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Course Information

Course Description: Differential calculus including analytic
geometry, functions and limits, derivatives, techniques and
applications of differentiation, logarithmic and trigonometric
functions.

Objectives: To convey to the students the beauty and utility of
differential calculus, and to illustrate some of its applications in
science and engineering.

Text: Single Variable Calculus - Early Transcendentals, 7th Ed.
by James Stewart or a Similar Text.
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Course Information

Discussion Sections: Each student must enroll in one of the
associated discussion sections. Attendance at discussion
sections is mandatory.

Quizzes: There will be a quiz during each discussion section.

Homework: Homework assignments are to be completed online.
Homework assignments are due at 11:50 AM on Fridays (when
assigned on Mondays or on Fridays) and at 11:50 AM on
Wednesdays (when assigned on Wednesdays).
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Course Information

Calculators: Students may use calculators when completing
homework assignments. Graphing calculators are prohibited
during quizzes and exams.

Exams: There will be two midterm exams and one
comprehensive final exam.

Midterm I: 12:00 - 12:50 PM on Wednesday, 25 April 2012

Midterm II: 12:00 - 12:50 PM on Monday, 14 May 2012

Final: 12:00 - 3:00 PM on Tuesday, 12 June 2012
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Course Information

Grading:

Quizzes 10%

Homework 10%

Midterm I 20%

Midterm II 20%

Final 40%

Academic Integrity: Students are expected to uphold the
highest standards of academic integrity.
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Course Information

Additional Resources:

The Math Lab in South Hall 1607

Campus Learning Assistance Services (CLAS)

Other Important Dates:

Friday, 27 April 2012 is the last day to drop the class.

Monday, 28 May 2012 (Memorial Day) is a university
holiday.

Accommodations: Any student requiring accommodations or
services due to a disability must contact the Disabled Students
Program. I encourage any such students to contact me as well.
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Mathematics and Philosophy

Galileo Galilei
1564-1642
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Functions

The fundamental objects that we deal with in calculus are
functions.

A function f is a rule that assigns to each element x in a set D
exactly one corresponding element, called f (x), in a set E . The
set D is called the domain of the function f . The range of the
function f is the set of all possible values of f (x) as x varies
throughout the domain D.
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Four Ways to Represent Functions

From now on, we will assume that D and E are sets of real
numbers.

There are (at least) four possible ways to represent a function
f : D → E :

Verbally

Numerically

Visually

Algebraically

Proposition (The Vertical Line Test)

A curve in the xy-plane is the graph of a function f of x if and
only if no vertical line intersects the curve more than once.
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Properties of Functions

A function f : D → E is said to be injective if

x1 6= x2 ⇒ f (x1) 6= f (x2)

for all x1, x2 ∈ D. (This means that no two distinct elements of
the set D are sent by f to the same element of the set E , that
is, the function f never takes on the same value twice.)

Proposition (The Horizontal Line Test)

A function is injective if and only if no horizontal line intersects
its graph more than once.
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Properties of Functions

A function f : D → E is said to be surjective if for every
element y of E there exists an element x of D such that f (x)
= y . (This means that the set E is equal to the range of the
function f , that is, the function f succeeds [at some point or
another of the set D] in taking on the value of each and every
element of the set E .)

A function f : D → E that is both injective and surjective is
said to be bijective.
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Properties of Functions

A function f : D → E is said to be increasing (nondecreasing)
on an interval I belonging to its domain D if

x1 < x2 ⇒ f (x1) < f (x2) (f (x1) ≤ f (x2))

for all x1, x2 ∈ I .

A function f : D → E is said to be decreasing (nonincreasing)
on an interval I belonging to its domain D if

x1 < x2 ⇒ f (x1) > f (x2) (f (x1) ≥ f (x2))

for all x1, x2 ∈ I .
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New Functions from Old Functions

There are many different ways to construct a new function
from a given function (or two):

(Translations) Let c > 0. To obtain the graph of

y = f (x) + c , shift the graph of y = f (x) a distance of c
units upward.
y = f (x)− c , shift the graph of y = f (x) a distance of c
units downward.
y = f (x + c), shift the graph of y = f (x) a distance of c
units to the left.
y = f (x − c), shift the graph of y = f (x) a distance of c
units to the right.
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New Functions from Old Functions

(Stretchings) Let c > 1. To obtain the graph of

y = cf (x), stretch the graph of y = f (x) vertically by a
factor of c .
y = 1

c f (x), shrink the graph of y = f (x) vertically by a
factor of c .
y = f (cx), shrink the graph of y = f (x) horizontally by a
factor of c .
y = f

(
x
c

)
, stretch the graph of y = f (x) horizontally by a

factor of c .

(Reflections) To obtain the graph of

y = −f (x), reflect the graph of y = f (x) about the x-axis.
y = f (−x), reflect the graph of y = f (x) about the y -axis.
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New Functions from Old Functions

(Algebraic Manipulations) Given two functions f and g ,
we define

the function (f + g) by (f + g)(x) = f (x) + g(x)
the function (f − g) by (f − g)(x) = f (x)− g(x)
the function (fg) by (fg)(x) = f (x)g(x)

the function
(

f
g

)
(x) by

(
f
g

)
(x) = f (x)

g(x)

with the appropriate domain restrictions.

(Compositions) Given two functions f and g , we define
the composite function (f ◦ g) by (f ◦ g)(x) = f (g(x))
with the appropriate domain restrictions.
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Exponential Functions

An exponential function is a function of the form

f (x) = ax

where the value of the base a is a positive constant.

Consider the exponential function f (x) = 2x . We know that

f (3) = 23 = 2 · 2 · 2 = 8.

f (0) = 20 = 1.

f (−2) = 2−2 = 1
22

= 1
4 .

f
(
1
2

)
= 2

1
2 is one of the solutions to x2 = 2.

f
(
3
2

)
= 2

3
2 is one of the solutions to x2 = 23 or x2 = 8.

But what is the value of f when it is applied to an irrational
number like π?
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Exponential Functions

We want to define such values of the function f in such a way
so as to keep f an increasing function on all of R. In particular,
given values x and y such that x < π < y , we must require
that 2x < 2π < 2y .

It turns out that there is exactly one number that is greater
than all of the numbers 23, 23.1, 23.14, . . . and less than all of
the numbers 24, 23.2, 23.15, . . .. We define 2π to be this
number. It is equal to 8.8249778 . . ..
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Laws of Exponents

Proposition (Laws of Exponents)

If a and b are positive numbers and x and y are any real
numbers, then

ax+y = axay , ax−y =
ax

ay
, (ax)y = axy ,

and (ab)x = axbx .
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The Number e

Of all of the possible bases for an exponential function, there is
one that turns out to be the most convenient for the purposes
of calculus. Indeed, some of the formulas of calculus will be
greatly simplified if we can choose the base a in such a way
that the slope of the tangent line to the graph of the
exponential function f (x) = ax at the point (0, 1) is exactly 1.

There is a base value with this property, and we denote it by
the letter e. It is equal to 2.7182818284 . . ., and we refer to
the exponential function f (x) = ex as the natural exponential
function.
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Inverse Functions

Suppose that we are interested in studying the growth rate of a
certain type of bacteria. Working very carefully, we could
introduce a single such bacterium into a closed and
nutrient-rich environment. Having done this, we would find
that the number of bacteria N in the closed environment is a
function of the amount of time t that has elapsed since the
beginning, that is, N = f (t).

We would know how many bacteria there are at any given time
t0. (We could just feed the given time t0 into the function f to
get the answer.) But what if we turned this question around?
What if we asked instead how long it would take for the
population level to rise to some prescribed value N0 of N?
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Inverse Functions

We would then need to understand the time t that has elapsed
since the beginning as a function of the number of bacteria N.
This function is the one that we would call the inverse function
of f and denote by f −1. Supposing the existence of this
function, we would write that t = f −1(N) and find the value of
f −1(N0) to answer our question.

Not all functions possess inverse functions. Injective functions
are important mainly because they are precisely the ones that
do possess inverse functions. Indeed, given an injective function
f with domain A and range B, we are enabled to formulate the
precise defininition of the inverse function of f :

f −1(y) = x ⇔ f (x) = y

for all y ∈ B. (Notice that the function f −1 so defined has
domain B and range A.)
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Inverse Functions

The letter x is traditionally used as the independent variable.
As a result, when we are more interested in f −1 than in f , we
will usually reverse the roles of x and y and write the defining
statement as

f −1(x) = y ⇔ f (y) = x .

Proposition (Cancellation Equations)

f −1(f (x)) = x for all x ∈ A

and

f (f −1(x)) = x for all x ∈ B.
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Finding Inverse Functions

In order to find the inverse of an injective function f , we carry
out the following three steps:

Write y = f (x).

Solve the equation y = f (x) for x in terms of y (if
possible).

Interchange x and y to obtain the equation y = f −1(x).

The graph of f −1 is obtained by reflecting the graph of f about
the line y = x .
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Logarithmic Functions

If a is a positive value different from 1, then the exponential
function f (x) = ax passes the Horizontal Line Test and is
therefore injective. In this situation, it follows that the
exponential function f (x) = ax has an inverse function. We
call this inverse function the logarithmic function with base a
and denote it by f −1(x) = loga(x).

Looking back at the defining statement of the inverse function
of f , we quickly obtain that

loga(x) = y ⇔ ay = x

and hence that loga(x) is the value to which the base a must
be raised in order to obtain x .
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Logarithmic Functions

The Cancellation Equations, when applied to the functions
f (x) = ax and f −1(x) = loga(x), become the following:

Proposition (Cancellation Equations for Logarithmic Functions)

loga(ax) = x for all x ∈ R

and

aloga(x) = x for all x ∈ (0,∞).
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Logarithmic Functions

The following properties of logarithmic functions follow from
the corresponding properties of exponential functions:

Proposition (Laws of Logarithms)

If x and y are positive numbers and r is any real number, then

loga(xy) = loga(x) + loga(y), loga

(
x

y

)
= loga(x)− loga(y),

and loga(x r ) = r loga(x).
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Natural Logarithms

The logarithmic function with base e is called the natural
logarithmic function and is denoted by loge(x) = ln(x).

Proposition (Change of Base Formula)

For any positive number a different from 1, we have that

loga(x) =
ln x

ln a
.
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Inverse Trigonometic Functions

The trigonometric functions are not injective. As a result, they
do not possess inverse functions. That said, if we restrict the
domains of the trigonometric functions so that they become
injective, it is possible to define the so-called inverse
trigonometric functions:

sin−1 x = y ⇔ sin y = x and − π

2
≤ y ≤ π

2
.

cos−1 x = y ⇔ cos y = x and 0 ≤ y ≤ π.

tan−1 x = y ⇔ tan y = x and − π

2
< y <

π

2
.
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Limits

We begin our study of calculus by investigating limits and their
properties. The special type of limit that is used to find
tangents and velocities gives rise to the central idea in
differential calculus - the derivative.

We start with an important conceptual definition:

Suppose that the function f (x) is defined when x is near the
number a, i.e., suppose that f (x) is defined on some open
interval that contains a, except possibly at a itself. If we can
make the values of f (x) arbitrarily close to some number L by
taking x to be sufficiently close to a (on either side of a) but
not equal to a, then we say that the limit of f (x), as x
approaches a, equals L and write

lim
x→a

f (x) = L.
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Notice that this definition contains the phrase “but not equal
to a”. This means that in finding the limit of f (x) as x
approaches a, we never consider x = a. Indeed, the function
f (x) need not even be defined at the point x = a in order for
its limit as x approaches a to be discussed. The only thing that
matters is how the function f (x) is defined near x = a.

Let’s look at an example. Even though the function

f (x) =
sin x

x

is not defined at the point x = 0, we can perform increasingly
precise calculations that suggest that

lim
x→0

sin x

x
= 1 :



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Limits

Notice that this definition contains the phrase “but not equal
to a”. This means that in finding the limit of f (x) as x
approaches a, we never consider x = a. Indeed, the function
f (x) need not even be defined at the point x = a in order for
its limit as x approaches a to be discussed. The only thing that
matters is how the function f (x) is defined near x = a.

Let’s look at an example. Even though the function

f (x) =
sin x

x

is not defined at the point x = 0, we can perform increasingly
precise calculations that suggest that

lim
x→0

sin x

x
= 1 :



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Limits

x sin x
x

±1.0 0.84147098
±0.5 0.95885108
±0.1 0.99833417
±0.05 0.99958339
±0.01 0.99998333
±0.005 0.99999583
±0.001 0.99999983

This is, in fact, the true value of

lim
x→0

sin x

x

as we shall later see.
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The Tangent Problem

Now that we have some conceptual idea of the definition of a
limit, let’s see how limits arise in attempting to find the
tangent to a curve or the velocity of an object.

The word tangent is derived from the Latin word tangens,
which means “touching”. Thus a tangent to a curve is a line
that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact.
But how can we make this idea precise?

In the case of a circle, we could follow the Greek mathematician
Euclid (the Father of Geometry) and say that a tangent line is
a line that intersects the circle at precisely one point. But this
will not work for more complicated curves. We need some
other means of precisely defining our concept of a tangent.
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The Tangent Problem

The word secant is derived from the Latin word secans, which
means “cutting”. Thus a secant line is a line that cuts or
intersects a curve more than once. We can use secant lines to
define our notion of a tangent line.

Suppose that we wish to find the tangent line to the graph of
the parabola f (x) = x2 at the point P = (1, 1). All we really
need to find is the slope of the tangent line to the graph of the
parabola at that point. We could choose a nearby point Q =
(x , x2), x 6= 1 belonging to the graph of the parabola and
compute the slope of the corresponding secant line:

mPQ =
x2 − 1

x − 1
.
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The Tangent Problem

The closer that the point Q is to the point P, the better this
computed slope value approximates the slope that we are
seeking. Indeed, the slope of the tangent line to the graph of
the parabola f (x) = x2 at the point P = (1, 1) is given by

lim
Q→P

mPQ = lim
x→1

x2 − 1

x − 1

and increasingly precise calculations suggest that

lim
Q→P

mPQ = lim
x→1

x2 − 1

x − 1
= 2 :
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The Tangent Problem

x mPQ

2 3
1.5 2.5
1.1 2.1

1.01 2.01
1.001 2.001

0.999 1.999
0.99 1.99
0.9 1.9
0.5 1.5
0 1

We will always define the slope of the tangent line in this way,
that is, we will always define the slope of the tangent line to be
the limit of the slopes of the secant lines.
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The Velocity Problem

Here is a joke that is attributed to the American comedian
Steven Wright:

“Officer, I know I was going faster than 55 MPH, but I wasn’t
going to be on the road an hour.”

We know that the velocity of a car driving in city traffic is not
constant. (Just take a look at the speedometer.) We assume
from looking at the speedometer that the car has a definite
velocity at each moment, but how is this instantaneous velocity
defined?
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The Velocity Problem

Remember our friend Galileo? He discovered that the distance
fallen by any freely falling body is proportional to the square of
the time it has been falling. If the time t is measured in
seconds and the distance s is measured in meters, then
Galileo’s discovery is expressed by the equation

s(t) = 4.9t2.

Suppose that Galileo drops a cannon ball from the top of the
Leaning Tower of Pisa (a height of roughly 56 meters above
the ground on the low side). What would be the velocity of the
cannon ball after 1 second?
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The Velocity Problem

The difficulty in finding the velocity after 1 second is that we
are dealing with a single instant of time (t = 1), so no time
interval is involved. Fortunately for us, we can approximate the
desired velocity by computing the average velocity over the
brief time interval of a tenth of a second from t = 1 to t = 1.1:

vavg =
∆s

∆t

=
s(1.1)− s(1)

0.1

=
4.9(1.1)2 − 4.9(1)2

0.1

= 10.29 m/s.
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The Velocity Problem

The following table shows the results of similar calculations of
the average velocity vavg over successively smaller time periods:

Time Interval vavg (m/s)

1 ≤ t ≤ 2 14.7
1 ≤ t ≤ 1.1 10.29

1 ≤ t ≤ 1.01 9.849
1 ≤ t ≤ 1.001 9.8049

1 ≤ t ≤ 1.0001 9.80049

It appears that as we shorten the time period, the average
velocity is becoming closer to 9.8 m/s. The instantaneous
velocity at t = 1 second is defined to be the limiting value of
these average velocities over shorter and shorter time periods
that start at t = 1 second. Thus the instantaneous velocity of
the cannon ball after 1 second is 9.8 m/s.
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The Velocity Problem

We will always define the instantaneous velocity of an object at
a time moment in this way, that is, we will always define the
instantaneous velocity of an object at a time moment to be the
limiting value of the average velocities over shorter and shorter
time periods that start at that time moment.

There is a close connection between the tangent problem and
the velocity problem:

The slope of the secant line to the graph of the distance
function of a moving object over a time interval is equal to
the average velocity of that object over that time interval.

The slope of the tangent line to the graph of the distance
function of a moving object at a time moment is equal to
the instantaneous velocity of that object at that time
moment.
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function of a moving object at a time moment is equal to
the instantaneous velocity of that object at that time
moment.
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Calculating Limits

Unfortunately, our method of performing increasingly precise
calculations isn’t always going to produce correct limiting
values. To see this, let’s try to use our method to find the limit
of the function

f (x) = sin
π

x

as x approaches 0:

x sin π
x

±1 0
±1

2 0
± 1

10 0
± 1

100 0
± 1

1000 0
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Calculating Limits

Based upon our computations, we are tempted to say that

lim
x→0

sin
π

x
= 0.

But we know that f (x) = 1 for infinitely many values of x that
approach 0! (Just take as x values the numbers of the form

2
4n+1 where n is an integer.)

Since the values of the function

f (x) = sin
π

x

do not approach a fixed number as x approaches 0,

lim
x→0

sin
π

x

does not exist.
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Calculating Limits

Proposition (Limit Laws)

Suppose that c is a constant and the limits

lim
x→a

f (x) and lim
x→a

g(x)

exist. Then

lim
x→a

(f (x) + g(x)) = lim
x→a

f (x) + lim
x→a

g(x).

lim
x→a

(f (x)− g(x)) = lim
x→a

f (x)− lim
x→a

g(x).
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Calculating Limits

Proposition (Limit Laws (Continued))

lim
x→a

(cf (x)) = c lim
x→a

f (x).

lim
x→a

(f (x)g(x)) = lim
x→a

f (x) · lim
x→a

g(x).

lim
x→a

(
f (x)

g(x)

)
=

limx→a f (x)

limx→a g(x)
if lim

x→a
g(x) 6= 0.
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Calculating Limits

Proposition (Limit Laws (Continued))

lim
x→a

(f (x))n =
(

lim
x→a

f (x)
)n

where n is a positive integer.

lim
x→a

n
√

f (x) = n

√
lim
x→a

f (x) where n is a positive integer.
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Calculating Limits

Proposition (Direct Substitution Property)

If f is a polynomial or a rational function and a is in the
domain of f , then

lim
x→a

f (x) = f (a).

Proposition

If f (x) = g(x) when x 6= a, then

lim
x→a

f (x) = lim
x→a

g(x),

provided the limits exist.
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Calculating Limits

Theorem

If f (x) ≤ g(x) when x is near a (except possibly at a) and the
limits of f and g both exist as x approaches a, then

lim
x→a

f (x) ≤ lim
x→a

g(x).
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Calculating Limits

Theorem (The Squeeze Theorem)

If f (x) ≤ g(x) ≤ h(x) when x is near a (except possibly at a)
and

lim
x→a

f (x) = lim
x→a

h(x) = L,

then
lim
x→a

g(x) = L.
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Calculating Limits

The Squeeze Theorem is a powerful tool for calculating limits.
To see this, let’s attempt to find the value of the following
limit:

lim
x→0

x2 sin
1

x
.

Notice that we cannot write

lim
x→0

x2 sin
1

x
= lim

x→0
x2 · lim

x→0
sin

1

x
.

(Why?)



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Calculating Limits

The Squeeze Theorem is a powerful tool for calculating limits.
To see this, let’s attempt to find the value of the following
limit:

lim
x→0

x2 sin
1

x
.

Notice that we cannot write

lim
x→0

x2 sin
1

x
= lim

x→0
x2 · lim

x→0
sin

1

x
.

(Why?)



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Calculating Limits

We know that

−1 ≤ sin
1

x
≤ 1

for all x ∈ R, x 6= 0.

Since x2 ≥ 0 for all x ∈ R, it follows that

−x2 ≤ x2 sin
1

x
≤ x2

for all x ∈ R, x 6= 0.

Since
lim
x→0

(−x2) = lim
x→0

x2 = 0,

this implies by the Squeeze Theorem that

lim
x→0

x2 sin
1

x
= 0

as well.
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One-Sided Limits

We will need to understand one-sided limits in order to fully
appreciate the statement of our next theorem.

Let’s consider the so-called Heaviside function H given by

H(t) =

{
0 if t < 0
1 if t ≥ 0

.

(This function is named for the English electrical engineer
Oliver Heaviside and can be used to model an electric current
that is switched on at time t = 0.)
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One-Sided Limits

As t approaches 0 from the left (through small negative values
of t), the Heaviside function approaches 0. As t approaches 0
from the right (through small positive values of t), the
Heaviside function approaches 1. There is no single number
that H(t) approaches as t approaches 0, so

lim
t→0

H(t)

does not exist.

But this function seems pretty nice. (It doesn’t behave as
strangely at t = 0 as the function

sin
π

x

at x = 0.) Isn’t there something that we can say about this
situation?
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One-Sided Limits

Of course there is something that we can say. We can say what
we have just said. We write

lim
t→0−

H(t) = 0 and lim
t→0+

H(t) = 1

to indicate that the Heaviside function approaches 0 as t
approaches 0 from the left (through small negative values of t)
and that the Heaviside function approaches 1 as t approaches 0
from the right (through small positive values of t), respectively.
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One-Sided Limits

In general, we write

lim
x→a−

f (x) = L

(
lim

x→a+
f (x) = L

)
and say that the left-hand limit of f (x) as x approaches a
(right-hand limit of f (x) as x approaches a) is equal to L if we
can make the values of f (x) arbitrarily close to L by taking x
to be sufficiently close to a and x less than (greater than) a.

Theorem

lim
x→a

f (x) = L if and only if lim
x→a−

f (x) = lim
x→a+

f (x) = L.
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Infinite Limits

There is still yet another kind of limit for us to consider. We
will need to understand infinite limits in order to fully
appreciate the definition of a vertical asymptote.

Let’s consider the function g given by

g(x) =
1

x2
.

As x becomes close to 0, x2 also becomes close to 0, and

g(x) =
1

x2

becomes very, very large:
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Infinite Limits

x 1
x2

±1.0 1
±0.5 4
±0.2 25
±0.1 100
±0.05 400
±0.01 10, 000
±0.001 1, 000, 000
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Infinite Limits

The values of g(x) do not approach a single number, so

lim
x→0

1

x2

does not exist. But isn’t there something that we can say
about the particular way in which this limit does not exist?
More particularly, doesn’t it appear that the values of g(x) can
be made arbitrarily large by taking x sufficiently close to 0, but
not equal to 0?

It certainly does, and we write

lim
x→0

1

x2
=∞

to indicate this type of behavior.
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Infinite Limits

Let f be a function defined on both sides of a, except possibly
at a itself. Then

lim
x→a

f (x) =∞
(

lim
x→a

f (x) = −∞
)

means that the values of f (x) can be made arbitrarily large
(negative) by taking x sufficiently close to a, but not equal to a.

The vertical line x = a is called a vertical asymptote of the
curve y = f (x) if at least one of the following statements is
true:

lim
x→a

f (x) =∞ lim
x→a−

f (x) =∞ lim
x→a+

f (x) =∞

lim
x→a

f (x) = −∞ lim
x→a−

f (x) = −∞ lim
x→a+

f (x) = −∞.
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Limits (Again)

It is now time for us to learn the precise definition of a limit. In
order to motivate this definition, let’s consider the function f
given by

f (x) =

{
5x − 1 if x 6= 1

5 if x = 1
,

and let’s try to answer the following question: How close to 1
does x have to be so that f (x) differs from 4 by less than 0.1?

The distance from x to 1 is written |x − 1|. Similarly, the
distance from f (x) to 4 is written |f (x)− 4|. Thus our problem
is to find a number δ such that

|f (x)− 4| < 0.1 whenever 0 < |x − 1| < δ.
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Limits (Again)

Notice that if

0 < |x − 1| < 0.1

5
= 0.02,

then

|f (x)−4| = |(5x−1)−4| = |5x−5| = 5|x−1| < 5(0.02) = 0.1,

that is,

|f (x)− 4| < 0.1 whenever 0 < |x − 1| < 0.02.

Thus an answer to our problem is to take δ = 0.02, that is, if x
is within a distance of 0.02 from 1, then f (x) will be within a
distance of 0.1 from 4. (We could also choose δ to be any
positive value smaller than 0.02 as well.)
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Limits (Again)

If we replace the error tolerance 0.1 in our question with an
even smaller positive number, say 0.01 (0.001), then by using
the same method as before we obtain that f (x) differs from 4
by less than 0.01 (0.001) provided that x differs from 1 by less
than

0.01

5
= 0.002

(
0.001

5
= 0.0002

)
.

In general, given a small error tolerance ε > 0, we find that

|f (x)− 4| < ε whenever 0 < |x − 1| < δ =
ε

5
.

This is a very precise way of saying that f (x) is close to 4 when
x is close to 1. It says that we can make the values of f (x)
within an arbitrary distance ε from 4 by taking the values of x
within a certain related distance δ = δ(ε) from 1 (but x 6= 1).
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Limits (Again)

Here then is the precise definition of a limit:

Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we say
that the limit of f (x) as x approaches a is L, and we write

lim
x→a

f (x) = L

if for every number ε > 0 there is a number δ > 0 such that if

0 < |x − a| < δ

then
|f (x)− L| < ε.
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Limits (Again)

Notice that the condition |x − a| < δ is equivalent to

−δ < x − a < δ,

which in turn can be written as

a− δ < x < a + δ.

Similarly, |f (x)− L| < ε is equlivalent to

L− ε < f (x) < L + ε.

In particular, the precise definition of a limit has a very nice
geometric interpretation.
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One-Sided Limits (Again)

We need also the precise definitions of the other kinds of limits
that we are studying:

lim
x→a−

f (x) = L

(
lim

x→a+
f (x) = L

)
if for every number ε > 0 there is a number δ > 0 such that if

a− δ < x < a (a < x < a + δ)

then
|f (x)− L| < ε.
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Infinite Limits (Again)

Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim
x→a

f (x) =∞
(

lim
x→a

f (x) = −∞
)

means that for every positive (negative) number M there is a
positive number δ such that if

0 < |x − a| < δ

then
f (x) > M (f (x) < M).
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Continuity

A function f is said to be continuous at a number a if

lim
x→a

f (x) = f (a).

This definition implicitly requires three things of a function f
that is continuous at a number a:

f (a) is defined, that is, a belongs to the domain of f .

lim
x→a

f (x) exists.

lim
x→a

f (x) = f (a).
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Classification of Discontinuities

There are three main types of discontinuities:

A function f is said to have a removable discontinuity at a
number a provided that we could remove the discontinuity
by redefining f at just the single number a.

A function f is said to have a jump discontinuity at a
number a provided that the function jumps from one value
to another at the number a.

A function f is said to have an essential discontinuity at a
number a provided that at least one of the one-sided limits

lim
x→a−

f (x) and lim
x→a+

f (x)

does not exist or is infinite.
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One-Sided Continuity

A function f is said to be continuous from the left (right) at a
number a if

lim
x→a−

f (x) = f (a)

(
lim

x→a+
f (x) = f (a)

)
.

At each integer n, the greatest integer function f (x) = [[x ]] is
continuous from the right but discontinuous from the left. This
is because

lim
x→n+

f (x) = lim
x→n+

[[x ]] = n = f (n)

but
lim

x→n−
f (x) = lim

x→n−
[[x ]] = n − 1 6= f (n).
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Continuous Functions

A function f is said to be continuous on an interval if it is
continuous at every number in the interval. (If f is defined only
on one side of an endpoint of the interval, we understand
“continuous” at that endpoint to mean whichever one of
“continuous from the left” or “continuous from the right” is
appropriate.)

Theorem

Any polynomial is continuous everywhere, that is, any
polynomial is continuous on all of R.

Theorem

Any rational function is continuous wherever it is defined, that
is, any rational function is continuous on its domain.
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Continuous Functions

Theorem

The following types of functions are continuous at every
number in their domains:

Polynomials

Rational Functions

Root Functions

Trigonometric Functions

Inverse Trigonometric Functions

Exponential Functions

Logarithmic Functions
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New Continuous Functions from Old Continuous
Functions

Theorem

If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

f + g

f − g

cf

fg

f

g
if g(a) 6= 0.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

New Continuous Functions from Old Continuous
Functions

Theorem

If f is continuous at b and

lim
x→a

g(x) = b,

then
lim
x→a

f (g(x)) = f (b).

In other words,

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)
.
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New Continuous Functions from Old Continuous
Functions

Theorem

If g is continuous at a and f is continuous at g(a), then the
composite function f ◦ g given by (f ◦ g)(x) = f (g(x)) is
continuous at a.
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The Intermediate Value Theorem

Theorem (The Intermediate Value Theorem)

Suppose that f is continuous on the closed interval [a, b] and
let N be any number between f (a) and f (b), where
f (a) 6= f (b). Then there exists a number c in (a, b) such that
f (c) = N.

If we think of a continuous function as a function whose graph
has no hole or break, then it is easy to believe that the
Intermediate Value Theorem is true. In geometric terms, it says
that the graph of f can’t jump over any horizontal line y = N
lying betweeen y = f (a) and y = f (b).
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The Intermediate Value Theorem

The Intermediate Value Theorem is used to locate the roots of
polynomials:

Consider the polynomial f (x) = 4x3 − 6x2 + 3x − 2. We
calculate that

f (1) = −1 < 0

and that
f (2) = 12 > 0.

Since the function f is continuous, we have by the Intermediate
Value Theorem that the equation 4x3 − 6x2 + 3x − 2 = 0 has
a solution between x = 1 and x = 2.
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Limits at Infinity

We will need to understand limits at infinity in order to fully
appreciate the definition of a horizontal asymptote. Here is the
conceptual definition:

Let f be a function defined on some interval (a,∞) ((−∞, a)).
Then

lim
x→∞

f (x) = L

(
lim

x→−∞
f (x) = L

)
means that the values of f (x) can be made arbitrarily close to
L by taking x sufficiently large (negative).
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Limits at Infinity

The horizontal line y = L is called a horizontal asymptote of
the curve y = f (x) if either

lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L.

Consider the function g given by

g(x) =
x2 − 1

x2 + 1
.

We have that

lim
x→∞

x2 − 1

x2 + 1
= lim

x→−∞

x2 − 1

x2 + 1
= 1,

so the horizontal line y = 1 is the only horizontal asymptote of
the curve y = g(x).
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Limits at Infinity

The curve y = tan−1 x has two horizontal asymptotes since

lim
x→∞

tan−1(x) =
π

2
and lim

x→−∞
tan−1 x = −π

2
.

Theorem

If r > 0 is a rational number, then

lim
x→∞

1

x r
= 0.

If r > 0 is a rational number such that x r is defined for all x,
then

lim
x→−∞

1

x r
= 0.
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Derivatives

The problem of finding the tangent line to a curve and the
problem of finding the instantaneous velocity of an object both
involve finding the same type of limit. This special type of limit
is known as a derivative.

The tangent line to the curve y = f (x) at the point P =
(a, f (a)) is the line through P with slope

m = lim
x→a

f (x)− f (a)

x − a
,

provided that this limit exists.
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Derivatives

There is another useful expression for the slope of a tangent
line. Indeed, setting h = x − a, we have that x = a + h and
hence that the limit of interest can be rewritten as follows:

m = lim
h→0

f (a + h)− f (a)

h
.

The instantaneous velocity of an object with equation of
motion s = f (t) at the time moment t = a is given by

v(a) = lim
h→0

f (a + h)− f (a)

h
.
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Derivatives

The derivative of a function f at a number a, denoted by f
′
(a),

is

f
′
(a) = lim

h→0

f (a + h)− f (a)

h
,

provided that this limit exists. Equivalently, f
′
(a) is

f
′
(a) = lim

x→a

f (x)− f (a)

x − a
,

provided that this limit exists.
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Derivatives

The tangent line to y = f (x) at (a, f (a)) is the line through
(a, f (a)) whose slope is equal to f

′
(a), the derivative of f at a.

The derivative f
′
(a) is the instantaneous rate of change of y =

f (x) with respect to x when x = a.
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Derivatives as Functions

We have seen that the derivative of a function f at a fixed
number a is given by

f
′
(a) = lim

h→0

f (a + h)− f (a)

h
.

If we replace a in this equation by a variable x , we obtain

f
′
(x) = lim

h→0

f (x + h)− f (x)

h
.

Given any number x for which this limit exists, we assign to x
the number f

′
(x). In this manner, we obtain a new function f

′

called the derivative of f .
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Derivatives as Functions

If we use the traditional notation y = f (x) to indicate that the
independent variable is x and the dependent variable is y , then
some common alternative notations for the derivative are as
follows:

f
′
(x) = y

′
=

dy

dx
=

df

dx
=

d

dx
f (x) = Df (x) = Dx f (x).

The symbols D and d
dx are called differentiation operators

because they indicate the operation of differentiation, the
process of calculating a derivative.
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Differentiable Functions

A function f is differentiable at a if f
′
(a) exists. It is

differentiable on an open interval if it is differentiable at every
number in the interval.

Theorem

If f is differentiable at a, then f is continuous at a.
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Differentiation Rules

It would be tedious if we always had to use the limit definition
of a derivative in order to calculate the derivatives of functions.

Fortunately, there exist several differentiation rules which
enable us to calculate with relative ease the derivatives of
polynomials, rational functions, algebraic functions, exponential
and logarithmic functions, and trigonometric and inverse
trigonometric functions.
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Derivatives of Polynomials

The derivative of the constant function f given by f (x) = c is
the zero function

f
′
(x) = lim

h→0

f (x + h)− f (x)

h
= lim

h→0

c − c

h
= lim

h→0
0 = 0.

Let n be a positive integer, and consider the function f given
by f (x) = xn. We can compute the derivative of this function
as follows:

f
′
(x) = lim

t→x

f (t)− f (x)

t − x

= lim
t→x

tn − xn

t − x

= lim
t→x

(tn−1 + tn−2x + . . .+ txn−2 + xn−1)(t − x)

t − x
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f (x + h)− f (x)

h
= lim

h→0

c − c

h
= lim

h→0
0 = 0.

Let n be a positive integer, and consider the function f given
by f (x) = xn. We can compute the derivative of this function
as follows:

f
′
(x) = lim

t→x

f (t)− f (x)

t − x

= lim
t→x

tn − xn

t − x

= lim
t→x

(tn−1 + tn−2x + . . .+ txn−2 + xn−1)(t − x)

t − x
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= lim
t→x

tn−1 + tn−2x + . . .+ txn−2 + xn−1

= xn−1 + xn−2x + . . .+ xxn−2 + xn−1

= nxn−1.

This is true for every real number n:

Proposition (The Power Rule)

If n is any real number, then

d

dx
(xn) = nxn−1.
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New Derivatives from Old Derivatives

Proposition

Suppose that c is a constant and the functions f and g are
differentiable. Then

d

dx
(cf (x)) = c

d

dx
f (x).

d

dx
(f (x) + g(x)) =

d

dx
f (x) +

d

dx
g(x).

d

dx
(f (x)− g(x)) =

d

dx
f (x)− d

dx
g(x).
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Derivatives of Exponential Functions

Let’s try to compute the derivative of the exponential function
f (x) = ax using the limit definition of a derivative:

f
′
(x) = lim

h→0

f (x + h)− f (x)

h

= lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)

h

= ax lim
h→0

ah − 1

h
.
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Derivatives of Exponential Functions

But this is precisely ax f
′
(0)! This equation says that the rate

of change of any exponential function is proportional to the
function itself. (The slope is proportional to the height.)

This motivates the definition of the number e that we gave
previously, that is, the statement that the number e is the
number such that

lim
h→0

eh − 1

h
= 1.

Proposition

d

dx
(ex) = ex .
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The Product Rule

Although the derivative of a sum (difference) is the sum
(difference) of the derivatives, it is not true that the derivative
of a product (quotient) is the product (quotient) of the
derivatives.

Proposition (The Product Rule)

If f and g are both differentiable, then

d

dx
(f (x)g(x)) = f (x)

d

dx
(g(x)) + g(x)

d

dx
(f (x)).
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The Quotient Rule

Proposition (The Quotient Rule)

If f and g are both differentiable, then

d

dx

(
f (x)

g(x)

)
=

g(x) d
dx (f (x))− f (x) d

dx (g(x))

(g(x))2
.
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Derivatives of Trigonometric Functions

Let’s try to confirm that

d

dx
(sin x) = cos x .

Using the limit definition of a derivative, we have that

d

dx
(sin x) = lim

h→0

sin (x + h)− sin x

h

= lim
h→0

sin x cos h + cos x sin h − sin x

h

= lim
h→0

(
sin x cos h − sin x

h
+

cos x sin h

h

)
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Derivatives of Trigonometric Functions

= lim
h→0

(
sin x

(
cos h − 1

h

)
+ cos x

(
sin h

h

))

= lim
h→0

sin x · lim
h→0

cos h − 1

h
+ lim

h→0
cos x · lim

h→0

sin h

h
.

We previously performed increasingly precise calculations that
suggest that

lim
h→0

sin h

h
= 1.

The fact that

lim
h→0

sin h

h
= 1

can be seen by using the Squeeze Theorem:

cos h <
sin h

h
< 1.
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Derivatives of Trigonometric Functions

In order to calculate the value of the remaining limit, we write

lim
h→0

cos h − 1

h
= lim

h→0

(
cos h − 1

h
· cos h + 1

cos h + 1

)

= lim
h→0

cos2 h − 1

h(cos h + 1)

= lim
h→0

− sin2 h

h(cos h + 1)

= lim
h→0

(
−sin h

h
· sin h

cos h + 1

)

= − lim
h→0

sin h

h
· lim
h→0

sin h

cos h + 1
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= −1 · 0

1 + 1

= 0.

Altogether then we have that

d

dx
(sin x) = lim

h→0
sin x · lim

h→0

cos h − 1

h
+ lim

h→0
cos x · lim

h→0

sin h

h

= sin x · 0 + cos x · 1

= cos x .
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Derivatives of Trigonometric Functions

Using the same methods as in the foregoing, it is also possible
to show that

d

dx
(cos x) = − sin x .

Combining these two facts together and applying the Quotient
Rule gives us that

d

dx
(tan x) =

d

dx

(
sin x

cos x

)

=
cos x d

dx (sin x)− sin x d
dx (cos x)

cos2 x

=
cos x · cos x − sin x · (− sin x)

cos2 x
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=
cos2 x + sin2 x

cos2 x

=
1

cos2 x

= sec2 x .

The derivatives of the remaining trigonometric functions can
also be found by applying the Quotient Rule:

d

dx
(csc x) = − csc x cot x ,

d

dx
(sec x) = sec x tan x

and
d

dx
(cot x) = − csc2 x .
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The Chain Rule

The derivative of the composite function F = f ◦ g is the
product of the derivatives of f and g :

Proposition (The Chain Rule)

If g is differentiable at x and f is differentiable at g(x), then
the composite function F = f ◦ g defined by F (x) = f (g(x)) is
differentiable at x and F

′
is given by the product

F
′
(x) = f

′
(g(x)) · g ′(x).

In Leibniz notation, if y = f (u) and u = g(x) are both
differentiable functions, then

dy

dx
=

dy

du

du

dx
.
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The Chain Rule

Let’s make explicit the special case of the Chain Rule where
the outer function f is a power function. If y = (g(x))n, then
we can write y = f (u) = un where u = g(x). By using the
Chain Rule and then the Power Rule, we obtain the following
statement:

Proposition (The Power Rule Combined with the Chain Rule)

If n is any real number and u = g(x) is differentiable, then

d

dx
(un) = nun−1 du

dx
.

Alternatively,

d

dx
(g(x))n = n(g(x))n−1 · g ′(x).
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The Chain Rule

Using the Chain Rule, it is possible for us to differentiate an
exponential function with any base a > 0. To this end, we write

d

dx
(ax) =

d

dx

(
e ln (a

x )
)

=
d

dx

(
e(ln a)x

)
= e(ln a)x

d

dx
(ln a)x

= e(ln a)x · ln a

= ax ln a.
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The Chain Rule

The Chain Rule even applies to longer “chains” of functions.

Suppose that y = f (u), u = g(x), and x = h(t), where f , g ,
and h are differentiable functions. Then, to compute the
derivative of y with respect to t, we simply use the Chain Rule
twice:

dy

dt
=

dy

dx

dx

dt
=

dy

du

du

dx

dx

dt
.
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Implicit Differentiation

The functions that we have encountered so far can be described
by expressing one variable explicitly in terms of another
variable, that is, the functions that we have encountered so far
can be written in the form y = f (x). Some functions, however,
are defined implicitly by a relation between x and y .

Think of the circle x2 + y2 = 36 of radius 6 centered at the
origin. This is a perfectly good function (of the radius r in
terms of the angle θ from the positive x-axis), but it cannot be
written as a single function of y in terms of x .
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Implicit Differentiation

In some cases it is possible to solve such an equation for y as
an explicit function (or several explicit functions) of x .

Indeed,
if we solve the equation x2 + y2 = 36 for y , we get

y = ±
√

36− x2,

so two of the functions determined by the implicit equation
x2 + y2 = 36 are

f (x) =
√

36− x2

(the upper semicircle of radius 6 centered at the origin) and

g(x) = −
√

36− x2

(the lower semicircle of radius 6 centered at the origin).
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Implicit Differentiation

Fortunately, we don’t have to solve an equation for y in terms
of x in order to find the derivative of y with respect to x . We
can think of y as a function of x and use the method of
implicit differentiation as follows:
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Implicit Differentiation

d

dx
(x2 + y2) =

d

dx
(36)

d

dx
(x2) +

d

dx
(y2) = 0

d

dx
(x2) +

d

dy
(y2)

dy

dx
= 0

2x + 2y
dy

dx
= 0

dy

dx
= −x

y
.
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Implicit Differentiation

Let’s use the method of implicit differentiation to find the
derivatives of the inverse trigonometric functions. Recall that

sin−1 x = y ⇔ sin y = x and − π

2
≤ y ≤ π

2
.

Differentiating sin y = x implicitly with respect to x , we obtain

d

dx
(sin y) =

d

dx
(x)

d

dx
(sin y) = 1

d

dy
(sin y)

dy

dx
= 1
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Implicit Differentiation

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Implicit Differentiation

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Implicit Differentiation

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Implicit Differentiation

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Implicit Differentiation

Similarly, we obtain that

d

dx
(cos y) =

d

dx
(x)

d

dy
(cos y)

dy

dx
= 1

− sin y
dy

dx
= 1

dy

dx
= − 1

sin y

= − 1√
1− cos2 y

= − 1√
1− x2
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Implicit Differentiation

and that
d

dx
(tan y) =

d

dx
(x)

d

dy
(tan y)

dy

dx
= 1

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

=
1

1 + tan2 y

=
1

1 + x2
.
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Implicit Differentiation

The derivatives of the remaining inverse trigonometric
functions can also be found by applying the method of implicit
differentiation:

d

dx
(csc−1 x) = − 1

x
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Derivatives of Logarithmic Functions

In addition to helping us find the derivatives of the inverse
trigonometric functions, the method of implicit differentiation
also enables us to find the derivatives of logarithmic functions.

Let y = loga x . Then ay = x and we have by the method of
implicit differentiation that

d

dx
(ay ) =

d

dx
(x)

d

dy
(ay )

dy

dx
= 1

ay (ln a)
dy

dx
= 1.
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Derivatives of Logarithmic Functions

It follows that
dy

dx
=

1

ay ln a

=
1

x ln a
.

If we set a = e in the foregoing work, we find that

d

dx
(ln x) =

1

x
.
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Logarithmic Differentiation

The calculation of derivatives of complicated functions
involving products, quotients, or powers can often be simplified
by taking logarithms. This method is called logarithmic
differentiation.

Combining the fact that

d

dx
(ln x) =

1

x

with the Chain Rule gives us the following useful differentiation
formula:

d

dx
(ln f (x)) =

f
′
(x)

f (x)
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Logarithmic Differentiation

The calculation of derivatives of complicated functions
involving products, quotients, or powers can often be simplified
by taking logarithms. This method is called logarithmic
differentiation.

Combining the fact that

d

dx
(ln x) =

1

x

with the Chain Rule gives us the following useful differentiation
formula:

d

dx
(ln f (x)) =

f
′
(x)

f (x)
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Logarithmic Differentiation

The calculation of derivatives of complicated functions
involving products, quotients, or powers can often be simplified
by taking logarithms. This method is called logarithmic
differentiation.

Combining the fact that

d

dx
(ln x) =

1

x

with the Chain Rule gives us the following useful differentiation
formula:

d

dx
(ln f (x)) =

f
′
(x)

f (x)
.



Math 3A -
Calculus with
Applications 1

Brent
Albrecht

Introduction

Chapter One

Chapter Two

Chapter Three

Chapter Four

Conclusion

Logarithmic Differentiation

In order to perform logarithmic differentiation, we carry out the
following three steps:

Take natural logarithms of both sides of an equation y =
f (x) and use the Laws of Logarithms to simplify.

Differentiate implicitly with respect to x .

Solve the resulting equation for y
′
.

If f (x) < 0 for some values of x , then ln f (x) is not defined. In
such a situation, we can write |y | = |f (x)| and use the fact that

d

dx
(ln |x |) =

1

x

together with the Chain Rule.
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Logarithmic Differentiation

Let’s illustrate the use of logarithmic differentiation by proving
the Power Rule:

Let y = xn for some real number n. Since xn may be less than
zero for some values of x , we begin by writing

|y | = |xn| = |x |n.

Taking the natural logarithms of both sides of this equation
yields

ln |y | = ln |x |n

= n ln |x |, x 6= 0.
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Logarithmic Differentiation

It follows by implicitly differentiating with respect to x that

d

dx
(ln |y |) =

d

dx
(n ln |x |)

d

dy
(ln |y |)dy

dx
= n

d

dx
(ln |x |)

1

y

dy

dx
= n

1

x

and therefore that

dy

dx
= n

y

x
= n

xn

x
= nxn−1

as desired.
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Logarithmic Differentiation

We can also use logarithmic differentiation to find the derivative
of a function with a variable base and a variable exponent.

As an example, let’s find the derivative of the function

y = x
√
x .

We write
d

dx
(ln y) =

d

dx
(
√

x ln x)

d

dy
(ln y)

dy

dx
=
√

x
d

dx
(ln x) + ln x

d

dx
(
√

x)

1

y

dy

dx
=
√

x · 1

x
+ (ln x)

1

2
√

x
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Logarithmic Differentiation

dy

dx
= y

(
1√
x

+
ln x

2
√

x

)

= x
√
x

(
2 + ln x

2
√

x

)
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Logarithmic Differentiation
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Related Rates

If we are pumping air into a balloon, both the volume and the
radius of the balloon are increasing and their rates of increase
are related to each other. But it is much easier to measure
directly the rate of increase of the volume than the rate of
increase of the radius.

In a related rates problem the idea is to compute the rate of
change of one quantity in terms of the rate of change of
another quantity (which may be more easily measured). The
procedure is to find an equation that relates the two quantities
and then use the Chain Rule to differentiate both sides with
respect to time.
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Related Rates

In order to solve a related rates problem, we carry out the
following steps:

Read the problem carefully.
Draw a diagram if possible.
Introduce notation. Assign symbols to all quantities that
are functions of time.
Express the given information and the required rate in
terms of derivatives.
Write an equation that relates the various quantities of the
problem. If necessary, use the geometry of the situation to
eliminate one of the variables by substitution.
Use the Chain Rule to differentiate both sides of the
equation with respect to t.
Substitute the given information into the resulting
equation and solve for the unknown rate.
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Write an equation that relates the various quantities of the
problem. If necessary, use the geometry of the situation to
eliminate one of the variables by substitution.
Use the Chain Rule to differentiate both sides of the
equation with respect to t.
Substitute the given information into the resulting
equation and solve for the unknown rate.
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Exponential Growth and Decay

In many natural phenomena, quantities grow or decay at a rate
proportional to their size.

In general, if y(t) is the value of a
quantity y at time t and if the rate of change of y with respect
to t is proportional to its size y(t) at any time, then

dy

dt
= ky

where k is a constant.

This equation is called the law of natural growth (decay) if
k > 0 (k < 0). It is our first example of a differential equation,
an equation that involves an unknown function and its
derivative(s).
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Exponential Growth and Decay

It’s not too difficult to think of a solution to our equation. Our
equation simply asks us to find a function whose derivative is a
constant multiple of itself.

Any exponential function of the
form y(t) = Cekt , where C is a constant, satisfies our
equation. Indeed,

y
′
(t) = C (kekt) = k(Cekt) = ky(t).

In turns out also that any function that satisfies our differential
equation must be of the form y(t) = Cekt :

Theorem

The only solutions of the differential equation

dy

dt
= ky

are the exponential functions y(t) = y(0)ekt .
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Exponential Growth and Decay

Exponential growth/decay occurs in many settings:

In biology, the rate of growth of a population of animals or
bacteria is proportional to the size of that population
(under ideal conditions).

In nuclear physics, the mass of a radioactive substance
decays at a rate proportional to the mass.

In chemistry, the rate of a unimolecular first-order reaction
is proportional to the concentration of the substance.

In finance, the value of a savings account with
continuously compounded interest increases at a rate
proportional to that value.
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Maximum and Minimum Values

Some of the most important applications of differential calculus
are so-called optimization problems. Here are some examples of
optimization problems:

What is the shape of a can that minimizes manufacturing
costs?

What is the maximum acceleration of a space shuttle?

What is the radius of a contracted windpipe that expels
air most rapidly during a cough?

At what angle should blood vessels branch so as to
minimize the energy expended by the heart in pumping
blood?
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Maximum and Minimum Values

These problems can be reduced to finding the maximum or
minimum values of a function.

Let c be a number in the domain D of a function f . We call
f (c) the absolute maximum (absolute minimum) value of f on
D if f (c) ≥ f (x) (f (c) ≤ f (x)) for all x in D. This value is
sometimes called the global maximum (global minimum) value.
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Maximum and Minimum Values

The number f (c) is called a local maximum (local minimum)
value of f if f (c) ≥ f (x) (f (c) ≤ f (x)) when x is near c , that
is, if f (c) ≥ f (x) (f (c) ≤ f (x)) for all values of x belonging to
some open interval containing c .

Theorem (Extreme Value Theorem)

If f is continuous on a closed interval [a, b], then f attains an
absolute maximum value f (c) and an absolute minimum value
f (d) at some numbers c and d in [a, b].
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Maximum and Minimum Values

Theorem (Fermat’s Theorem)

If f has a local maximum or minimum at c, and if f
′
(c) exists,

then f
′
(c) = 0.

A critical number of a function f is a number c in the domain
of f such that either f

′
(c) = 0 or f

′
(c) does not exist.
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The Closed Interval Method

In order to find the absolute maximum (absolute minimum)
value of a continuous function f on a closed interval [a, b], we
carry out the following steps:

Find the values of f at the critical numbers of f in (a, b).

Find the values of f at the endpoints of the interval.

The largest (smallest) of the values found in the previous
steps is the absolute maximum (absolute minimum) value.
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The Mean Value Theorem

Theorem (Rolle’s Theorem)

Let f be a function that satisfies the following three
hypotheses:

f is continuous on the closed interval [a, b].

f is differentiable on the open interval (a, b).

f (a) = f (b).

Then there is a number c in (a, b) such that f
′
(c) = 0.
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The Mean Value Theorem

Theorem (The Mean Value Theorem)

Let f be a function that satisfies the following hypotheses:

f is continuous on the closed interval [a, b].

f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

f
′
(c) =

f (b)− f (a)

b − a

or, equivalently,

f (b)− f (a) = f
′
(c)(b − a).
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The Mean Value Theorem

Theorem

If f
′
(x) = 0 for all x in an interval (a, b), then f is constant on

(a, b).

Corollary

If f
′
(x) = g

′
(x) for all x in an interval (a, b), then f − g is

constant on (a, b); that is, f (x) = g(x) + c where c is a
constant.
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Derivatives and Graphs

Many of the applications of calculus depend on our ability to
deduce facts about a function f from information concerning
its derivatives.

Proposition (Increasing/Decreasing Test)

Let f be a function.

If f
′
(x) > 0 on an interval, then f is increasing on that

interval.

If f
′
(x) < 0 on an interval, then f is decreasing on that

interval.
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Derivatives and Graphs

Proposition (The First Derivative Test)

Suppose that c is a critical number of a continuous function f .

If f
′

changes from positive to negative at c, then f has a
local maximum at c.

If f
′

changes from negative to positive at c, then f has a
local minimum at c.

If f
′

does not change sign at c, then f has no local
maximum or minimum at c.
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Derivatives and Graphs

If the graph of f lies above all of its tangents on an interval I ,
then it is called concave upward on I . If the graph of f lies
below all of its tangents on I , it is called concave downward on
I .

Proposition (Concavity Test)

Let f be a function.

If f
′′

(x) > 0 for all x in I , then the graph of f is concave
upward on I .

If f
′′

(x) < 0 for all x in I , then the graph of f is concave
downward on I .
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Derivatives and Graphs

A point P on a curve y = f (x) is called an inflection point if f
is continuous there and the curve changes from concave
upward to concave downward or from concave downward to
concave upward at P.

Proposition (The Second Derivative Test)

Suppose f
′′

is continuous near c.

If f
′
(c) = 0 and f

′′
(c) > 0, then f has a local minimum

at c.

If f
′
(c) = 0 and f

′′
(c) < 0, then f has a local maximum

at c.
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Indeterminate Forms and L’Hospital’s Rule

In general, if we have a limit of the form

lim
x→a

f (x)

g(x)

where both f (x)→ 0 and g(x)→ 0 as x → a, then this limit
may or may not exist and is called an indeterminate form of
type 0

0 .

Similarly, there are indeterminate forms of type ∞∞ , 0 · ∞,
∞−∞, 00, ∞0, and 1∞.

We now introduce a systematic method, known as L’Hospital’s
Rule, for the evaluation of indeterminate forms:
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In general, if we have a limit of the form

lim
x→a

f (x)

g(x)

where both f (x)→ 0 and g(x)→ 0 as x → a, then this limit
may or may not exist and is called an indeterminate form of
type 0

0 .

Similarly, there are indeterminate forms of type ∞∞ , 0 · ∞,
∞−∞, 00, ∞0, and 1∞.

We now introduce a systematic method, known as L’Hospital’s
Rule, for the evaluation of indeterminate forms:
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Indeterminate Forms and L’Hospital’s Rule

Proposition (L’Hospital’s Rule)

Suppose f and g are differentiable and g
′
(x) 6= 0 on an open

interval I that contains a (except possibly at a). Suppose that

lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0

or that
lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞.

(In other words, we have an indeterminate form of type 0
0 or

∞
∞ .) Then

lim
x→a

f (x)

g(x)
= lim

x→a

f
′
(x)

g ′(x)

if the limit on the right side exists (or is ∞ or −∞).
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