1 el(k+1)0 2T
iy (= ¢kt g — N (DS g = .
> / SO,

Why may we interchange? We can justify the interchange dtleetdact that the sum of the absolute values
converges.

Problem: If ~ is the unit circle centered at the origin, fi[fgzndz.

We start by parameterizingby z = ¢, 0 < § < 27, 50z = e~ anddz = ie??df. Then
2w ) ) 2w )
/ 'z = / e (ie)dl = i / e~ in=10qp.
ol 0 0

If n =1, this isi 02” df = 2mi. Otherwise, we get

2T i(1—n)@ |27
i / ein=1049 — &
0

=0.
0

1—n




Note that instead of doing the algebra, we could have obdehat on the unit circle = 21, sof7 Zdz =
f7 2~ "dz. Applying our work from Problerh]3, we get the answer above.
Problem: Where in the proof of Goursat's theorem do we use the facttb®afunctionf is holomorphic? Is it
sufficient to know thaff is continuous?

Start by recapping the main ideas behind the proof. We begaaritinually splitting our triangl€” into smaller
triangles. These triangles converge to a point in the liamt we called this pointy. We then established the bound

‘/Tf(z’)dz‘ < 4"‘/:””) f(2)dz|.

Our goal was to show that this quantity tends to zere as z.
To do this, we Taylor expandeflz) around the pointy : f(z) = f(z0) + f'(20)(z — 20) + ¥(2)(z — 20).
Note that(z — zp) dividesi(z), soy(z) — 0 asz — 2.

f(z0) + f'(20)(z = 20)dz

T(n)

f(z)dz

T(n)

<

S BN OICENIE

The firstintegrand in this sum has a primitive, so the valuihisfintegral is zero. Let/,, = max, ., |[¢(2)].
Then|y(z)| < M,, andz — z < diam(T(™). Hence, the value of the second integral is at most p@rif) -
diam(7(™) . M,,.

Since the perimeter and diametef/df) both decay at a rate 6f ™, we establish the bound th\afT(n) f(z)dz| <
4-"C'M,, for some constant’. Hence,C'M,, is an upper-bound fr [ f(z)dz|, and since)(z) — 0 asz — z,
M,, — 0 as desired.

Now let us see what happens if we don’t know tlfias differentiable. Using only continuity, we can approxi-
matef(z) by f(zo0) + ¢ (2)(z — z0). Defining M,, as before, we can still bound our integral ©y7,,. We want to
say that,, tends to0, butlim. ., ¢ (z) = lim._,., Z2=LE2) which may not exist iff is not differentiable (and
certainly may not tend to zero). Thus, this approach fails.

We could also try the expressigitz) = f(z0) + ¥ (=), and then)(z) — 0 asz — zo. Unfortunately, without
the factor of(z — ), our bound on [, f(z)dz| will simply be perimT™) - M,, = 2-"C'M,,. Thus, our bound
for | [ f(2)dz| is 472 "CM,, = 2"C'M,,. Even thoughM/, tends to O, the factor af* may overwhelm it, so
this approach fails. From these attempts, it seems thatikigawat f was differentiable was a fairly important step
in the proof.

Problem: Prove Goursat’s theorem for triangles using only the faat ithholds for rectangles.

Note that it suffices to prove that the integral along anytrighngle is zero, since any triangle can be divided
into two right triangles by dropping an altitude.

Given a right triangle ABC, by drawing a series of rectangiesde the triangle, we can reduce the desired
integral to the integral along a seriessoftongruent triangles similar to ABC, each of which border dhiginal
hypotenuse (as shown in the figure).



]
o

/

A
L

Sincef is continuous on the original triangle ABC (a compact setkwew thatf is uniformly continuous on
the region of interest.

Thus, given any > 0, there exists @ > 0 such that for any two points,y in ABC with |z — y| < 4§,
|f(x) — f(y)| < e. If his the length of the hypotenuse of ABC, choaséarge enough so that the diameter of
each small trianglel/n, is less thard. Then for any trianglé}, and any point;, on that triangle writef (z) =
f(zk) + (), so that

fR)dz= [ fz) +(2)dz = | f(z)dz+ [ ¢(z)dz
T T T

Ty
Sincef(zx) is a constant, it has a primitive, so the first integral is z&eanwhile, since any point on triangle

Ty is within h/n of z;, and we chose to be such that/n < ¢, we know thaty(z)| = |f(z) — f(zx)| < . Thus,

| ka P(2)dz| < perim(T},) - €. But perim(T},) < 3h/n, so the integral off (z) along triangleT}, is at most3he /n.

Summing over alln triangles, we see that the integral ffz) along the entire curve is at moste. Since this

technique works for arbitrarily smadl, this implies that the integral of along any right triangle is zero, proving

the claim.

4 Math 372: Homework #3: Carlos Dominguez, Carson Eisenactavid Gold

HW: Due at the start of class by 11am Friday, September 27: Chater 2, Page 64: #1, #8. Also do: Chap-
ter 2: (Problems from me): (#1) In the proof of Liouville’s theorem we assumedf was bounded. Is it
possible to remove that assumption? In other words, is it enggh to assume that|f(z)| < ¢(z) for some
real-valued, non-decreasing functiong? If yes, how fast can we letf grow? (#2) a) Find all = where the
function f(z) = 1/(1 + z*) is not holomorphic; b) Let a, b, ¢, and d be integers such thatud — be = 1. Find all

z where the function g(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 — z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 — z as
1/2 — (2 — 1/2)). (#4) Do Chapter 1, Page 29, #18.



Math 372: Complex Analysis

HW #3: Due at the start of class by 11am Friday, September 27: Rapter 2, Page 64: #1, #8. Also do:
Chapter 2: (Problems from me): (#1) In the proof of Liouville’s theorem we assumedf was bounded. Is
it possible to remove that assumption? In other words, is it rough to assume that f(z)| < g(z) for some
real-valued, non-decreasing functiong? If yes, how fast can we letf grow? (#2) a) Find all = where the
function f(z) = 1/(1+ z*) is not holomorphic; b) Let a, b, ¢, and d be integers such thatud — be = 1. Find all

z where the function g(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the power series expansion
of f(z) = 1/(1 — z) about the point z = 1/2 (it might help to do the next problem first, or to write 1 — z as
1/2 — (z — 1/2)). (#4) Do Chapter 1, Page 29, #18.

1. Lety; denote the straight line along the real line from G0y, denote the eighth of a circle froR to Re'7,
and~s denote the line fronke’ to 0. Then by Cauchy’s theorem,

.2
/ e % dz=0.
Y1+72+73

2 R it/4\2 s
—/ e ? dz:/ e (€T im /4 gy
3 0
R
_ ei7r/4/ e~ gt
0

R
= /4 / cos (—t?)dt + isin (—t?) dt
0

We can calculate

R
= ¢im/4 / cos (t3)dt — isin (t2) dt
0

So we can calculate the Fresnel integrals by calculaﬁyrllgy2 e~ dz, taking R — oo, dividing by e?™/4,
and looking at the real and negative imaginary parts. Fiesslow the integral ovey, goes to zero:

2 7T/4 2 2160 .
/ e dz / e e i Re 4o
Y2

0
/4 )
< R/ 6_R cos 260 do
0

0 7/4—1/Rlog R

m 1 —chos(z—L> 1
< _ 2 Rlog R .
<R < ) e +R Rlog

10



The logLR term goes to zero aB goes to infinity. So we need to show that the first term goesrio. Adote
thatsinz > x/2 for positive z sufficiently close to 0, sincein0 = 0 and% sinz > 1/2 for sufficiently
smallx. So for sufficiently largeR the first term is less than or equal to

™ —R2. L _ ™ __R_
T Re B Riogr — Llo8 R log R |

4

which goes to zero aR goes to infinity. So, a& — oo, the contribution fromy, goes to zero. And we know
that aslik — oo, fOR e~ dr = V/7/2. So, finally,

- 2)dt — i sin (¢ = ﬁ . —1
/0 cos (t%)dt (t°) dt 2 VAt iva
Ver  Ver

=0 1

as desired.
8. Sincex € R, f is holomorphic in an open circle of radiuscentered atr, 0 < ¢ < 1. And by Cauchy’s
inequality,
|
) < P le

F (@) < =

Case 1 > 0. Forsome e < 1,
2] < |z + €]
thus,
1f(2) < AQ+ [z +¢€])" < AL + € + [])"

by both the given and the triangle inequality. And in Caushgéquality R is just. So by combining results
from above

ETL
|
< %(1+e+|x|)”
An!
< SR+ etlal + el
An!
< 1+ 971+, (4.1)
Now let Al
€
thus,

F™ (@)] < Ap(L+[a])".

Case 2n < 0. Forsome (< € < 1,
€=z —z| = |z -2

11



2.

by the reverse triangle inequality. When we rearrange thguality we see that
2| > |a| = le| = |z| + €

Sincen is negative, our goal is to minimize (fizt) in order to get an upper bound. Now, by combining our
result above with the Cauchy inequality we get that:

| |
@) < S ARG o
|
< 20 et fa] — elaly”
|
< S0t faly (.2)
Now let Aln]
thus,
£ (@)] < An(1 + fo)".
g.e.d.

In the proof of Liouville’s theorem, we had that

=v]liey

|f'(20)] <

whereB was an upper bound fgf. It only matters thaf3 is an upper bound fof in a disc of radiusk about
29, however. LetBgr be the smallest upper bound férin a disc of radiusk aboutz,. Liouville’s theorem
still holds if B — oo as long asBr/R — 0 for every choice of. Alternatively, we just need to grow
slower than linear; sayf(z)| is less tharC|z|!~¢ or C|z|/ log |z| or anything like this (for those who have
seen little-oh notationf (z) = o(z) suffices).

(a) f is holomorphic wherever its derivative exists:

423
! e —
That is, whenever*  —1. This givesz = ei™/4, 317/4, 5im/4 andeTin/4, or Y2 4 Y2, Y2 4 32
Y2 _ Y2 and¥2 — ¥
(b) Thead — bc = 1 condition preventg from being a mostly-constant function with an undefined ®alu
atz = —d/c. (That s, ifad — bc = 0, thena/c = b/d, and so the function would simply collapse to
the value ofa/c.) So
(2) = (cz+d)a— (az +b)c 1
A (cz +d)? "~ (cz+d)?

The function is then not holomorphic at= —d/c.

12



3. Just use the geometric series formula:

1 1
1—2z 1/2—(2-1/2)
B 2

C1-2(2-1/2)

=> 2tz —1/2)".
n=0
4. Letf(z) =) o2 yanz". Then

F(2) = an(zo0+ (2 = 20)"
n=0

nOOO m=0 .
- mzzjo(z — )™ (;nan <”>zg—m>

where R is the radius of convergence of the original poweeséor f and second limit is evaluated by noting
1< /() < nm/™andlim, . n™™ = 1. Since the inner sum has the same radius of convergence as

the original sumg still lies in the disc of convergence in the inner sum; herictha coefficients of: — 2,
converge, ang has a power series expansion abgut

Homework 4: Due at the start of class by 11am Friday, October 1 (even if this is Mountain Day): Chapter
3, Page 103: #1, #2, #5 (this is related to the Fourier transfim of the Cauchy density), #15d, #17a (hard).
Additional: Let f(z) => > .a,z"andg(z) => . _,b,2™ be the Laurent expansions for two functions
holomorphic everywhere except possibly at = 0. a) Find the residues off(z) and ¢g(z) at z = 0; b) Find the
residue of f(z) + g(z) at z = 0; c) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at

z=0.

13



5 Math 372: Homework #4: Due Friday, October 4, 2013: Pham, Jesen, KolQjlu

HW: Due at the start of class by 11am Friday, October 11 (everfithis is Mountain Day): Chapter 3, Page
103: #1, #2, #5 (this is related to the Fourier transform of tle Cauchy density), #15d, #17a (hard). Additional:
Let f(2) => 07 -apz"andg(z) => > _,by,2z" be the Laurent expansions for two functions holomorphic

everywhere except possibly at = 0. a) Find the residues off(z) and g(z) at = = 0; b) Find the residue of
f(z) + g(z) at z = 0; ¢) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at z = 0.

5.1 Chapter 3, Exercise 1

iz —iTz
e ~—e¢ '~

Exercise 5.1.Using Euler’s formulasinmz = < , show that the complex zeros i 7z are exactly the
integers, and that they are each of order 1. Calulate thedkesiof—— at z = n € Z.

sin 7z

Solution: To show that the complex zeros«fi 7z are exactly the integers, we will show trﬁaﬁ%ﬂ =0
if and only if 2y € Z. _ _
First prove the forward direction. We see that"5<—— = 0 gives

eiwzo _ e—i7r20. (51)
Sincezy = x + iy with z,y € R,
MY — oI TY, (5.2)

For complex numbers to be equivalent, their magnitudes brifte same. Thus,
e =¢e". (5.3)

This implies that-my = 7y, soy = 0. The angles corresponding to Equafion 5.2 must be congroedtlo2r as
well. Thus,
mx = —mwx mod 2, (5.4)

which meansrz = 0 or 7. So we have
2mx mod 27w = 0, (5.5)

which implies thatr is an integer. Thus € Z. Sincey = 0, we havezy = z, implying zy € Z.
To prove the backward direction, considgre Z for z, even,

. eimz _ p—imz
sinmTzyg = 1 122,
= —— =0 (5.6)
Similarly for zy odd,
. eimz _ g—imz
sinmTzyg = %
_ —1; Lo (5.7)

Thussin 7z = 0 if and only if zy € Z. So the zeros ofin 7z are exactly the integers.
Next we must show that each zero has order 1. We refer to Timebrein Stein and Shakarchi.
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Theorem 5.2. Suppose that f is holomorphic in a connected opeifiséias a zero at a pointy € €2, and does not
vanish identically ir(2. Then there exists a neighborhobdc (2 of =y, a non-vanishing holomorphic function g on
U, and a unique positive integer n such thdt) = (z — z0)"g(z) forall z € U.

Sincesin 7z is analytic, take its Taylor series abayt We add zero to write asz — zg + zo. Using properties
of the sine function, we claim

sinmz = sin7w(z 4 20 — 29) = sinm(z — 29) cos w2y + cos (2 — zp) sin 7wzp. (5.8)

Note this statement does require proof, but will follow fratandard properties of the exponential function (or
from analytic continuation). The reason some work needg tiddme is that — zy heed not be real, but the relation
above does hold whenis real. What we are trying to do is understand the behavidhefunction near, from
knowledge neab (asz — z( is close to zero). This is a common trick, but of course whaktesahis tractable is
that we have the angle addition formula for sine.

Whenz, is an integer, we always hagen 7z = 0. If z is odd thencos 7z is -1 while if zy is even it is 1.
Thus for oddz,

) 7r 73 7o
smﬂ'z:—ﬁ(z—zo)l—|—§(z—z0)3—ﬁ(z—z0)5—|—--- (5.9)
and for every, ; ;
. ™ s T
sinmz = F(Z —z)t - g(z —20)% + y(z — )% — - (5.10)

We thus see that all zeros are simple.
We now turn to finding the residue at= n for 1/ sin 7z. From our Taylor expansion above, we have
1 1 1 1
= = (5.11)

sinmz sinm(z —n)cosmn costnsinm(z —n)’

The problem is now solved by using the Taylor expansion of sind the geometric series. We hawes mn =
(=1)", so

L _ 1

sin 7z W(Z—Zo)—%ﬂ?’(z—zo)g’—k---
—1) 1

( n
m(z —20) 1= (72(z — 20)% + - -)
_ (=1)" 1 1 2
= m<1+<gﬂ'2(z—z0)2+...>+<§ﬂ.2(z_z0)2+,..> _|_>

Note that each term in parentheses in the last line is dleigifp (» — z0)?, and thushoneof these will contribute to
the residue, which is simplf—1)" /7.

(5.12)

5.2 Chapter 3, Exercise 2

Exercise 5.3.Evaluate the integral

/°° dx
oo L+t
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Solution: Consider the functiorf(z) = 1+124. This function has poles at

1/f(2)
142 =
s = (i(Ftn3), (5.13)
Consider the contour of the semicircle in the upper half @lahradiusR, denotedy. Denote the part of the

contour along the real ling, and the part along the ase. Note that two of the poles of(z) lie inside this contour.
Thus by Cauchy’s residue theorem,

1 ) )
— j{ fdz = ReSf(e”r/4) + ReSf(eZ37r/4). (5.14)
.

211

To find the residues, write

1 1 1 1 1
zZ) = - T 3 -5 T N
/) 1424 <2—624><z—el%><z—el%><z—e’%>

Thus
4 1 1 1
Resf(e“r/‘l) = < - T -37r> < - T <57\'> < T <77\'>
et — et elr —ett et — et
_j3m 1 1 1
= e 4 —
(i) (5) (+75)
142
= — 5.15
Wi (5.15)
and similarly
Resp(ets) = e™s <1+z‘> <1—i> <2>
1—1
= 5.16
Wi (5.16)
Thus we have
1 1+7 1—2
— d = - 4+ —
) S v R
B )
= e
T
fdz = —. (5.17)
foe = 5
Now, note that
j{fdz:jé fdz = fdz+/ fdz. (5.18)
Y Y1+72 71 Y2

16



Observe that

L
dz = —d
/y1f2 /_R1+$4w

and that
S|
fdz = / ——dx
/Y2 —Rl+z4
S|
/fdz = ‘/ 4dw‘
2 _R1—|—Z
< -
- ggy}; 1—|—z4 mh
1
ot
Thus
lim /fdz < lim i =0
R—0o0 72 —>ooR4—1 '

Hence, as® — oo, fy2 fdz — 0. Therefore af? — oo we get our final result;
R

1 ™
lim d:p + hm dz = —
R—oo J_p 1+x 72 f \/5

/OO 1 d T
—dr = —.
U V2

5.3 Chapter 3, Exercise 5

Exercise 5.4.Use contour integration to show thg{+°° ¢ 2"””)§2d = Z(1 + 27|¢])e=2I¢l for all ¢ real.

—2miz€ —2miz€

Solution: Let f(z) = 1+22) (zfi)Q(Z_i)2. We see thaf (z) has poles of orde? atz = +i. Thus

res,, f(z) = lim i(Z — 20)2f(2).

zZ—2z0 A2

Alternatively, we could write our function as

__9(2)
f(Z) - (Z o 20)27
and then we need only compute the coefficient ofthez, term of g.
Now consider the residue a3 = i:

res,,—;f(z) = lim i(e—zng(z +4)72)

z2—i dz

= lim(—2mie ™% (2 4 i) 72 — 272 (2 4 )73

zZ—1

1 1
= imfe%g — Zie27r5.

17
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Forzy = —i, we have:

od oy .
reSZO:_if(z) = )];_}rnza(e 27TZZE(Z _ Z) 2)
= lim (—27mife 2" (2 — )72 — 272 (5 — )73
z——1
1 1
- im&4ﬁ+zm4ﬁ. (5.25)

Now let us first consider the case wher: 0. We will use the contouy of a semicircle oriented counterclockwise
in the upper half-plane with radius. Call the portion ofy along the real line;; and the arc portion». Note that
there is a pole inside at zy = i. By the residue formula, we have that

1 1 1
/f(z)dz = 2mi <—7Ti§62”§ — —i62”§> = —n2ee?™ 4 Zqe?e, (5.26)
. 2 4 2
We also know that .
/ f(z)dz = lim / f(2)dz. (5.27)
— oo R—00 "

Along 7, z = Re? anddz = iRe?df, wherez = Rcos 6 + iR sin§. Thus

™ e—27ri§Rei9iR€i9
2

Then it follows that

0 e—2m’§R cos 9627r§R sin GiReiG
< ,
/72 flz)dz| < /0 (1= ey do
™ —27|&|Rsin
o | (1—-R2)?
g R TR
——df) = ————. 5.29
A (5:29)
Taking the limit ask goes to infinity, we have
. . TR
2
Thus
Rli_I)n / f(z)dz=0. (5.32)
X Jy2

Solimp_, e fV f(2) = limp_ e f71 f(2). It thus follows from Equatiof 5.26 that
+o0 e—27rigc§ 1
_ 24 27 27€
/_OO mdl’ = -7 66 + 57'('6

5 (L+2¢]) e (5.32)
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Now consider¢ > 0. We will use the contouty of a semicircle oriented counterclockwise in the lower half
plane with radiusk. Call the portion ofy along the real liney; and the arc portion,. Note that there is a pole
inside~ at zo = —i. By the residue formula, we have that

1 1 1
/f(z)dz = 2mi <—m'£e_2”§ + —Z'e_27r5> = —m2e ¢ — Zqem 2, (5.33)
, 2 1 2
Also note that,
+00
f(x)dx = — lim / f(z)dz. (5.34)
oo R—o0 7

Along 7, z = Re? anddz = iRe?df, wherez = Rcos 6 + iR sin 6. Thus,

0 _—2mwi§Rcos O 27r£Rsin€'R 10
€ € 11e
: f(z)dz :/ 1= ey de. (5.35)
2

—Tr

Accordingly,

/YQ f(z)dz

< / 1)

0 ReZW\ﬂRsinB
S /_7T (1 — RZei20)2 do
0
R
< .
o /—7r (1_R2)2 @
TR
Taking the limit ask goes to infinity, we have
TR
i < li —— =0. .
A | [ TP < i ey =0 (5.37)
And thus,
lim / f(z)dz=0. (5.38)
R—o0 7o
Solimp_, s fV f(2) = limp_e f71 f(2). It thus follows from Equatiof 5.33 that
400 e—2m’m§ 1
- - | 2,278 - __ —2n¢
/_OO (1+w2)2daz ( m€e 2776 >
= g(1+2ﬂ\§!)e‘2”‘5‘ (5.39)
Thus for all¢ real,
T e = T (4 2mfe]) e 5.40
/_Oomw—g(Jrﬂf\)e (5.40)
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5.4 Chapter 3 Exercise 15d

[ For any entire functiory, let's consider the function/(®). It is an entire function and furthermore we have the
real part off is bounded so:
u—l—iv‘ _

ef| = e €] < 00

Hencee/ is bounded and therefore, by Louisville’s Theorerhjs constant. It then follows that is constant .
Alternatively, we could argue as follows. We are told thd peat of f is bounded. Let’s assume that the real

part is always at mosB — 1 in absolute value. Then if we considefz) = 1/(B — f(z)) we have|g(z)| < 1.

To see this, note the real part Bf— f(z) is at least 1. We again have constructed a bounded, enticidonpand

again by Liouville’s theorem we can conclugéand hencef) is constant.

5.5 Chapter 3 Exercise 17a

Exercise 5.5.Let f be non-constant and holomorphic in an open set containiegctbsed unit disc. Show that if
|f(2)] = 1 whenevetz| = 1, then the image of contains the unit disc.

Solution: Supposef(z) does not have a zero in the unit didk, Then1/f(z) is holomorphic inD. Note that
since|f(z)| = 1 wheneveliz| =1, [1/f(z)| = 1/|f(z)| = 1 wheneverz| = 1 as well. Butf(z) is holomorphic
in D, implying |f(z)| < 1in D by the maximum modulus principle sin¢g(z)| = 1 on the boundary ob. We
find 1 < |f(z)| < 1in the unit disk, which implies that our function is constastits modulus is constant (we
would like to use Exercise 15d, but that requires our fumctmbe entire; fortunately we can obtain constancy by
the Open Mapping Theorem), contradicting the assumptiathytis not constant!

Letwy € D. Consider the constant functigiiz) = —wy. On the unit circle)f(z)| = 1 > |wo| = |g(z)| for
all |z| = 1. Thus by Rouc#'s theorem,f(z) and f(z) + g(z) have the same number of zeroes inside the unit circle
(ie, inD). But we have shown that(z) has at least one zero, thus for some0 = f(zw) + 9(zw) = f(2w) — wo.
Thus for allwy € D, there exists,, such thatf(z,,) = wy. Thus the image of (z) contains the unit disd]

5.6 Additional Problem 1

E Let: - -
flz)= Z an 2" g(z) = Z by, 2™
n=-—>5 m=—2
1. We have:
resof =a_1 respg =b_
2. We have

-3 o)
f(z)+g(z) = Z anz" + Z (an + bp)2"

n=-—5 n=-—2

Soreso(f +g) = a1 +b_.

IHint from Professor Miller
2Hint from Professor Miller
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3. Wehave-1=-5+4=-4+3=-34+2=-24+1=-140=0-1=1-2so0:
reso(fg) =a_s5by+a_4bs+a_sby+a_oby +a_1by+apb_1+ayb_y

4. We have (assuminfg # 0):

f(2) Do n 2"
9(2) 22:4 b 2™
1D, gan—32"
23y by 2™
1 Qg 2"
- Ln=—2 In=3 (5.41)

b_gz 1-— (—ﬁ 2:1 bm_2 Zm) ’

As z — 0 the final quantity in parentheses tends to zero, and thus wexgzand using the geometric series
formula. We only care about the constant term of this fractas it is multiplied byl /b_,z and thus only the
constant term contributes to the pole. This is a very usdjseovation. It means that, when we expand with
the geometric series, we can drop many terms, as we only ndextp terms that contribute to the constant
term. Remember, we are not trying to find the Taylor expansfdhis function, but rather just one particular
term. We can thus write:

So:

Homework due Friday October 18 (though you are strongly eraged to hand it in on Friday, October 18, you
may hand it in by 10am on Monday October 21, but 10am does nahrh@:05am!!!): The Midterm!

HW: Due at the start of class by 11am Friday, October 25: Chaper 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Clapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the function f(z) = 1/(1 — 2%)* and find the residues at the poles. (2) Consider the map
f(z) = (2 —14)/(z + 7). Show that this is a 1-to-1 and onto map from the upper half plae (all z = = + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product forcos(7z) (this is also problem #10b in
Chapter 5, and the answer is listed there), and fotan(7z).
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6 Math 372: Homework #5: Due Friday October 25: Pegado, Vu

HW: Due at the start of class by 11am Friday, October 25: Chapér 5: Page 155: #6, #7, #9 (extra credit:
what is the combinatorial significance of this problem?). Clapter 3: Page 104: #10. Additional Problems:
(1) Find all poles of the function f(z) = 1/(1 — 2%)* and find the residues at the poles. (2) Consider the map
f(z) = (2 —14)/(z + 7). Show that this is a 1-to-1 and onto map from the upper half plae (all z = = + iy
with y > 0) to the unit disk. (3) Calculate the Weierstrass product forcos(7z) (this is also problem #10b in
Chapter 5, and the answer is listed there), and fotan(7z).

6. Prove Wallis’s product formula

T 2-2 4-4 2m - 2m

2 1-3 3.5 2m—1)-2m+1) "

[Hint: Use the product formula fosin z at z = 7/2.]

6. We know (from p. 142) the product formula for the sine funatie

sin:rz) T (1_2_22)

n=1

Letz = 1/2. Then,

Lo TI(-2) - ST (- )
D% - (M) ©

But this implies that

g: ﬁ ((271 +(12)n()22n— 1))’

proving the identity.

7. Establish the following properties of infinite products.
(@ Show thatif|a,|? converges, and,, # —1, then the producf(1 + a,,) converges
to a non-zero limit if and only iEa,, converges.
(b) Find an example of a sequence of complex numper$ such thatXa,, converges
but[[(1 + a,) diverges.
(c) Also find an example such thgft(1 + a,,) converges an&a,, diverges.
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7. a) Letd_ |a,|* converge withu; # —1.

(<) First assumé_ a,, converges to a nonzero limit. Without loss of generality weyrassume that each
a,, satisfiesla,| < 1/2; this is clearly true in the limit (as the sum converges, tmands must tend to zero).
We assume this to facilitate expanding with logarithms. <iaer the producf[(1 + a,). Taking logs, we see
log (TI(1 + an)) = > log(1 + ay,). Settingz = —a,, and using the Taylor expansion

2 2 2t

log(l1+x) = —w+7—§+Z—'~,

we see that ) X
aTL aTL
o (T +a0)) = 3 (= G+ 5 =),

In general, notice that

k k
It R YL
k=2 k=2
or
2 2 ? 2 2 2
—lz|*(1 + |x| + |z +...)§‘—7+§—--- <lz|*(T+ |z| + |z|*+...).

If a sum > = converges to a nonzero limit, we know that converges to zero; thus we may assume (without

changing convergence) that < % Thus using the geometric expansion, we seelthatz| + [z|? +--- = 1+|m|
Becauseéz| < i, we have thatl_lw < 2. Hence we have that
2 3
X X
Oz < [—= + = — o < 2022
o < |-G+ 5 -] <2
Recall that we were looking &tg ([](1+a,)) = > (an — % + % —-++). Since}_ a,, converges, we know

eventually we must have.,,| < 1/2, so we can assumle,,| < 1/2 without changing convergence, and thus use
the simplification involving the geometric series expangieveloped in the previous paragraph. Thus we write

log (H(l + an))

Al
—_
S 1)
3 3
T
[\ )
5 NE
— +
N—
)
I «ls
|
Y
3
+
[\
=
3
j\)

(6.2)

A QUICK WORD OF WARNING. THE ABOVE EQUATION, AND THE ONES BELO W, ARE A LIT-
TLE ODD. REMEMBER THAT OUR SEQUENCE NEED NOT BE JUST REAL NUMB ERS. AS SUCH,
WE MUST BE CAREFUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE A BUSE NOTATION
A BIT — WHEN WE WRITE a < b+ ¢, THIS MEANS THE DESIRED RELATION IS TRUE UP TO A
LINEAR RESCALING. REALLY WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |c¢|. WE
REALLY SHOULD WRITE THINGS LIKE  |a — b| < ¢, BUT IN A HOPEFULLY OBVIOUS ABUSE OF
NOTATION....

Since by assumption boflt a,, and>" |a,,|? converge, we must have that a,, + 2 |a,|? is finite, call it L.
Thuslog (TT(1 + a,)) < L, so[](1 + ay,) < e, which is again finite. Thus the product converges.
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(=) Nextassumg[(1-+a,,) converges to a nonzero limit. Sinfg(1+a,,) is converging to a nonzero limit, the
terms in the product must be convergind o we must havg:,, | approaching zero and we can assymg < 1/2
without affecting convergence. We now write:

log ([[(1+an) = Z(an—%“r%"—---)

vV
—
3
B
N |3
s
B
w
Tw
—
v
—
S

3

|
B
s

|
B
3
T
|
~—

(6.3)
As before, we substitute in using the geometric series esipan
log ([T +an) = D (an—lanl* —lanf> =)
- Z (an = lan*(1 + |an| + |an|® +--+))
> > (an—2lan) = Y an—2) |anl*
(6.4)

Thus we see thabg ([](1 + an)) + 23 |an|* > 3 an. Since[](1 + a,) and}_ |a,|* converge, we must
have thatog ([](1 + a,)) + 2 |a,|* are both finite. Thus our sui a,, is bounded by finite terms, and so the
sum must also be finite itself. Hence the shu,, must converge to a finite limit.

b) Let{a,} = {%, %, %, \7—%, ... }. The sum>_ a,, converges by the alternating series test, since the absolut
value of the terms approaches zero (one can show this by shdhat first the odd terms tend to zero in absolute
value and then that the even terms do as well).

Consider now the produgf (1 + an). For an arbitrary integelv, look at the2/N-th partial product:

f(es) = (o)) (o) (-
< () ()

(D)) - () () e

Thus when we evaluate at an even t&xm, we see that

(6.5)

2N
lim (1+a,)= lim (2N +1) = oo,

2N —o0 2N — 00
n=1

so the product diverges. Hence the product diverges at evers iand thus cannot converge in general.
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c) For a trivial example, lefa, } = {1,—1,1,—1,... }. The sumy_ a,, does not converge because the limit of
the Nth partial sum asV tends to infinity does not converge; it alternates betweand1. However, the product
will clearly converge:

[Ton=0+DA -1 +1)(1 1) = (1)(0)(1)(0)-- =0,

For an example in which the sum diverges but the product cgaseo a nonzero limit, consider the sequence
{anlagn—1 = 1/v/n, a9, = —1/(1 + /n)}>2 . Grouping the pair&@n and2n — 1 together, we see that

g“m:i% 1+f> >

n=1 n=1

We'll show that this series diverges. Notice that for every n
o0 o0 1
> -
n=1

n=1
and since the series on the RHS diverges, by comparisorstesipes the series on the LHS. $0a,, diverges.
However, grouping again the even and odd pair terms, for évene have

N Ny 1 1
A+an) =0+ —-—=)1-——
L[l +a H( v Sy ey
_jlv—/f 1 Ly
f Vn+1 n+n
7 ~atyatio1
\/ﬁ—i—n n=1
and for odd N,
N 1
L+ am) =1+ —=
L0+ =0+ 75
which converges to 1 a¥ — oo. Thus,
H(l—i—an):l.
n=1
Hence{a,} is the desired sequence. O
9. Prove that if|z| < 1, then
1+2)1+22)1+2H0+28)--- = ﬁ <1+z2’“) -
P 1—2z

9. Consider the produdtl + z)(1 + 22)(1 + 2*)(1 + 28) ---. Suppose we tried to multiply this product out:
to get one term, we would need to choose eitherltbe the power ofz in each term to multiply by. For example,
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one term we could get out is simply where we would choose thein the first term and thé in every succeeding
term; another way to say this is to write= z x 1 x 1 x ---. To write out the entire product, we would have to
make sure we evaluated every possible choice of ones andpoive

But this isn’t so bad if we think of choosing terms as countimg@inary. In binary counting, a number is written
entirely in terms of Os and 1s. For any given number, each digresented a choice between the digit 0 and the
digit 1. If we think of selecting the power aof in a term as pickingl for a given digit in binary counting, and
selecting thd in a term as picking for a given digit in binary, we can identify a bijective caspondence between
integers written in binary and products from our term (whke £xception thadt00000000 - - - = 1 in our product).
For example, the binary numb@él = ---000101 = 22 x 1 + 2! x 0+ 2% x 1 = 5, and if choose the terms
(2)(1)(2*)(1)(1) - - -, we see that we get the product

To evaluate our product we must sum over all such possibleesoSince all possible binary numbers together
yield precisely the nonnegative integers, this bijectiogespondence importantly tells us that the sum over ah suc

products will be the sum over all nonnegative powers of z, @rz + 22 + 23 + .... Thus we havel + z)(1 +
2) 1+ 21 +2%) - =14+ 2422+ 23 +.... Since|z| < 1, we can use the geometric expansion ¢d write
(14 2)1+2%) (142N (1 +2%) - = {1, as desired.

Significance for combinatorics: notice the way in which oalution invokes combinatorics (such as seeing
how many ways we can choose our terms to make a product).

Alternatively, we can truncate the product and multiplyloy z. Note that(1 — z)(1 4 z) = (1 — 22), then
(1-2%)(1+2%) =(1-2%),andso

1—2)1+2)(1+22)1+2YH---(1 +22k) — =2

as|z| < 1the latter tends to 1, and thus

k+1
22

1
1 L2428 (1422 = - .
(T+2)1+29)1+2%)---(1+27) TS o1 1S

Chapter 3

10. Show that ifa > 0, then

/‘X’ log p ™
————dx = —loga.
0 2+ a? 2a ®

[Hint: Use the contour in Figure 10.]

10. We will first find the residue at: and then integrate over the given contour. [fét) = logz \where we

z2+a2 1

take the branch cut of the logarithm alongb for all b € [0, o0). Furthermoreja is a zero of ordet. Finding the
residue ata, we have
log 2 . log z logia loga =

res;f = lim (2 —ia)—=———= = lim = = _
mf z—>ia( )22 —+ CL2 z—)ia( z 4+ z'a) 2ia 2ia 2a

Label the contours from the portion on the positive real gxisthe larger arey, the portion on the negative real
axis~ys, and the smaller arg,. Chooses < min{a,1}a, R > max{a,1}. Parametrizey; with z(t) = ¢ from e
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to R, vo with z(t) = Re' from 0 to 7, v3 with z(t) = t from —R to —e, and~4 with z(t) = ee’ from 7 to 0.
Integrating over the, and taking absolute values, we have

™ log Re" it
= ————— Rie'dt
: /0 (Re)? + a? e

log z
vy 22+ a?

™| log Re®
= Jo | R2e2it 1 g2

B /7r log Re'
o | R2e2it 1 g2
B / ™| log R+ it
o | R2e2it 1 g2

S/ logR—l—\ztl Rt
0

Rie'| dt

Rdt

Rdt

|R2e2it| + |a2|

T logR+t TlogR+t logR+ 7
:/ Retit a?dt</ RS T

‘ e ’4—? 0 +? +?

sincet,log R > 0. SinceR — oo, log R+ m, R + % — o0, by L'Hopital,

log R+ . 1/R . 1
lim ————— = lim T lim P =0
R—o0 R_|_‘“‘ R—)ool_g#2 R—)ocJJR_W

Thus, askR — oo, the contribution alongs vanishes td. Similarly, for~,4, we have

log = log ee™ ey
22 +a? a2 (ee')? + (eett)2 1 a2 g
Y4

logee™

= || @erit ¢ az €e

B 01 logee'

— )| e2edit 1 g2
B O] —loge+it

— || eedit 1 g2

0 .
S/ loge+ |it| it

- [P+ e

0 _ 0 _ _
S/ loge+t gt < / loge+tdt < loge+7rdt
s ™

. 2 2 — 2
|662“|+‘a—6‘ e—l—‘a—ﬁ‘ e—l—‘a—e‘

dt

edt

edt

sincet, —log e > 0. Sincee — 0, — loge + m, € + ‘ N oo, by L'Hopital,

—1 -1 -1
limogie‘:f:lim%:limﬁzo.
e—0 E‘i’aT e—)Ol_‘Z_z e—)OE_aT
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Thus, as — 0, the contribution along, also vanishes t0. For the integral ovety, v3, we have

log = R Jogt ¢ logs
/ %dZZ/ %d’”/ s
ity 20 TG e °ta _Rp $*+a
Letting s = —t, we have

1 B ogt € log—t
/ 20fz2dz:/ 7752? 2dt+/ = 7(5))%—1— S(—1)dt
m+ys ? a € a R\ a
R R
logt log —t
= ————=dt ———dt
/5 t2 + a? +/E t2 + a?
B Nogt Rlogt + i
— idt—i— Mdt
. t2_|_a2 . t2_|_a2

R logt Y| B logt t|"
:2/; mdt“‘lﬂ/ﬁj mdtZQ/ﬁr 2+ 2dt+—arctana

Thus we have, aB — co, e — 0 and ases;, f = ‘82 + o=, we have

2ia
R ogt t|® 1
lim (2/ o8 dt —|— — arctan = 2mi < oga i)
€ € (1 2
R ogt R 1 2
lim <2 / 20g dt> lim <— arctan > Toea + i
R—00,e—0 e t“+a R—00,e—0
2

R—00,e—0 t2—|— a a
a a
B ogt ] 2
lim 2/ o8l ) 4 T - Tlosa T
R—00,e—0 e t7+a a a a

R oot 1
lim 2/ 08t ) = Tosd
R—00,e—0 . t2+a? a

> logt mloga
5 dt =
0 t?+4a? 2a

as desired. O

Additional Problems

1. Find all poles of the functiorf (z) = 1/(1 — 22)* and find the residues at the poles.

Letg(z) = 1/f(2) = (1 — 2%)* = ((1 + 2)(1 — 2))*. We see that the zeros gfare+1, each with orden.
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Hence, the residues are
1 AN . 1
resi(f) = lmm(;) R e

_ll—>16<d>3
(=

= lim ( 4)(=5)(— )( npaL
= lim "
_H1(1+z)7 Y
and
1 d\*! . 1
ves—1(f) = lim, 7=, (E) e+ D) g
o LAY
z»-16 \dz/) (z—1)
— lim (4)(5)(6)—
B (z—=1)7
g 220 =205
sl (217 =27 32
Thus we have found the desired residues. O
We sketch an alternative proof. We have
1 1
1@ = ToypETy
B 1 1
(- DA(z—-1+2)4
B 11 1
= (2_1)424 (1+ZT_1)4
B 11 -1 (z=1)2 (2-1)3 :
= (2_1)416<1 5 + 1 3 +-0 ). (6.6)

The difficulty is we have to expand the factor to the fourth powell enough to identify the coefficient 6f — 1)3.
A little algebra shows it i&%(z —1)3, and thus (remembering the factor 1/16) the residue is{6g82.

2. Consider the mag(z) = (z — i)/(z + ). Show that this is a one-to-one and onto map from the uppér hal
plane (allz = = + iy with y > 0) to the unit disk.

2. First we'll show that the range gfis the unit disk. Writingz = x + iy wherez,y € R, y > 0, then we have

x+ (y—1)i
r+ (y+1)i

a? 4+ (y — 1)
2+ (y+1)2

[f(z +iy)| =
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and sincey > 0, /22 + (y — 1)2 < /22 + (y + 1), f(= + iy) < 1, so the range of is the unit disk.
Now we’ll show that f is injective. Suppose fer, z, with imaginary part positivef (z1) = f(z2). Then

Z1 — ) zZ9 — 7
z21 41 - 2o +1
(1 —i)(z2+1) = (22 —i)(z1 +1)
219+ 21t — oyt +1 = z1z9 —z10+ 291+ 1
2i(z1 —22) = 0
z1 = 2o. (6.7)

Here’s another, faster way to do the algebra. We add zero:

Zl—’i o Zg—i
m N 2041
z21+1— 21 B 29+1— 21
z1+1 N zo +1
U R (6.8)
21+ zo+1

it is clear that the only solution is when = z,.

Now we’ll show thatf is surjective. Given any € D, settingz = (w + 1)i/(1 — w), we see that

()i . .
f= T L et ic(owi
(i o . (w+1)i+ (1 —w)i

(1—w)

Now we’ll show thatz has positive imaginary part. Writing = « + iy with z, y € R, 22 + 32 < 1, we have

_Z,(ac+1) +iy =2y +i(l—y* —2?)
-z -y (I—2)2+y?
So the imaginary part is — (22 + y?) > 0, S0z has positive imaginary part. O

3. Calculate the Weierstrass product fass(7z) (this is also problem 10b in Chapter 5, and the answer isdiste
there) and fortan(7z).

3. By the Euler formulas for sine and cosine, we see that
eiwz 4 e—iwz
2
ei%(eiﬂz + e—iwz)
21

(ezﬁr(z—i-%) _|_e—i7r(z—%))

21
eiﬂ(%—z) _ e—iﬂ(%—z)

. 1
= oF = sm(7r(§ —2))

cos(mz) =

30



and since the zeros efn 7z occur only at the integers, the zeroscof 7z occur atm + % for all m € Z. Thus,

define the sequend@i,—1 = n + 3, as, = —(n + 3)}°2,, which are precisely the zeros afs wz. Furthermore,
since the zeros of sine are of order 1, the zeros of cosindsreforder one. Thus we have, fog(z) = Z?Zl ZJ—J

grouping together the paifs: and2n — 1, the Weierstrauss product efs 7z is, up to a factor of"(*) for some
entire functionh,

710_:[0(1 - i)ehm(z) = g(l — ni l)(l _ _(nz+ l))n:ljl e
- E(l - (ngr %)2)6 rom1 hm (2)
- :0(1 — %)623"_1 hin(2)
Considering[ [ (1 — iy, we'll show this product converges. Note that
”i;% :ni; (2:02 +§:O:0(2n—1kl)2
Z’;% :1;(2”—1%1)2

so since the sum on the RHS is bounded? , % a convergent series, the series on the RHS converges as well
and as the convergence is absolute, the product converdpes. (Tip to the exponential of an entire function) the

Weierstrauss product @bs 7z is T[> (1 — ﬁ).

Next, notice thatan(rz), has poles at odd integer multiples f and so by definition does not have a Weier-
strass product.

HW: Due Friday, November 1: (1) Evaluate [ cos(4x)dz/(z* + 1). (2) Let U be conformally equivalent to
V and V conformally equivalent to W with functions f : U — V andg : V — U. Proveg o f (¢ composed
with f) is a bijection. (3) The Riemann mapping theorem asserts thaf U and V' are simply connected
proper open subsets of the complex plane then they are confmally equivalent. Show that simply connected
is essential: find a bounded open sdt that is not simply connected and prove that it cannot be confonally
equivalent to the unit disk. (4) Chapter 8, Page 248: #4. (5) lkapter 8: Page 248: #5. (6) Chapter 8: Page
251: #14.
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